Evaluation of Biostimulation and Bioaugmentation To S Hexahydro-1,3,5-trinitro-1,3,5,-triazine Degradation in a

Environmental Science & amp; Technology 50, 7625-7632 DOI: 10.1021/acs.est.6b00630

Citation Report

#	Article	IF	CITATIONS
1	RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Applied Microbiology and Biotechnology, 2017, 101, 5557-5567.	1.7	11
2	Functional Characterization of a Novel Amidase Involved in Biotransformation of Triclocarban and its Dehalogenated Congeners in <i>Ochrobactrum</i> sp. TCC-2. Environmental Science & amp; Technology, 2017, 51, 291-300.	4.6	79
3	Visualisation study on Pseudomonas migulae AN-1 transport in saturated porous media. Water Research, 2017, 122, 329-336.	5.3	7
4	Periodical biostimulation with nutrient addition and bioaugmentation using mixed fungal cultures to maintain enzymatic oxidation during extended bioremediation of oily soil microcosms. International Biodeterioration and Biodegradation, 2017, 116, 112-123.	1.9	28
5	Enhanced bioelectroremediation of a complexly contaminated river sediment through stimulating electroactive degraders with methanol supply. Journal of Hazardous Materials, 2018, 349, 168-176.	6.5	37
6	Typical Soil Redox Processes in Pentachlorophenol Polluted Soil Following Biochar Addition. Frontiers in Microbiology, 2018, 9, 579.	1.5	28
7	Enhancing bacterial transport with saponins in saturated porous media for the bioaugmentation of groundwater: visual investigation and surface interactions. Environmental Science and Pollution Research, 2018, 25, 26539-26549.	2.7	5
8	High throughput quantification of the functional genes associated with RDX biodegradation using the SmartChip real-time PCR system. Applied Microbiology and Biotechnology, 2019, 103, 7161-7175.	1.7	6
9	Manipulating redox conditions to enhance in situ bioremediation of RDX in groundwater at a contaminated site. Science of the Total Environment, 2019, 676, 368-377.	3.9	11
10	Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain <i>Gordonia</i> sp. KTR9. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1273-1281.	1.4	3
11	Right on target: using plants and microbes to remediate explosives. International Journal of Phytoremediation, 2019, 21, 1051-1064.	1.7	24
12	Harnessing the catabolic versatility of Gordonia species for detoxifying pollutants. Biotechnology Advances, 2019, 37, 382-402.	6.0	24
13	Biodegradation and Bioremediation of TNT and Other Nitro Explosives. , 2019, , 181-196.		1
14	Passive in situ biobarrier for treatment of comingled nitramine explosives and perchlorate in groundwater on an active range. Journal of Hazardous Materials, 2019, 365, 827-834.	6.5	10
15	Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation. Journal of Hazardous Materials, 2020, 387, 121529.	6.5	10
16	How synthetic biology can help bioremediation. Current Opinion in Chemical Biology, 2020, 58, 86-95.	2.8	52
17	Novel Pathway for Chloramphenicol Catabolism in the Activated Sludge Bacterial Isolate <i>Sphingobium</i> sp. CAP-1. Environmental Science & Technology, 2020, 54, 7591-7600.	4.6	41
18	Response of the green June beetle and its gut microbiome to RDX and phenanthrene. International Journal of Environmental Science and Technology, 2021, 18, 1785-1792.	1.8	2

#	Article	IF	CITATIONS
19	Combined bioaugmentation with electro-biostimulation for improved bioremediation of antimicrobial triclocarban and PAHs complexly contaminated sediments. Journal of Hazardous Materials, 2021, 403, 123937.	6.5	30
20	Environmental concerns associated with explosives (HMX, TNT, and RDX), heavy metals and metalloids from shooting range soils: Prevailing issues, leading management practices, and future perspectives. , 2021, , 569-590.		27
21	Determining the impact of biofilm in the bioaugmentation process of benzene-contaminated resources. Journal of Environmental Chemical Engineering, 2021, 9, 104976.	3.3	7
22	Genetically Engineered Methanotroph as a Platform for Bioaugmentation of Chemical Pesticide Contaminated Soil. ACS Synthetic Biology, 2021, 10, 487-494.	1.9	13
23	Diversity and abundance of the functional genes and bacteria associated with RDX degradation at a contaminated site pre- and post-biostimulation. Applied Microbiology and Biotechnology, 2021, 105, 6463-6475.	1.7	3
24	Enhanced bioremediation of RDX and Co-Contaminants perchlorate and nitrate using an anaerobic dehalogenating consortium in a fractured rock aquifer. Chemosphere, 2022, 294, 133674.	4.2	3
25	Effects of Perchlorate and Other Groundwater Inorganic Co-Contaminants on Aerobic RDX Degradation. Microorganisms, 2022, 10, 663.	1.6	2
27	Nature-based approaches to reducing the environmental risk of organic contaminants resulting from military activities. Science of the Total Environment, 2022, 843, 157007.	3.9	11
28	Bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil with the nitrate-reducing bacterium PheN7 under anaerobic condition. Journal of Hazardous Materials, 2022, 439, 129643.	6.5	20
29	Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a "Warm―Anammox Reactor. Biology, 2022, 11, 1421.	1.3	5
30	Variations of microbiota in three types of typical military contaminated sites: Diversities, structures, influence factors, and co-occurrence patterns. Journal of Hazardous Materials, 2023, 443, 130290.	6.5	8
32	Remediation of Soils Polluted by Military Activities. Handbook of Environmental Chemistry, 2024, , .	0.2	0