Soil organic carbon and total nitrogen stocks under diffecological restoration area of North China

Soil and Tillage Research 163, 176-184

DOI: 10.1016/j.still.2016.05.015

Citation Report

#	Article	IF	CITATIONS
1	Mercury concentrations and pools in four adjacent coniferous and deciduous upland forests in Beijing, China. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1260-1274.	1.3	26
2	The effect of organic matter application on carbon sequestration and soil fertility in upland fields of different types of Andosols. Soil Science and Plant Nutrition, 2017, 63, 200-220.	0.8	40
3	Soil organic carbon on the fragmented Chinese Loess Plateau: Combining effects of vegetation types and topographic positions. Soil and Tillage Research, 2017, 174, 1-5.	2.6	48
4	Short-temporal variation of soil organic carbon in different land use systems in the Ramsar site 2027 ‬Presa Manuel Ãvila Camacho' Puebla. Journal of Earth System Science, 2017, 126, 1.	0.6	5
5	A modified soil organic carbon density model for a forest watershed in southern China. Geomorphology, 2017, 296, 153-159.	1.1	1
6	The critical role of local policy effects in arid watershed groundwater resources sustainability: A case study in the Minqin oasis, China. Science of the Total Environment, 2017, 601-602, 1084-1096.	3.9	45
7	Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China. Soil and Tillage Research, 2017, 166, 1-9.	2.6	185
8	Land Use Affects the Soil C Sequestration in Alpine Environment, NE Italy. Forests, 2017, 8, 197.	0.9	20
9	Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma, 2018, 319, 61-69.	2.3	106
10	Effects of revegetation and precipitation gradient on soil carbon and nitrogen variations in deep profiles on the Loess Plateau of China. Science of the Total Environment, 2018, 626, 399-411.	3.9	68
11	Response of soil physical, chemical and microbial biomass properties to land use changes in fixed desertified land. Catena, 2018, 160, 339-344.	2.2	59
12	Soil total nitrogen sources on dammed farmland under the condition of ecological construction in a small watershed on the Loess Plateau, China. Ecological Engineering, 2018, 121, 19-25.	1.6	41
13	Soil organic carbon and total nitrogen stocks as affected by different land use in an Ultisol in Imo Watershed, southern Nigeria. Chemistry and Ecology, 2018, 34, 854-870.	0.6	14
14	Characteristics of soil organic carbon mineralization and influence factor analysis of natural Larix olgensis forest at different ages. Journal of Forestry Research, 2019, 30, 1495-1506.	1.7	13
15	The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. Water Research, 2019, 165, 114977.	5.3	127
16	Vetiver grass hedgerows significantly trap P but little N from sloping land: Evidenced from a 10-year field observation. Agriculture, Ecosystems and Environment, 2019, 281, 72-80.	2.5	12
17	Changes in soil organic carbon and total nitrogen stocks along a chronosequence of Caragana intermedia plantations in alpine sandy land. Ecological Engineering, 2019, 133, 53-59.	1.6	21
18	Characterization of organic matter fractions in the top layer of soils under different land uses in Centralâ€Eastern Europe. Soil Use and Management, 2019, 35, 595-606.	2.6	22

#	ARTICLE	IF	CITATIONS
19	Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena, 2019, 177, 227-237.	2.2	71
20	Simulation of land green supply chain based on system dynamics and policy optimization. International Journal of Production Economics, 2019, 217, 317-327.	5.1	34
21	The effects of ecological construction and topography on soil organic carbon and total nitrogen in the Loess Plateau of China. Environmental Earth Sciences, 2019, 78, .	1.3	24
22	Chemical characterization and source identification of organic matter in eroded sediments: Role of land use and erosion intensity. Chemical Geology, 2019, 506, 97-112.	1.4	39
23	A comparison of the effects of natural vegetation regrowth with a plantation scheme on soil structure in a geological hazardâ€prone region. European Journal of Soil Science, 2019, 70, 674-685.	1.8	21
24	Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. Journal of Cleaner Production, 2019, 215, 382-389.	4.6	102
25	Variations in soil δ13C with alpine meadow degradation on the eastern Qinghai–Tibet Plateau. Geoderma, 2019, 338, 178-186.	2.3	35
26	Different agricultural practices affect soil carbon, nitrogen and phosphorous in Kilombero -Tanzania. Journal of Environmental Management, 2019, 234, 159-166.	3.8	42
27	Modeling aggregate size distribution of eroded sediment resulting from rain-splash and raindrop impacted flow processes. International Journal of Sediment Research, 2019, 34, 166-177.	1.8	11
28	Distribution of soil organic carbon impacted by land-use changes in a hilly watershed of the Loess Plateau, China. Science of the Total Environment, 2019, 652, 505-512.	3.9	54
29	Using a nitrogen mineralization index will improve soil productivity rating by artificial neural networks. Archives of Agronomy and Soil Science, 2020, 66, 517-531.	1.3	2
30	Land-use types and slope topography affect the soil labile carbon fractions in the Loess hilly-gully area of Shaanxi, China. Archives of Agronomy and Soil Science, 2020, 66, 638-650.	1.3	30
31	Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China's Loess Plateau. Catena, 2020, 184, 104243.	2.2	27
32	Increasing soil organic carbon and nitrogen stocks along with secondary forest succession in permafrost region of the Daxing'an mountains, northeast China. Global Ecology and Conservation, 2020, 24, e01258.	1.0	16
33	Land Use Changes Affecting Soil Organic Matter Accumulation in Topsoil and Subsoil in Northeast Thailand. Applied and Environmental Soil Science, 2020, 2020, 1-15.	0.8	4
34	Plant productivity and microbial composition drive soil carbon and nitrogen sequestrations following cropland abandonment. Science of the Total Environment, 2020, 744, 140802.	3.9	28
35	The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China. Sustainability, 2020, 12, 6443.	1.6	9
36	Variation in soil organic carbon stability and driving factors after vegetation restoration in different vegetation zones on the Loess Plateau, China. Soil and Tillage Research, 2020, 204, 104727.	2.6	19

3

#	ARTICLE	IF	Citations
37	Soil Carbon Investigation in Three Pedoclimatic and Agronomic Settings of Northern Italy. Sustainability, 2020, 12, 10539.	1.6	14
38	Which slope aspect and gradient provides the best afforestation-driven soil carbon sequestration on the China's Loess Plateau?. Ecological Engineering, 2020, 147, 105782.	1.6	24
39	Fine root biomass and soil properties following the conversion of miombo woodlands to shifting cultivation lands. Catena, 2020, 194, 104693.	2.2	7
40	Effects of Seven Diversified Crop Rotations on Selected Soil Health Indicators and Wheat Productivity. Agronomy, 2020, 10, 235.	1.3	17
41	Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests. Global Change Biology, 2020, 26, 3163-3173.	4.2	39
42	Intensive organic vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated management. Journal of Plant Nutrition and Soil Science, 2020, 183, 155-168.	1.1	4
43	Factors Governing Total and Permanganate Oxidizable C Pools in Agricultural Soils from Southern Italy. Agriculture (Switzerland), 2020, 10, 99.	1.4	4
44	Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing'an Mountains, Northeast China. Forests, 2020, 11, 305.	0.9	20
45	Effects of Land Use and Topographic Position on Soil Organic Carbon and Total Nitrogen Stocks in Different Agro-Ecosystems of the Upper Blue Nile Basin. Sustainability, 2020, 12, 2425.	1.6	33
46	Vegetation and species impacts on soil organic carbon sequestration following ecological restoration over the Loess Plateau, China. Geoderma, 2020, 371, 114389.	2.3	27
47	Changes in soil organic carbon and total nitrogen in apple orchards in different climate regions on the Loess Plateau. Catena, 2021, 197, 104989.	2.2	20
48	Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China. Agricultural Water Management, 2021, 243, 106415.	2.4	31
49	Investigating spatially varying relationships between total organic carbon contents and pH values in European agricultural soil using geographically weighted regression. Science of the Total Environment, 2021, 752, 141977.	3.9	27
50	Soil phosphorus dynamics along a shortâ€ŧerm ecological restoration trajectory of a coastal sandplain forest in New Zealand. Land Degradation and Development, 2021, 32, 1250-1261.	1.8	6
51	Effects of Organic Amendments on the Improvement of Soil Nutrients and Crop Yield in Sandy Soils during a 4-Year Field Experiment in Huang-Huai-Hai Plain, Northern China. Agronomy, 2021, 11, 157.	1.3	16
52	The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland. Sustainability, 2021, 13, 1480.	1.6	15
53	Effects of environmental factors on plant functional traits across different plant life forms in a temperate forest ecosystem. New Forests, 2022, 53, 125-142.	0.7	19
54	Determining the impacts of deforestation and corn cultivation on soil quality in tropical acidic red soils using a soil quality index. Ecological Indicators, 2021, 125, 107580.	2.6	28

#	ARTICLE	IF	CITATIONS
55	Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C:N ratio in subtropical forests of southeastern China. Journal of Environmental Management, 2021, 289, 112483.	3.8	27
56	Effects of terracing on soil properties in three key mountainous regions of China. Geography and Sustainability, 2021, 2, 195-206.	1.9	6
57	Dynamics of new- and old- soil organic carbon and nitrogen following afforestation of abandoned cropland along soil clay gradient. Agriculture, Ecosystems and Environment, 2021, 319, 107505.	2.5	2
58	Environmental change recorded by radionuclides and organic geochemical signatures in a sediment core from Lake Daihai, North China. Catena, 2021, 206, 105564.	2.2	6
59	Forestation delivers significantly more effective results in soil C and N sequestrations than natural succession on badly degraded areas: Evidence from the Central Loess Plateau case. Catena, 2022, 208, 105734.	2.2	27
60	Estimates and determinants of soil organic carbon and total nitrogen stocks up to 5 m depth across a long transect on the Loess Plateau of China. Journal of Soils and Sediments, 2021, 21, 748-765.	1.5	8
61	Effects of land use and cultivation time on soil organic and inorganic carbon storage in deep soils. Journal of Chinese Geography, 2020, 30, 921-934.	1.5	13
62	Diversity, biomass, and carbon stock of understorey plants in the rubber agroforestry and rubber monoculture systems in Central Tapanuli District, North Sumatra, Indonesia. Biodiversitas, 2020, 21, .	0.2	3
63	Effects of temperature and grazing on soil organic carbon storage in grasslands along the Eurasian steppe eastern transect. PLoS ONE, 2017, 12, e0186980.	1.1	36
64	Variability of soil carbon and nitrogen stocks after conversion of natural forest to plantations in Eastern China. PeerJ, 2020, 8, e8377.	0.9	16
65	Impact of Land Use Types and Seasonal Variations on Soil Physico-chemical Properties and Microbial Biomass Dynamics in a Tropical Climate, Ghana. Advances in Research, 0, , 34-49.	0.3	8
66	Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China. Scientific Reports, 2021, 11, 19631.	1.6	8
67	Distribution Characteristics of SOC, STN, and STP Contents Along a Slope Aspect Gradient of Loess Plateau in China. Frontiers in Soil Science, 2021, 1 , .	0.8	1
68	Land use and soil types affect macropore network, organic carbon and nutrient retention, Lithuania. Geoderma Regional, 2022, 28, e00473.	0.9	7
69	Assessing soil organic carbon, N and P stocks and its relation to soil properties in artificial canopy gaps in a managed oriental beech (<i>Fagus orientalis</i> L.) forest [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 243-250.	1.1	4
70	Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system. Journal of Integrative Agriculture, 2022, 21, 826-839.	1.7	8
71	Long-Term Contrasting Tillage in Cambisol: Affect on Water-Stable Aggregates, Macropore Network and Soil Agrochemical Properties, Lithuania. SSRN Electronic Journal, 0, , .	0.4	0
72	Long-Term Contrasting Tillage in Cambisol: Affect on Water-Stable Aggregates, Macropore Network and Soil Agrochemical Properties, Lithuania. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
73	Deposition Flux, Stocks of C, N, P, S, and Their Ecological Stoichiometry in Coastal Wetlands With Three Plant Covers. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	3
74	Effect of environmental factors on soil properties under different land use types in a typical basin of the North China Plain. Journal of Cleaner Production, 2022, 344, 131084.	4.6	13
75	48-year effect on organic carbon and nitrogen stocks in two soil types in northwestern Tunisia. Arabian Journal of Geosciences, 2022, $15,1.$	0.6	0
76	Change in the Net Primary Production and Carbon Stock Recovery in Fallow Soils. Eurasian Soil Science, 2022, 55, 501-510.	0.5	4
77	Land-Use Conversion Altered Topsoil Properties and Stoichiometry in a Reclaimed Coastal Agroforestry System. Agronomy, 2022, 12, 1143.	1.3	4
78	Variations in Soil C, N, P Stocks and Stoichiometry With Soil Depth and Forest Types in Qilian Mountains of Northwest China. Frontiers in Environmental Science, 2022, 10, .	1.5	3
79	Carbon and Nitrogen Stocks Under Different Land-Use in the Paraopeba River Basin-MG Before the Corrégo do Feijão Dam Burst. Revista Ceres, 2022, 69, 330-339.	0.1	1
81	Characteristics of Soil Nutrients and Their Ecological Stoichiometry in Different Land Use Types in the Nianchu River Basin. Land, 2022, 11, 1001.	1.2	3
82	Ecological restoration stimulates environmental outcomes but exacerbates water shortage in the Loess Plateau. PeerJ, 0, 10, e13658.	0.9	1
83	Longâ€term cultivation of <i>Miscanthus</i> and switchgrass accelerates soil organic carbon accumulation by decreasing carbon mineralization in infertile red soil. GCB Bioenergy, 2022, 14, 1065-1077.	2.5	3
84	Effects of artificial restoration on vertical distribution of soil carbon storage following revegetation in a semiâ€arid grassland of North China. Land Degradation and Development, 0, , .	1.8	1
85	Post-farming land restoration schemes exhibit higher soil aggregate stability and organic carbon: Evidence in the Three Gorges Reservoir Area, China. Catena, 2023, 227, 107099.	2.2	6
86	Effects of Land-Use Dynamics on Soil Organic Carbon and Total Nitrogen Stock, Western Ethiopia. Applied and Environmental Soil Science, 2023, 2023, 1-12.	0.8	1
87	Divergent Controls on Leaf and Root Litter Decay Linking to Soil C, N, and P Pools Under a Subtropical Land-use Change. Ecosystems, 2023, 26, 1209-1223.	1.6	3
88	Soil organic carbon and its stability after vegetation restoration in Zoige grassland, eastern <scp>Qinghaiâ€Tibet</scp> Plateau. Restoration Ecology, 0, , .	1.4	0
89	Reconstructing the ecological restoration pattern from the perspective of ecosystem health assessment in a typical black soil region of Northeast China. Frontiers in Environmental Science, 0, 11 , .	1.5	1
90	Variations in soil organic carbon storage and stability with vegetation restoration stages on the Loess Plateau of China. Catena, 2023, 228, 107142.	2.2	2
97	48-Year Carbon and Nitrogen Stocks Variation in Forest and Agricultural Soils in Northern Tunisia. Advances in Science, Technology and Innovation, 2023, , 199-201.	0.2	O

Article IF Citations