The grass pollen season 2014 in Vienna: A pilot study co and symptom data

Science of the Total Environment 566-567, 1614-1620

DOI: 10.1016/j.scitotenv.2016.06.059

Citation Report

#	Article	IF	CITATIONS
1	Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna). Plants, 2016, 5, 42.	3.5	12
2	Phenological analysis of grasses (Poaceae) as a support for the dissection of their pollen season in Perugia (Central Italy). Aerobiologia, 2017, 33, 339-349.	1.7	19
3	Pollen exposure and hospitalization due to asthma exacerbations: daily time series in a European city. International Journal of Biometeorology, 2017, 61, 1837-1848.	3.0	85
4	What are the most important variables for Poaceae airborne pollen forecasting?. Science of the Total Environment, 2017, 579, 1161-1169.	8.0	9
5	Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities. World Allergy Organization Journal, 2017, 10, 17.	3.5	8
6	The grass pollen season 2015: a proof of concept multi-approach study in three different European cities. World Allergy Organization Journal, 2017, 10, 31.	3.5	26
7	Spatio-temporal flowering patterns in Mediterranean Poaceae. A community study in SW Spain. International Journal of Biometeorology, 2018, 62, 513-523.	3.0	8
8	Standardised index for measuring atmospheric grass-pollen emission. Science of the Total Environment, 2018, 612, 180-191.	8.0	27
9	Defining Pollen Seasons: Background and Recommendations. Current Allergy and Asthma Reports, 2018, 18, 73.	5.3	45
10	The evaluation of pollen concentrations with statistical and computational methods on rooftop and on ground level in Vienna – How to include daily crowd-sourced symptom data. World Allergy Organization Journal, 2019, 12, 100036.	3.5	20
11	Assessment of the potential real pollen related allergenic load on the atmosphere of Porto city. Science of the Total Environment, 2019, 668, 333-341.	8.0	19
12	Strong dose response after immunotherapy with PQ grass using conjunctival provocation testing. World Allergy Organization Journal, 2019, 12, 100075.	3.5	11
13	Forecasting Plantago pollen: improving feature selection through random forests, clustering, and Friedman tests. Theoretical and Applied Climatology, 2020, 139, 163-174.	2.8	7
14	Can smartphone data identify the local environmental drivers of respiratory disease?. Environmental Research, 2020, 182, 109118.	7.5	25
15	Phenology and Climatic Regime Inferred from Airborne Pollen on the Northern Slope of the Qomolangma (Everest) Region. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033405.	3.3	12
16	Inventory of the Recommendations for Patients with Pollen Allergies and Evaluation of Their Scientific Relevance. International Archives of Allergy and Immunology, 2020, 181, 839-852.	2.1	7
17	Reinhard Zetter, an appreciation. Grana, 2020, 59, 1-6.	0.8	0
18	Late exposure to grass pollen in September: the case of <i>Phragmites</i> in Burgenland. Grana, 2020, 59, 25-32.	0.8	5

CITATION REPORT

#	Article	IF	CITATIONS
19	How will climate change alter the dynamics of airborne pollen and pollen load of allergenic plants?. Allergo Journal International, 2021, 30, 96-108.	2.0	3
21	Stochastic flowering phenology in Dactylis glomerata populations described by Markov chain modelling. Aerobiologia, 2021, 37, 293-308.	1.7	5
22	Variability of grass pollen allergy symptoms throughout the season: Comparing symptom data profiles from the Patient's Hayfever Diary from 2014 to 2016 in Vienna (Austria). World Allergy Organization Journal, 2021, 14, 100518.	3.5	17
24	Impact of air pollution on symptom severity during the birch, grass and ragweed pollen period in Vienna, Austria: Importance of O3 in 2010–2018. Environmental Pollution, 2020, 263, 114526.	7.5	25
25	Microscale pollen release and dispersal patterns in flowering grass populations. Science of the Total Environment, 2023, 880, 163345.	8.0	3
26	Isolating the species element in grass pollen allergy: A review. Science of the Total Environment, 2023, 883, 163661.	8.0	5
27	Grass flowering times determined using herbarium specimens for modeling grass pollen under a warming climate. Science of the Total Environment, 2023, 885, 163824.	8.0	0
28	Aerobiological Monitoring and Metabarcoding of Grass Pollen. Plants, 2023, 12, 2351.	3.5	0
29	Prolonging the period of allergenic burden: late-flowering grasses and local peculiarities. Allergo Journal International, 0, , .	2.0	0
30	Sensitization patterns to Poaceae pollen indicates a hierarchy in allergens and a lead of tropical grasses. Clinical and Translational Allergy, 2023, 13, .	3.2	0
31	Phenology as aÂtool to gain more insights into the grass pollen season. Allergo Journal International, 0, , .	2.0	0
33	Crowd-sourced symptom data in pollen allergy: testing aÂnovel study approach for assessing the efficacy of food supplements. Allergo Journal International, 0, , .	2.0	0
34	Floating in the air: forecasting allergenic pollen concentration for managing urban public health. International Journal of Digital Earth, 2024, 17, .	3.9	0