Organic Photoredox Catalysis

Chemical Reviews 116, 10075-10166

DOI: 10.1021/acs.chemrev.6b00057

Citation Report

#	Article	IF	CITATIONS
9	Photocatalytic Decarboxylative Hydroxylation of Carboxylic Acids Driven by Visible Light and Using Molecular Oxygen. Journal of Organic Chemistry, 2016, 81, 7250-7255.	1.7	60
10	Synthesis of Hydrazide-Containing Chroman-2-ones and Dihydroquinolin-2-ones via Photocatalytic Radical Cascade Reaction of Aroylhydrozones. Organic Letters, 2016, 18, 6304-6307.	2.4	23
11	9,10-Dicyanoanthracene Catalyzed Decarboxylative Alkynylation of Carboxylic Acids under Visible-Light Irradiation. Journal of Organic Chemistry, 2016, 81, 12357-12363.	1.7	53
13	Visibleâ€Lightâ€Induced Direct Oxidative Câ°'H Amidation of Heteroarenes with Sulfonamides. Chemistry - A European Journal, 2016, 22, 15669-15673.	1.7	68
14	Direct and Oxidant-Free Electron-Deficient Arylation of $\langle i \rangle N \langle i \rangle$ -Acyl-Protected Tetrahydroisoquinolines. Organic Letters, 2016, 18, 4686-4689.	2.4	36
15	Visibleâ€Lightâ€Promoted Metalâ€Free Aerobic Oxidation of Primary Amines to Acids and Lactones. Chemistry - A European Journal, 2016, 22, 17566-17570.	1.7	17
16	Visible-Light-Induced Cascade Reaction of Isocyanides and <i>N</i> -Arylacrylamides with Diphenylphosphine Oxide via Radical C–P and C–C Bond Formation. Organic Letters, 2016, 18, 4928-4931.	2.4	105
17	A visible-light photocatalytic N-radical cascade of hydrazones for the synthesis of dihydropyrazole-fused benzosultams. Chemical Communications, 2016, 52, 12749-12752.	2.2	87
18	A visible-light-induced chemoselective radical/oxidative addition domino process to access \hat{l}_{\pm} -chloro and \hat{l}_{\pm} -alkoxy aryl ketones. Chemical Communications, 2016, 52, 13105-13108.	2.2	21
19	Photoredox Catalysis in Organic Chemistry. Journal of Organic Chemistry, 2016, 81, 6898-6926.	1.7	2,156
20	Metal-Free Photocatalyzed Cross Coupling of Bromoheteroarenes with Pyrroles. ACS Catalysis, 2016, 6, 6780-6784.	5.5	69
21	Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer. Journal of the American Chemical Society, 2016, 138, 12636-12642.	6.6	160
22	A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis. Accounts of Chemical Research, 2016, 49, 1997-2006.	7.6	404
23	Organocatalyzed Atom Transfer Radical Polymerization Using <i>N</i> -Aryl Phenoxazines as Photoredox Catalysts. Journal of the American Chemical Society, 2016, 138, 11399-11407.	6.6	300
24	A Simple and Versatile Reactor for Photochemistry. Organic Process Research and Development, 2016, 20, 1792-1798.	1.3	45
25	Visible-light-mediated generation of nitrile oxides for the photoredox synthesis of isoxazolines and isoxazoles. Chemical Communications, 2016, 52, 12302-12305.	2.2	40
26	The photophysics of photoredox catalysis: a roadmap for catalyst design. Chemical Society Reviews, 2016, 45, 5803-5820.	18.7	636
27	Metal-Free Visible-Light-Mediated Oxidative Cross-Coupling of Thiols with P(O)H Compounds Using Air as the Oxidant. Organic Letters, 2016, 18, 5114-5117.	2.4	117

#	ARTICLE	IF	Citations
28	Visible-Light-Promoted Carboimination of Unactivated Alkenes for the Synthesis of Densely Functionalized Pyrroline Derivatives. ACS Catalysis, 2016, 6, 5571-5574.	5.5	107
29	Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 7244-7249.	1.7	259
30	Photocatalytic Câ^'C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex. Angewandte Chemie, 2016, 128, 15545-15548.	1.6	59
31	To Photoredox or Not in Neutral Aqueous Solutions for Selected Benzophenone and Anthraquinone Derivatives. Journal of Physical Chemistry Letters, 2016, 7, 4860-4864.	2.1	7
32	Synthesis of stilbene derivatives via visible-light-induced cross-coupling of aryl diazonium salts with nitroalkenes using –NO ₂ as a leaving group. Chemical Communications, 2016, 52, 14234-14237.	2,2	34
33	Visible-Light Photo-Arbuzov Reaction of Aryl Bromides and Trialkyl Phosphites Yielding Aryl Phosphonates. ACS Catalysis, 2016, 6, 8410-8414.	5.5	125
34	Intramolecular radical non-reductive alkylation of ketones via transient enamines. Chemical Communications, 2016, 52, 14031-14034.	2.2	10
35	Photocatalytic Câ^'C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex. Angewandte Chemie - International Edition, 2016, 55, 15319-15322.	7.2	242
36	Catalytic Diverse Radical-Mediated 1,2-Cyanofunctionalization of Unactivated Alkenes via Synergistic Remote Cyano Migration and Protected Strategies. Organic Letters, 2016, 18, 6026-6029.	2.4	72
37	Synthesis of 1,4-Dicarbonyl Compounds from Silyl Enol Ethers and Bromocarbonyls, Catalyzed by an Organic Dye under Visible-Light Irradiation with Perfect Selectivity for the Halide Moiety over the Carbonyl Group. Organic Letters, 2016, 18, 5704-5707.	2.4	54
38	Aryl Ketones as Singleâ€Electronâ€Transfer Photoredox Catalysts in the Nickelâ€Catalyzed Homocoupling of Aryl Halides. European Journal of Organic Chemistry, 2016, 2016, 5822-5825.	1.2	31
39	Radicalâ€Mediated 1,2â€Formyl/Carbonyl Functionalization of Alkenes and Application to the Construction of Mediumâ€Sized Rings. Angewandte Chemie - International Edition, 2016, 55, 15100-15104.	7.2	163
40	Metal-Free Synthesis of 6-Phosphorylated Phenanthridines: Synthetic and Mechanistic Insights. Organic Letters, 2016, 18, 5900-5903.	2.4	57
41	Visible-Light-Mediated Oxidative Dimerization of Arylalkynes in the Open Air: Stereoselective Synthesis of (<i>Z</i>)-1,4-Enediones. Organic Letters, 2016, 18, 5860-5863.	2.4	22
42	Radicalâ€Mediated 1,2â€Formyl/Carbonyl Functionalization of Alkenes and Application to the Construction of Mediumâ€6ized Rings. Angewandte Chemie, 2016, 128, 15324-15328.	1.6	48
43	Porphyrins as Photoredox Catalysts: Experimental and Theoretical Studies. Journal of the American Chemical Society, 2016, 138, 15451-15458.	6.6	153
44	Visible-Light-Mediated Synthesis of Amidyl Radicals: Transition-Metal-Free Hydroamination and <i>N</i> -Arylation Reactions. Journal of the American Chemical Society, 2016, 138, 8092-8095.	6.6	267
45	Effects of Lewis Acids on Photoredox Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 397-409.	1.3	26

#	Article	IF	CITATIONS
46	Visible Light [2+2] Photocycloaddition Mediated by Flavin Derivative Immobilized on Mesoporous Silica. ChemCatChem, 2017, 9, 1177-1181.	1.8	24
47	Erythrosine B Catalyzed Visibleâ€Light Photoredox Arylation–Cyclization of <i>N</i> â€Alkylâ€ <i>N</i> â€arylâ€2â€(trifluoromethyl)acrylamides to 3â€(Trifluoromethyl)indolinâ€2â€one Derivatives. European Journal of Organic Chemistry, 2017, 2017, 2112-2117.	1.2	33
48	Visibleâ€Lightâ€Mediated 5â€ <i>exo</i> â€ <i>dig</i> Cyclizations of Amidyl Radicals. European Journal of Organic Chemistry, 2017, 2017, 2108-2111.	1.2	49
49	Visible-light assisted one-pot preparation of aryl glyoxals from acetoarylones via in-situ arylacyl bromides formation: Selenium-free approach to acetoarylones oxidation. Tetrahedron Letters, 2017, 58, 658-662.	0.7	15
50	Improving the throughput of batch photochemical reactions using flow: Dual photoredox and nickel catalysis in flow for C(sp2) <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext></mml:mtext></mml:mrow></mml:math> C(sp3) cross-coupling. Bioorganic and Medicinal Chemistry, 2017, 25, 6190-6196.	1.4	37
51	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774.	2.9	78
52	Photoredox-Catalyzed Reductive Carbamoyl Radical Generation: A Redox-Neutral Intermolecular Addition–Cyclization Approach to Functionalized 3,4-Dihydroquinolin-2-ones. Organic Letters, 2017, 19, 874-877.	2.4	52
53	Diazatetracenes Derived from the Benzannulation of Acetylenes: Electronic Tuning via Substituent Effects and External Stimuli. Journal of Organic Chemistry, 2017, 82, 2004-2010.	1.7	17
54	Oxidative bicyclization of <i>N</i> -tethered 1,7-enynes toward polycyclic 3,4-dihydroquinolin-2(1 <i>H</i>)-ones <i>via</i> site-selective decarboxylative C(sp ³)–H functionalization. RSC Advances, 2017, 7, 9693-9703.	1.7	41
55	Photocatalytic esterification under Mitsunobu reaction conditions mediated by flavin and visible light. Organic and Biomolecular Chemistry, 2017, 15, 1970-1975.	1.5	32
56	Photoredoxâ€Catalysed Decarboxylative Alkylation of Nâ€Heteroarenes with <i>N</i> â€(Acyloxy)phthalimides. Chemistry - A European Journal, 2017, 23, 2537-2541.	1.7	176
57	Transition-Metal-Catalyzed C–H Alkylation Using Alkenes. Chemical Reviews, 2017, 117, 9333-9403.	23.0	885
58	Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality. Accounts of Chemical Research, 2017, 50, 320-330.	7.6	256
59	Visibleâ€Light Photoredoxâ€Catalyzed Aminosulfonylation of Diaryliodonium Salts with Sulfur Dioxide and Hydrazines. Advanced Synthesis and Catalysis, 2017, 359, 1308-1319.	2.1	118
60	Light on Unsaturated Hydrocarbons – "Gotta Heterofunctionalize Them All― European Journal of Organic Chemistry, 2017, 2017, 2008-2055.	1.2	37
61	Metal-free visible-light-promoted intermolecular [2+2]-cycloaddition of 3-ylideneoxindoles. Tetrahedron, 2017, 73, 1854-1860.	1.0	22
62	The Essential Role of Bond Energetics in C–H Activation/Functionalization. Chemical Reviews, 2017, 117, 8622-8648.	23.0	369
63	General and Efficient C–C Bond Forming Photoredox Catalysis with Semiconductor Quantum Dots. Journal of the American Chemical Society, 2017, 139, 4250-4253.	6.6	194

#	Article	IF	Citations
64	Cooperation of a Nickel–Bipyridine Complex with Light for Benzylic Câ⁻'H Arylation of Toluene Derivatives. Asian Journal of Organic Chemistry, 2017, 6, 669-672.	1.3	33
65	Photocascade Catalysis: A New Strategy for Cascade Reactions. ChemPhotoChem, 2017, 1, 148-158.	1.5	127
66	Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals. Chemical Science, 2017, 8, 3618-3622.	3.7	131
67	Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis. European Journal of Organic Chemistry, 2017, 2017, 2056-2071.	1.2	507
68	Direct Phosphonation of Quinolinones and Coumarins Driven by the Photochemical Activity of Substrates and Products. Organic Letters, 2017, 19, 1394-1397.	2.4	91
69	Mild, Redox-Neutral Alkylation of Imines Enabled by an Organic Photocatalyst. ACS Catalysis, 2017, 7, 1766-1770.	5.5	147
70	Visible light promoted copper-catalyzed Markovnikov hydration of alkynes at room temperature. Tetrahedron Letters, 2017, 58, 1156-1159.	0.7	24
71	Visibleâ€Lightâ€Mediated Oxygenation Reactions using Molecular Oxygen. Asian Journal of Organic Chemistry, 2017, 6, 386-396.	1.3	100
72	Direct C–H Cyanation of Arenes via Organic Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 2880-2883.	6.6	187
73	Continuous Flow α-Arylation of <i>N</i> , <i>N</i> -Dialkylhydrazones under Visible-Light Photoredox Catalysis. Organic Letters, 2017, 19, 938-941.	2.4	28
74	Organocatalysis in Inert C–H Bond Functionalization. Chemical Reviews, 2017, 117, 9433-9520.	23.0	578
75	A mild catalytic system for radical conjugate addition of nitrogen heterocycles. Chemical Science, 2017, 8, 3121-3125.	3.7	68
76	A chiral ion-pair photoredox organocatalyst: enantioselective anti-Markovnikov hydroetherification of alkenols. Organic Chemistry Frontiers, 2017, 4, 1037-1041.	2.3	48
77	Synthesis of Alkylated Pyrimidines via Photoinduced Coupling Using Benzophenone as a Mediator. Journal of Organic Chemistry, 2017, 82, 2664-2671.	1.7	32
78	Die anellierende Erweiterung von Ï€â€Systemen (APEXâ€Reaktion): ein rascher Zugang zu kondensierten Arenen, Heteroarenen und Nanographenen. Angewandte Chemie, 2017, 129, 11296-11317.	1.6	65
79	Redoxâ€Neutral Dual Functionalization of Electronâ€Deficient Alkenes. Chemistry - A European Journal, 2017, 23, 7444-7447.	1.7	41
80	Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm, 2017, 19, 4126-4136.	1.3	116
81	Rh(<scp>iii</scp>)-catalyzed sequential Câ€"H activation and annulation: access to N-fused heterocycles from arylazoles and α-diazocarbonyl compounds. RSC Advances, 2017, 7, 20548-20552.	1.7	35

#	Article	IF	CITATIONS
82	Lanthanide Ions Coupled with Photoinduced Electron Transfer Generate Strong Reduction Potentials from Visible Light. Chemistry - A European Journal, 2017, 23, 7900-7904.	1.7	41
83	Does a Nitrogen Lone Pair Lead to Two Centered–Three Electron (2c–3e) Interactions in Pyridyl Radical Isomers?. Journal of Physical Chemistry A, 2017, 121, 3781-3791.	1.1	9
84	Some aspects of radical cascade and relay reactions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160859.	1.0	12
85	Direct C(sp ²)–H amination of aryl aldehyde-derived hydrazones via visible light promoted photoredox catalysis. RSC Advances, 2017, 7, 25171-25174.	1.7	23
86	Photoâ€Chromium: Sensitizer for Visibleâ€Lightâ€Induced Oxidative Câ^'H Bond Functionalizationâ€"Electron or Energy Transfer?. ChemPhotoChem, 2017, 1, 344-349.	1.5	78
87	Visible-Light-Mediated Reactions of Electrophilic Radicals with Vinyl and Allyl Trifluoroborates. ACS Catalysis, 2017, 7, 4126-4130.	5.5	52
88	Visibleâ€Lightâ€Mediated [4+2] Cycloaddition of Styrenes: Synthesis of Tetralin Derivatives. Angewandte Chemie, 2017, 129, 7000-7004.	1.6	25
89	Metalâ€Free, Visibleâ€Lightâ€Promoted Synthesis of 3â€Phosphorylated Coumarins <i>via</i> Radical Câ^'P/Câ^'C Bond Formation. Advanced Synthesis and Catalysis, 2017, 359, 2773-2777.	2.1	70
90	Iodine/Visible Light Photocatalysis for Activation of Alkynes for Electrophilic Cyclization Reactions. ACS Catalysis, 2017, 7, 4093-4099.	5.5	49
91	Kooperative Lichtâ€aktivierte Iod―und Photoredoxâ€Katalyse zur Aminierung von Câ€Hâ€Bindungen. Angewandte Chemie, 2017, 129, 8117-8121.	1.6	63
92	Visibleâ€Light Photocatalytic Intramolecular Cyclopropane Ring Expansion. Angewandte Chemie - International Edition, 2017, 56, 7826-7830.	7.2	47
93	Cooperative Lightâ€Activated Iodine and Photoredox Catalysis for the Amination of Câ°'H Bonds. Angewandte Chemie - International Edition, 2017, 56, 8004-8008.	7.2	181
94	Dehydrogenative Transformations of Imines Using a Heterogeneous Photocatalyst. Journal of Organic Chemistry, 2017, 82, 5959-5965.	1.7	13
95	Photo-induced copper-catalyzed C–H chalcogenation of azoles at room temperature. Chemical Communications, 2017, 53, 5906-5909.	2.2	85
96	Visibleâ€Light Photocatalytic Intramolecular Cyclopropane Ring Expansion. Angewandte Chemie, 2017, 129, 7934-7938.	1.6	8
97	Direct Coupling of Naphthalene and Sulfonimides Promoted by DDQ and Blue Light. Chemistry Letters, 2017, 46, 1014-1016.	0.7	19
98	Visible-Light-Induced Regioselective Cyanomethylation of Imidazopyridines and Its Application in Drug Synthesis. Journal of Organic Chemistry, 2017, 82, 5391-5397.	1.7	71
99	Anti-Markovnikov Hydroarylation of Unactivated Olefins via Pyridyl Radical Intermediates. Journal of the American Chemical Society, 2017, 139, 6582-6585.	6.6	92

#	ARTICLE	IF	CITATIONS
100	Visibleâ€Lightâ€Mediated [4+2] Cycloaddition of Styrenes: Synthesis of Tetralin Derivatives. Angewandte Chemie - International Edition, 2017, 56, 6896-6900.	7.2	68
101	Merger of Visible-Light Photoredox Catalysis and C–H Activation for the Room-Temperature C-2 Acylation of Indoles in Batch and Flow. ACS Catalysis, 2017, 7, 3818-3823.	5.5	116
102	Metal-free direct alkylation of unfunctionalized allylic/benzylic sp ³ C–H bonds via photoredox induced radical cation deprotonation. Chemical Science, 2017, 8, 4654-4659.	3.7	120
103	Flavinâ€Mediated Visibleâ€Light [2+2] Photocycloaddition of Nitrogen―and Sulfurâ€Containing Dienes. European Journal of Organic Chemistry, 2017, 2017, 2139-2146.	1.2	28
104	Photoredox-Induced Functionalization of Alkenes for the Synthesis of Substituted Imidazolines and Oxazolidines. Journal of Organic Chemistry, 2017, 82, 243-249.	1.7	64
105	Visibleâ€Lightâ€Promoted Generation of αâ€Ketoradicals from Vinylâ€bromides and Molecular Oxygen: Synthesis of Indenones and Dihydroindeno[1,2â€c]chromenes. Angewandte Chemie - International Edition, 2017, 56, 10928-10932.	7.2	34
106	Selective Photooxidation Reactions using Waterâ€Soluble Anthraquinone Photocatalysts. ChemCatChem, 2017, 9, 3821-3826.	1.8	59
107	Bildung von αâ€Ketoradikalen aus Vinylbromiden und molekularem Sauerstoff mit sichtbarem Licht: Synthese von Indenonen und Dihydroindeno[1,2â€ <i>c</i>]chromenen. Angewandte Chemie, 2017, 129, 11068-11072.	1.6	10
108	Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. ACS Catalysis, 2017, 7, 4999-5022.	5.5	334
109	Visible-light-induced selective synthesis of sulfoxides from alkenes and thiols using air as the oxidant. Green Chemistry, 2017, 19, 3520-3524.	4.6	116
110	Visible-light mediated directed perfluoroalkylation of hydrazones. Organic and Biomolecular Chemistry, 2017, 15, 6014-6023.	1.5	23
111	A General Small-Scale Reactor To Enable Standardization and Acceleration of Photocatalytic Reactions. ACS Central Science, 2017, 3, 647-653.	5.3	195
112	Photoinduced difunctionalization of 2,3-dihydrofuran for the efficient synthesis of 2,3-disubstituted tetrahydrofurans. Organic Chemistry Frontiers, 2017, 4, 1640-1646.	2.3	11
113	Metal-free visible light driven synthesis of tetrahydroquinoline derivatives utilizing Rose Bengal. Tetrahedron, 2017, 73, 4627-4633.	1.0	27
114	Fine Tuning the Redox Potentials of Carbazolic Porous Organic Frameworks for Visible-Light Photoredox Catalytic Degradation of Lignin $\langle i \rangle \hat{l}^2 - \langle i \rangle O$ -4 Models. ACS Catalysis, 2017, 7, 5062-5070.	5.5	128
115	Asymmetric radical alkylation of N-sulfinimines under visible light photocatalytic conditions. Chemical Communications, 2017, 53, 7764-7767.	2.2	50
116	Mechanistic Study of SmI ₂ /H ₂ O and SmI ₂ /Amine/H ₂ O-Promoted Chemoselective Reduction of Aromatic Amides (Primary, Secondary, Tertiary) to Alcohols via Aminoketyl Radicals. Journal of Organic Chemistry, 2017, 82, 6528-6540.	1.7	33
117	Photoinduced Oxidative Formylation of <i>N</i> , <i>N</i> ,o>Dimethylanilines with Molecular Oxygen without External Photocatalyst. Organic Letters, 2017, 19, 3386-3389.	2.4	88

#	Article	IF	CITATIONS
118	Photocatalytic Hydrazonyl Radical-Mediated Radical Cyclization/Allylation Cascade: Synthesis of Dihydropyrazoles and Tetrahydropyridazines. Organic Letters, 2017, 19, 3620-3623.	2.4	93
119	"Superâ€Reducing―Photocatalysis: Consecutive Energy and Electron Transfers with Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 10280-10281.	7.2	27
120	Photoredox-catalyzed procedure for carbamoyl radical generation: 3,4-dihydroquinolin-2-one and quinolin-2-one synthesis. Organic and Biomolecular Chemistry, 2017, 15, 5831-5845.	1.5	43
121	Synthesis and Photophysical Characterization of Cyclometalated Ruthenium Complexes with N-Heterocyclic Carbene Ligands. Organometallics, 2017, 36, 2397-2403.	1.1	24
122	A General Copper Catalyst for Photoredox Transformations of Organic Halides. Organic Letters, 2017, 19, 3576-3579.	2.4	125
123	Redesign of a Pyrylium Photoredox Catalyst and Its Application to the Generation of Carbonyl Ylides. Organic Letters, 2017, 19, 2989-2992.	2.4	66
124	Exploring the Reducing Ability of Organic Dye (Acr ⁺ -Mes) for Fluorination and Oxidation of Benzylic C(sp ³)â€"H Bonds under Visible Light Irradiation. Organic Letters, 2017, 19, 3009-3012.	2.4	85
125	Sensitizationâ€Initiated Electron Transfer for Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 8544-8549.	7.2	198
126	A Conjugated Microporous Polymer for Palladiumâ€Free, Visible Lightâ€Promoted Photocatalytic Stilleâ€Type Coupling Reactions. Advanced Science, 2017, 4, 1700101.	5.6	51
127	Photoredoxkatalyse durch sensibilisierten Elektronentransfer. Angewandte Chemie, 2017, 129, 8664-8669.	1.6	63
128	Visible Light Promoted Synthesis of Indoles by Single Photosensitizer under Aerobic Conditions. Organic Letters, 2017, 19, 3251-3254.	2.4	53
129	A photoinduced reaction of perfluoroalkyl halides with 1,3-diarylprop-2-yn-1-ones catalyzed by DABSO. Organic Chemistry Frontiers, 2017, 4, 1745-1750.	2.3	21
130	Direct 1O2 optical excitation: A tool for redox biology. Redox Biology, 2017, 13, 39-59.	3.9	64
131	The Hitchhiker's Guide to Flow Chemistry. Chemical Reviews, 2017, 117, 11796-11893.	23.0	1,410
132	Visible-Light-Mediated Thiol–Ene Reactions through Organic Photoredox Catalysis. Organic Letters, 2017, 19, 3291-3294.	2.4	75
133	Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation. ACS Catalysis, 2017, 7, 4602-4612.	5.5	70
134	Rapid and facile chemical actinometric protocol for photo-microfluidic systems using azobenzene and NMR spectroscopy. RSC Advances, 2017, 7, 29815-29820.	1.7	17
135	Enzyme and photoredox sequential catalysis for the synthesis of 1,3-oxazine derivatives in one pot. Catalysis Science and Technology, 2017, 7, 1937-1942.	2.1	23

#	Article	IF	CITATIONS
136	Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance. Macromolecular Rapid Communications, 2017, 38, 1700040.	2.0	121
137	A unified strategy for silver-, base-, and oxidant-free direct arylation of C–H bonds. Green Chemistry, 2017, 19, 2111-2117.	4.6	36
138	Organocatalysis and Biocatalysis Hand in Hand: Combining Catalysts in Oneâ€Pot Procedures. Advanced Synthesis and Catalysis, 2017, 359, 2026-2049.	2.1	49
139	Extended Study of Visible-Light-Induced Photocatalytic [4 + 2] Benzannulation: Synthesis of Polycyclic (Hetero)Aromatics. Journal of Organic Chemistry, 2017, 82, 4369-4378.	1.7	34
140	Direct Câ^'H Phosphonylation of Electronâ€Rich Arenes and Heteroarenes by Visibleâ€Light Photoredox Catalysis. Chemistry - A European Journal, 2017, 23, 12120-12124.	1.7	63
141	Visible light-induced tandem oxidative cyclization of 2-alkynylanilines with disulfides (diselenides) to 3-sulfenyl- and 3-selenylindoles under transition metal-free and photocatalyst-free conditions. Organic Chemistry Frontiers, 2017, 4, 1322-1330.	2.3	65
142	Aroyl chlorides as novel acyl radical precursors via visible-light photoredox catalysis. Organic Chemistry Frontiers, 2017, 4, 1331-1335.	2.3	78
143	Light-Induced Alkylation of (Hetero)aromatic Nitriles in a Transition-Metal-Free C–C-Bond Metathesis. Organic Letters, 2017, 19, 2054-2057.	2.4	37
144	Visible-Light-Induced Synthesis of Carbazoles by in Situ Formation of Photosensitizing Intermediate. Organic Letters, 2017, 19, 1906-1909.	2.4	51
145	Titanium dioxide visible light photocatalysis: surface association enables photocatalysis with visible light irradiation. Chemical Communications, 2017, 53, 4335-4338.	2.2	88
146	Annulative Ï€â€Extension (APEX): Rapid Access to Fused Arenes, Heteroarenes, and Nanographenes. Angewandte Chemie - International Edition, 2017, 56, 11144-11164.	7.2	220
147	Visible-light-mediated radical insertion/cyclization cascade reaction: synthesis of phenanthridines and isoquinolines from isocyanides. Chemical Communications, 2017, 53, 4585-4588.	2.2	45
148	Photoredox-Mediated Routes to Radicals: The Value of Catalytic Radical Generation in Synthetic Methods Development. ACS Catalysis, 2017, 7, 2563-2575.	5.5	468
149	Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon–Carbon Coupling by Tuning the Composition of the Dot's Ligand Shell. Journal of the American Chemical Society, 2017, 139, 4246-4249.	6.6	117
150	A sensitivity analysis of a numbered-up photomicroreactor system. Reaction Chemistry and Engineering, 2017, 2, 109-115.	1.9	50
151	Catalytic Dehydrogenative C–H Imidation of Arenes Enabled by Photo-generated Hole Donation to Sulfonimide. CheM, 2017, 2, 383-392.	5.8	86
152	Radicals in Action: A Festival of Radical Transformations. Journal of Organic Chemistry, 2017, 82, 2805-2805.	1.7	0
153	Radicals in Action: A Festival of Radical Transformations. Organic Letters, 2017, 19, 1257-1269.	2.4	48

#	Article	IF	Citations
154	Photo-oxidative Cross-Dehydrogenative Coupling-Type Reaction of Thiophenes with α-Position of Carbonyls Using a Catalytic Amount of Molecular Iodine. Organic Letters, 2017, 19, 1610-1613.	2.4	43
155	Quantitative Profiling of the Heavyâ€Atom Effect in BODIPY Dyes: Correlating Initial Rates, Atomic Numbers, and ¹ O ₂ Quantum Yields. European Journal of Organic Chemistry, 2017, 2017, 2170-2178.	1.2	31
156	A Leafâ€Inspired Luminescent Solar Concentrator for Energyâ€Efficient Continuousâ€Flow Photochemistry. Angewandte Chemie, 2017, 129, 1070-1074.	1.6	35
157	Photoredox/Brønsted Acid Co-Catalysis Enabling Decarboxylative Coupling of Amino Acid and Peptide Redox-Active Esters with N-Heteroarenes. ACS Catalysis, 2017, 7, 907-911.	5. 5	233
158	Decarboxylative Gieseâ€Type Reaction of Carboxylic Acids Promoted by Visible Light: A Sustainable and Photoredoxâ€Neutral Protocol. European Journal of Organic Chemistry, 2017, 2017, 2154-2163.	1.2	64
159	Superoxide Radical Anionâ€Mediated Aerobic Oxidative Synthesis of 2â€Substituted Quinazolines under Visible Light. Asian Journal of Organic Chemistry, 2017, 6, 449-452.	1.3	15
160	Lewis Acid Induced Toggle from Ir(II) to Ir(IV) Pathways in Photocatalytic Reactions: Synthesis of Thiomorpholines and Thiazepanes from Aldehydes and SLAP Reagents. ACS Central Science, 2017, 3, 66-72.	5. 3	40
161	Sunflow: Sunlight Drives Fast and Green Photochemical Flow Reactions in Simple Microcapillary Reactors – Application to Photoredox and Hâ€Atomâ€Transfer Chemistry. European Journal of Organic Chemistry, 2017, 2017, 2099-2103.	1.2	34
162	Photoredox Catalysis in Organophosphorus Chemistry. Asian Journal of Organic Chemistry, 2017, 6, 350-367.	1.3	100
163	Photoinitiated Thiolâ€Ene "Click―Reaction: An Organocatalytic Alternative. Advanced Synthesis and Catalysis, 2017, 359, 323-328.	2.1	74
164	Photocatalytic Dehydrogenative Crossâ€Coupling of Alkenes with Alcohols or Azoles without External Oxidant. Angewandte Chemie - International Edition, 2017, 56, 1120-1124.	7.2	156
165	Photocatalytic Dehydrogenative Crossâ€Coupling of Alkenes with Alcohols or Azoles without External Oxidant. Angewandte Chemie, 2017, 129, 1140-1144.	1.6	41
166	A Leafâ€Inspired Luminescent Solar Concentrator for Energyâ€Efficient Continuousâ€Flow Photochemistry. Angewandte Chemie - International Edition, 2017, 56, 1050-1054.	7.2	109
167	Metalâ€Free Photocatalytic Reductive Dehalogenation Using Visibleâ€Light: A Timeâ€Resolved Mechanistic Study. European Journal of Organic Chemistry, 2017, 2017, 2164-2169.	1.2	40
168	Porphyrin atalyzed Photochemical Câ€"H Arylation of Heteroarenes. European Journal of Organic Chemistry, 2017, 2017, 2104-2107.	1,2	53
169	A laboratory-scale annular continuous flow reactor for UV photochemistry using excimer lamps for discrete wavelength excitation and its use in a wavelength study of a photodecarboxlyative cyclisation. Green Chemistry, 2017, 19, 1431-1438.	4.6	23
170	Intramolecular Charge Transfer and Ion Pairing in <i>N,N</i> Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2017, 139, 348-355.	6.6	207
171	Visible-Light Photocatalysis Employing Dye-Sensitized Semiconductor: Selective Aerobic Oxidation of Benzyl Ethers. ACS Catalysis, 2017, 7, 8134-8138.	5. 5	66

#	Article	IF	CITATIONS
172	Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 16100-16104.	6.6	168
173	Visible-Light-Promoted Metal-Free Aerobic Hydroxyazidation of Alkenes. ACS Catalysis, 2017, 7, 8362-8365.	5.5	69
174	Visible-light induced tandem radical cyanomethylation and cyclization of N-aryl acrylamides: access to cyanomethylated oxindoles. RSC Advances, 2017, 7, 49299-49302.	1.7	20
175	Bifunctional organic sponge photocatalyst for efficient cross-dehydrogenative coupling of tertiary amines to ketones. Chemical Communications, 2017, 53, 12536-12539.	2.2	44
176	Synthesis of Arylamines via Aminium Radicals. Angewandte Chemie - International Edition, 2017, 56, 14948-14952.	7.2	107
177	Visible-light-mediated radical cascade reaction: synthesis of 3-bromocoumarins from alkynoates. Organic and Biomolecular Chemistry, 2017, 15, 8820-8826.	1.5	29
178	A practical and scalable system for heteroaryl amino acid synthesis. Chemical Science, 2017, 8, 7998-8003.	3.7	111
179	Visible-Light-Mediated Construction of Pyrroloindolines via an Amidyl Radical Cyclization/Carbon Radical Addition Cascade: Rapid Synthesis of (±)-Flustramide B. Organic Letters, 2017, 19, 5669-5672.	2.4	53
180	Controllable Sulfoxidation and Sulfenylation with Organic Thiosulfate Salts via Dual Electron- and Energy-Transfer Photocatalysis. ACS Catalysis, 2017, 7, 7587-7592.	5.5	141
181	Radical cascade reactions triggered by single electron transfer. Nature Reviews Chemistry, 2017, 1, .	13.8	211
182	DHPA-Containing Cobalt-Based Redox Metal-Organic Cyclohelicates as Enzymatic Molecular Flasks for Light-Driven H2 Production. Scientific Reports, 2017, 7, 14347.	1.6	6
183	Photo-CIDNP Reveals Different Protonation Sites Depending on the Primary Step of the Photoinduced Electron-/Proton-Transfer Process with $Ru(II)$ Polyazaaromatic Complexes. Journal of the American Chemical Society, 2017, 139, 14909-14912.	6.6	6
184	General, Auxiliary-Enabled Photoinduced Pd-Catalyzed Remote Desaturation of Aliphatic Alcohols. Journal of the American Chemical Society, 2017, 139, 14857-14860.	6.6	131
185	Visible light-promoted dihydroxylation of styrenes with water and dioxygen. Chemical Communications, 2017, 53, 12634-12637.	2.2	35
186	Aryltrimethylstannane Cation Radical Fragmentation Selectivities That Depend on Codonor: Evidence for Reactions from Heterodimer Cation Radicals. Journal of Organic Chemistry, 2017, 82, 11052-11055.	1.7	2
187	A Lewis Base Catalysis Approach for the Photoredox Activation of Boronic Acids and Esters. Angewandte Chemie - International Edition, 2017, 56, 15136-15140.	7.2	126
188	Transition-Metal-Free Radical C(sp ³)–C(sp ²) and C(sp ³)–C(sp ³) Coupling Enabled by 2-Azaallyls as Super-Electron-Donors and Coupling-Partners. Journal of the American Chemical Society, 2017, 139, 16327-16333.	6.6	77
189	A Lewis Base Catalysis Approach for the Photoredox Activation of Boronic Acids and Esters. Angewandte Chemie, 2017, 129, 15332-15336.	1.6	24

#	Article	lF	CITATIONS
190	Sulfonylative and Azidosulfonylative Cyclizations by Visibleâ€Lightâ€Photosensitization of Sulfonyl Azides in THF. Chemistry - A European Journal, 2017, 23, 17598-17604.	1.7	44
191	Visible Lightâ€Promoted Synthesis of Spiroepoxy Chromanone Derivatives via a Tandem Oxidation/Radical Cyclization/Epoxidation Process. Advanced Synthesis and Catalysis, 2017, 359, 3945-3949.	2.1	37
192	Visible-Light-Induced External Oxidant-Free Oxidative Phosphonylation of C(sp ²)–H Bonds. ACS Catalysis, 2017, 7, 7412-7416.	5.5	78
193	Direct \hat{l}^2 -Selective Hydrocarboxylation of Styrenes with CO ₂ Enabled by Continuous Flow Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 13969-13972.	6.6	202
194	Sequential Visible-Light Photoactivation and Palladium Catalysis Enabling Enantioselective [4+2] Cycloadditions. Journal of the American Chemical Society, 2017, 139, 14707-14713.	6.6	213
195	Access to $1 < i > a < i > 6 < i > b < i > -Dihydro-1 < i > H < i > -benzofuro[2,3-< i > b < i >]azirines and Benzofuran-2-amines via Visible Light Triggered Decomposition of \hat{I}±-Azidochalcones. Organic Letters, 2017, 19, 5364-5367.$	2.4	27
196	Photoredox-Catalyzed Cross-Coupling of Enamides for the Assembly of \hat{l}^2 -Difluoroimine Synthons. Organic Letters, 2017, 19, 5653-5656.	2.4	24
197	Efficient Aryl Migration from an Aryl Ether to a Carboxylic Acid Group To Form an Ester by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 13809-13813.	7.2	49
198	Crystalline Monomeric Allenyl/Propargyl Radical. Journal of the American Chemical Society, 2017, 139, 15620-15623.	6.6	62
199	Visibleâ€Lightâ€Driven Palladiumâ€Catalyzed Radical Alkylation of Câ°'H Bonds with Unactivated Alkyl Bromides. Angewandte Chemie - International Edition, 2017, 56, 15683-15687.	7.2	181
200	A Mild Hydroaminoalkylation of Conjugated Dienes Using a Unified Cobalt and Photoredox Catalytic System. Journal of the American Chemical Society, 2017, 139, 15504-15508.	6.6	151
201	Visibleâ€Lightâ€Driven Palladiumâ€Catalyzed Radical Alkylation of Câ^'H Bonds with Unactivated Alkyl Bromides. Angewandte Chemie, 2017, 129, 15889-15893.	1.6	36
202	Oxidation of Trialkylamines by BrCCl ₃ : Scope, Applications and Mechanistic Aspects. European Journal of Organic Chemistry, 2017, 2017, 6966-6974.	1.2	21
203	Mechanistic Insight into the Photocontrolled Cationic Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2017, 139, 15530-15538.	6.6	120
204	Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light. Angewandte Chemie, 2017, 129, 14030-14034.	1.6	19
205	A personal perspective on the future of flow photochemistry. Journal of Flow Chemistry, 2017, 7, 87-93.	1.2	85
206	Visible-light-enabled spirocyclization of alkynes leading to 3-sulfonyl and 3-sulfenyl azaspiro[4,5]trienones. Green Chemistry, 2017, 19, 5608-5613.	4.6	145
207	A Metal-Free Approach to 1,2-Diamines via Visible Light-Driven Reductive Coupling of Imines with Perylene as a Photoredox Catalyst. Journal of Organic Chemistry, 2017, 82, 9731-9736.	1.7	36

#	Article	IF	CITATIONS
208	Iminylâ€Radicals by Oxidation of αâ€lminoâ€oxy Acids: Photoredoxâ€Neutral Alkene Carboimination for the Synthesis of Pyrrolines. Angewandte Chemie, 2017, 129, 12441-12444.	1.6	56
209	Synthesis of 2,3-Dialkylated Tartaric Acid Esters via Visible Light Photoredox-Catalyzed Reductive Dimerization of α-Ketoesters. ACS Omega, 2017, 2, 4665-4677.	1.6	26
210	Carboxylation of Aromatic and Aliphatic Bromides and Triflates with CO ₂ by Dual Visibleâ€Light–Nickel Catalysis. Angewandte Chemie - International Edition, 2017, 56, 13426-13430.	7.2	173
211	Synthesis of Phenalenylâ€Fused Pyrylium Cations: Divergent Câ^'H Activation/Annulation Reaction Sequence of Naphthalene Aldehydes with Alkynes. Angewandte Chemie - International Edition, 2017, 56, 13094-13098.	7.2	71
212	Interplay of Corrosion and Photocatalysis During Nonaqueous Benzylamine Oxidation on Cadmium Sulfide. Chemistry of Materials, 2017, 29, 7579-7586.	3.2	37
213	Desyl and Phenacyl as Versatile, Photocatalytically Cleavable Protecting Groups: A Classic Approach in a Different (Visible) Light. ACS Catalysis, 2017, 7, 6821-6826.	5.5	17
214	Carboxylation of Aromatic and Aliphatic Bromides and Triflates with CO ₂ by Dual Visibleâ€Light–Nickel Catalysis. Angewandte Chemie, 2017, 129, 13611-13615.	1.6	50
215	Origin of Stereoselectivity of the Photoinduced Asymmetric Phase-Transfer-Catalyzed Perfluoroalkylation of \hat{l}^2 -Ketoesters. Journal of Organic Chemistry, 2017, 82, 9321-9327.	1.7	36
216	A Combination of Visible-light Photoredox and Metal Catalysis for the Mannich-type Reaction of <i>N</i> -Aryl Glycine Esters. Chemistry Letters, 2017, 46, 1597-1600.	0.7	7
217	Visible-light-induced tandem cyclization of 2-alkynylanilines with disulfides: a convenient method for accessing benzothiophenes under transition-metal-free and photocatalyst-free conditions. Organic and Biomolecular Chemistry, 2017, 15, 7678-7684.	1.5	22
218	Photoredox Imino Functionalizations of Olefins. Angewandte Chemie - International Edition, 2017, 56, 13361-13365.	7.2	216
219	Efficient Aryl Migration from an Aryl Ether to a Carboxylic Acid Group To Form an Ester by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2017, 129, 13997-14001.	1.6	6
220	Photoinduced Nickel-Catalyzed Chemo- and Regioselective Hydroalkylation of Internal Alkynes with Ether and Amide α-Hetero C(sp ³)â€"H Bonds. Journal of the American Chemical Society, 2017, 139, 13579-13584.	6.6	192
221	Intermolecular Radical Addition to Carbonyls Enabled by Visible Light Photoredox Initiated Hole Catalysis. Journal of the American Chemical Society, 2017, 139, 13652-13655.	6.6	105
222	Heuristics, Protocol, and Considerations for Flow Chemistry in Photoredox Catalysis. ChemPhotoChem, 2017, 1, 539-543.	1.5	14
223	Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light. Angewandte Chemie - International Edition, 2017, 56, 13842-13846.	7.2	101
224	Extension of Intramolecular Charge-Transfer State Lifetime by Encapsulation in Porous Frameworks. Journal of Physical Chemistry C, 2017, 121, 20673-20679.	1.5	8
225	Thiol–ene/oxidation tandem reaction under visible light photocatalysis: synthesis of alkyl sulfoxides. Chemical Communications, 2017, 53, 10463-10466.	2.2	60

#	Article	IF	CITATIONS
226	Oxidative functionalisation of alcohols and aldehydes via the merger of oxoammonium cations and photoredox catalysis. Organic and Biomolecular Chemistry, 2017, 15, 8295-8301.	1.5	25
227	α-Alkylation of ketimines using visible light photoredox catalysis. RSC Advances, 2017, 7, 43655-43659.	1.7	9
228	The photochemical alkylation and reduction of heteroarenes. Chemical Science, 2017, 8, 7412-7418.	3.7	77
229	Visible Lightâ€Induced Roomâ€Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes. Angewandte Chemie, 2017, 129, 14400-14404.	1.6	50
230	Visible Lightâ€Induced Roomâ€Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes. Angewandte Chemie - International Edition, 2017, 56, 14212-14216.	7.2	180
231	An In-Depth Study of the Use of Eosin Y for the Solar Photocatalytic Oxidative Coupling of Benzylic Amines. ACS Sustainable Chemistry and Engineering, 2017, 5, 9826-9835.	3.2	17
232	Alkene Photo-Isomerization Inspired by Vision. ACS Central Science, 2017, 3, 922-924.	5. 3	46
233	Photoredox Imino Functionalizations of Olefins. Angewandte Chemie, 2017, 129, 13546-13550.	1.6	68
234	Circumventing Intrinsic Metal Reactivity: Radical Generation with Redoxâ€Active Ligands. Chemistry - A European Journal, 2017, 23, 15030-15034.	1.7	33
235	Synthesis of Phenalenylâ€Fused Pyrylium Cations: Divergent Câ^'H Activation/Annulation Reaction Sequence of Naphthalene Aldehydes with Alkynes. Angewandte Chemie, 2017, 129, 13274-13278.	1.6	14
236	Efficient Sensitized <i>Z</i> ât' <i>E</i> Photoisomerization of an Iridium(III)â€Azobenzene Complex over a Wide Concentration Range. Chemistry - A European Journal, 2017, 23, 14090-14095.	1.7	9
237	Visible Light Promoted Metal- and Photocatalyst-Free Synthesis of Allylarenes. Journal of Organic Chemistry, 2017, 82, 10687-10692.	1.7	50
238	Photoredox catalysis enabled alkylation of alkenyl carboxylic acids with N-(acyloxy)phthalimide via dual decarboxylation. Chemical Communications, 2017, 53, 10719-10722.	2.2	69
239	Atomâ€Transfer Radical Addition to Unactivated Alkenes by using Heterogeneous Visibleâ€Light Photocatalysis. ChemSusChem, 2017, 10, 4461-4464.	3.6	26
240	Visibleâ€Lightâ€Promoted Arylation Reactions Photocatalyzed by Bismuth(III) Oxide. European Journal of Organic Chemistry, 2017, 2017, 6986-6990.	1.2	31
241	"Superâ€reduzierende―Photokatalyse: konsekutive Energie―und Elektronentransfers mit polycyclischen aromatischen Kohlenwasserstoffen. Angewandte Chemie, 2017, 129, 10414-10415.	1.6	15
242	Visible-Light Induced and Oxygen-Promoted Oxidative Cyclization of Aromatic Enamines for the Synthesis of Quinolines Derivatives. Journal of Organic Chemistry, 2017, 82, 8455-8463.	1.7	51
243	Mechanochemically-assisted solid-state photocatalysis (MASSPC). Chemical Communications, 2017, 53, 9101-9104.	2.2	46

#	Article	IF	CITATIONS
244	Platinum(<scp>ii</scp>) photo-catalysis for highly selective difluoroalkylation reactions. Chemical Communications, 2017, 53, 8948-8951.	2.2	70
245	A straightforward and sustainable synthesis of 1,4-disubstituted 1,2,3-triazoles via visible-light-promoted copper-catalyzed azide–alkyne cycloaddition (CuAAC). RSC Advances, 2017, 7, 33967-33973.	1.7	22
246	Establishing the Trifluoromethylthio Radical Donating Abilities of Electrophilic SCF ₃ -Transfer Reagents. Journal of Organic Chemistry, 2017, 82, 8697-8702.	1.7	29
247	Alkyl Esterification of Vinylarenes Enabled by Visibleâ€Lightâ€Induced Decarboxylation. Chemistry - A European Journal, 2017, 23, 11767-11770.	1.7	37
248	Visible-Light-Promoted Selective Oxidation of Alcohols Using a Covalent Triazine Framework. ACS Catalysis, 2017, 7, 5438-5442.	5.5	261
249	Functionalization of Carbonyl Compounds via Photoredox Organocatalysis. Chinese Journal of Chemistry, 2017, 35, 1491-1500.	2.6	16
250	Organic Dye-Catalyzed Atom Transfer Radical Additionâ€"Elimination (ATRE) Reaction for the Synthesis of Perfluoroalkylated Alkenes. Organic Letters, 2017, 19, 4295-4298.	2.4	58
251	Photoredox meets gold Lewis acid catalysis in the alkylative semipinacol rearrangement: a photocatalyst with a dark side. Organic Chemistry Frontiers, 2017, 4, 2092-2096.	2.3	26
252	Visible light-induced cyclization reactions for the synthesis of 1,2,4-triazolines and 1,2,4-triazoles. Chemical Communications, 2017, 53, 9644-9647.	2.2	51
253	Light Sources for Photochemical Processes – Estimation of Technological Potentials. Chemie-Ingenieur-Technik, 2017, 89, 1159-1173.	0.4	79
254	Iminylâ€Radicals by Oxidation of αâ€Iminoâ€oxy Acids: Photoredoxâ€Neutral Alkene Carboimination for the Synthesis of Pyrrolines. Angewandte Chemie - International Edition, 2017, 56, 12273-12276.	7.2	187
255	Continuous Flow Synthesis of Morpholines and Oxazepanes with Silicon Amine Protocol (SLAP) Reagents and Lewis Acid Facilitated Photoredox Catalysis. Organic Letters, 2017, 19, 4696-4699.	2.4	56
256	Photoorganocatalytic synthesis of lactones via a selective C–H activation–alkylation of alcohols. Green Chemistry, 2017, 19, 4451-4456.	4.6	51
257	Visible light-induced transition metal-catalyzed transformations: beyond conventional photosensitizers. Chemical Society Reviews, 2017, 46, 6227-6240.	18.7	304
258	Ketones as directing groups in photocatalytic sp ³ Câ€"H fluorination. Chemical Science, 2017, 8, 6918-6923.	3.7	75
259	Oxidation of alkyl benzenes by a flavin photooxidation catalyst on nanostructured metal-oxide films. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9279-9283.	3.3	36
260	Organoâ€Photoredox Catalyzed Oxidative Dehydrogenation of Nâ€Heterocycles. Chemistry - A European Journal, 2017, 23, 14167-14172.	1.7	65
261	Synthesis of ruthenium and palladium complexes from glycosylated 2,2′-bipyridine and terpyridine ligands. Tetrahedron Letters, 2017, 58, 3643-3645.	0.7	5

#	Article	IF	Citations
262	Detection of Fleeting Amine Radical Cations and Elucidation of Chain Processes in Visible-Light-Mediated [3 + 2] Annulation by Online Mass Spectrometric Techniques. Journal of the American Chemical Society, 2017, 139, 12259-12266.	6.6	73
263	The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis. Accounts of Chemical Research, 2017, 50, 2976-2985.	7.6	200
264	Visible Light Organic Photoredox-Catalyzed C–H Alkoxylation of Imidazopyridine with Alcohol. Journal of Organic Chemistry, 2017, 82, 13722-13727.	1.7	73
265	Selective Single C(sp ³)–F Bond Cleavage in Trifluoromethylarenes: Merging Visible-Light Catalysis with Lewis Acid Activation. Journal of the American Chemical Society, 2017, 139, 18444-18447.	6.6	188
266	Visibleâ€Lightâ€Mediated Metalâ€Free Hydrosilylation of Alkenes through Selective Hydrogen Atom Transfer for Siâ~H Activation. Angewandte Chemie - International Edition, 2017, 56, 16621-16625.	7.2	149
267	Teaching Old Compounds New Tricks: DDQâ€Photocatalyzed Câ^'H Amination of Arenes with Carbamates, Urea, and Nâ€Heterocycles. Chemistry - A European Journal, 2017, 23, 18161-18165.	1.7	99
268	Origins of Enantioselectivity in Asymmetric Radical Additions to Octahedral Chiral-at-Rhodium Enolates: A Computational Study. Journal of the American Chemical Society, 2017, 139, 17902-17907.	6.6	58
269	Visibleâ€Lightâ€Mediated Metalâ€Free Hydrosilylation of Alkenes through Selective Hydrogen Atom Transfer for Siâ~'H Activation. Angewandte Chemie, 2017, 129, 16848-16852.	1.6	36
270	Visible-Light-Driven α-Allenylic C–O Bond Cleavage and Alkenyl C–S Formation: Metal-Free and Oxidant-Free Thiolation of Allenyl Phosphine Oxides. Organic Letters, 2017, 19, 6308-6311.	2.4	34
271	Synthesis of 4-Isoxazolines via Visible-Light Photoredox-Catalyzed [3Â+ 2] Cycloaddition of Oxaziridines with Alkynes. Organic Letters, 2017, 19, 6448-6451.	2.4	33
272	Visible-Light-Activated Asymmetric \hat{l}^2 -Câ \in "H Functionalization of Acceptor-Substituted Ketones with 1,2-Dicarbonyl Compounds. Journal of the American Chemical Society, 2017, 139, 17245-17248.	6.6	85
273	Recent developments in transition-metal photoredox-catalysed reactions of carbonyl derivatives. Chemical Communications, 2017, 53, 13093-13112.	2.2	116
274	Furans Accessed through Visibleâ€Lightâ€Mediated Oxidative [3+2] Cycloaddition of Enols and Alkynes. Chemistry - A European Journal, 2017, 23, 17874-17878.	1.7	22
275	Photoredox Catalysis Induced Bisindolylation of Ethers/Alcohols via Sequential C–H and C–O Bond Cleavage. Organic Letters, 2017, 19, 6164-6167.	2.4	39
276	Irradiation-Induced Heck Reaction of Unactivated Alkyl Halides at Room Temperature. Journal of the American Chemical Society, 2017, 139, 18307-18312.	6.6	242
277	Visible-light-induced installation of oxyfluoroalkyl groups. Chemical Communications, 2017, 53, 12786-12789.	2.2	11
278	Aggregation-induced visible light absorption makes reactant 1,2-diisocyanoarenes act as photosensitizers in double radical isocyanide insertions. Physical Chemistry Chemical Physics, 2017, 19, 31443-31451.	1.3	6
279	A photoredox-neutral Smiles rearrangement of 2-aryloxybenzoic acids. Organic and Biomolecular Chemistry, 2017, 15, 9680-9684.	1.5	25

#	Article	IF	CITATIONS
280	Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23, 10962-10968.	1.7	196
281	Chemo- and Regioselective Organo-Photoredox Catalyzed Hydroformylation of Styrenes via a Radical Pathway. Journal of the American Chemical Society, 2017, 139, 9799-9802.	6.6	121
282	Oxidative [1,2]-Brook Rearrangements Exploiting Single-Electron Transfer: Photoredox-Catalyzed Alkylations and Arylations. Journal of the American Chemical Society, 2017, 139, 9487-9490.	6.6	72
283	Visible-light-induced oxidant and metal-free dehydrogenative cascade trifluoromethylation and oxidation of 1,6-enynes with water. Chemical Science, 2017, 8, 6633-6644.	3.7	124
284	Visible-light-induced thiotrifluoromethylation of terminal alkenes with sodium triflinate and benzenesulfonothioates. Chemical Communications, 2017, 53, 8968-8971.	2.2	63
285	Metal-free di- and tri-fluoromethylation of alkenes realized by visible-light-induced perylene photoredox catalysis. Chemical Science, 2017, 8, 6375-6379.	3.7	112
286	Visible-light-induced oxidative formylation of N-alkyl-N-(prop-2-yn-1-yl)anilines with molecular oxygen in the absence of an external photosensitizer. Chemical Communications, 2017, 53, 8482-8485.	2.2	48
287	Electrosynthesis: A New Frontier in Aerobic Oxidation?. ACS Central Science, 2017, 3, 686-688.	5.3	23
288	The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 2017, 1, .	13.8	1,591
289	Phosphorylation of Alkenyl and Aryl C–O Bonds via Photoredox/Nickel Dual Catalysis. Organic Letters, 2017, 19, 3735-3738.	2.4	92
290	Photocatalytic functionalization for the synthesis of drugs and analogs. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 139-149.	3.2	11
291	Visible-Light-Mediated Addition of Phenacyl Bromides onto Cyclopropenes. Organic Letters, 2017, 19, 3652-3655.	2.4	22
292	Single Electron Delivery to Lewis Pairs: An Avenue to Anions by Small Molecule Activation. Journal of the American Chemical Society, 2017, 139, 10062-10071.	6.6	60
293	Bipyridyl– and pyridylquinolyl–phenothiazine structures as potential photoactive ligands: Syntheses and complexation to palladium. Tetrahedron Letters, 2017, 58, 3096-3100.	0.7	1
294	Continuous Photo-Oxidation in a Vortex Reactor: Efficient Operations Using Air Drawn from the Laboratory. Organic Process Research and Development, 2017, 21, 1042-1050.	1.3	60
295	Pyridone photoelectrocyclizations to pyridophenanthrenes. Tetrahedron, 2017, 73, 4786-4789.	1.0	12
296	Photocatalytic <i>E</i> â†' <i>Z</i> Isomerization of Polarized Alkenes Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity. Journal of Organic Chemistry, 2017, 82, 9955-9977.	1.7	120
297	A sustainable synthesis of 2-aryl-3-carboxylate indolines from N-aryl enamines under visible light irradiation. Chemical Communications, 2017, 53, 8320-8323.	2.2	16

#	ARTICLE	IF	Citations
298	Synthesis of Tetrasubstituted Furans by Using Photoredoxâ€Catalyzed Coupling of 2â€Bromoâ€1,3â€dicarbonyl Compounds with Silyl Enol Ethers. Asian Journal of Organic Chemistry, 2017, 6, 414-417.	1.3	12
299	Photoinduced Electron Transfer in 9â€Substituted 10â€Methylacridinium Ions. Chemistry - A European Journal, 2017, 23, 1306-1317.	1.7	45
300	Enhanced Reaction Efficiency in Continuous Flow. Israel Journal of Chemistry, 2017, 57, 218-227.	1.0	48
301	How Do Phosphinates React with Unactivated Alkenes Under Organic Photocatalyzed Conditions? Substrate Scope and Mechanistic Insights. Chemistry - A European Journal, 2017, 23, 2144-2148.	1.7	21
302	Continuous-flow chemistry in chemical education. Journal of Flow Chemistry, 2017, 7, 157-158.	1.2	12
303	Living Radical Polymerization under Photoimadiation. Journal of the Adhesion Society of Japan, 2017, 53, 157-163.	0.0	O
304	SOMO and Photoredox Asymmetric Organocatalysis. , 2017, , 1-85.		2
305	Synthesis and properties of push-pull imidazole derivatives with application as photoredox catalysts. Arkivoc, 2017, 2017, 330-342.	0.3	5
306	Oneâ€Pot Tandem Photoredox and Crossâ€Coupling Catalysis with a Single Palladium Carbodicarbene Complex. Angewandte Chemie - International Edition, 2018, 57, 4622-4626.	7.2	62
307	Highly Active NiO Photocathodes for H ₂ O ₂ Production Enabled via Outer-Sphere Electron Transfer. Journal of the American Chemical Society, 2018, 140, 4079-4084.	6.6	66
308	Heterogeneous Dual Photoredox-Lewis Acid Catalysis Using a Single Bifunctional Nanomaterial. ACS Catalysis, 2018, 8, 2914-2922.	5.5	23
309	Photocatalyzed <i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides through Alkene Cleavage. Angewandte Chemie, 2018, 130, 5233-5236.	1.6	28
310	Photocatalyzed <i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides through Alkene Cleavage. Angewandte Chemie - International Edition, 2018, 57, 5139-5142.	7.2	75
311	Photophysics and Photoredox Catalysis of a Homoleptic Rhenium(I) Tris(diisocyanide) Complex. Inorganic Chemistry, 2018, 57, 2965-2968.	1.9	27
312	The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Angewandte Chemie - International Edition, 2018, 57, 4192-4214.	7.2	150
313	Structure–Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts. Journal of the American Chemical Society, 2018, 140, 5088-5101.	6.6	202
314	Mechanistic insights into two-photon-driven photocatalysis in organic synthesis. Physical Chemistry Chemical Physics, 2018, 20, 8071-8076.	1.3	69
315	Metalâ€Free Dehydrogenation of Nâ€Heterocycles by Ternary <i>h</i> à€BCN Nanosheets with Visible Light. Angewandte Chemie - International Edition, 2018, 57, 5487-5491.	7.2	146

#	Article	IF	CITATIONS
316	Synthesis of indoles under the action of visible light (microreview). Chemistry of Heterocyclic Compounds, 2018, 54, 22-24.	0.6	11
317	Redox and photocatalytic properties of a Ni ^{II} complex with a macrocyclic biquinazoline (Mabiq) ligand. Chemical Science, 2018, 9, 3313-3317.	3.7	47
318	One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex. Angewandte Chemie, 2018, 130, 4712-4716.	1.6	15
319	Expanding the Scope of Photocatalysis: Atom Transfer Radical Addition of Bromoacetonitrile to Aliphatic Olefins. ChemCatChem, 2018, 10, 2466-2470.	1.8	15
320	Sequential Photoredox Catalysis for Cascade Aerobic Decarboxylative Povarov and Oxidative Dehydrogenation Reactions of <i>N</i> â€Aryl αâ€Amino Acids. Advanced Synthesis and Catalysis, 2018, 360, 1754-1760.	2.1	56
321	Origin of Stereocontrol in Photoredox Organocatalysis of Asymmetric α-Functionalizations of Aldehydes. Journal of Organic Chemistry, 2018, 83, 3333-3338.	1.7	11
322	Superbase-Catalyzed anti-Markovnikov Alcohol Addition Reactions to Aryl Alkenes. Journal of the American Chemical Society, 2018, 140, 3547-3550.	6.6	54
323	Eosin Y-catalyzed, visible-light-promoted carbophosphinylation of allylic alcohols <i>via</i> a radical neophyl rearrangement. Organic and Biomolecular Chemistry, 2018, 16, 2356-2361.	1.5	36
324	Metalâ€Free Dehydrogenation of Nâ€Heterocycles by Ternary <i>h</i> à€BCN Nanosheets with Visible Light. Angewandte Chemie, 2018, 130, 5585-5589.	1.6	40
325	Catalytic, metal-free sulfonylcyanation of alkenes <i>via</i> visible light organophotoredox catalysis. Chemical Communications, 2018, 54, 3162-3165.	2.2	35
326	PQS-enabled visible-light iridium photoredox catalysis in water at room temperature. Green Chemistry, 2018, 20, 1233-1237.	4.6	86
327	Photochemical Synthesis of Heterocycles: Merging Flow Processing and Metal-Catalyzed Visible Light Photoredox Transformations. Topics in Heterocyclic Chemistry, 2018, , 103-132.	0.2	3
328	External Oxidant-Free Dehydrogenative Lactonization of 2-Arylbenzoic Acids via Visible-Light Photocatalysis. Journal of Organic Chemistry, 2018, 83, 3582-3589.	1.7	44
329	Visible light photoredox catalyzed thiophosphate synthesis using methylene blue as a promoter. Organic Chemistry Frontiers, 2018, 5, 1416-1422.	2.3	42
330	A Zirconium Photosensitizer with a Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer. Journal of the American Chemical Society, 2018, 140, 5934-5947.	6.6	89
331	C4–H indole functionalisation: precedent and prospects. Chemical Science, 2018, 9, 4203-4216.	3.7	138
332	Furan-2-carbaldehydes as C1 building blocks for the synthesis of quinazolin-4(3 <i>H</i>)-ones <i>via</i>) ligand-free photocatalytic C–C bond cleavage. Green Chemistry, 2018, 20, 2449-2454.	4.6	15
333	Poly(benzothiadiazoles) and Their Derivatives as Heterogeneous Photocatalysts for Visible-Light-Driven Chemical Transformations. ACS Catalysis, 2018, 8, 4735-4750.	5.5	119

#	ARTICLE	IF	CITATIONS
335	Synthesis of 1,5-bifunctional organolithium reagents by a double directed ortho-metalation: Direct transformation of esters into 1,8-dimethoxy-acridinium salts. Tetrahedron, 2018, 74, 5486-5493.	1.0	11
336	Visibleâ€Lightâ€Accelerated Copper(II)â€Catalyzed Regio―and Chemoselective Oxoâ€Azidation of Vinyl Arenes. Angewandte Chemie - International Edition, 2018, 57, 8288-8292.	7.2	131
337	Structureâ€Catalytic Activity in a Series of Pushâ€Pull Dicyanopyrazine/Dicyanoimidazole Photoredox Catalysts. ChemistrySelect, 2018, 3, 4262-4270.	0.7	25
338	Real-time reaction control for solar production of chemicals under fluctuating irradiance. Green Chemistry, 2018, 20, 2459-2464.	4.6	39
339	Visibleâ€Lightâ€Driven Conversion of Alcohols into Iodide Derivatives with Iodoform. ChemPhotoChem, 2018, 2, 720-724.	1.5	11
340	Ni/Ti Dual Catalytic Cross-Coupling of Nitriles and Organobromides To Access Ketones. ACS Catalysis, 2018, 8, 4539-4544.	5.5	25
341	Siteâ€Selective Câ^'H Bond Functionalization of Chromones and Coumarins. Asian Journal of Organic Chemistry, 2018, 7, 1136-1150.	1.3	44
342	Visible light-promoted metal-free aerobic oxyphosphorylation of olefins: A facile approach to \hat{l}^2 -ketophosphine oxides. Tetrahedron Letters, 2018, 59, 2062-2065.	0.7	16
343	Identifying the potential of pulsed LED irradiation in synthesis: copper-photocatalysed C–F functionalisation. Chemical Communications, 2018, 54, 4589-4592.	2.2	35
344	Stereoselective Synthesis of 2â€Deoxyglycosides from Glycals by Visibleâ€Lightâ€Induced Photoacid Catalysis. Angewandte Chemie, 2018, 130, 6228-6232.	1.6	21
345	Visibleâ€Lightâ€Mediated Eosin Y Photoredoxâ€Catalyzed Vicinal Thioamination of Alkynes: Radical Cascade Annulation Strategy for 2â€Substitutedâ€3â€sulfenylindoles. European Journal of Organic Chemistry, 2018, 2018, 2117-2121.	1.2	27
346	The Different Faces of Photoredox Catalysts: Visible-Light-Mediated Atom Transfer Radical Addition (ATRA) Reactions of Perfluoroalkyl Iodides with Styrenes and Phenylacetylenes. ACS Catalysis, 2018, 8, 3950-3956.	5.5	166
347	Visible Light Photocatalytic Radical Addition/Cyclization Reaction of <i>o</i> â€Vinylâ€ <i>N</i> â€Containing Iminoisobenzofurans. Advanced Synthesis and Catalysis, 2018, 360, 2087-2092.	2.1	25
348	Sulfoximidations of Benzylic Câ^'H bonds by Photocatalysis. Angewandte Chemie - International Edition, 2018, 57, 5863-5866.	7.2	66
349	Carbamoyl Radicals via Photoredox Decarboxylation of Oxamic Acids in Aqueous Media: Access to 3,4-Dihydroquinolin-2(1 <i>H</i>)-ones. Organic Letters, 2018, 20, 2172-2175.	2.4	50
350	Visible-Light-Mediated Umpolung Reactivity of Imines: Ketimine Reductions with Cy ₂ NMe and Water. Organic Letters, 2018, 20, 2433-2436.	2.4	68
351	Intramolecular radical cyclization approach to access highly substituted indolines and 2,3-dihydrobenzofurans under visible-light. RSC Advances, 2018, 8, 12879-12886.	1.7	21
352	Catalytic enantioselective Minisci-type addition to heteroarenes. Science, 2018, 360, 419-422.	6.0	403

#	Article	IF	CITATIONS
353	Combined Inâ€Situ Illuminationâ€NMRâ€UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry. Angewandte Chemie, 2018, 130, 7615-7619.	1.6	18
354	Combined Inâ€Situ Illuminationâ€NMRâ€UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry. Angewandte Chemie - International Edition, 2018, 57, 7493-7497.	7.2	53
355	Combining photoredox and silver catalysis for azidotrifluoromethoxylation of styrenes. Chemical Communications, 2018, 54, 4473-4476.	2.2	47
356	Conjugate Addition–Enantioselective Protonation of <i>N</i> -Aryl Glycines to α-Branched 2-Vinylazaarenes via Cooperative Photoredox and Asymmetric Catalysis. Journal of the American Chemical Society, 2018, 140, 6083-6087.	6.6	225
357	Angled Vortex Fluidic Mediated Multicomponent Photocatalytic and Transition Metal atalyzed Reactions. Chemistry - A European Journal, 2018, 24, 8869-8874.	1.7	14
359	A Radical Reaction for the Synthesis of 3â€Substituted Dihydrothiopyrans under Photosensitized Conditions. Asian Journal of Organic Chemistry, 2018, 7, 1061-1065.	1.3	3
360	Photoredox-catalyzed Direct Reductive Amination of Aldehydes without an External Hydrogen/Hydride Source. Organic Letters, 2018, 20, 2680-2684.	2.4	32
361	Sulfoximidations of Benzylic Câ^'H bonds by Photocatalysis. Angewandte Chemie, 2018, 130, 5965-5968.	1.6	51
362	Photoredox radical Câ \in "H oxygenation of aromatics with aroyloxylutidinium salts. Organic Chemistry Frontiers, 2018, 5, 1406-1410.	2.3	24
363	Asymmetric induction in photocatalysis – Discovering a new side to light-driven chemistry. Tetrahedron Letters, 2018, 59, 1286-1294.	0.7	62
364	Visible light sensitizer-catalyzed highly selective photo oxidation from thioethers into sulfoxides under aerobic condition. Scientific Reports, 2018, 8, 2205.	1.6	64
365	Long-Lived Charge-Transfer States of Nickel(II) Aryl Halide Complexes Facilitate Bimolecular Photoinduced Electron Transfer. Journal of the American Chemical Society, 2018, 140, 3035-3039.	6.6	219
366	General, Mild, and Selective Method for Desaturation of Aliphatic Amines. Journal of the American Chemical Society, 2018, 140, 2465-2468.	6.6	110
367	Photoredox generation of the trifluoromethyl radical from borate complexes <i>via</i> single electron reduction. Chemical Communications, 2018, 54, 2236-2239.	2.2	24
368	Visible Lightâ∈Mediated Coupling of Thioureas and 1,3â€Dicarbonyls: Towards a Leaving Groupâ€Free Synthesis of Aminothiazoles. Advanced Synthesis and Catalysis, 2018, 360, 1584-1589.	2.1	13
369	Anodically Coupled Electrolysis for the Heterodifunctionalization of Alkenes. Journal of the American Chemical Society, 2018, 140, 2438-2441.	6.6	208
370	Selfâ€Assembled Cofacial Zinc–Porphyrin Supramolecular Nanocapsules as Tuneable ¹ O ₂ Photosensitizers. Chemistry - A European Journal, 2018, 24, 4371-4381.	1.7	28
371	Visible-Light-Mediated Nitration of Protected Anilines. Journal of Organic Chemistry, 2018, 83, 2802-2807.	1.7	39

#	Article	IF	Citations
372	Remote C–H Functionalization via Selective Hydrogen Atom Transfer. Synthesis, 2018, 50, 1569-1586.	1.2	335
373	Vitamin Catalysis: Direct, Photocatalytic Synthesis of Benzocoumarins via (â^')-Riboflavin-Mediated Electron Transfer. Organic Letters, 2018, 20, 1316-1319.	2.4	65
374	Tandem Rh-Catalyzed [4 + 2] Vinylic C–H <i>O</i> -Annulation of Exocyclic Enones with Alkynes and 1,5-H Shift. Organic Letters, 2018, 20, 1074-1077.	2.4	16
376	Visible light-driven photocatalytic generation of sulfonamidyl radicals for alkene hydroamination of unsaturated sulfonamides. Chemical Communications, 2018, 54, 6780-6783.	2.2	62
377	Photocatalytic and Chemoselective Transfer Hydrogenation of Diarylimines in Batch and Continuous Flow. Organic Letters, 2018, 20, 905-908.	2.4	47
378	Selective Light-Driven Chemoenzymatic Trifluoromethylation/Hydroxylation of Substituted Arenes. ACS Catalysis, 2018, 8, 2225-2229.	5.5	29
379	Palladiumâ€Catalyzed Atomâ€Transfer Radical Cyclization at Remote Unactivated C(sp ³)â~H Sites: Hydrogenâ€Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. Angewandte Chemie - International Edition, 2018, 57, 2712-2715.	7.2	85
380	Visible light-mediated oxidative C(sp ³)–H phosphonylation for α-aminophosphonates under oxidant-free conditions. Chemical Communications, 2018, 54, 1659-1662.	2.2	62
381	Direct Synthesis of Polysubstituted Aldehydes via Visible‣ight Catalysis. Angewandte Chemie, 2018, 130, 2196-2200.	1.6	19
382	Engineered synthesis of hierarchical porous organic polymers for visible light and natural sunlight induced rapid degradation of azo, thiazine and fluorescein based dyes in a unique mechanistic pathway. Applied Catalysis B: Environmental, 2018, 227, 102-113.	10.8	79
383	Irradiation-Induced Palladium-Catalyzed Decarboxylative Heck Reaction of Aliphatic <i>N</i> -(Acyloxy)phthalimides at Room Temperature. Organic Letters, 2018, 20, 888-891.	2.4	156
384	Towards the generalized iterative synthesis of small molecules. Nature Reviews Chemistry, $2018, 2, \ldots$	13.8	94
385	Rhodamine-Platinum Diimine Dithiolate Complex Dyads as Efficient and Robust Photosensitizers for Light-Driven Aqueous Proton Reduction to Hydrogen. Journal of the American Chemical Society, 2018, 140, 2575-2586.	6.6	52
386	Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via <i>N</i> -(Acyloxy)phthalimides. Journal of Organic Chemistry, 2018, 83, 3000-3012.	1.7	121
387	Decarboxylative Olefination of Activated Aliphatic Acids Enabled by Dual Organophotoredox/Copper Catalysis. ACS Catalysis, 2018, 8, 1715-1719.	5. 5	79
388	Palladiumâ€Catalyzed Atomâ€Transfer Radical Cyclization at Remote Unactivated C(sp 3)â^'H Sites: Hydrogenâ€Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. Angewandte Chemie, 2018, 130, 2742-2745.	1.6	15
389	On the theoretical prediction of fluorescence rates from first principles using the path integral approach. Journal of Chemical Physics, 2018, 148, 034104.	1.2	125
390	DFT study on $\hat{l}\pm$ -regioselectivity of photo-organocatalytic functionalization of aldehydes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 9-15.	2.0	0

#	Article	IF	CITATIONS
391	Metalâ€Free, Visibleâ€Lightâ€Mediated Direct Câ^'H Trifluoromethylation of Hydrazones with NADH Coenzyme Model Catalyst. Asian Journal of Organic Chemistry, 2018, 7, 137-140.	1.3	17
392	Tertiaryâ€Alcoholâ€Directed Functionalization of Remote C(sp ³)â°'H Bonds by Sequential Hydrogen Atom and Heteroaryl Migrations. Angewandte Chemie - International Edition, 2018, 57, 1640-1644.	7.2	179
393	Pyrroline Synthesis via Visibleâ€Lightâ€Promoted Hydroimination of Unactivated Alkenes with <i>N</i> , <i>Nâ€2</i> å€Dimethylpropylene Urea as <i>H</i> å€Donor. Advanced Synthesis and Catalysis, 2018, 360, 1262-1266.	2.1	24
394	Tertiaryâ€Alcoholâ€Directed Functionalization of Remote C(sp ³)â°'H Bonds by Sequential Hydrogen Atom and Heteroaryl Migrations. Angewandte Chemie, 2018, 130, 1656-1660.	1.6	46
395	Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie, 2018, 130, 1986-1990.	1.6	29
396	αâ€Aminoxyâ€Acidâ€Auxiliaryâ€Enabled Intermolecular Radical γ (sp ³)â^'H Functionalization of Ketones. Angewandte Chemie, 2018, 130, 1708-1712.	1.6	45
397	Visible Lightâ€Induced Synthetic Approach for Selenylative Spirocyclization of <i>N</i> à€Aryl Alkynamides with Molecular Oxygen as Oxidant. Advanced Synthesis and Catalysis, 2018, 360, 1099-1103.	2.1	84
398	Oxy-Difluoroalkylation of Allylamines with CO ₂ via Visible-Light Photoredox Catalysis. Organic Letters, 2018, 20, 190-193.	2.4	98
399	Visible-Light-Mediated Decarboxylative Alkylation Cascade Cyano Insertion/Cyclization of <i>N</i> -Arylacrylamides under Transition-Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 1654-1660.	1.7	45
400	Flavin derivatives immobilized on mesoporous silica: a versatile tool in visible-light photooxidation reactions. Monatshefte FÃ $^1\!\!4$ r Chemie, 2018, 149, 863-869.	0.9	14
401	Direct Transformation of Esters into Heterocyclic Fluorophores. Angewandte Chemie - International Edition, 2018, 57, 2436-2440.	7.2	67
402	Visible-Light Photocatalytic Decarboxylative Alkyl Radical Addition Cascade for Synthesis of Benzazepine Derivatives. Organic Letters, 2018, 20, 224-227.	2.4	92
403	Catalytic Defluoroalkylation of Trifluoromethylaromatics with Unactivated Alkenes. Journal of the American Chemical Society, 2018, 140, 163-166.	6.6	200
404	Photoinduced Rearrangement of Dienones and Santonin Rerouted by Amines. Angewandte Chemie - International Edition, 2018, 57, 904-908.	7.2	7
405	αâ€Aminoxyâ€Acidâ€Auxiliaryâ€Enabled Intermolecular Radical γ (sp ³)â^'H Functionalization of Ketones. Angewandte Chemie - International Edition, 2018, 57, 1692-1696.	7.2	141
406	Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles <i>via</i> anion oxidation of sodium sulfinate salts. Organic and Biomolecular Chemistry, 2018, 16, 536-540.	1.5	34
407	Oxidative Coupling Mechanisms: Current State of Understanding. ACS Catalysis, 2018, 8, 1161-1172.	5.5	83
408	Visible-light-induced iminyl radical formation <i>via</i> electron-donor–acceptor complexes: a photocatalyst-free approach to phenanthridines and quinolines. Organic Chemistry Frontiers, 2018, 5, 977-981.	2.3	51

#	Article	IF	CITATIONS
409	Aerobic Photooxidative Synthesis of $\hat{l}^2\hat{a}\in A$ lkoxy Monohydroperoxides Using an Organo Photoredox Catalyst Controlled by a Base. Chemistry - an Asian Journal, 2018, 13, 409-412.	1.7	6
410	Direkte Umwandlung von Estern in heterocyclische Fluorophore. Angewandte Chemie, 2018, 130, 2461-2465.	1.6	16
411	A Visibleâ€Lightâ€Driven Iminyl Radicalâ€Mediated Câ^'C Single Bond Cleavage/Radical Addition Cascade of Oxime Esters. Angewandte Chemie, 2018, 130, 746-751.	1.6	48
412	Direct Synthesis of Polysubstituted Aldehydes via Visible‣ight Catalysis. Angewandte Chemie - International Edition, 2018, 57, 2174-2178.	7.2	53
413	CuWO ₄ as a photocatalyst for room temperature aerobic benzylamine oxidation. Chemical Communications, 2018, 54, 1101-1104.	2.2	26
414	Photoinduced hydroxylperfluoroalkylation of styrenes. Organic Chemistry Frontiers, 2018, 5, 1045-1048.	2.3	34
415	Organic Photoredox Catalyst with Substrate-capture Ability: A Perylene Derivative Bearing Urethane Moiety for Reductive Coupling of Ketones and Aldehydes under Visible Light. Chemistry Letters, 2018, 47, 369-372.	0.7	2
416	Photocatalyzed Formation of Heterocycles. Topics in Heterocyclic Chemistry, 2018, , 1-69.	0.2	2
417	Rose Bengal catalysed photo-induced selenylation of indoles, imidazoles and arenes: a metal free approach. Organic and Biomolecular Chemistry, 2018, 16, 880-885.	1.5	105
418	Visibleâ€Lightâ€Promoted Decarboxylative Giese Reactions of αâ€Aryl Ethenylphosphonates and the Application in the Synthesis of Fosmidomycin Analogue. Advanced Synthesis and Catalysis, 2018, 360, 1352-1357.	2.1	24
419	Alkene functionalization for the stereospecific synthesis of substituted aziridines by visible-light photoredox catalysis. Chemical Communications, 2018, 54, 1948-1951.	2.2	79
420	Photoinduced Rearrangement of Dienones and Santonin Rerouted by Amines. Angewandte Chemie, 2018, 130, 916-920.	1.6	1
421	Metal-Free, Visible-Light-Promoted Decarboxylative Radical Cyclization of Vinyl Azides with <i>N</i> -Acyloxyphthalimides. Journal of Organic Chemistry, 2018, 83, 1598-1605.	1.7	71
422	Ultrafast Observation of a Photoredox Reaction Mechanism: Photoinitiation in Organocatalyzed Atom-Transfer Radical Polymerization. Journal of the American Chemical Society, 2018, 140, 1285-1293.	6.6	94
423	Strecker reaction and \hat{l}_{\pm} -amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron, 2018, 74, 773-810.	1.0	129
424	Visible light mediated aerobic photocatalytic activation of C H bond by riboflavin tetraacetate and N -hydroxysuccinimide. Tetrahedron Letters, 2018, 59, 658-662.	0.7	29
425	Heck Reaction of Electronically Diverse Tertiary Alkyl Halides. Organic Letters, 2018, 20, 357-360.	2.4	126
426	New Horizons of Photocatalytic Fluoromethylative Difunctionalization of Alkenes. CheM, 2018, 4, 409-437.	5. 8	220

#	Article	IF	CITATIONS
427	Ein asymmetrisches kovalentes Triazinâ€Netzwerk fÃ⅓r effiziente Photoredoxâ€Katalyse durch Energietransferâ€Kaskaden unter sichtbarem Licht. Angewandte Chemie, 2018, 130, 8449-8453.	1.6	30
428	Eosinâ€Y as a Direct Hydrogenâ€Atom Transfer Photocatalyst for the Functionalization of Câ^'H Bonds. Angewandte Chemie, 2018, 130, 8650-8654.	1.6	79
429	Asymmetric Covalent Triazine Framework for Enhanced Visibleâ€Light Photoredox Catalysis via Energy Transfer Cascade. Angewandte Chemie - International Edition, 2018, 57, 8316-8320.	7.2	169
430	Transitionâ€Metalâ€Catalyzed Carboxylation Reactions with Carbon Dioxide. Angewandte Chemie - International Edition, 2018, 57, 15948-15982.	7.2	488
431	Übergangsmetallkatalysierte Carboxylierungen mit Kohlendioxid. Angewandte Chemie, 2018, 130, 16178-16214.	1.6	105
432	Impact of Monoâ€Fluorination on the Photophysics of the Flavin Chromophore. Photochemistry and Photobiology, 2018, 94, 667-676.	1.3	14
433	Eosinâ€Y as a Direct Hydrogenâ€Atom Transfer Photocatalyst for the Functionalization of Câ^'H Bonds. Angewandte Chemie - International Edition, 2018, 57, 8514-8518.	7.2	304
434	Metal-Free Catalyst for Visible-Light-Induced Oxidation of Unactivated Alcohols Using Air/Oxygen as an Oxidant. ACS Catalysis, 2018, 8, 5425-5430.	5.5	137
435	Visibleâ€Lightâ€Induced Câ^'H Functionalization and Câ^'C/Câ^'X Bondâ€Forming Oxidative Cross oupling Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1164-1177.	1.3	41
436	Regio―und chemoselektive Oxoâ€Azidierung von Vinylarenen, katalysiert durch Kupfer(II) und sichtbares Licht. Angewandte Chemie, 2018, 130, 8420-8424.	1.6	26
437	The Literature of Heterocyclic Chemistry, Part XVI, 2016. Advances in Heterocyclic Chemistry, 2018, 126, 173-254.	0.9	6
438	Photocatalytic anion oxidation achieves direct aerobic difunctionalization of alkenes leading to \hat{l}^2 -thiocyanato alcohols. Tetrahedron, 2018, 74, 3038-3044.	1.0	13
439	Substituent Effect in the First Excited Singlet State of Monosubstituted Benzenes. Journal of Physical Chemistry A, 2018, 122, 4609-4621.	1.1	21
440	An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes. ACS Catalysis, 2018, 8, 5175-5187.	5.5	422
441	Metal-free photocatalyzed aerobic oxidative Csp3â€"H functionalization of glycine derivatives: one-step generation of quinoline-fused lactones. Organic and Biomolecular Chemistry, 2018, 16, 3816-3823.	1.5	33
442	Visible light-promoted alkylation of imines using potassium organotrifluoroborates. Photochemical and Photobiological Sciences, 2018, 17, 534-538.	1.6	28
443	Visible-Light-Promoted Oxidative Amidation of Bromoalkynes with Anilines: An Approach to α-Ketoamides. Organic Letters, 2018, 20, 2245-2248.	2.4	38
444	Selective remote C–H trifluoromethylation of aminoquinolines with CF ₃ SO ₂ Na under visible light irradiation in the absence of an external photocatalyst. Organic Chemistry Frontiers, 2018, 5, 1689-1697.	2.3	62

#	Article	IF	CITATIONS
445	Visibleâ€Light Organophotoredoxâ€Catalyzed Synthesis of Precursors for Hornerâ€Type Olefinations. European Journal of Organic Chemistry, 2018, 2018, 2471-2476.	1.2	13
446	Eosin Yâ€"Yb(OTf)3 catalyzed visible light mediated electrocyclization/indole ring opening towards the synthesis of heterobiaryl-pyrazolo[3,4-b]pyridines. New Journal of Chemistry, 2018, 42, 6617-6620.	1.4	15
447	Benzimidazolium Naphthoxide Betaine Is a Visible Light Promoted Organic Photoredox Catalyst. Journal of Organic Chemistry, 2018, 83, 3921-3927.	1.7	39
448	Intermolecular Hydrogen Bonding Controlled Intersystem Crossing Rates of Benzophenone. Journal of Physical Chemistry Letters, 2018, 9, 1642-1648.	2.1	27
449	Aqueous Metal-Free Atom Transfer Radical Polymerization: Experiments and Model-Based Approach for Mechanistic Understanding. Macromolecules, 2018, 51, 2367-2376.	2.2	61
450	Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47, 4710-4728.	18.7	478
451	TiO ₂ photocatalysis for C–C bond formation. Catalysis Science and Technology, 2018, 8, 2030-2045.	2.1	91
452	Enantioselective counter-anions in photoredox catalysis: The asymmetric cation radical Diels-Alder reaction. Tetrahedron, 2018, 74, 3266-3272.	1.0	61
453	Oxidative [4+2] annulation of styrenes with alkynes under external-oxidant-free conditions. Nature Communications, 2018, 9, 1225.	5.8	79
454	Metal-Organic Frameworks for Photocatalysis. Series on Chemistry, Energy and the Environment, 2018, , 519-580.	0.3	0
455	Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 4623-4631.	6.6	555
456	UV PhotoVap: Demonstrating How a Simple and Versatile Reactor Based on a Conventional Rotary Evaporator Can Be Used for UV Photochemistry. Organic Process Research and Development, 2018, 22, 595-599.	1.3	14
457	Exploiting Charge-Transfer States for Maximizing Intersystem Crossing Yields in Organic Photoredox Catalysts. Journal of the American Chemical Society, 2018, 140, 4778-4781.	6.6	97
458	Visible-Light-Driven Alkyne Hydro-/Carbocarboxylation Using CO ₂ via Iridium/Cobalt Dual Catalysis for Divergent Heterocycle Synthesis. Journal of the American Chemical Society, 2018, 140, 5257-5263.	6.6	184
459	Acceptorless Dehydrogenation of Hydrocarbons by Noble-Metal-Free Hybrid Catalyst System. Organic Letters, 2018, 20, 2042-2045.	2.4	44
460	Iridium-catalyzed Synthesis of Saturated N-Heterocycles from Aldehydes and SnAP Reagents with Continuous Flow Photochemistry. Organic Letters, 2018, 20, 2071-2075.	2.4	32
461	Photochemical Nickel-Catalyzed Reductive Migratory Cross-Coupling of Alkyl Bromides with Aryl Bromides. Organic Letters, 2018, 20, 1880-1883.	2.4	104
462	α-Aminoalkyl Radical Addition to Maleimides via Electron Donor–Acceptor Complexes. Organic Letters, 2018, 20, 2051-2054.	2.4	82

#	Article	IF	CITATIONS
463	A microfluidic photoreactor enables 2-methylbenzophenone light-driven reactions with superior performance. Chemical Communications, 2018, 54, 6820-6823.	2.2	30
464	Stereoselective Synthesis of 2â€Deoxyglycosides from Glycals by Visibleâ€Lightâ€Induced Photoacid Catalysis. Angewandte Chemie - International Edition, 2018, 57, 6120-6124.	7.2	106
465	Organic synthesis provides opportunities to transform drug discovery. Nature Chemistry, 2018, 10, 383-394.	6.6	931
466	A new approach to access difluoroalkylated diarylmethanes <i>via</i> visible-light photocatalytic cross-coupling reactions. Chemical Communications, 2018, 54, 3993-3996.	2.2	58
467	Alizarin red S–TiO ₂ -catalyzed cascade C(sp ³)–H to C(sp ²)–H bond formation/cyclization reactions toward tetrahydroquinoline derivatives under visible light irradiation. New Journal of Chemistry, 2018, 42, 6880-6888.	1.4	27
468	A Green‣ED Driven Source of Hydrated Electrons Characterized from Microseconds to Hours and Applied to Crossâ€Couplings. Chemistry - A European Journal, 2018, 24, 9833-9840.	1.7	15
469	Smart N-Heterocyclic Carbene Ligands in Catalysis. Chemical Reviews, 2018, 118, 9988-10031.	23.0	759
470	Progress in the synthesis of Î-sultones. Monatshefte Fýr Chemie, 2018, 149, 701-714.	0.9	4
471	Photocatalytic Oxidative Bromination of Electronâ∈Rich Arenes and Heteroarenes by Anthraquinone. Advanced Synthesis and Catalysis, 2018, 360, 626-630.	2.1	60
472	Visible Light Accelerated Vinyl C–H Arylation in Pdâ€Catalysis: Application in the Synthesis of <i>ortho</i> Tetraâ€substituted Vinylarene Atropisomers. Chinese Journal of Chemistry, 2018, 36, 11-14.	2.6	38
473	Cu-Catalyzed Three-Component Carboamination of Alkenes. Journal of the American Chemical Society, 2018, 140, 58-61.	6.6	118
474	Anthraquinones as Photoredox Catalysts for the Reductive Activation of Aryl Halides. European Journal of Organic Chemistry, 2018, 2018, 34-40.	1.2	98
475	Oxidation induced C(sp3)-O cleavage via visible-light photoredox catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 120-124.	2.0	9
476	Visible lightâ€induced RAFT polymerization of methacrylates with benzaldehyde derivatives as organophotoredox catalysts. Journal of Polymer Science Part A, 2018, 56, 229-236.	2.5	17
477	Photoredox Catalysis in Câ€"S Bond Construction: Recent Progress in Photoâ€Catalyzed Formation of Sulfones and Sulfoxides. Advanced Synthesis and Catalysis, 2018, 360, 386-400.	2.1	198
478	Generation of αâ€ŀminyl Radicals from αâ€Bromo Cyclic <i>N</i> à€Sulfonylimines and Application to Coupling with Various Radical Acceptors Using a Photoredox Catalyst. Chemistry - A European Journal, 2018, 24, 312-316.	1.7	11
479	Visible-light-induced sulfonylation/cyclization of vinyl azides: one-pot construction of 6-(sulfonylmethyl)phenanthridines. Organic Chemistry Frontiers, 2018, 5, 232-236.	2.3	47
480	Flavin Photocatalysts for Visibleâ€Light [2+2] Cycloadditions: Structure, Reactivity and Reaction Mechanism. ChemCatChem, 2018, 10, 849-858.	1.8	23

#	Article	IF	CITATIONS
481	N -9 Alkylation of purines via light-promoted and metal-free radical relay. Chinese Chemical Letters, 2018, 29, 61-64.	4.8	6
482	Arylation of Aniline C(sp ³)â^'H Bonds with Phenols via an In Situ Activation Strategy. Asian Journal of Organic Chemistry, 2018, 7, 537-541.	1.3	17
483	Synthesis of visible-light mediated tryptanthrin derivatives from isatin and isatoic anhydride under transition metal-free conditions. Organic Chemistry Frontiers, 2018, 5, 51-54.	2.3	44
484	Photoredox Catalysis with Metal Complexes Made from Earthâ€Abundant Elements. Chemistry - A European Journal, 2018, 24, 2039-2058.	1.7	271
485	Nitrogen Oxides and Nitric Acid Enable the Sustainable Hydroxylation and Nitrohydroxylation of Benzenes under Visible Light Irradiation. Journal of Organic Chemistry, 2018, 83, 431-436.	1.7	17
486	Fluorescence quenching of the <i>N</i> methylquinolinium cation by pairs of water or alcohol molecules. Physical Chemistry Chemical Physics, 2018, 20, 307-316.	1.3	11
487	Visible-light-induced tandem phosphorylation cyclization of vinyl azides under mild conditions. Organic Chemistry Frontiers, 2018, 5, 822-826.	2.3	50
488	Green Photoâ€Organocatalytic Câ^'H Activation of Aldehydes: Selective Hydroacylation of Electronâ€Deficient Alkenes. Chemistry - A European Journal, 2018, 24, 1726-1731.	1.7	47
489	Oxidative Crossâ€Dehydrogenativeâ€Coupling Reaction of 3,4â€Dihydroâ€1,4â€Benzoxazinâ€2â€ones through Visibleâ€Light Photoredox Catalysis. European Journal of Organic Chemistry, 2018, 2018, 525-531.	1.2	10
490	Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. ChemCatChem, 2018, 10, 1686-1702.	1.8	35
491	Customizing Photoredox Properties of PXXâ€based Dyes through Energy Level Rigid Shifts of Frontier Molecular Orbitals. Chemistry - A European Journal, 2018, 24, 4382-4389.	1.7	33
492	N-substituted-3(10H)-acridones as visible-light photosensitizers for organic photoredox catalysis. Tetrahedron, 2018, 74, 483-489.	1.0	13
493	Visible-Light-Promoted Synthesis of Dibenzofuran Derivatives. Journal of Organic Chemistry, 2018, 83, 805-811.	1.7	32
494	Visible-Light-Photocatalyzed Synthesis of Phenanthridinones and Quinolinones via Direct Oxidative C–H Amidation. Organic Letters, 2018, 20, 240-243.	2.4	74
495	Substituted Hantzsch Esters as Versatile Radical Reservoirs in Photoredox Reactions. Advanced Synthesis and Catalysis, 2018, 360, 925-931.	2.1	63
496	Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie - International Edition, 2018, 57, 1968-1972.	7.2	85
497	Visible-light-promoted organic-dye-catalyzed three-component coupling of aldehydes, hydrazines and bromodifluorinated reagents. Organic Chemistry Frontiers, 2018, 5, 1003-1007.	2.3	34
498	Selective Oxidative [4+2] Imine/Alkene Annulation with H ₂ Liberation Induced by Photoâ€Oxidation. Angewandte Chemie - International Edition, 2018, 57, 1286-1290.	7.2	101

#	Article	IF	CITATIONS
499	Generating Hydrated Electrons for Chemical Syntheses by Using a Green Lightâ€Emitting Diode (LED). Angewandte Chemie - International Edition, 2018, 57, 1078-1081.	7.2	53
500	Acyl Radicals from Acylsilanes: Photoredox-Catalyzed Synthesis of Unsymmetrical Ketones. ACS Catalysis, 2018, 8, 304-309.	5.5	97
501	Visibleâ€Lightâ€Promoted Alkylation of Indoles with Tertiary Amines by the Oxidation of a <i>sp</i> ³ Câ€H Bond. Advanced Synthesis and Catalysis, 2018, 360, 762-767.	2.1	16
502	A Visibleâ€Lightâ€Driven Iminyl Radicalâ€Mediated Câ^'C Single Bond Cleavage/Radical Addition Cascade of Oxime Esters. Angewandte Chemie - International Edition, 2018, 57, 738-743.	7.2	279
503	Visible-light-induced halogenation of aliphatic C H bonds. Tetrahedron Letters, 2018, 59, 173-179.	0.7	23
504	Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General. Chemical Reviews, 2018, 118, 4592-4630.	23.0	139
505	Photocatalytic Synthesis of \hat{I}^3 -Lactones from Alkenes: High-Resolution Mass Spectrometry as a Tool To Study Photoredox Reactions. Organic Letters, 2018, 20, 36-39.	2.4	80
506	Photoinduced oxidative activation of electron-rich arenes: alkenylation with H ₂ evolution under external oxidant-free conditions. Chemical Science, 2018, 9, 1521-1526.	3.7	58
507	Continuous flow technology vs. the batch-by-batch approach to produce pharmaceutical compounds. Expert Review of Clinical Pharmacology, 2018, 11, 5-13.	1.3	38
508	Theoretical study with DFT on the mechanism of visible light-driven \hat{l}^2 -functionalization of aldehydes. Computational and Theoretical Chemistry, 2018, 1123, 154-160.	1.1	1
509	Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chemical Science, 2018, 9, 356-361.	3.7	77
510	Photoinduced Remote Functionalisations by Iminyl Radical Promoted Câ^'C and Câ^'H Bond Cleavage Cascades. Angewandte Chemie - International Edition, 2018, 57, 744-748.	7.2	319
511	Photoinduced Remote Functionalisations by Iminyl Radical Promoted Câ^'C and Câ^'H Bond Cleavage Cascades. Angewandte Chemie, 2018, 130, 752-756.	1.6	87
512	Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up. ACS Sustainable Chemistry and Engineering, 2018, 6, 422-429.	3.2	68
513	Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 2018, 24, 105-108.	1.7	113
514	Type I vs Type II photodegradation of pollutants. Catalysis Today, 2018, 313, 161-166.	2.2	20
515	Online monitoring of a photocatalytic reaction by real-time high resolution FlowNMR spectroscopy. Chemical Communications, 2018, 54, 30-33.	2.2	31
516	Die molekulare industrielle Revolution: zur automatisierten Synthese organischer Verbindungen. Angewandte Chemie, 2018, 130, 4266-4288.	1.6	21

#	Article	IF	Citations
517	Sulfurâ€Centerâ€Involved Photocatalyzed Reactions. Chemistry - an Asian Journal, 2018, 13, 2208-2242.	1.7	47
518	Catalytic Photoreduction Induced by Visible Light. ChemPhotoChem, 2018, 2, 703-714.	1.5	26
519	Oxidative homodimerization of substituted olefins by DDQ visible light photocatalysis. Organic Chemistry Frontiers, 2018, 5, 3553-3556.	2.3	21
520	A photoredox catalyzed iminyl radical-triggered C–C bond cleavage/addition/Kornblum oxidation cascade of oxime esters and styrenes: synthesis of ketonitriles. Chemical Communications, 2018, 54, 12262-12265.	2.2	79
521	Mechanistic and asymmetric investigations of the Au-catalysed cross-coupling between aryldiazonium salts and arylboronic acids using (P,N) gold complexes. Chemical Communications, 2018, 54, 12867-12870.	2.2	34
522	Mild dynamic kinetic resolution of amines by coupled visible-light photoredox and enzyme catalysis. Chemical Communications, 2018, 54, 14065-14068.	2.2	28
523	A recyclable self-assembled composite catalyst consisting of Fe ₃ O ₄ -rose bengal-layered double hydroxides for highly efficient visible light photocatalysis in water. Chemical Communications, 2018, 54, 13587-13590.	2.2	29
524	Visible-light promoted dithioacetalization of aldehydes with thiols under aerobic and photocatalyst-free conditions. Green Chemistry, 2018, 20, 5117-5122.	4.6	34
525	Low temperature fabrication of Fe ₂ O ₃ nanorod film coated with ultra-thin g-C ₃ N ₄ for a direct z-scheme exerting photocatalytic activities. RSC Advances, 2018, 8, 33600-33613.	1.7	35
526	Catalyst-free and visible light promoted trifluoromethylation and perfluoroalkylation of uracils and cytosines. Chemical Communications, 2018, 54, 13662-13665.	2.2	54
527	Combining organocatalysis with photoorganocatalysis: photocatalytic hydroacylation of asymmetric organocatalytic Michael addition products. New Journal of Chemistry, 2018, 42, 18844-18849.	1.4	16
528	Photophysics and Photochemistry of Conformationally Restricted Triarylmethanes: Application as Photoredox Catalysts. , 2018, , .		0
530	Visibleâ€Lightâ€Mediated Metalâ€Free Difunctionalization of Alkenes with CO ₂ and Silanes or C(sp ³)â^'H Alkanes. Angewandte Chemie, 2018, 130, 17466-17470.	1.6	46
531	Recyclable alkylated fac-Ir(ppy)3 complex as a visible-light photoredox catalyst for the synthesis of 3-trifluoromethylated and 3-difluoroacetylated coumarins. Tetrahedron, 2018, 74, 7358-7363.	1.0	19
532	Decarboxylative Elimination of <i>N</i> -Acyl Amino Acids via Photoredox/Cobalt Dual Catalysis. ACS Catalysis, 2018, 8, 11801-11806.	5 . 5	79
533	Photo-induced Decarboxylative Heck-Type Coupling of Unactivated Aliphatic Acids and Terminal Alkenes in the Absence of Sacrificial Hydrogen Acceptors. Journal of the American Chemical Society, 2018, 140, 16360-16367.	6.6	146
534	Metal-free, intermolecular carbopyridylation of alkenes <i>via</i> visible-light-induced reductive radical coupling. Chemical Science, 2018, 9, 9012-9017.	3.7	83
535	Photocatalysis Enables Visibleâ€Light Uncaging of Bioactive Molecules in Live Cells. Angewandte Chemie, 2019, 131, 571-575.	1.6	9

#	Article	IF	CITATIONS
536	Visibleâ€Light Promoted Stereoselective Arylselanyl Functionalization of Alkynes. European Journal of Organic Chemistry, 2018, 2018, 6738-6742.	1.2	13
537	Photosensitization and Photocatalysis—Perspectives in Organic Synthesis. ACS Catalysis, 2018, 8, 12046-12055.	5.5	157
538	Visible-Light Photocatalyzed Deoxygenation of N-Heterocyclic $\langle i \rangle$ N $\langle i \rangle$ -Oxides. Organic Letters, 2018, 20, 7712-7716.	2.4	27
539	Formal Total Synthesis of Hybocarpone Enabled by Visible-Light-Promoted Benzannulation. Journal of Organic Chemistry, 2018, 83, 15524-15532.	1.7	7
540	Visible-Light-Enabled Oxidative Alkylation of Unactivated Alkenes with Dimethyl Sulfoxide through Concomitant 1,2-Aryl Migration. Organic Letters, 2018, 20, 7611-7615.	2.4	48
541	Visible-Light-Mediated Synthesis of Unsymmetrical Diaryl Sulfides via Oxidative Coupling of Arylhydrazine with Thiol. Organic Letters, 2018, 20, 7740-7743.	2.4	75
542	Functionalization of C(sp2)–H Bonds of Arenes and Heteroarenes Assisted by Photoredox Catalysts for the C–C Bond Formation. Topics in Organometallic Chemistry, 2018, , 225-265.	0.7	3
543	Green Cross-Coupling Using Visible Light for C–O and C–N Bond Formation. Topics in Organometallic Chemistry, 2018, , 267-294.	0.7	0
544	Enantioselective Allylic Alkylation with 4-Alkyl-1,4-dihydro-pyridines Enabled by Photoredox/Palladium Cocatalysis. Journal of the American Chemical Society, 2018, 140, 16914-16919.	6.6	180
545	Porphyrins as Photoredox Catalysts in Csp ² –H Arylations: Batch and Continuous Flow Approaches. Journal of Organic Chemistry, 2018, 83, 15077-15086.	1.7	51
546	Resolving orbital pathways for intermolecular electron transfer. Nature Communications, 2018, 9, 4916.	5.8	19
547	Visible-Light-Induced C–O Bond Formation for the Construction of Five- and Six-Membered Cyclic Ethers and Lactones. Organic Letters, 2018, 20, 7437-7441.	2.4	40
548	Bromo- or Methoxy-Group-Promoted Umpolung Electron Transfer Enabled, Visible-Light-Mediated Synthesis of 2-Substituted Indole-3-glyoxylates. Organic Letters, 2018, 20, 6984-6989.	2.4	35
549	Transitionâ∈Metalâ∈Free Threeâ∈Component Radical 1,2â∈Amidoalkynylation of Unactivated Alkenes. Chemistry - A European Journal, 2019, 25, 516-520.	1.7	46
550	Eosin Y- and Copper-Catalyzed Dark Reaction To Construct Ene-Î ³ -Lactams. Organic Letters, 2018, 20, 7220-7224.	2.4	29
551	Visible-light initiated aerobic oxidations: a critical review. Green Chemistry, 2018, 20, 4790-4833.	4.6	189
552	Visibleâ€Lightâ€Mediated Metalâ€Free Difunctionalization of Alkenes with CO ₂ and Silanes or C(sp ^{)â^'H Alkanes. Angewandte Chemie - International Edition, 2018, 57, 17220-17224.}	7.2	227
553	Photocatalytic Oxyamination of Alkenes: Copper(II) Salts as Terminal Oxidants in Photoredox Catalysis. Organic Letters, 2018, 20, 7345-7350.	2.4	53

#	Article	IF	CITATIONS
554	Metal-Free Visible-Light-Induced C–H/C–H Cross-Dehydrogenative-Coupling of Quinoxalin-2(H)-ones with Simple Ethers. ACS Sustainable Chemistry and Engineering, 2018, 6, 17252-17257.	3.2	147
555	9,10-Phenanthrenedione as Visible-Light Photoredox Catalyst: A Green Methodology for the Functionalization of 3,4-Dihydro-1,4-Benzoxazin-2-Ones through a Friedel-Crafts Reaction. Catalysts, 2018, 8, 653.	1.6	15
556	Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region. Beilstein Journal of Organic Chemistry, 2018, 14, 3025-3046.	1.3	40
557	Degenerative xanthate transfer to olefins under visible-light photocatalysis. Beilstein Journal of Organic Chemistry, 2018, 14, 3047-3058.	1.3	21
558	Visible light thiocyanation of <i>N</i> -bearing aromatic and heteroaromatic compounds using Ag/TiO ₂ nanotube photocatalyst. New Journal of Chemistry, 2018, 42, 19237-19244.	1.4	37
559	Visible-Light-Driven Conversion of CO ₂ to CH ₄ with an Organic Sensitizer and an Iron Porphyrin Catalyst. Journal of the American Chemical Society, 2018, 140, 17830-17834.	6.6	150
560	Synthesis of Acridines through Alkyne Addition to Diarylamines. Molecules, 2018, 23, 2867.	1.7	7
561	Visible-Light-Driven External-Reductant-Free Cross-Electrophile Couplings of Tetraalkyl Ammonium Salts. Journal of the American Chemical Society, 2018, 140, 17338-17342.	6.6	152
562	Visible-light-enabled aerobic synthesis of benzoin bis-ethers from alkynes and alcohols. Green Chemistry, 2018, 20, 5479-5483.	4.6	26
563	Visible-Light-Promoted Transition-Metal-Free Phosphinylation of Heteroaryl Halides in the Presence of Potassium <i>tert</i> -Butoxide. Organic Letters, 2018, 20, 7816-7820.	2.4	53
564	Synthesis of Elongated Esters from Alkenes. Angewandte Chemie, 2018, 130, 15681-15685.	1.6	0
565	Photoredox Catalysis at Copper(II) on Chitosan: Application to Photolatent CuAAC. Advanced Synthesis and Catalysis, 2018, 360, 4615-4624.	2.1	23
566	Hydrogen Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom Generation. Angewandte Chemie - International Edition, 2018, 57, 15664-15669.	7.2	144
567	Polyoxometalate Photocatalysis for Liquid-Phase Selective Organic Functional Group Transformations. ACS Catalysis, 2018, 8, 10809-10825.	5.5	161
568	Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. Science, 2018, 361, 1369-1373.	6.0	209
569	Synthesis of Elongated Esters from Alkenes. Angewandte Chemie - International Edition, 2018, 57, 15455-15459.	7.2	27
570	Visible Lightâ€Induced Aerobic Oxidative â^'H Arylation of Glycine Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 4452-4456.	2.1	37
571	Redoxâ€Active Reagents for Photocatalytic Generation of the OCF ₃ Radical and (Hetero)Aryl Câ~H Trifluoromethoxylation. Angewandte Chemie, 2018, 130, 13991-13995.	1.6	29

#	Article	IF	CITATIONS
572	Photocatalytic Cycloadditions Enabled by a Lithium Perchlorate/Nitromethane Electrolyte Solution. European Journal of Organic Chemistry, 2018, 2018, 6720-6723.	1.2	5
573	Visible-Light-Induced Organophotoredox-Catalyzed Phosphonylation of 2 <i>H</i> -Indazoles with Diphenylphosphine Oxide. Journal of Organic Chemistry, 2018, 83, 12694-12701.	1.7	88
574	Primary, Secondary, and Tertiary γ-C(sp ³)â€"H Vinylation of Amides via Organic Photoredox-Catalyzed Hydrogen Atom Transfer. Organic Letters, 2018, 20, 6255-6259.	2.4	74
575	Visibleâ€Lightâ€Induced Pyridylation of Remote C(sp ³)â^'H Bonds by Radical Translocation of Nâ€Alkoxypyridinium Salts. Angewandte Chemie - International Edition, 2018, 57, 15517-15522.	7.2	141
576	Aerobic Catalytic Features in Photoredox- and Copper-Catalyzed Iodolactonization Reactions. Organic Letters, 2018, 20, 6462-6466.	2.4	28
577	Donor–Acceptor Fluorophores for Energy-Transfer-Mediated Photocatalysis. Journal of the American Chemical Society, 2018, 140, 13719-13725.	6.6	174
578	A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor–Acceptor Cyanoarenes. Journal of the American Chemical Society, 2018, 140, 15353-15365.	6.6	435
579	Light/Copper Relay for Aerobic Fragmentation of Lignin Model Compounds. Asian Journal of Organic Chemistry, 2018, 7, 2431-2434.	1.3	16
580	Borocyclopropanation of Styrenes Mediated by UVâ€light Under Continuous Flow Conditions. Angewandte Chemie, 2018, 130, 13702-13706.	1.6	7
581	Deaminative Borylation of Aliphatic Amines Enabled by Visible Light Excitation of an Electron Donor–Acceptor Complex. Chemistry - A European Journal, 2018, 24, 17210-17214.	1.7	195
582	Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. Journal of the American Chemical Society, 2018, 140, 13580-13585.	6.6	162
583	Carbonyl–Olefin Crossâ€Metathesis Through a Visibleâ€Lightâ€Induced 1,3â€Diol Formation and Fragmentation Sequence. Angewandte Chemie - International Edition, 2018, 57, 16219-16223.	7.2	54
584	Additive- and Photocatalyst-Free Borylation of Arylazo Sulfones under Visible Light. Journal of Organic Chemistry, 2018, 83, 12831-12837.	1.7	52
585	Organocatalytic Enantioselective Addition of α-Aminoalkyl Radicals to Isoquinolines. Organic Letters, 2018, 20, 6298-6301.	2.4	118
586	Organic Dye-Catalyzed, Visible-Light Photoredox Bromination of Arenes and Heteroarenes Using <i>N</i> -Bromosuccinimide. ACS Omega, 2018, 3, 12868-12877.	1.6	50
587	Pyrylenes: A New Class of Tunable, Redox-Switchable, Photoexcitable Pyrylium–Carbene Hybrids with Three Stable Redox-States. Journal of the American Chemical Society, 2018, 140, 14823-14835.	6.6	46
588	Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source. Beilstein Journal of Organic Chemistry, 2018, 14, 2435-2460.	1.3	33
589	Photoactive Complexes with Earth-Abundant Metals. Journal of the American Chemical Society, 2018, 140, 13522-13533.	6.6	369

#	Article	IF	CITATIONS
590	Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nature Catalysis, 2018, 1, 794-804.	16.1	124
591	Redox-Activated Amines in C(<i>sp</i> ³)–C(<i>sp</i>) and C(<i>sp</i> ³)–C(<i>sp</i> ²) Bond Formation Enabled by Metal-Free Photoredox Catalysis. ACS Catalysis, 2018, 8, 11362-11367.	5.5	126
592	Carbonylâ€Olefinâ€Kreuzmetathese mittels Lichtâ€induzierter 1,3â€Diolâ€Bildung―und Fragmentierungsseque Angewandte Chemie, 2018, 130, 16453-16457.	ⁿ z. 1.6	14
593	Spectroscopic Characterization and Mechanistic Studies on Visible Light Photoredox Carbon–Carbon Bond Formation by Bis(arylimino)acenaphthene Copper Photosensitizers. ACS Catalysis, 2018, 8, 11277-11286.	5.5	42
594	Visibleâ€Lightâ€Induced Pyridylation of Remote C(sp 3)â^'H Bonds by Radical Translocation of Nâ€Alkoxypyridinium Salts. Angewandte Chemie, 2018, 130, 15743-15748.	1.6	38
595	Hydrogen Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom Generation. Angewandte Chemie, 2018, 130, 15890-15895.	1.6	28
596	Cu Photoredox Catalysts Supported by a 4,6-Disubstituted 2,2′-Bipyridine Ligand: Application in Chlorotrifluoromethylation of Alkenes. Organometallics, 2018, 37, 3928-3935.	1.1	45
597	Radical/Polar Annulation Reactions (RPARs) Enable the Modular Construction of Cyclopropanes. Organic Letters, 2018, 20, 6840-6844.	2.4	57
598	General Strategy for Improving the Quantum Efficiency of Photoredox Hydroamidation Catalysis. Journal of the American Chemical Society, 2018, 140, 14926-14937.	6.6	61
599	Atomâ€Transfer Radical Addition Photocatalysis Using a Heteroleptic Copper Complex. Asian Journal of Organic Chemistry, 2018, 7, 2435-2438.	1.3	24
600	Metal-Free C(sp ²)–H/N–H Cross-Dehydrogenative Coupling of Quinoxalinones with Aliphatic Amines under Visible-Light Photoredox Catalysis. Organic Letters, 2018, 20, 7125-7130.	2.4	213
601	CO ₂ -Catalyzed Efficient Dehydrogenation of Amines with Detailed Mechanistic and Kinetic Studies. ACS Catalysis, 2018, 8, 11679-11687.	5.5	60
602	syn-Selective alkylarylation of terminal alkynes via the combination of photoredox and nickel catalysis. Nature Communications, 2018, 9, 4543.	5.8	110
603	Visible Light-Driven Radical <i>trans</i> -Hydrosilylation of Electron-Neutral and -Rich Alkenes with Tertiary and Secondary Hydrosilanes. Journal of Organic Chemistry, 2018, 83, 14600-14609.	1.7	29
604	Conjugated Oligomers with Stable Radical Substituents: Synthesis, Single Crystal Structures, Electronic Structure, and Excited State Dynamics. Chemistry of Materials, 2018, 30, 7840-7851.	3.2	16
605	Synthesis of Functionalized Cyclopropanes from Carboxylic Acids by a Radical Addition–Polar Cyclization Cascade. Angewandte Chemie, 2018, 130, 15656-15660.	1.6	35
606	Visibleâ€Lightâ€Mediated αâ€Oxygenation of 3â€(<i>N</i> , <i>N</i> à€Dimethylaminomethyl)â€Indoles to Aldeh European Journal of Organic Chemistry, 2018, 2018, 6624-6628.	ydes. 1,2	9
607	Direct Photocatalytic Synthesis of Mediumâ€Sized Lactams by Câ^'C Bond Cleavage. Angewandte Chemie, 2018, 130, 14421-14425.	1.6	30

#	Article	IF	CITATIONS
608	<i>>sp</i> ³ C–H Arylation and Alkylation Enabled by the Synergy of Triplet Excited Ketones and Nickel Catalysts. Journal of the American Chemical Society, 2018, 140, 12200-12209.	6.6	271
609	Design, Synthesis, and Application of Highly Reducing Organic Visible-Light Photocatalysts. Organic Letters, 2018, 20, 5700-5704.	2.4	35
610	Cross-Dehydrogenating Coupling of Aldehydes with Amines/R-OTBS Ethers by Visible-Light Photoredox Catalysis: Synthesis of Amides, Esters, and Ureas. Organic Letters, 2018, 20, 5861-5865.	2.4	59
611	Visible-Light Photoredox-Catalyzed Hydroalkoxymethylation of Activated Alkenes Using α-Silyl Ethers as Alkoxymethyl Radical Equivalents. Organic Letters, 2018, 20, 6239-6243.	2.4	25
612	First Micelleâ€Free Photoredox Catalytic Access to Hydrated Electrons for Syntheses and Remediations with a Visible LED or even Sunlight. Chemistry - A European Journal, 2018, 24, 17557-17567.	1.7	19
613	Redoxâ€Active Reagents for Photocatalytic Generation of the OCF ₃ Radical and (Hetero)Aryl Câ^'H Trifluoromethoxylation. Angewandte Chemie - International Edition, 2018, 57, 13795-13799.	7.2	85
614	Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters <i>via</i> visible light [2+2] cycloaddition of \hat{l}^2 -diketones or \hat{l}^2 -ketoesters with styrenes. Chemical Communications, 2018, 54, 11602-11605.	2,2	39
615	Reconfigurable system for automated optimization of diverse chemical reactions. Science, 2018, 361, 1220-1225.	6.0	339
616	Borocyclopropanation of Styrenes Mediated by UVâ€light Under Continuous Flow Conditions. Angewandte Chemie - International Edition, 2018, 57, 13514-13518.	7.2	45
617	Controlled photo-flow oxidative reaction (UV-FOR) platform for ultra-fast phthalide and API synthesis. Green Chemistry, 2018, 20, 4584-4590.	4.6	20
618	Intramolecular Transamidation of Secondary Amides via Visible-Light-Induced Tandem Reaction. Organic Letters, 2018, 20, 5618-5621.	2.4	25
619	Synthesis of Functionalized Cyclopropanes from Carboxylic Acids by a Radical Addition–Polar Cyclization Cascade. Angewandte Chemie - International Edition, 2018, 57, 15430-15434.	7.2	117
620	Direct Photocatalytic Synthesis of Mediumâ€Sized Lactams by Câ^C Bond Cleavage. Angewandte Chemie - International Edition, 2018, 57, 14225-14229.	7.2	104
621	Hydrogen bond directed aerobic oxidation of amines <i>via</i> photoredox catalysis. Chemical Communications, 2018, 54, 10989-10992.	2.2	14
622	Microtubingâ€Reactorâ€Assisted Aliphatic Câ^'H Functionalization with HCl as a Hydrogenâ€Atomâ€Transfer Catalyst Precursor in Conjunction with an Organic Photoredox Catalyst. Angewandte Chemie, 2018, 130, 12843-12847.	1.6	38
623	Catalytic Alkene Difunctionalization via Imidate Radicals. Journal of the American Chemical Society, 2018, 140, 11202-11205.	6.6	101
624	Visible light-induced aerobic oxidative cross-coupling of glycine esters with \hat{l} ±-angelicalactone: a facile pathway to \hat{l} 3-lactams. Organic and Biomolecular Chemistry, 2018, 16, 6728-6734.	1.5	24
625	Molecular Design of Donorâ€Acceptorâ€√ype Organic Photocatalysts for Metalâ€free Aromatic Câ°'C Bond Formations under Visible Light. Advanced Synthesis and Catalysis, 2018, 360, 4312-4318.	2.1	25

#	Article	IF	Citations
626	Visible Light-Mediated Decarboxylation Rearrangement Cascade of	1.7	30
627	Visible-Light Photocatalytic Synthesis of Amines from Imines via Transfer Hydrogenation Using Quantum Dots as Catalysts. Journal of Organic Chemistry, 2018, 83, 11886-11895.	1.7	47
628	Inverting the Selectivity of the Newman–Kwart Rearrangement via One Electron Oxidation at Room Temperature. Journal of Organic Chemistry, 2018, 83, 12000-12006.	1.7	24
629	Strongly Reducing (Diarylamino)anthracene Catalyst for Metal-Free Visible-Light Photocatalytic Fluoroalkylation. ACS Catalysis, 2018, 8, 9408-9419.	5 . 5	62
630	Nickel-Catalyzed Photoredox-Mediated Cross-Coupling of Aryl Electrophiles and Aryl Azides. ACS Catalysis, 2018, 8, 9120-9124.	5. 5	37
631	Aminoalkyl Radicals as Powerful Intermediates for the Synthesis of Unnatural Amino Acids and Peptides. ACS Catalysis, 2018, 8, 9115-9119.	5.5	98
632	Visible light-induced aerobic oxidative cross-coupling of glycine derivatives with indoles: a facile access to $3,3\hat{a}\in^2$ bisindolylmethanes. Organic Chemistry Frontiers, 2018, 5, 2120-2125.	2.3	44
633	Mechanism of Photocatalytic Cyclization of Bromoalkenes with a Dimeric Gold Complex. Organometallics, 2018, 37, 1725-1733.	1.1	9
634	One-Pot Photomediated Giese Reaction/Friedel–Crafts Hydroxyalkylation/Oxidative Aromatization To Access Naphthalene Derivatives from Toluenes and Enones. ACS Catalysis, 2018, 8, 6224-6229.	5.5	51
635	Photoorganocatalysis, small organic molecules and light in the service of organic synthesis: the awakening of a sleeping giant. Organic and Biomolecular Chemistry, 2018, 16, 4596-4614.	1.5	207
636	lodine-catalyzed diazo activation to access radical reactivity. Nature Communications, 2018, 9, 1972.	5.8	75
637	Enantioselective synthesis of amines by combining photoredox and enzymatic catalysis in a cyclic reaction network. Chemical Science, 2018, 9, 5052-5056.	3.7	113
638	Regioselective oxidative ring-opening of cyclopropenyl carboxylates by visible light photoredox catalysis. Tetrahedron Letters, 2018, 59, 2546-2549.	0.7	10
639	Visible-Light-Driven Decarboxylative Alkylation of C–H Bond Catalyzed by Dye-Sensitized Semiconductor. Organic Letters, 2018, 20, 3225-3228.	2.4	53
640	Bronsted Acid/Organic Photoredox Cooperative Catalysis: Easy Access to Tri- and Tetrasubstituted Alkenylphosphorus Compounds from Alcohols and P–H Species. Organic Letters, 2018, 20, 3341-3344.	2.4	38
641	Hydroxylamine Derivatives as Nitrogenâ€Radical Precursors in Visibleâ€Light Photochemistry. Chemistry - A European Journal, 2018, 24, 12154-12163.	1.7	219
642	C–N Cross-Coupling via Photoexcitation of Nickel–Amine Complexes. Journal of the American Chemical Society, 2018, 140, 7667-7673.	6.6	176
643	Deciphering Stability of Five-Membered Heterocyclic Radicals: Balancing Act Between Delocalization and Ring Strain. Journal of Physical Chemistry A, 2018, 122, 5464-5476.	1.1	9

#	Article	IF	CITATIONS
644	Photoinduced Controlled Radical Polymerizations Performed in Flow: Methods, Products, and Opportunities. Chemistry of Materials, 2018, 30, 3931-3942.	3.2	69
645	Photoexcited perylene diimide radical anions for the reduction of aryl halides: a bay-substituent effect. Organic Chemistry Frontiers, 2018, 5, 2296-2302.	2.3	56
646	Micellized Tris(bipyridine)ruthenium Catalysts Affording Preparative Amounts of Hydrated Electrons with a Green Lightâ€Emitting Diode. Chemistry - A European Journal, 2018, 24, 13259-13269.	1.7	17
647	Synchronized biphotonic process triggering C C coupling catalytic reactions. Applied Catalysis B: Environmental, 2018, 237, 18-23.	10.8	38
648	Fine-tuned organic photoredox catalysts for fragmentation-alkynylation cascades of cyclic oxime ethers. Chemical Science, 2018, 9, 5883-5889.	3.7	141
649	Amidyl Radicals by Oxidation of αâ€Amidoâ€oxy Acids: Transitionâ€Metalâ€Free Amidofluorination of Unactivated Alkenes. Angewandte Chemie - International Edition, 2018, 57, 10707-10711.	7.2	89
650	Hierarchical photocatalyst of In2S3 on exfoliated MoS2 nanosheets for enhanced visible-light-driven Aza-Henry reaction. Applied Catalysis B: Environmental, 2018, 237, 288-294.	10.8	70
651	A mild electroassisted synthesis of (hetero)arylphosphonates. Organic and Biomolecular Chemistry, 2018, 16, 4495-4500.	1.5	34
652	Photocatalytic difunctionalisations of alkenes with $\langle i \rangle N \langle i \rangle$ -SCN sulfoximines. Chemical Communications, 2018, 54, 5772-5775.	2.2	46
653	Homolytic cleavage of peroxide bonds via a single electron transfer of a frustrated Lewis pair. Chemical Communications, 2018, 54, 7431-7434.	2.2	43
654	Radical Hydrosilylation of Alkynes Catalyzed by Eosin Y and Thiol under Visible Light Irradiation. Organic Letters, 2018, 20, 3174-3178.	2.4	62
655	Metal-Free-Visible Light C–H Alkylation of Heteroaromatics via Hypervalent Iodine-Promoted Decarboxylation. Organic Letters, 2018, 20, 3229-3232.	2.4	102
656	A Bifunctional Photoaminocatalyst for the Alkylation of Aldehydes: Design, Analysis, and Mechanistic Studies. ACS Catalysis, 2018, 8, 5928-5940.	5.5	46
657	Chemoselective Peptide Modification via Photocatalytic Tryptophan \hat{I}^2 -Position Conjugation. Journal of the American Chemical Society, 2018, 140, 6797-6800.	6.6	97
658	Organic photocatalysis for the radical couplings of boronic acid derivatives in batch and flow. Chemical Communications, 2018, 54, 5606-5609.	2.2	64
659	2â€Azaallyl Anions as Lightâ€Tunable Superâ€Electronâ€Donors: Coupling with Aryl Fluorides, Chlorides, and Bromides. Advanced Synthesis and Catalysis, 2018, 360, 2854-2868.	2.1	39
660	Nonadiabatic Curve-Crossing Model for the Visible-Light Photoredox Catalytic Generation of Radical Intermediate via a Concerted Mechanism. ACS Catalysis, 2018, 8, 7388-7396.	5.5	17
661	Merging visible-light photoredox and micellar catalysis: arylation reactions with anilines nitrosated <i>in situ</i> . Catalysis Science and Technology, 2018, 8, 3728-3732.	2.1	49

#	Article	IF	CITATIONS
662	Free-Radical Synthesis and Functionalization of Heterocycles. Topics in Heterocyclic Chemistry, 2018, , .	0.2	8
663	Photoredox Cyanomethylation of Indoles: Catalyst Modification and Mechanism. Journal of Organic Chemistry, 2018, 83, 8926-8935.	1.7	39
664	Recent developments in redox-active olefin polymerization catalysts. Coordination Chemistry Reviews, 2018, 372, 141-152.	9.5	84
665	Hole Catalysis as a General Mechanism for Efficient and Wavelength-Independent Z → E Azobenzene Isomerization. CheM, 2018, 4, 1740-1755.	5.8	57
667	Radical Fluoroalkylation Reactions. ACS Catalysis, 2018, 8, 7287-7307.	5.5	179
668	Metalâ€Free Synthesis of 3â€Thiocyanatobenzothiophenes by Eosin Y Photoredoxâ€Catalyzed Cascade Radical Annulation of 2â€Alkynylthioanisoles. European Journal of Organic Chemistry, 2018, 2018, 4867-4873.	1.2	27
669	Oxidative Functionalization of Cinnamaldehyde Derivatives: Control of Chemoselectivity by Organophotocatalysis and Dual Organocatalysis. Journal of Organic Chemistry, 2018, 83, 8962-8970.	1.7	21
670	Hydrofunctionalization of olefins to value-added chemicals <i>via</i> photocatalytic coupling. Green Chemistry, 2018, 20, 3450-3456.	4.6	21
671	Visibleâ€Lightâ€Promoted Intermolecular Oxidative Dearomatization of βâ€Naphthols with <i>N</i> â€Hydroxycarbamates. Chemistry - A European Journal, 2018, 24, 12519-12523.	1.7	24
672	Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nature Communications, 2018, 9, 2445.	5.8	130
673	Electron donor-free photoredox catalysis via an electron transfer cascade by cooperative organic photocatalysts. Catalysis Science and Technology, 2018, 8, 3539-3547.	2.1	13
674	Photocatalytic hydrogen-evolution dimerization of styrenes to synthesize 1,2-dihydro-1-arylnaphthalene derivatives using Acr+-Mes and cobaloxime catalysts. Chinese Journal of Catalysis, 2018, 39, 1194-1201.	6.9	19
675	Visible-light photocatalyzed oxidative decarboxylation of oxamic acids: a green route to urethanes and ureas. Chemical Communications, 2018, 54, 9337-9340.	2.2	39
676	Photocatalytic formation of carbon–sulfur bonds. Beilstein Journal of Organic Chemistry, 2018, 14, 54-83.	1.3	132
677	Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides. Angewandte Chemie - International Edition, 2018, 57, 15936-15947.	7.2	339
678	Microtubingâ€Reactorâ€Assisted Aliphatic Câ^'H Functionalization with HCl as a Hydrogenâ€Atomâ€Transfer Catalyst Precursor in Conjunction with an Organic Photoredox Catalyst. Angewandte Chemie - International Edition, 2018, 57, 12661-12665.	7.2	167
679	Employing Photoredox Catalysis for DNAâ€Encoded Chemistry: Decarboxylative Alkylation of αâ€Amino Acids. ChemMedChem, 2018, 13, 2159-2165.	1.6	86
680	Light on the Horizon: Current Research and Future Perspectives in Flow Photochemistry. Organic Process Research and Development, 2018, 22, 1045-1062.	1.3	139

#	Article	IF	CITATIONS
681	Photocatalytic Barbier reaction $\hat{a} \in ``usible-light induced allylation and benzylation of aldehydes and ketones. Chemical Science, 2018, 9, 7230-7235.$	3.7	62
682	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie, 2018, 130, 11448-11452.	1.6	12
683	Recent Developments in the Photoâ€Mediated Generation of Silyl Radicals and Their Application in Organic Synthesis. ChemPhotoChem, 2018, 2, 839-846.	1.5	88
684	Amine-tetrachloromethane charge transfer complexes: a structural and computational study. Journal of Coordination Chemistry, 2018, 71, 2082-2089.	0.8	4
685	Visible Light-Activatable Oxidase Mimic of 9-Mesityl-10-Methylacridinium Ion for Colorimetric Detection of Biothiols and Logic Operations. Analytical Chemistry, 2018, 90, 9959-9965.	3.2	65
686	Photo-induced thiol coupling and C–H activation using nanocrystalline lead-halide perovskite catalysts. Catalysis Science and Technology, 2018, 8, 4257-4263.	2.1	106
687	Eosin-Mediated Alkylsulfonyl Cyanation of Olefins. Organic Letters, 2018, 20, 4521-4525.	2.4	30
688	Green-light-driven thioxanthylium-based organophotoredox catalysts: Organophotoredox promoted radical cation Diels-Alder reaction. Tetrahedron Letters, 2018, 59, 3361-3364.	0.7	28
689	Photoredoxkatalytische organische Umwandlungen an heterogenen Kohlenstoffnitriden. Angewandte Chemie, 2018, 130, 16164-16176.	1.6	55
690	Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angewandte Chemie - International Edition, 2018, 57, 12945-12949.	7.2	207
691	Dibenzothiophene Dioxide Based Conjugated Microporous Polymers for Visible-Light-Driven Hydrogen Production. ACS Catalysis, 2018, 8, 8590-8596.	5.5	202
692	Transformations of Isonitriles with Bromoalkanes Using Photoredox Gold Catalysis. Journal of Organic Chemistry, 2018, 83, 10015-10024.	1.7	36
693	Visibleâ€Lightâ€Mediated Metalâ€Free Synthesis of Trifluoromethylselenolated Arenes. Angewandte Chemie - International Edition, 2018, 57, 11781-11785.	7.2	78
694	Visible-Light-Promoted Cascade Alkene Trifluoromethylation and Dearomatization of Indole Derivatives via Intermolecular Charge Transfer. Organic Letters, 2018, 20, 4379-4383.	2.4	76
695	Photoredox Catalysis for Building C–C Bonds from C(sp ²)–H Bonds. Chemical Reviews, 2018, 118, 7532-7585.	23.0	591
696	Application of coumarin dyes for organic photoredox catalysis. Chemical Communications, 2018, 54, 10044-10047.	2.2	64
697	Room-Temperature C–H Bond Functionalization by Merging Cobalt and Photoredox Catalysis. ACS Catalysis, 2018, 8, 8115-8120.	5.5	113
698	Oximinotrifluoromethylation of unactivated alkenes under ambient conditions. Chemical Communications, 2018, 54, 8885-8888.	2.2	39

#	Article	IF	CITATIONS
699	Visible Lightâ€Induced Câ^'H Bond Functionalization: A Critical Review. Advanced Synthesis and Catalysis, 2018, 360, 4652-4698.	2.1	131
700	Visibleâ€Lightâ€Mediated Photoredoxâ€Catalyzed <i>N</i> â€Arylation of <i>NH</i> â€Sulfoximines with Electronâ€Rich Arenes. Advanced Synthesis and Catalysis, 2018, 360, 3277-3285.	2.1	48
701	Photocatalytic Neophyl Rearrangement and Reduction of Distal Carbon Radicals by Iminyl Radicalâ€Mediated Câ^'C Bond Cleavage. Advanced Synthesis and Catalysis, 2018, 360, 3601-3606.	2.1	53
702	Visibleâ€Lightâ€Mediated Metalâ€Free Synthesis of Trifluoromethylselenolated Arenes. Angewandte Chemie, 2018, 130, 11955-11959.	1.6	20
703	Siteâ€Selective C–H Bond Activation/Functionalization of Alphaâ€Amino Acids and Peptideâ€Like Derivatives. European Journal of Organic Chemistry, 2018, 2018, 6050-6067.	1.2	84
704	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie - International Edition, 2018, 57, 11278-11282.	7.2	73
705	Rhodamine 6G Radical: A Spectro (Fluoro) Electrochemical and Transient Spectroscopic Study. ChemCatChem, 2018, 10, 4182-4190.	1.8	18
706	Carbazole–triazine based donor–acceptor porous organic frameworks for efficient visible-light photocatalytic aerobic oxidation reactions. Journal of Materials Chemistry A, 2018, 6, 15154-15161.	5.2	59
707	Synthesis of 3-cyanomethylated coumarins by a visible-light-mediated direct cyanomethylation of aryl alkynoates. Organic and Biomolecular Chemistry, 2018, 16, 5788-5792.	1.5	28
708	Dual copper- and photoredox-catalysed reactions. Tetrahedron, 2018, 74, 4881-4902.	1.0	42
709	Visible-Light-Activated Catalytic Enantioselective \hat{l}^2 -Alkylation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated 2-Acyl Imidazoles Using Hantzsch Esters as Radical Reservoirs. Journal of Organic Chemistry, 2018, 83, 10922-10932.	1.7	60
710	Metalâ€Free Preparation of αâ€Hâ€Chlorinated Alkylaromatic Hydrocarbons by Sunlight. ChemistrySelect, 2018, 3, 7991-7995.	0.7	18
711	Organocatalytic Oxidative Cyclization of Amidoximes for the Synthesis of 1,2,4â€Oxadiazolines. Advanced Synthesis and Catalysis, 2018, 360, 2626-2631.	2.1	10
712	Oxidative Cyclization Synthesis of Tetrahydroquinolines and Reductive Hydrogenation of Maleimides under Redox-Neutral Conditions. Organic Letters, 2018, 20, 2916-2920.	2.4	71
713	Charge Carrier Activity on Single-Particle Photo(electro)catalysts: Toward Function in Solar Energy Conversion. Journal of the American Chemical Society, 2018, 140, 6729-6740.	6.6	50
714	Recent Development of Lightâ€Mediated Carboxylation Using CO ₂ as the Feedstock. Asian Journal of Organic Chemistry, 2018, 7, 1439-1447.	1.3	65
715	Profiling and Application of Photoredox C(sp ³)–C(sp ²) Cross-Coupling in Medicinal Chemistry. ACS Medicinal Chemistry Letters, 2018, 9, 773-777.	1.3	69
716	The synergistic effect of self-assembly and visible-light induced the oxidative C–H acylation of N-heterocyclic aromatic compounds with aldehydes. Chemical Communications, 2018, 54, 5744-5747.	2.2	56

#	Article	IF	CITATIONS
717	Sulfur Radicals and Their Application. Topics in Current Chemistry, 2018, 376, 22.	3.0	49
718	A methodology for the photocatalyzed radical trifluoromethylation of indoles: A combined experimental and computational study. Journal of Fluorine Chemistry, 2018, 214, 94-100.	0.9	18
719	Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angewandte Chemie, 2018, 130, 13127-13131.	1.6	60
720	Radical alkylation of <i>para</i> -quinone methides with 4-substituted Hantzsch esters/nitriles <i>via</i> organic photoredox catalysis. Organic and Biomolecular Chemistry, 2018, 16, 6391-6394.	1.5	40
721	Carbotrifluoromethylation of Allylic Alcohols <i>via</i> 1,2â€Aryl Migration Promoted by Visibleâ€Lightâ€Induced Photoredox Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 4084-4088.	2.1	44
722	Visibleâ€Lightâ€Triggered, Metal―and Photocatalystâ€Free Acylation of <i>N</i> à€Heterocycles. Advanced Synthesis and Catalysis, 2018, 360, 4184-4190.	2.1	65
723	Detection of an Energy-Transfer Pathway in Cr-Photoredox Catalysis. ACS Catalysis, 2018, 8, 9216-9225.	5 . 5	22
724	Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery, 2018, 17, 709-727.	21.5	391
725	Electron paramagnetic resonance spectroscopic studies of the electron transfer reaction of Hantzsch ester and a pyrylium salt. RSC Advances, 2018, 8, 29924-29927.	1.7	4
726	Catalytic enantioselective radical coupling of activated ketones with <i>N</i> -aryl glycines. Chemical Science, 2018, 9, 8094-8098.	3.7	98
727	Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry. Beilstein Journal of Organic Chemistry, 2018, 14, 2035-2064.	1.3	98
728	Photoinduced fragmentation-rearrangement sequence of cycloketoxime esters. Organic Chemistry Frontiers, 2018, 5, 2719-2722.	2.3	58
729	Photocatalytic Construction of S–S and C–S Bonds Promoted by Acridinium Salt: An Unexpected Pathway To Synthesize 1,2,4-Dithiazoles. Organic Letters, 2018, 20, 4819-4823.	2.4	30
730	Energy transfer catalysis mediated by visible light: principles, applications, directions. Chemical Society Reviews, 2018, 47, 7190-7202.	18.7	799
731	A multifunctional Co-based metal–organic framework: heterogeneous catalysis, chemiluminescence sensing and moisture-dependent solvatochromism. Dalton Transactions, 2018, 47, 12406-12413.	1.6	7
732	C–H Functionalization of Heteroarenes Using Unactivated Alkyl Halides through Visible-Light Photoredox Catalysis under Basic Conditions. Journal of Organic Chemistry, 2018, 83, 10933-10940.	1.7	32
733	A photocatalytic iminyl radical-mediated Câ \in "C bond cleavage/addition/cyclization cascade for the synthesis of 1,2,3,4-tetrahydrophenanthrenes. Chemical Communications, 2018, 54, 9925-9928.	2.2	76
734	Enantioselective Radical Cyclization of Tryptamines by Visible Light-Excited Nitroxides. Journal of Organic Chemistry, 2018, 83, 10948-10958.	1.7	53

#	Article	IF	Citations
735	Eosin Y as a Redox Catalyst and Photosensitizer for Sequential Benzylic Câ^'H Amination and Oxidation. Chemistry - A European Journal, 2018, 24, 16895-16901.	1.7	55
736	Recent advances in radical transformations of internal alkynes. Chemical Communications, 2018, 54, 10791-10811.	2.2	178
737	Visible-Light-Enabled Construction of Thiocarbamates from Isocyanides, Thiols, and Water at Room Temperature. Organic Letters, 2018, 20, 5291-5295.	2.4	80
738	Synthesis of oxindoles through trifluoromethylation of N-aryl acrylamides by photoredox catalysis. Organic and Biomolecular Chemistry, 2018, 16, 6564-6568.	1.5	40
739	Visible-Light-Promoted C(sp ³)–C(sp ²) Cross-Dehydrogenative Coupling of Tertiary Amine with Imidazopyridine. Journal of Organic Chemistry, 2018, 83, 10619-10626.	1.7	84
740	Copper-Catalyzed Photoinduced Radical Domino Cyclization of Ynamides and Cyanamides: A Unified Entry to Rosettacin, Luotonin A, and Deoxyvasicinone. Synthesis, 2018, 50, 3022-3030.	1.2	38
741	Synthesis of functionalized pyrroloindolines $\langle i \rangle$ via $\langle i \rangle$ a visible-light-induced radical cascade reaction: rapid synthesis of (ű)-flustraminol B. Chemical Communications, 2018, 54, 7443-7446.	2.2	39
742	Continuous Visibleâ€Light Photoflow Approach for a Manganeseâ€Catalyzed (Het)Arene Câ^'H Arylation. Angewandte Chemie - International Edition, 2018, 57, 10625-10629.	7.2	83
743	Novel Oxidative Ugi Reaction for the Synthesis of Highly Active, Visibleâ€Light, Imideâ€Acridinium Organophotocatalysts. Chemistry - A European Journal, 2018, 24, 12509-12514.	1.7	33
744	Organocatalytic Asymmetric Cascade Aerobic Oxidation and Semipinacol Rearrangement Reaction: A Visible Lightâ€Induced Approach to Access Chiral 2,2â€Disubstituted Indolinâ€3â€ones. Chemistry - an Asian Journal, 2018, 13, 2382-2387.	1.7	53
745	Organocatalytic Approach to Functional Semifluorinated Polymers Driven by Visible Light. Macromolecular Rapid Communications, 2018, 39, e1800151.	2.0	18
746	Recent Developments in Transition Metalâ€Catalyzed Crossâ€Dehydrogenative Coupling Reactions of Ethers and Thioethers. ChemCatChem, 2018, 10, 3354-3383.	1.8	76
747	Visible-Light-Mediated Efficient Metal-Free Catalyst for α-Oxygenation of Tertiary Amines to Amides. ACS Catalysis, 2018, 8, 6659-6664.	5.5	119
748	Selective oxymetalation of terminal alkynes <i>via</i> 6- <i>endo</i> cyclization: mechanistic investigation and application to the efficient synthesis of 4-substituted isocoumarins. Chemical Science, 2018, 9, 6041-6052.	3.7	35
749	Recent Applications of [Cu(dap)2]Cl in Visible Light-Mediated Photoredox Catalysis. Australian Journal of Chemistry, 2018, 71, 547.	0.5	4
750	An organocatalyst bound $\hat{l}\pm$ -aminoalkyl radical intermediate for controlled aerobic oxidation of iminium ions. Organic and Biomolecular Chemistry, 2018, 16, 5081-5085.	1.5	23
751	From photoinduced electron transfer to 3D metal microstructures via direct laser writing. Nanophotonics, 2018, 7, 1259-1277.	2.9	33
752	Visibleâ€Lightâ€Mediated Hydroxycarbonylation of Diazonium Salts. Advanced Synthesis and Catalysis, 2018, 360, 3401-3405.	2.1	23

#	Article	IF	Citations
753	Continuous Visibleâ€Light Photoflow Approach for a Manganese atalyzed (Het)Arene Câ^'H Arylation. Angewandte Chemie, 2018, 130, 10785-10789.	1.6	23
7 54	Amidyl Radicals by Oxidation of αâ€Amidoâ€oxy Acids: Transitionâ€Metalâ€Free Amidofluorination of Unactivated Alkenes. Angewandte Chemie, 2018, 130, 10867-10871.	1.6	26
755	Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nature Chemistry, 2018, 10, 770-775.	6.6	125
756	Catalyst and Sensitizerâ€Free Visibleâ€Lightâ€Induced C(sp ²)â^'H Chalcogenation of Arenes/ Heteroarenes with Dichalcogenides. Asian Journal of Organic Chemistry, 2018, 7, 1689-1697.	1.3	34
757	Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer. ACS Catalysis, 2018, 8, 6751-6759.	5.5	106
758	Visible-light photoredox catalyzed cyclization of aryl alkynoates for the synthesis of trifluoromethylated coumarins. Catalysis Communications, 2018, 114, 70-74.	1.6	18
759	Ter-Ionic Complex that Forms a Bond Upon Visible Light Absorption. Journal of the American Chemical Society, 2018, 140, 7799-7802.	6.6	16
760	Electrocatalytic C–H Activation. ACS Catalysis, 2018, 8, 7086-7103.	5.5	535
761	Electrochemical strategies for C–H functionalization and C–N bond formation. Chemical Society Reviews, 2018, 47, 5786-5865.	18.7	736
762	Redox-Neutral Photocatalytic Cyclopropanation via Radical/Polar Crossover. Journal of the American Chemical Society, 2018, 140, 8037-8047.	6.6	177
763	Hochkonversion von Reduktionsmitteln. Angewandte Chemie, 2019, 131, 5588-5607.	1.6	14
764	Radical‶ype Reactivity and Catalysis by Singleâ€Electron Transfer to or from Redoxâ€Active Ligands. Chemistry - A European Journal, 2019, 25, 2651-2662.	1.7	150
765	Upconversion of Reductants. Angewandte Chemie - International Edition, 2019, 58, 5532-5550.	7.2	61
766	Photocatalytic Modification of Amino Acids, Peptides, and Proteins. Chemistry - A European Journal, 2019, 25, 26-42.	1.7	145
767	Photoredoxkatalyse als Strategie zur synthetischen Nutzung von CO ₂ : Direkter Zugang zu CarbonsÄ g ren aus einem erneuerbaren Rohstoff. Angewandte Chemie, 2019, 131, 5546-5556.	1.6	30
768	Photoredox Catalysis as a Strategy for CO ₂ Incorporation: Direct Access to Carboxylic Acids from a Renewable Feedstock. Angewandte Chemie - International Edition, 2019, 58, 5492-5502.	7.2	165
769	Singlet–Triplet Energy Gaps of Organic Biradicals and Polyacenes with Auxiliary-Field Quantum Monte Carlo. Journal of Chemical Theory and Computation, 2019, 15, 4924-4932.	2.3	37
770	Visibleâ€Lightâ€Induced Benzylic Câ€H Functionalization for the Synthesis of 2â€Arylquinazolines. European Journal of Organic Chemistry, 2019, 2019, 5934-5936.	1.2	9

#	Article	IF	Citations
771	Visible-Light-Induced Trifluoromethylation of Unactivated Alkenes with Tri(9-anthryl)borane as an Organophotocatalyst. Journal of Organic Chemistry, 2019, 84, 12925-12932.	1.7	33
772	Photochemical Alkene Isomerization for the Synthesis of Polysubstituted Furans and Pyrroles under Neutral Conditions. Chemistry - A European Journal, 2019, 25, 13114-13118.	1.7	17
773	Visible Light-Driven Azidation/Difunctionalization of Vinyl Arenes with Azidobenziodoxole under Copper Catalysis. Journal of Organic Chemistry, 2019, 84, 10978-10989.	1.7	38
774	AIEE Active Nanoassemblies of Pyrazine Based Organic Photosensitizers as Efficient Metal-Free Supramolecular Photoredox Catalytic Systems. Scientific Reports, 2019, 9, 11142.	1.6	15
775	Boryl Radical Addition to Multiple Bonds in Organic Synthesis. European Journal of Organic Chemistry, 2019, 2019, 6308-6319.	1.2	70
776	Energyâ€Efficient Solar Photochemistry with Luminescent Solar Concentrator Based Photomicroreactors. Angewandte Chemie, 2019, 131, 14512-14516.	1.6	18
777	Efficient Use of Photons in Photoredox/Enamine Dual Catalysis with a Peptide-Bridged Flavin–Amine Hybrid. Organic Letters, 2019, 21, 6978-6982.	2.4	13
778	Photoinduced synthesis of fluorinated dibenz[<i>b</i> , <i>e</i>]azepines <i>via</i> radical triggered cyclization. Chemical Communications, 2019, 55, 10848-10851.	2.2	42
779	Photocatalytic Alkylation of Pyrroles and Indoles with \hat{l}_{\pm} -Diazo Esters. Organic Letters, 2019, 21, 7028-7032.	2.4	90
780	Photocatalytic Cleavage of Aryl Ether in Modified Lignin to Non-phenolic Aromatics. ACS Catalysis, 2019, 9, 8843-8851.	5.5	55
781	Visible-Light-Induced Regioselective C(sp ³)-H Acyloxylation of Aryl-2 <i>H-</i> azirines with (Diacetoxy)iodobenzene. Journal of Organic Chemistry, 2019, 84, 11735-11740.	1.7	37
782	An Organic Molecular Photocatalyst Releasing Oxygen from Water. ChemSusChem, 2019, 12, 4854-4858.	3.6	4
783	Bisphosphonium salt: an effective photocatalyst for the intramolecular hydroalkoxylation of olefins. Science Bulletin, 2019, 64, 1896-1901.	4.3	20
784	Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication. Angewandte Chemie, 2019, 131, 13452-13456.	1.6	43
785	Thermally activated delayed fluorescence molecules and their new applications aside from OLEDs. Chinese Chemical Letters, 2019, 30, 1717-1730.	4.8	57
786	Application of metal oxide semiconductors in light-driven organic transformations. Catalysis Science and Technology, 2019, 9, 5186-5232.	2.1	143
787	Photoinduced Copper-Catalyzed Radical Aminocarbonylation of Cycloketone Oxime Esters. ACS Catalysis, 2019, 9, 8159-8164.	5.5	117
788	Photo–nickel dual catalytic benzoylation of aryl bromides. Chemical Communications, 2019, 55, 10796-10799.	2.2	33

#	ARTICLE	IF	CITATIONS
789	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Longâ€Lived Photoactive Photoisomer Complex. Angewandte Chemie, 2019, 131, 14808-14814.	1.6	9
790	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Longâ€Lived Photoactive Photoisomer Complex. Angewandte Chemie - International Edition, 2019, 58, 14666-14672.	7.2	45
791	Structural elaboration of dicyanopyrazine: towards push–pull molecules with tailored photoredox activity. RSC Advances, 2019, 9, 23797-23809.	1.7	14
792	Shedding Blue Light on the Undergraduate Laboratory: An Easy-to-Assemble LED Photoreactor for Aromatization of a 1,4-Dihydropyridine. Journal of Chemical Education, 2019, 96, 2015-2020.	1.1	12
793	Dimethyl sulfoxide as a "methylene―source: Ru(<scp>ii</scp>) photo-catalysed facile synthesis of acetals from alcohols. New Journal of Chemistry, 2019, 43, 13334-13338.	1.4	6
794	Photoredox Alkylarylation of N â€Benzyl―N â€(2â€ethynylaryl)â€Amides with αâ€Bromoalkyl Esters: Access to Dibenzazepines. Advanced Synthesis and Catalysis, 2019, 361, 4645-4650.	2.1	20
795	Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angewandte Chemie, 2019, 131, 11571-11575.	1.6	6
796	Energyâ€Efficient Solar Photochemistry with Luminescent Solar Concentrator Based Photomicroreactors. Angewandte Chemie - International Edition, 2019, 58, 14374-14378.	7.2	80
797	Visible-light photocatalytic activation of N-chlorosuccinimide by organic dyes for the chlorination of arenes and heteroarenes. Tetrahedron, 2019, 75, 130498.	1.0	22
798	Organic Photocatalyst for ppm-Level Visible-Light-Driven Reversible Addition–Fragmentation Chain-Transfer (RAFT) Polymerization with Excellent Oxygen Tolerance. Macromolecules, 2019, 52, 5538-5545.	2.2	56
799	Thiocyanate radical mediated dehydration of aldoximes with visible light and air. Chemical Communications, 2019, 55, 9701-9704.	2.2	28
800	Organophotoredox-Catalyzed Intermolecular Oxa-[4+2] Cycloaddition Reactions. Journal of Organic Chemistry, 2019, 84, 10669-10678.	1.7	26
801	Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach. Journal of Organic Chemistry, 2019, 84, 10459-10471.	1.7	32
802	Visible-Light Reductive Cyclization of Nonactivated Alkyl Chlorides. Synlett, 2019, 30, 1496-1507.	1.0	2
803	A Combination of Visible-Light Organophotoredox Catalysis and Asymmetric Organocatalysis for the Enantioselective Mannich Reaction of Dihydroquinoxalinones with Ketones. Organic Letters, 2019, 21, 6011-6015.	2.4	43
804	Selective Lateâ€Stage Oxygenation of Sulfides with Groundâ€State Oxygen by Uranyl Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 13499-13506.	7.2	164
805	Selective Lateâ€Stage Oxygenation of Sulfides with Groundâ€State Oxygen by Uranyl Photocatalysis. Angewandte Chemie, 2019, 131, 13633-13640.	1.6	27
806	Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication. Angewandte Chemie - International Edition, 2019, 58, 13318-13322.	7.2	191

#	Article	IF	CITATIONS
807	Anion–π Interactions in Lightâ€Induced Reactions: Role in the Amidation of (Hetero)aromatic Systems with Activated <i>N</i> ÀAryloxyamides. Chemistry - A European Journal, 2019, 25, 11785-11790.	1.7	38
808	Organophotoredox-Catalyzed C(sp ²)–H Difluoromethylenephosphonation of Imidazoheterocycles. Organic Letters, 2019, 21, 5606-5610.	2.4	65
809	Visible-light-mediated deuteration of silanes with deuterium oxide. Chemical Science, 2019, 10, 7340-7344.	3.7	60
810	Conjugated porous polymer based on BOPHY dyes as photocatalyst under visible light. Applied Catalysis B: Environmental, 2019, 258, 117933.	10.8	46
811	Metal-free, visible-light-promoted oxidative radical cyclization of <i>N</i> -biarylglycine esters: one-pot construction of phenanthridine-6-carboxylates in water. Green Chemistry, 2019, 21, 4406-4411.	4.6	29
812	Visible-light photocatalytic aerobic oxidation of sulfides to sulfoxides with a perylene diimide photocatalyst. Organic and Biomolecular Chemistry, 2019, 17, 7144-7149.	1.5	43
813	Nicotinamide adenine dinucleotide as a photocatalyst. Science Advances, 2019, 5, eaax0501.	4.7	54
814	Visibleâ€Lightâ€Promoted Oxidative Alkylarylation of <i>N</i> â€Aryl/Benzoyl Acrylamides Through Direct Câ^H Bond Functionalization. Advanced Synthesis and Catalysis, 2019, 361, 4237-4242.	2.1	24
815	Visible light-mediated intermolecular [2 + 2] photocycloaddition of 1-aryl-2-nitroethenes and olefins. Organic and Biomolecular Chemistry, 2019, 17, 7192-7203.	1.5	13
816	Metal- and photocatalyst-free synthesis of 3-selenylindoles and asymmetric diarylselenides promoted by visible light. RSC Advances, 2019, 9, 22685-22694.	1.7	46
817	Visibleâ€Lightâ€Induced Tandem Cyclization of Alkynoates and Phenylacetylenes to Naphtho[2,1â€ <i>c</i>)]coumarins. Asian Journal of Organic Chemistry, 2019, 8, 1448-1457.	1.3	6
818	Four-Component Photoredox-Mediated Azidoalkoxy-trifluoromethylation of Alkenes. Organic Letters, 2019, 21, 6005-6010.	2.4	28
819	Unexpected Biosynthesis of Fluorescein-Like Arthrocolins against Resistant Strains in an Engineered <i>Escherichia coli</i> . Organic Letters, 2019, 21, 6499-6503.	2.4	7
820	Cascade Functionalization of C(sp ³)â€"Br/C(sp ²)â€"H Bonds: Access to Fused Benzo[<i>e</i> j]isoindole-1,3,5-trione via Visible-Light-Induced Reductive Radical Relay Strategy. Organic Letters, 2019, 21, 6270-6274.	2.4	22
821	Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science, 2019, 365, 360-366.	6.0	416
822	Visibleâ€Lightâ€Mediated Crossâ€Couplings and Câ^'H Activation via Dual Photoredox/Transitionâ€Metal Catalysis in Continuousâ€Flow Processes. Asian Journal of Organic Chemistry, 2019, 8, 1578-1587.	1.3	9
823	Photochemical Hydroacylation of Michael Acceptors Utilizing an Aldehyde as Photoinitiator. ChemSusChem, 2019, 12, 4194-4201.	3.6	29
824	The solvatochromic response of benzo[a]fluorenone in aprotic solvents compared with benzo[b]fluorenone and 9â€fluorenone. Journal of Physical Organic Chemistry, 2019, 32, e3994.	0.9	3

#	Article	IF	Citations
825	Visibleâ€Lightâ€Induced [4+2] Annulation of Thiophenes and Alkynes to Construct Benzene Rings. Angewandte Chemie - International Edition, 2019, 58, 12206-12210.	7.2	28
826	Photocatalytic Oxygenation Reactions Using Water and Dioxygen. ChemSusChem, 2019, 12, 3931-3940.	3.6	33
827	Lead halide perovskites for photocatalytic organic synthesis. Nature Communications, 2019, 10, 2843.	5.8	263
828	Visibleâ€Lightâ€Induced [4+2] Annulation of Thiophenes and Alkynes to Construct Benzene Rings. Angewandte Chemie, 2019, 131, 12334-12338.	1.6	2
829	Versatile Ruâ€Photoredoxâ€Catalyzed Functionalization of Dehydroâ€Amino Acids and Peptides. ChemCatChem, 2019, 11, 3797-3801.	1.8	43
830	Converting (<i>E</i>)â€(Hetero)arylethanesulfonyl Fluorides to (<i>Z</i>)â€(Hetero)arylethanesulfonyl Fluorides Under Light Irradiation. European Journal of Organic Chemistry, 2019, 2019, 4597-4603.	1.2	14
831	Acyl Radicals from Benzothiazolines: Synthons for Alkylation, Alkenylation, and Alkynylation Reactions. Organic Letters, 2019, 21, 5462-5466.	2.4	46
832	Synthetic Diversity from a Versatile and Radical Nitrating Reagent. Chemistry - A European Journal, 2019, 25, 12929-12939.	1.7	39
833	Visible light-mediated chemistry of indoles and related heterocycles. Chemical Society Reviews, 2019, 48, 4401-4423.	18.7	210
834	Visible Light Mediated External Oxidant Free Selective C5 Bromination of 8â€Aminoquinoline Amides under Ambient Conditions. Asian Journal of Organic Chemistry, 2019, 8, 1136-1140.	1.3	13
835	Discovery of Unforeseen Energy-Transfer-Based Transformations Using a Combined Screening Approach. CheM, 2019, 5, 2183-2194.	5.8	83
836	Photocatalytic Oxidative C–H Thiolation: Synthesis of Benzothiazoles and Sulfenylated Indoles. Synlett, 2019, 30, 1648-1655.	1.0	14
837	Implementing Hydrogen Atom Transfer (HAT) Catalysis for Rapid and Selective Reductive Photoredox Transformations in Continuous Flow. European Journal of Organic Chemistry, 2019, 2019, 5807-5811.	1.2	20
838	Visible-light-promoted oxidative dehydrogenation of hydrazobenzenes and transfer hydrogenation of azobenzenes. Green Chemistry, 2019, 21, 4189-4193.	4.6	46
839	Photoredox-Catalyzed Stereoselective Radical Reactions to Synthesize Nucleoside Analogues with a C2′-Stereogenic All-Carbon Quaternary Center. Journal of Organic Chemistry, 2019, 84, 14795-14804.	1.7	6
840	Virtual Excited State Reference for the Discovery of Electronic Materials Database: An Open-Access Resource for Ground and Excited State Properties of Organic Molecules. Journal of Physical Chemistry Letters, 2019, 10, 6835-6841.	2.1	19
841	Enantioselective Synthesis of N-Benzylic Heterocycles: A Nickel and Photoredox Dual Catalysis Approach. Organic Letters, 2019, 21, 8957-8961.	2.4	36
842	Aroylchlorination of 1,6-Dienes via a Photoredox Catalytic Atom-Transfer Radical Cyclization Process. Organic Letters, 2019, 21, 8615-8619.	2.4	31

#	Article	IF	Citations
843	Intermolecular Hetero-Diels–Alder Reactions of Photogenerated aza-ortho-Quinone Methides with Aldehydes. Organic Letters, 2019, 21, 8783-8788.	2.4	16
844	Visible Light Irradiation of Acyl Oxime Esters and Styrenes Efficiently Constructs \hat{l}^2 -Carbonyl Imides by a Scission and Four-Component Reassembly Process. Organic Letters, 2019, 21, 8789-8794.	2.4	41
845	(Thio)etherification of Quinoxalinones under Visible‣ight Photoredox Catalysis. Advanced Synthesis and Catalysis, 2019, 361, 5371-5382.	2.1	58
846	Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metalâ€free Cyclopropanation with Alkenes. Angewandte Chemie, 2019, 131, 17115-17121.	1.6	10
847	Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metalâ€free Cyclopropanation with Alkenes. Angewandte Chemie - International Edition, 2019, 58, 16959-16965.	7.2	28
848	Visibleâ€Lightâ€Promoted Cascade Radical Cyclization: Synthesis of 1,4â€Diketones Containing Chromanâ€4â€O Skeletons. Chemistry - an Asian Journal, 2019, 14, 3269-3273.	ne 1.7	66
849	Aerobic Tetrazineâ€Catalyzed Oxidative Nitrosoâ€Dielsâ€Alder Reaction of Nâ€Arylhydroxylamines with Dienecarbamates: Access to Functionalized 1,6â€Dihydroâ€1,2â€oxazines. ChemCatChem, 2019, 11, 5282-5286.	1.8	6
850	Use of Nitrogenâ€Doped Carbon Nanodots for the Photocatalytic Fluoroalkylation of Organic Compounds. Chemistry - A European Journal, 2019, 25, 16032-16036.	1.7	35
851	Metalâ€Free Cercosporinâ€Photocatalyzed Câ€S Coupling for the Selective Synthesis of Aryl Sulfides under Mild Conditions. European Journal of Organic Chemistry, 2019, 2019, 7175-7178.	1.2	16
852	Site-selective remote C(sp3)–H heteroarylation of amides via organic photoredox catalysis. Nature Communications, 2019, 10, 4743.	5.8	69
853	Reactivity Tuning for Radical–Radical Cross-Coupling via Selective Photocatalytic Energy Transfer: Access to Amine Building Blocks. ACS Catalysis, 2019, 9, 10454-10463.	5. 5	74
854	Visible-light-promoted organic dye catalyzed perfluoroalkylation of hydrazones under mild conditions. Tetrahedron Letters, 2019, 60, 151124.	0.7	16
855	Photoredox catalytic cascade radical addition/aromatization of methylene-2-oxazolines: Mild access to C(sp)-difluoro-oxazole derivatives. Tetrahedron Letters, 2019, 60, 151246.	0.7	5
857	Combined Photoredox/Enzymatic Câ^'H Benzylic Hydroxylations. Angewandte Chemie, 2019, 131, 16642-16646.	1.6	9
858	Geometric <i>E</i> â†' <i>Z</i> Isomerisation of Alkenyl Silanes by Selective Energy Transfer Catalysis: Stereodivergent Synthesis of Triarylethylenes via a Formal <i>anti</i> â€Metallometallation. Angewandte Chemie - International Edition, 2019, 58, 18619-18626.	7.2	52
859	Visible Lightâ€Induced, Metalâ€Free Denitrative [3+2] Cycloaddition for Trisubstituted Pyrrole Synthesis. Chemistry - an Asian Journal, 2019, 14, 4793-4797.	1.7	19
860	Photoredox-catalyzed decarboxylative alkylation/cyclization of alkynylphosphine oxides: a metal- and oxidant-free method for accessing benzo[<i>b</i>]phosphole oxides. Chemical Communications, 2019, 55, 233-236.	2.2	40
861	Visible Lightâ€Driven, Photocatalystâ€Free Arbuzovâ€Like Reaction via Arylazo Sulfones. Advanced Synthesis and Catalysis, 2019, 361, 5239-5244.	2.1	30

#	Article	IF	CITATIONS
862	Photokatalyse und Elektrochemie: Ein neues B \tilde{A}^{1} 4ndnis in der organischen Synthese. Angewandte Chemie, 2019, 131, 17670-17672.	1.6	28
863	Visible-light-mediated selective thiocyanation/ipso-cyclization/oxidation cascade for the synthesis of thiocyanato-containing azaspirotrienediones. Tetrahedron, 2019, 75, 130763.	1.0	22
864	Functionalized azetidines via visible light-enabled aza Patern \tilde{A}^2 -B $\tilde{A}^1\!\!/\!\!4$ chi reactions. Nature Communications, 2019, 10, 5095.	5.8	80
865	Picosecond to millisecond tracking of a photocatalytic decarboxylation reaction provides direct mechanistic insights. Nature Communications, 2019, 10, 5152.	5.8	24
866	Functionalized Truxene Scaffold: A Promising Advanced Organic Material for Digital Era. ChemistrySelect, 2019, 4, 12272-12288.	0.7	23
867	Direct Dearomatization of Pyridines via an Energy-Transfer-Catalyzed Intramolecular [4+2] Cycloaddition. CheM, 2019, 5, 2854-2864.	5.8	68
868	s-Tetrazine Dyes: A Facile Generation of Photoredox Organocatalysts for Routine Oxidations. Journal of Organic Chemistry, 2019, 84, 16139-16146.	1.7	25
869	Visible Light Mediated Sulfenylationâ€Annulation Cascade of Alkyne Tethered Cyclohexadienones. Advanced Synthesis and Catalysis, 2019, 361, 4983-4988.	2.1	33
870	Photocatalystâ€Free Visible Lightâ€Induced Synthesis of βâ€Oxo Sulfones via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Advanced Synthesis and Catalysis, 2019, 361, 5277-5282.	2.1	48
871	Geometric <i>E</i> → <i>Z</i> Isomerisation of Alkenyl Silanes by Selective Energy Transfer Catalysis: Stereodivergent Synthesis of Triarylethylenes via a Formal <i>anti</i> â€Metallometallation. Angewandte Chemie, 2019, 131, 18792-18799.	1.6	16
872	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie, 2019, 131, 18237-18242.	1.6	60
874	Merging Photocatalysis with Electrochemistry: The Dawn of a new Alliance in Organic Synthesis. Angewandte Chemie - International Edition, 2019, 58, 17508-17510.	7.2	100
875	Diastereoselective Synthesis of Polysubstituted Piperidines through Visibleâ€Lightâ€Driven Silylative Cyclization of Azaâ€1,6â€Dienes: Experimental and DFT Studies. Chemistry - A European Journal, 2019, 25, 16506-16510.	1.7	16
876	Lightâ€Induced Tetrazoleâ€Quinone 1,3â€Dipolar Cycloadditions. Chemistry - A European Journal, 2019, 25, 15050-15054.	1.7	16
877	Excited radical anions and excited anions in visible light photoredox catalysis. Physical Sciences Reviews, 2019, 4, .	0.8	4
878	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18069-18074.	7.2	95
879	Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Low ppm Catalyst Loading. Macromolecules, 2019, 52, 747-754.	2.2	65
880	Visibleâ€Lightâ€Induced Trifluoromethylation of Quinoxalinâ€2(1 <i>H</i>)â€Ones under Photocatalystâ€Free Conditions. Asian Journal of Organic Chemistry, 2019, 8, 1942-1946.	1.3	55

#	Article	IF	Citations
881	Lightâ€Mediated Formal Radical Deoxyfluorination of Tertiary Alcohols through Selective Singleâ€Electron Oxidation with TEDA ^{2+.} . Chemistry - A European Journal, 2019, 25, 14054-14058.	1.7	30
882	Visible light photocatalytic asymmetric synthesis of pyrrolo[1,2- <i>a</i>) indoles <i>via</i> intermolecular [3+2] cycloaddition. Chemical Communications, 2019, 55, 11303-11306.	2.2	22
883	Naphthalene diimides with improved solubility for visible light photoredox catalysis. Beilstein Journal of Organic Chemistry, 2019, 15, 2043-2051.	1.3	7
884	Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides. Journal of the American Chemical Society, 2019, 141, 14394-14402.	6.6	75
886	Heterocycles via Cross Dehydrogenative Coupling. , 2019, , .		9
887	Combining Organocatalysis and Photoredox Catalysis: An Asymmetric Synthesis of Chiral β―Amino α― Substituted Tryptamines. ChemCatChem, 2019, 11, 5723-5727.	1.8	8
888	Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release. Organic Letters, 2019, 21, 6930-6935.	2.4	59
889	Synthesis of Isoxazolidines by Intramolecular Hydroamination of $\langle i \rangle N \langle i \rangle$ -Alkoxyamides in the Presence of a Visible-Light Photoredox Catalyst. Bulletin of the Chemical Society of Japan, 2019, 92, 1447-1449.	2.0	6
890	Recent Advances on Visible Light Metal-Based Photocatalysts for Polymerization under Low Light Intensity. Catalysts, 2019, 9, 736.	1.6	36
891	Photoactive organic material discovery with combinatorial supramolecular assembly. Nanoscale Advances, 2019, 1, 3858-3869.	2.2	10
892	Stereospecific Assembly of Fused Imidazolidines via Tandem Ring Opening/Oxidative Amination of Aziridines with Cyclic Secondary Amines Using Photoredox Catalysis. Organic Letters, 2019, 21, 7649-7654.	2.4	18
893	Visible-light-initiated manganese-catalyzed Giese addition of unactivated alkyl iodides to electron-poor olefins. Chemical Communications, 2019, 55, 11707-11710.	2.2	37
894	Expedient access to saturated nitrogen heterocycles by photoredox cyclization of imino-tethered dihydropyridines. Chemical Science, 2019, 10, 9591-9596.	3.7	20
895	Synthetic Methodology-driven Chemical Protein Modifications. Chemistry Letters, 2019, 48, 1421-1432.	0.7	13
896	Synthesis of dibenzocycloketones by acyl radical cyclization from aromatic carboxylic acids using methylene blue as a photocatalyst. Green Chemistry, 2019, 21, 5368-5373.	4.6	47
897	Modulating Electron Transfer in an Organic Reaction via Chemical Group Modification of the Photocatalyst. Journal of Physical Chemistry Letters, 2019, 10, 5634-5639.	2.1	5
898	Probing Intramolecular Electron Transfer in Redox Tag Processes. Organic Letters, 2019, 21, 8519-8522.	2.4	21
899	Alkene Synthesis by Photocatalytic Chemoenzymatically Compatible Dehydrodecarboxylation of Carboxylic Acids and Biomass. ACS Catalysis, 2019, 9, 9485-9498.	5.5	74

#	Article	IF	CITATIONS
900	Three-component difluoroalkylamination of alkenes mediated by photoredox and iron cooperative catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8541-8545.	1.5	18
901	From <scp>d</scp> - to <scp>l</scp> -Monosaccharide Derivatives via Photodecarboxylation–Alkylation. Organic Letters, 2019, 21, 7669-7673.	2.4	43
902	Endergonic addition of $\langle i \rangle N \langle i \rangle$ -methylamines to aromatic ketones driven by photochemical offset of the entropic cost. Chemical Communications, 2019, 55, 11683-11686.	2.2	5
903	Metal-Free Activation of C–I Bonds and Perfluoroalkylation of Alkenes with Visible Light Using Phosphine Catalysts. Organic Letters, 2019, 21, 7823-7827.	2.4	70
904	Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Transactions, 2019, 48, 15338-15357.	1.6	13
905	Photoredox Decarboxylative C(sp ³)–N Coupling of α-Diazoacetates with Alkyl <i>N</i> -Hydroxyphthalimide Esters for Diversified Synthesis of Functionalized <i>N</i> -Alkyl Hydrazones. Organic Letters, 2019, 21, 8037-8043.	2.4	34
906	Cercosporin-bioinspired selective photooxidation reactions under mild conditions. Green Chemistry, 2019, 21, 6073-6081.	4.6	41
907	Visible-light-induced deoxygenative C2-sulfonylation of quinoline N-oxides with sulfinic acids for the synthesis of 2-sulfonylquinoline via radical reactions. Chinese Journal of Catalysis, 2019, 40, 1494-1498.	6.9	59
908	Photocatalyst-Free Visible-Light-Promoted C(sp ²)â€"S Coupling: AÂStrategy for the Preparation of <i>S</i> -Aryl Dithiocarbamates. Organic Letters, 2019, 21, 7938-7942.	2.4	110
909	Intermolecular Phosphite-Mediated Radical Desulfurative Alkene Alkylation Using Thiols. Organic Letters, 2019, 21, 8031-8036.	2.4	30
910	Alkyl Radical Addition to Aliphatic and Aromatic <i>N</i> -Acylhydrazones Using an Organic Photoredox Catalyst. Organic Letters, 2019, 21, 8290-8294.	2.4	30
911	Phorbiplatin, a Highly Potent Pt(IV) Antitumor Prodrug That Can Be Controllably Activated by Red Light. CheM, 2019, 5, 3151-3165.	5.8	107
912	Porous organic polymer composites as surging catalysts for visible-light-driven chemical transformations and pollutant degradation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 41, 100319.	5.6	32
913	Access to Isoxazolidines through Visible-Light-Induced Difunctionalization of Alkenes. ACS Catalysis, 2019, 9, 9599-9605.	5.5	38
914	Photocatalytic hydrogenation of nitroarenes: supporting effect of CoO _x on TiO ₂ nanoparticles. New Journal of Chemistry, 2019, 43, 748-754.	1.4	22
915	Metal-free photocatalytic thiol–ene/thiol–yne reactions. Organic and Biomolecular Chemistry, 2019, 17, 1955-1961.	1.5	40
916	Synthesis of fluoroalkylated alkynes <i>via</i> visible-light photocatalysis. Organic and Biomolecular Chemistry, 2019, 17, 1758-1762.	1.5	27
917	Visible-light-promoted oxidation/condensation of benzyl alcohols with dialkylacetamides to cinnamides. Organic and Biomolecular Chemistry, 2019, 17, 449-453.	1.5	10

#	Article	IF	CITATIONS
918	Lichtgetriebene Einâ€Elektronenâ€Transferprozesse als Funktionsprinzip in der Schwefel―und Selenâ€Multikatalyse. Angewandte Chemie, 2019, 131, 17288-17306.	1.6	13
919	Photoelectrochemical Câ^'H Alkylation of Heteroarenes with Organotrifluoroborates. Angewandte Chemie, 2019, 131, 4640-4643.	1.6	63
920	Lightâ€Driven Singleâ€Electron Transfer Processes as an Enabling Principle in Sulfur and Selenium Multicatalysis. Angewandte Chemie - International Edition, 2019, 58, 17130-17147.	7.2	40
921	Visible-light mediated carbamoyl radical addition to heteroarenes. Chemical Communications, 2019, 55, 466-469.	2.2	45
922	Biaryl synthesis with arenediazonium salts: cross-coupling, CH-arylation and annulation reactions. Chemical Society Reviews, 2019, 48, 1150-1193.	18.7	156
923	Deciphering the intersystem crossing in near-infrared BODIPY photosensitizers for highly efficient photodynamic therapy. Chemical Science, 2019, 10, 3096-3102.	3.7	113
924	Single-molecule photoredox catalysis. Chemical Science, 2019, 10, 681-687.	3.7	40
925	Visible light-induced direct α C–H functionalization of alcohols. Nature Communications, 2019, 10, 467.	5.8	134
926	Perspective: How can ultrafast laser spectroscopy inform the design of new organic photoredox catalysts for chemical and materials synthesis?. Structural Dynamics, 2019, 6, 010901.	0.9	18
927	Enantioselective Radical Hydroacylation of Enals with $\hat{l}\pm$ -Ketoacids Enabled by Photoredox/Amine Cocatalysis. Organic Letters, 2019, 21, 913-916.	2.4	74
928	Visibleâ€Lightâ€Mediated Stereoselective 1,2â€Iodoalkylation of Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 1283-1288.	2.1	3
929	Intermolecular, redox-neutral azidoarylation of alkenes <i>via</i> photoredox catalysis. Chemical Communications, 2019, 55, 2336-2339.	2.2	56
930	Regiodivergent Hydroaminoalkylation of Alkynes and Allenes by a Combined Rhodium and Photoredox Catalytic System. Angewandte Chemie, 2019, 131, 3430-3435.	1.6	19
931	Visible Light-induced Palladium-catalysis in Organic Synthesis. Chemistry Letters, 2019, 48, 181-191.	0.7	67
932	Selective Photocatalysis Approach for Introducing ArS Units into BODIPYs through Thiyl Radicals. Organic Letters, 2019, 21, 733-736.	2.4	36
933	Migratory Shift in Oxidative Cyclodehydrogenation Reaction of Tetraphenylethylenes Containing Electronâ€Rich THDTAP Moiety. Chemistry - an Asian Journal, 2019, 14, 1860-1869.	1.7	7
934	Cationic and Betaine-Type Boronated Acridinium Dyes: Synthesis, Characterization, and Photocatalytic Activity. ACS Omega, 2019, 4, 2482-2492.	1.6	15
935	Singleâ€Electronâ€Transferâ€Initiated Sequential Direct Arylation Reaction of Pyrrole with Aryl Diazonium Salts. Asian Journal of Organic Chemistry, 2019, 8, 324-327.	1.3	8

#	Article	IF	CITATIONS
936	Utilising excited state organic anions for photoredox catalysis: activation of (hetero)aryl chlorides by visible light-absorbing 9-anthrolate anions. Faraday Discussions, 2019, 215, 364-378.	1.6	43
937	Hydrogen and Sulfonyl Radical Generation for the Hydrogenation and Arylsulfonylation of Alkenes Driven by Photochemical Activity of Hydrogen Bond Donorâ€Acceptor Complexes. Advanced Synthesis and Catalysis, 2019, 361, 1606-1616.	2.1	18
938	Katalyse mit durch sichtbares Licht angeregten Palladiumkomplexen. Angewandte Chemie, 2019, 131, 11710-11722.	1.6	32
939	Experimental and computational investigation of oxidative quenching governed aqueous organocatalyzed atom transfer radical polymerization. Chemical Engineering Journal, 2019, 362, 721-730.	6.6	24
940	Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 2019, 565, 343-346.	13.7	447
941	Cooperative iodine and photoredox catalysis for direct oxidative lactonization of carboxylic acids. Chemical Communications, 2019, 55, 933-936.	2.2	32
942	Photo-organocatalytic synthesis of acetals from aldehydes. Green Chemistry, 2019, 21, 669-674.	4.6	56
943	Photogenerated acyl/alkoxycarbonyl/carbamoyl radicals for sustainable synthesis. Green Chemistry, 2019, 21, 748-764.	4.6	142
944	Self-healing and tough GO-supported hydrogels prepared (i>via (li>surface-initiated ATRP and photocatalytic modification. New Journal of Chemistry, 2019, 43, 3099-3110.	1.4	17
945	Intermolecular alkene difunctionalizations for the synthesis of saturated heterocycles. Organic and Biomolecular Chemistry, 2019, 17, 1643-1654.	1.5	43
946	Photoinduced decarboxylative azidation of cyclic amino acids. Organic and Biomolecular Chemistry, 2019, 17, 1839-1842.	1.5	33
947	Metal-free cross-coupling of π-conjugated triazenes with unactivated arenes <i>via</i> photoactivation. Organic Chemistry Frontiers, 2019, 6, 152-161.	2.3	22
948	Enabling synthesis in fragment-based drug discovery by reactivity mapping: photoredox-mediated cross-dehydrogenative heteroarylation of cyclic amines. Chemical Science, 2019, 10, 2264-2271.	3.7	79
949	Metalâ€Free and Visibleâ€Lightâ€Promoted Câ€3 Thiocyanation of 2â€Arylquinolinâ€4â€ones. European Journal of Organic Chemistry, 2019, 2019, 4334-4340.	of 1.2	20
950	Reductive C–C Coupling by Desulfurizing Gold-Catalyzed Photoreactions. ACS Catalysis, 2019, 9, 6118-6123.	5. 5	50
951	Site-Selective Functionalization of Pyridinium Derivatives via Visible-Light-Driven Photocatalysis with Quinolinone. Journal of the American Chemical Society, 2019, 141, 9239-9248.	6.6	98
952	Visible-light mediated sulfonylation of thiols <i>via</i> insertion of sulfur dioxide. Organic and Biomolecular Chemistry, 2019, 17, 5897-5901.	1.5	40
953	Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem, 2019, 6, 4067-4092.	1.7	143

#	Article	IF	Citations
954	Visible-Light-Mediated Organocatalyzed Thiol–Ene Reaction Initiated by a Proton-Coupled Electron Transfer. Journal of Organic Chemistry, 2019, 84, 8337-8343.	1.7	26
955	Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis. Molecules, 2019, 24, 2122.	1.7	82
956	Visible light promoted difunctionalization reactions of alkynes. Chinese Journal of Catalysis, 2019, 40, 1003-1019.	6.9	65
957	Visible-Light-Driven Synthesis of Arylstannanes from Arylazo Sulfones. Organic Letters, 2019, 21, 5187-5191.	2.4	43
958	Organic Photoredox-Catalyzed Synthesis of δ-Fluoromethylated Alcohols and Amines via 1,5-Hydrogen-Transfer Radical Relay. Organic Letters, 2019, 21, 5116-5120.	2.4	30
959	Intramolecular Homolytic Substitution Enabled by Photoredox Catalysis: Sulfur, Phosphorus, and Silicon Heterocycle Synthesis from Aryl Halides. Organic Letters, 2019, 21, 5295-5300.	2.4	34
960	Photoredoxâ€Catalyzed Tandem Demethylation of <i>N</i> , <i>N</i> , SêDimethyl Anilines Followed by Amidation with αâ€Keto or Alkynyl Carboxylic Acids. Advanced Synthesis and Catalysis, 2019, 361, 4048-4054.	2.1	11
961	Visible-Light-Promoted, Catalyst-Free Gomberg–Bachmann Reaction: Synthesis of Biaryls. Journal of Organic Chemistry, 2019, 84, 9297-9306.	1.7	32
962	Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science, 2019, 364, 1166-1169.	6.0	256
963	1,4-Phenylene-bis-((1-methyl-1H-pyrazol-5-yl)borinic 8-oxyquinolinate) as a photoredox catalyst in the atom transfer radical addition of iodoperfluoroalkanes to alkenyl groups bearing organoboron compounds. Tetrahedron Letters, 2019, 60, 1918-1923.	0.7	5
964	Controllable chemoselectivity in the coupling of bromoalkynes with alcohols under visible-light irradiation without additives: synthesis of propargyl alcohols and \hat{l}_{\pm} -ketoesters. Chemical Communications, 2019, 55, 8438-8441.	2.2	16
965	Exploring the ring-opening reactions of imidazo[1,5- <i>a</i>)quinolines for the synthesis of imides under photochemical conditions. Organic and Biomolecular Chemistry, 2019, 17, 6570-6573.	1.5	13
966	Photoinduced Divergent Alkylation/Acylation of Pyridine <i>N</i> Oxides with Alkynes under Anaerobic and Aerobic Conditions. Organic Letters, 2019, 21, 5321-5325.	2.4	62
967	Photo-auxiliary approach to control excited state reactivity: Cross [2+2]-photocycloaddition of oxazolidinone based hydrazides. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111883.	2.0	3
968	Electrochemicalâ€∤Photoredox Aspects of Transition Metalâ€Catalyzed Directed Câ^'H Bond Activation. ChemCatChem, 2019, 11, 5160-5187.	1.8	47
969	Electron Accumulation Induces Efficiency Bottleneck for Hydrogen Production in Carbon Nitride Photocatalysts. Journal of the American Chemical Society, 2019, 141, 11219-11229.	6.6	177
970	Design and application of diimine-based copper(i) complexes in photoredox catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8343-8347.	1.5	15
971	Photocatalysis in a multi-capillary assembly microreactor: toward up-scaling the synthesis of 2H-indazoles as drug scaffolds. Reaction Chemistry and Engineering, 2019, 4, 1466-1471.	1.9	23

#	Article	IF	CITATIONS
972	Visible-light mediated trifluoromethylation of p-quinone methides by 1,6-conjugate addition using pyrylium salt as organic photocatalyst. Tetrahedron, 2019, 75, 4471-4478.	1.0	19
973	Visible-Light-Promoted Manganese-Catalyzed Atom Transfer Radical Cyclization of Unactivated Alkyl lodides. Organic Letters, 2019, 21, 5586-5590.	2.4	37
974	Photoinduced Cascade Reaction of Tertiary Amines with Sulfonyl Azides: Synthesis of Amidine Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 3656-3660.	2.1	23
975	Generation of N-Centered Radicals via a Photocatalytic Energy Transfer: Remote Double Functionalization of Arenes Facilitated by Singlet Oxygen. Journal of the American Chemical Society, 2019, 141, 10538-10545.	6.6	75
976	Metal-free defluorinative arylation of trifluoromethyl alkenes <i>via</i> photoredox catalysis. Chemical Communications, 2019, 55, 7599-7602.	2.2	83
977	Enantioselective photoredox dehalogenative protonation. Chemical Science, 2019, 10, 6629-6634.	3.7	53
978	Involving Single-Atom Silver(0) in Selective Dehalogenation by AgF under Visible-Light Irradiation. ACS Catalysis, 2019, 9, 6335-6341.	5.5	45
979	Cobaltâ€Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angewandte Chemie, 2019, 131, 9297-9301.	1.6	6
980	Triphenylphosphine and sodium iodide: a new catalyst combination to rival precious metal complexes in visible light photoredox catalysis. Science China Chemistry, 2019, 62, 1083-1084.	4.2	15
981	Ring-opening C(sp ³)–C coupling of cyclobutanone oxime esters for the preparation of cyanoalkyl containing heterocycles enabled by photocatalysis. Organic Chemistry Frontiers, 2019, 6, 2765-2770.	2.3	58
982	Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 114-115, 86-134.	3.9	52
983	Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. Organic Letters, 2019, 21, 4153-4158.	2.4	71
985	Metal-Free Direct C–H Cyanoalkylation of Quinoxalin-2(1H)-Ones by Organic Photoredox Catalysis. Journal of Organic Chemistry, 2019, 84, 7786-7795.	1.7	58
986	Amplification of Trichloroisocyanuric Acid (TCCA) Reactivity for Chlorination of Arenes and Heteroarenes via Catalytic Organic Dye Activation. Organic Letters, 2019, 21, 4229-4233.	2.4	33
987	Perylenequinonoid-Catalyzed $[4+1]$ and $[4+2]$ Annulations of Azoalkenes: Photocatalytic Access to 1,2,3-Thiadiazole/1,4,5,6-Tetrahydropyridazine Derivatives. Journal of Organic Chemistry, 2019, 84, 7711-7721.	1.7	40
988	Visible Lightâ€Mediated Conversion of Alcohols to Bromides by a Benzothiadiazoleâ€Containing Organic Photocatalyst. Advanced Synthesis and Catalysis, 2019, 361, 3852-3859.	2.1	15
989	Enantioselective reduction of azaarene-based ketones <i>via</i> visible light-driven photoredox asymmetric catalysis. Chemical Communications, 2019, 55, 7534-7537.	2.2	66
990	Visibleâ€Lightâ€Photosensitized Aryl and Alkyl Decarboxylative Functionalization Reactions. Angewandte Chemie - International Edition, 2019, 58, 10514-10520.	7.2	163

#	Article	IF	CITATIONS
991	Selective, Intermolecular Alkylarylation of Alkenes via Photoredox/Nickel Dual Catalysis. Organic Letters, 2019, 21, 4771-4776.	2.4	103
992	Visibleâ€Lightâ€Induced Ringâ€Opening of Hydrogenolysis Spirocyclopropyl Oxindoles Through Photoredox Catalysis. European Journal of Organic Chemistry, 2019, 2019, 4085-4088.	1.2	7
993	Electron Donor–Acceptor Complex Enabled Decarboxylative Sulfonylation of Cinnamic Acids under Visible-Light Irradiation. Journal of Organic Chemistry, 2019, 84, 8691-8701.	1.7	52
994	Visibleâ€Lightâ€Photosensitized Aryl and Alkyl Decarboxylative Functionalization Reactions. Angewandte Chemie, 2019, 131, 10624-10630.	1.6	42
995	Photoredoxâ€Catalyzed Oxydifluoroalkylation of Styrenes for Access to Difluorinated Ketones with DMSO as an Oxidant. Advanced Synthesis and Catalysis, 2019, 361, 3723-3728.	2.1	34
996	Visible Lightâ€Induced Regioselective Decarboxylative Alkylation of the C(<i>sp</i> ²)â°'H Bonds of Nonâ€Aromatic Heterocycles. Advanced Synthesis and Catalysis, 2019, 361, 4126-4132.	2.1	72
997	Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angewandte Chemie - International Edition, 2019, 58, 11449-11453.	7.2	35
998	The Emergence of Universal Chromatographic Methods in the Research and Development of New Drug Substances. Accounts of Chemical Research, 2019, 52, 1990-2002.	7.6	50
999	Visible-light induced decarboxylative alkylation of quinoxalin- $2(1 < i > H < /i >)$ -ones at the C3-position. Organic and Biomolecular Chemistry, 2019, 17, 6654-6661.	1.5	57
1000	Visible-light-induced condensation cyclization to synthesize benzimidazoles using fluorescein as a photocatalyst. Green Chemistry, 2019, 21, 3602-3605.	4.6	81
1001	Regioselective C3â€"H Trifluoromethylation of 2 <i>H</i> li>-Indazole under Transition-Metal-Free Photoredox Catalysis. Journal of Organic Chemistry, 2019, 84, 7796-7803.	1.7	62
1002	[(DPEPhos)(bcp)Cu]PF ₆ : A General and Broadly Applicable Copper-Based Photoredox Catalyst. Journal of Visualized Experiments, 2019, , .	0.2	0
1003	A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chemical Science, 2019, 10, 6404-6422.	3.7	255
1004	Visible-Light-Induced Radical Acylation of Imines with α-Ketoacids Enabled by Electron-Donor–Acceptor Complexes. Organic Letters, 2019, 21, 3711-3715.	2.4	46
1005	Visible-Light-Photocatalyzed Reductions of N-Heterocyclic Nitroaryls to Anilines Utilizing Ascorbic Acid Reductant. Organic Letters, 2019, 21, 3764-3768.	2.4	25
1006	Visible light induced aqueous RAFT polymerization using a supramolecular perylene diimide/cucurbit[7]uril complex. Polymer Chemistry, 2019, 10, 2801-2811.	1.9	25
1007	Siteâ€Selective, Remote sp ³ Câ^'H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis. Chemistry - A European Journal, 2019, 25, 9001-9005.	1.7	78
1008	Visible-Light-Mediated Ir(III)-Catalyzed Concomitant C3 Oxidation and C2 Amination of Indoles. Organic Letters, 2019, 21, 3543-3547.	2.4	22

#	Article	IF	CITATIONS
1009	Synergistic combination of visible-light photo-catalytic electron and energy transfer facilitating multicomponent synthesis of \hat{l}^2 -functionalized $\hat{l}_{\pm},\hat{l}_{\pm}$ -diarylethylamines. Chemical Communications, 2019, 55, 6405-6408.	2.2	19
1010	Photocatalytic Oxidative Iodination of Electronâ€Rich Arenes. Advanced Synthesis and Catalysis, 2019, 361, 3998-4004.	2.1	18
1011	Sichtbares Licht ermöglicht Rutheniumâ€katalysierte <i>meta</i> å€Câ€Hâ€Alkylierung bei Raumtemperatur. Angewandte Chemie, 2019, 131, 9925-9930.	1.6	39
1012	Visibleâ€Lightâ€Enabled Rutheniumâ€Catalyzed <i>meta</i> à€Câ°H Alkylation at Room Temperature. Angewand Chemie - International Edition, 2019, 58, 9820-9825.	te 7.2	134
1013	Activation Relay on Rhodium-Catalyzed C–H Aminomethylation in Cooperation with Photoredox Catalysis. Organic Letters, 2019, 21, 4077-4081.	2.4	39
1014	Visible light-mediated organophotocatalyzed C–H bond functionalization reactions. Organic and Biomolecular Chemistry, 2019, 17, 5475-5489.	1.5	61
1015	Visible-Light-Driven, Photoredox-Catalyzed Cascade of <i>ortho-</i> Hydroxycinnamic Esters To Access 3-Fluoroalkylated Coumarins. Journal of Organic Chemistry, 2019, 84, 7480-7487.	1.7	31
1016	The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. Organic Process Research and Development, 2019, 23, 1213-1242.	1.3	279
1017	An Olefinic 1,2â€Borylâ€Migration Enabled by Radical Addition: Construction of <i>gem</i> å€Bis(boryl)alkanes. Angewandte Chemie, 2019, 131, 9548-9552.	1.6	24
1018	Effects of Naphthyl Connectivity on the Photophysics of Compact Organic Charge-Transfer Photoredox Catalysts. Journal of Physical Chemistry A, 2019, 123, 4727-4736.	1.1	41
1019	Visible-light-induced radical cyclization of $\langle i \rangle N \langle i \rangle$ -allylbenzamides with CF $\langle sub \rangle SO\langle sub \rangle 2\langle sub \rangle Na$ to trifluoromethylated dihydroisoquinolinones in water at room temperature. Green Chemistry, 2019, 21, 3362-3369.	4.6	46
1020	Photoredox/Cobalt-Catalyzed Phosphinyloxy Radical Addition/Cyclization Cascade: Synthesis of Phosphaisocoumarins. Journal of Organic Chemistry, 2019, 84, 6798-6806.	1.7	13
1021	Visible-Light-Driven Chlorotrifluoromethylative and Chlorotrichloromethylative Cyclizations of Enynes. Journal of Organic Chemistry, 2019, 84, 7509-7517.	1.7	32
1022	Visible-Light-Triggered Cyanoalkylation of <i>para</i> -Quinone Methides and Its Application to the Synthesis of GPR40 Agonists. Organic Letters, 2019, 21, 4137-4142.	2.4	43
1023	[3+2]-Cycloaddition of $2 < i > H < / i > -Azirines$ with Nitrosoarenes: Visible-Light-Promoted Synthesis of 2,5-Dihydro-1,2,4-oxadiazoles. Organic Letters, 2019, 21, 4234-4238.	2.4	64
1024	Visible light driven, nickel-catalyzed aryl esterification using a triplet photosensitiser thioxanthen-9-one. Organic Chemistry Frontiers, 2019, 6, 2353-2359.	2.3	45
1025	Organic photoredox catalytic decarboxylative cross-coupling of <i>gem</i> difluoroalkenes with unactivated carboxylic acids. Organic Chemistry Frontiers, 2019, 6, 2365-2370.	2.3	61
1026	Pulsatile illumination for photobiology and optogenetics. Methods in Enzymology, 2019, 624, 227-248.	0.4	6

#	Article	IF	CITATIONS
1027	Câ€Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angewandte Chemie, 2019, 131, 8266-8270.	1.6	20
1029	Mesityl or Imide Acridinium Photocatalysts: Accessible Versus Inaccessible Charge†ransfer States in Photoredox Catalysis. ChemPhotoChem, 2019, 3, 609-612.	1.5	8
1030	Potassium Alkylpentafluorosilicates, Primary Alkyl Radical Precursors in the C-1 Alkylation of Tetrahydroisoquinolines. Organic Letters, 2019, 21, 3981-3985.	2.4	15
1031	Visible-Light Induced Radical Perfluoroalkylation/Cyclization Strategy To Access 2-Perfluoroalkylbenzothiazoles/Benzoselenazoles by EDA Complex. Organic Letters, 2019, 21, 4019-4024.	2.4	121
1032	Synthesis of Tri―and Difluoromethoxylated Compounds by Visible‣ight Photoredox Catalysis. Angewandte Chemie, 2019, 131, 11289-11299.	1.6	27
1033	Organopolymer with dual chromophores and fast charge-transfer properties for sustainable photocatalysis. Nature Communications, 2019, 10, 1837.	5.8	22
1034	Synthetic applications of light, electricity, mechanical force and flow. Nature Reviews Chemistry, 2019, 3, 290-304.	13.8	51
1035	Dual nickel- and photoredox-catalyzed reductive cross-coupling of aryl vinyl halides and unactivated tertiary alkyl bromides. Chemical Communications, 2019, 55, 5918-5921.	2.2	40
1036	βâ€Selective Aroylation of Activated Alkenes by Photoredox Catalysis. Angewandte Chemie, 2019, 131, 7396-7401.	1.6	7
1037	Cobaltâ€Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 9199-9203.	7.2	59
1038	8-Mercaptoquinoline as a Ligand for Enhancing the Photocatalytic Activity of Pt(II) Coordination Complexes: Reactions and Mechanistic Insights. Journal of Organic Chemistry, 2019, 84, 6437-6447.	1.7	26
1039	Organic photoredox catalysis enabled cross-coupling of arenediazonium and sulfinate salts: synthesis of (un)symmetrical diaryl/alkyl aryl sulfones. Organic and Biomolecular Chemistry, 2019, 17, 4761-4766.	1.5	38
1040	Photochemical Câ€"H bond coupling for (hetero)aryl C(sp ²)â€"C(sp ³) bond construction. Organic and Biomolecular Chemistry, 2019, 17, 4951-4963.	1.5	37
1041	Recent Advances on Metal-Free, Visible-Light- Induced Catalysis for Assembling Nitrogen- and Oxygen-Based Heterocyclic Scaffolds. Molecules, 2019, 24, 1533.	1.7	36
1042	Visible-Light Excitation of Quinolinone-Containing Substrates Enables Divergent Radical Cyclizations. Organic Letters, 2019, 21, 3417-3421.	2.4	31
1043	Visible-Light-Controlled Ruthenium-Catalyzed Olefin Metathesis. Journal of the American Chemical Society, 2019, 141, 6791-6796.	6.6	74
1044	Computer-Guided Discovery of a pH-Responsive Organic Photocatalyst and Application for pH and Light Dual-Gated Polymerization. Journal of the American Chemical Society, 2019, 141, 8207-8220.	6.6	89
1045	An Olefinic 1,2â€Borylâ€Migration Enabled by Radical Addition: Construction of <i>gem</i> h; a€Bis(boryl)alkanes. Angewandte Chemie - International Edition, 2019, 58, 9448-9452.	7.2	76

#	ARTICLE	IF	CITATIONS
1046	Heteroarene Phosphinylalkylation via a Catalytic, Polarity-Reversing Radical Cascade. ACS Catalysis, 2019, 9, 5330-5335.	5 . 5	73
1047	Copper's rapid ascent in visible-light photoredox catalysis. Science, 2019, 364, .	6.0	435
1048	Semiâ€heterogene duale Nickelâ€∳Photokatalyse mit Kohlenstoffnitriden: Veresterung von Carbonsären mit Arylhalogeniden. Angewandte Chemie, 2019, 131, 9676-9681.	1.6	20
1049	Semiâ€heterogeneous Dual Nickel/Photocatalysis using Carbon Nitrides: Esterification of Carboxylic Acids with Aryl Halides. Angewandte Chemie - International Edition, 2019, 58, 9575-9580.	7.2	108
1050	Synthesis of Alkyl Halides from Aldehydes via Deformylative Halogenation. Organic Letters, 2019, 21, 3848-3854.	2.4	26
1051	Allylation of aldehydes by dual photoredox and nickel catalysis. Chemical Communications, 2019, 55, 6838-6841.	2.2	40
1052	Impact of fluorination on the photophysics of the flavin chromophore: a quantum chemical perspective. Physical Chemistry Chemical Physics, 2019, 21, 9912-9923.	1.3	16
1053	Photo-promoted transition metal-free organic transformations in the absence of conventional photo-sensitizers. Chinese Chemical Letters, 2019, 30, 1488-1494.	4.8	9
1054	Organocatalytic Transformation of Aldehydes to Thioesters with Visible Light. Chemistry - A European Journal, 2019, 25, 8225-8228.	1.7	29
1055	Radical Cation Dielsâ€Alder Reactions of Nonâ€Conjugated Alkenes as Dienophiles by Electrocatalysis. Chinese Journal of Chemistry, 2019, 37, 561-564.	2.6	9
1056	Photocatalytic carbanion generation $\hat{a}\in$ benzylation of aliphatic aldehydes to secondary alcohols. Chemical Science, 2019, 10, 5162-5166.	3.7	84
1057	βâ€Selective Aroylation of Activated Alkenes by Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 7318-7323.	7.2	47
1058	Câ€Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angewandte Chemie - International Edition, 2019, 58, 8182-8186.	7.2	104
1059	Visible Lightâ€Induced Sulfonylation/Arylation of Styrenes in a Double Radical Threeâ€Component Photoredox Reaction. Chemistry - A European Journal, 2019, 25, 8965-8969.	1.7	46
1060	Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chemical Communications, 2019, 55, 5408-5419.	2.2	423
1061	Synthesis of indolo[2,1- <i>a</i>]isoquinoline derivatives <i>via</i> visible-light-induced radical cascade cyclization reactions. Chemical Communications, 2019, 55, 5922-5925.	2.2	74
1062	Visible lightâ€induced metalâ€free atom transfer radical polymerization: An efficient approach to polyacrylonitrile. Journal of Polymer Science Part A, 2019, 57, 1265-1269.	2.5	12
1063	Photocatalytic Atom Transfer Radical Addition to Olefins Utilizing Novel Photocatalysts. Molecules, 2019, 24, 1644.	1.7	23

#	Article	IF	CITATIONS
1064	Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 6385-6391.	6.6	88
1065	Formylation of Fluoroalkyl Imines through Visible-Light-Enabled H-Atom Transfer Catalysis: Access to Fluorinated α-Amino Aldehydes. Organic Letters, 2019, 21, 2019-2024.	2.4	34
1066	Recent advances in photocatalytic manipulations of Rose Bengal in organic synthesis. Organic and Biomolecular Chemistry, 2019, 17, 4384-4405.	1.5	108
1067	Decarboxylative Intramolecular Arene Alkylation Using <i>N</i> -(Acyloxy)phthalimides, an Organic Photocatalyst, and Visible Light. Journal of Organic Chemistry, 2019, 84, 8360-8379.	1.7	49
1068	Synthesis and Characterization of Acridinium Dyes for Photoredox Catalysis. Synlett, 2019, 30, 827-832.	1.0	63
1069	Neue Entwicklungen auf dem Gebiet der Minisciâ€Reaktion. Angewandte Chemie, 2019, 131, 13802-13837.	1.6	73
1070	Recent Advances in Minisciâ€Type Reactions. Angewandte Chemie - International Edition, 2019, 58, 13666-13699.	7.2	468
1071	Reductive Bromodifluoromethylation of Nitrones Promoted by Visible Light. European Journal of Organic Chemistry, 2019, 2019, 4119-4122.	1.2	12
1072	Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C H Activation. Trends in Chemistry, 2019, 1, 63-76.	4.4	174
1073	Acyl Radical Smiles Rearrangement To Construct Hydroxybenzophenones by Photoredox Catalysis. Organic Letters, 2019, 21, 2077-2080.	2.4	34
1074	Visible-light-induced cascade radical ring-closure and pyridylation for the synthesis of tetrahydrofurans. Green Chemistry, 2019, 21, 2082-2087.	4.6	57
1075	Visible-light promoted aerobic difunctionalization of alkenes with sulfonyl hydrazides for the synthesis of l²-keto/hydroxyl sulfones. Organic and Biomolecular Chemistry, 2019, 17, 3507-3513.	1.5	53
1076	Photoinitiated carbonyl-metathesis: deoxygenative reductive olefination of aromatic aldehydes <i>via</i> photoredox catalysis. Chemical Science, 2019, 10, 4580-4587.	3.7	52
1077	Electron diffraction tomography and X-ray powder diffraction on photoredox catalyst PDI. CrystEngComm, 2019, 21, 2571-2575.	1.3	0
1078	Illuminating Photoredox Catalysis. Trends in Chemistry, 2019, 1, 111-125.	4.4	333
1079	A strategy to improve the performance of cerium(<scp>iii</scp>) photocatalysts. Chemical Communications, 2019, 55, 4067-4070.	2.2	38
1080	Metalâ€Free Synthesis of Thiosulfonates via Insertion of Sulfur Dioxide. Advanced Synthesis and Catalysis, 2019, 361, 1808-1814.	2.1	67
1081	<i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides with Alkynes by Photocatalysis: Pyridine <i>N</i> â€Oxide as a Redox Auxiliary. Chemistry - A European Journal, 2019, 25, 6638-6644.	1.7	32

#	Article	IF	CITATIONS
1082	A simple ketone as an efficient metal-free catalyst for visible-light-mediated Diels–Alder and aza-Diels–Alder reactions. Green Chemistry, 2019, 21, 1916-1920.	4.6	50
1083	Photocatalytic reaction of 4-cyanopyridine with tertiary amines. Chemistry of Heterocyclic Compounds, 2019, 55, 90-92.	0.6	4
1084	Weinreb Amides as Directing Groups for Transition Metal-Catalyzed C-H Functionalizations. Molecules, 2019, 24, 830.	1.7	42
1085	Excited state tracking during the relaxation of coordination compounds. Journal of Computational Chemistry, 2019, 40, 1420-1428.	1.5	12
1086	Photoinduced C(sp ³)â^'N Bond Cleavage Leading to the Stereoselective Syntheses of Alkenes. Chemistry - A European Journal, 2019, 25, 5433-5439.	1.7	63
1087	Decarboxylative hydrazination of unactivated carboxylic acids by cerium photocatalysis. Chemical Communications, 2019, 55, 3489-3492.	2.2	103
1088	Facile Synthesis of BiVO 4 for Visibleâ€Lightâ€Induced Câ^'C Bond Cleavage of Alkenes to Generate Carbonyls. ChemSusChem, 2019, 12, 3018-3022.	3.6	27
1089	Hydrofunctionalization of Olefins to Higher Aliphatic Alcohols via Visible-Light Photocatalytic Coupling. Catalysis Letters, 2019, 149, 1651-1659.	1.4	3
1090	Radical Cation Diels–Alder Reactions by TiO ₂ Photocatalysis. Organic Letters, 2019, 21, 2246-2250.	2.4	38
1091	Mechanistic Investigations into the Cation Radical Newman–Kwart Rearrangement. ACS Catalysis, 2019, 9, 3926-3935.	5.5	27
1092	Visible-light-induced metal and reagent-free oxidative coupling of ⟨i>sp⟨/i>⟨sup>2⟨/sup> Câ€"H bonds with organo-dichalcogenides: synthesis of 3-organochalcogenyl indoles. Green Chemistry, 2019, 21, 2670-2676.	4.6	97
1093	A Holistic Approach to Model the Kinetics of Photocatalytic Reactions. Frontiers in Chemistry, 2019, 7, 128.	1.8	60
1094	Photochemical, Metalâ€Free Sigmatropic Rearrangement Reactions of Sulfur Ylides. Chemistry - A European Journal, 2019, 25, 6703-6706.	1.7	64
1095	A BODIPY-functionalized Pd ^{II} photoredox catalyst for Sonogashira C–C cross-coupling reactions. Chemical Communications, 2019, 55, 4973-4976.	2.2	28
1096	Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science, 2019, 363, 1429-1434.	6.0	520
1097	Câ€Hâ€Funktionalisierung von Standardpolymeren. Angewandte Chemie, 2019, 131, 8746-8761.	1.6	32
1098	Substitution Patternâ€Selective Olefin Crossâ€Couplings. ChemElectroChem, 2019, 6, 4165-4168.	1.7	10
1099	Photoredox Radical/Polar Crossover Enables Construction of Saturated Nitrogen Heterocycles. Organic Letters, 2019, 21, 2317-2321.	2.4	51

#	Article	IF	CITATIONS
1100	Enantiocomplementary decarboxylative hydroxylation combining photocatalysis and whole-cell biocatalysis in a one-pot cascade process. Green Chemistry, 2019, 21, 1907-1911.	4.6	31
1101	3-Amino-fluorene-2,4-dicarbonitriles (AFDCs) as Photocatalysts for the Decarboxylative Arylation of α-Amino Acids and α-Oxy Acids with Arylnitriles. Organic Letters, 2019, 21, 2130-2133.	2.4	36
1102	Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. ChemBioChem, 2019, 20, 1871-1897.	1.3	79
1103	Neue Rollen für photoangeregtes Eosinâ€Y in photochemischen Reaktionen. Angewandte Chemie, 2019, 131, 384-386.	1.6	13
1104	Photochemistry of Carbonyl Compounds: Application in Metalâ€Free Reactions. ChemPhotoChem, 2019, 3, 506-520.	1.5	59
1105	2 Photocatalysis: The Principles. , 2019, , .		0
1106	16 Photocatalytic Cycloadditions., 2019,,.		1
1107	Antiâ€Markovnikov Radical Hydro―and Deuteroamidation of Unactivated Alkenes. Chemistry - A European Journal, 2019, 25, 7105-7109.	1.7	30
1108	Metalâ€Free Regioselective Carbonylation of Imidazo[1,2―a]pyridines via Photoredox Catalysis using Nitrones. Asian Journal of Organic Chemistry, 2019, 8, 867-872.	1.3	3
1109	Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catalysis, 2019, 9, 4115-4144.	5. 5	219
1110	Perylenequinonoid-catalyzed photoredox activation for the direct arylation of (het)arenes with sunlight. Organic and Biomolecular Chemistry, 2019, 17, 4364-4369.	1.5	40
1111	Nickel(II) Tetraphenylporphyrin as an Efficient Photocatalyst Featuring Visible Light Promoted Dual Redox Activities. Advanced Synthesis and Catalysis, 2019, 361, 3200-3209.	2.1	56
1112	Visible-Light-Triggered Monofluoromethylation of Alkenes by Strongly Reducing 1,4-Bis(diphenylamino)naphthalene Photoredox Catalysis. ACS Catalysis, 2019, 9, 4382-4387.	5 . 5	73
1113	Advances and Innovations in Photocatalysis. Environmental Chemistry for A Sustainable World, 2019, , 155-183.	0.3	0
1114	Hematite nanostructures: An old material for a new story. Simultaneous photoelectrochemical oxidation of benzylamine and hydrogen production through Ti doping. Nano Energy, 2019, 61, 36-46.	8.2	46
1115	Practical heterogeneous photoredox/nickel dual catalysis for C–N and C–O coupling reactions. Chemical Communications, 2019, 55, 4853-4856.	2.2	93
1116	Photoswitchable polymerization catalysis: state of the art, challenges, and perspectives. Chemical Communications, 2019, 55, 4290-4298.	2.2	50
1117	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90

#	Article	IF	CITATIONS
1119	Rapid Assessment of the Reactionâ€Conditionâ€Based Sensitivity of Chemical Transformations. Angewandte Chemie - International Edition, 2019, 58, 8572-8576.	7. 2	239
1120	Metalâ€Free Photocatalysts for Câ^'H Bond Oxygenation Reactions with Oxygen as the Oxidant. ChemSusChem, 2019, 12, 2898-2910.	3.6	95
1121	Visible-Light-Initiated Manganese-Catalyzed <i>E</i> -Selective Hydrosilylation and Hydrogermylation of Alkynes. Organic Letters, 2019, 21, 2750-2754.	2.4	103
1122	Integrated continuous flow/batch protocol for the photoreduction of <i>ortho</i> hearthyl phenyl ketones using water as the hydrogen source. Reaction Chemistry and Engineering, 2019, 4, 812-817.	1.9	11
1123	Synthesis of Tri―and Difluoromethoxylated Compounds by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 11171-11181.	7.2	105
1124	Visibleâ€Lightâ€Induced Hydroxysulfurization and Alkoxysulfurization of Styrenes in the Absence of Photocatalyst: Synthesis of βâ€Hydroxysulfides and βâ€Alkoxysulfides. Advanced Synthesis and Catalysis, 2019, 361, 3217-3222.	2.1	32
1125	Photoinduced Nonstabilized Azomethine Ylide Formation for the Preparation of Fluorine Containing Pyrrolidines. Journal of Organic Chemistry, 2019, 84, 5877-5885.	1.7	20
1126	Visible-Light-Mediated Synthesis of 1,2,4-Dithiazolidines from β-Ketothioamides through a Hydrogen-Atom-Transfer Photocatalytic Approach of Eosin Y. Journal of Organic Chemistry, 2019, 84, 5404-5412.	1.7	30
1127	Photocatalysed eosin Y mediated C(sp3)-H alkylation of amine substrates via direct HAT. Tetrahedron Letters, 2019, 60, 1333-1336.	0.7	39
1128	Evaluierung der Reaktionsbedingungsâ€basierten Sensitivitächemischer Transformationen. Angewandte Chemie, 2019, 131, 8660-8664.	1.6	83
1129	Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie - International Edition, 2019, 58, 5697-5701.	7.2	250
1130	Merging Visibleâ€Light Catalysis for the Direct Lateâ€Stage Groupâ€16–Trifluoromethyl Bond Formation. Chemistry - A European Journal, 2019, 25, 6482-6495.	1.7	52
1131	Synthesis of 2-sulfenylindenones by visible-light-mediated addition of sulfur-centered radicals to 1,3-diarylpropynones. Synthetic Communications, 2019, 49, 869-877.	1.1	7
1132	Bond-Selected Photodissociation of Single Molecules Adsorbed on Metal Surfaces. Physical Review Letters, 2019, 122, 077401.	2.9	15
1133	Progress in Difluoroalkylation of Organic Substrates by Visible Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2019, 361, 1500-1537.	2.1	143
1134	Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie, 2019, 131, 5753-5757.	1.6	51
1135	Visible Light Enables Aerobic Iodine Catalyzed Glycosylation. European Journal of Organic Chemistry, 2019, 2019, 4517-4521.	1.2	14
1136	Carbon arbon and Carbonâ€Heteroatom Bond Formation Reactions Using Unsaturated Carbon Compounds. Chemical Record, 2019, 19, 644-660.	2.9	17

#	Article	IF	CITATIONS
1137	Highly Performing Iodoperfluoroalkylation of Alkenes Triggered by the Photochemical Activity of Perylene Diimides. ChemPhotoChem, 2019, 3, 193-197.	1.5	37
1138	Photosensitized, Energy-Transfer-Mediated Cyclization of 2-(1-Arylvinyl)benzaldehydes to Anthracen-9-(10 <i>H</i>)-ones. Organic Letters, 2019, 21, 1202-1206.	2.4	14
1139	Reductive annulations of arylidene malonates with unsaturated electrophiles using photoredox/Lewis acid cooperative catalysis. Chemical Science, 2019, 10, 3353-3359.	3.7	25
1140	Tandem copper and photoredox catalysis in photocatalytic alkene difunctionalization reactions. Beilstein Journal of Organic Chemistry, 2019, 15, 351-356.	1.3	13
1141	Selective C–O Bond Cleavage of Lignin Systems and Polymers Enabled by Sequential Palladium-Catalyzed Aerobic Oxidation and Visible-Light Photoredox Catalysis. ACS Catalysis, 2019, 9, 2252-2260.	5.5	95
1142	Photoaddition reactions of $\langle i \rangle N \langle i \rangle$ -benzylglycinates containing \hat{l}_{\pm} -trimethylsilyl group with dimethyl acetylenedicarboxylate: competitive formation of pyrroles $\langle i \rangle vs. \langle i \rangle \hat{l}^2$ -enamino esters. RSC Advances, 2019, 9, 5639-5648.	1.7	5
1143	Mixed er-NHC/phosphine Pd(<scp>ii</scp>) complexes and their catalytic activity in the Buchwald–Hartwig reaction under solvent-free conditions. Dalton Transactions, 2019, 48, 3447-3452.	1.6	31
1144	Visible light-mediated C P bond formation reactions. Science Bulletin, 2019, 64, 337-350.	4.3	152
1145	Visible-light-mediated Gomberg-Bachmann reaction: An efficient photocatalytic approach to 2-aminobiphenyls. Tetrahedron Letters, 2019, 60, 805-809.	0.7	14
1146	Time-Resolved Spectroscopic Observation and Characterization of Water-Assisted Photoredox Reactions of Selected Aromatic Carbonyl Compounds. Accounts of Chemical Research, 2019, 52, 726-737.	7.6	22
1147	Mitochondria targeted and NADH triggered photodynamic activity of chloromethyl modified Ru(<scp>ii</scp>) complexes under hypoxic conditions. Chemical Communications, 2019, 55, 2676-2679.	2.2	43
1148	Visible-light activated metal catalyst-free vicinal diazidation of olefins with sulfonium iodate(<scp>i</scp>) species. Chemical Communications, 2019, 55, 2833-2836.	2.2	33
1149	Alkoxy radicals generation: facile photocatalytic reduction of $\langle i \rangle N \langle i \rangle$ -alkoxyazinium or azolium salts. Chemical Communications, 2019, 55, 3029-3032.	2.2	48
1150	Metal-free desilylative C–C bond formation by visible-light photoredox catalysis. Chemical Communications, 2019, 55, 2980-2983.	2.2	29
1151	Catalytic radical difluoromethoxylation of arenes and heteroarenes. Chemical Science, 2019, 10, 3217-3222.	3.7	43
1152	Anionic Cyclometalated Platinum(II) Tetrazolato Complexes as Viable Photoredox Catalysts. Organometallics, 2019, 38, 1108-1117.	1.1	32
1153	Visible-light-induced tandem radical addition–cyclization of 2-aryl phenyl isocyanides catalysed by recyclable covalent organic frameworks. Green Chemistry, 2019, 21, 2905-2910.	4.6	84
1154	Synthesis of Chromenoisoxazolidines from Substituted Salicylic Nitrones via Visible-Light Photocatalysis. Organic Letters, 2019, 21, 1388-1392.	2.4	22

#	Article	IF	CITATIONS
1155	Functionalized spirolactones by photoinduced dearomatization of biaryl compounds. Chemical Science, 2019, 10, 3681-3686.	3.7	46
1156	Oxidative Deprotection of <i> p < /i > -Methoxybenzyl Ethers via Metal-Free Photoredox Catalysis. Journal of Organic Chemistry, 2019, 84, 3612-3623.</i>	1.7	22
1157	Photoinduced Kochi Decarboxylative Elimination for the Synthesis of Enamides and Enecarbamates from <i>N</i> -Acyl Amino Acids. Journal of Organic Chemistry, 2019, 84, 2933-2940.	1.7	33
1158	Decarboxylative Cyanation of Aliphatic Carboxylic Acids via Visible-Light Flavin Photocatalysis. Organic Letters, 2019, 21, 1368-1373.	2.4	71
1159	Toward ideal carbon dioxide functionalization. Chemical Science, 2019, 10, 3905-3926.	3.7	137
1160	Catalytic Strategy for Regioselective Arylethylamine Synthesis. Journal of the American Chemical Society, 2019, 141, 4147-4153.	6.6	95
1161	Photoredox-catalyzed branch-selective pyridylation of alkenes for the expedient synthesis of Triprolidine. Nature Communications, 2019, 10, 749.	5.8	60
1162	Visible light enabled γ-trifluoromethylation of Baylis–Hillman acetates: stereoselective synthesis of trisubstituted alkenes. Organic Chemistry Frontiers, 2019, 6, 989-993.	2.3	40
1163	Intramolecular Reductive Cyclization of <i>>o</i> -Nitroarenes via Biradical Recombination. Organic Letters, 2019, 21, 1438-1443.	2.4	39
1164	Photoredox-catalyzed cascade annulation of $\langle i \rangle N \langle i \rangle$ -propargylindoles with sulfonyl chlorides: access to 2-sulfonated $9 \langle i \rangle H \langle i \rangle$ -pyrrolo[1,2- $\langle i \rangle$ a $\langle i \rangle$]indoles. Organic and Biomolecular Chemistry, 2019, 17, 2873-2876.	1.5	26
1167	Sequential Energy Transfer Catalysis: A Cascade Synthesis of Angularly-Fused Dihydrocoumarins. Organic Letters, 2019, 21, 9724-9728.	2.4	42
1168	Accelerated Discovery in Photocatalysis by a Combined Screening Approach Involving MS Tags. Organic Letters, 2019, 21, 9747-9752.	2.4	7
1169	Advances in the Phototriggered Synthesis of Single-Chain Polymer Nanoparticles. Polymers, 2019, 11, 1903.	2.0	11
1170	Visible Lightâ€Mediated C2â€Quaternarization of Nâ€Alkyl Indoles through Oxidative Dearomatization using Ir(III) Catalyst. Asian Journal of Organic Chemistry, 2019, 8, 2243-2248.	1.3	13
1171	Polymer-supported eosin Y as a reusable photocatalyst for visible light mediated organic transformations. New Journal of Chemistry, 2019, 43, 17974-17979.	1.4	26
1172	Visible-light-mediated direct C3-arylation of 2 <i>H</i> i>indazoles enabled by an electron-donor–acceptor complex. Organic and Biomolecular Chemistry, 2019, 17, 9698-9702.	1.5	36
1173	Catalytic enantioselective cross dehydrogenative coupling of sp ³ C–H of heterocycles. Organic and Biomolecular Chemistry, 2019, 17, 9683-9692.	1.5	28
1174	Visible-light-promoted hydroxysulfonylation of alkylidenecyclopropanes: synthesis of cyclopropane-containing \hat{l}^2 -hydroxysulfones. Organic Chemistry Frontiers, 2019, 6, 3944-3949.	2.3	15

#	Article	IF	CITATIONS
1175	A g-C ₃ N ₄ -based heterogeneous photocatalyst for visible light mediated aerobic benzylic Câ€"H oxygenations. Green Chemistry, 2019, 21, 6116-6122.	4.6	69
1176	Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science, 2019, 366, 1500-1504.	6.0	305
1177	Visible light promoted fluoroalkylation of alkenes and alkynes using 2-bromophenol as a catalyst. Chemical Communications, 2019, 55, 12259-12262.	2.2	61
1178	Visible light induced redox neutral fragmentation of 1,2-diol derivatives. Chemical Communications, 2019, 55, 13144-13147.	2.2	29
1179	Carbon nitride as a heterogeneous visible-light photocatalyst for the Minisci reaction and coupling to H ₂ production. Chemical Communications, 2019, 55, 14007-14010.	2.2	62
1180	Visible-light-promoted oxidative halogenation of alkynes. Chemical Communications, 2019, 55, 14299-14302.	2.2	35
1181	Visible-light induced enhancement in the multi-catalytic activity of sulfated carbon dots for aerobic carbon–carbon bond formation. Green Chemistry, 2019, 21, 6717-6726.	4.6	47
1182	Recent advances in modified TiO ₂ for photo-induced organic synthesis. Organic and Biomolecular Chemistry, 2019, 17, 9977-9989.	1.5	36
1183	Visible-light-driven catalytic oxidation of aldehydes and alcohols to nitriles by 4-acetamido-TEMPO using ammonium carbamate as a nitrogen source. Organic and Biomolecular Chemistry, 2019, 17, 9182-9186.	1.5	30
1184	The heavy-atom effect on xanthene dyes for photopolymerization by visible light. Polymer Chemistry, 2019, 10, 5737-5742.	1.9	13
1185	Photocatalytic decarboxylative $[2+2+1]$ annulation of 1,6-enynes with $\langle i \rangle N \langle i \rangle$ -hydroxyphthalimide esters for the synthesis of indene-containing polycyclic compounds. Organic Chemistry Frontiers, 2019, 6, 3834-3838.	2.3	33
1186	Redox-Neutral Borylation of Aryl Sulfonium Salts via C–S Activation Enabled by Light. Organic Letters, 2019, 21, 9688-9692.	2.4	53
1187	Photoswitchable Regiodivergent Azidation of Olefins with Sulfonium Iodate(I) Reagent. Organic Letters, 2019, 21, 9990-9994.	2.4	20
1188	Access to Functionalized <i>E</i> -Allylsilanes and <i>E</i> -Alkenylsilanes through Visible-Light-Driven Radical Hydrosilylation of Mono- and Disubstituted Allenes. Organic Letters, 2019, 21, 9836-9840.	2.4	31
1189	Organophotocatalytic Arene Functionalization: C–C and C–B Bond Formation. Organic Letters, 2019, 21, 9950-9953.	2.4	21
1190	Direct catalytic transformation of white phosphorus into arylphosphines and phosphonium salts. Nature Catalysis, 2019, 2, 1101-1106.	16.1	72
1191	Visible-Light-Enabled Oxidative Coupling of Alkenes with Dialkylformamides To Access Unsaturated Amides. Organic Letters, 2019, 21, 9929-9933.	2.4	10
1192	Three-Component Olefin Dicarbofunctionalization Enabled by Nickel/Photoredox Dual Catalysis. Journal of the American Chemical Society, 2019, 141, 20069-20078.	6.6	162

#	Article	IF	Citations
1193	On the reactions of methyl radicals with nitrilotris (methylenephosphonic-acid) complexes in aqueous solutions. Journal of Coordination Chemistry, 2019, 72, 3445-3457.	0.8	3
1194	Catalytic Generation and Use of Ketyl Radical from Unactivated Aliphatic Carbonyl Compounds. Organic Letters, 2019, 21, 10159-10163.	2.4	31
1195	Photocatalytic Difluoromethylation Reactions of Aromatic Compounds and Aliphatic Multiple C–C Bonds. Molecules, 2019, 24, 4483.	1.7	23
1196	Practical C–P bond formation via heterogeneous photoredox and nickel synergetic catalysis. Chinese Journal of Catalysis, 2019, 40, 1841-1846.	6.9	12
1197	Visible light-driven cross-coupling reactions of alkyl halides with phenylacetylene derivatives for C(sp ³)–C(sp) bond formation catalyzed by a B ₁₂ complex. Chemical Communications, 2019, 55, 13070-13073.	2.2	33
1198	EDA complex directed N-centred radical generation from nitrosoarenes: a divergent synthetic approach. Chemical Communications, 2019, 55, 13590-13593.	2.2	13
1199	Oxidative cyanation of <i>N</i> -aryltetrahydroisoquinoline induced by visible light for the synthesis of α-aminonitrile using potassium thiocyanate as a "CN―agent. RSC Advances, 2019, 9, 29721-29725.	1.7	16
1200	UV light promoted †Metal†Additive†Additiveâ oxidation of alcohols: investigating the role of alcohols as electron donors. RSC Advances, 2019, 9, 36198-36203.	1.7	8
1201	Subphthalocyanine–tetracyanobuta-1,3-diene–aniline conjugates: stereoisomerism and photophysical properties. Chemical Science, 2019, 10, 10997-11005.	3.7	30
1202	Reactivity control of a photocatalytic system by changing the light intensity. Chemical Science, 2019, 10, 11023-11029.	3.7	69
1203	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	2.9	17
1204	Visibleâ€Lightâ€Mediated Liberation and In Situ Conversion of Fluorophosgene. Chemistry - A European Journal, 2019, 25, 361-366.	1.7	26
1205	Combining Flavin Photocatalysis and Organocatalysis: Metal-Free Aerobic Oxidation of Unactivated Benzylic Substrates. Organic Letters, 2019, 21, 114-119.	2.4	79
1206	Alkylâ€Câ€Câ€Bindungsbildung durch Nickel/Photoredoxâ€Kreuzkupplung. Angewandte Chemie, 2019, 131, 6212-6224.	1.6	101
1207	Hochdurchsatzstrategien zur Entdeckung und Optimierung katalytischer Reaktionen. Angewandte Chemie, 2019, 131, 7254-7267.	1.6	16
1208	Alkylation reactions of benzothiazoles with N,N-dimethylamides catalyzed by the two-component system under visible light. Tetrahedron Letters, 2019, 60, 390-396.	0.7	16
1209	Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized $[2 + 2]$ Cycloadditions in Flow. Organic Process Research and Development, 2019, 23, 78-87.	1.3	52
1210	Catalysis with Palladium Complexes Photoexcited by Visible Light. Angewandte Chemie - International Edition, 2019, 58, 11586-11598.	7.2	191

#	Article	IF	CITATIONS
1211	<i>De novo</i> Design of Organic Photocatalysts: Bithiophene Derivatives for the Visibleâ€light Induced Câ^'H Functionalization of Heteroarenes. Advanced Synthesis and Catalysis, 2019, 361, 945-950.	2.1	43
1212	Forging C(sp ³)–C(sp ³) Bonds with Carbon-Centered Radicals in the Synthesis of Complex Molecules. Journal of the American Chemical Society, 2019, 141, 2800-2813.	6.6	111
1213	Electricity-driven asymmetric Lewis acid catalysis. Nature Catalysis, 2019, 2, 34-40.	16.1	122
1214	Integration of metal-free ring-opening metathesis polymerization and organocatalyzed ring-opening polymerization through a bifunctional initiator. Polymer Chemistry, 2019, 10, 2975-2979.	1.9	20
1215	Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Applied Catalysis B: Environmental, 2019, 245, 334-342.	10.8	192
1216	"Snapshots―of Intramolecular Electron Transfer in Redox Tag-Guided [2 + 2] Cycloadditions. Journal of Organic Chemistry, 2019, 84, 1882-1886.	1.7	17
1217	Lead-Halide Perovskites for Photocatalytic \hat{l} ±-Alkylation of Aldehydes. Journal of the American Chemical Society, 2019, 141, 733-738.	6.6	263
1218	Copperâ€Photocatalyzed Borylation of Organic Halides under Batch and Continuousâ€Flow Conditions. Chemistry - A European Journal, 2019, 25, 3262-3266.	1.7	50
1219	Photoredox Alkenylation of Carboxylic Acids and Peptides: Synthesis of Covalent Enzyme Inhibitors. Journal of Organic Chemistry, 2019, 84, 2379-2392.	1.7	24
1220	Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerization: Halogenated Xanthene Dyes. Macromolecules, 2019, 52, 236-248.	2.2	105
1221	Heterotetrametallic Re–Zn–Zn–Re Complex Generated by an Anionic Rhenium(I) β-Diketiminate. Journal of the American Chemical Society, 2019, 141, 800-804.	6.6	28
1222	High Throughput Strategies for the Discovery and Optimization of Catalytic Reactions. Angewandte Chemie - International Edition, 2019, 58, 7180-7191.	7.2	95
1223	New Roles for Photoexcited Eosinâ€Y in Photochemical Reactions. Angewandte Chemie - International Edition, 2019, 58, 378-380.	7.2	125
1224	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	23.0	1,666
1225	Photoredoxâ€Initiated 1,2â€Difunctionalization of Alkenes with <i>N</i> à€Chloro <i>S</i> â€Fluoroalkyl Sulfoximines. Advanced Synthesis and Catalysis, 2019, 361, 436-440.	2.1	19
1226	Photocatalysis Enables Visibleâ€Light Uncaging of Bioactive Molecules in Live Cells. Angewandte Chemie - International Edition, 2019, 58, 561-565.	7.2	41
1227	Bioinspirierte radikalische Stetterâ€Reaktion: radikalische Umpolung, ermöglicht durch Ionenpaarâ€Photokatalyse. Angewandte Chemie, 2019, 131, 1221-1225.	1.6	36
1228	Câ^'H Functionalization of Commodity Polymers. Angewandte Chemie - International Edition, 2019, 58, 8654-8668.	7.2	165

#	Article	IF	CITATIONS
1229	Bioinspired Radical Stetter Reaction: Radical Umpolung Enabled by Ionâ€Pair Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 1208-1212.	7.2	125
1230	Visible Light–Mediated C–F Bond Activation. , 2019, , 159-181.		8
1231	Aliphatic Radical Relay Heck Reaction at Unactivated C(sp ³)â^'H Sites of Alcohols. Angewandte Chemie, 2019, 131, 1808-1812.	1.6	22
1232	Carbonylation of Alkyl Radicals Derived from Organosilicates through Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 1789-1793.	7.2	68
1233	Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: Dual reaction pathways induced by photogenerated 1O2 and holes. Applied Catalysis B: Environmental, 2019, 244, 206-214.	10.8	87
1234	Aliphatic Radical Relay Heck Reaction at Unactivated C(sp ³)â 'H Sites of Alcohols. Angewandte Chemie - International Edition, 2019, 58, 1794-1798.	7.2	97
1235	Visibleâ€Light Photoredox Catalysis Enables the Biomimetic Synthesis of Nyingchinoidsâ€A, B, and D, and Rasumatraninâ€D. Angewandte Chemie, 2019, 131, 2817-2820.	1.6	0
1236	Photoelectrochemical Câ^'H Alkylation of Heteroarenes with Organotrifluoroborates. Angewandte Chemie - International Edition, 2019, 58, 4592-4595.	7.2	204
1237	Photoinduced cyclization of alkynoates to coumarins with N-lodosuccinimide as a free-radical initiator under ambient andÂmetal-free conditions. Tetrahedron, 2019, 75, 1044-1051.	1.0	22
1238	Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives. Journal of the American Chemical Society, 2019, 141, 2636-2644.	6.6	177
1239	Regiodivergent Hydroaminoalkylation of Alkynes and Allenes by a Combined Rhodium and Photoredox Catalytic System. Angewandte Chemie - International Edition, 2019, 58, 3392-3397.	7.2	68
1240	Visibleâ€Lightâ€Induced, Manganeseâ€Catalyzed Tandem Cyclization of 2â€Biphenyl Isocyanides with Cyclopropanols for the Synthesis of 6â€ <i>β</i> â€Ketoalkyl Phenanthridines. Asian Journal of Organic Chemistry, 2019, 8, 385-390.	1.3	12
1241	A Laser Driven Flow Chemistry Platform for Scaling Photochemical Reactions with Visible Light. ACS Central Science, 2019, 5, 109-115.	5. 3	138
1242	Configuration interaction singles with spin-orbit coupling: Constructing spin-adiabatic states and their analytical nuclear gradients. Journal of Chemical Physics, 2019, 150, 014106.	1.2	12
1243	Visibleâ€Light Photoredox Catalysis Enables the Biomimetic Synthesis of Nyingchinoidsâ€A, B, and D, and Rasumatraninâ€D. Angewandte Chemie - International Edition, 2019, 58, 2791-2794.	7.2	24
1244	Visible Light-Induced Thiocyanation of Enaminone C–H Bond to Access Polyfunctionalized Alkenes and Thiocyano Chromones. Journal of Organic Chemistry, 2019, 84, 2243-2251.	1.7	126
1245	Mechanistische Studien in der Photokatalyse. Angewandte Chemie, 2019, 131, 3768-3786.	1.6	115
1246	Photocatalytic Fluorination Reactions. , 2019, , 183-221.		0

#	Article	IF	Citations
1247	Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 2019, 380, 201-229.	9.5	112
1248	Visibleâ€Light Photoredoxâ€Catalyzed Thioacetalization of Aldehydes Under Metalâ€Free and Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2019, 361, 1597-1605.	2.1	25
1249	Coupling photoredox and biomimetic catalysis for the visible-light-driven oxygenation of organic compounds. Physical Sciences Reviews, 2019, 4, .	0.8	1
1250	Gold Catalyzed Photoredox C1â€Alkynylation of <i>N</i> â€Alkylâ€1,2,3,4â€tetrahydroisoquinolines by 1â€Bromoalkynes with UVA LED Light. Advanced Synthesis and Catalysis, 2019, 361, 1313-1321.	2.1	24
1251	Mechanistic Studies in Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 3730-3747.	7.2	559
1252	Photocatalysis in the Dark: Nearâ€Infrared Light Driven Photoredox Catalysis by an Upconversion Nanoparticle/Photocatalyst System. ChemPhotoChem, 2019, 3, 24-27.	1.5	36
1253	Amidyl Radical Directed Remote Allylation of Unactivated sp 3 Câ^'H Bonds by Organic Photoredox Catalysis. Angewandte Chemie, 2019, 131, 1788-1792.	1.6	17
1254	Amidyl Radical Directed Remote Allylation of Unactivated sp ³ Câ^'H Bonds by Organic Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 1774-1778.	7.2	94
1255	Acyl Radical Chemistry via Visible-Light Photoredox Catalysis. Synthesis, 2019, 51, 303-333.	1.2	164
1256	Progress of electrochemical Đ;(sp ²)-H phosphonation. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 415-419.	0.8	14
1257	Carbonylation of Alkyl Radicals Derived from Organosilicates through Visible‣ight Photoredox Catalysis. Angewandte Chemie, 2019, 131, 1803-1807.	1.6	22
1258	Metalâ€free Semiconductor Photocatalysis for sp ² Câ^'H Functionalization with Molecular Oxygen. ChemCatChem, 2019, 11, 703-706.	1.8	37
1259	Metalâ€Free Visibleâ€Light Photocatalytic Tandem Radical Addition–Cyclization Strategy for the Synthesis of Sulfonylâ€Containing Isoquinolinediones. European Journal of Organic Chemistry, 2019, 2019, 939-948.	1.2	25
1260	Olefin Bifunctionalization: A Visibleâ€ight Photoredoxâ€catalyzed Aryl Alkoxylation of Olefins. Chemistry - an Asian Journal, 2019, 14, 121-124.	1.7	18
1261	Alkyl Carbon–Carbon Bond Formation by Nickel/Photoredox Crossâ€Coupling. Angewandte Chemie - International Edition, 2019, 58, 6152-6163.	7.2	465
1262	Biocatalytic hydrogen atom transfer: an invigorating approach to free-radical reactions. Current Opinion in Chemical Biology, 2019, 49, 16-24.	2.8	25
1263	Transitionâ€Metalâ€Free Synthesis of Phenanthridinones through Visibleâ€Lightâ€Driven Oxidative C–H Amidation. European Journal of Organic Chemistry, 2020, 2020, 1496-1504.	1.2	18
1264	Synthesis of 2,3â€Dihydroâ€4â€pyridones, 4â€Quinolones, and 2,3â€Dihydroâ€4â€azocinones by Visibleâ€Light Photocatalytic Aerobic Dehydrogenation. European Journal of Organic Chemistry, 2020, 2020, 1505-1514.	1.2	6

#	Article	IF	CITATIONS
1265	Chromophores inspired by the colors of fruit, flowers and wine. Pure and Applied Chemistry, 2020, 92, 255-263.	0.9	10
1266	Oxidative Photochlorination of Electronâ€Rich Arenes via in situ Bromination. European Journal of Organic Chemistry, 2020, 2020, 1491-1495.	1.2	16
1267	First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction. Coordination Chemistry Reviews, 2020, 402, 213079.	9.5	66
1268	Improved photocatalytic performance for selective oxidation of amines to imines on graphitic carbon nitride/bismuth tungstate heterojunctions. Journal of Colloid and Interface Science, 2020, 560, 40-49.	5.0	92
1269	Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angewandte Chemie - International Edition, 2020, 59, 409-417.	7.2	135
1270	Aromatic Chemistry in the Excited State: Facilitating Metalâ€Free Substitutions and Crossâ€Couplings. Angewandte Chemie, 2020, 132, 1802-1812.	1.6	6
1271	Cobaloximeâ€Catalyzed Hydrogen Evolution in Photoredoxâ€Facilitated Smallâ€Molecule Functionalization. European Journal of Organic Chemistry, 2020, 2020, 1245-1258.	1.2	40
1272	Siteâ€Selective Alkoxylation of Benzylic Câ^'H Bonds by Photoredox Catalysis. Angewandte Chemie, 2020, 132, 203-208.	1.6	15
1273	Visibleâ€Lightâ€Enabled Stereodivergent Synthesis of <i>E</i> ê•and <i>Z</i> ê•and <i>Z</i> 100 af€Configured 1,4â€Dienes by Photoredox/Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2020, 59, 177-181.	7.2	81
1274	Siteâ€Selective Alkoxylation of Benzylic Câ^'H Bonds by Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 197-202.	7.2	97
1275	Organic Photocatalysis: Carbon Nitride Semiconductors vs. Molecular Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1294-1309.	1.2	59
1276	Visible-light-promoted oxidative coupling of styrene with cyclic ethers. Science China Chemistry, 2020, 63, 42-46.	4.2	25
1277	Pyrylium Salts: Selective Reagents for the Activation of Primary Amino Groups in Organic Synthesis. Synthesis, 2020, 52, 489-503.	1.2	56
1278	Aromatic Chemistry in the Excited State: Facilitating Metalâ€Free Substitutions and Crossâ€Couplings. Angewandte Chemie - International Edition, 2020, 59, 1786-1796.	7.2	60
1279	Visible-Light-Induced Alkynylation of α-C-H Bonds of Ethers with Alkynyl Bromides without External Photocatalyst. European Journal of Organic Chemistry, 2020, 2020, 1534-1538.	1.2	13
1280	Visibleâ€Lightâ€Mediated Regioselective Allylation, Benzylation, and Silylation of Methyleneâ€Malononitriles via Photoredoxâ€Induced Radical Cation Fragmentation. European Journal of Organic Chemistry, 2020, 2020, 1459-1465.	1.2	28
1281	The Right Light: De Novo Design of a Robust Modular Photochemical Reactor for Optimum Batch and Flow Chemistry. ChemPhotoChem, 2020, 4, 45-51.	1.5	56
1282	Benzyl C-O and C-N Bond Construction via C-C Bond Dissociation of Oxime Ester under Visible Light Irradiation. European Journal of Organic Chemistry, 2020, 2020, 1551-1558.	1.2	7

#	ARTICLE	IF	CITATIONS
1283	Tackling Remote <i>sp3</i> Câ^H Functionalization via Ni atalyzed "chainâ€walking Reactions. Israel Journal of Chemistry, 2020, 60, 195-206.	1.0	156
1284	Making Copper Photocatalysis Even More Robust and Economic: Photoredox Catalysis with [Cu (dmp) ₂ Cl]Cl. European Journal of Organic Chemistry, 2020, 2020, 1523-1533.	1.2	51
1285	A green road map for heterogeneous photocatalysis. Pure and Applied Chemistry, 2020, 92, 63-73.	0.9	4
1286	The Alkylation and Reduction of Heteroarenes with Alcohols Using Photoredox Catalyzed Hydrogen Atom Transfer via Chlorine Atom Generation. European Journal of Organic Chemistry, 2020, 2020, 1453-1458.	1.2	27
1287	Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. Photosynthesis Research, 2020, 143, 221-231.	1.6	17
1288	Direct Decarboxylative Allylation and Arylation of Aliphatic Carboxylic Acids Using Flavinâ€Mediated Photoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 1539-1550.	1.2	28
1289	Green Metalâ€Free Photochemical Hydroacylation of Unactivated Olefins. Angewandte Chemie, 2020, 132, 1752-1758.	1.6	46
1290	Green Metalâ€Free Photochemical Hydroacylation of Unactivated Olefins. Angewandte Chemie - International Edition, 2020, 59, 1735-1741.	7.2	79
1291	Photochemical Functionalization of Helicenes. Chemistry - A European Journal, 2020, 26, 543-547.	1.7	15
1292	Metal-free photo-induced radical C-P and C-S bond formation for the synthesis of 2-phosphoryl benzothiazoles. Chinese Chemical Letters, 2020, 31, 1313-1316.	4.8	41
1293	Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angewandte Chemie, 2020, 132, 417-425.	1.6	45
1294	Initiators for Radical Cation-induced $[2 + 2]$ - and $[4 + 2]$ -Cycloadditions of Electron-rich Alkenes. Chemistry Letters, 2020, 49, 107-113.	0.7	19
1295	Photoredoxkatalytische αâ€Alkoxypentafluorosulfanylierung von αâ€Methyl―und αâ€Phenylstyrol mithilfe von SF 6. Angewandte Chemie, 2020, 132, 306-310.	1.6	33
1296	Visibleâ€Lightâ€Induced Cleavage of Câ^'S Bonds in Thioacetals and Thioketals with Iodine as a Photocatalyst. ChemPhotoChem, 2020, 4, 101-104.	1.5	13
1297	Exploiting Synergistic Catalysis for an Ambient Temperature Photocycloaddition to Pyrazoles. Chemistry - A European Journal, 2020, 26, 155-159.	1.7	13
1298	Flow Photochemistry: Shine Some Light on Those Tubes!. Trends in Chemistry, 2020, 2, 92-106.	4.4	245
1299	Photoredox Catalytic αâ€Alkoxypentafluorosulfanylation of αâ€Methyl―and αâ€Phenylstyrene Using SF ₆ . Angewandte Chemie - International Edition, 2020, 59, 300-303.	7.2	68
1300	Organic/Inorganic Heterogeneous Silicaâ€Based Photoredox Catalyst for Azaâ€Henry Reactions. European Journal of Organic Chemistry, 2020, 2020, 1572-1578.	1.2	23

#	Article	IF	CITATIONS
1301	Photochemical Carbopyridylation of Alkenes Using <i>N < /i> â€Alkenoxypyridinium Salts as Bifunctional Reagents. Angewandte Chemie - International Edition, 2020, 59, 2049-2054.</i>	7.2	69
1302	Metalâ€Free Photoinduced Atom Transfer Radical Polymerization for Highly Sensitive Detection of Lung Cancer DNA. Chemistry - A European Journal, 2020, 26, 1633-1639.	1.7	19
1303	Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews, 2020, 120, 986-1041.	23.0	333
1304	Electrophotocatalytic S _N Ar Reactions of Unactivated Aryl Fluorides at Ambient Temperature and Without Base. Angewandte Chemie, 2020, 132, 668-672.	1.6	24
1305	Pyridinium Salts as Redoxâ€Active Functional Group Transfer Reagents. Angewandte Chemie - International Edition, 2020, 59, 9264-9280.	7.2	192
1306	Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes. Angewandte Chemie - International Edition, 2020, 59, 1302-1312.	7.2	48
1307	Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction. ChemCatChem, 2020, 12, 1603-1608.	1.8	13
1308	Visibleâ€Lightâ€Induced Diâ€Ï€â€Methane Rearrangement of Dibenzobarrelene Derivatives. ChemPhotoChem, 2020, 4, 132-137.	1.5	2
1309	Photochemical Strategies for Carbon–Heteroatom Bond Formation. European Journal of Organic Chemistry, 2020, 2020, 1379-1392.	1.2	44
1310	Visibleâ€Lightâ€Enabled Stereodivergent Synthesis of <i>E</i> ―and <i>Z</i> â€Configured 1,4â€Dienes by Photoredox/Nickel Dual Catalysis. Angewandte Chemie, 2020, 132, 183-187.	1.6	20
1311	Pyridiniumsalze als redoxaktive Reagenzien zur Übertragung funktioneller Gruppen. Angewandte Chemie, 2020, 132, 9350-9366.	1.6	27
1312	Electrophotocatalytic S _N Ar Reactions of Unactivated Aryl Fluorides at Ambient Temperature and Without Base. Angewandte Chemie - International Edition, 2020, 59, 658-662.	7.2	113
1313	Visibleâ€Lightâ€Mediated Dearomatisation of Indoles and Pyrroles to Pharmaceuticals and Pesticides. Chemistry - A European Journal, 2020, 26, 390-395.	1.7	67
1314	A Ni-Ir Dual Photocatalytic Liebeskind Coupling of Sulfonium Salts for the Synthesis of 2-Benzylpyrrolidines. European Journal of Organic Chemistry, 2020, 2020, 1466-1471.	1.2	23
1315	Fluoroalkylselenolation of Alkyl Silanes/Trifluoroborates under Metal-Free Visible-Light Photoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 1559-1566.	1.2	31
1316	Aluminum(III) Salen Complexes as Active Photoredox Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1486-1490.	1.2	24
1317	Vitamin B ₁₂ Enables Consecutive Generation of Acyl and Alkyl Radicals from One Reagent. European Journal of Organic Chemistry, 2020, 2020, 1567-1571.	1.2	14
1318	Visibleâ€Lightâ€Induced Dearomatizations. European Journal of Organic Chemistry, 2020, 2020, 1259-1273.	1.2	102

#	Article	IF	CITATIONS
1319	Recyclable Perovskite as Heterogeneous Photocatalyst for Aminomethylation of Imidazoâ€Fused Heterocycles. Advanced Synthesis and Catalysis, 2020, 362, 2143-2149.	2.1	65
1320	Recent Advances in the Electrochemical Synthesis and Functionalization of Indole Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 2102-2119.	2.1	75
1321	Renaissance of Ringâ€Opening Chemistry of Benzotriazoles: New Wine in an Old Bottle. Chemical Record, 2020, 20, 693-709.	2.9	22
1322	Visible-light-mediated photocatalytic cross-coupling of acetenyl ketones with benzyl trifluoroborate. Organic and Biomolecular Chemistry, 2020, 18, 1073-1077.	1.5	12
1323	A General Strategy to Enhance Donorâ€Acceptor Molecules Using Solventâ€Excluding Substituents. Angewandte Chemie - International Edition, 2020, 59, 4785-4792.	7.2	34
1324	Designing High-Triplet-Yield Phenothiazine Donor–Acceptor Complexes for Photoredox Catalysis. Journal of Physical Chemistry A, 2020, 124, 817-823.	1.1	29
1325	Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of $\hat{l}_{\pm},\hat{l}_{\pm}$ -Dideuterio Alcohols Using SmI ₂ and D ₂ O as a Deuterium Source. Organic Letters, 2020, 22, 1249-1253.	2.4	20
1326	Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chemical Society Reviews, 2020, 49, 286-300.	18.7	247
1327	ARS–TiO ₂ photocatalyzed direct functionalization of sp2 C–H bonds toward thiocyanation and cyclization reactions under visible light. Catalysis Science and Technology, 2020, 10, 1401-1407.	2.1	31
1328	Photochemical oxidation of benzylic primary and secondary alcohols utilizing air as the oxidant. Green Chemistry, 2020, 22, 471-477.	4.6	95
1329	Visible light photoredox catalyzed deprotection of 1,3-oxathiolanes. Organic and Biomolecular Chemistry, 2020, 18, 288-291.	1.5	10
1330	A novel photoredox-active group for the generation of fluorinated radicals from difluorostyrenes. Chemical Science, 2020, 11, 737-741.	3.7	67
1331	<i>cis</i> å€6elective Transfer Semihydrogenation of Alkynes by Merging Visibleâ€Light Catalysis with Cobalt Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 1032-1038.	2.1	21
1332	Bimetallic Photoredox Catalysis: Visible Light-Promoted Aerobic Hydroxylation of Arylboronic Acids with a Dirhodium(II) Catalyst. Journal of Organic Chemistry, 2020, 85, 2040-2047.	1.7	22
1334	N-Heterocyclic carbene/photo-cocatalyzed oxidative Smiles rearrangement: synthesis of aryl salicylates from $\langle i \rangle O \langle i \rangle$ -aryl salicylaldehydes. Chemical Communications, 2020, 56, 1525-1528.	2.2	61
1335	Photocatalytic site-selective C–H difluoroalkylation of aromatic aldehydes. Chemical Communications, 2020, 56, 1497-1500.	2.2	20
1336	Pyrenediones as versatile photocatalysts for oxygenation reactions with <i>in situ</i> generation of hydrogen peroxide under visible light. Green Chemistry, 2020, 22, 22-27.	4.6	25
1337	Synthesis of 1,2-amino alcohols by decarboxylative coupling of amino acid derived \hat{l}_{\pm} -amino radicals to carbonyl compounds <i>via</i> visible-light photocatalyst in water. Green Chemistry, 2020, 22, 336-341.	4.6	43

#	Article	IF	CITATIONS
1338	Heterogeneous visible-light-induced Meerwein hydration reaction of alkenes in water using mpg-C ₃ N ₄ as a recyclable photocatalyst. Green Chemistry, 2020, 22, 411-416.	4.6	46
1339	Heavy-atom-free BODIPY photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer. Organic and Biomolecular Chemistry, 2020, 18, 10-27.	1.5	183
1340	Visible-light-induced intramolecular radical cascade of \hat{l}_{\pm} -bromo- <i>N</i> benzyl-alkylamides: a new strategy to synthesize tetracyclic <i>N</i> fused indolo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2020, 18, 263-271.	1.5	17
1341	Merging photochemistry with electrochemistry in organic synthesis. Organic Chemistry Frontiers, 2020, 7, 131-135.	2.3	111
1342	Cascade cyclization reactions of alkylidenecyclopropanes for the construction of polycyclic lactams and lactones by visible light photoredox catalysis. Organic Chemistry Frontiers, 2020, 7, 374-379.	2.3	20
1343	Photocatalytic Isocyanide-Based Multicomponent Domino Cascade toward the Stereoselective Formation of Iminofurans. Journal of Organic Chemistry, 2020, 85, 1981-1990.	1.7	20
1344	Photoredox-Catalyzed Hydrosulfonylation of Arylallenes. Journal of Organic Chemistry, 2020, 85, 2250-2259.	1.7	29
1345	Silyl Radical-Mediated Activation of Sulfamoyl Chlorides Enables Direct Access to Aliphatic Sulfonamides from Alkenes. Journal of the American Chemical Society, 2020, 142, 720-725.	6.6	78
1346	Visible Light―and Heatâ€Promoted Câ^'O Coupling Reaction of Phenols and Aryl Halides. Asian Journal of Organic Chemistry, 2020, 9, 116-120.	1.3	24
1347	Photoinduced Protonâ€Transfer Reactions for Mild Oâ€H Functionalization of Unreactive Alcohols. Angewandte Chemie - International Edition, 2020, 59, 5562-5566.	7.2	81
1348	Photoinduzierte Protonentransferreaktionen fÃ⅓r milde Oâ€Hâ€Funktionalisierungsreaktionen unreaktiver Alkohole. Angewandte Chemie, 2020, 132, 5608-5613.	1.6	10
1349	Metalla-electrocatalyzed C–H Activation by Earth-Abundant 3d Metals and Beyond. Accounts of Chemical Research, 2020, 53, 84-104.	7.6	431
1350	Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarinâ€Decorated Cu ₂₄ L ₂₄ Metal–Organic Cages as Junctions. Angewandte Chemie - International Edition, 2020, 59, 2784-2792.	7.2	58
1351	Metalâ€Free Visibleâ€Lightâ€Mediated Aromatization of 1,2–Dihydronaphthalenes. European Journal of Organic Chemistry, 2020, 2020, 1482-1485.	1.2	4
1352	Photochemical Carbopyridylation of Alkenes Using <i>N</i> â€Alkenoxypyridinium Salts as Bifunctional Reagents. Angewandte Chemie, 2020, 132, 2065-2070.	1.6	17
1353	Reactor Technology Concepts for Flow Photochemistry. ChemPhotoChem, 2020, 4, 235-254.	1.5	62
1354	Programming Covalent Organic Frameworks for Photocatalysis: Investigation of Chemical and Structural Variations. Matter, 2020, 2, 416-427.	5.0	110
1355	Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes. Angewandte Chemie, 2020, 132, 1318-1328.	1.6	9

#	ARTICLE	IF	CITATIONS
1356	Visible Light-Induced Amide Bond Formation. Organic Letters, 2020, 22, 371-375.	2.4	57
1357	Aryl Radical Selectivity in Biphasic Systems. Organic Letters, 2020, 22, 479-482.	2.4	9
1358	Organophotoredox-Catalyzed Decarboxylative C(sp ³)–O Bond Formation. Journal of the American Chemical Society, 2020, 142, 1211-1216.	6.6	106
1359	Cerium photocatalyzed dehydrogenative lactonization of 2-arylbenzoic acids. Organic and Biomolecular Chemistry, 2020, 18, 983-987.	1.5	35
1360	An aminotetracyanocyclopentadienide system: light-induced formation of a thermally stable cyclopentadienyl radical. New Journal of Chemistry, 2020, 44, 72-78.	1.4	4
1361	Visible light-induced aerobic oxidative cross-coupling reaction: preparation of α-indolyl glycine derivatives. New Journal of Chemistry, 2020, 44, 313-316.	1.4	25
1362	Tuning the stability of organic radicals: from covalent approaches to non-covalent approaches. Chemical Science, 2020, 11, 1192-1204.	3.7	125
1363	Heterogeneous Carbon Nitrides Photocatalysis Multicomponent Hydrosulfonylation of Alkynes To Access I ² -Keto Sulfones with the Insertion of Sulfur Dioxide in Aerobic Aqueous Medium. Organic Letters, 2020, 22, 670-674.	2.4	63
1364	Expanding the enzyme universe with genetically encoded unnatural amino acids. Nature Catalysis, 2020, 3, 193-202.	16.1	131
1365	Organophotocatalytic Nâ€Demethylation of Oxycodone Using Molecular Oxygen. Chemistry - A European Journal, 2020, 26, 2973-2979.	1.7	22
1366	Photoredox Fluoroalkylation of Arylidene and Alkylidene Amidrazones. European Journal of Organic Chemistry, 2020, 2020, 393-396.	1.2	10
1367	Photoinduced Betaine Generation for Efficient Photothermal Energy Conversion. Chemistry - A European Journal, 2020, 26, 2060-2066.	1.7	2
1368	Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarinâ€Decorated Cu 24 L 24 Metal–Organic Cages as Junctions. Angewandte Chemie, 2020, 132, 2806-2814.	1.6	12
1369	Photoinduced, Direct C(sp ²)â^'H Bond Azo Coupling of Imidazoheteroarenes and Imidazoanilines with Aryl Diazonium Salts Catalyzed by Eosinâ€Y. Chemistry - A European Journal, 2020, 26, 4461-4466.	1.7	35
1370	Metal-Free Difluoromethylselenolation of Arylamines Under Visible-Light Photocatalysis. Journal of Organic Chemistry, 2020, 85, 1224-1231.	1.7	27
1371	Dialkylation of 1,3-Dienes by Dual Photoredox and Chromium Catalysis. ACS Catalysis, 2020, 10, $1621-1627$.	5.5	116
1372	Visibleâ€Lightâ€Induced Selective Defluoroborylation of Polyfluoroarenes, <i>yem</i> â€Difluoroalkenes, and Trifluoromethylalkenes. Angewandte Chemie - International Edition, 2020, 59, 4009-4016.	7.2	146
1373	Towards Visibleâ€Light Photocatalytic Reduction of Hypercoordinated Silicon Species. Helvetica Chimica Acta, 2020, 103, e1900238.	1.0	2

#	Article	IF	Citations
1374	Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS Catalysis, 2020, 10, 1334-1343.	5 . 5	79
1375	Photoinduced deaminative strategies: Katritzky salts as alkyl radical precursors. Chemical Communications, 2020, 56, 503-514.	2.2	116
1376	Tailorable carbazolyl cyanobenzene-based photocatalysts for visible light-induced reduction of aryl halides. Chinese Chemical Letters, 2020, 31, 1899-1902.	4.8	31
1377	Mechanistic Insights on Concentrated Lithium Salt/Nitroalkane Electrolyte Based on Analogy with Fluorinated Alcohols. European Journal of Organic Chemistry, 2020, 2020, 570-574.	1.2	24
1378	Recent advances in catalyst-free photochemical reactions via electron-donor-acceptor (EDA) complex process. Tetrahedron Letters, 2020, 61, 151506.	0.7	148
1379	Recent progress in the development of transition-metal based photoredox catalysts. Coordination Chemistry Reviews, 2020, 405, 213129.	9.5	154
1380	Visible-Light Photoredox-Catalyzed Regioselective Sulfonylation of Alkenes Assisted by Oximes via [1,5]-H Migration. Journal of Organic Chemistry, 2020, 85, 564-573.	1.7	35
1381	Synthesis, optical, and thermal properties of 2,4,6-tris(4-substituted phenyl)pyrylium tosylates and triflimides. Journal of Molecular Structure, 2020, 1202, 127325.	1.8	9
1382	Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies. ACS Catalysis, 2020, 10, 210-215.	5 . 5	51
1383	Organo Photoinduced Decarboxylative Alkylation of Coumarins with <i>N</i> -(Acyloxy)phthalimide. Journal of Organic Chemistry, 2020, 85, 1193-1201.	1.7	38
1384	A Small All-in-One Photon-Counting Device for Measuring Luminescence Decays to Determine the Lifetimes of Photoexcited Materials. Journal of Chemical Education, 2020, 97, 300-304.	1.1	3
1385	Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers. Angewandte Chemie - International Edition, 2020, 59, 3209-3217.	7.2	98
1386	Tuning Flavinâ€Based Photocatalytic Systems for Application in the Mild Chemoselective Aerobic Oxidation of Benzylic Substrates. European Journal of Organic Chemistry, 2020, 2020, 1579-1585.	1.2	30
1387	Modifying Positional Selectivity in C–H Functionalization Reactions with Nitrogen-Centered Radicals: Generalizable Approaches to 1,6-Hydrogen-Atom Transfer Processes. Synlett, 2020, 31, 102-116.	1.0	34
1388	Synthetische Photoelektrochemie. Angewandte Chemie, 2020, 132, 11828-11844.	1.6	40
1389	Synthetic Photoelectrochemistry. Angewandte Chemie - International Edition, 2020, 59, 11732-11747.	7.2	261
1390	Photosensitizerâ€catalyzed Addition Reactions of <i>N</i> à€Î±â€Trimethylsilylâ€ <i>N</i> â€Alkylglycinates to Dimethyl Acetylenedicarboxylate. Bulletin of the Korean Chemical Society, 2020, 41, 205-208.	1.0	2
1391	Visible-light-induced aerobic epoxidation in cyclic ether: Synthesis of spiroepoxyoxindole derivatives. Tetrahedron Letters, 2020, 61, 151578.	0.7	13

#	ARTICLE	IF	CITATIONS
1392	Laser Flash Photolysis Studies on Radical Monofluoromethylation by (Diarylamino)naphthalene Photoredox Catalysis: Long Lifetime of the Excited State is Not Always a Requisite. Journal of Organic Chemistry, 2020, 85, 13220-13227.	1.7	18
1393	Aggregation-induced photocatalytic activity and efficient photocatalytic hydrogen evolution of amphiphilic rhodamines in water. Chemical Science, 2020, 11, 11843-11848.	3.7	19
1394	General Access to <i>C</i> Centered Radicals: Combining a Bioinspired Photocatalyst with Boronic Acids in Aqueous Media. ACS Catalysis, 2020, 10, 12727-12737.	5.5	47
1395	Visible light driven generation and alkyne insertion reactions of stable bis-cyclometalated Pt(<scp>iv</scp>) hydrides. Chemical Science, 2020, 11, 12095-12102.	3.7	9
1396	Visibleâ€Light Photoredox Alkylation of Heteroaromatic Bases Using Ethyl Acetate as Alkylating Agent. European Journal of Organic Chemistry, 2020, 2020, 6447-6454.	1.2	6
1397	Visibleâ€Lightâ€Enabled Câ^'H Functionalization by a Direct Hydrogen Atom Transfer Uranyl Photocatalyst. Chemistry - A European Journal, 2020, 26, 16521-16529.	1.7	35
1398	Visible Light Photocatalytic Synthesis of Tetrahydroquinolines Under Batch and Flow Conditions. European Journal of Organic Chemistry, 2020, 2020, 5995-5999.	1.2	13
1399	Visible-Light Photocatalysis as an Enabling Technology for Drug Discovery: A Paradigm Shift for Chemical Reactivity. ACS Medicinal Chemistry Letters, 2020, 11, 2120-2130.	1.3	63
1400	Shining Light on Câ^'S Bonds: Recent Advances in Câ^'C Bond Formation Reactions via Câ^'S Bond Cleavage under Photoredox Catalysis. Chemistry - an Asian Journal, 2020, 15, 3637-3659.	1.7	30
1401	Organo-photoredox catalyzed defluoroacetalation of $\hat{l}\pm$ -trifluoromethyl alkenes for synthesis of masked \hat{l}^3 , \hat{l}^3 -difluoroallylic aldehydes. Tetrahedron Letters, 2020, 61, 152369.	0.7	15
1402	Foldamer Catalysis. Journal of the American Chemical Society, 2020, 142, 17211-17223.	6.6	70
1403	Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nature Chemistry, 2020, 12, 990-1004.	6.6	113
1404	Nucleophilic Transformations of Lewis Acid-Activated Disubstituted Epoxides with Catalyst-Controlled Regioselectivity. Journal of Organic Chemistry, 2020, 85, 13391-13414.	1.7	27
1405	Development of a Platform for Near-Infrared Photoredox Catalysis. ACS Central Science, 2020, 6, 2053-2059.	5.3	95
1406	Phenylene-bridged bis(benzimidazolium) (BBIm ²⁺): a dicationic organic photoredox catalyst. Chemical Science, 2020, 11, 12109-12117.	3.7	6
1407	Rational synthetic methods in creating promising (hetero)aromatic molecules and materials. Mendeleev Communications, 2020, 30, 537-554.	0.6	17
1408	"Metal-Free―Nanoassemblies of AIEE-ICT-Active Pyrazine Derivative: Efficient Photoredox System for the Synthesis of Benzimidazoles. Journal of Organic Chemistry, 2020, 85, 13906-13919.	1.7	23
1410	Catalytic, Metal-Free Amide Synthesis from Aldehydes and Imines Enabled by a Dual-Catalyzed Umpolung Strategy under Redox-Neutral Conditions. ACS Catalysis, 2020, 10, 12960-12966.	5.5	66

#	Article	IF	CITATIONS
1411	Denitrative thiocyanation of \hat{l}^2 -nitrostyrenes through visible light photoredox catalysis: An easy access to (E)-vinyl thiocyanates. Tetrahedron Letters, 2020, 61, 152505.	0.7	8
1412	A stable, highly oxidizing radical cation. New Journal of Chemistry, 2020, 44, 18138-18148.	1.4	8
1413	NaHSO ₄ /SiO ₂ catalyzed generation of <i>>o</i> -quinone/ <i>o</i> -thioquinone methides: synthesis of arylxanthenes/ arylthioxanthenes <i>via</i> oxa-6Ï€-electrocyclization. Organic and Biomolecular Chemistry, 2020, 18, 8653-8667.	1.5	5
1414	Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorganic Chemistry, 2020, 59, 14838-14846.	1.9	10
1415	Photochemical methods for deuterium labelling of organic molecules. Green Chemistry, 2020, 22, 7725-7736.	4.6	36
1416	The direct C3 chalcogenylation of indolines using a graphene-oxide-promoted and visible-light-induced synergistic effect. New Journal of Chemistry, 2020, 44, 17245-17251.	1.4	10
1417	Formal Bromine Atom Transfer Radical Addition of Nonactivated Bromoalkanes Using Photoredox Gold Catalysis. Organic Letters, 2020, 22, 8401-8406.	2.4	20
1418	Photoredox and Weak Brønsted Base Dual Catalysis: Alkylation of α-Thio Alkyl Radicals. ACS Catalysis, 2020, 10, 12590-12595.	5.5	30
1419	Threeâ€Component C–H Bond Sulfonylation of Imidazoheterocycles by Visibleâ€Light Organophotoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 6653-6660.	1.2	25
1420	Visible-light-induced cascade dearomatization cyclization between alkynes and indole-derived bromides: a facile strategy to synthesize spiroindolenines. Chemical Communications, 2020, 56, 14047-14050.	2.2	13
1421	Recent Advances in Catalytic Synthesis of Benzosultams. Molecules, 2020, 25, 4367.	1.7	26
1422	Visibleâ€Light Photoredoxâ€Catalyzed Ringâ€Opening Carboxylation of Cyclic Oxime Esters with CO ₂ . ChemSusChem, 2020, 13, 6312-6317.	3.6	28
1423	Visibleâ€Light Cercosporin Catalyzed Sulfenylation of Electronâ€Rich Compounds with Thiols under Transitionâ€Metalâ€Free Conditions. ChemistrySelect, 2020, 5, 11583-11589.	0.7	10
1424	Visible light-mediated transition metal-free esterification of amides with boronic acids. Tetrahedron Letters, 2020, 61, 152444.	0.7	4
1425	Metal-Free Indole–Phenacyl Bromide Cyclization: A Regioselective Synthesis of 3,5-Diarylcarbazoles. Journal of Organic Chemistry, 2020, 85, 13272-13279.	1.7	9
1426	Visible-Light-Induced Dearomatization via [2+2] Cycloaddition or 1,5-Hydrogen Atom Transfer: Divergent Reaction Pathways of Transient Diradicals. ACS Catalysis, 2020, 10, 12618-12626.	5.5	50
1427	Visible light mediated photocatalytic [2 + 2] cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Communications Chemistry, 2020, 3, .	2.0	11
1428	Visible-light-enabled aerobic oxidative C _{sp3} â€"H functionalization of glycine derivatives using an organic photocatalyst: access to substituted quinoline-2-carboxylates. Organic and Biomolecular Chemistry, 2020, 18, 8179-8185.	1.5	22

#	Article	IF	CITATIONS
1429	The Hofmann reaction involving annulation of $\langle i \rangle \circ \langle i \rangle - (pyridin-2-yl)$ arryl amides selectively and rapidly leads to potential photocatalytically active $6 \langle i \rangle H \langle i \rangle - pyrido[1,2-\langle i \rangle \circ \langle i \rangle]$ quinazolin-6-one derivatives. Green Chemistry, 2020, 22, 7955-7961.	4.6	11
1430	Recent advances for the photoinduced C C bond cleavage of cycloketone oximes. Chinese Chemical Letters, 2020, 31, 3083-3094.	4.8	96
1431	Direct C(sp ³)â€"N Radical Coupling: Photocatalytic Câ€"H Functionalization by Unconventional Intermolecular Hydrogen Atom Transfer to Aryl Radical. Organic Letters, 2020, 22, 6112-6116.	2.4	28
1432	Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS Catalysis, 2020, 10, 9170-9196.	5.5	226
1433	External-photocatalyst-free visible-light-mediated aerobic oxidation and 1,4-bisfunctionalization of <i>N</i> -alkyl isoquinolinium salts. Organic Chemistry Frontiers, 2020, 7, 2405-2413.	2.3	20
1434	Enantioselective Remote C(sp ³)–H Cyanation via Dual Photoredox and Copper Catalysis. Organic Letters, 2020, 22, 5910-5914.	2.4	54
1435	Dithioacetalization or thioetherification of benzyl alcohols using 9-mesityl-10-methylacridinium perchlorate photocatalyst. Chemical Communications, 2020, 56, 10211-10214.	2.2	19
1436	Selectivity control in thiol–yne click reactions <i>via</i> visible light induced associative electron upconversion. Chemical Science, 2020, 11, 10061-10070.	3.7	47
1437	Organocatalyzed Birch Reduction Driven by Visible Light. Journal of the American Chemical Society, 2020, 142, 13573-13581.	6.6	144
1438	Visible-light-induced radical cascade cyclization of pyrazoles bearing a coumarin unit. New Journal of Chemistry, 2020, 44, 13350-13356.	1.4	7
1439	Photorelease of Pyridines Using a Metalâ€Free Photoremovable Protecting Group. Angewandte Chemie - International Edition, 2020, 59, 18386-18389.	7.2	22
1440	In Situ-Generated Halogen-Bonding Complex Enables Atom Transfer Radical Addition (ATRA) Reactions of Olefins. Journal of Organic Chemistry, 2020, 85, 10574-10583.	1.7	36
1441	New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Central Science, 2020, 6, 1317-1340.	5.3	270
1442	Divergent g-C3N4-catalyzed Reactions of Quinoxalin-2(1H)-ones with N-Aryl Glycines under Visible Light: Solvent-Controlled Hydroaminomethylation and Annulation. ACS Sustainable Chemistry and Engineering, 2020, , .	3.2	13
1443	Organophotoredox/palladium dual catalytic decarboxylative Csp ³ 6€-electrophiles. Chemical Science, 2020, 11, 8167-8175.	3.7	24
1444	Electronically Governed ROMP: Expanding Sequence Control for Donor–Acceptor Conjugated Polymers. Synlett, 2020, 31, 1435-1442.	1.0	2
1445	Selective 1,2â€Arylâ€Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis. Angewandte Chemie, 2020, 132, 18066-18072.	1.6	12
1446	Visible Light-Induced α-C(sp3)–H Acetalization of Saturated Heterocycles Catalyzed by a Dimeric Gold Complex. Organic Letters, 2020, 22, 5844-5849.	2.4	27

#	Article	IF	CITATIONS
1447	Enhanced Photodegradation of Synthetic Dyes Mediated by Ag3PO4-Based Semiconductors under Visible Light Irradiation. Catalysts, 2020, 10, 774.	1.6	21
1448	Photorelease of Pyridines Using a Metalâ€Free Photoremovable Protecting Group. Angewandte Chemie, 2020, 132, 18544-18547.	1.6	5
1449	Acid Catalysis via Acidâ€Promoted Electron Transfer. Bulletin of the Korean Chemical Society, 2020, 41, 1217-1232.	1.0	28
1450	Eosin Y-Catalyzed Synthesis of 3-Aminoimidazo[1,2- <i>a</i> Pyridines via the HAT Process under Visible Light through Formation of the C–N Bond. ACS Omega, 2020, 5, 29854-29863.	1.6	30
1451	Manufacturing chemicals with light: any role in the circular economy?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190260.	1.6	5
1452	Oxidative Photocatalytic Homo- and Cross-Coupling of Phenols: Nonenzymatic, Catalytic Method for Coupling Tyrosine. ACS Catalysis, 2020, 10, 14615-14623.	5.5	27
1453	Design of a Kilogram Scale, Plug Flow Photoreactor Enabled by High Power LEDs. Organic Process Research and Development, 2020, 24, 2935-2940.	1.3	42
1454	Transition Metal-Free Supramolecular Photoredox Catalysis in Water: A Phenoxazine Photocatalyst Encapsulated in V-Shaped Aromatic Amphiphiles. ACS Catalysis, 2020, 10, 14283-14289.	5.5	30
1455	Visible-light photoredox-catalyzed C–O bond cleavage of diaryl ethers by acridinium photocatalysts at room temperature. Nature Communications, 2020, 11, 6126.	5.8	39
1456	Recent Advances in Plasmon-Promoted Organic Transformations Using Silver-Based Catalysts. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54266-54284.	4.0	49
1457	Visible-light-mediated C3-ethoxycarbonylmethylation of imidazo[1,2-a]pyridines and convenient access to Zolpidem. Tetrahedron Letters, 2020, 61, 152606.	0.7	8
1458	Photocatalytic strategies for the activation of organic chlorides. Nature Catalysis, 2020, 3, 872-886.	16.1	118
1459	Discovery of Oxygen \hat{l} ±-Nucleophilic Addition to \hat{l} ±, \hat{l} 2-Unsaturated Amides Catalyzed by Redox-Neutral Organic Photoreductant. Journal of the American Chemical Society, 2020, 142, 20942-20947.	6.6	39
1460	Catalyst-free, visible-light-promoted S–H insertion reaction between thiols and α-diazoesters. Organic and Biomolecular Chemistry, 2020, 18, 9494-9498.	1.5	22
1461	Visibleâ€Light Photoredox Catalyzed Câ^'N Coupling of Quinoxalineâ€2(1 <i>H</i>)â€ones with Azoles without External Photosensitizer. ChemCatChem, 2020, 12, 5261-5268.	1.8	31
1462	Investigation of Straightforward, Photoinduced Alkylations of Electronâ€Rich Heterocompounds with Electronâ€Deficient Alkyl Bromides in the Sole Presence of 2,6â€Lutidine. European Journal of Organic Chemistry, 2020, 2020, 6192-6198.	1.2	11
1463	Triplet Energy Transfer Photocatalysis: Unlocking the Next Level. CheM, 2020, 6, 1888-1903.	5.8	304
1464	Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chemical Reviews, 2020, 120, 9790-9833.	23.0	241

#	Article	lF	CITATIONS
1465	9,9-Dimethyl Dihydroacridine-Based Organic Photocatalyst for Atom Transfer Radical Polymerization from Modifying "Unstable―Electron Donor. Macromolecules, 2020, 53, 7053-7062.	2.2	19
1466	Visible-light-induced [4 + 2] cycloaddition of pentafulvenes by organic photoredox catalysis. Organic and Biomolecular Chemistry, 2020, 18, 8074-8078.	1.5	20
1467	Visibleâ€Light Photoredoxâ€Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO ₂ . Angewandte Chemie, 2020, 132, 21307-21314.	1.6	21
1468	Radicalâ€Cation Cascade to Aryltetralin Cyclic Ether Lignans Under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2020, 132, 21381-21388.	1.6	2
1469	Visible-light-induced regioselective cross-dehydrogenative coupling of 2-isothiocyanatonaphthalenes with amines using molecular oxygen. Science China Chemistry, 2020, 63, 1652-1658.	4.2	72
1470	9,10-Dihydroanthracene auto-photooxidation efficiently triggered photo-catalytic oxidation of organic compounds by molecular oxygen under visible light. Molecular Catalysis, 2020, 494, 111127.	1.0	8
1471	A straightforward synthesis of a new family of molecules: 2,5,8-trialkoxyheptazines. Application to photoredox catalyzed transformations. Chemical Communications, 2020, 56, 10742-10745.	2.2	21
1472	Visible-light-promoted oxidative halogenation of (hetero)arenes. Green Chemistry, 2020, 22, 5989-5994.	4.6	32
1473	Visible light photocatalysis $\hat{a} \in \text{``from racemic to asymmetric activation strategies. Chemical Communications, 2020, 56, 11169-11190.}$	2.2	71
1474	Photophysical characterization of new osmium (II) photocatalysts for hydrohalic acid splitting. Journal of Chemical Physics, 2020, 153, 054307.	1.2	5
1475	Light opens a new window for N-heterocyclic carbene catalysis. Chemical Science, 2020, 11, 10605-10613.	3.7	114
1476	i-Propylammonium Lead Chloride Based Perovskite Photocatalysts for Depolymerization of Lignin Under UV Light. Molecules, 2020, 25, 3520.	1.7	12
1477	Solid-state white-light emission from a pyrylium dye obtained in one synthetic step. Journal of Materials Chemistry C, 2020, 8, 14348-14352.	2.7	5
1478	BI-OAc-Accelerated C3–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones under Visible-Light Irradiation. Organic Letters, 2020, 22, 5984-5989.	2.4	101
1479	Stereoconvergent Reduction of Activated Alkenes by a Nicotinamide Free Synergistic Photobiocatalytic System. ACS Catalysis, 2020, 10, 9431-9437.	5.5	13
1480	Femtosecond excited state dynamics of stilbene–viologen complexes with a weakly pronounced charge transfer. Photochemical and Photobiological Sciences, 2020, 19, 1189-1200.	1.6	0
1481	When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein Journal of Organic Chemistry, 2020, 16, 1754-1804.	1.3	66
1482	Graphitic Carbon Nitride Polymer as a Recyclable Photoredox Catalyst for Decarboxylative Alkynylation of Carboxylic Acids. Advanced Synthesis and Catalysis, 2020, 362, 3898-3904.	2.1	20

#	Article	IF	CITATIONS
1483	Cooperative NHC and Photoredox Catalysis for the Synthesis of βâ€Trifluoromethylated Alkyl Aryl Ketones. Angewandte Chemie - International Edition, 2020, 59, 19956-19960.	7.2	162
1484	Shining Light on Ti ^{IV} Complexes: Exceptional Tools for Metallaphotoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 6955-6965.	1.2	37
1485	Extending the Library of Lightâ€Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem, 2020, 12, 4044-4051.	1.8	13
1486	Visible-Light-Induced Beckmann Rearrangement by Organic Photoredox Catalysis. Organic Letters, 2020, 22, 6182-6186.	2.4	26
1487	Visible light-induced photocatalytic C–H ethoxycarbonylmethylation of imidazoheterocycles with ethyl diazoacetate. RSC Advances, 2020, 10, 27984-27988.	1.7	20
1488	Activityâ€Directed Synthesis: A Flexible Approach for Lead Generation. ChemMedChem, 2020, 15, 1776-1782.	1.6	3
1489	Renewable resources for sustainable metallaelectro-catalysed C–H activation. Chemical Science, 2020, 11, 8657-8670.	3.7	69
1490	Oxidative Sulfonylation of Multiple Carbonâ€Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Advanced Synthesis and Catalysis, 2020, 362, 4579-4654.	2.1	67
1491	Radicalâ€Cation Cascade to Aryltetralin Cyclic Ether Lignans Under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 21195-21202.	7.2	18
1492	Visibleâ€Light Photoredoxâ€Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 21121-21128.	7.2	102
1493	Rational Design of Triplet Sensitizers for the Transfer of Excited State Photochemistry from UV to Visible. Journal of the American Chemical Society, 2020, 142, 14947-14956.	6.6	72
1494	Mn-Catalysed photoredox hydroxytrifluoromethylation of aliphatic alkenes using CF3SO2Na. Organic and Biomolecular Chemistry, 2020, 18, 6483-6486.	1.5	13
1495	Multifaceted aspects of charge transfer. Physical Chemistry Chemical Physics, 2020, 22, 21583-21629.	1.3	26
1496	Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy. ACS Applied Materials & Supplementary Ligand Strategy. ACS Applied Materials & Supplementary Ligand Strategy.	4.0	27
1497	Computational Modeling of Selected Photoactivated Processes. Topics in Organometallic Chemistry, 2020, , 131-152.	0.7	0
1498	Photocatalytic Unsymmetrical Coupling of 2-Substituted Quinolines: Synthesis and Evaluation of the Antiplasmodial Potential of \hat{l}^2 -Norbenzomorphan Frameworks. ACS Sustainable Chemistry and Engineering, 2020, 8, 12902-12910.	3.2	10
1499	Emerging Organic Photoredox Catalysts for Organic Transformations. European Journal of Organic Chemistry, 2020, 2020, 6028-6043.	1,2	105
1500	Development of Brønsted Base–Photocatalyst Hybrid Systems for Highly Efficient C–C Bond Formation Reactions of Malonates with Styrenes. ACS Catalysis, 2020, 10, 10546-10550.	5.5	27

#	Article	IF	CITATIONS
1501	Visible light-enabled selective depolymerization of oxidized lignin by an organic photocatalyst. Chemical Communications, 2020, 56, 11243-11246.	2.2	40
1502	Photocatalytic Hydroacylation of Alkenes by Directly Using Acyl Oximes. Journal of Organic Chemistry, 2020, 85, 11989-11996.	1.7	29
1503	Visible-Light-Induced Phosphorylation of Imidazo-Fused Heterocycles under Metal-Free Conditions. Journal of Organic Chemistry, 2020, 85, 14744-14752.	1.7	29
1504	Photocatalytic Decarboxylative $[2+2+\langle i\rangle m\langle i\rangle]$ Cyclization of 1,7-Enynes Mediated by Tricyclohexylphosphine and Potassium Iodide. Organic Letters, 2020, 22, 8819-8823.	2.4	48
1505	Enhanced intersystem crossing of boron dipyrromethene by TEMPO radical. Journal of Chemical Physics, 2020, 153, 154201.	1.2	6
1506	Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chemical Reviews, 2020, 120, 13135-13272.	23.0	296
1507	Visible light driven perovskite-based photocatalysts: A new candidate for green organic synthesis by photochemical protocol. Current Research in Green and Sustainable Chemistry, 2020, 3, 100031.	2.9	33
1508	Visible-Light-Promoted Photoredox Dehydrogenative Coupling of Phosphines and Thiophenols. Organic Letters, 2020, 22, 7373-7377.	2.4	7
1509	Leadâ€halides Perovskite Visible Light Photoredox Catalysts for Organic Synthesis. Chemical Record, 2020, 20, 1181-1197.	2.9	10
1510	Visible-Light-Mediated Aminoquinolate Diarylboron-Catalyzed Metal-Free Hydroxylation of Organoboronic Acids under Air and Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 13894-13899.	3.2	21
1511	Applications of Sensitized Semiconductors as Heterogeneous Visible-Light Photocatalysts in Organic Synthesis. ACS Sustainable Chemistry and Engineering, 2020, 8, 15405-15429.	3.2	59
1512	Dynamic, multimodal hydrogel actuators using porphyrin-based visible light photoredox catalysis in a thermoresponsive polymer network. Chemical Science, 2020, 11, 10910-10920.	3.7	18
1513	Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis. Beilstein Journal of Organic Chemistry, 2020, 16, 2151-2192.	1.3	31
1514	Visible-Light-Mediated C–H Alkylation of Pyridine Derivatives. Organic Letters, 2020, 22, 7671-7675.	2.4	46
1515	Preparation of Chiral Photosensitive Organocatalysts and Their Application for the Enantioselective Synthesis of 1,2-Diamines. Journal of Organic Chemistry, 2020, 85, 12843-12855.	1.7	19
1516	Recent Synthetic Applications of the Hypervalent Iodine(III) Reagents in Visible-Light-Induced Photoredox Catalysis. Frontiers in Chemistry, 2020, 8, 551159.	1.8	20
1517	Effects of Ligand Substitution on the Optical and Electrochemical Properties of (Pyridinedipyrrolide)zirconium Photosensitizers. Inorganic Chemistry, 2020, 59, 14716-14730.	1.9	22
1518	Control of Chemoselectivity of SET-Promoted Photoaddition Reactions of Fullerene C $<$ sub $>$ 60 $<$ /sub $>$ with Î \pm -Trimethylsilyl Group-Containing $<$ i $>N<$ /i $>$ -Alkylglycinates Yielding Aminomethyl-1,2-dihydrofullerenes or Fulleropyrrolidines. Journal of Organic Chemistry, 2020, 85, 12882-12900.	1.7	5

#	Article	IF	Citations
1519	Metal-free visible light-promoted synthesis of isothiazoles: a catalytic approach for N–S bond formation from iminyl radicals under batch and flow conditions. Green Chemistry, 2020, 22, 6792-6797.	4.6	17
1520	Lightâ€Mediated Carboxylation Using Carbon Dioxide. ChemSusChem, 2020, 13, 6201-6218.	3.6	62
1521	Photocatalytic Hydromethylation and Hydroalkylation of Olefins Enabled by Titanium Dioxide Mediated Decarboxylation. Journal of the American Chemical Society, 2020, 142, 17913-17918.	6.6	37
1522	Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie, 2020, 132, 22703-22711.	1.6	5
1523	Singleâ€Electron Transfer in Frustrated Lewis Pair Chemistry. Angewandte Chemie - International Edition, 2020, 59, 22210-22216.	7.2	51
1524	Methods for selective benzylic C–H oxofunctionalization of organic compounds. Russian Chemical Reviews, 2020, 89, 587-628.	2.5	17
1525	Engineering the Chargeâ€Transfer State to Facilitate Spin–Orbit Charge Transfer Intersystem Crossing in Spirobis[anthracene]diones. Angewandte Chemie - International Edition, 2020, 59, 22179-22184.	7.2	44
1526	Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective <i>ortho</i> -C-Alkylation of Anilines with Deactivated Styrene Derivatives and Unactivated Alkenes. ACS Catalysis, 2020, 10, 10794-10802.	5.5	63
1527	Oxidative alkylation of alkenes with carbonyl compounds through concomitant 1,2-aryl migration by photoredox catalysis. New Journal of Chemistry, 2020, 44, 16031-16035.	1.4	9
1528	Recent advances in cobalt-catalyzed allylic functionalization. Organic and Biomolecular Chemistry, 2020, 18, 7740-7750.	1.5	28
1529	Organic synthesis of fixed CO2 using nitrogen as a nucleophilic center. Organic and Biomolecular Chemistry, 2020, 18, 7774-7788.	1.5	11
1530	Radicalâ€Mediated Nonâ€Dearomative Strategies in Construction of Spiro Compounds. Advanced Synthesis and Catalysis, 2020, 362, 4462-4486.	2.1	27
1531	Singleâ€Electron Transfer in Frustrated Lewis Pair Chemistry. Angewandte Chemie, 2020, 132, 22394-22400.	1.6	11
1532	Visible-Light-Driven Catalytic Reductive Carboxylation with CO ₂ . ACS Catalysis, 2020, 10, 10871-10885.	5.5	146
1533	Photocatalyzed allylic derivatization reactions. Catalysis Science and Technology, 2020, 10, 6754-6768.	2.1	5
1534	Visible light promoted cross-dehydrogenative coupling: a decade update. Green Chemistry, 2020, 22, 6632-6681.	4.6	132
1535	Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie - International Edition, 2020, 59, 22514-22522.	7.2	42
1536	Photochemical O–H Functionalization of Aryldiazoacetates with Phenols via Proton Transfer. Organic Letters, 2020, 22, 7225-7229.	2.4	36

#	Article	IF	CITATIONS
1537	Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Organic and Biomolecular Chemistry, 2020, 18, 8294-8345.	1.5	18
1538	Visible-Light-Mediated Trifluoromethylation/Benzylation of Styrenes Catalyzed by 4-CzIPN. Organic Letters, 2020, 22, 7757-7761.	2.4	22
1539	Visibleâ€Light Catalyzed [1+2+2] Cycloaddition Reactions Enabled by the Formation of Methylene Nitrones. Advanced Synthesis and Catalysis, 2020, 362, 5450-5456.	2.1	6
1540	Photocatalytical and Photochemical Generation of Imidoyl Radicals: Synthetic Applications. Advanced Synthesis and Catalysis, 2020, 362, 5196-5218.	2.1	29
1541	Decarboxylative and Deaminative Alkylation of Difluoroenoxysilanes via Photoredox Catalysis: A General Method for Site-Selective Synthesis of Difluoroalkylated Alkanes. Organic Letters, 2020, 22, 7747-7751.	2.4	54
1542	Kooperative NHC―und Photoredoxâ€Katalyse zur Synthese βâ€ŧrifluormethylierter Alkylarylketone. Angewandte Chemie, 2020, 132, 20129-20134.	1.6	28
1543	Engineering the Chargeâ€Transfer State to Facilitate Spin–Orbit Charge Transfer Intersystem Crossing in Spirobis[anthracene]diones. Angewandte Chemie, 2020, 132, 22363-22368.	1.6	11
1544	Transition-Metal-Free and Visible-Light-Mediated Desulfonylation and Dehalogenation Reactions: Hantzsch Ester Anion as Electron and Hydrogen Atom Donor. Journal of Organic Chemistry, 2020, 85, 13481-13494.	1.7	28
1545	Eosin Y-Catalyzed Visible-Light-Mediated Aerobic Transformation of Pyrazolidine-3-One Derivatives. Catalysts, 2020, 10, 981.	1.6	5
1546	Mechanistic Insight into the Photoredox-Nickel-HAT Triple Catalyzed Arylation and Alkylation of α-Amino C _{sp3} –H Bonds. Journal of the American Chemical Society, 2020, 142, 16942-16952.	6.6	69
1547	Progress and Perspectives Beyond Traditional RAFT Polymerization. Advanced Science, 2020, 7, 2001656.	5.6	139
1548	Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical–Radical Cross-Coupling Powered by Visible Light Photocatalysis. Journal of the American Chemical Society, 2020, 142, 16805-16813.	6.6	84
1549	Visible-light-mediated Barbier allylation of aldehydes and ketones <i>via</i> dual titanium and photoredox catalysis. Organic Chemistry Frontiers, 2020, 7, 3434-3438.	2.3	25
1550	A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols. Chemical Communications, 2020, 56, 12443-12446.	2.2	25
1551	Visible-Light-Accelerated Pd-Catalyzed Cascade Addition/Cyclization of Arylboronic Acids to \hat{I}^3 - and \hat{I}^2 -Ketodinitriles for the Construction of 3-Cyanopyridines and 3-Cyanopyrrole Analogues. Journal of Organic Chemistry, 2020, 85, 12482-12504.	1.7	22
1552	Visible-Light-Promoted Site-Selective $\langle i \rangle N \langle i \rangle \langle sup \rangle 1 \langle sup \rangle -Alkylation of Benzotriazoles with \hat{l}_{\pm}-Diazoacetates. Organic Letters, 2020, 22, 7284-7289.$	2.4	34
1553	Visible Light-Driven α-Alkylation of <i>N</i> -Aryl tetrahydroisoquinolines Initiated by Electron Donorâ€"Acceptor Complexes. Organic Letters, 2020, 22, 7290-7294.	2.4	32
1554	The Different Faces of [Ru(bpy) ₃ Cl ₂] and <i>fac</i> [Ir(ppy) ₃] Photocatalysts: Redox Potential Controlled Synthesis of Sulfonylated Fluorenes and Pyrroloindoles from Unactivated Olefins and Sulfonyl Chlorides. Organic Letters, 2020, 22, 7853-7858.	2.4	26

#	Article	IF	CITATIONS
1555	Selective photoredox decarboxylation of α-ketoacids to allylic ketones and 1,4-dicarbonyl compounds dependent on cobaloxime catalysis. Chemical Communications, 2020, 56, 12530-12533.	2.2	25
1556	Visibleâ€Lightâ€Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl ₂ . Angewandte Chemie - International Edition, 2020, 59, 23603-23608.	7.2	75
1557	Photocatalytic Generation of Aminium Radical Cations for C–N Bond Formation. ACS Catalysis, 2020, 10, 11712-11738.	5.5	93
1558	Mechanistic Origin of Photoredox Catalysis Involving Iron(II) Polypyridyl Chromophores. Journal of the American Chemical Society, 2020, 142, 16229-16233.	6.6	52
1559	Spin multiplicity effects in doublet <i>versus</i> singlet emission: the photophysical consequences of a single electron. Chemical Science, 2020, 11, 10212-10219.	3.7	14
1560	Metal-Free ATRP Catalyzed by Visible Light in Continuous Flow. Frontiers in Chemistry, 2020, 8, 740.	1.8	12
1561	Photoredox-catalyzed halotrifluoromethylations of alkynes with triethylammonium halides: synthesis of tetrasubstituted alkenes containing CF ₃ and halogens. Organic Chemistry Frontiers, 2020, 7, 3209-3214.	2.3	13
1562	Colloidal Quantum Dots as Photocatalysts for Triplet Excited State Reactions of Organic Molecules. Journal of the American Chemical Society, 2020, 142, 15219-15229.	6.6	79
1563	Recent advances in tandem selenocyclization and tellurocyclization with alkenes and alkynes. Organic Chemistry Frontiers, 2020, 7, 3100-3119.	2.3	118
1564	Redox-Neutral Photocatalytic Radical Cascade Cyclization for the Synthesis of CH ₂ CN/CF ₂ COOEt/CF ₃ -Containing Benzo[4,5]imidazo[2,1- <i>a</i>)]isoquinolin-6(5 <i>H</i>)-One Derivatives. Journal of Organic Chemistry, 2020. 85, 11892-11901.	1.7	38
1565	Photoredox-catalyzed dicarbofunctionalization of styrenes with amines and CO $<$ sub $>$ 2 $<$ /sub $>$: a convenient access to \hat{I}^3 -amino acids. Green Chemistry, 2020, 22, 5961-5965.	4.6	67
1566	Acyl Radicals from α-Keto Acids Using a Carbonyl Photocatalyst: Photoredox-Catalyzed Synthesis of Ketones. Organic Letters, 2020, 22, 6832-6837.	2.4	45
1567	Perspectives on Dye Sensitization of Nanocrystalline Mesoporous Thin Films. Journal of the American Chemical Society, 2020, 142, 16099-16116.	6.6	21
1568	Visible light-mediated Smiles rearrangements and annulations of non-activated aromatics. Chemical Communications, 2020, 56, 11445-11448.	2.2	20
1569	Benzothiazole Synthesis: Mechanistic Investigation of an In Situ-Generated Photosensitizing Disulfide. Journal of Organic Chemistry, 2020, 85, 11835-11843.	1.7	14
1570	Black TiO ₂ nanoparticles with efficient photocatalytic activity under visible light at low temperature: regioselective C–N bond cleavage toward the synthesis of thioureas, sulfonamides, and propargylamines. Catalysis Science and Technology, 2020, 10, 6825-6839.	2.1	17
1571	The photocatalytic mechanism of organic dithienophosphole derivatives as highly efficient photo-redox catalysts. Physical Chemistry Chemical Physics, 2020, 22, 20721-20731.	1.3	5
1572	Phenylglyoxylic Acid: An Efficient Initiator for the Photochemical Hydrogen Atom Transfer Câ ⁻ 'H Functionalization of Heterocycles. ChemSusChem, 2020, 13, 5934-5944.	3.6	36

#	Article	IF	CITATIONS
1573	Visibleâ€Lightâ€Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl ₂ . Angewandte Chemie, 2020, 132, 23809-23814.	1.6	10
1574	Developments in the Components of Metalâ€Free Photoinitiated Organocatalyzedâ€Atom Transfer Radical Polymerization (Oâ€ATRP). ChemistrySelect, 2020, 5, 14884-14899.	0.7	6
1575	Organophotoredox-Catalyzed Formation of Alkyl–Aryl and â~'Alkyl C–S/Se Bonds from Coupling of Redox-Active Esters with Thio/Selenosulfonates. Organic Letters, 2020, 22, 9562-9567.	2.4	33
1576	Photoredox-Catalyzed Intermolecular Hydroalkylative Dearomatization of Electron-Deficient Indole Derivatives. Organic Letters, 2020, 22, 9699-9705.	2.4	26
1577	Photoredox/Cobalt-Catalyzed C(sp ³)â€"H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. Organic Letters, 2020, 22, 9627-9632.	2.4	26
1578	Oxidative Hydroxylation of Aryl Boronic Acid Catalyzed by Co-porphyrin Complexes via Blue-Light Irradiation. Catalysts, 2020, 10, 1262.	1.6	13
1579	Synthesis of 1,2-Amino Alcohols by Photoredox-Mediated Decarboxylative Coupling of α-Amino Acids and DNA-Conjugated Carbonyls. Organic Letters, 2020, 22, 9484-9489.	2.4	30
1580	Photochemical Câ€"H Silylation and Hydroxymethylation of Pyridines and Related Structures: Synthetic Scope and Mechanisms. ACS Catalysis, 2020, 10, 13710-13717.	5.5	60
1581	Recent applications of Rose Bengal catalysis in N-heterocycles: a short review. RSC Advances, 2020, 10, 39495-39508.	1.7	56
1582	Visible-light mediated, catalyst-free synthesis of 3-indolyl-3-hydroxy oxindoles in water. Sustainable Chemistry and Pharmacy, 2020, 18, 100343.	1.6	4
1583	Visible-light-enabled regioselective aerobic oxidative C(sp2)-H thiocyanation of aromatic compounds by Eosin-Y photocatalyst. Tetrahedron Letters, 2020, 61, 152628.	0.7	10
1584	Emerging Concepts in Carbon Nitride Organic Photocatalysis. ChemPlusChem, 2020, 85, 2499-2517.	1.3	47
1585	Lateral Size Dependence in FRET between Semiconductor Nanoplatelets and Conjugated Fluorophores. Journal of Physical Chemistry C, 2020, 124, 25028-25037.	1.5	7
1586	Organo-photoredox-Catalyzed Atom-Transfer Radical Substitution of Alkenes with α-Carbonyl Alkyl Halides. Organic Letters, 2020, 22, 8952-8956.	2.4	17
1587	Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angewandte Chemie, 2020, 132, 11717-11723.	1.6	24
1588	An Yb(OTf) < sub > 3 < /sub > and visible light relay catalyzed [3 + 2] cycloaddition/[3,3]-rearrangement/[4 + 2] cycloaddition in one pot to prepare oxazonine-fused endoperoxides. Green Chemistry, 2020, 22, 3827-3834.	4.6	28
1589	One-Pot Suzuki-Hydrogenolysis Protocol for the Modular Synthesis of 2,5-Diaryltetrazoles. Journal of Organic Chemistry, 2020, 85, 7413-7423.	1.7	7
1590	State-Dependent Photochemical and Photophysical Behavior of Dithiolate Ester and Trithiocarbonate Reversible Addition–Fragmentation Chain Transfer Polymerization Agents. Journal of Physical Chemistry A, 2020, 124, 4211-4222.	1.1	21

#	Article	IF	CITATIONS
1591	Sunscreen-Assisted Selective Photochemical Transformations. Molecules, 2020, 25, 2125.	1.7	4
1592	Mechanism and Origins of Enantio- and Regioselectivities in Catalytic Asymmetric Minisci-Type Addition to Heteroarenes. Journal of Organic Chemistry, 2020, 85, 7207-7217.	1.7	10
1593	Amphiphilic Polymeric Nanoparticles for Photoredox Catalysis in Water. Chemistry - A European Journal, 2020, 26, 10355-10361.	1.7	30
1594	Recent Progress in Engineering Metal Halide Perovskites for Efficient Visibleâ€Lightâ€Driven Photocatalysis. ChemSusChem, 2020, 13, 4005-4025.	3.6	79
1595	Radical Arylation of Triphenyl Phosphite Catalyzed by Salicylic Acid: Mechanistic Investigations and Synthetic Applications. Journal of Organic Chemistry, 2020, 85, 14473-14485.	1.7	11
1596	Flow Photochemistry as a Tool in Organic Synthesis. Chemistry - A European Journal, 2020, 26, 16952-16974.	1.7	77
1597	Visible-Light-Mediated Access to Phosphate Esters. Organic Letters, 2020, 22, 4404-4407.	2.4	22
1598	Decarboxylative Hydroalkylation of Alkynes via Dual Copper-Photoredox Catalysis. ACS Catalysis, 2020, 10, 6402-6408.	5.5	33
1599	Photoredox Catalysis toward 2-Sulfenylindole Synthesis through a Radical Cascade Process. Organic Letters, 2020, 22, 4266-4271.	2.4	25
1600	Photocatalytic αâ€Tertiary Amine Synthesis via Câ^'H Alkylation of Unmasked Primary Amines. Angewandte Chemie - International Edition, 2020, 59, 14986-14991.	7.2	94
1601	Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chemical Society Reviews, 2020, 49, 3981-4042.	18.7	162
1602	Insights into the Mechanism of Gold(I) Oxidation with Aryldiazonium Salts. Chemistry - A European Journal, 2020, 26, 16206-16221.	1.7	24
1603	Metalâ€Free Photocatalytic Hydrogenation Using Covalent Triazine Polymers. Angewandte Chemie - International Edition, 2020, 59, 14378-14382.	7.2	60
1604	Versatile Visibleâ€Lightâ€Driven Synthesis of Asymmetrical Phosphines and Phosphonium Salts. Chemistry - A European Journal, 2020, 26, 16374-16382.	1.7	38
1605	Recent applications of biphotonic processes in organic synthesis. Organic Chemistry Frontiers, 2020, 7, 1709-1716.	2.3	30
1606	Computational Analysis of Electron Transfer Kinetics for CO ₂ Reduction with Organic Photoredox Catalysts. Journal of Physical Chemistry A, 2020, 124, 5359-5368.	1.1	14
1607	Photochemical synthesis of acetals utilizing Schreiner's thiourea as the catalyst. Green Chemistry, 2020, 22, 3539-3545.	4.6	34
1608	Photoredox Functionalization of 3-Halogenchromones, 3-Formylchromones, and Chromone-3-carboxylic Acids: Routes to 3-Acylchromones. Journal of Organic Chemistry, 2020, 85, 7152-7174.	1.7	13

#	Article	IF	CITATIONS
1609	Visible Lightâ€Triggered βâ€Allylation of Indoles Using Baylisâ€Hillman Bromides. Asian Journal of Organic Chemistry, 2020, 9, 1213-1216.	1.3	4
1610	Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chemical Reviews, 2020, 120, 5637-5681.	23.0	154
1611	Configuration mixing upon reorganization of dihedral angle induces rapid intersystem crossing in organic photoredox catalyst. Physical Chemistry Chemical Physics, 2020, 22, 13292-13298.	1.3	5
1612	Synthesis of new fluorescent pyrylium dyes and study of their interaction with <i>N</i> -protected amino acids. New Journal of Chemistry, 2020, 44, 9509-9521.	1.4	7
1613	3d metallaelectrocatalysis for resource economical syntheses. Chemical Society Reviews, 2020, 49, 4254-4272.	18.7	150
1614	Photocatalytic Synthesis of Stilbenes via Crossâ€Coupling of Alkenyl Boronic Acids and Arenediazonium Tetrafluoroborate Salts. ChemPhotoChem, 2020, 4, 713.	1.5	6
1615	Development and Execution of a Production-Scale Continuous [2 + 2] Photocycloaddition. Organic Process Research and Development, 2020, 24, 2139-2146.	1.3	31
1616	Oxidative C–S Bond Cleavage of Benzyl Thiols Enabled by Visible-Light-Mediated Silver(II) Complexes. Organic Letters, 2020, 22, 4395-4399.	2.4	17
1617	Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catalysis, 2020, 10, 8344-8394.	5 . 5	188
1618	High-throughput Synthesis and Screening of Iridium(III) Photocatalysts for the Fast and Chemoselective Dehalogenation of Aryl Bromides. ACS Catalysis, 2020, 10, 6977-6987.	5.5	28
1619	Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C–H bonds. Green Chemistry, 2020, 22, 4357-4363.	4.6	68
1620	Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis. Beilstein Journal of Organic Chemistry, 2020, 16, 1163-1187.	1.3	82
1621	Visible-Light-Driven Triplet Sensitization of Polycyclic Aromatic Hydrocarbons Using Thionated Perinones. Journal of Physical Chemistry Letters, 2020, 11, 5092-5099.	2.1	23
1622	Redox Potential Controlled Selective Oxidation of Styrenes for Regio- and Stereoselective Crossed Intermolecular [2 + 2] Cycloaddition <i>via</i> Organophotoredox Catalysis. Organic Letters, 2020, 22, 5207-5211.	2.4	21
1623	Direct C–H Arylation of Aldehydes by Merging Photocatalyzed Hydrogen Atom Transfer with Palladium Catalysis. ACS Catalysis, 2020, 10, 7543-7551.	5.5	80
1624	Design and Evaluation of Artificial Hybrid Photoredox Biocatalysts. ChemBioChem, 2020, 21, 3146-3150.	1.3	10
1625	Nickel-Catalyzed Sonogashira C(sp)–C(sp ²) Coupling through Visible-Light Sensitization. Journal of Organic Chemistry, 2020, 85, 9201-9212.	1.7	46
1626	Oxidative Amidation of Amines in Tandem with Transamidation: AÂRoute to Amides Using Visible-Light Energy. Journal of Organic Chemistry, 2020, 85, 9219-9229.	1.7	28

#	Article	IF	CITATIONS
1627	Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy. Organic Process Research and Development, 2020, 24, 2208-2216.	1.3	50
1628	Surfaceâ€Plasmonicâ€Fieldâ€Induced Photoredox Catalysis and Mediated Electron Transfer for Washingâ€Free DNA Detection. Angewandte Chemie, 2020, 132, 19364-19370.	1.6	0
1629	Advances in the Synthesis of Imineâ€Containing Azaarene Derivatives via Photoredox Catalysis. ChemCatChem, 2020, 12, 4471-4489.	1.8	41
1630	<i>tert</i> -Butyl Bromide-Promoted Intramolecular Cyclization of 2-Arylamino Phenyl Ketones and Its Combination with Cu-Catalyzed C–N Coupling: Synthesis of Acridines at Room Temperature. Journal of Organic Chemistry, 2020, 85, 10167-10174.	1.7	14
1631	Dual aminoquinolate diarylboron and nickel catalysed metallaphotoredox platform for carbon–oxygen bond construction. Chemical Communications, 2020, 56, 8273-8276.	2.2	40
1632	Radical reactions promoted by trivalent tertiary phosphines. Organic Chemistry Frontiers, 2020, 7, 2349-2371.	2.3	52
1633	Photocatalystâ€Free Visibleâ€Light Enabled Synthesis of Substituted Pyrroles from <i>α</i> â€Keto Vinyl Azides. Advanced Synthesis and Catalysis, 2020, 362, 3364-3368.	2.1	18
1634	Thiosulfonylation of Unactivated Alkenes with Visible-Light Organic Photocatalysis. ACS Catalysis, 2020, 10, 8765-8779.	5.5	62
1635	Regioselective, Photocatalytic \hat{l}_{\pm} -Functionalization of Amines. Journal of the American Chemical Society, 2020, 142, 11972-11977.	6.6	54
1636	P/N Heteroleptic Cu(I)-Photosensitizer-Catalyzed Deoxygenative Radical Alkylation of Aromatic Alkynes with Alkyl Aldehydes Using Dipropylamine as a Traceless Linker Agent. ACS Catalysis, 2020, 10, 7563-7572.	5 . 5	26
1637	Visibleâ€Light Photoredoxâ€Catalyzed αâ€Regioselective Conjugate Addition of Allyl Groups to Activated Alkenes. Advanced Synthesis and Catalysis, 2020, 362, 3223-3228.	2.1	11
1638	Ir/Ni Photoredox Dual Catalysis with Heterogeneous Base Enabled by an Oscillatory Plug Flow Photoreactor. Organic Process Research and Development, 2020, 24, 2319-2325.	1.3	41
1639	Intermolecular oxyarylation of olefins with aryl halides and TEMPOH catalyzed by the phenolate anion under visible light. Chemical Science, 2020, 11, 6996-7002.	3.7	40
1640	Photochemical generation of acyl and carbamoyl radicals using a nucleophilic organic catalyst: applications and mechanism thereof. Chemical Science, 2020, 11, 6312-6324.	3.7	63
1641	Metalâ€Free Photocatalytic Hydrogenation Using Covalent Triazine Polymers. Angewandte Chemie, 2020, 132, 14484-14488.	1.6	7
1642	Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catalysis, 2020, 10, 7250-7261.	5.5	112
1643	Photon Transport and Hydrodynamics in Gasâ€Liquid Flow Partâ€2: Characterization of Bubbly Flow in an Advancedâ€Flow Reactor. ChemPhotoChem, 2020, 4, 5193-5200.	1.5	7
1644	Synthetic Organic Design for Solar Fuel Systems. Angewandte Chemie - International Edition, 2020, 59, 17344-17354.	7.2	27

#	Article	IF	CITATIONS
1645	Scalable and Recyclable Heterogeneous Organoâ€photocatalysts on Cotton Threads for Organic and Polymer Synthesis. ChemPhotoChem, 2020, 4, 5201-5208.	1.5	7
1646	Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Progress in Polymer Science, 2020, 107, 101277.	11.8	77
1647	Visible-Light-Mediated Decarboxylative Tandem Carbocyclization of Acrylamide-Attached Alkylidenecyclopropanes: Access to Polycyclic Benzazepine Derivatives. Organic Letters, 2020, 22, 5212-5216.	2.4	14
1648	Synthetic Organic Design for Solar Fuel Systems. Angewandte Chemie, 2020, 132, 17496-17506.	1.6	5
1649	Surfaceâ€Plasmonicâ€Fieldâ€Induced Photoredox Catalysis and Mediated Electron Transfer for Washingâ€Free DNA Detection. Angewandte Chemie - International Edition, 2020, 59, 19202-19208.	7.2	5
1650	Microfluidic electrochemistry for single-electron transfer redox-neutral reactions. Science, 2020, 368, 1352-1357.	6.0	194
1651	Photocatalytic trifluoromethoxylation of arenes and heteroarenes in continuous-flow. Beilstein Journal of Organic Chemistry, 2020, 16, 1305-1312.	1.3	18
1652	Distinctive reactivity of <i>N</i> -benzylidene-[1,1'-biphenyl]-2-amines under photoredox conditions. Beilstein Journal of Organic Chemistry, 2020, 16, 1335-1342.	1.3	1
1653	Visibleâ€Lightâ€Enabled Multicomponent Cascade Transformation from Indoles to 2â€Azidoindolinâ€3â€yl 2â€Aminobenzoates. Advanced Synthesis and Catalysis, 2020, 362, 3131-3136.	2.1	12
1654	Photocatalytic Conversion of Benzyl Alcohols/Methyl Arenes to Aryl Nitriles via Hâ€Abstraction by Azide Radical. Chemistry - A European Journal, 2020, 26, 14070-14074.	1.7	18
1655	Visible Lightâ€Induced Copperâ€Catalyzed Câ€"H Arylation of Benzoxazoles â€. Chinese Journal of Chemistry, 2020, 38, 1299-1303.	2.6	13
1656	Emodin as a novel organic photocatalyst for selective oxidation of sulfides under mild conditions. RSC Advances, 2020, 10, 19747-19750.	1.7	13
1657	Direct regioisomer analysis of crude reaction mixtures <i>via</i> molecular rotational resonance (MRR) spectroscopy. Chemical Science, 2020, 11, 6332-6338.	3.7	18
1658	Modern Synthetic Approaches to Phosphorusâ€Sulfur Bond Formation in Organophosphorus Compounds. Advanced Synthesis and Catalysis, 2020, 362, 2801-2846.	2.1	42
1659	Photoredox Organic Synthesis Employing Heterogeneous Photocatalysts with Emphasis on Halide Perovskite. Chemistry - A European Journal, 2020, 26, 13118-13136.	1.7	39
1660	Visible light promoted formation of N─S bond by photocatalyst Eosin Y. Journal of Heterocyclic Chemistry, 2020, 57, 3493.	1.4	4
1661	Cu–Pd Dinuclear Complexes with Earth-Abundant Cu Photosensitizer: Synthesis and Photopolymerization. Organometallics, 2020, 39, 2464-2469.	1.1	9
1662	Remote Trifluoromethylthiolation Enabled by Organophotocatalytic C–C Bond Cleavage. Organic Letters, 2020, 22, 2579-2583.	2.4	35

#	Article	IF	CITATIONS
1663	Synthesis of an anthraquinone-containing polymeric photosensitizer and its application in aerobic photooxidation of thioethers. RSC Advances, 2020, 10, 10661-10665.	1.7	6
1664	Photocatalytic Synthesis of 3â€Sulfanyl―and 1,3â€Bis(sulfanyl)indolizines Mediated by Visible Light. European Journal of Organic Chemistry, 2020, 2020, 2110-2115.	1.2	30
1665	Recent progress in (hetero)arene cation radical-based heteroarene modification. Organic and Biomolecular Chemistry, 2020, 18, 2975-2990.	1.5	15
1666	Photochemical α-carboxyalkylation of tryptophols and tryptamines via C–H functionalization. Chemical Communications, 2020, 56, 4930-4933.	2.2	2
1667	Visible light promoted C–H functionalization of imidazoheterocycles. Organic and Biomolecular Chemistry, 2020, 18, 2611-2631.	1.5	80
1668	Visibleâ€Lightâ€Promoted Catalytic Ringâ€Opening Isomerization of 1,2â€Disubstituted Cyclopropanols to Linear Ketones. European Journal of Organic Chemistry, 2020, 2020, 2431-2434.	1.2	13
1669	Chemical reactions for building small molecules. , 2020, , 35-82.		2
1670	Visibleâ€Lightâ€Induced Palladiumâ€Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angewandte Chemie - International Edition, 2020, 59, 10316-10320.	7.2	82
1671	Catalytic Decarboxylative Radical Sulfonylation. CheM, 2020, 6, 1149-1159.	5.8	70
1672	Shining Visible Light on Vinyl Halides: Expanding the Horizons of Photocatalysis. Accounts of Chemical Research, 2020, 53, 782-791.	7.6	61
1673	Cobalt–Tertiary-Amine-Mediated Hydroxytrifluoromethylation of Alkenes with CF ₃ Br and Atmospheric Oxygen. ACS Catalysis, 2020, 10, 4012-4018.	5.5	36
1674	Supramolecular Energy Materials. Advanced Materials, 2020, 32, e1907247.	11.1	101
1675	Visible light-mediated, rose Bengal-catalyzed oxidative radical C H cyclization of alkyl 1,1′-biaryl-2-ones: An efficient synthesis of 10-alkylphenanthren-9-ols in water. Tetrahedron Letters, 2020, 61, 151823.	0.7	6
1676	Photostable Polynuclear Ruthenium(II) Photosensitizers Competent for Dehalogenation Photoredox Catalysis at 590 nm. Journal of the American Chemical Society, 2020, 142, 5549-5555.	6.6	32
1677	Mechanistic basis for tuning iridium hydride photochemistry from H2 evolution to hydride transfer hydrodechlorination. Chemical Science, 2020, 11, 6442-6449.	3.7	14
1678	<i>N</i> -Nitroheterocycles: Bench-Stable Organic Reagents for Catalytic <i>Ipso</i> -Nitration of Aryland Heteroarylboronic Acids. Organic Letters, 2020, 22, 2714-2719.	2.4	34
1679	Recent advances in photocatalyzed reactions using well-defined copper(I) complexes. Beilstein Journal of Organic Chemistry, 2020, 16, 451-481.	1.3	58
1680	Sila―and Germacarboxylic Acids: Precursors for the Corresponding Silyl and Germyl Radicals. Angewandte Chemie, 2020, 132, 10726-10731.	1.6	11

#	Article	IF	CITATIONS
1681	Fluoroalkanesulfinate Salts as Dual Fluoroalkyl and SO ₂ Sources: Atom-Economical Fluoroalkyl-Sulfonylation of Alkenes and Alkynes by Photoredox Catalysis. Organic Letters, 2020, 22, 2801-2805.	2.4	27
1682	Photocatalytic C–H Amination of Aromatics Overcoming Redox Potential Limitations. Organic Letters, 2020, 22, 2822-2827.	2.4	16
1683	Enantioselective α-Allylation of Anilines Enabled by a Combined Palladium and Photoredox Catalytic System. ACS Catalysis, 2020, 10, 4710-4716.	5.5	40
1684	Sila―and Germacarboxylic Acids: Precursors for the Corresponding Silyl and Germyl Radicals. Angewandte Chemie - International Edition, 2020, 59, 10639-10644.	7.2	73
1685	Anthraquinones: Versatile Organic Photocatalysts. ChemCatChem, 2020, 12, 3811-3827.	1.8	58
1686	Photoluminescent and Photoresponsive Iptyceneâ€Incorporated Ï€â€Conjugated Systems: Fundamentals and Applications. ChemPhotoChem, 2020, 4, 538-563.	1.5	19
1687	Electrophotocatalytic Decarboxylative Câ^'H Functionalization of Heteroarenes. Angewandte Chemie - International Edition, 2020, 59, 10626-10632.	7.2	161
1688	Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angewandte Chemie - International Edition, 2020, 59, 11600-11606.	7.2	36
1689	Insight on the Contribution of Plasmons to Goldâ€Catalyzed Solarâ€Driven Selective Oxidation of Glucose under Oxygen. Solar Rrl, 2020, 4, 2000084.	3.1	8
1690	Visible Light-Induced Homolytic Cleavage of Perfluoroalkyl Iodides Mediated by Phosphines. Molecules, 2020, 25, 1606.	1.7	19
1691	Three-component aminoselenation of alkenes <i>via</i> visible-light enabled Fe-catalysis. Green Chemistry, 2020, 22, 2804-2809.	4.6	79
1692	New Radical Borylation Pathways for Organoboron Synthesis Enabled by Photoredox Catalysis. Angewandte Chemie, 2020, 132, 12976-12984.	1.6	15
1693	Electrophotocatalytic Decarboxylative Câ^'H Functionalization of Heteroarenes. Angewandte Chemie, 2020, 132, 10713-10719.	1.6	30
1694	Photon Equivalents as a Parameter for Scaling Photoredox Reactions in Flow: Translation of Photocatalytic Câr'N Crossâ€Coupling from Lab Scale to Multikilogram Scale. Angewandte Chemie - International Edition, 2020, 59, 11964-11968.	7.2	87
1695	New Radical Borylation Pathways for Organoboron Synthesis Enabled by Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 12876-12884.	7.2	93
1696	Discovery and characterization of an acridine radical photoreductant. Nature, 2020, 580, 76-80.	13.7	277
1697	Site-Selective Thiolation of (Multi)halogenated Heteroarenes. Journal of the American Chemical Society, 2020, 142, 6913-6919.	6.6	42
1698	Synthesis of Unnatural αâ€Amino Acid Derivatives via Lightâ€Mediated Radical Decarboxylative Processes. Advanced Synthesis and Catalysis, 2020, 362, 2354-2359.	2.1	37

#	Article	IF	CITATIONS
1699	Electrochemical Câ^'H Functionalization of (Hetero)Arenesâ€"Optimized by DoE. Chemistry - A European Journal, 2020, 26, 10195-10198.	1.7	35
1700	Photoinduced and Thermal Singleâ€Electron Transfer to Generate Radicals from Frustrated Lewis Pairs. Chemistry - A European Journal, 2020, 26, 9005-9011.	1.7	39
1701	Direct Amination of Aromatic C–H Bonds with Free Amines. Topics in Current Chemistry, 2020, 378, 37.	3.0	32
1702	Rapid Access to Borylated Thiophenes Enabled by Visible Light. Organic Letters, 2020, 22, 3273-3278.	2.4	10
1703	Photoinduced metal-free α-selenylation of ketones. RSC Advances, 2020, 10, 10502-10509.	1.7	11
1704	Photoinitiated decarboxylative C3-difluoroarylmethylation of quinoxalin-2(1 <i>H</i>)-ones with potassium 2,2-difluoro-2-arylacetates in water. RSC Advances, 2020, 10, 10559-10568.	1.7	20
1705	The interplay of conformations and electronic properties in <i>N</i> -aryl phenothiazines. Organic Chemistry Frontiers, 2020, 7, 1206-1217.	2.3	38
1706	Recent developments in photoredox-catalyzed remote <i>ortho</i> and <i>para</i> C–H bond functionalizations. Beilstein Journal of Organic Chemistry, 2020, 16, 248-280.	1.3	18
1707	Kinetically Controlled Radical Addition/Elimination Cascade: From Alkynyl Aziridine to Fluorinated Allenes. Organic Letters, 2020, 22, 2419-2424.	2.4	16
1708	Green Asymmetric Organocatalysis. ChemSusChem, 2020, 13, 2828-2858.	3.6	107
1709	The Dark Side of Photocatalysis: One Thousand Ways to Close the Cycle. European Journal of Organic Chemistry, 2020, 2020, 2783-2806.	1.2	35
1710	Continuous-flow synthesis and application of polymer-supported BODIPY Photosensitisers for the generation of singlet oxygen; process optimised by in-line NMR spectroscopy. Journal of Flow Chemistry, 2020, 10, 327-345.	1.2	20
1711	Cu(II)-Catalyzed Ortho C(sp ²)â€"H Diarylamination of Arylamines To Synthesize Triarylamines. Organic Letters, 2020, 22, 2152-2156.	2.4	15
1712	Effective Approach toward Conjugated Porous Organic Frameworks Based on Phenanthrene Building Blocks: Metal-Free Heterogeneous Photocatalysts. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15108-15114.	4.0	11
1713	Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters, 2020, 5, 1107-1123.	8.8	400
1714	Synthetic Methods Driven by the Photoactivity of Electron Donor–Acceptor Complexes. Journal of the American Chemical Society, 2020, 142, 5461-5476.	6.6	617
1715	Synthesis of monofluorooxazoles with quaternary C–F centers through photoredox-catalyzed radical addition of methylene-2-oxazolines. Organic and Biomolecular Chemistry, 2020, 18, 2223-2226.	1.5	3
1716	Heterogeneous photocatalysis in flow chemical reactors. Beilstein Journal of Organic Chemistry, 2020, 16, 1495-1549.	1.3	54

#	Article	IF	Citations
1717	Transitionâ€Metalâ€Mediated Modification of Biomolecules. Chemistry - A European Journal, 2020, 26, 9792-9813.	1.7	25
1718	Across the Board: Yang Li on Visibleâ€Light Photoredox Catalysis. ChemSusChem, 2020, 13, 3937-3939.	3.6	1
1719	Electrifying green synthesis: recent advances in electrochemical annulation reactions. Green Chemistry, 2020, 22, 4849-4870.	4.6	89
1720	Visible-Light-Induced Decarboxylative Cyclization of 2-Alkenylarylisocyanides with α-Oxocarboxylic Acids: Access to 2-Acylindoles. Journal of Organic Chemistry, 2020, 85, 9503-9513.	1.7	26
1721	Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions. Journal of the American Chemical Society, 2020, 142, 12056-12061.	6.6	79
1722	Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 2020, 10, 709.	1.6	65
1723	Catalytic Allylation of Aldehydes Using Unactivated Alkenes. Journal of the American Chemical Society, 2020, 142, 12374-12381.	6.6	105
1724	Thiophene-embedded conjugated microporous polymers for photocatalysis. Catalysis Science and Technology, 2020, 10, 5171-5180.	2.1	37
1725	Intermolecular Dearomatization of Naphthalene Derivatives by Photoredox atalyzed 1,2â€Hydroalkylation. Angewandte Chemie - International Edition, 2020, 59, 18062-18067.	7.2	38
1726	Carbon Dots as Nano-Organocatalysts for Synthetic Applications. ACS Catalysis, 2020, 10, 8090-8105.	5.5	111
1727	Visible-Light-Enabled <i>Ortho</i> -Selective Aminopyridylation of Alkenes with <i>N</i> -Aminopyridinium Ylides. Journal of the American Chemical Society, 2020, 142, 12420-12429.	6.6	84
1728	Intermolecular Dearomatization of Naphthalene Derivatives by Photoredox atalyzed 1,2â€Hydroalkylation. Angewandte Chemie, 2020, 132, 18218-18223.	1.6	3
1729	Visible-Light-Induced Palladium-Catalyzed Carbocyclization of Unactivated Alkyl Bromides with Alkenes Involving C–I or C–B Coupling. Journal of Organic Chemistry, 2020, 85, 9301-9312.	1.7	11
1730	2. Photophysics of photocatalysts. , 2020, , 17-44.		0
1731	10. Coupling photoredox and biomimetic catalysis for the visible-light-driven oxygenation of organic compounds., 2020,, 223-244.		1
1732	NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2020, 16, 5771-5783.	2.3	56
1733	Electrophotocatalysis: Cyclic Voltammetry as an Analytical Tool. Journal of Physical Chemistry Letters, 2020, 11, 6097-6104.	2.1	14
1734	Visible light photoredox alkylazidation of alkenes with sodium azide and heteroarenium salts: entry to azido-containing 1,4-dihydropyridines. Chemical Communications, 2020, 56, 9549-9552.	2.2	17

#	Article	IF	CITATIONS
1735	Optimization of a Decatungstate-Catalyzed C(sp ³)â€"H Alkylation Using a Continuous Oscillatory Millistructured Photoreactor. Organic Process Research and Development, 2020, 24, 2356-2361.	1.3	37
1736	Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chemical Society Reviews, 2020, 49, 5561-5600.	18.7	75
1737	Heterogeneous carbon nitride photocatalyst for C–C bond oxidative cleavage of vicinal diols in aerobic micellar medium. Green Chemistry, 2020, 22, 5042-5049.	4.6	47
1738	Bimolecular photoinduced electron transfer in non-polar solvents beyond the diffusion limit. Journal of Chemical Physics, 2020, 152, 244501.	1.2	12
1739	12. Excited radical anions and excited anions in visible light photoredox catalysis., 2020,, 285-300.		0
1740	Copper-Catalyzed N,N-Diarylation of Amides for the Construction of 9,10-Dihydroacridine Structure and Applications in the Synthesis of Diverse Nitrogen-Embedded Polyacenes. Organic Letters, 2020, 22, 5417-5422.	2.4	9
1741	Solar-driven tandem photoredox nickel-catalysed cross-coupling using modified carbon nitride. Chemical Science, 2020, 11, 7456-7461.	3.7	47
1742	Lightâ€driven catalysis with engineered enzymes and biomimetic systems. Biotechnology and Applied Biochemistry, 2020, 67, 463-483.	1.4	29
1743	Synthesis of Amino Acids by Base-Enhanced Photoredox Decarboxylative Alkylation of Aldimines. Journal of Organic Chemistry, 2020, 85, 9944-9954.	1.7	29
1744	Visible-Light Photocatalysis of Eosin Y: HAT and Complementing MS-CPET Strategy to Trifluoromethylation of β-Ketodithioesters with Langlois' Reagent. Journal of Organic Chemistry, 2020, 85, 10098-10109.	1.7	18
1745	Light-Mediated Chiral Phosphate Catalysis for Asymmetric Dicarbofunctionalization of Enamides. ACS Catalysis, 2020, 10, 8247-8253.	5.5	40
1746	Selective 1,2â€Arylâ€Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 17910-17916.	7. 2	52
1747	Highâ€performance photocatalysts for the selective oxidation of alcohols to carbonyl compounds. Canadian Journal of Chemical Engineering, 2020, 98, 2259-2293.	0.9	9
1748	Single Electron Activation of Aryl Carboxylic Acids. IScience, 2020, 23, 101266.	1.9	56
1749	The role of photocatalysts in radical chains in homolytic aromatic substitution, radical addition to olefins, and nucleophilic radical substitution mechanisms. Catalysis Science and Technology, 2020, 10, 5113-5128.	2.1	10
1750	Visible <scp>Lightâ€Driven</scp> Cooperative <scp>DPZ</scp> and Chiral <scp>Hydrogenâ€Bonding</scp> Catalysis. Chinese Journal of Chemistry, 2020, 38, 1480-1488.	2.6	39
1751	Chemistry glows green with photoredox catalysis. Nature Communications, 2020, 11, 803.	5.8	231
1752	Visibleâ€Lightâ€Induced Selective Defluoroborylation of Polyfluoroarenes, <i>gem</i> â€Difluoroalkenes, and Trifluoromethylalkenes. Angewandte Chemie, 2020, 132, 4038-4045.	1.6	34

#	Article	IF	CITATIONS
1753	Bioinspired artificial photosynthesis systems. Tetrahedron, 2020, 76, 131024.	1.0	21
1754	Continuous-flow photo-induced decarboxylative annulative access to fused imidazole derivatives <i>via</i> a microreactor containing immobilized ruthenium. Green Chemistry, 2020, 22, 1565-1571.	4.6	19
1755	A General Strategy to Enhance Donorâ€Acceptor Molecules Using Solventâ€Excluding Substituents. Angewandte Chemie, 2020, 132, 4815-4822.	1.6	3
1756	Bromomethyl Silicate: A Robust Methylene Transfer Reagent for Radicalâ€Polar Crossover Cyclopropanation of Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1778-1781.	1.2	23
1757	Visible light initiated amino group <i>ortho</i> directed copper(<scp>i</scp>)-catalysed aerobic oxidative C(sp)â€"S coupling reaction: synthesis of substituted 2-phenylbenzothiazoles <i>via</i> thia-Wolff rearrangement. Chemical Communications, 2020, 56, 3781-3784.	2.2	28
1758	Recent advances in light-regulated non-radical polymerisations. Chemical Society Reviews, 2020, 49, 1867-1886.	18.7	50
1759	Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science, 2020, 367, 1021-1026.	6.0	285
1760	A visible-light photoinduced charge-transfer complex promoted the ring opening of $\langle i \rangle N \langle i \rangle$ -alkyl-4-piperidinols. Green Chemistry, 2020, 22, 2264-2269.	4.6	15
1761	Visibleâ€Lightâ€Driven Photocatalyst―and Additiveâ€Free Crossâ€Coupling of βâ€Ketothioamides with αâ€Dia 1,3â€Diketones: Access to Highly Functionalized Thiazolines. Chemistry - A European Journal, 2020, 26, 8083-8089.	20 1.7	26
1762	Radikale durch Licht – molekularer Baukasten fÃ⅓r komplexe MolekÃ⅓le. Nachrichten Aus Der Chemie, 2020, 68, 80-84.	0.0	0
1763	Organophotoredox assisted cyanation of bromoarenes <i>via</i> silyl-radical-mediated bromine abstraction. Chemical Communications, 2020, 56, 4240-4243.	2.2	29
1764	Dehydrogenation and α-functionalization of secondary amines by visible-light-mediated catalysis. Organic and Biomolecular Chemistry, 2020, 18, 2103-2112.	1.5	14
1765	Recent Developments in Photochemical and Electrochemical Decarboxylative C(sp3)–N Bond Formation. Synthesis, 2020, 52, 1357-1368.	1.2	32
1766	A Unified and Practical Method for Carbon–Heteroatom Crossâ€Coupling using Nickel/Photo Dual Catalysis. Chemistry - A European Journal, 2020, 26, 5168-5173.	1.7	49
1767	New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chemical Reviews, 2020, 120, 2613-2692.	23.0	510
1768	Photoredoxâ€Mediated Netâ€Neutral Radical/Polar Crossover Reactions. Israel Journal of Chemistry, 2020, 60, 281-293.	1.0	108
1769	Deprotonated Salicylaldehyde as Visible Light Photocatalyst. Journal of Organic Chemistry, 2020, 85, 4386-4397.	1.7	19
1770	Visible-light induced disproportionation of pyrrole derivatives for photocatalyst-free aryl halides reduction. Green Chemistry, 2020, 22, 1911-1918.	4.6	24

#	Article	IF	CITATIONS
1771	Visible-light-promoted acyl radical cascade reaction for accessing acylated isoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-dione derivatives. Organic and Biomolecular Chemistry, 2020, 18, 1940-1948.	1.5	25
1772	Protocol for Visible-Light-Promoted Desulfonylation Reactions Utilizing Catalytic Benzimidazolium Aryloxide Betaines and Stoichiometric Hydride Donor Reagents. Journal of Organic Chemistry, 2020, 85, 4344-4353.	1.7	24
1773	Photoredox Catalyst Free, Visible Lightâ€Promoted C3â^'H Acylation of Quinoxalinâ€2(1 <i>H</i>)â€ones in Water. Advanced Synthesis and Catalysis, 2020, 362, 2178-2182.	2.1	76
1774	Frontiers in Radical Fluoromethylation by Visibleâ€Light Organic Photocatalysis. Asian Journal of Organic Chemistry, 2020, 9, 529-537.	1.3	36
1775	The Merger of Photoredox and Cobalt Catalysis. Trends in Chemistry, 2020, 2, 410-426.	4.4	114
1776	Light-Triggered Catalytic Asymmetric Allylic Benzylation with Photogenerated <i>C</i> -Nucleophiles. Journal of Organic Chemistry, 2020, 85, 4463-4474.	1.7	18
1777	Visible-Light Mediated Hydrosilylative and Hydrophosphorylative Cyclizations of Enynes and Dienes. Organic Letters, 2020, 22, 1748-1753.	2.4	36
1778	Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. Journal of Flow Chemistry, 2020, 10, 73-92.	1.2	59
1779	Access to Unnatural α-Amino Acids via Visible-Light-Mediated Decarboxylative Conjugate Addition to Dehydroalanine. Organic Letters, 2020, 22, 2196-2200.	2.4	38
1780	Cp ₂ TiCl ₂ -Catalyzed Photoredox Allylation of Aldehydes with Visible Light. ACS Catalysis, 2020, 10, 3857-3863.	5 . 5	55
1781	Photoregulated reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer Chemistry, 2020, 11, 1830-1844.	1.9	52
1782	Robust Organic Photosensitizers Immobilized on a Vinylimidazolium Functionalized Support for Singlet Oxygen Generation under Continuous-Flow Conditions. Synlett, 2020, 31, 497-501.	1.0	2
1783	Radical Câ^'C Bond Formation using Sulfonium Salts and Light. Advanced Synthesis and Catalysis, 2020, 362, 2135-2142.	2.1	102
1784	Aminomethylation of Oxabenzonorbornadienes via the Merger of Photoredox and Nickel Catalysis. Organic Letters, 2020, 22, 2442-2447.	2.4	17
1785	Visible-Light-Promoted Cascade Radical Cyclization: Synthesis of Chroman-4-ones and Dihydroquinolin-4-ones. Journal of Organic Chemistry, 2020, 85, 3963-3972.	1.7	23
1786	Synthesis of Enantioenriched α-Deuterated α-Amino Acids Enabled by an Organophotocatalytic Radical Approach. Organic Letters, 2020, 22, 1557-1562.	2.4	61
1787	Photocontrolled Radical Polymerization from Hydridic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 4581-4585.	6.6	46
1788	Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers. Nature Communications, 2020, 11, 833.	5.8	130

#	Article	IF	CITATIONS
1789	Mapping the optoelectronic property space of small aromatic molecules. Communications Chemistry, 2020, 3, .	2.0	14
1790	Phosphoramidates as Transient Precursors of Nitrogenâ€Centered Radical Under Visibleâ€Light Irradiation: Application to the Synthesis of Phthalazine Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 2216-2222.	2.1	9
1791	Scalable Continuous Vortex Reactor for Gram to Kilo Scale for UV and Visible Photochemistry. Organic Process Research and Development, 2020, 24, 201-206.	1.3	43
1792	Metal-free photocatalysts for the oxidation of non-activated alcohols and the oxygenation of tertiary amines performed in air or oxygen. Nature Protocols, 2020, 15, 822-839.	5.5	62
1793	An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C〓N couplings. Reaction Chemistry and Engineering, 2020, 5, 597-604.	1.9	68
1794	A Porous and Stable Porphyrin Metalâ€Organic Framework as an Efficient Catalyst towards Visibleâ€Lightâ€Mediated Aerobic Crossâ€Dehydrogenativeâ€Coupling Reactions. Chemistry - an Asian Journal, 2020, 15, 1118-1124.	1.7	15
1795	Direct Observation of the Reduction of Aryl Halides by a Photoexcited Perylene Diimide Radical Anion. Journal of the American Chemical Society, 2020, 142, 2204-2207.	6.6	100
1796	Metal-free iminyl radical-mediated C–C single bond cleavage/functionalization of redox-active oxime esters. Organic Chemistry Frontiers, 2020, 7, 622-627.	2.3	21
1797	Continuous Flow Photochemistry for the Preparation of Bioactive Molecules. Molecules, 2020, 25, 356.	1.7	72
1798	Nickel/Photoredoxâ€Catalyzed Asymmetric Reductive Crossâ€Coupling of Racemic αâ€Chloro Esters with Aryl lodides. Angewandte Chemie, 2020, 132, 5210-5215.	1.6	24
1799	Multiâ€Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angewandte Chemie - International Edition, 2020, 59, 10266-10284.	7.2	246
1800	Merging Visible Light Photocatalysis and <scp>l</scp> -l <scp>d</scp> -Proline Catalysis: Direct Asymmetric Oxidative Dearomatization of 2-Arylindoles To Access C2-Quaternary Indolin-3-ones. Organic Letters, 2020, 22, 1076-1080.	2.4	45
1801	Visible-Light-Induced C–C Coupling Reaction to Synthesize Bipyridine From 3-Cyano-1,4-Dihydropyridines. Frontiers in Chemistry, 2019, 7, 940.	1.8	5
1802	Multiphotonenâ€Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden. Angewandte Chemie, 2020, 132, 10350-10370.	1.6	44
1803	Visible-light-mediated arylation of <i>ortho</i> -hydroxyarylenaminones: direct access to isoflavones. Chemical Communications, 2020, 56, 2606-2609.	2.2	54
1804	Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials. Journal of the American Chemical Society, 2020, 142, 2087-2092.	6.6	263
1805	Tracing and elucidating visible-light mediated oxidation and C–H functionalization of amines using mass spectrometry. Chemical Communications, 2020, 56, 2163-2166.	2.2	4
1806	Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. Journal of the American Chemical Society, 2020, 142, 2093-2099.	6.6	224

#	ARTICLE	IF	CITATIONS
1807	Photocatalytic decarboxylative alkenylation of α-amino and α-hydroxy acid-derived redox active esters by NaI/PPh ₃ catalysis. Chemical Communications, 2020, 56, 2495-2498.	2.2	57
1808	Glass wool supported ruthenium complexes: versatile, recyclable heterogeneous photoredox catalysts. Catalysis Science and Technology, 2020, 10, 1273-1280.	2.1	26
1809	Transforming Oxadiazolines through Nitrene Intermediates by Energy Transfer Catalysis: Access to Sulfoximines and Benzimidazoles. Organic Letters, 2020, 22, 1130-1134.	2.4	13
1810	Design and application of aminoacridinium organophotoredox catalysts. Chemical Communications, 2020, 56, 1767-1775.	2.2	72
1811	Visible-light-initiated regioselective sulfonylation/cyclization of 1,6-enynes under photocatalyst- and additive-free conditions. Green Chemistry, 2020, 22, 1388-1392.	4.6	109
1812	Sunlightâ€Driven Synthesis of 1,2,4â€Thiadiazoles via Oxidative Construction of a Nitrogenâ€Sulfur Bond Catalyzed by a Reusable Covalent Organic Framework. ChemPhotoChem, 2020, 4, 445-450.	1.5	19
1813	Recent Advances in the Construction of Phosphorusâ€Substituted Heterocycles, 2009–2019. Advanced Synthesis and Catalysis, 2020, 362, 1724-1818.	2.1	105
1814	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie - International Edition, 2020, 59, 5365-5370.	7.2	37
1815	Visibleâ€Lightâ€Triggered Quantitative Oxidation of 9,10â€Dihydroanthracene to Anthraquinone by O ₂ under Mild Conditions. ChemSusChem, 2020, 13, 1785-1792.	3.6	7
1816	Direct Oxygenation of C–H Bonds through Photoredox and Palladium Catalysis. Journal of Organic Chemistry, 2020, 85, 3426-3439.	1.7	27
1817	Catalyst-Free <i>N</i> -Deoxygenation by Photoexcitation of Hantzsch Ester. Organic Letters, 2020, 22, 1316-1320.	2.4	35
1818	Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted Pummerer activation. Nature Catalysis, 2020, 3, 163-169.	16.1	160
1819	Cationic Iron(III) Salt as an Initiator for Radical Cationâ€induced [4+2] Cycloaddition. Asian Journal of Organic Chemistry, 2020, 9, 395-398.	1.3	8
1820	Visible-Light Flow Reactor Packed with Porous Carbon Nitride for Aerobic Substrate Oxidations. ACS Applied Materials & Carbon 12, 8176-8182.	4.0	40
1821	Intermolecular Iodofluoroalkylation of Unactivated Alkynes and Alkenes Mediated by Manganese Catalysts. Advanced Synthesis and Catalysis, 2020, 362, 1131-1137.	2.1	29
1822	Nickel/Photoredoxâ€Catalyzed Asymmetric Reductive Crossâ€Coupling of Racemic αâ€Chloro Esters with Aryl Iodides. Angewandte Chemie - International Edition, 2020, 59, 5172-5177.	7.2	117
1823	The Fascinating Chemistry of αâ€Haloamides. ChemistryOpen, 2020, 9, 100-170.	0.9	30
1825	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie, 2020, 132, 5403-5408.	1.6	8

#	Article	IF	CITATIONS
1826	Organophotoredoxâ€Catalyzed Cascade Radical Annulation of 2â€(Allyloxy)arylaldehydes with ⟨i⟩N⟨/i⟩â€(acyloxy)phthalimides: Towards Alkylated Chromanâ€4â€one Derivatives. Chemistry - an Asian Journal, 2020, 15, 568-572.	1.7	36
1827	Controllable one-pot synthesis for scaffold diversity <i>via</i> visible-light photoredox-catalyzed Giese reaction and further transformation. Chemical Communications, 2020, 56, 2873-2876.	2.2	12
1828	Triggered Transience of Plastic Materials by a Single Electron Transfer Mechanism. ACS Central Science, 2020, 6, 266-273.	5.3	25
1829	TiO ₂ /Cu ₂ O nanoparticle-catalyzed direct C(sp)–P bond formation <i>via</i> aerobic oxidative coupling in air and visible light. Dalton Transactions, 2020, 49, 3001-3006.	1.6	12
1830	Rose bengal as photocatalyst: visible light-mediated Friedel–Crafts alkylation of indoles with nitroalkenes in water. RSC Advances, 2020, 10, 4825-4831.	1.7	25
1831	Photoredox Catalysis: The Reaction Mechanism Can Adjust to Electronic Properties of a Catalyst. ACS Catalysis, 2020, 10, 5920-5927.	5.5	18
1832	Ethylene Glycol: A Green Solvent for Visible Lightâ€Promoted Aerobic Transition Metalâ€Free Cascade Sulfonation/Cyclization Reaction. Advanced Synthesis and Catalysis, 2020, 362, 2609-2614.	2.1	64
1833	Crystalâ€toâ€Crystal Synthesis of Photocatalytic Metal–Organic Frameworks for Visibleâ€Light Reductive Coupling and Mechanistic Investigations. ChemSusChem, 2020, 13, 3418-3428.	3.6	2
1834	Organophotochemical S _N Ar Reactions of Mildly Electronâ€Poor Fluoroarenes. European Journal of Organic Chemistry, 2020, 2020, 2766-2770.	1.2	13
1835	Upscaling Photoredox Cross-Coupling Reactions in Batch Using Immersion-Well Reactors. Organic Process Research and Development, 2020, 24, 1185-1193.	1.3	21
1836	Visible-Light-Induced Radical Carbo-Cyclization/ <i>gem</i> -Diborylation through Triplet Energy Transfer between a Gold Catalyst and Aryl Iodides. Journal of the American Chemical Society, 2020, 142, 10485-10493.	6.6	54
1837	Photocatalytic hydrogen atom transfer: the philosopher's stone for late-stage functionalization?. Green Chemistry, 2020, 22, 3376-3396.	4.6	157
1838	Visibleâ€Lightâ€Induced Palladiumâ€Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angewandte Chemie, 2020, 132, 10402-10406.	1.6	14
1839	Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angewandte Chemie, 2020, 132, 11697-11703.	1.6	15
1840	Photoredox atalyzed Isomerization of Highly Substituted Allylic Alcohols by Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2020, 59, 11660-11668.	7.2	19
1841	Photocatalytic Synthesis of Polycyclic Indolones. Chemistry - A European Journal, 2020, 26, 7004-7007.	1.7	28
1842	Blue LEDâ€Promoted Oxathiacetalization of Aldehydes and Ketones. European Journal of Organic Chemistry, 2020, 2020, 2542-2552.	1.2	8
1843	Catalytic Activity Towards Hydrogen Evolution Dependent of the Degree of Conjugation and Absorption of Six Organic Chromophores. ChemistryOpen, 2020, 9, 405-408.	0.9	1

#	Article	IF	CITATIONS
1844	COFs-based Porous Materials for Photocatalytic Applications. Chinese Journal of Polymer Science (English Edition), 2020, 38, 673-684.	2.0	31
1845	Green chemistry: efficient acetalization of aldehydes with alcohols using the acid red 52 photocatalyst. Environmental Chemistry Letters, 2020, 18, 1353-1359.	8.3	12
1846	Donor-acceptor type [4+3] covalent organic frameworks: sub-stoichiometric synthesis and photocatalytic application. Science China Chemistry, 2020, 63, 707-714.	4.2	49
1847	A review of enantioselective dual transition metal/photoredox catalysis. Science China Chemistry, 2020, 63, 637-647.	4.2	120
1848	Photocatalyst-free visible light driven synthesis of (E)-vinyl sulfones from cinnamic acids and arylazo sulfones. Tetrahedron Letters, 2020, 61, 151898.	0.7	18
1849	Radical-Cation Vinylcyclopropane Rearrangements by TiO ₂ Photocatalysis. Journal of Organic Chemistry, 2020, 85, 6551-6566.	1.7	28
1850	Visible Light-Induced Oxidative Cross Dehydrogenative Coupling of Glycine Esters with \hat{l}^2 -Naphthols: Access to 1,3-Benzoxazines. Journal of Organic Chemistry, 2020, 85, 6261-6270.	1.7	25
1851	Enantioselective Aminocatalytic [2 + 2] Cycloaddition through Visible Light Excitation. ACS Catalysis, 2020, 10, 5335-5346.	5.5	34
1852	PPh ₃ /Nal driven photocatalytic decarboxylative radical cascade alkylarylation reaction of 2-isocyanobiaryls. RSC Advances, 2020, 10, 16510-16514.	1.7	30
1853	Scale-up Design of a Fluorescent Fluid Photochemical Microreactor by 3D Printing. ACS Omega, 2020, 5, 7666-7674.	1.6	12
1854	Aldehydes as powerful initiators for photochemical transformations. Beilstein Journal of Organic Chemistry, 2020, 16, 833-857.	1.3	65
1855	Visible-Light-Induced Regioselective Dicarbonylation of Indolizines with Oxoaldehydes via Direct C–H Functionalization. Organic Letters, 2020, 22, 3841-3845.	2.4	40
1856	Photoredox atalyzed Isomerization of Highly Substituted Allylic Alcohols by Câ^'H Bond Activation. Angewandte Chemie, 2020, 132, 11757-11765.	1.6	5
1857	Phenothiazine core promoted charge transfer in conjugated microporous polymers for photocatalytic Ugi-type reaction and aerobic selenation of indoles. Applied Catalysis B: Environmental, 2020, 272, 118982.	10.8	42
1858	Photoredox Michael addition of phenylmalononitrile onto \hat{l}_{\pm}, \hat{l}^2 -unsaturated carboxylic acid. Tetrahedron Letters, 2020, 61, 151824.	0.7	1
1859	Ultrafast Photocatalytic Reaction Screening by Mass Spectrometry. Analytical Chemistry, 2020, 92, 6564-6570.	3.2	12
1860	Photocatalytic Deoxygenation of Sulfoxides Using Visible Light: Mechanistic Investigations and Synthetic Applications. ACS Catalysis, 2020, 10, 5814-5820.	5 . 5	43
1861	Visible-Light-Driven Reductive Carboarylation of Styrenes with CO ₂ and Aryl Halides. Journal of the American Chemical Society, 2020, 142, 8122-8129.	6.6	171

#	Article	IF	CITATIONS
1862	Donor–acceptor fluorophores as efficient energy transfer photocatalysts for [2 + 2] photodimerization. Organic and Biomolecular Chemistry, 2020, 18, 3707-3716.	1.5	20
1863	Visible-light-promoted oxidative desulphurisation: a strategy for the preparation of unsymmetrical ureas from isothiocyanates and amines using molecular oxygen. Green Chemistry, 2020, 22, 2956-2962.	4.6	37
1864	Mapping the multi-step mechanism of a photoredox catalyzed atom-transfer radical polymerization reaction by direct observation of the reactive intermediates. Chemical Science, 2020, 11, 4475-4481.	3.7	28
1865	Novel Way to Harness Solar Energy: Photo-Redox Catalysis in Organic Synthesis. Kinetics and Catalysis, 2020, 61, 242-268.	0.3	8
1866	C(<i>sp</i> ³)â^'C(<i>sp</i> ³) Crossâ€Coupling of Alkyl Bromides and Ethers Mediated by Metal and Visible Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 2367-2372.	2.1	37
1867	Recent Advances in Photoredox Methods for Ketone Synthesis. Asian Journal of Organic Chemistry, 2020, 9, 863-881.	1.3	37
1868	Photon Equivalents as a Parameter for Scaling Photoredox Reactions in Flow: Translation of Photocatalytic Câ^'N Crossâ€Coupling from Lab Scale to Multikilogram Scale. Angewandte Chemie, 2020, 132, 12062-12066.	1.6	8
1869	Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angewandte Chemie - International Edition, 2020, 59, 11620-11626.	7.2	100
1870	Derivatization of Amino Acids and Peptides via Photoredox-Mediated Conjugate Addition. Journal of Organic Chemistry, 2020, 85, 6225-6232.	1.7	41
1871	Cooperative photoredox and chiral hydrogen-bonding catalysis. Organic Chemistry Frontiers, 2020, 7, 1283-1296.	2.3	72
1872	A leap forward in sulfonium salt and sulfur ylide chemistry. Chinese Chemical Letters, 2021, 32, 299-312.	4.8	79
1873	A Rational Approach to Organoâ€Photocatalysis: Novel Designs and Structureâ€Property Relationships. Angewandte Chemie - International Edition, 2021, 60, 1082-1097.	7.2	151
1874	A Rational Approach to Organoâ€Photocatalysis: Novel Designs and Structureâ€Property Relationships. Angewandte Chemie, 2021, 133, 1096-1111.	1.6	32
1875	Metal-organic supramolecular nanoarchitectures by Ru(II) bis-(terpyridine)-bridged pillar[5]arene dimers with triphenylamine. Chinese Chemical Letters, 2021, 32, 357-361.	4.8	8
1876	Metalâ€free Photochemical Atom Transfer Radical Addition (ATRA) of BrCCl ₃ to Alkenes. European Journal of Organic Chemistry, 2021, 2021, 96-101.	1.2	15
1877	Oligosilanes as Silyl Radical Precursors through Oxidative Siâ^'Si Bond Cleavage Using Redox Catalysis. Angewandte Chemie, 2021, 133, 685-689.	1.6	10
1878	Lateâ€Stage C(sp ²)â^H Functionalization: A Powerful Toolkit To Arm Natural Products for In Situ Proteome Profiling?. Chemistry - A European Journal, 2021, 27, 3575-3580.	1.7	7
1879	Photochemical Synthesis of Benzimidazoles from Diamines and Aldehydes. European Journal of Organic Chemistry, 2021, 2021, 422-428.	1.2	19

#	Article	IF	CITATIONS
1880	Photoredox-catalyzed chemoselective aerobic $C\hat{l}\pm\hat{a}\in H$ oxidation of propargylamines: synthesis of substituted 2-ynamide and oxazolo[2,3- <i>a</i>]isoquinolinone derivatives. Organic Chemistry Frontiers, 2021, 8, 87-93.	2.3	23
1881	Olefinâ€Supported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angewandte Chemie - International Edition, 2021, 60, 3989-3993.	7.2	14
1882	Tailored Coumarin Dyes for Photoredox Catalysis: Calculation, Synthesis, and Electronic Properties. ChemCatChem, 2021, 13, 981-989.	1.8	10
1883	A Series of Green Light Absorbing Organic Photosensitizers Capable of Oxidative Quenching Photocatalysis. ChemPhotoChem, 2021, 5, 51-57.	1.5	7
1884	Metal-Free Iodoperfluoroalkylation: Photocatalysis versus Frustrated Lewis Pair Catalysis. Synthesis, 2021, 53, 123-134.	1.2	14
1885	Photo-induced anti-Markovnikov hydroalkylation of unactivated alkenes employing a dual-component initiator. Chinese Chemical Letters, 2021, 32, 681-684.	4.8	6
1886	Photoangeregte Anionen in organischen Reaktionen. Angewandte Chemie, 2021, 133, 6338-6363.	1.6	13
1887	Lightâ€Promoted Organic Transformations Utilizing Carbonâ€Based Gas Molecules as Feedstocks. Angewandte Chemie, 2021, 133, 19098-19128.	1.6	7
1888	Radical Carbonyl Propargylation by Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 2464-2471.	7.2	56
1889	Recent advances in synthesis of organosilicons via radical strategies. Chinese Chemical Letters, 2021, 32, 1280-1292.	4.8	56
1890	Excited State Anions in Organic Transformations. Angewandte Chemie - International Edition, 2021, 60, 6270-6292.	7.2	85
1891	Lightâ€Promoted Organic Transformations Utilizing Carbonâ€Based Gas Molecules as Feedstocks. Angewandte Chemie - International Edition, 2021, 60, 18950-18980.	7.2	56
1892	Radical Carbonyl Propargylation by Dual Catalysis. Angewandte Chemie, 2021, 133, 2494-2501.	1.6	17
1893	Strain Release Chemistry of Photogenerated Smallâ€Ring Intermediates. Chemistry - A European Journal, 2021, 27, 4500-4516.	1.7	21
1894	The oligomer approach: An effective strategy to assess phenylene vinylene systems as organic heterogeneous photocatalysts in the degradation of aqueous indigo carmine dye. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112980.	2.0	5
1895	Frustrated Radical Pairs: Insights from EPR Spectroscopy. Angewandte Chemie, 2021, 133, 53-65.	1.6	10
1896	Harnessing Photoexcited Redox Centers of Semiconductor Photocatalysts for Advanced Synthetic Chemistry. Solar Rrl, 2021, 5, 2000444.	3.1	11
1897	Lightâ€Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angewandte Chemie, 2021, 133, 4605-4610.	1.6	O

#	ARTICLE	IF	CITATIONS
1898	Selective 1,2â€Aminoisothiocyanation of 1,3â€Dienes Under Visible‣ight Photoredox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 4085-4089.	7.2	68
1899	Recent advances in visible-light photocatalytic deuteration reactions. Organic Chemistry Frontiers, 2021, 8, 426-444.	2.3	56
1900	Nitrogenase inspired artificial photosynthetic nitrogen fixation. CheM, 2021, 7, 1431-1450.	5.8	43
1901	Visible light mediated synthesis of 4-aryl-1,2-dihydronaphthalene derivatives <i>via</i> single-electron oxidation or MHAT from methylenecyclopropanes. Organic Chemistry Frontiers, 2021, 8, 94-100.	2.3	14
1902	Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angewandte Chemie - International Edition, 2021, 60, 5370-5376.	7.2	49
1903	Flowers of the plant genus <i>Hypericum</i> as versatile photoredox catalysts. Green Chemistry, 2021, 23, 881-888.	4.6	13
1904	Chitosanâ€based fluorescein isothiocyanate film as a highly efficient <scp>metalâ€free</scp> photocatalyst for <scp>solarâ€lightâ€mediated</scp> direct <scp>CH</scp> arylation. International Journal of Energy Research, 2021, 45, 5964-5973.	2.2	4
1905	Radical Addition Enables 1,2â€Aryl Migration from a Vinylâ€Substituted Allâ€Carbon Quaternary Center. Angewandte Chemie, 2021, 133, 188-192.	1.6	5
1906	Selective 1,2â€Aminoisothiocyanation of 1,3â€Dienes Under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2021, 133, 4131-4135.	1.6	2
1907	The xanthate route to lactams. Tetrahedron, 2021, 79, 131852.	1.0	4
1908	Consistent inclusion of continuum solvation in energy decomposition analysis: theory and application to molecular CO ₂ reduction catalysts. Chemical Science, 2021, 12, 1398-1414.	3.7	41
1909	Catalytic Photoredox Allylation of Aldehydes Promoted by a Cobalt Complex. Advanced Synthesis and Catalysis, 2021, 363, 1105-1111.	2.1	27
1910	Visibleâ€Light Photoredoxâ€Catalyzed Tandem Trifluoroâ€methylation/Cyclization/Remote Oxidation of 1,6â€Dienes: Access to CF ₃ â€Containing Fiveâ€Membered Heterocycles. Advanced Synthesis and Catalysis, 2021, 363, 751-756.	2.1	13
1911	Visible-light induced divergent dearomatization of indole derivatives: controlled access to cyclobutane-fused polycycles and 2-substituted indolines. Organic Chemistry Frontiers, 2021, 8, 319-325.	2.3	27
1912	In silico prediction of annihilators for triplet–triplet annihilation upconversion via auxiliary-field quantum Monte Carlo. Chemical Science, 2021, 12, 1068-1079.	3.7	7
1913	Scandium(III) Triflate-Catalyzed Reaction of Aroyl-Substituted Donor–Acceptor Cyclopropanes with 1-Naphthylamines: Access to Dibenzo[⟨i⟩c⟨/i⟩,⟨i⟩h⟨/i⟩]acridines. Journal of Organic Chemistry, 2021, 86, 1172-1177.	1.7	6
1914	Cerium–quinone redox couples put under scrutiny. Chemical Science, 2021, 12, 1343-1351.	3.7	9
1915	Photocatalytic Annulationâ€Carbohalogenation of 1,7â€Enynes for Atomâ€Economic Synthesis of Functionalized 3,4â€Dihydronaphthalenâ€1 (2 H)â€ones. Advanced Synthesis and Catalysis, 2021, 363, 838-845.	2.1	9

#	Article	IF	Citations
1916	Coalâ€Tar Dyeâ€based Coordination Cages and Helicates. Angewandte Chemie - International Edition, 2021, 60, 5673-5678.	7.2	46
1917	Photogenerated electrophilic radicals for the umpolung of enolate chemistry. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 46, 100387.	5.6	13
1918	Photocatalytic methods for amino acid modification. Chemical Society Reviews, 2021, 50, 39-57.	18.7	93
1919	Lightâ€Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angewandte Chemie - International Edition, 2021, 60, 4555-4560.	7.2	15
1920	Nucleophilic Alkoxylations of Unactivated Alkyl Olefins and αâ€Methyl Styrene by Photoredox Catalysis. European Journal of Organic Chemistry, 2021, 2021, 773-776.	1.2	7
1921	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
1922	Visible-Light-Promoted Polysubstituted Olefins Synthesis Involving Sulfur Ylides as Carbene Trapping Reagents. Journal of Organic Chemistry, 2021, 86, 1012-1022.	1.7	36
1923	Solar and visible-light active nano Ni/g-C3N4 photocatalyst for carbon monoxide (CO) and ligand-free carbonylation reactions. Catalysis Science and Technology, 2021, 11, 956-969.	2.1	12
1924	Organic photoredox catalyzed Câ€"H silylation of quinoxalinones or electron-deficient heteroarenes under ambient air conditions. Green Chemistry, 2021, 23, 314-319.	4.6	62
1925	Photochemical metal-free aerobic oxidation of thiols to disulfides. Green Chemistry, 2021, 23, 546-551.	4.6	58
1926	Three-component three-bond forming cascade <i>via</i> palladium photoredox catalysis. Chemical Science, 2021, 12, 1810-1817.	3.7	61
1927	Transfer hydrogenation catalysis in cells. RSC Chemical Biology, 2021, 2, 12-29.	2.0	50
1928	Photocatalyzed Transitionâ€Metalâ€Free Oxidative Crossâ€Coupling Reactions of Tetraorganoborates**. Chemistry - A European Journal, 2021, 27, 4322-4326.	1.7	14
1929	An aerogel-based photocatalytic microreactor driven by light guiding for degradation of toxic pollutants. Chemical Engineering Journal, 2021, 409, 128108.	6.6	9
1930	Photocatalytic Carbonylation Strategies: A Recent Trend in Organic Synthesis. Journal of Organic Chemistry, 2021, 86, 24-48.	1.7	52
1931	Dual-Role Catalysis by Thiobenzoic Acid in Cα–H Arylation under Photoirradiation. ACS Catalysis, 2021, 11, 82-87.	5.5	41
1932	Contemporary methods for generation of aryl radicals. Chemical Society Reviews, 2021, 50, 2244-2259.	18.7	96
1933	Visible-light-induced denitrogenative phosphorylation of benzotriazinones: a metal- and additive-free method for accessing <i>ortho</i> -phosphorylated benzamide derivatives. Green Chemistry, 2021, 23, 296-301.	4.6	21

#	Article	IF	CITATIONS
1934	Shining Light on the Light-Bearing Element: A Brief Review of Photomediated C–H Phosphorylation Reactions. Synthesis, 2021, 53, 1003-1022.	1.2	32
1935	Development and Proof of Concept for a Large-Scale Photoredox Additive-Free Minisci Reaction. Organic Process Research and Development, 2021, 25, 57-67.	1.3	36
1936	Olefinâ€Supported Cationic Copper Catalysts for Photochemical Synthesis of Structurally Complex Cyclobutanes. Angewandte Chemie, 2021, 133, 4035-4039.	1.6	2
1937	Teerfarbenâ€basierte Koordinationsköge und â€helikate. Angewandte Chemie, 2021, 133, 5736-5741.	1.6	12
1938	Bandgap engineering in benzotrithiophene-based conjugated microporous polymers: a strategy for screening metal-free heterogeneous photocatalysts. Journal of Materials Chemistry A, 2021, 9, 3333-3340.	5.2	50
1939	Synthesis of Spirocyclic Piperidines by Radical Hydroarylation. Synlett, 2021, 32, 211-214.	1.0	4
1940	Highly Efficient Iridium-Based Photosensitizers for Thia-Paternò–BÃ⅓chi Reaction and Aza-Photocyclization. ACS Catalysis, 2021, 11, 446-455.	5.5	33
1941	Plasmalogen Biosynthesis by Anaerobic Bacteria: Identification of a Two-Gene Operon Responsible for Plasmalogen Production in <i>Clostridium perfringens</i> . ACS Chemical Biology, 2021, 16, 6-13.	1.6	36
1942	Beyond C ₃ N ₄ π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations. Chemical Society Reviews, 2021, 50, 2147-2172.	18.7	118
1943	Metal-free visible-light-induced photoredox-catalyzed intermolecular pyridylation/phosphinoylation of alkenes. Organic Chemistry Frontiers, 2021, 8, 901-907.	2.3	23
1944	Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chemical Society Reviews, 2021, 50, 766-897.	18.7	227
1945	Polysulfide Anions as Visible Light Photoredox Catalysts for Aryl Cross-Couplings. Journal of the American Chemical Society, 2021, 143, 481-487.	6.6	63
1946	Visible-light-induced metal-free cascade cyclization of <i>N</i> -arylpropiolamides to 3-phosphorylated, trifluoromethylated and thiocyanated azaspiro[4.5]trienones. Organic Chemistry Frontiers, 2021, 8, 760-766.	2.3	50
1947	Photocatalysis in Dual Catalysis Systems for Carbonâ€Nitrogen Bond Formation. Advanced Synthesis and Catalysis, 2021, 363, 937-979.	2.1	48
1948	Synthesis of Glycosyl Fluorides by Photochemical Fluorination with Sulfur(VI) Hexafluoride. Organic Letters, 2021, 23, 190-194.	2.4	33
1949	3Dâ€Nonâ€destructive Imaging through Heavyâ€Metal Eosin Salt Contrast Agents. Chemistry - A European Journal, 2021, 27, 4561-4566.	1.7	7
1950	Photochemical Reaction of <i>N</i> , <i>N</i> â€Dimethylanilines with Nâ€Substituted Maleimides Utilizing Benzaldehyde as the Photoinitiator. European Journal of Organic Chemistry, 2021, 2021, 1168-1173.	1.2	14
1951	Visible-light-induced photoredox-catalyzed synthesis of benzimidazo[2,1-a]iso-quinoline-6(5H)-ones. Chinese Chemical Letters, 2021, 32, 1229-1232.	4.8	64

#	Article	IF	Citations
1952	Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catalysis Science and Technology, 2021, 11, 742-767.	2.1	30
1953	Fabrication of Graphitic Carbon <scp>Nitrideâ€Based</scp> Film: An Emerged Highly Efficient Catalyst for Direct Câ€"H Arylation under Solar Light. Chinese Journal of Chemistry, 2021, 39, 633-639.	2.6	17
1954	Modular Tandem Mizorokiâ€Heck/Reductive Heck Reactions to Construct Fluorenes from Cyclic Diaryliodoniums. Advanced Synthesis and Catalysis, 2021, 363, 222-226.	2.1	8
1955	Recent Advances in Asymmetric Organomulticatalysis. Advanced Synthesis and Catalysis, 2021, 363, 352-387.	2.1	37
1956	Multiâ€Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angewandte Chemie, 2021, 133, 4381-4387.	1.6	4
1957	Multiâ€Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angewandte Chemie - International Edition, 2021, 60, 4335-4341.	7.2	11
1958	Progress in Visible Lightâ€Induced Difluroalkylation of Olefins. Chemical Record, 2021, 21, 69-86.	2.9	27
1959	Frustrated Radical Pairs: Insights from EPR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 53-65.	7.2	45
1960	A Facile Synthesis of Functionalized Benzofurans via Visibleâ€Lightâ€Induced Tandem Cyclization of 1,6â€Enynes with Disulfides. ChemPhotoChem, 2021, 5, 142-148.	1.5	11
1961	Photoinduced Aerobic Iodoareneâ€Catalyzed Spirocyclization of <i>N</i> â€Oxyâ€amides to Nâ€Fused Spirolactams**. Angewandte Chemie, 2021, 133, 173-177.	1.6	6
1962	Photoinduced Aerobic Iodoareneâ€Catalyzed Spirocyclization of <i>N</i> à€Oxyâ€amides to Nâ€Fused Spirolactams**. Angewandte Chemie - International Edition, 2021, 60, 171-175.	7.2	20
1963	A Waterâ€Soluble Iridium Photocatalyst for Chemical Modification of Dehydroalanines in Peptides and Proteins. Chemistry - A European Journal, 2021, 27, 1430-1437.	1.7	24
1964	Radical Addition Enables 1,2â€Aryl Migration from a Vinylâ€Substituted Allâ€Carbon Quaternary Center. Angewandte Chemie - International Edition, 2021, 60, 186-190.	7.2	42
1965	C(sp ²)â€"H functionalization in non-aromatic azomethine-based heterocycles. Organic and Biomolecular Chemistry, 2021, 19, 297-312.	1.5	19
1966	Oligosilanes as Silyl Radical Precursors through Oxidative Siâ^Si Bond Cleavage Using Redox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 675-679.	7.2	50
1967	Utilization of CO ₂ Feedstock for Organic Synthesis by Visibleâ€Light Photoredox Catalysis. Chemistry - A European Journal, 2021, 27, 2254-2269.	1.7	39
1968	Photochemical Methods for Peptide Macrocyclisation. Chemistry - A European Journal, 2021, 27, 69-88.	1.7	22
1969	Organic Superbases in Recent Synthetic Methodology Research. Chemistry - A European Journal, 2021, 27, 4216-4229.	1.7	65

#	Article	IF	CITATIONS
1970	Fragmentverknüpfungen in der Totalsynthese – Bildung von C â€Bindungen über intermediÃæ Carbanionen oder freie Radikale. Angewandte Chemie, 2021, 133, 1132-1167.	1.6	5
1971	Fragment Coupling Reactions in Total Synthesis That Form Carbon–Carbon Bonds via Carbanionic or Free Radical Intermediates. Angewandte Chemie - International Edition, 2021, 60, 1116-1150.	7.2	32
1972	Simple generation of various \hat{l}_{\pm} -monofluoroalkyl radicals by organic photoredox catalysis: modular synthesis of \hat{l}^2 -monofluoroketones. Chemical Communications, 2021, 57, 2609-2612.	2.2	15
1974	Unexpected Metal-Free Dehydrogenation of a \hat{l}^2 -Ketoester to a Phenol Using a Recyclable Oxoammonium Salt. MolBank, 2021, 2021, M1180.	0.2	6
1975	Visible-light-mediated organoboron-catalysed metal-free dehydrogenation of N-heterocycles using molecular oxygen. Green Chemistry, 2021, 23, 4446-4450.	4.6	28
1976	Visible light-mediated applications of methylene blue in organic synthesis. Organic Chemistry Frontiers, 2021, 8, 1694-1718.	2.3	64
1977	AIE-active polyelectrolyte based photosensitizers: the effects of structure on antibiotic-resistant bacterial sensing and killing and pollutant decomposition. Journal of Materials Chemistry B, 2021, 9, 5309-5317.	2.9	8
1978	Converting <i>p</i> -terphenyl into a novel organo-catalyst for LED-driven energy and electron transfer photoreactions in water. Chemical Communications, 2021, 57, 6752-6755.	2.2	16
1980	Ni-catalyzed non-activated C–S bond cleavage at ambient temperature for the synthesis of sulfur-containing polycyclic compounds. Chemical Communications, 2021, 57, 9048-9051.	2.2	8
1981	Photocatalytic Reductive C–O Bond Cleavage of Alkyl Aryl Ethers by Using Carbazole Catalysts with Cesium Carbonate. Journal of Organic Chemistry, 2021, 86, 2545-2555.	1.7	20
1982	Hole-mediated photoredox catalysis: tris(<i>p</i> -substituted)biarylaminium radical cations as tunable, precomplexing and potent photooxidants. Organic Chemistry Frontiers, 2021, 8, 1132-1142.	2.3	72
1983	A phosphonium ylide as a visible light organophotoredox catalyst. Chemical Communications, 2021, 57, 3591-3594.	2.2	9
1984	Photoinduced oxidative cyclopropanation of ene-ynamides: synthesis of 3-aza[<i>n</i> .1.0]bicycles <i>via</i> vinyl radicals. Chemical Communications, 2021, 57, 5254-5257.	2.2	22
1985	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	2.3	59
1986	Direct access to α-acyloxycarbonyl compounds and esters <i>via</i> oxidative esterification of aldehydes under visible light. Organic Chemistry Frontiers, 2021, 8, 4777-4784.	2.3	4
1987	Phthalide synthesis through dehydrogenated lactonization of the C(sp ³)–H bond by photoredox catalysis. Green Chemistry, 2021, 23, 8212-8216.	4.6	9
1988	Br \tilde{A}_{i} , nsted acid catalyzed radical addition to quinone methides. Chemical Communications, 2021, 57, 5151-5154.	2.2	13
1989	Dehalogenation reaction photocatalyzed by homoleptic copper(i) complexes associated with strongly reductive sacrificial donors. Catalysis Science and Technology, 2021, 11, 6041-6047.	2.1	9

#	ARTICLE	IF	CITATIONS
1990	Cavity-promotion by pillar[5] arenes expedites organic photoredox-catalysed reductive dehalogenations. Chemical Communications, 2021, 57, 9582-9585.	2.2	13
1991	Syntheses and structure of dinuclear metal complexes containing naphthyl-Ir bichromophore. Dalton Transactions, 2021, 50, 12716-12722.	1.6	5
1992	Catalytic Hydrogen Isotope Exchange Reactions in Late-Stage Functionalization. Synlett, 2022, 33, 329-338.	1.0	31
1993	Metallaphotoredox catalysis for multicomponent coupling reactions. Green Chemistry, 2021, 23, 5379-5393.	4.6	64
1994	Homogeneous catalytic C(sp ³)–H functionalization of gaseous alkanes. Chemical Communications, 2021, 57, 9956-9967.	2.2	21
1995	Visible-light-driven reductive coupling of aromatic ketones using perylene derivatives as photoredox catalysts: Improvement of reaction efficiency by the addition of acetic acid. Results in Chemistry, 2021, 3, 100123.	0.9	0
1996	Auto-tandem PET and EnT photocatalysis by crude chlorophyll under visible light towards the oxidative functionalization of indoles. Green Chemistry, 2021, 23, 3039-3047.	4.6	10
1997	Oxy-sulfonylation of terminal alkynes <i>via</i> C–S coupling enabled by copper photoredox catalysis. Green Chemistry, 2021, 23, 3569-3574.	4.6	27
1998	Metal- and additive-free C–H oxygenation of alkylarenes by visible-light photoredox catalysis. Green Chemistry, 2021, 23, 3392-3399.	4.6	33
1999	Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. Russian Chemical Reviews, 2021, 90, 116-170.	2.5	11
2000	Photoredox-enabled 1,2-dialkylation of α-substituted acrylates <i>via</i> Ireland–Claisen rearrangement. Chemical Science, 2021, 12, 2816-2822.	3.7	11
2001	Photochemistry in Flow for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 71-119.	0.4	1
2002	Organometallic Photosensitizers. , 2021, , .		2
2003	Stereoselective synthesis of unnatural \hat{l}_{\pm} -amino acid derivatives through photoredox catalysis. Chemical Science, 2021, 12, 5430-5437.	3.7	33
2004	Sodium Iodide-Triphenylphosphine-Mediated Photoredox Alkylation of Aldimines. Chinese Journal of Organic Chemistry, 2021, 41, 2676.	0.6	2
2005	The sunlight-promoted aerobic selective cyclization of olefinic amides and diselenides. Catalysis Science and Technology, 2021, 11, 2299-2305.	2.1	9
2006	Visible-light-mediated three-component Minisci reaction for heteroarylethyl alcohols synthesis. Green Chemistry, 2021, 23, 7963-7968.	4.6	10
2007	Convenient C(sp ³)–H bond functionalisation of light alkanes and other compounds by iron photocatalysis. Green Chemistry, 2021, 23, 6984-6989.	4.6	95

#	ARTICLE	IF	CITATIONS
2008	Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chemical Science, 2021, 12, 10742-10754.	3.7	52
2009	Cyanine-based near infra-red organic photoredox catalysis. Chemical Science, 2021, 12, 6964-6968.	3.7	35
2010	Visible light induced deaminative alkylation of difluoroenoxysilanes: a transition metal free strategy. Organic Chemistry Frontiers, 2021, 8, 4438-4444.	2.3	20
2011	Ceramic boron carbonitrides for unlocking organic halides with visible light. Chemical Science, 2021, 12, 6323-6332.	3.7	24
2012	State of the Art in the Preparation and Properties of Molecular Monomeric <i>>s</i> -Heptazines: Syntheses, Characteristics, and Functional Applications. Chemical Reviews, 2021, 121, 2515-2544.	23.0	63
2013	Chichibabin pyridinium synthesis via oxidative decarboxylation of photoexcited α-enamine acids. Chemical Communications, 2021, 57, 1222-1225.	2.2	4
2014	Oxidative Transformation of Biomass into Formic Acid. European Journal of Organic Chemistry, 2021, 2021, 1331-1343.	1.2	17
2015	Phenothiazine and phenoxazine sensitizers for dye-sensitized solar cells $\hat{a}\in$ an investigative review of two complete dye classes. Journal of Materials Chemistry C, 2021, 9, 11974-11994.	2.7	35
2016	Recent advancements in the development of molecular organic photocatalysts. Organic and Biomolecular Chemistry, 2021, 19, 4816-4834.	1.5	50
2017	Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chemical Society Reviews, 2021, 50, 9540-9685.	18.7	205
2018	Engaging 1,7-diynes in a photocatalytic Kharasch-type addition/1,5-(S _N $\hat{a}\in \hat{a}\in \hat{a}$)-substitution cascade toward \hat{l}^2 -gem-dihalovinyl carbonyls. Chemical Communications, 2021, 57, 1911-1914.	2.2	21
2019	Light in Gold Catalysis. Chemical Reviews, 2021, 121, 8868-8925.	23.0	213
2020	The copper-catalyzed selective monoalkylation of active methylene compounds with alkylsilyl peroxides. Organic and Biomolecular Chemistry, 2021, 19, 2658-2662.	1.5	12
2021	Oxidase reactions in photoredox catalysis. Chemical Society Reviews, 2021, 50, 2954-2967.	18.7	80
2022	Fast Carbon Isotope Exchange of Carboxylic Acids Enabled by Organic Photoredox Catalysis. Journal of the American Chemical Society, 2021, 143, 2200-2206.	6.6	63
2023	Radical-based functionalization-oriented construction: rapid assembly of azaarene-substituted highly functionalized pyrroles. Chemical Science, 2021, 12, 6543-6550.	3.7	22
2024	Self-catalyzing photoredox polymerization for recyclable polymer catalysts. Polymer Chemistry, 2021, 12, 2205-2209.	1.9	18
2025	Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. Journal of Organic Chemistry, 2021, 86, 2556-2569.	1.7	11

#	ARTICLE	IF	CITATIONS
2026	Asymmetric synthesis of oxazolines bearing α-stereocenters through radical addition–enantioselective protonation enabled by cooperative catalysis. Organic Chemistry Frontiers, 2021, 8, 5804-5809.	2.3	9
2027	Unravelling the role of charge transfer state during ultrafast intersystem crossing in compact organic chromophores. Physical Chemistry Chemical Physics, 2021, 23, 25455-25466.	1.3	9
2028	Forging Câ€SeCF ₃ Bonds with Trifluoromethyl Tolueneselenosulfonate under Visibleâ€Light. Chemical Record, 2021, 21, 417-426.	2.9	13
2029	Efficient cascade reactions for luminescent pyrylium biolabels catalysed by light rare-earth elements. New Journal of Chemistry, 2021, 45, 12305-12310.	1.4	3
2030	Mechanisms of photoredox catalysts: the role of optical spectroscopy. Sustainable Energy and Fuels, 2021, 5, 638-665.	2.5	25
2031	How does the single unit monomer insertion technique promote kinetic analysis of activation and initiation in photo-RAFT processes?. Polymer Chemistry, 2021, 12, 581-593.	1.9	13
2032	Structure–property relationships of core-substituted diaryl dihydrophenazine organic photoredox catalysts and their application in O-ATRP. Polymer Chemistry, 2021, 12, 6110-6122.	1.9	3
2033	Phosphoric Acid Mediated Lightâ€Induced Minisci Câ^'H Alkylation of <i>N</i> â€Heteroarenes. European Journal of Organic Chemistry, 2021, 2021, 969-972.	1.2	8
2034	Spin-Flip Density Functional Theory for the Redox Properties of Organic Photoredox Catalysts in Excited States. Journal of Chemical Theory and Computation, 2021, 17, 767-776.	2.3	6
2035	Efficient metal-free visible light photocatalytic aromatization of azaheterocyles. Current Research in Green and Sustainable Chemistry, 2021, 4, 100135.	2.9	4
2036	Visible-Light-Mediated Decarboxylative Radical Addition Bifunctionalization Cascade for the Production of 1,4-Amino Alcohols. Organic Letters, 2021, 23, 1107-1112.	2.4	16
2037	Metallaphotoredox catalysis with organic dyes. Organic and Biomolecular Chemistry, 2021, 19, 3527-3550.	1.5	44
2038	Visible light photoredox by a (^{ph,Ar} NacNac) ₂ Zn photocatalyst: photophysical properties and mechanistic understanding. Inorganic Chemistry Frontiers, 2021, 8, 2078-2087.	3.0	9
2039	Pyridylphosphonium salts as alternatives to cyanopyridines in radical–radical coupling reactions. Chemical Science, 2021, 12, 10538-10543.	3.7	29
2040	Thermally activated delayed fluorescence materials as organic photosensitizers. Chemical Communications, 2021, 57, 10675-10688.	2.2	21
2041	Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp ^{)3 H Cross-Coupling. Accounts of Chemical Research, 2021, 54, 988-1000.}	7.6	144
2042	Single Electron Transfer-Induced Redox Processes Involving <i>N</i> -(Acyloxy)phthalimides. ACS Catalysis, 2021, 11, 1640-1683.	5.5	190
2043	Photochemical radical cyclization reactions with imines, hydrazones, oximes and related compounds. Chemical Society Reviews, 2021, 50, 7418-7435.	18.7	80

#	Article	IF	CITATIONS
2044	Photoelectrochemical cross-dehydrogenative coupling of benzothiazoles with strong aliphatic C–H bonds. Chemical Communications, 2021, 57, 4424-4427.	2.2	67
2045	Visibleâ€lightâ€mediated Synthesis of Bromoâ€containing Azaspirotrienediones from <i>N</i> a€phenylpropynamides. Asian Journal of Organic Chemistry, 2021, 10, 668-673.	1.3	15
2046	A highly selective decarboxylative deuteration of carboxylic acids. Chemical Science, 2021, 12, 5505-5510.	3.7	36
2047	Use of Perylene Diimides in Synthetic Photochemistry. European Journal of Organic Chemistry, 2021, 2021, 1193-1200.	1.2	25
2048	Synthesis of new quinolizinium-based fluorescent compounds and studies on their applications in photocatalysis. Organic and Biomolecular Chemistry, 2021, 19, 8507-8515.	1.5	10
2049	Organic-photoredox-catalyzed three-component sulfonylative pyridylation of styrenes. RSC Advances, 2021, 11, 142-146.	1.7	16
2050	Preparation of hexafluoroisopropyl esters by oxidative esterification of aldehydes using sodium persulfate. Organic and Biomolecular Chemistry, 2021, 19, 2986-2990.	1.5	8
2051	Photocatalyst- and additive-free decarboxylative alkylation of $\langle i \rangle N \langle i \rangle$ -aryl tetrahydroisoquinolines induced by visible light. Organic Chemistry Frontiers, 2021, 8, 2473-2479.	2.3	23
2052	Dendritic fibrous nanosilica-supported dendritic IL/Ru(<scp>ii</scp>) as photocatalysts for the dicarbofunctionalization of styrenes with carbon dioxide and amines. RSC Advances, 2021, 11, 9933-9941.	1.7	54
2053	Homogeneous aluminum and iron catalysts for the synthesis of organic molecules and biodegradable polymers., 2021,, 3-43.		0
2054	Increasing antibiotic activity by rapid bioorthogonal conjugation of drug to resistant bacteria using an upconverted light-activated photocatalyst. Journal of Materials Chemistry B, 2021, 9, 3136-3142.	2.9	6
2055	Fullerene soot and a fullerene nanodispersion as recyclable heterogeneous off-the-shelf photocatalysts. RSC Advances, 2021, 11, 4104-4111.	1.7	4
2056	Azido, Cyano, and Nitrato Cyclic Hypervalent Iodine(III) Reagents in Heterocycle Synthesis. Heterocycles, 2021, 103, 144.	0.4	3
2057	Î ² -Diketone boron difluoride dye-functionalized conjugated microporous polymers for efficient aerobic oxidative photocatalysis. Catalysis Science and Technology, 2021, 11, 3905-3913.	2.1	17
2058	Visible-light-promoted thiocyanation of sp ² Câ€"H bonds over heterogeneous graphitic carbon nitrides. New Journal of Chemistry, 2021, 45, 14058-14062.	1.4	8
2059	Generation of azolium dienolates as versatile nucleophilic synthons <i>via N</i> heterocyclic carbene catalysis. Organic Chemistry Frontiers, 2021, 8, 6138-6166.	2.3	52
2060	Photocatalytic (Het)arylation of C(sp ³)â€"H Bonds with Carbon Nitride. ACS Catalysis, 2021, 11, 1593-1603.	5.5	74
2061	Perovskite materials as photocatalysts: Current status and future perspectives. , 2021, , 169-216.		11

#	Article	IF	CITATIONS
2062	Discovery of a photochemical cascade process by flow-based interception of isomerising alkenes. Chemical Science, 2021, 12, 9895-9901.	3.7	12
2063	Dissociations of free radicals to generate protons, electrophiles or nucleophiles: role in DNA strand breaks. Chemical Society Reviews, 2021, 50, 7496-7512.	18.7	5
2064	Photomediated core modification of organic photoredox catalysts in radical addition: mechanism and applications. Chemical Science, 2021, 12, 9432-9441.	3.7	13
2065	Resolving electron injection from singlet fission-borne triplets into mesoporous transparent conducting oxides. Chemical Science, 2021, 12, 11146-11156.	3.7	1
2066	An air-tolerant polymer gel-immobilized iridium photocatalyst with pumping recyclability properties. Chemical Communications, 2021, 57, 7762-7765.	2.2	2
2067	Visibleâ€Lightâ€Promoted Switchable Synthesis of Câ€3â€Functionalized Quinoxalinâ€2(1 <i>H</i>)â€ones. Adva Synthesis and Catalysis, 2021, 363, 1443-1448.	inced 2.1	25
2068	Visible-Light-Curable Solvent-Free Acrylic Pressure-Sensitive Adhesives via Photoredox-Mediated Radical Polymerization. Molecules, 2021, 26, 385.	1.7	15
2069	Intermolecular trifluoromethyl-alkenylation of alkenes enabled by metal-free photoredox catalysis. Chemical Communications, 2021, 57, 5582-5585.	2.2	17
2070	Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling. Journal of the American Chemical Society, 2021, 143, 1590-1597.	6.6	33
2071	Fragment-based drug discovery: opportunities for organic synthesis. RSC Medicinal Chemistry, 2021, 12, 321-329.	1.7	35
2072	Anti-Markovnikov hydroarylation of alkenes <i>via</i> polysulfide anion photocatalysis. Chemical Communications, 2021, 57, 6264-6267.	2.2	22
2073	Visible-Light-Mediated Synthesis of Cyclobutene-Fused Indolizidines and Related Structural Analogs. CCS Chemistry, 2021, 3, 652-664.	4.6	48
2074	Thioxanthone: a powerful photocatalyst for organic reactions. Organic and Biomolecular Chemistry, 2021, 19, 5237-5253.	1.5	104
2075	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	2.8	47
2076	Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chemical Society Reviews, 2021, 50, 7587-7680.	18.7	205
2077	The wavelength-regulated stereodivergent synthesis of (<i>Z</i>)- and (<i>E</i>)-1,4-enediones from phosphonium ylides. Organic Chemistry Frontiers, 2021, 8, 5934-5940.	2.3	9
2078	Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. Journal of the American Chemical Society, 2021, 143, 617-622.	6.6	32
2079	Flow Chemistry in Drug Discovery: Challenges and Opportunities. Topics in Medicinal Chemistry, 2021, , 1-22.	0.4	1

#	ARTICLE	IF	Citations
2080	Organophotocatalytic dearomatization of indoles, pyrroles and benzo(thio)furans via a Giese-type transformation. Communications Chemistry, 2021, 4, .	2.0	19
2081	Singlet and Triplet Contributions to the Excited-State Activities of Dihydrophenazine, Phenoxazine, and Phenothiazine Organocatalysts Used in Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 3613-3627.	6.6	39
2082	Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nature Communications, 2021, 12, 966.	5.8	58
2083	Visible-Light Photocatalytic Tri- and Difluoroalkylation Cyclizations: Access to a Series of Indole[2,1- <i>a</i>]isoquinoline Derivatives in Continuous Flow. Organic Letters, 2021, 23, 1950-1954.	2.4	35
2084	Visible-Light-Induced Tertiary C(sp ³)–H Sulfonylation: An Approach to Tertiary Sulfones. Organic Letters, 2021, 23, 1163-1168.	2.4	14
2085	Photocatalytic C–H Thiocyanation of Corroles: Development of Near-Infrared (NIR)-Emissive Dyes. Journal of Organic Chemistry, 2021, 86, 3324-3333.	1.7	16
2086	Fast and high-efficiency synthesis of 2-substituted benzothiazoles via combining enzyme catalysis and photoredox catalysis in one-pot. Bioorganic Chemistry, 2021, 107, 104607.	2.0	18
2087	Employing Photocatalysis for the Design and Preparation of DNAâ€Encoded Libraries: A Case Study. Chemical Record, 2021, 21, 616-630.	2.9	14
2088	Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Advanced Synthesis and Catalysis, 2021, 363, 2912-2968.	2.1	42
2089	Ultraviolet-light-induced aerobic oxidation of benzylic C(sp3)-H of alkylarenes under catalyst- and additive-free conditions. Tetrahedron, 2021, 82, 131947.	1.0	2
2090	A Review on Synthetic Approaches of Phenanthridine. Letters in Organic Chemistry, 2022, 19, 434-452.	0.2	5
2091	Copper Catalyzed C(sp ³)–H Bond Alkylation via Photoinduced Ligand-to-Metal Charge Transfer. Journal of the American Chemical Society, 2021, 143, 2729-2735.	6.6	168
2092	Visibleâ€Lightâ€Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angewandte Chemie - International Edition, 2021, 60, 7036-7040.	7.2	44
2093	Coupling Photocatalysis and Substitution Chemistry to Expand and Normalize Redox-Active Halides. Organic Letters, 2021, 23, 2036-2041.	2.4	5
2094	Photocatalytic Generation of π-Allyltitanium Complexes from Butadiene via a Radical Strategy. Synthesis, 2021, 53, 1889-1900.	1.2	4
2095	Visible Lightâ€Induced [3+2] Cyclization Reactions of Hydrazones with Hypervalent Iodine Diazo Reagents for the Synthesis of 1â€Aminoâ€1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2021, 363, 2133-2139.	2.1	19
2096	Recent Developments in Remote <i>Meta</i> 倀â^'H Bond Functionalizations. Advanced Synthesis and Catalysis, 2021, 363, 1290-1316.	2.1	23
2097	\hat{l}^2 -Functionalization of Saturated Aza-Heterocycles Enabled by Organic Photoredox Catalysis. ACS Catalysis, 2021, 11, 3153-3158.	5.5	37

#	ARTICLE	IF	CITATIONS
2098	Visibleâ€Lightâ€Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angewandte Chemie, 2021, 133, 7112-7116.	1.6	7
2099	Advances in Homogeneous Photocatalytic Organic Synthesis with Colloidal Quantum Dots. Catalysts, 2021, 11, 275.	1.6	15
2100	Photophysical Properties and Redox Potentials of Photosensitizers for Organic Photoredox Transformations. Synlett, 2022, 33, 1154-1179.	1.0	60
2101	Aryldiazonium Salts in Photoredox Catalysis – Recent Trends. Advanced Synthesis and Catalysis, 2021, 363, 1782-1809.	2.1	60
2102	Photocatalytic Umpolung Synthesis of Nucleophilic π-Allylcobalt Complexes for Allylation of Aldehydes. ACS Catalysis, 2021, 11, 2992-2998.	5. 5	32
2103	State of the Art of Bodipyâ€Based Photocatalysts in Organic Synthesis. European Journal of Organic Chemistry, 2021, 2021, 1809-1824.	1.2	49
2104	Photocatalytic Gieseâ€Type Reaction with Alkylsilicates Bearing C,Oâ€Bidentate Ligands. Chemistry - A European Journal, 2021, 27, 6713-6718.	1.7	17
2105	Tunable Redoxâ€Neutral Photocatalysis: Visible Lightâ€Induced Arylperfluoroalkylation of Alkenes Regulated by Protons. Asian Journal of Organic Chemistry, 2021, 10, 642-648.	1.3	13
2106	Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chemical Reviews, 2021, 121, 3561-3597.	23.0	188
2107	Photocatalyst-Free, Visible-Light-Mediated C(sp ³)–H Arylation of Amides via a Solvent-Caged EDA Complex. Organic Letters, 2021, 23, 2002-2006.	2.4	31
2108	Tandem $[2+2]$ Cycloaddition/Rearrangement toward Carbazoles by Visible-Light Photocatalysis. Organic Letters, 2021, 23, 2135-2139.	2.4	12
2109	Photoredox-catalyzed synthesis of N-unsubstituted enaminosulfones from vinyl azides and sulfinates. Tetrahedron Letters, 2021, 64, 152737.	0.7	18
2110	Anthraceneâ€based <scp> g ₃ N ₄ </scp> photocatalyst for regeneration of <scp>NAD</scp> (P)H and sulfide oxidation based on Zâ€scheme nature. International Journal of Energy Research, 2021, 45, 13117-13129.	2.2	17
2111	Multicomponent Assembly of α,αâ€Bisâ€Sulfonyl Arylketones and Multiple Substituted Conjugated Dienes Induced by Visibleâ€Light Irradiation without Additives and Photocatalysts. Advanced Synthesis and Catalysis, 2021, 363, 2670-2675.	2.1	5
2112	Eosin Y as a direct hydrogen-atom transfer photocatalyst for the C3-H acylation of quinoxalin-2(1H)-ones. Tetrahedron Letters, 2021, 68, 152915.	0.7	26
2113	Direct Access to Primary Amines from Alkenes by Selective Metalâ€Free Hydroamination. Angewandte Chemie - International Edition, 2021, 60, 9875-9880.	7.2	33
2114	Cross-Coupling Reactions of Persistent Tertiary Carbon Radicals. Bulletin of the Chemical Society of Japan, 2021, 94, 1066-1079.	2.0	13
2115	Decarboxylative Polyfluoroarylation of Alkylcarboxylic Acids. Angewandte Chemie - International Edition, 2021, 60, 10557-10562.	7.2	36

#	Article	IF	CITATIONS
2116	Photoinduced Activation of Unactivated C(sp 3)â€H Bonds and Acylation Reactions. ChemistrySelect, 2021, 6, 2523-2528.	0.7	9
2117	Visible Light-Induced Cascade Cyclization of 3-Aminoindazoles, Ynals, and Chalcogens: Access to Chalcogen-Containing Pyrimido[1,2- <i>b</i> j-indazoles. Organic Letters, 2021, 23, 2754-2759.	2.4	37
2118	Lateâ€Stage Alkylation of Heterocycles Using <i>N</i> à€(Acyloxy)phthalimides. Chemistry - an Asian Journal, 2021, 16, 879-889.	1.7	29
2119	Research Progress in Organic Synthesis by Means of Photoelectrocatalysis. Chemical Record, 2021, 21, 841-857.	2.9	60
2120	Diastereoselective and Stereodivergent Synthesis of 2â€Cinnamylpyrrolines Enabled by Photoredoxâ€Catalyzed Iminoalkenylation of Alkenes. Angewandte Chemie, 2021, 133, 9758-9765.	1.6	5
2121	Chiral Nearâ€Infrared Fluorophores by Selfâ€Promoted Oxidative Coupling of Cationic Helicenes with Amines/Enamines. Angewandte Chemie - International Edition, 2021, 60, 8733-8738.	7.2	24
2122	Advances in the synthesis of three-dimensional molecular architectures by dearomatizing photocycloadditions. Tetrahedron, 2022, 103, 132087.	1.0	12
2123	Conformational Switching through the Oneâ€Electron Reduction of an Acridiniumâ€based, γâ€Cationic Phosphine Gold Complex. Chemistry - A European Journal, 2021, 27, 6701-6705.	1.7	13
2124	Visibleâ€Lightâ€Promoted Reversible Sulfide/Iodide Exchange in Fluoroalkyl Sulfides Enabled by Electron Donorâ€Acceptor Complex Formation. ChemPhotoChem, 2021, 5, 565-570.	1.5	8
2125	Photoinduced Metal-Free α-C(sp ³)â€"H Carbamoylation of Saturated <i>Aza</i> Heterocycles via Rationally Designed Organic Photocatalyst. ACS Catalysis, 2021, 11, 3466-3472.	5.5	40
2126	Intensification of Heterogeneous Photocatalytic Reactions Without Efficiency Losses: The Importance of Surface Catalysis. Catalysis Letters, 2021, 151, 3105-3113.	1.4	18
2127	Understanding the Origin of the Chiral Recognition of Esters with Octahedral Chiral Cobalt Complexes. Asian Journal of Organic Chemistry, 2021, 10, 886-890.	1.3	10
2128	The effect of the rate of photoinduced electron transfer on the photodecarboxylation efficiency in phthalimide photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113109.	2.0	3
2129	Câ€"H Functionalization via Electrophotocatalysis and Photoelectrochemistry: Complementary Synthetic Approach. ACS Sustainable Chemistry and Engineering, 2021, 9, 4324-4340.	3.2	29
2130	Decatungstate as a direct hydrogen atom transfer photocatalyst for synthesis of trifluromethylthioesters from aldehydes. Chinese Chemical Letters, 2021, 32, 3027-3030.	4.8	13
2131	Multifunctional core-shell Pd@Cu on MoS2 as a visible light-harvesting photocatalyst for synthesis of disulfide by S S coupling. Applied Catalysis A: General, 2021, 613, 118025.	2.2	21
2132	Visible-Light-Induced Catalyst-Free Carboxylation of Acylsilanes with Carbon Dioxide. Organic Letters, 2021, 23, 2303-2307.	2.4	26
2133	Robust Photocatalytic Method Using Ethyleneâ€Bridged Flavinium Salts for the Aerobic Oxidation of Unactivated Benzylic Substrates. Advanced Synthesis and Catalysis, 2021, 363, 4371-4379.	2.1	12

#	Article	IF	Citations
2134	Dual Palladium/Photoredox-Catalyzed Enantioselective and Regioselective Decarboxylative Hydroaminoalkylation of Allenes. ACS Catalysis, 2021, 11, 3343-3350.	5.5	27
2135	Diastereoselective and Stereodivergent Synthesis of 2â€Cinnamylpyrrolines Enabled by Photoredoxâ€Catalyzed Iminoalkenylation of Alkenes. Angewandte Chemie - International Edition, 2021, 60, 9672-9679.	7.2	40
2136	Self-Assembled 2,3-Dicyanopyrazino Phenanthrene Aggregates as a Visible-Light Photocatalyst. Journal of Organic Chemistry, 2021, 86, 5016-5025.	1.7	9
2137	Photoredox-Catalyzed Addition of Dibromofluoromethane to Alkenes: Direct Synthesis of 1-Bromo-1-fluoroalkanes. Organic Letters, 2021, 23, 2364-2369.	2.4	18
2138	Direct Access to Primary Amines from Alkenes by Selective Metalâ€Free Hydroamination. Angewandte Chemie, 2021, 133, 9963-9968.	1.6	5
2139	Visible-light-induced sequential sulfonylation/hydroxylation of allylacetamides leading to \hat{l}^2 -tert-hydroxy sulfones. Tetrahedron, 2021, 83, 131999.	1.0	4
2140	Long-Lived Triplet Excited State in a Heterogeneous Modified Carbon Nitride Photocatalyst. Journal of the American Chemical Society, 2021, 143, 4646-4652.	6.6	48
2141	Integrating Continuous-Flow Electrochemistry and Photochemistry for the Synthesis of Acridinium Photocatalysts Via Site-Selective C–H Alkylation. Organic Process Research and Development, 2021, 25, 2608-2613.	1.3	17
2142	Unlocking the Synthetic Potential of Light-Excited Aryl Ketones: Applications in Direct Photochemistry and Photoredox Catalysis. Synlett, 0, , .	1.0	14
2143	Synthetic Semiconductor Photoelectrochemistry. Chemical Record, 2021, 21, 2223-2238.	2.9	17
2144	Solar and Visible Light Assisted Peptide Coupling. Angewandte Chemie - International Edition, 2021, 60, 12406-12412.	7.2	17
2145	Unveiling Potent Photooxidation Behavior of Catalytic Photoreductants. Journal of the American Chemical Society, 2021, 143, 4125-4132.	6.6	55
2146	Debenzylative Sulfonylation of Tertiary Benzylamines Promoted by Visible Light. European Journal of Organic Chemistry, 2021, 2021, 1896-1900.	1.2	5
2147	Arylation of <i>ortho</i> -Hydroxyarylenaminones by Sulfonium Salts and Arenesulfonyl Chlorides: An Access to Isoflavones. Journal of Organic Chemistry, 2021, 86, 4896-4916.	1.7	20
2148	Aerobic Oxidations in Asymmetric Synthesis: Catalytic Strategies and Recent Developments. Frontiers in Chemistry, 2021, 9, 614944.	1.8	9
2149	Chiral Nearâ€Infrared Fluorophores by Selfâ€Promoted Oxidative Coupling of Cationic Helicenes with Amines/Enamines. Angewandte Chemie, 2021, 133, 8815-8820.	1.6	10
2150	Progress in Photoinduced Radical Reactions using Electron Donorâ€Acceptor Complexes. Asian Journal of Organic Chemistry, 2021, 10, 711-748.	1.3	77
2151	Decarboxylative Polyfluoroarylation of Alkylcarboxylic Acids. Angewandte Chemie, 2021, 133, 10651-10656.	1.6	7

#	Article	IF	CITATIONS
2152	Visibleâ€Lightâ€Induced Palladiumâ€Catalyzed Dehydrogenative Carbonylation of Amines to Oxalamides. Chemistry - A European Journal, 2021, 27, 5642-5647.	1.7	13
2153	Photochemical Insights on Intramolecular Dyeâ€Sensitized Freeâ€Radical Processes with a Quinoline Antenna. ChemistrySelect, 2021, 6, 2394-2399.	0.7	0
2154	Emerging concepts in photocatalytic organic synthesis. IScience, 2021, 24, 102209.	1.9	109
2155	Recent Advances in the Development of Direct Trifluoromethylselenolation Reagents and Methods. Advanced Synthesis and Catalysis, 2021, 363, 1835-1854.	2.1	43
2156	Solar and Visible Light Assisted Peptide Coupling. Angewandte Chemie, 2021, 133, 12514-12520.	1.6	5
2157	Lightâ€Mediated Selenoâ€Functionalization of Organic Molecules: Recent Advances. Chemical Record, 2021, 21, 2739-2761.	2.9	33
2158	Synthesis, Characterization, and Reactivity of N-Alkyl Phenoxazines in Organocatalyzed Atom Transfer Radical Polymerization. ACS Macro Letters, 2021, 10, 453-459.	2.3	14
2159	Visible-Light-Promoted Diboron-Mediated Transfer Hydrogenation of Azobenzenes to Hydrazobenzenes. Journal of Organic Chemistry, 2021, 86, 4804-4811.	1.7	17
2160	Manipulating Energy Transfer in UCNPs@SiO ₂ @Ag Nanoparticles for Efficient Infrared Photocatalysis. Inorganic Chemistry, 2021, 60, 5704-5710.	1.9	19
2161	All at once arrangement of both oxygen atoms of dioxygen into aliphatic C(sp3)-C(sp3) bonds for hydroxyketone difunctionalization. Science China Chemistry, 2021, 64, 770-777.	4.2	4
2162	Electrochemical and Photocatalytic Oxidative Coupling of Ketones via Silyl Bis-enol Ethers. Journal of Organic Chemistry, 2021, 86, 6600-6611.	1.7	9
2163	Photoredox Propargylation of Aldehydes Catalytic in Titanium. Journal of Organic Chemistry, 2021, 86, 7002-7009.	1.7	18
2164	Construction of Complex Cyclobutane Building Blocks by Photosensitized [2 + 2] Cycloaddition of Vinyl Boronate Esters. Organic Letters, 2021, 23, 3496-3501.	2.4	29
2165	Reductive Arylation of Aliphatic and Aromatic Aldehydes with Cyanoarenes by Electrolysis for the Synthesis of Alcohols. Organic Letters, 2021, 23, 3472-3476.	2.4	48
2166	Visibleâ€lightâ€induced Reactions Driven by Photochemical Activity of Quinolinone and Coumarin Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 1012-1023.	1.3	10
2167	CBZ6 as a Recyclable Organic Photoreductant for Pinacol Coupling. Organic Letters, 2021, 23, 2900-2903.	2.4	23
2168	C(sp ³)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science, 2021, 372, 398-403.	6.0	107
2169	An Inorganic/Organic Sâ€Scheme Heterojunction H ₂ â€Production Photocatalyst and its Charge Transfer Mechanism. Advanced Materials, 2021, 33, e2100317.	11.1	528

#	Article	IF	CITATIONS
2170	Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis. Nature Catalysis, 2021, 4, 304-311.	16.1	104
2171	Directing-Group-Assisted Markovnikov-Selective Hydrothiolation of Styrenes with Thiols by Photoredox/Cobalt Catalysis. Organic Letters, 2021, 23, 3604-3609.	2.4	24
2172	Electricityâ€Driven Postâ€Functionalization of Conducting Polymers. Chemical Record, 2021, 21, 2107-2119.	2.9	9
2173	Functionalization of DNA-Tagged Alkenes Enabled by Visible-Light-Induced C–H Activation of <i>N</i> -Aryl Tertiary Amines. Organic Letters, 2021, 23, 3486-3490.	2.4	26
2174	Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Advanced Optical Materials, 2021, 9, 2002251.	3.6	146
2175	Oximeâ€Derived Iminyl Radicals in Selective Processes of Hydrogen Atom Transfer and Addition to Carbonâ€Carbon Ï€â€Bonds. Advanced Synthesis and Catalysis, 2021, 363, 2502-2528.	2.1	53
2176	Visibleâ€Lightâ€Induced Manganeseâ€Catalyzed Reactions: Present Approach and Future Prospects. Advanced Synthesis and Catalysis, 2021, 363, 2969-2995.	2.1	31
2177	Visible-Light-Induced α-Amino C–H Bond Arylation Enabled by Electron Donor–Acceptor Complexes. Organic Letters, 2021, 23, 3913-3918.	2.4	22
2178	Photochemical Activation of Aromatic Aldehydes: Synthesis of Amides, Hydroxamic Acids and Esters. Chemistry - A European Journal, 2021, 27, 7915-7922.	1.7	23
2179	Room-Temperature Stable Noncovalent Charge-Transfer Dianion Biradical to Produce Singlet Oxygen by Visible or Near-Infrared Light Photoexcitation. Journal of Physical Chemistry Letters, 2021, 12, 4306-4312.	2.1	5
2180	Dual organic dyes as a pseudo-redox mediation system to promotion of tandem oxidation /[3+2] cycloaddition reactions under visible light. Tetrahedron, 2021, 89, 132166.	1.0	11
2181	Recent Advances in Minisci-type Reactions and Applications in Organic Synthesis. Current Organic Chemistry, 2021, 25, 894-934.	0.9	18
2182	Mechanistic Insight into the Light-Triggered CuAAC Reaction: Does Any of the Photocatalyst Go?. Journal of Organic Chemistry, 2021, 86, 5832-5844.	1.7	10
2183	Acylation of Arenes with Aldehydes through Dual C–H Activations by Merging Photocatalysis and Palladium Catalysis. Organic Letters, 2021, 23, 3772-3776.	2.4	20
2184	Sulfonylation of Aryl Halides by Visible Light/Copper Catalysis. Organic Letters, 2021, 23, 3663-3668.	2.4	47
2185	Visible Lightâ€Induced Synthesis of Functionalized Coumarins. Advanced Synthesis and Catalysis, 2021, 363, 3411-3438.	2.1	32
2186	peri â€Xanthenoxanthene (PXX): a Versatile Organic Photocatalyst in Organic Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 4740.	2.1	10
2187	Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry - A European Journal, 2021, 27, 7738-7744.	1.7	22

#	Article	IF	CITATIONS
2188	Electrophotocatalytic Câ^'H Heterofunctionalization of Arenes. Angewandte Chemie, 2021, 133, 11263-11267.	1.6	12
2190	Benzylic Câ^'H acylation by cooperative NHC and photoredox catalysis. Nature Communications, 2021, 12, 2068.	5.8	112
2191	Electrophotocatalytic Câ^'H Heterofunctionalization of Arenes. Angewandte Chemie - International Edition, 2021, 60, 11163-11167.	7.2	75
2192	Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chemical Reviews, 2021, 121, 5741-5829.	23.0	160
2193	Photoclick Chemistry: A Bright Idea. Chemical Reviews, 2021, 121, 6915-6990.	23.0	113
2194	Metalâ€Free Visibleâ€Light Synthesis of Arylsulfonyl Fluorides: Scope and Mechanism. Chemistry - A European Journal, 2021, 27, 8704-8708.	1.7	37
2195	Development of Selective Reactions Using Ball Milling. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 492-502.	0.0	1
2196	Quantitative Structureâ€Property Relationship Modelling for the Prediction of Singlet Oxygen Generation by Heavyâ€Atomâ€Free BODIPY Photosensitizers**. Chemistry - A European Journal, 2021, 27, 9934-9947.	1.7	19
2197	Spirocyclizative Remote Arylcarboxylation of Nonactivated Arenes with CO ₂ via Visible-Light-Induced Reductive Dearomatization. CCS Chemistry, 2022, 4, 1565-1576.	4.6	23
2198	A Donor–Acceptor [2]Catenane for Visible Light Photocatalysis. Journal of the American Chemical Society, 2021, 143, 8000-8010.	6.6	47
2199	Enhancing Visible-Light Photocatalysis <i>via</i> Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24877-24886.	4.0	19
2200	Mechanoredox Chemistry as an Emerging Strategy in Synthesis. Chemistry - A European Journal, 2021, 27, 9721-9726.	1.7	72
2201	4â€Nitroanisole Facilitates Proton Reduction: Visible Lightâ€Induced Oxidative Aryltrifluoromethylation of Alkenes with Hydrogen Evolution. ChemCatChem, 2021, 13, 2952-2958.	1.8	18
2202	Metalâ€free Photocatalytic Intermolecular antiâ€Markovnikov Hydroamination of Unactivated Alkenes. European Journal of Organic Chemistry, 2021, 2021, 2650-2654.	1.2	9
2203	Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angewandte Chemie, 2021, 133, 19678-19701.	1.6	28
2204	Photoredox Organocatalysts with Thermally Activated Delayed Fluorescence for Visible-Light-Driven Atom Transfer Radical Polymerization. Macromolecules, 2021, 54, 4633-4640.	2.2	12
2205	Chemodivergent Photocatalytic Synthesis of Dihydrofurans and β,γâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2021, 363, 3267-3282.	2.1	13
2206	Enabling Cyclization Strategies through Carbonyl-Ylide-Mediated Synthesis of Malonate Enol Ethers. ACS Organic & Inorganic Au, 0, , .	1.9	8

#	Article	IF	CITATIONS
2207	Synthesis of Sterically Hindered α-Hydroxycarbonyls through Radical–Radical Coupling. Organic Letters, 2021, 23, 4420-4425.	2.4	21
2208	Pyrylium salt as a visible-light-induced photoredox catalyst for polymer and organic synthesis – Perspectives on catalyst design and performance. European Polymer Journal, 2021, 150, 110365.	2.6	25
2210	Visible-Light-Driven, Palladium-Catalyzed Heck Reaction of Internal Vinyl Bromides with Styrenes. Journal of Organic Chemistry, 2021, 86, 8402-8413.	1.7	4
2211	Photocatalytic C–H Activation with Alcohol as a Hydrogen Atom Transfer Agent in a 9-Fluorenone Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 25898-25905.	4.0	12
2212	Copperâ€Photocatalyzed Hydroboration of Alkynes and Alkenes. Angewandte Chemie - International Edition, 2021, 60, 14498-14503.	7.2	60
2213	Organoboron Compounds in Visible Light-driven Photoredox Catalysis. Current Organic Chemistry, 2021, 25, 994-1027.	0.9	5
2214	Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angewandte Chemie - International Edition, 2021, 60, 19526-19549.	7.2	130
2215	Modern Synthetic Strategies for One-Electron Injection. Trends in Chemistry, 2021, 3, 416-427.	4.4	9
2216	Visible-Light-Induced Photocatalytic Synthesis of \hat{l}^2 -Keto Dithiocarbamates via Difunctionalization of Styrenes. Organic Letters, 2021, 23, 4147-4151.	2.4	36
2217	Cu-Catalyzed Arylation of Bromo-Difluoro-Acetamides by Aryl Boronic Acids, Aryl Trialkoxysilanes and Dimethyl-Aryl-Sulfonium Salts: New Entries to Aromatic Amides. Molecules, 2021, 26, 2957.	1.7	5
2218	Radical Addition to <i>N</i> , <i>N</i> -Diaryl Dihydrophenazine Photoredox Catalysts and Implications in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules, 2021, 54, 4507-4516.	2.2	27
2219	Single Cu(I)-Photosensitizer Enabling Combination of Energy-Transfer and Photoredox Catalysis for the Synthesis of Benzo[<i>b</i>]fluorenols from 1,6-Enynes. Organic Letters, 2021, 23, 4478-4482.	2.4	14
2220	Selective Transformations of Carbohydrates Inspired by Radical-Based Enzymatic Mechanisms. ACS Chemical Biology, 2021, 16, 1814-1828.	1.6	31
2221	Excitation of Radical Anions of Naphthalene Diimides in Consecutive―and Electroâ€Photocatalysis**. ChemCatChem, 2021, 13, 3001-3009.	1.8	24
2222	A Selective Ratiometric Fluorescent Probe for No-Wash Detection of PVC Microplastic. Polymers, 2021, 13, 1588.	2.0	8
2223	Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. CheM, 2021, 7, 1244-1257.	5.8	59
2224	Photoredox-Enabled Decarboxylative Synthesis of Unnatural α-Amino Acids. Synlett, 2022, 33, 109-115.	1.0	9
2225	Ligand–Metal Charge Transfer Induced <i>via</i> Adjustment of Textural Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS Applied Materials & Light Representation and Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS Applied Materials & Light Representation and Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS Applied Materials & Light Representation and Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS Applied Materials & Light Representation and Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS Applied Materials & Light Representation and Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS Applied Materials & Light Representation and Properties Controls & Light Representation and Properties Controls & Light Representation and Properties Controls & Light Representation and Properties & Light Representation & L	4.0	51

#	Article	IF	CITATIONS
2226	Copperâ€Photocatalyzed Hydroboration of Alkynes and Alkenes. Angewandte Chemie, 2021, 133, 14619-14624.	1.6	13
2227	Scalability of photochemical reactions in continuous flow mode. Journal of Flow Chemistry, 2021, 11, 223-241.	1.2	80
2228	Photo-redox coupled Co-pincer complexes for efficient decarbonylation of aryl carbonyls: A quantum chemical investigation. Molecular Catalysis, 2021, 507, 111553.	1.0	2
2229	Visibleâ€Lightâ€Induced Iminothiolation of Unactivated Alkenes. Asian Journal of Organic Chemistry, 2021, 10, 1386-1389.	1.3	5
2230	Easily fabricated HARCP/HAp photocatalyst for efficient and fast removal of tetracycline under natural sunlight. Chemical Engineering Journal, 2021, 412, 128620.	6.6	23
2231	Photo-oxidative Ruthenium(II)-Catalyzed Formal $[3+2]$ Heterocyclization of Thioamides to Thiadiazoles. Organic Letters, 2021, 23, 3809-3813.	2.4	17
2232	Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Letters, 2021, 72, 153064.	0.7	5
2233	Visible Lightâ€Mediated Functionalization of Selenocystineâ€Containing Peptides. Advanced Synthesis and Catalysis, 2021, 363, 3318-3328.	2.1	8
2234	Regioselective Radical Borylation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Esters and Related Compounds by Visible Light Irradiation with an Organic Photocatalyst. Organic Letters, 2021, 23, 4353-4357.	2.4	37
2235	Complementary Reactivity in Selective Radical Processes: Electrochemistry of Oxadiazolines to Quinazolinones. Organic Letters, 2021, 23, 5148-5152.	2.4	5
2236	Ad Hoc Adjustment of Photoredox Properties by the Late-Stage Diversification of Acridinium Photocatalysts. Organic Letters, 2021, 23, 5143-5147.	2.4	16
2237	Efficient quasi-stationary charge transfer from quantum dots to acceptors physically-adsorbed in the ligand monolayer. Nano Research, 2022, 15, 617-626.	5.8	13
2238	The Rich Legacy and Bright Future of Transitionâ€Metal Catalyzed Peroxide Based Radical Reactions. Chemical Record, 2021, , .	2.9	3
2239	Azobenzene: a Visibleâ€Light Chemical Actinometer for the Characterization of Fluidic Photosystems. Helvetica Chimica Acta, 2021, 104, e2100071.	1.0	3
2240	Recent Advances in Visibleâ€Lightâ€Driven Photocatalyzed γâ€Cyanoalkylation Reactions. Asian Journal of Organic Chemistry, 2021, 10, 1595-1618.	1.3	14
2241	Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2. Science China Chemistry, 2021, 64, 1164-1169.	4.2	20
2242	Visibleâ€Light Driven Organoâ€photocatalyzed Multicomponent Reaction for C(<i>>sp</i> > ^{<i>3</i>>^{<i>3</i><fu>H Alkylation of Phosphoramides with <i>inâ€situ</i><fu>Generated Michael Acceptors. European Journal of Organic Chemistry, 2021, 2021, 4293-4298.</fu></fu>}}	1.2	5
2243	Tuning the Excited-State Dynamics of Acetophenone Using Metal Ions in Solution. Journal of Physical Chemistry Letters, 2021, 12, 5473-5478.	2.1	9

#	Article	IF	CITATIONS
2244	Visible-Light-Driven C–S Bond Formation Based on Electron Donor–Acceptor Excitation and Hydrogen Atom Transfer Combined System. ACS Organic & Inorganic Au, 2021, 1, 23-28.	1.9	39
2245	Recent Visible Light and Metal Free Strategies in [2+2] and [4+2] Photocycloadditions. European Journal of Organic Chemistry, 2021, 2021, 3303-3321.	1.2	28
2246	Mechanistic Investigations of an \hat{l}_{\pm} -Aminoarylation Photoredox Reaction. Journal of the American Chemical Society, 2021, 143, 8878-8885.	6.6	42
2247	Organophotoredoxâ€Catalyzed Lateâ€Stage Functionalization of Heterocycles. Asian Journal of Organic Chemistry, 2021, 10, 1848-1860.	1.3	32
2248	Visible-Light Driven Selective C–N Bond Scission in <i>anti</i> Bimane-Like Derivatives. Organic Letters, 2021, 23, 5294-5298.	2.4	5
2249	The Role of Computational Chemistry in Discovering and Understanding Organic Photocatalysts for Renewable Fuel Synthesis. Advanced Energy Materials, 2021, 11, 2100709.	10.2	12
2250	Electron Donorâ€Acceptor Complex Enabled Photocyanation of Tertiary Amines with a Stable and Userâ€Friendly Cyanobenziodoxolone Reagent. ChemPhotoChem, 2021, 5, 906-910.	1.5	5
2251	The application of modern reactions in large-scale synthesis. Nature Reviews Chemistry, 2021, 5, 546-563.	13.8	40
2252	Synthesis of Lâ€Hexoses: An Update. Chemical Record, 2021, 21, 3224-3237.	2.9	5
2253	Visible <scp>Lightâ€Mediated</scp> Construction of Sulfonated Dibenzazepines. Chinese Journal of Chemistry, 2021, 39, 2220-2226.	2.6	19
2254	Katalytische Erzeugung von Carbanionen durch Carbonylâ€Umpolung. Angewandte Chemie, 2021, 133, 21792-21802.	1.6	7
2255	Synthesis of benzothiazoles using fluorescein as an efficient photocatalyst under visible light. Molecular Catalysis, 2021, 510, 111693.	1.0	8
2256	A Dual-Function Highly Crystalline Covalent Organic Framework for HCl Sensing and Visible-Light Heterogeneous Photocatalysis. Macromolecules, 2021, 54, 6595-6604.	2.2	34
2259	Direct C3 Carbamoylation of 2 <i>H</i> i>â€Indazoles. European Journal of Organic Chemistry, 2021, 2021, 3382-3385.	1.2	11
2260	Dual Nickel/Ruthenium Strategy for Photoinduced Decarboxylative Cross-Coupling of \hat{l}_{\pm} , \hat{l}_{-}^2 -Unsaturated Carboxylic Acids with Cycloketone Oxime Esters. Journal of Organic Chemistry, 2021, 86, 8829-8842.	1.7	17
2261	Enantioselective Construction of Polycyclic Indazole Skeletons Bearing Five Consecutive Chiral Centers through an Asymmetric Triple-Reaction Sequence. Organic Letters, 2021, 23, 5033-5038.	2.4	6
2262	Visibleâ€Lightâ€Induced Homolysis of Earthâ€Abundant Metalâ€Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 21100-21115.	7.2	190
2263	Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology. ACS Central Science, 2021, 7, 1126-1134.	5.3	52

#	Article	IF	CITATIONS
2264	Decatungstate-Catalyzed C(<i>sp</i> ³)â€"H Sulfinylation: Rapid Access to Diverse Organosulfur Functionality. Journal of the American Chemical Society, 2021, 143, 9737-9743.	6.6	91
2265	Light-controlled, living radical polymerisation mediated by fluorophore-conjugated RAFT agents. Polymer, 2021, 226, 123840.	1.8	6
2266	Multigram Synthesis of Trioxanes Enabled by a Supercritical CO ₂ Integrated Flow Process. Organic Process Research and Development, 2021, 25, 1873-1881.	1.3	10
2267	Controllable Site-Selective Construction of 2- and 4-Substituted Pyrimido[1,2- <i>b</i> jindazole from 3-Aminoindazoles and Ynals. Journal of Organic Chemistry, 2021, 86, 9107-9116.	1.7	18
2268	Versatile Open-Source Photoreactor Architecture for Photocatalysis Across the Visible Spectrum. Organic Letters, 2021, 23, 5277-5281.	2.4	9
2269	Radical Chain Reduction via Carbon Dioxide Radical Anion (CO ₂ ^{•–}). Journal of the American Chemical Society, 2021, 143, 8987-8992.	6.6	141
2271	Electrophotocatalytic Si–H Activation Governed by Polarity-Matching Effects. CCS Chemistry, 2022, 4, 1796-1805.	4.6	50
2272	Photo-induced deep aerobic oxidation of alkyl aromatics. Science China Chemistry, 2021, 64, 1487-1492.	4.2	21
2273	Carbon Dots for Photocatalytic Degradation of Aqueous Pollutants: Recent Advancements. Advanced Optical Materials, 2021, 9, 2100532.	3.6	80
2274	Photoredox-Catalyzed C–F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position. Journal of the American Chemical Society, 2021, 143, 9308-9313.	6.6	67
2275	Visible-Light-Induced Carbonylation of Indoles with Phenols under Metal-Free Conditions: Synthesis of Indole-3-carboxylates. Organic Letters, 2021, 23, 4769-4773.	2.4	5
2276	Selective Mitochondrial Protein Labeling Enabled by Biocompatible Photocatalytic Reactions inside Live Cells. Jacs Au, 2021, 1, 1066-1075.	3.6	35
2277	S _N Ar and C–H Amination of Electron Rich Arenes with Pyridine as a Nucleophile Using Photoredox Catalysis. Organic Letters, 2021, 23, 5213-5217.	2.4	14
2278	Chemo- and stereoselective intermolecular $[2\hat{A}+2]$ photocycloaddition of conjugated dienes using colloidal nanocrystal photocatalysts. Chem Catalysis, 2021, 1, 106-116.	2.9	28
2279	1,2,3-Triazole-based conjugated porous polymers for visible light induced oxidative organic transformations. Applied Catalysis B: Environmental, 2021, 287, 119984.	10.8	24
2280	Visible-light-induced chemoselective reactions of quinoxalin-2(1H)-ones with alkylboronic acids under air/N2 atmosphere. Chinese Chemical Letters, 2021, 32, 4033-4037.	4.8	25
2281	Photoredox-Catalyzed Benzylic Esterification via Radical-Polar Crossover. Organic Letters, 2021, 23, 5113-5117.	2.4	23
2282	Aqueous Persistent Noncovalent Ion-Pair Cooperative Coupling in a Ruthenium Cobaltabis(dicarbollide) System as a Highly Efficient Photoredox Oxidation Catalyst. Inorganic Chemistry, 2021, 60, 8898-8907.	1.9	9

#	Article	IF	Citations
2283	Catalystâ€Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donorâ€Acceptor Complex Photoactivation. Advanced Synthesis and Catalysis, 2021, 363, 3507-3520.	2.1	38
2284	Photocatalysis: A Green Tool for Redox Reactions. Synlett, 2022, 33, 129-149.	1.0	23
2285	Mechanistic Investigation and Optimization of Photoredox Anti-Markovnikov Hydroamination. Journal of the American Chemical Society, 2021, 143, 10232-10242.	6.6	28
2286	Durch sichtbares Licht induzierte Homolyse unedler, gut verfýgbarer Metallsubstratkomplexe: Eine komplementÃÆ Aktivierungsstrategie in der Photoredoxkatalyse. Angewandte Chemie, 2021, 133, 21268-21284.	1.6	9
2287	Catalytic Generation of Carbanions through Carbonyl Umpolung. Angewandte Chemie - International Edition, 2021, 60, 21624-21634.	7.2	49
2288	Photo-induced thiolate catalytic activation of inert Caryl-hetero bonds for radical borylation. CheM, 2021, 7, 1653-1665.	5.8	55
2289	The Versatility of the Aryne–Imine–Aryne Coupling for the ÂSynthesis of Acridinium Photocatalysts. Synlett, 2022, 33, 1180-1183.	1.0	1
2290	Visible-Light-Mediated Oxidative Cyclization of 2-Aminobenzyl Alcohols and Secondary Alcohols Enabled by an Organic Photocatalyst. Journal of Organic Chemistry, 2021, 86, 10747-10754.	1.7	11
2291	Synthesis of CF ₃ -Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade. Journal of Organic Chemistry, 2021, 86, 10640-10653.	1.7	21
2292	Discovery and characterization of a novel perylenephotoreductant for the activation of aryl halides. Journal of Catalysis, 2021, 399, 111-120.	3.1	5
2293	Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis: Overview and perspectives. Chem Catalysis, 2021, 1, 298-338.	2.9	38
2294	Recent Advances in Photoredoxâ€Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angewandte Chemie, 2021, 133, 21286-21319.	1.6	15
2295	Application of Metal Halide Perovskites as Photocatalysts in Organic Reactions. Inorganics, 2021, 9, 56.	1.2	19
2296	Photoredox Dual Catalysis: A Fertile Playground for the Discovery of New Reactivities. European Journal of Inorganic Chemistry, 2021, 2021, 3421-3431.	1.0	29
2297	Divergent asymmetric synthesis of azaarene-functionalized cyclic alcohols through stereocontrolled Beckwith-Enholm cyclizations. Science China Chemistry, 2021, 64, 1522-1529.	4.2	20
2298	Photoinitiated Freeâ€Radical Polymerization of 4,5,6,7â€Tetrahalogenated Fluoresceins. Chemistry - an Asian Journal, 2021, 16, 2413-2416.	1.7	3
2299	Copperâ€Photocatalyzed Hydrosilylation of Alkynes and Alkenes under Continuous Flow. Chemistry - A European Journal, 2021, 27, 11818-11822.	1.7	36
2300	Wavelength-selective light-matter interactions in polymer science. Matter, 2021, 4, 2172-2229.	5.0	42

#	Article	IF	CITATIONS
2301	A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events. Journal of the American Chemical Society, 2021, 143, 11361-11369.	6.6	47
2302	Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides. Journal of the American Chemical Society, 2021, 143, 10882-10889.	6.6	140
2303	Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones. Beilstein Journal of Organic Chemistry, 2021, 17, 1727-1732.	1.3	8
2304	Photoinduced Palladium-Catalyzed Intermolecular Radical Cascade Cyclization of <i>N</i> -Arylacrylamides with Unactivated Alkyl Bromides. Organic Letters, 2021, 23, 5631-5635.	2.4	33
2305	Structure-Dependent Electron Transfer Rates for Dihydrophenazine, Phenoxazine, and Phenothiazine Photoredox Catalysts Employed in Atom Transfer Radical Polymerization. Journal of Physical Chemistry B, 2021, 125, 7840-7854.	1.2	22
2306	Advances in Photocatalytic Organic Synthetic Transformations in Water and Aqueous Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 10016-10047.	3.2	27
2307	Dual Catalysis Relay: Coupling of Aldehydes and Alkenes Enabled by Visible-Light and NHC-Catalyzed Cross-Double C–H Functionalizations. ACS Catalysis, 2021, 11, 9715-9721.	5 . 5	50
2308	Visible-light induced photochemistry of Electron Donor-Acceptor Complexes in Perfluoroalkylation Reactions: Investigation of halogen bonding interactions through UV–Visible absorption and Raman spectroscopies combined with DFT calculations. Journal of Molecular Liquids, 2021, 333, 115993.	2.3	5
2309	Photoredox Catalytic Phosphiteâ€Mediated Deoxygenation of αâ€Diketones Enables Wolff Rearrangement and Staudinger Synthesis of βâ€Lactams. Angewandte Chemie, 2021, 133, 19848-19852.	1.6	2
2310	Enabling <i>In Vivo</i> Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts. Journal of the American Chemical Society, 2021, 143, 10793-10803.	6.6	47
2311	Direct Transitionâ€Metal Free Benzene Câ^'H Functionalization by Intramolecular Nonâ€Nitroarene Nucleophilic Aromatic Substitution of Hydrogen to Diverse AlEgens. ChemSusChem, 2021, 14, 3208-3218.	3.6	4
2312	Protonation-Enhanced Reactivity of Triplet State in Dearomative Photocycloaddition of Quinolines to Olefins. Organic Letters, 2021, 23, 6257-6261.	2.4	25
2313	Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chemical Reviews, 2022, 122, 1717-1751.	23.0	199
2314	Markovnikov Wackerâ€√suji Oxidation of Allyl(hetero)arenes and Application in a Oneâ€Pot Photoâ€Metalâ€Biocatalytic Approach to Enantioenriched Amines and Alcohols. Advanced Synthesis and Catalysis, 2021, 363, 4096-4108.	2.1	16
2315	Visible Light Mediated Synthesis of Oxindoles. Advanced Synthesis and Catalysis, 2021, 363, 4284-4308.	2.1	38
2316	Strongly Red-Emissive Molecular Ruby [Cr(bpmp) ₂] ³⁺ Surpasses [Ru(bpy) ₃] ²⁺ . Journal of the American Chemical Society, 2021, 143, 11843-11855.	6.6	66
2317	\hat{l}_{\pm} -Alkylation of Ketones with Alkenes Enabled by Photoinduced Activation of Silyl Enol Ethers in the Presence of a Small Amount of Water. Organic Letters, 2021, 23, 5693-5697.	2.4	12
2318	Photoredox Catalytic Phosphiteâ€Mediated Deoxygenation of αâ€Diketones Enables Wolff Rearrangement and Staudinger Synthesis of βâ€Lactams. Angewandte Chemie - International Edition, 2021, 60, 19696-19700.	7.2	19

#	Article	IF	CITATIONS
2319	Recent Advances in Photoâ€mediated Radiofluorination. Chemistry - an Asian Journal, 2021, 16, 2155-2167.	1.7	15
2320	Direct Câ^'H Radical Alkylation of 1,4â€Quinones. European Journal of Organic Chemistry, 2021, 2021, 3622-3633.	1.2	8
2321	C–H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods. SynOpen, 2021, 05, 173-228.	0.8	40
2322	Hydroalkylation of Unactivated Olefins via Visible-Light-Driven Dual Hydrogen Atom Transfer Catalysis. Journal of the American Chemical Society, 2021, 143, 11251-11261.	6.6	59
2324	Tandem photoelectrochemical and photoredox catalysis for efficient and selective aryl halides functionalization by solar energy. Matter, 2021, 4, 2354-2366.	5.0	24
2325	Photoredox Catalysis Using Heterogenized Iridium Complexes**. Chemistry - A European Journal, 2021, 27, 16966-16977.	1.7	8
2326	Recent Advances on Photoinduced Cascade Strategies for the Synthesis of ⟨i⟩N⟨/i⟩â€Heterocycles. Chemical Record, 2021, 21, 2666-2687.	2.9	13
2327	Photoinduced copper-catalyzed dual decarboxylative coupling of \hat{l}_{\pm},\hat{l}^2 -unsaturated carboxylic acids with redox-active esters. Tetrahedron, 2021, 92, 132259.	1.0	4
2328	Visible-Light Radical–Radical Coupling vs. Radical Addition: Disentangling a Mechanistic Knot. Catalysts, 2021, 11, 922.	1.6	2
2329	Generation of Functionalized Alkyl Radicals via the Direct Photoexcitation of 2,2′-(Pyridine-2,6-diyl)diphenol-Based Borates. Organic Letters, 2021, 23, 5865-5870.	2.4	21
2331	Taming Electron Transfers: From Breaking Bonds to Creating Molecules. Chemical Record, 2021, 21, 2095-2106.	2.9	4
2332	Solvent-Minimized Synthesis of 4CzIPN and Related Organic Fluorophores via Ball Milling. Journal of Organic Chemistry, 2021, 86, 14095-14101.	1.7	17
2333	Late-stage C–H functionalization offers new opportunities in drug discovery. Nature Reviews Chemistry, 2021, 5, 522-545.	13.8	341
2334	Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer. Chemical Reviews, 2022, 122, 1626-1653.	23.0	197
2335	Advances in Visible-Light-Mediated Carbonylative Reactions via Carbon Monoxide (CO) Incorporation. Catalysts, 2021, 11, 918.	1.6	16
2336	Vacancy engineered polymeric carbon nitride nanosheets for enhanced photoredox catalytic efficiency. Cell Reports Physical Science, 2021, 2, 100491.	2.8	17
2337	Alkoxyl-radical-mediated synthesis of functionalized allyl tert-(hetero)cyclobutanols and their ring-opening and ring-expansion functionalizations. Chem Catalysis, 2021, 1, 423-436.	2.9	27
2338	Recent Advances in Visible Light-mediated Fluorination. Journal of Fluorine Chemistry, 2021, 247, 109794.	0.9	28

#	Article	IF	CITATIONS
2339	Thiocarbamoyl Fluoride Synthesis by Deconstructive Diversification of Arylated Tetrahydroisoquinolines. Journal of Organic Chemistry, 2021, 86, 12443-12451.	1.7	10
2340	Recent Advances in Photoredoxâ€Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angewandte Chemie - International Edition, 2021, 60, 21116-21149.	7.2	124
2341	Lightâ€Driven Carbene Catalysis for the Synthesis of Aliphatic and αâ€Amino Ketones. Angewandte Chemie, 2021, 133, 18069-18075.	1.6	6
2342	Lightâ€Driven Carbene Catalysis for the Synthesis of Aliphatic and αâ€Amino Ketones. Angewandte Chemie - International Edition, 2021, 60, 17925-17931.	7.2	68
2343	Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2,3-dihydrobenzofuran derivatives. Chinese Chemical Letters, 2021, 32, 2577-2581.	4.8	42
2344	Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angewandte Chemie, 2021, 133, 21588-21595.	1.6	14
2345	From aniline to phenol: carbon-nitrogen bond activation via uranyl photoredox catalysis. National Science Review, 2022, 9, .	4.6	26
2346	Visible-Light-Induced Dearomatization of Indoles/Pyrroles with Vinylcyclopropanes: Expedient Synthesis of Structurally Diverse Polycyclic Indolines/Pyrrolines. Journal of the American Chemical Society, 2021, 143, 13441-13449.	6.6	50
2347	Dyedauxiliary Group Strategy for the \hat{l}_{\pm} -Functionalization of Ketones and Esters. ACS Organic & Inorganic Au, 2021, 1, 68-71.	1.9	14
2348	Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents. Frontiers in Chemistry, 2021, 9, 734076.	1.8	9
2349	Electronic Properties of Carbon Nanobelts Predicted by Thermally-Assisted-Occupation DFT. Nanomaterials, 2021, 11, 2224.	1.9	11
2350	Electroâ€mediated PhotoRedox Catalysis for Selective C(sp ³)–O Cleavages of Phosphinated Alcohols to Carbanions. Angewandte Chemie - International Edition, 2021, 60, 20817-20825.	7.2	81
2351	An Efficient Approach to Access 2,2â€Diarylanilines via Visible‣ightâ€Promoted Decarboxylative Crossâ€Coupling Reactions. Asian Journal of Organic Chemistry, 2021, 10, 2342-2346.	1.3	6
2352	Photoâ€Induced Rutheniumâ€Catalyzed Câ^'H Benzylations and Allylations at Room Temperature. Chemistry - A European Journal, 2021, 27, 16237-16241.	1.7	17
2353	Switchable, Reagentâ€Controlled Diastereodivergent Photocatalytic Carbocyclisation of Imineâ€Derived αâ€Amino Radicals. Angewandte Chemie, 2021, 133, 24318.	1.6	6
2354	Photoredox Catalytic Three-Component Amidoazidation of 1,3-Dienes. ACS Catalysis, 2021, 11, 10871-10877.	5.5	33
2355	Three-Component Carbosilylation of Alkenes by Merging Iron and Visible-Light Photocatalysis. Organic Letters, 2021, 23, 6510-6514.	2.4	38
2356	Unveiling Extreme Photoreduction Potentials of Donor–Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides. Journal of the American Chemical Society, 2021, 143, 13266-13273.	6.6	118

#	Article	IF	CITATIONS
2357	Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angewandte Chemie - International Edition, 2021, 60, 21418-21425.	7.2	72
2358	Dynamic enzymatic synthesis of \hat{I}^3 -cyclodextrin using a photoremovable hydrazone template. CheM, 2021, 7, 2190-2200.	5.8	15
2359	Regulating effects of anthraquinone substituents and additives in photo-catalytic oxygenation of p-xylene by molecular oxygen under visible light irradiation. Renewable Energy, 2021, 174, 928-938.	4.3	14
2360	Photoinduced Acetylation of Anilines under Aqueous and Catalyst-Free Conditions. Journal of Organic Chemistry, 2021, 86, 12344-12353.	1.7	4
2361	Insights Into the Mechanism of Energy Transfer with Poly(Heptazine Imide)s in a Deoximation Reaction. ChemPhotoChem, 2021, 5, 1020-1025.	1.5	8
2362	Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes. Journal of the American Chemical Society, 2021, 143, 13022-13028.	6.6	71
2363	Redâ€Lightâ€Mediated Photoredox Catalysis Enables Selfâ€Reporting Nitric Oxide Release for Efficient Antibacterial Treatment. Angewandte Chemie - International Edition, 2021, 60, 20452-20460.	7.2	69
2364	Recent Progress in Enolonium Chemistry under Metalâ€Free Conditions. Chemical Record, 2022, 22, .	2.9	10
2365	Photoredox catalysis in nickel-catalyzed C–H functionalization. Beilstein Journal of Organic Chemistry, 2021, 17, 2209-2259.	1.3	23
2366	Transitionâ€Metalâ€Free Visible Lightâ€Induced Iminoâ€trifluoromethylation of Unsaturated Oxime Esters: A Facile Access to CF ₃ â€Tethered Pyrrolines. Asian Journal of Organic Chemistry, 2021, 10, 2360-2364.	1.3	7
2367	Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chemical Reviews, 2021, 121, 12548-12680.	23.0	118
2368	Switchable, Reagentâ€Controlled Diastereodivergent Photocatalytic Carbocyclisation of Imineâ€Derived αâ€Amino Radicals. Angewandte Chemie - International Edition, 2021, 60, 24116-24123.	7.2	23
2369	Metal-free photocatalytic C(sp3)â€"H bond activation. Trends in Chemistry, 2021, 3, 686-687.	4.4	3
2370	Emission Intensity Enhancement for Iridium(III) Complex in Dimethyl Sulfoxide under Photoirradiation. Journal of Physical Chemistry B, 2021, 125, 9260-9267.	1.2	1
2371	Organic Photoredox Catalysts Exhibiting Long Excited-State Lifetimes. Synlett, 0, , .	1.0	1
2372	The Tunable Photophysical Properties of Enamine Intermediates Involved in Light-Driven Aminocatalysis. Organic Letters, 2021, 23, 7033-7037.	2.4	3
2373	The Dependence of Chemical Quantum Yields of Visible Light Photoredox Catalysis on the Irradiation Power. ChemPhotoChem, 2021, 5, 1009-1019.	1.5	10
2374	Semi-heterogeneous photo-Cu-dual-catalytic cross-coupling reactions using polymeric carbon nitrides. Science Bulletin, 2022, 67, 71-78.	4.3	31

#	Article	IF	CITATIONS
2375	Electroâ€mediated PhotoRedox Catalysis for Selective C(sp 3)–O Cleavages of Phosphinated Alcohols to Carbanions. Angewandte Chemie, 2021, 133, 20985-20993.	1.6	18
2376	Iron-Catalyzed C(sp3)–H Alkylation through Ligand-to-Metal Charge Transfer. Synlett, 2021, 32, 1767-1771.	1.0	18
2377	Enantioselective Reductive Homocoupling of Allylic Acetates Enabled by Dual Photoredox/Palladium Catalysis: Access to <i>C</i> ₂ -Symmetrical 1,5-Dienes. Journal of the American Chemical Society, 2021, 143, 12836-12846.	6.6	27
2378	Redâ€Lightâ€Mediated Photoredox Catalysis Enables Selfâ€Reporting Nitric Oxide Release for Efficient Antibacterial Treatment. Angewandte Chemie, 2021, 133, 20615-20623.	1.6	9
2379	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330
2380	How Radical Are "Radical―Photocatalysts? A Closed-Shell Meisenheimer Complex Is Identified as a Super-Reducing Photoreagent. Journal of the American Chemical Society, 2021, 143, 14352-14359.	6.6	53
2381	Advances in the <i>E â†' Z </i> Isomerization of Alkenes Using Small Molecule Photocatalysts. Chemical Reviews, 2022, 122, 2650-2694.	23.0	184
2382	Visible-Light-Induced Deaminative Alkylation/Cyclization of Alkyl Amines with <i>N</i> -Methacryloyl-2-phenylbenzoimidazoles in Continuous-Flow Organo-Photocatalysis. Journal of Organic Chemistry, 2021, 86, 12908-12921.	1.7	26
2383	Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chemical Reviews, 2022, 122, 1752-1829.	23.0	93
2384	Light-Promoted Transfer of an Iridium Hydride in Alkyl Ether Cleavage. Organometallics, 2021, 40, 3291-3297.	1.1	3
2385	Synthetische molekulare Photoelektrochemie: neue synthetische Anwendungen, mechanistische Einblicke und MĶglichkeiten zur Skalierung. Angewandte Chemie, 2022, 134, .	1.6	3
2386	Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. Angewandte Chemie - International Edition, 2022, 61, .	7.2	90
2387	Photoredox-Catalyzed Reduction of Halogenated Arenes in Water by Amphiphilic Polymeric Nanoparticles. Molecules, 2021, 26, 5882.	1.7	6
2388	Visible-Light-Induced Oxazoline Formations from $\langle i \rangle N \langle i \rangle$ -Vinyl Amides Catalyzed by an Ion-Pair Charge-Transfer Complex. ACS Catalysis, 2021, 11, 11762-11773.	5.5	14
2389	Visible-light-mediated radical addition/cyclization tandem reaction for the synthesis of 3-bromomethyl-3,4-dihydroisocoumarins. Tetrahedron Letters, 2021, 82, 153402.	0.7	3
2390	Photocatalytic Câ^'F Bond Activation of Fluoroarenes, <i>gem</i> â€Difluoroalkenes and Trifluoromethylarenes. Asian Journal of Organic Chemistry, 2021, 10, 2454-2472.	1.3	32
2391	Photophysical and Electrochemical Properties of Pyrimidopteridineâ€Based Organic Photoredox Catalysts. ChemPhotoChem, 2021, 5, 999-1003.	1.5	3
2392	The serendipitous effect of KF in Ritter reaction: Photo-induced amino-alkylation of alkenes. IScience, 2021, 24, 102969.	1.9	11

#	Article	IF	CITATIONS
2393	Cooperative NHC/Photoredox Catalyzed Ringâ€Opening of Aryl Cyclopropanes to 1â€Aroyloxylatedâ€3â€Acylated Alkanes. Angewandte Chemie - International Edition, 2021, 60, 25252-25257.	7.2	82
2395	Direct 1,2â€Dicarbonylation of Alkenes towards 1,4â€Diketones via Photoredox Catalysis. Angewandte Chemie, 0, , .	1.6	10
2396	Photoredox-Catalyzed C–H Functionalization Reactions. Chemical Reviews, 2022, 122, 1925-2016.	23.0	388
2397	Direct 1,2â€Dicarbonylation of Alkenes towards 1,4â€Diketones via Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 26822-26828.	7.2	41
2398	Multiscale Modeling of Electronic Spectra Including Nuclear Quantum Effects. Journal of Chemical Theory and Computation, 2021, 17, 6340-6352.	2.3	9
2399	Recent Advances of Dicyanopyrazine (DPZ) in Photoredox Catalysis. Photochem, 2021, 1, 237-246.	1.3	15
2400	Photoexcited Na2 eosin Y as direct hydrogen atom transfer (HAT) photocatalyst promoted photochemical metal-free synthesis of tetrahydrobenzo[b]pyran scaffolds via visible light-mediated under air atmosphere. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129, 52-63.	2.7	17
2401	Monte Carlo Analysis-Based CapEx Uncertainty Estimation of New Technologies: The Case of Photochemical Lamps. Organic Process Research and Development, 2021, 25, 2221-2229.	1.3	5
2402	Cooperative NHC/Photoredox Catalyzed Ringâ€Opening of Aryl Cyclopropanes to 1â€Aroyloxylatedâ€3â€Acylated Alkanes. Angewandte Chemie, 0, , .	1.6	2
2403	Photocatalysis in the Life Science Industry. Chemical Reviews, 2022, 122, 2907-2980.	23.0	183
2404	Radical α-Trifluoromethoxylation of Ketones under Batch and Flow Conditions by Means of Organic Photoredox Catalysis. Organic Letters, 2021, 23, 7088-7093.	2.4	28
2405	Visibleâ€Lightâ€Catalyzed Nâ€Radicalâ€Enabled Cyclization of Alkenes for the Synthesis of Fiveâ€Membered Nâ€Heterocycles. ChemSusChem, 2021, 14, 4658-4670.	3.6	22
2406	Photocatalytic Arylation of P ₄ and PH ₃ : Reaction Development Through Mechanistic Insight. Angewandte Chemie, 2021, 133, 24855-24863.	1.6	8
2407	Alkene Synthesis by Photoâ€Wolffâ€Kischner Reaction of Sulfur Ylides and N â€Tosylhydrazones. Chemistry - A European Journal, 2021, 27, 14195-14201.	1.7	9
2408	Nano Ni/g 3 N 4 Photocatalyzed Aerobic Oxidative Coupling Reaction toward Alkyl Aryl Ketones Derivatives under Visible Light Irradiation. ChemistrySelect, 2021, 6, 9128-9133.	0.7	1
2409	A new role for photoexcited Na2 eosin Y as direct hydrogen atom transfer (HAT) photocatalyst in photochemical synthesis of dihydropyrano[2,3-c]pyrazole scaffolds promoted by visible light irradiation under air atmosphere. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113428.	2.0	23
2410	Development and Scale-Up of a Novel Photochemical C–N Oxidative Coupling. Organic Process Research and Development, 2021, 25, 2205-2220.	1.3	13
2411	Oxidation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones by Organophotocatalysis Using Rhodamine 6G under Visible Light Irradiation: Insight into the Reaction Mechanism. Synthesis, 2022, 54, 697-704.	1.2	3

#	Article	IF	Citations
2412	Light-Induced Single-Electron Transfer Processes involving Sulfur Anions as Catalysts. Journal of the American Chemical Society, 2021, 143, 15530-15537.	6.6	48
2413	Visibleâ€Lightâ€Mediated Synthesis of Sulfonyl Fluorides from Arylazo Sulfones. Advanced Synthesis and Catalysis, 2022, 364, 341-347.	2.1	16
2414	Late-Stage $\langle i \rangle N \langle i \rangle$ -Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 16364-16369.	6.6	31
2415	Photocatalytic Arylation of P ₄ and PH ₃ : Reaction Development Through Mechanistic Insight. Angewandte Chemie - International Edition, 2021, 60, 24650-24658.	7.2	27
2416	Metalâ€Free Aminomethylation of Aromatic Sulfones Promoted by Eosin Y. Chemistry - A European Journal, 2021, 27, 14826-14830.	1.7	3
2417	Selective Azidooxygenation of Alkenes Enabled by Photo-induced Radical Transfer Using Aryl-λ ³ -azidoiodane Species. ACS Omega, 2021, 6, 26623-26639.	1.6	9
2418	Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations. Nature Communications, 2021, 12, 5365.	5.8	51
2419	Tripletâ€Forming Thionated Donorâ€Acceptor Chromophores for Electrochemically Amphoteric Photosensitization. European Journal of Organic Chemistry, 2021, 2021, 4647-4652.	1.2	5
2420	Chlorinative Cyclization of Aryl Alkynoates Using NCS and 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. Organic Letters, 2021, 23, 8088-8092.	2.4	13
2421	Photoinduced <scp>FeCl₃â€Catalyzed</scp> Alkyl Aromatics Oxidation toward Degradation of Polystyrene at Room Temperature ^{â€} . Chinese Journal of Chemistry, 2021, 39, 3225-3230.	2.6	81
2422	Assemblies of 1,4-Bis(diarylamino)naphthalene and Aromatic Amphiphiles: Highly Reducing Photoredox Catalysis in Water. Synlett, 0, , .	1.0	2
2423	Site-Selective Acceptorless Dehydrogenation of Aliphatics Enabled by Organophotoredox/Cobalt Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 16470-16485.	6.6	65
2424	Advances in N-centered intermediates by energy transfer photocatalysis. Trends in Chemistry, 2021, 3, 877-891.	4.4	39
2425	Benzotrithiophene and triphenylamine based covalent organic frameworks as heterogeneous photocatalysts for benzimidazole synthesis. Journal of Catalysis, 2021, 402, 52-60.	3.1	27
2426	Visible light-enabled iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamide. Molecular Catalysis, 2021, 515, 111881.	1.0	34
2427	Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. Chinese Journal of Catalysis, 2021, 42, 1700-1711.	6.9	30
2428	New role for photoexcited organic dye, Na2 eosin Y via the direct hydrogen atom transfer (HAT) process in photochemical visible-light-induced synthesis of spiroacenaphthylenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones under air atmosphere. Dyes and Pigments, 2021, 194, 109628.	2.0	37
2429	Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water. Chinese Journal of Catalysis, 2021, 42, 2010-2019.	6.9	45

#	Article	IF	Citations
2430	Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Applied Catalysis B: Environmental, 2021, 298, 120534.	10.8	71
2431	Photon correlations probe the quantized nature of light emission from optoelectronic materials. Applied Physics Reviews, 2021, 8, .	5.5	6
2432	Engineering covalent organic frameworks in the modulation of photocatalytic degradation of pollutants under visible light conditions. Materials Today Chemistry, 2021, 22, 100548.	1.7	16
2433	Exploration of silicon phthalocyanines as viable photocatalysts for organic transformations. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 422, 113547.	2.0	5
2434	Highly chemoselective deoxygenation of N-heterocyclic <i>N</i> -oxides under transition metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 3735-3742.	1.5	6
2435	Visible Light Induced Reduction and Pinacol Coupling of Aldehydes and Ketones Catalyzed by Core/Shell Quantum Dots. Journal of Organic Chemistry, 2021, 86, 2474-2488.	1.7	17
2436	Advances in chemistry of N-heterocyclic carbene boryl radicals. Chemical Society Reviews, 2021, 50, 8995-9021.	18.7	75
2437	Visible light induced hydrophosphinylation of unactivated alkenes catalyzed by salicylaldehyde. Green Chemistry, 2021, 23, 3600-3606.	4.6	11
2438	Transient absorption spectroscopy of the electron transfer step in the photochemically activated polymerizations of $\langle i \rangle N \langle i \rangle$ -ethylcarbazole and 9-phenylcarbazole. Physical Chemistry Chemical Physics, 2021, 23, 18378-18392.	1.3	5
2439	Carbon dioxide based methodologies for the synthesis of fine chemicals. Organic and Biomolecular Chemistry, 2021, 19, 5725-5757.	1.5	20
2440	Alkylation of the α-amino C–H bonds of anilines photocatalyzed by a DMEDA-Cu-benzophenone complex: reaction scope and mechanistic studies. Organic and Biomolecular Chemistry, 2021, 19, 5800-5805.	1.5	4
2441	Metallaphotoredox-catalyzed C–H activation: regio-selective annulation of allenes with benzamide. Organic Chemistry Frontiers, 2021, 8, 928-935.	2.3	16
2442	Naked-eye detection of Hg(<scp>ii</scp>) ions by visible light-induced polymerization initiated by a Hg(<scp>ii</scp>)-selective photoredox catalyst. Polymer Chemistry, 2021, 12, 970-974.	1.9	8
2443	Visible light-mediated cross-coupling of electrophiles: synthesis of α-amino amides from isocyanates and ketimines. Organic Chemistry Frontiers, 2021, 8, 1227-1232.	2.3	12
2444	Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chemical Society Reviews, 2021, 50, 7359-7377.	18.7	193
2445	Eosin: a versatile organic dye whose synthetic uses keep expanding. Organic and Biomolecular Chemistry, 2021, 19, 3303-3317.	1.5	28
2446	Amino-assisted synthesis of alkynylthioethers <i>via</i> a visible-light-induced C _(sp) â€"S ^{II} coupling between bromoalkynes and 2,2′-diaminodiaryldisulfides. Organic Chemistry Frontiers, 2021, 8, 5345-5351.	2.3	7
2447	1.5 Photochemistry and Radical Generation: Approaches in Mechanism Elucidation., 2021,,.		1

#	Article	IF	Citations
2448	Photocatalyst-independent photoredox ring-opening polymerization of $\langle i \rangle O \langle i \rangle$ -carboxyanhydrides: stereocontrol and mechanism. Chemical Science, 2021, 12, 3702-3712.	3.7	5
2449	Photocatalytic decarboxylative alkylations of C(sp3)-H and C(sp2)-H bonds enabled by ammonium iodide in amide solvent. Science China Chemistry, 2021, 64, 439-444.	4.2	68
2450	Photocatalytic three-component annulation enabling stereoselective generation of (<i>Z</i>)-thiochromene 1,1-dioxides. Organic Chemistry Frontiers, 2021, 8, 5681-5686.	2.3	19
2451	Cyanation: a photochemical approach and applications in organic synthesis. Organic Chemistry Frontiers, 2021, 8, 3166-3200.	2.3	38
2452	Visible light-induced aerobic dioxygenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated amides/alkenes toward selective synthesis of \hat{l}^2 -oxy alcohols using rose bengal as a photosensitizer. Organic Chemistry Frontiers, 2021, 8, 2215-2223.	2.3	12
2453	Green Chemistry on C–H Activation. Materials Horizons, 2021, , 181-200.	0.3	0
2454	Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers. Chemical Communications, 2021, 57, 3046-3049.	2.2	14
2455	A photocatalyst-free visible-light-mediated solvent-switchable route to stilbenes/vinyl sulfones from β-nitrostyrenes and arylazo sulfones. Organic and Biomolecular Chemistry, 2021, 19, 6487-6492.	1.5	16
2456	Photooxidation of thiosaccharides mediated by sensitizers in aerobic and environmentally friendly conditions. RSC Advances, 2021, 11, 9262-9273.	1.7	2
2457	Generation of powerful organic electron donors by water-assisted decarboxylation of benzimidazolium carboxylates. Organic Chemistry Frontiers, 2021, 8, 1197-1205.	2.3	6
2458	Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angewandte Chemie, 2021, 133, 5430-5436.	1.6	7
2459	Advances in photochemical and electrochemical incorporation of sulfur dioxide for the synthesis of value-added compounds. Chemical Communications, 2021, 57, 8236-8249.	2.2	56
2460	Photoredox halogenation of quinolones: the dual role of halo-fluorescein dyes. Organic and Biomolecular Chemistry, 2021, 19, 4585-4592.	1.5	9
2461	<i>>s</i> -Tetrazine-functionalized hyper-crosslinked polymers for efficient photocatalytic synthesis of benzimidazoles. Green Chemistry, 2021, 23, 1292-1299.	4.6	33
2462	Visible light promoted photoredox C(sp ³)â€"H bond functionalization of tetrahydroisoquinolines in flow. Organic and Biomolecular Chemistry, 2021, 19, 2668-2675.	1.5	8
2463	Photoredox/cobaloxime co-catalyzed allylation of amines and sulfonyl hydrazines with olefins to access α-allylic amines and allylic sulfones. Organic and Biomolecular Chemistry, 2021, 19, 8227-8231.	1.5	12
2464	Cerium photocatalyzed radical smiles rearrangement of 2-aryloxybenzoic acids. RSC Advances, 2021, 11, 25207-25210.	1.7	4
2465	Visible-light synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones <i>via</i> doubly decarboxylative Giese reaction. RSC Advances, 2021, 11, 27782-27786.	1.7	9

#	Article	IF	CITATIONS
2466	Electrochemical phenothiazination of naphthylamines and its application in photocatalysis. Chemical Communications, 2021, 57, 8512-8515.	2.2	10
2467	Visible-light-promoted decarboxylative addition cyclization of $\langle i \rangle N \langle j \rangle$ -aryl glycines and azobenzenes to access 1,2,4-triazolidines. Green Chemistry, 2021, 23, 5806-5811.	4.6	24
2468	Atom Transfer Radical Addition to Styrenes with Thiosulfonates Enabled by Synergetic Copper/Photoredox Catalysis. Organic Letters, 2021, 23, 1054-1059.	2.4	28
2469	<scp>Visibleâ€Light Photoredoxâ€Catalyzed αâ€Allylation /scp> of <scp>αâ€Bromocarbonyl /scp> Compounds Using Allyltrimethylsilane. Bulletin of the Korean Chemical Society, 2021, 42, 506-509.</scp></scp>	1.0	12
2470	Selective C(sp ³)â€"H activation of simple alkanes: visible light-induced metal-free synthesis of phenanthridines with H ₂ O ₂ as a sustainable oxidant. Green Chemistry, 2021, 23, 6926-6930.	4.6	32
2471	$\langle i \rangle N \langle i \rangle$ -lodosuccinimide and dioxygen in an air-enabled synthesis of 10-phenanthrenols under sunlight. Green Chemistry, 2021, 23, 7193-7198.	4.6	14
2472	The visible-light-induced acylation/cyclization of alkynoates with acyl oximes for the construction of 3-acylcoumarins. Organic and Biomolecular Chemistry, 2021, 19, 9012-9020.	1.5	11
2473	Visible-light-promoted direct C3-trifluoromethylation and perfluoroalkylation of imidazopyridines. Organic and Biomolecular Chemistry, 2021, 19, 8301-8306.	1.5	12
2474	Direct excitation strategy for radical generation in organic synthesis. Chemical Society Reviews, 2021, 50, 6320-6332.	18.7	103
2475	Visible light-driven metal-free synthesis of highly substituted pyrroles through C–H functionalisation. Green Chemistry, 2021, 23, 6361-6365.	4.6	10
2476	Control of the synthesis and morphology of nano dendritic CuAl ₂ O ₄ as a nanocatalyst for photoredox-catalyzed dicarbofunctionalization of styrenes with amines and CO ₂ . New Journal of Chemistry, 2021, 45, 8942-8948.	1.4	3
2477	Phenolate anion-catalyzed direct activation of inert alkyl chlorides driven by visible light. Organic Chemistry Frontiers, 2021, 8, 6364-6370.	2.3	19
2478	Recent advances in the chemistry of ketyl radicals. Chemical Society Reviews, 2021, 50, 5349-5365.	18.7	87
2479	1.7 Phosphorus-Centered Radicals. , 2021, , .		0
2480	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and maleimides. Organic Chemistry Frontiers, 2021, 8, 2256-2262.	2.3	30
2481	Unravelling an oxygen-mediated reductive quenching pathway for photopolymerisation under long wavelengths. Nature Communications, 2021, 12, 478.	5.8	54
2482	Visible light-induced recyclable g-C ₃ N ₄ catalyzed thiocyanation of C(sp ²)â€"H bonds in sustainable solvents. Green Chemistry, 2021, 23, 3677-3682.	4.6	96
2483	Visible-light-promoted synthesis of secondary and tertiary thiocarbamates from thiosulfonates and <i>N</i> -substituted formamides. Organic and Biomolecular Chemistry, 2021, 19, 8701-8705.	1.5	9

#	Article	IF	CITATIONS
2484	Visible-light-mediated multicomponent reaction for secondary amine synthesis. Chemical Communications, 2021, 57, 5028-5031.	2.2	31
2485	Synthesis of Arylamines via Aminium Radicals. Angewandte Chemie, 2017, 129, 15144-15148.	1.6	29
2486	Selective Oxidative [4+2] Imine/Alkene Annulation with H ₂ Liberation Induced by Photoâ€Oxidation. Angewandte Chemie, 2018, 130, 1300-1304.	1.6	28
2487	Generating Hydrated Electrons for Chemical Syntheses by Using a Green Lightâ€Emitting Diode (LED). Angewandte Chemie, 2018, 130, 1090-1093.	1.6	19
2488	Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers. Angewandte Chemie, 2020, 132, 3235-3243.	1.6	25
2489	Photocatalytic αâ€Tertiary Amine Synthesis via Câ^'H Alkylation of Unmasked Primary Amines. Angewandte Chemie, 2020, 132, 15096-15101.	1.6	13
2490	Nâ€Centered Radical Directed Remote Câ^'H Bond Functionalization via Hydrogen Atom Transfer. Chemistry - an Asian Journal, 2020, 15, 651-672.	1.7	93
2491	Molecularly Controlled Catalysis – Targeting Synergies Between Local and Nonâ€local Environments. ChemCatChem, 2021, 13, 1659-1682.	1.8	20
2492	Photoredox/Cobalt Dualâ€Catalyzed Decarboxylative Elimination of Carboxylic Acids: Development and Mechanistic Insight. Chemistry - A European Journal, 2020, 26, 12454-12471.	1.7	22
2493	Following the evolution of excited states along photochemical reaction pathways. Journal of Computational Chemistry, 2020, 41, 1156-1164.	1.5	5
2494	Visible Light-Mediated Installation of Halogen Functionalities into Multiple Bond Systems. ChemistrySelect, 2017, 2, 9136-9146.	0.7	7
2495	Mechanistic Pathways Toward the Synthesis of Heterocycles Under Cross-Dehydrogenative Conditions., 2019,, 329-356.		4
2496	Visible-light induced generation of bifunctional nitrogen-centered radicals: a concise synthetic strategy to construct bicyclo [3.2.1] octane and azepane cores. Science China Chemistry, 2021, 64, 274-280.	4.2	24
2497	Pyrans and Benzo Derivatives: Applications. , 2022, , 491-511.		4
2498	Green organic synthesis by photochemical protocol. , 2020, , 155-198.		4
2499	Recent advances toward sustainable flow photochemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100351.	3.2	60
2500	Photocatalysis: A step closer to the perfect synthesis. Journal of Organometallic Chemistry, 2020, 920, 121335.	0.8	12
2501	The coupling of alkylboronic acids with î±-(trifluoromethyl)styrenes by Lewis base/photoredox dual catalysis. Tetrahedron Letters, 2020, 61, 152425.	0.7	18

#	Article	IF	Citations
2502	Application of Bifunctional 2-Amino-1,4-naphthoquinones in Visible-Light-Promoted Photocatalyst-Free Alkene Perfluoroalkyl-Alkenylation. Organic Letters, 2021, 23, 519-524.	2.4	21
2503	Understanding and Improving Photocatalytic Activity of Pd-Loaded BiVO ₄ Microspheres: Application to Visible Light-Induced Suzuki–Miyaura Coupling Reaction. ACS Applied Materials & lnterfaces, 2021, 13, 1714-1722.	4.0	16
2504	Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum. ACS Catalysis, 2020, 10, 13269-13274.	5. 5	21
2505	Supramolecular Engineering and Self-Assembly Strategies in Photoredox Catalysis. ACS Catalysis, 2021, 11, 710-733.	5.5	40
2506	Tuning Redox Potential of Gold Nanoparticle Photocatalysts by Light. ACS Nano, 2020, 14, 7038-7045.	7.3	25
2507	Allylic Amination of Alkenes with Iminothianthrenes to Afford Alkyl Allylamines. Journal of the American Chemical Society, 2020, 142, 17287-17293.	6.6	65
2508	4CzIPN- ^{<i>t</i>} Bu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated <i>N</i> -Heteroaromatics. Journal of the American Chemical Society, 2021, 143, 964-972.	6.6	135
2509	Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins. Journal of the American Chemical Society, 2021, 143, 97-102.	6.6	84
2510	Photoenzymatic Reductions Enabled by Direct Excitation of Flavin-Dependent "Ene―Reductases. Journal of the American Chemical Society, 2021, 143, 1735-1739.	6.6	46
2511	Strong chemical reducing agents produced by light. Nature, 2020, 580, 31-32.	13.7	6
2512	Direct C–H difluoromethylation of heterocycles via organic photoredox catalysis. Nature Communications, 2020, 11, 638.	5.8	103
2513	Photocatalysts as Photoinitiators. RSC Polymer Chemistry Series, 2018, , 200-243.	0.1	4
2514	Recent Perspectives in Catalysis under Continuous Flow. RSC Green Chemistry, 2019, , 1-49.	0.0	5
2515	Photoredox ketone catalysis for the direct C–H imidation and acyloxylation of arenes. Chemical Science, 2017, 8, 5622-5627.	3.7	58
2516	Photosensitizer-free visible light-mediated gold-catalysed cis-difunctionalization of silyl-substituted alkynes. Chemical Science, 2017, 8, 7537-7544.	3.7	56
2517	Synthesis of 3-sulfonylquinolines by visible-light promoted metal-free cascade cycloaddition involving <i>N</i> -propargylanilines and sodium sulfinates. New Journal of Chemistry, 2020, 44, 3189-3193.	1.4	22
2518	Organocatalytic C–H fluoroalkylation of commodity polymers. Polymer Chemistry, 2020, 11, 4914-4919.	1.9	27
2519	Cobalt fluorides: preparation, reactivity and applications in catalytic fluorination and C–F functionalization. Chemical Communications, 2020, 56, 8512-8523.	2.2	15

#	Article	IF	CITATIONS
2520	Remote C–C bond formation <i>via</i> visible light photoredox-catalyzed intramolecular hydrogen atom transfer. Organic and Biomolecular Chemistry, 2020, 18, 4519-4532.	1.5	87
2521	Cloud-inspired multiple scattering for light intensified photochemical flow reactors. Reaction Chemistry and Engineering, 2020, 5, 1058-1063.	1.9	11
2522	EC-Backward-E Electrochemistry in Radical Cation Diels-Alder Reactions. Journal of the Electrochemical Society, 2020, 167, 155518.	1.3	11
2523	Mechanistic Studies on TiO $<$ sub $>$ 2 $<$ /sub $>$ Photoelectrochemical Radical Cation [2 + 2] Cycloadditions. Journal of the Electrochemical Society, 2020, 167, 155529.	1.3	9
2524	Solvent-dependent photochemical dynamics of a phenoxazine-based photoredox catalyst. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1475-1494.	1.4	10
2525	Synthesis of Quaternary Carbon-Centered Benzoindolizidinones via Novel Photoredox-Catalyzed Alkene Aminoarylation: Facile Access to Tylophorine and Analogues. CCS Chemistry, 2019, 1, 352-364.	4.6	10
2526	Synthesis of Indolines via a Photocatalytic Intramolecular Reductive Cyclization Reaction. Heterocycles, 2020, 101, 177.	0.4	2
2527	Design and Synthesis of Strongly Oxidizing Thioxanthylium Organic Photosensitizer for Green-light-driven Photoredox Catalysis. Journal of the Japan Society of Colour Material, 2020, 93, 49-53.	0.0	4
2528	Recent Advances in Visible-Light-Induced Cross Dehydrogenation Coupling Reaction under Transition Metal-Free Conditions. Chinese Journal of Organic Chemistry, 2019, 39, 3065.	0.6	24
2529	Facile photochemical synthesis of main-chain-type semifluorinated alternating copolymers catalyzed by conventional amines or halide salts. Chemical Communications, 2021, 57, 11354-11357.	2.2	7
2530	Cross-dehydrogenative N–N couplings. Chemical Science, 2021, 12, 14343-14352.	3.7	20
2531	Recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention. Chemical Society Reviews, 2021, 50, 12808-12827.	18.7	94
2532	Metal-free, visible-light driven C–H ketoalkylation of glycine derivatives and peptides. Green Chemistry, 2021, 23, 9549-9553.	4.6	24
2533	Recent advances in the organocatalytic applications of cyclopropene- and cyclopropenium-based small molecules. Organic and Biomolecular Chemistry, 2021, 19, 9541-9564.	1.5	10
2534	Vinylene-bridged donor–acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light. RSC Advances, 2021, 11, 33653-33660.	1.7	2
2535	Nanomaterial catalysts for organic photoredox catalysis-mechanistic perspective. Nanoscale, 2021, 13, 18044-18053.	2.8	7
2536	Recent Advances in the Oxidative Coupling Reaction of Enol Derivatives. Chinese Journal of Organic Chemistry, 2021, 41, 3414.	0.6	5
2537	Harnessing selective PET and EnT catalysis by chlorophyll to synthesize $\langle i \rangle N \langle i \rangle$ -alkylated quinoline-2(1 $\langle i \rangle H \langle i \rangle$)-ones, isoquinoline-1(2 $\langle i \rangle H \langle i \rangle$)-ones and 1,2,4-trioxanes. Organic and Biomolecular Chemistry, 2021, 19, 9433-9438.	1.5	7

#	Article	IF	CITATIONS
2538	Visible light organic photoredox catalytic cascade reactions. Chemical Communications, 2021, 57, 12914-12935.	2.2	42
2539	Visible-light photocatalytic preparation of alkenyl thioethers from 1,2,3-thiadiazoles and Hantzsch esters: synthetic and mechanistic investigations. Organic Chemistry Frontiers, 2021, 8, 6499-6507.	2.3	3
2540	Fluorescent styrylpyrylium probes for the imaging of mitochondria in live cells. Organic and Biomolecular Chemistry, 2021, 19, 9043-9057.	1.5	6
2541	Visible-light-induced sulfonylation of Baylis–Hillman acetates under metal- and oxidant-free conditions. New Journal of Chemistry, 2021, 45, 22243-22248.	1.4	9
2542	$\langle i \rangle N \langle i \rangle$ -Chloroamines as substrates for metal-free photochemical atom-transfer radical addition reactions in continuous flow. Reaction Chemistry and Engineering, 2021, 6, 2434-2441.	1.9	10
2543	A photoexcited halogen-bonded EDA complex of the thiophenolate anion with iodobenzene for C(sp ³)â€"H activation and thiolation. Chemical Science, 2021, 12, 15655-15661.	3.7	41
2544	Isotruxene-based porous polymers as efficient and recyclable photocatalysts for visible-light induced metal-free oxidative organic transformations. Green Chemistry, 2021, 23, 8878-8885.	4.6	18
2545	Development of an Offâ€Grid Solarâ€Powered Autonomous Chemical Miniâ€Plant for Producing Fine Chemicals. ChemSusChem, 2021, 14, 5417-5423.	3.6	13
2546	Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chemical Reviews, 2022, 122, 2429-2486.	23.0	182
2547	A Versatile Lightâ€Triggered Radicalâ€Releasing Surface Coating Technology. Advanced Materials Technologies, 2022, 7, 2100898.	3.0	3
2548	Photoinduced Reaction of Triarylphosphines with Alkenes Forming Fused Tricyclic Phosphonium Salts. Organic Letters, 2021, 23, 8445-8449.	2.4	6
2549	Energy-Transfer-Mediated Photocatalysis by a Bioinspired Organic Perylenephotosensitizer HiBRCP. Journal of Organic Chemistry, 2021, 86, 15284-15297.	1.7	6
2550	$\label{thm:linear_visible} Visible-Light-Promoted Radical Cyclization of N-Arylvinylsulfonamides: Synthesis of $$CF3/CHF2/CH2CF3-Containing 1,3-Dihydrobenzo[c]isothiazole 2,2-Dioxide Derivatives. Synthesis, 0, , .$	1.2	6
2551	Organophotoredox atalyzed Switchable Selective Transformation of Aromatic Aldehydes into Pinacols and Benzyl alcohols. Asian Journal of Organic Chemistry, 2021, 10, 2916-2920.	1.3	4
2552	Organic Photosensitizers for Catalytic Solar Fuel Generation. Energy & 2021, 35, 18888-18899.	2.5	30
2553	Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chemical Reviews, 2022, 122, 2353-2428.	23.0	170
2554	Asymmetric Photocatalysis Enabled by Chiral Organocatalysts. ChemCatChem, 2022, 14, .	1.8	46
2555	Phosphine/Photoredox Catalyzed Anti-Markovnikov Hydroamination of Olefins with Primary Sulfonamides via α-Scission from Phosphoranyl Radicals. Journal of the American Chemical Society, 2021, 143, 18331-18338.	6.6	47

#	Article	IF	CITATIONS
2556	1,4-Alkylcarbonylation of 1,3-Enynes to Access Tetra-Substituted Allenyl Ketones <i>via</i> an NHC-Catalyzed Radical Relay. ACS Catalysis, 2021, 11, 13363-13373.	5.5	56
2557	Kharasch-type photocyclization of 1,7-diynes for the stereospecific synthesis of tetrahydronaphthalen-1-ols. Tetrahedron Letters, 2021, 85, 153485.	0.7	7
2558	Antiaromaticity-Promoted Radical Stability in α-Methyl Heterocyclics. Journal of Organic Chemistry, 2021, 86, 15558-15567.	1.7	6
2559	Recent Progress on Photocatalytic Synthesis of Ester Derivatives and Reaction Mechanisms. Topics in Current Chemistry, 2021, 379, 42.	3.0	8
2560	High-Throughput Nano-Electrostatic-Spray Ionization/Photoreaction Mass Spectrometric Platform for the Discovery of Visible-Light-Activated Photocatalytic Reactions in the Picomole Scale. Analytical Chemistry, 2021, 93, 14560-14567.	3.2	10
2561	Synthesis of Selenaheterocycles via Visibleâ€Lightâ€Mediated Radical Cyclization. Advanced Synthesis and Catalysis, 2021, 363, 5149-5154.	2.1	12
2562	Recyclable, Immobilized Transitionâ€Metal Photocatalysts. Advanced Synthesis and Catalysis, 2022, 364, 2-17.	2.1	11
2563	Allenamides Playing Domino: A Redoxâ€Neutral Photocatalytic Synthesis of Functionalized 2â€Aminofurans. Advanced Synthesis and Catalysis, 2022, 364, 362-371.	2.1	7
2564	Visible Light-Induced Transition Metal Catalysis. Chemical Reviews, 2022, 122, 1543-1625.	23.0	322
2565	Recent Advances in the Synthesis of Piperazines: Focus on C–H Functionalization. Organics, 2021, 2, 337-347.	0.6	11
2566	Direct C–H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. Organic Letters, 2021, 23, 8082-8087.	2.4	21
2567	Synthesis of Helical and Planar Extendedâ€Phenanthridinium Salts. Helvetica Chimica Acta, 0, , .	1.0	2
2568	<scp>Singleâ€chain</scp> polymers as homogeneous oxidative photoredox catalysts. Journal of Polymer Science, 2021, 59, 2867-2877.	2.0	5
2569	On the Determination of Halogen Atom Reduction Potentials with Photoredox Catalysts. Journal of Physical Chemistry A, 2021, 125, 9355-9367.	1.1	13
2570	Photoredox Iridium–Nickel Dual Catalyzed Cross-Electrophile Coupling: From a Batch to a Continuous Stirred-Tank Reactor via an Automated Segmented Flow Reactor. Organic Process Research and Development, 2021, 25, 2323-2330.	1.3	12
2571	Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis. Science, 2021, 374, 301-308.	6.0	97
2572	Heterogeneous photoredox catalysis using fluorescein polymer brush functionalized glass beads. Journal of Polymer Science, 2021, 59, 2844-2853.	2.0	13
2573	Visible-light-mediated copper photocatalysis for organic syntheses. Beilstein Journal of Organic Chemistry, 2021, 17, 2520-2542.	1.3	20

#	Article	IF	CITATIONS
2574	Red-Light-Induced N,N′-Dipropyl-1,13-dimethoxyquinacridinium-Catalyzed [3+2] Cycloaddition of Cyclopropylamines with Alkenes or Alkynes. Synlett, 2022, 33, 1194-1198.	1.0	10
2575	Cross-Dehydrogenative Coupling in the Synthesis and Functionalization of Fused Imidazoheterocycles., 2019,, 107-141.		4
2576	Visible-Light Photoredox Catalysis: New Strategies for Radical Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 414-423.	0.0	0
2578	Organic electrochromic molecules: synthesis, properties, applications and impact. Pure and Applied Chemistry, 2020, 92, 717-731.	0.9	12
2579	Stereoselective synergystic organo photoredox catalysis with enamines and iminiums. Physical Sciences Reviews, 2020, 5, .	0.8	4
2580	Red-Light-Mediated Barton–McCombie Reaction. Bulletin of the Chemical Society of Japan, 2020, 93, 936-941.	2.0	5
2581	Synthesis of Bicyclic <i>N</i> -Heterocycles via Photoredox Cycloaddition of Imino-Alkynes and Imino-Alkenes. ACS Catalysis, 2021, 11, 13670-13679.	5 . 5	13
2582	High transâ€2â€Decalones by Photoredox Catalyzed βâ€Isomerization. Helvetica Chimica Acta, 0, , e2100180.	1.0	2
2583	The Concept of Photozymes: Short Peptides with Photoredox Catalytic Activity for Nucleophilic Additions to αâ€Phenyl Styrenes. European Journal of Organic Chemistry, 2021, 2021, 6400-6407.	1.2	3
2584	Leveraging of Sulfur Anions in Photoinduced Molecular Transformations. Jacs Au, 2021, 1, 2121-2129.	3.6	33
2585	Hydroesterification and Difunctionalization of Olefins with <i>N</i> Hydroxyphthalimide Esters. ACS Catalysis, 2021, 11, 13714-13720.	5.5	7
2586	Visibleâ€Lightâ€Mediated Ringâ€Opening Reactions of Cyclopropanes. European Journal of Organic Chemistry, 2021, 2021, 6781-6805.	1.2	22
2587	Visibleâ€Lightâ€Induced Oxidative αâ€Alkylation of Glycine Derivatives with Ethers under Metalâ€Free Conditions. European Journal of Organic Chemistry, 2021, 2021, 5914-5921.	1.2	6
2588	Dioxygen-Triggered Oxosulfonylation/Sulfonylation of Terminal Olefins toward \hat{l}^2 -Keto Sulfones/Sulfones. Organic Letters, 2021, 23, 8296-8301.	2.4	15
2589	Radical functionalization of thioglycosides in aqueous medium. Tetrahedron Letters, 2021, 86, 153499.	0.7	3
2590	Chemistry of 2H-Azirines from Old to New — Selective Synthesis and Transformation. Yuki Gosei Kagaku Kyokaishi∥ournal of Synthetic Organic Chemistry, 2020, 78, 1126-1137.	0.0	1
2591	Single-Electron Strategies in Organometallic Methods: Photoredox, Electrocatalysis, Radical Relay, and Beyond., 2022,, 339-403.		4
2592	Thiopyrans and Their Benzo Derivatives. , 2020, , 512-512.		O

#	Article	IF	CITATIONS
2593	Nanoparticle-assembled interface for tailoring dynamics of chemical reactions. , 2021, , .		0
2594	Photocatalytic, site-selective oxidations of carbohydrates. Chemical Communications, 2021, 57, 12135-12138.	2,2	20
2595	Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 127706.	0.2	5
2596	Photoaccelerated energy transfer catalysis of the Suzuki–Miyaura coupling through ligand regulation on Ir(iii)–Pd(ii) bimetallic complexes. RSC Advances, 2020, 10, 42874-42882.	1.7	5
2597	A visible-light-induced thiol addition/aerobic oxidation cascade reaction of epoxides and thiols for the synthesis of \hat{l}^2 -hydroxylsulfoxides. Organic and Biomolecular Chemistry, 2021, 19, 9855-9859.	1.5	5
2598	A high-performance photoelectrochemical sensor for the specific detection of H ₂ O ₂ and glucose based on an organic conjugated microporous polymer. Journal of Materials Chemistry A, 2021, 9, 26216-26225.	5. 2	31
2600	Photochemical C–H acetalization of O-heterocycles utilizing phenylglyoxylic acid as the photoinitiator. Photochemical and Photobiological Sciences, 2022, 21, 687-694.	1.6	9
2601	Generation of Iminoxyl Radicals by Photoredox Catalysis Enables Oxidant-Free Hydroxygenation of \hat{l}^2 , \hat{l}^3 -Unsaturated Oximes. Synlett, 2022, 33, 293-295.	1.0	2
2602	Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings ⟨i⟩via⟨ i⟩ H⟨sub⟩2⟨ sub⟩ Release. ACS Catalysis, 2021, 11, 14148-14158.	5.5	33
2603	Environmentally Friendly Cp*Co(III)-catalyzed C-H Bond Hydroarylation of Alkynes. Journal of Physics: Conference Series, 2021, 2076, 012038.	0.3	0
2604	Crossâ€dehydrogenative Coupling of <i>N</i> â€Aryl Tetrahydroisoquinolines Catalyzed by an Anthraquinoneâ€containing Polymeric Photosensitizer. Chemistry - an Asian Journal, 2021, 16, 4087-4094.	1.7	3
2605	Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. ChemPlusChem, 2022, 87, .	1.3	10
2606	Metal-Free Hydrosilylation Polymerization by Merging Photoredox and Hydrogen Atom Transfer Catalysis. Journal of the American Chemical Society, 2021, 143, 19167-19177.	6.6	17
2607	A Substrate-Binding Metal–Organic Layer Selectively Catalyzes Photoredox Ene-Carbonyl Reductive Coupling Reactions. Journal of the American Chemical Society, 2021, 143, 18871-18876.	6.6	16
2608	Organophotoredox Catalyzed Stereoselective Nitration of Olefins with <i>tert</i> â€Butyl Nitrite under Air. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
2609	Dibromo-BODIPY as an Organic Photocatalyst for Radical–Ionic Sequences. Journal of Organic Chemistry, 2021, 86, 16315-16326.	1.7	10
2610	Photodecarboxylative Amination of Redox-Active Esters with Diazirines. Organic Letters, 2021, 23, 8838-8842.	2,4	13
2611	Site-Selective α-C–H Functionalization of Trialkylamines via Reversible Hydrogen Atom Transfer Catalysis. Journal of the American Chemical Society, 2021, 143, 18952-18959.	6.6	43

#	Article	IF	Citations
2612	Direct Near Infrared Light–Activatable Phthalocyanine Catalysts. Chemistry - A European Journal, 2022, 28, .	1.7	12
2613	Application of \hat{l}_{\pm} -Amino Radicals as the Reaction Activators. Synthesis, 0, 54, .	1.2	7
2614	Visible Lightâ€Gated Organocatalysis Using a Ru II â€Photocage. Chemistry - A European Journal, 2020, 26, 14229-14235.	1.7	5
2615	New Strategy for Precise Synthesis of Polyoxometalate Catalysts with Designed Active Sites. Journal of the Japan Petroleum Institute, 2020, 63, 258-266.	0.4	4
2616	Visible light mediated aerobic oxidative hydroxylation of 2-oxindole-3-carboxylate esters: an alternative approach to 3-hydroxy-2-oxindoles. Heterocyclic Communications, 2020, 26, 168-175.	0.6	0
2617	Phenothiazines, Dihydrophenazines, and Phenoxazines: Sustainable Alternatives to Precious-Metal-Based Photoredox Catalysts. Aldrichimica Acta, 2019, 52, 7-21.	4.0	17
2618	Organic photoredox catalytic α-C(sp ³)â€"H phosphorylation of saturated <i>aza</i> heterocycles. Chemical Communications, 2021, 57, 13158-13161.	2.2	12
2619	Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Organic Chemistry Frontiers, 2022, 9, 311-319.	2.3	5
2620	A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. Organic Chemistry Frontiers, 2022, 9, 386-393.	2.3	26
2621	Visible-Light Driven, Metal-Free Hydroalkylation of Alkenes Mediated by Electron Donor-Acceptor Complex Using Benzothiazolines. Bulletin of the Chemical Society of Japan, 2021, 94, 2962-2966.	2.0	2
2622	Ruthenium Complexes Bearing Axially Chiral Bipyridyls: The Mismatched Diastereomer Showed Red Circularly Polarized Phosphorescence. Chemistry - A European Journal, 2022, 28, .	1.7	10
2623	Recent Advances on the Halo- and Cyano-Trifluoromethylation of Alkenes and Alkynes. Molecules, 2021, 26, 7221.	1.7	13
2624	s-Tetrazine: Robust and Green Photoorganocatalyst for Aerobic Oxidation of N,N-Disubstituted Hydroxylamines to Nitrones. Synlett, 2022, 33, 177-181.	1.0	3
2625	Nearâ€Unity Triplet Generation Promoted via Spiroâ€Conjugation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
2626	Enabling Metallophotoredox Catalysis in Parallel Solution-Phase Synthesis Using Disintegrating Reagent Tablets. Journal of Organic Chemistry, 2021, 86, 16535-16547.	1.7	5
2627	Solvent Effects on Ultrafast Photochemical Pathways. Accounts of Chemical Research, 2021, 54, 4383-4394.	7.6	21
2628	Photoâ€mediated metalâ€free atom transfer radical polymerization: recent advances in organocatalysts and perfection towards polymer synthesis. Polymer International, 2022, 71, 159-168.	1.6	7
2629	Excitedâ€State Copper Catalysis for the Synthesis of Heterocycles. Angewandte Chemie, 2022, 134, .	1.6	1

#	Article	IF	CITATIONS
2630	<i>meso</i> -Antracenyl-BODIPY Dyad as a New Photocatalyst in Atom-Transfer Radical Addition Reactions. ACS Omega, 2021, 6, 32809-32817.	1.6	5
2631	Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chemical Reviews, 2022, 122, 1485-1542.	23.0	660
2632	Stereoselective <i>O</i> â€Glycosylations by Pyrylium Salt Organocatalysis**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
2633	Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chemical Reviews, 2022, 122, 1830-1874.	23.0	136
2634	Recent Advances in the Synthesis of Difluorinated Architectures from Trifluoromethyl Groups. Advanced Synthesis and Catalysis, 2022, 364, 234-267.	2.1	84
2635	Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. Nature Materials, 2022, 21, 338-344.	13.3	91
2636	Performances of Homogeneous and Heterogenized Methylene Blue on Silica Under Red Light in Batch and Continuous Flow Photochemical Reactors. Frontiers in Chemical Engineering, 2021, 3, .	1.3	5
2637	Light-Induced Organic Transformations by Covalent Organic Frameworks as Reticular Platforms for Selective Photosynthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 15694-15721.	3.2	18
2638	Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews, 2022, 122, 2017-2291.	23.0	211
2639	Femtosecond Photophysics of Molecular Polaritons. Journal of Physical Chemistry Letters, 2021, 12, 11444-11459.	2.1	15
2640	Excitedâ€State Copper Catalysis for the Synthesis of Heterocycles. Angewandte Chemie - International Edition, 2022, 61, e202113841.	7.2	28
2641	Manufacturing Process Development for Belzutifan, Part 2: A Continuous Flow Visible-Light-Induced Benzylic Bromination. Organic Process Research and Development, 2022, 26, 516-524.	1.3	49
2642	Acridine Orange Hemi(Zinc Chloride) Salt as a Lewis Acidâ€Photoredox Hybrid Catalyst for the Generation of <i>î±</i> à€€arbonyl Radicals. Advanced Synthesis and Catalysis, 2022, 364, 755-765.	2.1	13
2643	Photoinduced Deaminative Alkylation for the Synthesis of γ-Ketoesters via Electron Donor–Acceptor Complex Formation. Journal of Organic Chemistry, 2021, 86, 18224-18231.	1.7	8
2644	Recent Applications of Rare Earth Complexes in Photoredox Catalysis for Organic Synthesis. Current Organic Chemistry, 2022, 26, 6-41.	0.9	9
2645	Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
2646	Stereoselective <i>O</i> â€Glycosylations by Pyrylium Salt Organocatalysis**. Angewandte Chemie, 2022, 134, .	1.6	1
2647	Visible-Light Mediated Metal-Free 6Ï€-Photocyclization of <i>N</i> -Acrylamides: Thioxanthone Triplet Energy Transfer Enables the Synthesis of 3,4-Dihydroquinolin-2-ones. Organic Letters, 2021, 23, 8963-8967.	2.4	26

#	Article	IF	CITATIONS
2648	Visible light-mediated, high-efficiency oxidation of benzyl to acetophenone catalyzed by fluorescein. Tetrahedron Letters, 2022, 88, 153570.	0.7	2
2649	A biohybrid strategy for enabling photoredox catalysis with low-energy light. CheM, 2022, 8, 174-185.	5.8	26
2650	Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α, β-Unsaturated Carbonyl Compounds. ACS Catalysis, 2021, 11, 14811-14818.	5.5	14
2652	Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angewandte Chemie, 2022, 134, e202110491.	1.6	6
2653	Nearâ€Unity Triplet Generation Promoted via Spiroâ€Conjugation. Angewandte Chemie, 2022, 134, e202113190.	1.6	3
2654	Visible Lightâ€Mediated, Iodineâ€Catalyzed Radical Cascade Sulfonylation/Cyclization for the Synthesis of Sulfoneâ€Containing Coumarin under Photocatalystâ€Free Conditions. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	5
2655	Photo-induced catalytic halopyridylation of alkenes. Nature Communications, 2021, 12, 6538.	5.8	23
2656	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	23.0	210
2657	Oxidative Coupling of Phenylhydrazine Hydrochloride With 2 <i>H</i> êIndazole Derivatives Using Visible Light Activation of Carbazole Based Organophotocatalyst. ChemistrySelect, 2021, 6, 12440-12445.	0.7	7
2658	<scp>Visibleâ€Lightâ€Promoted</scp> [3 + 2] Cycloaddition of <scp>2<i>H</i>â€Azirines</scp> with C Access to Substituted Benzo[<i>f</i>]isoindoleâ€4,9â€diones. Chinese Journal of Chemistry, 2022, 40, 719-724.	Quinones: 2.6	9
2659	Photochemistry at Scale: Wireless Light Emitters Drive Sustainability in Process Research & Development. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
2660	Direct Photoexcitation of Benzothiazolines: Acyl Radical Generation and Application to Access Heterocycles. Molecules, 2021, 26, 6843.	1.7	6
2661	Photoredox Chemistry with Organic Catalysts: Role of Computational Methods. ACS Omega, 2021, 6, 33253-33264.	1.6	6
2662	A crystalline radical cation derived from Thiele's hydrocarbon with redox range beyond 1 V. Nature Communications, 2021, 12, 7052.	5.8	8
2663	Photocatalytic synthesis of phenols mediated by visible light using KI as catalyst. Tetrahedron Letters, 2021, 87, 153549.	0.7	0
2664	The Dark Side of Isocyanides: Visible-Light Photocatalytic Activity in the Oxidative Functionalization of C(sp ⁾³)â€"H Bonds. Journal of Organic Chemistry, 2021, 86, 18117-18127.	1.7	10
2665	Recent Development of Bis-Cyclometalated Chiral-at-Iridium and Rhodium Complexes for Asymmetric Catalysis. ACS Organic & Inorganic Au, 2022, 2, 99-125.	1.9	9
2666	Photoelectrochemical Decarboxylative C–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones. ACS Sustainable Chemistry and Engineering, 2021, 9, 16820-16828.	3.2	14

#	Article	IF	CITATIONS
2667	Photoredox Activation of Formate Salts: Hydrocarboxylation of Alkenes via Carboxyl Group Transfer. ACS Catalysis, 2021, 11, 15004-15012.	5.5	44
2668	C–H bond functionalization by dual catalysis: merging of high-valent cobalt and photoredox catalysis. Chemical Communications, 2021, 57, 13075-13083.	2.2	16
2669	UV-Light-Initiated Construction of Indenones through Cyclization of Aryl Aldehydes or Aryl Ketones with Alkynes Avoiding Photocatalyst. Chinese Journal of Organic Chemistry, 2021, 41, 4808.	0.6	3
2670	The dark side of photocatalysis: near-infrared photoredox catalysis for organic synthesis. Organic Chemistry Frontiers, 2021, 8, 6783-6790.	2.3	28
2671	Red-light-activatable ruthenium phthalocyanine catalysts. Chemical Communications, 2021, 57, 13594-13597.	2.2	9
2672	Visible light enabled [4+2] annulation reactions for anthracenone-furans from 2,3-dibromonaphthoquinone and phenylbenzofurans. RSC Advances, 2021, 11, 38235-38238.	1.7	3
2673	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and allenamides: synthesis of indoles. Chemical Communications, 2021, 57, 13130-13133.	2.2	22
2674	<i>De novo</i> design and synthesis of dipyridopurinone derivatives as visible-light photocatalysts in productive guanylation reactions. Chemical Science, 2021, 12, 15988-15997.	3.7	11
2675	Syntheses of new chiral chimeric photo-organocatalysts. RSC Advances, 2021, 11, 36663-36669.	1.7	10
2676	Selective 1,4-arylsulfonation of 1,3-enynes <i>via</i> photoredox/nickel dual catalysis. Organic Chemistry Frontiers, 2022, 9, 788-794.	2.3	14
2677	Minisciâ€Type Alkylation of <i>N</i> â€Heteroarenes by <i>N</i> â€(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester And Blue LED Light. Advanced Synthesis and Catalysis, 2022, 364, 802-810.	2.1	19
2678	Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering. Chemical Science, 2022, 13, 1459-1468.	3.7	17
2679	A new cycloaddition profile for <i>ortho</i> quinone methides: photoredox-catalyzed [6+4] cycloadditions for synthesis of benzo[<i>o</i>)cyclopenta[<i>e</i>)oxepines. Chemical Communications, 2022, 58, 2476-2479.	2.2	3
2680	Mechanistic Insights into Visible-Light-Driven Dearomative Fluoroalkylation Mediated by an Electron Donor–Acceptor Complex. Journal of Organic Chemistry, 2022, 87, 944-951.	1.7	5
2681	Visible Light-Mediated C(sp ²)â€"H Selenylation of Amino Pyrazole and Amino Uracils in the Presence of Rose Bengal as an Organophotocatalyst. Journal of Organic Chemistry, 2022, 87, 1230-1239.	1.7	24
2682	Photochemical C–H arylation of heteroarenes for DNA-encoded library synthesis. Chemical Science, 2022, 13, 1023-1029.	3.7	24
2683	UV light-driven asymmetric vinylogous aldol reaction of isatins with 2-alkylbenzophenones and enantioselective synthesis of 3-hydroxyoxindoles. Organic Chemistry Frontiers, 2022, 9, 643-648.	2.3	4
2684	Intracellular photocatalytic-proximity labeling for profiling protein–protein interactions in microenvironments. Chemical Communications, 2022, , .	2.2	11

#	Article	IF	CITATIONS
2685	Visible light-mediated polychlorination of alkenes <i>via</i> the dichloromethyl radical generated by chloroform and chlorides. Green Chemistry, 2022, 24, 1103-1108.	4.6	17
2686	Photochemical and electrochemical C–N borylation of arylhydrazines. Chemical Communications, 2022, 58, 1716-1719.	2.2	8
2687	An organophotocatalytic late-stage N–CH ₃ oxidation of trialkylamines to <i>N</i> -formamides with O ₂ in continuous flow. Chemical Science, 2022, 13, 1912-1924.	3.7	31
2688	A Photosensitizer–Free Radical Cascade for Synthesizing CF ₃ -Containing Polycyclic Quinazolinones with Visible Light. Journal of Organic Chemistry, 2022, 87, 1493-1501.	1.7	17
2689	Advanced catalytic ozonation for degradation of pharmaceutical pollutants―A review. Chemosphere, 2022, 289, 133208.	4.2	130
2690	Organic Photoredox-Catalyzed Cycloadditions Under Single-Chain Polymer Confinement. ACS Catalysis, 2020, 10, 13251-13256.	5.5	11
2692	An imidazoacridine-based TADF material as an effective organic photosensitizer for visible-light-promoted [2 + 2] cycloaddition. Chemical Science, 2022, 13, 2296-2302.	3.7	20
2693	Visible-light induced synthesis of 8H-indolo[3,2,1-de]phenanthridin-8-ones and related heterocycles using benzothiadiazole as photocatalyst. Tetrahedron Letters, 2022, 91, 153648.	0.7	1
2694	Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. Journal of the American Chemical Society, 2022, 144, 1069-1081.	6.6	72
2695	Switchable Divergent Synthesis Using Photocatalysis. ACS Catalysis, 2022, 12, 1857-1878.	5.5	62
2696	Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews, 2022, 122, 5842-5976.	23.0	136
2697	Radical Carbonyl Umpolung Arylation via Dual Nickel Catalysis. Journal of the American Chemical Society, 2022, 144, 1899-1909.	6.6	47
2698	Making molecules with photodecarboxylases: A great start or a false dawn?. Current Research in Chemical Biology, 2022, 2, 100017.	1.4	17
2699	Visible Light-Induced Aerobic Oxidative Dehydrogenation of C–N/C–O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules, 2022, 27, 497.	1.7	12
2700	Allylic C(sp3)â€"H arylation of olefins via ternary catalysis. , 2022, 1, 59-68.		22
2701	Catalyst-free visible light-induced decarboxylative amination of glycine derivatives with azo compounds. New Journal of Chemistry, 2022, 46, 465-469.	1.4	4
2702	Photoredox-Catalyzed Oxidative Radical–Polar Crossover Enables the Alkylfluorination of Olefins. Journal of Organic Chemistry, 2022, 87, 2640-2650.	1.7	4
2703	libwfa: Wavefunction analysis tools for excited and openâ€shell electronic states. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	16

#	Article	IF	CITATIONS
2704	Photocatalytic Benzylic Oxidation Promoted by Eosin Y in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 1822-1828.	3.2	17
2705	1,3-Oxyalkynylation of Aryl Cyclopropanes with Ethylnylbenziodoxolones Using Photoredox Catalysis. Organic Letters, 2022, 24, 949-954.	2.4	21
2706	Visible-light mediated cross-coupling of aryl halides with sodium sulfinates <i>via</i> carbonyl-photoredox/nickel dual catalysis. Organic Chemistry Frontiers, 2022, 9, 1437-1444.	2.3	13
2707	Freeâ€Radical Epimerization of <scp>d</scp> ―into <scp>l</scp> ―i>Cê(Glycosyl)methanol Compounds Using 1,5â€Hydrogen Atom Transfer Reaction. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
2708	Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds. Organic Chemistry Frontiers, 2022, 9, 1485-1507.	2.3	45
2709	Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catalysis, 2022, 12, 1357-1363.	5.5	34
2710	Catalytic Activation of Bioorthogonal Chemistry with Light (CABL) Enables Rapid, Spatiotemporally Controlled Labeling and No-Wash, Subcellular 3D-Patterning in Live Cells Using Long Wavelength Light. Journal of the American Chemical Society, 2022, 144, 1647-1662.	6.6	39
2711	Elucidating the Mechanism of Bimolecular Photoinduced Electron Transfer Reactions. Journal of Physical Chemistry B, 2022, 126, 778-788.	1.2	13
2712	Asymmetric synthesis of cyclic \hat{l}^2 -amino carbonyl derivatives by a formal [3 + 2] photocycloaddition. Chemical Communications, 2022, 58, 1334-1337.	2,2	17
2713	The Potential of Micellar Media in the Synthesis of DNAâ€Encoded Libraries. Chemistry - A European Journal, 2022, , .	1.7	7
2714	Alkylsulfonium salts for the photochemical desulphurizative functionalization of heteroarenes. Organic Chemistry Frontiers, 2022, 9, 347-355.	2.3	19
2715	Preparation of nitriles from aldehydes using ammonium persulfate by means of a nitroxide-catalysed oxidative functionalisation reaction. Organic and Biomolecular Chemistry, 2022, 20, 667-671.	1.5	8
2716	Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules, 2022, 27, 517.	1.7	29
2717	Photoinduced Copper-Catalyzed Asymmetric Acylation of Allylic Phosphates with Acylsilanes. Journal of the American Chemical Society, 2022, 144, 2218-2224.	6.6	39
2718	Stepwise benzylic oxygenation <i>via</i> uranyl-photocatalysis. Green Chemistry, 2022, 24, 124-129.	4.6	31
2719	A thiadiazolopyridine-functionalized Zr(<scp>iv</scp>)-based metal–organic framework for enhanced photocatalytic synthesis of tetrahydroquinolines under visible light. RSC Advances, 2022, 12, 1638-1644.	1.7	3
2721	Visible light photocatalytic one pot synthesis of $\langle i \rangle Z \langle i \rangle$ -arylvinyl halides from $\langle i \rangle E \langle i \rangle$ -arylvinyl acids with $\langle i \rangle N \langle i \rangle$ -halosuccinimide. RSC Advances, 2022, 12, 3931-3934.	1.7	1
2722	Modeling and Simulation of Reaction Environment in Photoredox Catalysis: A Critical Review. Frontiers in Chemical Engineering, 2022, 3, .	1.3	1

#	Article	IF	CITATIONS
2723	Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes. Chinese Journal of Organic Chemistry, 2022, 42, 1.	0.6	24
2724	2,11-Dimethoxyldipyridopurinone as an efficient reducing visible-light photocatalyst for organic transformations. Organic Chemistry Frontiers, 2022, 9, 1634-1641.	2.3	14
2725	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie, 0, , .	1.6	8
2726	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
2727	Cascade cyclization for the synthesis of $[2,1-\hat{l}\pm]$ isoquinoline derivatives <i>via</i> visible-light-induced halogen-atom-transfer (XAT) and hydrogen-atom-transfer (HAT). Organic and Biomolecular Chemistry, 2022, 20, 1731-1737.	1.5	17
2728	Visible-Light-Enabled Allylic C–H Oxidation: Metal-free Photocatalytic Generation of Enones. ACS Catalysis, 2022, 12, 1375-1381.	5 . 5	19
2730	Pyrylium salts acting as both energy transfer and electron transfer photocatalysts for $\langle i \rangle E \langle i \rangle$ â†' $\langle i \rangle Z \langle i \rangle$ isomerization of activated alkenes and cyclization of cinnamic or biaryl carboxylic acids. Organic Chemistry Frontiers, 2022, 9, 973-978.	2.3	7
2731	A combined experimental and theoretical study on the reactivity of nitrenes and nitrene radical anions. Nature Communications, 2022, 13, 86.	5. 8	24
2732	Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer. Photochem, 2022, 2, 9-31.	1.3	3
2733	Direct decarboxylative Giese reactions. Chemical Society Reviews, 2022, 51, 1415-1453.	18.7	87
2734	Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chemical Reviews, 2022, 122, 5476-5518.	23.0	106
2735	A catalyzed <i>E</i> / <i>Z</i> isomerization mechanism of stilbene using <i>para</i> -benzoquinone as a triplet sensitizer. Physical Chemistry Chemical Physics, 2022, 24, 1712-1721.	1.3	7
2736	Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. ChemSusChem, 2022, 15, .	3.6	63
2737	Click-based conjugated microporous polymers as efficient heterogeneous photocatalysts for organic transformations. Catalysis Science and Technology, 2022, 12, 1202-1210.	2.1	11
2738	Three-component reaction access to $\langle i \rangle S \langle i \rangle$ -alkyl dithiocarbamates under visible-light irradiation conditions in water. Green Chemistry, 2022, 24, 1302-1307.	4.6	31
2739	<i>N</i> -tosylhydrazones as acceptors for nucleophilic alkyl radicals in photoredox catalysis: A short case study on possible side reactions. Synthetic Communications, 2022, 52, 413-423.	1.1	7
2740	Tuning the Electrochemical and Photophysical Properties of Osmium-Based Photoredox Catalysts. Synlett, 2022, 33, 247-258.	1.0	10
2741	Site $\hat{a} \in S$ elective $\langle i \rangle N \langle i \rangle \hat{a} \in I$ and $C\hat{a} \in S$ Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11

#	Article	IF	Citations
2742	Photoredox atalyzed Defluorinative Functionalizations of Polyfluorinated Aliphatic Amides and Esters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	70
2743	Hexafluoroisopropanolâ€Promoted or Brønsted Acidâ€Mediated Photochemical [2+2] Cycloadditions of Alkynes with Maleimides. ChemSusChem, 2022, 15, .	3.6	18
2744	Facile synthesis of <i>N</i> -aryl phenothiazines and phenoxazines <i>via</i> Brønsted acid catalyzed Câ€"H amination of arenes. Chemical Communications, 2022, 58, 1613-1616.	2.2	3
2745	Development of a high intensity parallel photoreactor for high throughput screening. Reaction Chemistry and Engineering, 2022, 7, 354-360.	1.9	18
2746	Synthesis of \hat{l}^2 -nitro ketones from geminal bromonitroalkanes and silyl enol ethers by visible light photoredox catalysis. Chemical Communications, 2022, 58, 1780-1783.	2.2	15
2747	Visible-light-promoted catalyst-/additive-free synthesis of aroylated heterocycles in a sustainable solvent. Green Chemistry, 2022, 24, 1732-1737.	4.6	36
2748	A simple and straightforward polymer post-modification method for wearable difluoroboron \hat{l}^2 -diketonate luminescent sensors. Polymer, 2022, 239, 124449.	1.8	7
2749	Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple. Chemical Science, 2022, 13, 486-496.	3.7	8
2750	Metal vs. Metalâ€Free Catalysts for Oxidation of 5â€Hydroxymethylfurfural and Levoglucosenone to Biosourced Chemicals. ChemSusChem, 2022, 15, .	3.6	4
2751	A nickel/organoboron catalyzed metallaphotoredox platform for C(sp ²)–P and C(sp ²)–S bond construction. Organic Chemistry Frontiers, 2022, 9, 1070-1076.	2.3	11
2752	Photoredoxâ€katalysierte defluorierende Funktionalisierungen von polyfluorierten aliphatischen Amiden und Estern. Angewandte Chemie, 0, , .	1.6	9
2753	Transition metal-free cross-coupling reactions to form carbon–heteroatom bonds. Russian Chemical Reviews, 2022, 91, .	2.5	6
2754	Engineered Nanostructured Photocatalysts for Cancer Therapy. Catalysts, 2022, 12, 167.	1.6	10
2755	A Photocatalytic System Composed of Benzimidazolium Aryloxide and Tetramethylpiperidine 1-Oxyl to Promote Desulfonylative α-Oxyamination Reactions of α-Sulfonylketones. ACS Omega, 2022, 7, 4655-4666.	1.6	6
2756	The advent and development of organophotoredox catalysis. Chemical Communications, 2022, 58, 1263-1283.	2.2	78
2757	Siteâ€Selective <i>N</i> >â€1 and Câ€3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angewandte Chemie, 2022, 134, .	1.6	2
2759	Metal-Mediated Reductive C–C Coupling of π Bonds. , 2022, , .		0
2760	Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules, 2022, 27, 772.	1.7	10

#	Article	IF	CITATIONS
2761	Remote C(sp ³)â^³H Acylation of Amides and Cascade Cyclization via Nâ€Heterocyclic Carbene Organocatalysis. Angewandte Chemie, 2022, 134, .	1.6	5
2762	Catalystâ€Free Intermolecular Sulfonyl/Fluoromethyl Heteroarylation of Vinyl Ethers via Visibleâ€Lightâ€Induced Charge Transfer. Chemistry - A European Journal, 2022, 28, .	1.7	4
2763	Recent advances of visible-light photocatalysis in the functionalization of organic compounds. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 50, 100488.	5.6	64
2764	Remote C(sp ³)â^'H Acylation of Amides and Cascade Cyclization via Nâ€Heterocyclic Carbene Organocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
2765	Organic Photoredox Catalyzed Direct Hydroamination of Ynamides with Azoles. Advanced Synthesis and Catalysis, 0, , .	2.1	4
2766	Combining cycloaddition reactions for the one-pot synthesis of novel xanthoquinone dyes. Dyes and Pigments, 2022, 199, 110106.	2.0	2
2767	A scalable light-diffusing photochemical reactor for continuous processing of photoredox reactions. Chemical Engineering Journal, 2022, 435, 134889.	6.6	6
2768	Hydrogen bond serving as a protecting group to enable the photocatalytic [2+2] cycloaddition of redox-active aliphatic-amine-containing indole derivatives. Chemical Communications, 2022, 58, 3194-3197.	2.2	10
2769	Development of anthrazoline photocatalysts for promoting amination and amidation reactions. Chemical Communications, 2022, 58, 3529-3532.	2.2	7
2770	Thermoneutral synthesis of spiro-1,4-cyclohexadienes by visible-light-driven dearomatization of benzylmalonates. Green Chemistry, 2022, 24, 2772-2776.	4.6	8
2771	Redox-active and Brønsted basic dual sites for photocatalytic activation of benzylic C–H bonds based on pyridinium derivatives. Green Chemistry, 2022, 24, 2492-2498.	4.6	9
2772	Current electrochemical approaches to selective deuteration. Chemical Communications, 2022, 58, 2944-2953.	2.2	28
2773	Electrochemical benzylic C–H arylation of xanthenes and thioxanthenes without a catalyst and oxidant. Organic Chemistry Frontiers, 2022, 9, 1911-1916.	2.3	17
2774	Commercial-Scale Visible Light Trifluoromethylation of 2-Chlorothiophenol Using CF ₃ 1 Gas. Organic Process Research and Development, 2022, 26, 404-412.	1.3	21
2775	Metal–Organic Framework-Encapsulated Anthraquinone for Efficient Photocatalytic Hydrogen Atom Transfer. ACS Applied Materials & mp; Interfaces, 2022, 14, 7980-7989.	4.0	9
2776	Moderately Oxidizing Thioxanthylium Organophotoredox Catalysts for Radical-Cation Diels–Alder Reactions. Journal of Organic Chemistry, 2022, 87, 3319-3328.	1.7	6
2777	Bioinspired desaturation of alcohols enabled by photoredox proton-coupled electron transfer and cobalt dual catalysis. Nature Communications, 2022, 13, 809.	5.8	26
2778	Organic photocatalysts: From molecular to aggregate level. Nano Research, 2022, 15, 3835-3858.	5.8	15

#	Article	IF	CITATIONS
2779	A Unified Mechanism for the PhCOCOOHâ€mediated Photochemical Reactions: Revisiting its Action and Comparison to Known Photoinitiators. Chemistry - A European Journal, 2022, 28, .	1.7	11
2780	Intermolecular Photocatalytic Chemoâ€, Stereo†and Regioselective Thiol†yne†ene Coupling Reaction. Angewandte Chemie, 0, , .	1.6	1
2781	Intermolecular Photocatalytic Chemoâ€; Stereo―and Regioselective Thiol–Yne–Ene Coupling Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
2782	Combined Photoredox and Carbene Catalysis for the Synthesis of α-Amino Ketones from Carboxylic Acids. ACS Catalysis, 2022, 12, 2522-2531.	5.5	38
2783	Stereoselective, Ruthenium-Photocatalyzed Synthesis of 1,2-Diaminotruxinic Bis-amino Acids from 4-Arylidene-5 (4H)-oxazolones. Journal of Organic Chemistry, 2022, , .	1.7	6
2784	Sequential Visible Lightâ€Induced Reactions Using Different Photocatalysts: Transformation of Furans into 2â€Pyridones via γâ€Lactams Using a New Ring Expansion Reaction. Chemistry - A European Journal, 2022, 28, .	1.7	4
2785	Alkynyl Sulfonium Salts Can Be Employed as Chalcogenâ€Bonding Catalysts and Generate Alkynyl Radicals under Blueâ€Light Irradiation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
2786	Efficient Photocatalytic Carbonyl Alkylative Amination Enabled by Titaniumâ€Dioxideâ€Mediated Decarboxylation. Chemistry - A European Journal, 2022, 28, .	1.7	4
2787	Alkynyl Sulfonium Salts Can Be Employed as Chalcogenâ€Bonding Catalysts and Generate Alkynyl Radicals under Blueâ€Light Irradiation. Angewandte Chemie, 2022, 134, .	1.6	8
2788	Direct C–C Bond Formation of Allylic Alcohols with CO ₂ toward Carboxylic Acids by Photoredox/Nickel Dual Catalysis. ACS Catalysis, 2022, 12, 2781-2787.	5.5	28
2789	Photocatalytic α-arylation of cyclic ketones. , 2022, 1, 147-157.		18
2790	Employing Visible-Light Photoredox Catalysis in Multicomponent–Multicatalyst Reactions: One-Pot Synthesis of Spiroquinazolin-2-(thi)ones. Journal of Organic Chemistry, 2022, 87, 3596-3604.	1.7	11
2791	Photoinduced radical polymerization by methyl fluoresceins under visible light and the application to signal amplification of hydrogen peroxide. Dyes and Pigments, 2022, 200, 110163.	2.0	5
2792	Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chemical Reviews, 2022, 122, 2292-2352.	23.0	206
2793	Photoinduced Decarboxylative Radical Coupling Reaction of Multiply Oxygenated Structures by Catalysis of Pt-Doped TiO ₂ . Journal of Organic Chemistry, 2022, 87, 730-736.	1.7	12
2794	Visible-light photoredox-catalyzed carboxylation of benzyl halides with CO2: Mild and transition-metal-free. Chinese Journal of Catalysis, 2022, 43, 1667-1673.	6.9	12
2795	Functionalized quinolizinium-based fluorescent reagents for modification of cysteine-containing peptides and proteins. RSC Advances, 2022, 12, 6248-6254.	1.7	2
2796	Photoinduced metal-free borylation of aryl halides catalysed by an <i>in situ</i> i> formed donor–acceptor complex. Chemical Science, 2022, 13, 4909-4914.	3.7	6

#	Article	IF	CITATIONS
2797	Asymmetric \hat{l}^2 -arylation of cyclopropanols enabled by photoredox and nickel dual catalysis. Chemical Science, 2022, 13, 3020-3026.	3.7	4
2798	Photoredox catalysis in the synthesis of \hat{I}^3 - and \hat{I} -lactams from <i>N</i> -alkenyl trichloro- and dichloroacetamides. Organic and Biomolecular Chemistry, 2022, 20, 3118-3123.	1.5	2
2799	Visible-light-mediated intramolecular radical cyclization of α-brominated amide-tethered alkylidenecyclopropanes. Chemical Communications, 2022, 58, 3653-3656.	2.2	10
2800	Visible-light induced dearomatization reactions. Chemical Society Reviews, 2022, 51, 2145-2170.	18.7	122
2801	Catalytic aerobic photooxidation of triarylphosphines using dibenzo-fused 1,4-azaborines. Chemical Communications, 2022, 58, 5001-5004.	2.2	9
2802	Visible light-induced synthesis of $(\langle i\rangle Z\langle i\rangle)$ - i^2 -iodoenamides from $\langle i\rangle N\langle i\rangle$ -vinyl amides mediated by the ion pair charge transfer state. Organic Chemistry Frontiers, 2022, 9, 1975-1981.	2.3	3
2803	The development of imin-based tandem Michael–Mannich cyclocondensation through a single-electron transfer (SET)/energy transfer (EnT) pathway in the use of methylene blue (MB ⁺) as a photo-redox catalyst. RSC Advances, 2022, 12, 10701-10710.	1.7	16
2804	Visible light-promoted synthesis of ureas and formamides from amines and CO ₂ . Chemical Communications, 2022, 58, 4599-4602.	2.2	2
2805	Facile construction of olefin-linked covalent organic frameworks for enhanced photocatalytic organic transformation <i>via</i> wall surface engineering. Journal of Materials Chemistry A, 2022, 10, 7165-7172.	5.2	19
2806	{2-Phases 2-reactions 1-catalyst} concept for the sustainable performance of coupled reactions. Green Chemistry, 2022, 24, 2516-2526.	4.6	4
2807	Visible-light-mediated oxidative C–S bond cleavage of benzyl thiols through <i>in situ</i> activation strategy. Organic and Biomolecular Chemistry, 2022, 20, 5938-5942.	1.5	4
2808	Visible-light-induced metal-free coupling of C(sp ³)–H sources with heteroarenes. Green Chemistry, 2022, 24, 3056-3080.	4.6	29
2809	Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chemical Society Reviews, 2022, 51, 2255-2312.	18.7	27
2810	Visible-light-mediated regioselective ring-opening hydrogenolysis of donor–acceptor cyclopropanes with DIPEA and H ₂ O. Organic Chemistry Frontiers, 2022, 9, 1960-1966.	2.3	7
2811	Organic dyes supported on silicon-based materials: synthesis and applications as photocatalysts. Organic Chemistry Frontiers, 2022, 9, 2856-2888.	2.3	7
2812	Photoinduced ligand to metal charge transfer enabling cerium mediated decarboxylative alkylation of quinoxalin-2(1 <i>H</i>)-ones. Chemical Communications, 2022, 58, 3831-3834.	2.2	18
2813	Visible light-induced functionalization of indazole and pyrazole: a recent update. Chemical Communications, 2022, 58, 4435-4455.	2.2	26
2814	Organophotoredox catalytic four-component radical-polar crossover cascade reactions for the stereoselective synthesis of \hat{l}^2 -amido sulfones. Green Chemistry, 2022, 24, 3120-3124.	4.6	16

#	Article	IF	CITATIONS
2815	Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chemical Society Reviews, 2022, 51, 2313-2382.	18.7	103
2816	Visible light-promoted photocatalyst-free activation of persulfates: a promising strategy for C–H functionalization reactions. Organic and Biomolecular Chemistry, 2022, 20, 3249-3262.	1.5	19
2817	Synthesis of β-hydroxysulfides <i>via</i> visible-light-driven and EDA complex-promoted hydroxysulfenylation of styrenes with heterocyclic thiols in EtOH under photocatalyst-free conditions. Green Chemistry, 2022, 24, 3250-3256.	4.6	26
2818	C–H benzylation of quinoxalin-2(1 <i>H</i>)-ones <i>via</i> visible-light riboflavin photocatalysis. Organic Chemistry Frontiers, 2022, 9, 2653-2658.	2.3	17
2819	Visible-light enabled photochemical reduction of 1,2-dicarbonyl compounds by Hünig's base. Organic Chemistry Frontiers, 2022, 9, 1924-1931.	2.3	8
2820	Visible-light-induced, autopromoted nickel-catalyzed three-component arylsulfonation of 1,3-enynes and mechanistic insights. Science China Chemistry, 2022, 65, 753-761.	4.2	15
2821	Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors. Synthesis, 2022, 54, 1919-1938.	1.2	29
2822	Photo-induced catalytic Câ^'H heteroarylation of group 8 metallocenes. Cell Reports Physical Science, 2022, 3, 100768.	2.8	2
2823	Aerobic Photocatalysis: Oxidation of Sulfides to Sulfoxides. ChemPlusChem, 2022, 87, e202200008.	1.3	34
2824	å•è§å…‰æ°§åŒ–è¿~原å,¬åŒ–å^¶å‡β-ç¡åŸºé…®. Chinese Science Bulletin, 2022, , .	0.4	4
2825	Desulfonylative Transformations of Sulfones by Transition-Metal Catalysis, Photocatalysis, and Organocatalysis. ACS Catalysis, 2022, 12, 3013-3032.	5.5	52
2826	Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalystâ€Controlled Cyclization of <i>ortho</i> å€Quinone Methide Iminiums. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
2827	Visible-Light-Promoted Unsymmetrical Phosphine Synthesis from Benzylamines. Organic Letters, 2022, 24, 1566-1570.	2.4	6
2828	Protodesilylation of Arylsilanes by Visible-Light Photocatalysis. Organic Letters, 2022, 24, 1689-1694.	2.4	2
2829	"Green Is the Color― An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules, 2022, 27, 1597.	1.7	25
2830	Switchable Regioselective 6- <i>endo</i> or 5- <i>exo</i> Radical Cyclization via Photoredox Catalysis. Journal of the American Chemical Society, 2022, 144, 3776-3781.	6.6	18
2831	Ligand Modification of Au ₂₅ Nanoclusters for Near-Infrared Photocatalytic Oxidative Functionalization. Journal of the American Chemical Society, 2022, 144, 3787-3792.	6.6	45
2832	Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nature Communications, 2022, 13, 1085.	5.8	42

#	Article	IF	CITATIONS
2833	Photoredox-Catalyzed and Copper(II) Salt-Assisted Radical Addition/Hydroxylation Reaction of Alkenes, Sulfur Ylides, and Water. ACS Catalysis, 2022, 12, 3279-3285.	5.5	29
2834	Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalyst ontrolled Cyclization of <i>ortho</i> â€Quinone Methide Iminiums. Angewandte Chemie, 2022, 134, .	1.6	4
2835	Exploring metallic and plastic 3D printed photochemical reactors for customizing chemical synthesis. Scientific Reports, 2022, 12, 3780.	1.6	5
2836	Visible-light-promoted aerobic oxidation of sulfides and sulfoxides in ketone solvents. Tetrahedron, 2022, 110, 132708.	1.0	2
2837	Metal-Free Aerobic Câ€"H Oxidation of Methylarenes to Aromatic Aldehydes by Sulfur-Containing Tetracyclic Compounds as Visible-Light Photocatalysts. Bulletin of the Chemical Society of Japan, 2022, 95, 768-770.	2.0	2
2838	Quantum Dots Photocatalyze Intermolecular [2 + 2] Cycloadditions of Aromatic Alkenes Adsorbed to their Surfaces via van der Waals Interactions. Journal of the American Chemical Society, 2022, 144, 3782-3786.	6.6	32
2839	Synthesis of Dibenzo[g,p]Chrysenes via Organophotocatalytic Sequential Singleâ€Electron Oxidation. Asian Journal of Organic Chemistry, 0, , .	1.3	1
2840	Photobiocatalysis for Abiological Transformations. Accounts of Chemical Research, 2022, 55, 1087-1096.	7.6	73
2841	Lignin as a multifunctional photocatalyst for solar-powered biocatalytic oxyfunctionalization of Câ \in "H bonds. , 2022, 1, 217-226.		40
2842	Photocatalysis in Aqueous Micellar Media Enables Divergent C–H Arylation and ⟨i⟩N⟨/i⟩-Dealkylation of Benzamides. ACS Catalysis, 2022, 12, 3543-3549.	5.5	28
2843	Aroyl Fluorides as Bifunctional Reagents for Dearomatizing Fluoroaroylation of Benzofurans. Journal of the American Chemical Society, 2022, 144, 7072-7079.	6.6	78
2844	Photoredox Catalyzed Trifluoromethyl Radicalâ€Triggered Trifunctionalization of 5â€Hexenenitriles <i>via</i> Cyano Migration. Advanced Synthesis and Catalysis, 2022, 364, 1388-1393.	2.1	13
2845	Visible Lightâ€induced Functionalization of Câ^'H Bonds: Opening of New Avenues in Organic Synthesis. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	9
2846	Energy Transfer Photocatalytic Radical Rearrangement in <i>N</i> lndolyl Carbonates. Organic Letters, 2022, 24, 1774-1779.	2.4	12
2848	Low-Cost Naked-Eye UVB and UVC Dosimetry Based on 3,3′,5,5′-Tetramethylbenzidine. Analytical Chemistry, 2022, 94, 4373-4379.	3.2	11
2849	Iron-Catalyzed Photoredox Functionalization of Methane and Heavier Gaseous Alkanes: Scope, Kinetics, and Computational Studies. Organic Letters, 2022, 24, 1901-1906.	2.4	34
2850	Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. Nature Nanotechnology, 2022, 17, 485-492.	15.6	78
2851	Electron-catalysed molecular recognition. Nature, 2022, 603, 265-270.	13.7	51

#	Article	IF	CITATIONS
2852	UVA Lightâ€promoted Catalystâ€free Cyclization of Vinyl Selenides: Green and Efficient Synthesis of C3â€Unsubstituted 2â€Selanyl Benzochalcogenophenes. Chemistry - an Asian Journal, 2022, 17, e202101394.	1.7	5
2853	Visible-Light Enabled C(s <i>p</i> ³)–C(s <i>p</i> ²) Cross-Electrophile Coupling via Synergistic Halogen-Atom Transfer (XAT) and Nickel Catalysis. Journal of Organic Chemistry, 2022, 87, 5442-5450.	1.7	14
2854	Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of \hat{l}^2 -Aryl-Ketones. Catalysts, 2022, 12, 333.	1.6	0
2855	Stereoconvergent Synthesis of Monofluoroalkenes via Photoinduced Dual Decarboxylative Cross-Coupling of α-Fluoroacrylic Acids with Redox-Active Esters. Journal of Organic Chemistry, 2022, 87, 4654-4669.	1.7	9
2856	Photoinduced Arylation of Acridinium Salts: Tunable Photoredox Catalysts for C–O Bond Cleavage. Journal of the American Chemical Society, 2022, 144, 5902-5909.	6.6	19
2857	Visible-light-induced novel cyclization of 2-(2-(arylethynyl)benzylidene)-malononitrile derivatives with 2,6-di(tert-butyl)-4-methylphenol to bridged spirocyclic compounds. Chinese Chemical Letters, 2022, 33, 5069-5073.	4.8	33
2858	Synthesis of Cyclohexanones by a Tandem Photocatalyzed Annulation. Journal of the American Chemical Society, 2022, 144, 7030-7037.	6.6	36
2859	3D Printing of Thiol‥ne Photoresins through Visible Light Photoredox Catalysis. ChemistrySelect, 2022, 7, .	0.7	2
2860	Photoâ€induced sp3 C–H functionalization for the synthesis of 3,3â€disubstituted oxindoles. Asian Journal of Organic Chemistry, 0, , .	1.3	1
2861	Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins. ACS Catalysis, 2022, 12, 4290-4295.	5.5	20
2862	New reaction pathways by integrating chemo- and biocatalysis. Trends in Chemistry, 2022, 4, 392-408.	4.4	34
2863	Visible-Light-Induced Radical Condensation Cyclization to Synthesize 3,4-Dihydropyrimidin-2-(1 <i>H</i>)-ones/thiones Using Photoexcited Na ₂ Eosin Y as a Direct Hydrogen Atom Transfer (HAT) Catalyst. ACS Omega, 2022, 7, 8429-8436.	1.6	17
2864	Nitrogen-Centered Radicals in Functionalization of sp ² Systems: Generation, Reactivity, and Applications in Synthesis. Chemical Reviews, 2022, 122, 8181-8260.	23.0	133
2865	Acetalization of enol ethers with alcohols under visible light with BINOLs as a photoacid catalyst. Synlett, 0, 33, .	1.0	0
2866	Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes. Photochemical and Photobiological Sciences, 2022, , 1.	1.6	6
2867	BODIPY Catalyzes Proximityâ€Dependent Histidine Labelling. ChemCatChem, 2022, 14, .	1.8	9
2868	Merging Charge Transfer into Metal–Organic Frameworks to Achieve High Reduction Potentials via Multiphoton Excitation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15307-15316.	4.0	9
2869	Indole and Pyrrole Derivatives as Pre-photocatalysts and Substrates in the Sulfonyl Radical-Triggered Relay Cyclization Leading to Sulfonylated Heterocycles. Organic Letters, 2022, 24, 2014-2019.	2.4	15

#	ARTICLE	IF	CITATIONS
2870	Photoinduced Three-Component Difluoroamidosulfonylation/Bicyclization: A Route to Dihydrobenzofuran Derivatives. Organic Letters, 2022, 24, 2556-2561.	2.4	10
2871	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Photocatalyst in the Dual Catalytic Arylation of Alkyl Bis(catecholato)silicates. Organic Letters, 2022, 24, 2483-2487.	2.4	11
2872	Photoredox-Catalyzed Site-Selective Generation of Carbanions from C(sp ³)–H Bonds in Amines. ACS Catalysis, 2022, 12, 3974-3984.	5.5	20
2873	Hybrid of sodium polytungstate polyoxometalate supported by the green substrate for photocatalytic degradation of auramine-O dye. Environmental Science and Pollution Research, 2022, 29, 56055-56067.	2.7	8
2874	Modeling and Characterization of Exciplexes in Photoredox CO ₂ Reduction: Insights from Quantum Chemistry and Fluorescence Spectroscopy. Journal of Physical Chemistry A, 2022, 126, 2319-2329.	1.1	5
2875	Remote Giese Radical Addition by Photocatalytic Ring Opening of Activated Cycloalkanols. Advanced Synthesis and Catalysis, 2022, 364, 1689-1694.	2.1	6
2876	Stereoselective intermolecular radical cascade reactions of tryptophans or \acute{E} alkenyl- \acute{l} ±-amino acids with acrylamides via photoredox catalysis. Nature Communications, 2022, 13, 1778.	5.8	10
2877	Boryl Radical Activation of Benzylic C–OH Bond: Cross-Electrophile Coupling of Free Alcohols and CO ₂ via Photoredox Catalysis. Journal of the American Chemical Society, 2022, 144, 8551-8559.	6.6	41
2878	Visible-Light-Induced <i>N</i> -Acylation of Sulfoximines. Organic Letters, 2022, 24, 2733-2737.	2.4	11
2879	Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene. Nature Communications, 2022, 13, 1858.	5.8	17
2880	Progress of Metalâ€Free Visibleâ€Lightâ€Driven αâ€Câ^'H Functionalization of Tertiary Amines: A Decade Journey. Asian Journal of Organic Chemistry, 2022, 11, .	' 1.3	16
2881	Electrophotocatalytic Câ^'H Hydroxyalkylation of Heteroaromatics with Aldehydes. Advanced Synthesis and Catalysis, 2022, 364, 1732-1737.	2.1	11
2882	Synthesis of \hat{l}_{\pm} -tertiary amines by polysulfide anions photocatalysis via single-electron transfer and hydrogen atom transfer in relays. Chem Catalysis, 2022, 2, 1128-1142.	2.9	12
2883	Enhanced synergistic catalysis by a light-harvesting binary organic dyes system based on FRET for cross-dehydrogenative-coupling reaction. Dyes and Pigments, 2022, 200, 110156.	2.0	3
2884	Phenylphenothiazine-Based Porous Organic Polymers as Visible-Light Heterogeneous Photocatalysts for Switchable Bromoalkylation and Cyclopropanation of Unactivated Terminal Alkenes. ACS Sustainable Chemistry and Engineering, 2022, 10, 4650-4659.	3.2	16
2885	Organophotocatalytic Regioselective Câ°'H Alkylation of Electronâ€Rich Arenes Using Activated and Unactivated Alkenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
2886	Advances in the photoredox catalysis of S(VI) compounds. Tetrahedron, 2022, 111, 132711.	1.0	10
2887	Organophotocatalytic Regioselective Câ^'H Alkylation of Electronâ€Rich Arenes Using Activated and Unactivated Alkenes. Angewandte Chemie, 0, , .	1.6	O

#	ARTICLE	IF	Citations
2888	Donor–Acceptor Pyridinium Salts for Photo-Induced Electron-Transfer-Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes Using Visible Light. Journal of the American Chemical Society, 2022, 144, 6227-6236.	6.6	23
2889	A Oneâ€Pot Approach for Bioâ€Based Arylamines via a Combined Photooxidative Dearomatizationâ€Rearomatization Strategy. Chemistry - A European Journal, 2022, 28, .	1.7	5
2890	Homogeneous Systems Containing Earthâ€Abundant Metal Complexes for Photoactivated CO ₂ Reduction: Recent Advances. European Journal of Organic Chemistry, 2022, 2022, .	1.2	9
2891	Organic photoredox catalysts for wastewater remediation: Beyond the established advanced oxidation processes. Chemical Engineering Journal Advances, 2022, 11, 100296.	2.4	6
2892	Chalcogenative spirocyclization of <i>N</i> -aryl propiolamides with diselenides/disulfides promoted by Selectfluor. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, 77, 75-85.	0.3	3
2893	Modulating Carrier Transfer over Carbazolic Conjugated Microporous Polymers via Donor Structural Design for Functionalization of Thiophenols. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60072-60083.	4.0	36
2894	Comprehensive Picture of the Excited State Dynamics of $Cu(I)$ - and $Ru(II)$ -Based Photosensitizers with Long-Lived Triplet States. Inorganic Chemistry, 2022, 61, 214-226.	1.9	15
2895	Visibleâ€Lightâ€Assisted Synthesis of Allylic Triflamides via Dual Acridinium/Co Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 720-725.	2.1	5
2896	Phenanthrenequinone-Sensitized Photocatalytic Synthesis of Polysubstituted Quinolines from 2-Vinylarylimines. Organic Letters, 2022, 24, 274-278.	2.4	12
2897	Automated Nanomole-Scale Reaction Screening toward Benzoate Bioisosteres: A Photocatalyzed Approach to Highly Elaborated Bicyclo[1.1.1]Pentanes. ACS Catalysis, 2022, 12, 600-606.	5.5	22
2898	Catalyst-free Photochemical Bromination of Unprotected Aromatic Amino Acid Derivatives by Using a Rotating Ultraviolet Photoreactor. Chemical Research in Chinese Universities, 0, , 1.	1.3	0
2899	Photoredox Catalyzed Radical Cascade Aroylation (Sulfonylation)/Cyclization Enables Access to Fused Indolo-pyridones. Journal of Organic Chemistry, 2021, 86, 18042-18055.	1.7	7
2900	Self-Optimization of Continuous Flow Electrochemical Synthesis Using Fourier Transform Infrared Spectroscopy and Gas Chromatography. Applied Spectroscopy, 2022, 76, 38-50.	1.2	9
2901	DABCO-promoted photocatalytic C–H functionalization of aldehydes. Beilstein Journal of Organic Chemistry, 2021, 17, 2959-2967.	1.3	4
2902	Polymerization-Enhanced Photocatalysis for the Functionalization of C(sp ³)–H Bonds. ACS Catalysis, 2022, 12, 126-134.	5.5	43
2903	Hydrogermylation of Alkenes via Organophotoredox-Initiated HAT Catalysis. Organic Letters, 2022, 24, 406-409.	2.4	25
2904	Conditionally Activatable Photoredox Catalysis in Living Systems. Journal of the American Chemical Society, 2022, 144, 163-173.	6.6	69
2905	Lead-free hybrid perovskite photocatalysts: surface engineering, charge-carrier behaviors, and solar-driven applications. Journal of Materials Chemistry A, 2022, 10, 12296-12316.	5.2	29

#	Article	IF	Citations
2906	A cobalt covalent organic framework: a dual-functional atomic-level catalyst for visible-light-driven Câ€"H annulation of amides with alkynes. Journal of Materials Chemistry A, 2022, 10, 11514-11523.	5.2	17
2907	Photocatalytic C(sp ³) radical generation <i>via</i> C–H, C–C, and C–X bond cleavage. Chemical Science, 2022, 13, 5465-5504.	3.7	45
2908	Selectfluor-mediated construction of 3-arylselenenyl and 3,4-bisarylselenenyl spiro[4.5]trienones <i>via</i> cascade annulation of <i>N</i> phenylpropiolamides with diselenides. New Journal of Chemistry, 2022, 46, 9451-9460.	1.4	9
2909	Photoinduced aerobic C–S borylation of aryl sulfides. Organic Chemistry Frontiers, 2022, 9, 3034-3038.	2.3	6
2910	Photochemical Synthesis of Aroylated Heterocycles under Catalyst and Additive Free Conditions. Chinese Journal of Organic Chemistry, 2022, 42, 923.	0.6	10
2911	Recent progress in rare-earth metal-catalyzed sp ² and sp ³ C–H functionalization to construct C–C and C–heteroelement bonds. Organic Chemistry Frontiers, 2022, 9, 3102-3141.	2.3	20
2912	Sustainable preparation of photoactive indole-fused tetracyclic molecules: a new class of organophotocatalysts. Green Chemistry, 2022, 24, 3985-3992.	4.6	12
2913	Photocatalytic generation of ligated boryl radicals from tertiary amine-borane complexes: An emerging tool in organic synthesis. Chem Catalysis, 2022, 2, 957-966.	2.9	12
2914	Study on Performance and Mechanism of the Ball-Milling-Driven Piezoelectrochemical Effect on Catalytic Oxidation of Toluene in the Air Condition. ACS Sustainable Chemistry and Engineering, 2022, 10, 5129-5137.	3.2	7
2915	A Photoredox Nozakiâ€Hiyama Reaction Catalytic in Chromium. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
2916	Photon Upconversion Systems Based on Triplet–Triplet Annihilation as Photosensitizers for Chemical Transformations. Topics in Current Chemistry, 2022, 380, 23.	3.0	21
2917	Photochemical Nozaki–Hiyama–Kishi Coupling Enabled by Excited Hantzsch Ester. Organic Letters, 2022, , .	2.4	7
2918	Visible Light Driven CO ₂ Insertion from Phenylacetylene to Phenylpropiolic Acid Using Soft-Oxometalates. Journal of Molecular and Engineering Materials, 0, , .	0.9	0
2919	Visible Lightâ€Promoted, Photocatalystâ€Free C(sp ²)â^H Bond Functionalization of Indolizines <i>via</i> EDA Complexes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
2920	Visible Lightâ€driven Metalâ€free C–H Functionalization: Access to New Bioactive Tetrahydroisoquinolineâ€Butenolide Hybrids via Domino Amine Oxidation/Vinylogous Mannich Reaction. ChemPhotoChem, 0, , .	1.5	1
2921	Photocharging of Semiconductor Materials: Database, Quantitative Data Analysis, and Application in Organic Synthesis. Advanced Energy Materials, 2022, 12, .	10.2	17
2922	Light as a Tool in Organic Photocatalysis: Multiâ€Photon Excitation and Chromoselective Reactions. European Journal of Organic Chemistry, 2022, 2022, .	1.2	15
2925	Visible-Light-Promoted [3 + 2] Cyclization of Chalcones with 2-Mercaptobenzimidazoles: A Protocol for the Synthesis of Imidazo[2,1- <i>b</i>)thiazoles. Organic Letters, 2022, 24, 3149-3154.	2.4	20

#	Article	IF	CITATIONS
2926	Direct Photoexcitation of Xanthate Anions for Deoxygenative Alkenylation of Alcohols. Organic Letters, 2022, 24, 3199-3204.	2.4	21
2927	Visible-light photocatalytic metal-free multicomponent Ugi-like chemistry. Green Chemistry, 2022, 24, 3993-4003.	4.6	8
2928	Photoexcited sulfenylation of C(sp ³)–H bonds in amides using thiosulfonates. Organic and Biomolecular Chemistry, 2022, 20, 3902-3906.	1.5	4
2929	Mediated Electron Transfer in Electrosynthesis: Concepts, Applications, and Recent Influences from Photoredox Catalysis. RSC Green Chemistry, 2022, , 119-153.	0.0	1
2930	Visible light-driven $[3 + 3]$ annulation reaction of $2 < i > H < /i > -azirines with Huisgen zwitterions and synthesis of 1,2,4-triazines. Organic Chemistry Frontiers, 2022, 9, 3342-3347.$	2.3	11
2931	Flavin catalyzed desulfurization of peptides and proteins in aqueous media. Organic and Biomolecular Chemistry, 2022, , .	1.5	4
2932	State of knowledge in photoredox-catalysed direct difluoromethylation. Organic Chemistry Frontiers, 2022, 9, 3598-3623.	2.3	39
2933	Chapter 14. Photoredox Chemistries of Cyclometalated Ir(iii) Complexes. RSC Green Chemistry, 2022, , 331-358.	0.0	0
2934	Regioselective C-3-alkylation of quinoxalin-2(1 <i>H</i>)-ones <i>via</i> Câ€"N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis. RSC Advances, 2022, 12, 12235-12241.	1.7	6
2935	Photochemical aerobic oxidation of sulfides to sulfoxides: the crucial role of wavelength irradiation. Green Chemistry, 2022, 24, 4108-4118.	4.6	32
2936	Construction of Diaminobenzoquinone Imines through Radical Coupling of Aminophenols with Amine under UV-Light. Chinese Journal of Organic Chemistry, 2022, 42, 1210.	0.6	0
2937	Visible-light-mediated defluorinative cyclization of α-fluoro-β-enamino esters catalyzed by 4-CzIPN. Organic Chemistry Frontiers, 2022, 9, 3499-3505.	2.3	4
2938	Photochemical regioselective C–H arylation of imidazo[1,2- <i>a</i>) pyridine derivatives using chlorophyll as a biocatalyst and diazonium salts. New Journal of Chemistry, 2022, 46, 10814-10819.	1.4	10
2939	Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chemical Science, 2022, 13, 5973-5981.	3.7	26
2940	High-performance three-coordinated organoboron emitters for organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 9165-9191.	2.7	10
2941	Customising excitation properties of polycyclic aromatic hydrocarbons by rational positional heteroatom doping: the <i>peri</i> -xanthenoxanthene (PXX) case. Chemical Science, 0, , .	3.7	5
2942	Enantioselective [2 + 2] photocycloaddition of quinolone using a $<$ i> $<$ C $<$ sub>1-symmetric chiral phosphoric acid as a visible-light photocatalyst. Organic and Biomolecular Chemistry, 2022, , .	1.5	5
2943	Metal-free deoxygenative coupling of alcohol-derived benzoates and pyridines for small molecules and DNA-encoded libraries synthesis. Chemical Science, 2022, 13, 6982-6989.	3.7	19

#	Article	IF	CITATIONS
2944	Photocatalytic access to aromatic keto sulfonyl fluorides from vinyl fluorosulfates. Organic Chemistry Frontiers, 2022, 9, 3540-3545.	2.3	12
2945	Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. Arabian Journal of Chemistry, 2022, 15, 103922.	2.3	10
2946	Photoactivation Properties of Self-n-Doped Perylene Diimides: Concentration-dependent Radical Anion and Dianion Formation. ACS Materials Au, 2022, 2, 482-488.	2.6	3
2947	Synergistic Approach for Decarboxylative <i>Ortho</i> Câ^H Aroylation of 2â€Arylâ€pyrido[1,2â€a]pyrimidinâ€4â€ones and Thiazolopyrimidinones by Merging Palladium Catalysis with Photocatalysis. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
2948	Visibleâ€Lightâ€Induced Siteâ€Selective Difunctionalization of 2,3â€Dihydrofuran with Quinoxalinâ€2(1 <i>H</i>)â€ones and Peroxides. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
2949	Electrochemical Reduction of Aldehydes and Ketones for the Synthesis of Alcohols and Diols under Ambient Conditions. Synlett, 2022, 33, 1302-1308.	1.0	6
2950	Gold nanocluster triggering near-infrared photocatalytic oxidations. Gold Bulletin, 0, , 1.	1.1	1
2951	Visible light-promoted synthesis of 2-aryl-(3-organoselanyl)thieno[2,3- <i>b</i>) pyridines. Green Chemistry Letters and Reviews, 2022, 15, 373-382.	2.1	7
2952	Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nature Communications, 2022, 13, 2288.	5.8	32
2953	Kinetic Rationalization of Nonlinear Effects in Asymmetric Catalytic Cascade Reactions under Curtin–Hammett Conditions. ACS Catalysis, 2022, 12, 5776-5785.	5.5	11
2954	Visible light induced oxidative coupling of purines with arenes. Chinese Chemical Letters, 2023, 34, 107467.	4.8	5
2955	Weak BrÃ, nsted base-promoted photoredox catalysis for C H alkylation of heteroarenes mediated by triplet excited diaryl ketone. Tetrahedron Letters, 2022, 99, 153846.	0.7	1
2956	Organic photoredox catalysts for CO2 reduction: Driving discovery with genetic algorithms. Journal of Chemical Physics, 2022, 156, 184109.	1.2	4
2957	Visibleâ€Lightâ€Induced [2+2+1] Dearomative Cascade Cyclization of Indole/Furan Alkynes to Synthesize Sulfonyl Polycycles. Advanced Synthesis and Catalysis, 2022, 364, 2197-2204.	2.1	5
2958	Visibleâ€Lightâ€Promoted Synthesis of Arylthiopyrimidines through Oxidative Coupling of Pyrimidine Disulfides with Arylhydrazines. ChemistrySelect, 2022, 7, .	0.7	1
2959	Transition orbital projection approach for excited state tracking. Journal of Chemical Physics, 2022, 156, .	1.2	2
2960	Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Advanced Synthesis and Catalysis, 2022, 364, 1643-1665.	2.1	28
2961	The development of FriedlÅ r der heteroannulation through a single electron transfer and energy transfer pathway using methylene blue (MB+). Scientific Reports, 2022, 12, 7253.	1.6	18

#	Article	IF	CITATIONS
2962	<scp>Visibleâ€Light Photoredoxâ€Catalyzed</scp> Hydrodecarboxylation and Deuterodecarboxylation of Fatty Acids. Chinese Journal of Chemistry, 2022, 40, 1903-1908.	2.6	12
2963	Eosin Y-Containing Metal–Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C–H Bonds. Inorganic Chemistry, 2022, 61, 7256-7265.	1.9	8
2964	Evidence and Governing Factors of the Radical-Ion Photoredox Catalysis. ACS Catalysis, 2022, 12, 6047-6059.	5.5	27
2965	Visible Lightâ€Mediated Manipulation of 1, <i>n</i> â€Enynes in Organic Synthesis. ChemCatChem, 2022, 14, .	1.8	13
2966	Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding – Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry - A European Journal, 2022, 28, .	1.7	11
2967	Accelerated Direct Hydroxylation of Aryl Chlorides with Water to Phenols <i>via</i> the Proximity Effect in a Heterogeneous Metallaphotocatalyst. ACS Catalysis, 2022, 12, 6068-6080.	5.5	25
2968	Visible-Light-Induced Organophotocatalytic Difunctionallization: Open-Air Hydroxysulfurization of Aryl Alkenes with Aryl Thiols. Journal of Organic Chemistry, 2022, , .	1.7	6
2969	Î-C–H Halogenation Reactions Enabled by a Nitrogen-Centered Radical Precursor. Organic Letters, 2022, 24, 3652-3656.	2.4	7
2970	Tunable Photocatalytic Two-Electron Shuttle between Paired Redox Sites on Halide Perovskite Nanocrystals. ACS Catalysis, 2022, 12, 5903-5910.	5.5	13
2971	Photogenerated Azido Radical Mediated Oxidation: Access to Carbonyl Functionality from Alcohols, Alkylarenes, and Olefins via Organophotoredox. Advanced Synthesis and Catalysis, 2022, 364, 2032-2039.	2.1	7
2972	Photoinitiated multicomponent cascade reaction of Nheteroarenes with unactivated alkenes and trimethylsilyl azide. Molecular Catalysis, 2022, 524, 112330.	1.0	7
2973	Radical Deoxyfunctionalisation Strategies**. European Journal of Organic Chemistry, 2022, 2022, .	1.2	15
2974	Activation Modes in Asymmetric Anion-Binding Catalysis. Synthesis, 2022, 54, 3907-3927.	1.2	11
2975	Strategies for accessing photosensitizers with extreme redox potentials. Chemical Physics Reviews, 2022, 3, .	2.6	21
2976	Dibromorhodamineâ€based photoredox catalysis under visible light for the colorimetric detection of Hg(<scp>II</scp>) ion. Bulletin of the Korean Chemical Society, 0, , .	1.0	0
2977	Organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover. Nature Communications, 2022, 13, 2684.	5.8	18
2978	An electron-deficient MOF as an efficient electron-transfer catalyst for selective oxidative carbon–carbon coupling of 2,6-di- <i>tert</i> -butylphenol. Dalton Transactions, 2022, 51, 8234-8239.	1.6	3
2979	Sustainable Ruthenium(II)-Catalyzed C–H Activations in and on H ₂ 0. ACS Sustainable Chemistry and Engineering, 2022, 10, 6871-6888.	3.2	20

#	ARTICLE	IF	CITATIONS
2980	Oxygenâ€Tolerant Photoredox Catalysis Triggers Nitric Oxide Release for Antibacterial Applications. Angewandte Chemie, 2022, 134, .	1.6	2
2981	Oxygenâ€Tolerant Photoredox Catalysis Triggers Nitric Oxide Release for Antibacterial Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
2982	Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
2983	Organophotoredox-catalyzed cyanoalkylation of 1,4-quinones. Organic and Biomolecular Chemistry, 2022, 20, 4534-4538.	1.5	5
2984	Multicomponent reactions in the synthesis of organochalcogen compounds. , 2022, , 3-30.		0
2985	Visible-light-driven regioselective carbocarboxylation of 1,3-dienes with organic halides and CO ₂ . Green Chemistry, 2022, 24, 6100-6107.	4.6	16
2986	Advances in photochemical seleno-functionalization of (hetero)arenes., 2022,, 123-145.		0
2987	Energy transfer (EnT) photocatalysis enabled by gold-N-heterocyclic carbene (NHC) complexes. Chemical Science, 2022, 13, 6852-6857.	3.7	18
2988	Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	1
2989	Oxidation Potential Gap (\hat{l} " <i>>E</i> _{ox}): The Hidden Parameter in Redox Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
2990	Oxidation Potential Gap (\hat{l} "Eox): The Hidden Parameter in Redox Chemistry. Angewandte Chemie, 0, , .	1.6	0
2991	Demetallation of organometallic and metal-mediated reactions. Innovation(China), 2022, 3, 100262.	5.2	1
2992	Visible light-induced PPh2Cy/CsI-promoted cascade radical decarboxylative/cyclization of redox-active esters with acrylamides. Tetrahedron, 2022, , 132849.	1.0	6
2993	Pyrylium-based porous organic polymers via Knoevenagel condensation for efficient visible-light-driven heterogeneous photodegradation. Chinese Chemical Letters, 2023, 34, 107541.	4.8	8
2994	ART─An Amino Radical Transfer Strategy for C(sp ²)–C(sp ³) Coupling Reactions, Enabled by Dual Photo/Nickel Catalysis. Journal of the American Chemical Society, 2022, 144, 9997-10005.	6.6	14
2995	Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coordination Chemistry Reviews, 2022, 467, 214599.	9.5	42
2996	Photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN: access to antifungal active tetrasubstituted pyrazines. Chemical Communications, 2022, 58, 7200-7203.	2.2	3
2997	Recent Advances on <i>α</i> àêAzidoketones and Esters in the Synthesis of <i>N</i> â€Heterocycles. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	9

#	Article	IF	Citations
2998	Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
2999	Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie, 2022, 134, .	1.6	0
3000	Solution-processable microporous polymer platform for heterogenization of diverse photoredox catalysts. Nature Communications, 2022, 13, .	5.8	11
3001	Recent Advances in Lightâ€Induced Carboxylation of Organic (Pseudo)Halides with CO ₂ . Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
3002	Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles. Science China Chemistry, 2022, 65, 1330-1337.	4.2	1
3003	Chromophoreâ€inspired Design of Pyridiniumâ€based Metalâ€Organic Polymers for Dual Photoredox Catalysis. Angewandte Chemie, 0, , .	1.6	0
3004	Photoinduced Divergent Deaminative Borylation and Hydrodeamination of Primary Aromatic Amines. Organic Letters, 2022, 24, 4281-4285.	2.4	11
3005	Chromophoreâ€Inspired Design of Pyridiniumâ€Based Metal–Organic Polymers for Dual Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
3006	Synthesis of selenated γâ€lactones via photoredoxâ€catalyzed selenylation and ring closure of alkenoic acids with diselenides. Bulletin of the Korean Chemical Society, 2022, 43, 941-945.	1.0	7
3007	A novel synthetic method of 1,1,4,4-tetramethyl-2-tetrazene (TMTZ) via photocatalytic reaction. FirePhysChem, 2022, 2, 267-271.	1.5	3
3008	Regioselective Photocatalytic Dialkylation/Cyclization Sequence of 3â€Azaâ€1,5â€dienes: Access to 3,4â€Dialkylated 4â€Pyrrolinâ€2â€ones. Advanced Synthesis and Catalysis, 2022, 364, 2163-2168.	2.1	12
3009	Eosin-Y/Cu(OAc) ₂ -catalyzed aerobic oxidative coupling reactions of glycine esters in the dark. Organic and Biomolecular Chemistry, 2022, 20, 5387-5392.	1.5	1
3010	Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts. Chemical Communications, 2022, 58, 7850-7873.	2.2	14
3011	Ni single atoms on carbon nitride for visible-light-promoted full heterogeneous dual catalysis. Chemical Science, 2022, 13, 8536-8542.	3.7	26
3012	Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization. Polymer Chemistry, 2022, 13, 3892-3903.	1.9	5
3013	Autocatalytic aerobic <i>ipso</i> -hydroxylation of arylboronic acid with Hantzsch ester and Hantzsch pyridine. Organic Chemistry Frontiers, 2022, 9, 4091-4096.	2.3	6
3014	Direct synthesis of triphenylamine-based ordered mesoporous polymers for metal-free photocatalytic aerobic oxidation. Journal of Materials Chemistry A, 2022, 10, 13978-13986.	5.2	9
3018	Photochemical and electrochemical regioselective cross-dehydrogenative C(sp ²)–H sulfenylation and selenylation of substituted benzo[<i>a</i>)phenazin-5-ols. New Journal of Chemistry, 2022, 46, 13483-13497.	1.4	12

#	Article	IF	CITATIONS
3019	Bridged eosin Y: a visible and near-infrared photoredox catalyst. Chemical Communications, 2022, 58, 7825-7828.	2.2	6
3021	Encapsulating electron-deficient dyes into metal–organic capsules to achieve high reduction potentials. Dalton Transactions, 2022, 51, 10860-10865.	1.6	6
3022	Synergistic Effect on Covalent Triazine Framework Tailored for Heterogeneous Photocatalytic Metal-Free C-Br and C-Cl Activation. SSRN Electronic Journal, 0, , .	0.4	0
3023	Solventâ€Dependent Photochemistry for Diverse and Selective Câ^'H Functionalization of 2â€ <i>tert</i> à€Butylâ€1,4â€Benzoquinones. ChemPhotoChem, 2022, 6, .	1.5	1
3024	Photoredox Metal-Free Allylic Defluorinative Silylation of \hat{l}_{\pm} -Trifluoromethylstyrenes with Hydrosilanes. Organic Letters, 2022, 24, 4286-4291.	2.4	28
3025	Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. Jacs Au, 2022, 2, 1488-1503.	3.6	44
3026	A novel type of radical-addition-induced \hat{l}^2 -fragmentation and ensuing remote functionalization. CheM, 2022, 8, 2245-2259.	5.8	14
3027	Visible-Light-Catalyzed Radical–Radical Cross-Coupling Reaction of Benzyl Trifluoroborates and Carbonyl Compounds to Sterically Hindered Alcohols. Organic Letters, 2022, 24, 4258-4263.	2.4	13
3028	Ketone–Olefin Coupling of Aliphatic and Aromatic Carbonyls Catalyzed by Excited-State Acridine Radicals. Journal of the American Chemical Society, 2022, 144, 11888-11896.	6.6	34
3029	Direct Utilization of Near-Infrared Light for Photooxidation with a Metal-Free Photocatalyst. Molecules, 2022, 27, 4047.	1.7	4
3030	Highly Diastereoselective Synthesis of \hat{I}^3 -Lactams Enabled by Photoinduced Deaminative [3 + 2] Annulation Reaction. Organic Letters, 2022, 24, 4365-4370.	2.4	16
3031	Visible-Light Photoredox Catalysis in Water. Journal of Organic Chemistry, 2023, 88, 6284-6293.	1.7	27
3032	A Pyridine-Based Donor–Acceptor Molecule: A Highly Reactive Organophotocatalyst That Enables the Reductive Cleavage of C–Br Bonds through Halogen Bonding. ACS Catalysis, 2022, 12, 7843-7849.	5.5	20
3033	The Impact of Boron Hybridisation on Photocatalytic Processes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
3034	Anthraquinone-Based Metal–Organic Frameworks as a Bifunctional Photocatalyst for C–H Activation. Inorganic Chemistry, 2022, 61, 9493-9503.	1.9	19
3035	Light-Induced Ultrafast Molecular Dynamics: From Photochemistry to Optochemistry. Journal of Physical Chemistry Letters, 2022, 13, 5881-5893.	2.1	8
3036	Dual Metallaphotoredoxâ€Catalyzed Directed C(sp ²)â^'H Functionalization: Access to Câ^'C/Câ€Heteroatom Bonds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
3037	The Impact of Boron Hybridisation on Photocatalytic Processes. Angewandte Chemie, 0, , .	1.6	2

#	ARTICLE	IF	CITATIONS
3038	Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2 + 2] cycloaddition and mechanistic insight. Chinese Chemical Letters, 2023, 34, 107624.	4.8	6
3039	Direct Câ^'H Trifluoromethylation of (Hetero)Arenes in Water Enabled by Organic Photoredoxâ€Active Amphiphilic Nanoparticles. Chemistry - A European Journal, 2022, 28, .	1.7	10
3040	Visible-Light-Induced 1,6-Enynes Triggered C–Br Bond Homolysis of Bromomalonates: Solvent-Controlled Divergent Synthesis of Carbonylated and Hydroxylated Benzofurans. Journal of Organic Chemistry, 2022, 87, 9250-9258.	1.7	14
3041	Acetic Acid-Promoted Photoredox Catalyzed Trifluoromethylation of Aldehyde Hydrazones. Journal of Fluorine Chemistry, 2022, , 110003.	0.9	0
3042	An immobilized iron-oxides catalytic platform for photocatalysis and photosynthesis: Visible light induced hydroxylation reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129428.	2.3	3
3043	Highly efficient decontamination of tetracycline and pathogen by a natural product-derived Emodin/HAp photocatalyst. Chemosphere, 2022, 305, 135401.	4.2	9
3044	Automatic measurement and analysis of kinetics for photocatalytic reactions in continuous microflow. Chemical Engineering Journal, 2022, 447, 137546.	6.6	0
3045	Integrating benzofuran and heteroradialene into donor-acceptor covalent organic frameworks for photocatalytic construction of multi-substituted olefins. Applied Catalysis B: Environmental, 2022, 316, 121630.	10.8	20
3046	Redox-neutral access to 3,3′-disubstituted oxindoles <i>via</i> radical coupling reactions. Organic Chemistry Frontiers, 2022, 9, 4164-4170.	2.3	3
3047	Near-Infrared Photocatalytic Oxidation Functionalization Mediated by Gold Nanoclusters. Chinese Journal of Organic Chemistry, 2022, 42, 1565.	0.6	4
3048	4czipn-Based Porous Organic Polymers for Visible-Light-Driven Organic Transformations in Water Under Aerobic Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
3049	Redox activated amines in the organophotoinduced alkylation of coumarins. Organic and Biomolecular Chemistry, 2022, 20, 5716-5720.	1.5	4
3050	Photoinduced, copper-catalysed direct perfluoroalkylation of heteroarenes. Chemical Communications, 2022, 58, 9080-9083.	2.2	10
3051	A sustainable photochemical aerobic sulfide oxidation: access to sulforaphane and modafinil. Organic and Biomolecular Chemistry, 2022, 20, 5836-5844.	1.5	12
3052	Visible Light-Induced Hydroxyalkylation of Heteroarenes with Aliphatic Alcohols. Chinese Journal of Organic Chemistry, 2022, 42, 1493.	0.6	2
3053	Rapid Construction of Acridines Via Bf3•Et2o Promoted Cyclization of 2â^'Phenylamino Benzophenones. SSRN Electronic Journal, 0, , .	0.4	0
3054	Urushiol derivatives as biomass-based photocatalysts for the transition-metal-free synthesis of 1,2-amino alcohols. Green Chemistry, 2022, 24, 5764-5769.	4.6	11
3055	Expedient Ni(OTf) ₂ /visible light photoredox-catalyzed annulation of donor–acceptor cyclopropanes with cyclic secondary amines. Chemical Communications, 2022, 58, 8670-8673.	2.2	6

#	ARTICLE	IF	CITATIONS
3056	Photocatalyzed decarboxylation of oxamic acids under near-infrared conditions. Chemical Communications, 2022, 58, 8802-8805.	2.2	9
3057	Developing highly reducing conjugated porous polymer: a metal-free and recyclable approach with superior performance for pinacol C–C coupling under visible light. Journal of Materials Chemistry A, 2022, 10, 16578-16584.	5.2	15
3058	Visible Light-Induced Metal-Free Benzylation of Quinones via Cross Dehydrogenation Coupling Reaction. Chinese Journal of Organic Chemistry, 2022, 42, 1443.	0.6	3
3059	Unveiling the Synthetic Potential of 1,3,5-Tri(10 <i>H</i> -phenothiazin-10-yl)benzene-Based Optoelectronic Material: A Metal-Free and Recyclable Photocatalyst for Sequential Functionalization of C(sp ²)â€"H Bonds. ACS Applied Materials & Description of C(sp ^{2022, 14, 30962-30968.}	4.0	7
3060	Two-in-one metallaphotoredox cross-couplings enabled by a photoactive ligand. CheM, 2022, 8, 2419-2431.	5.8	17
3061	CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. Journal of the American Chemical Society, 2022, 144, 12229-12246.	6.6	35
3062	Alternative Uses of Luminescent Solar Concentrators. Nanoenergy Advances, 2022, 2, 222-240.	3.6	7
3063	New Role for Photoexcited Na2 Eosin Y via the Direct Hydrogen Atom Transfer Process in Photochemical Visible-Light-Induced Synthesis of 2-Amino-4H-Chromene Scaffolds Under Air Atmosphere. Frontiers in Chemistry, 0, 10, .	1.8	6
3064	Metal-Free Oxidative Annulation of Phenols and Amines: A General Synthesis of Benzoxazoles. Journal of Organic Chemistry, 2022, 87, 9112-9127.	1.7	5
3065	Photocatalytic Chemodivergent Synthesis of <i>α</i> à€ <i>gem</i> â€Dihalovinyl Ketones and Chromenâ€2â€On from Monoalkynes. Advanced Synthesis and Catalysis, 2022, 364, 2666-2672.	es 2.1	10
3066	Homolytic Nâ^S Bond Cleavage in Vinyl Triflimides Enabled by Triplet–Triplet Energy Transfer. Chemistry - A European Journal, 2022, 28, .	1.7	4
3067	Using Lifetime and Quenching Rate Constant to Determine Optimal Quencher Concentration. ACS Omega, 2022, 7, 25532-25536.	1.6	3
3068	Construction of Benzocyclobutenes Enabled by Visibleâ€Lightâ€Induced Triplet Biradical Atom Transfer of Olefins. Angewandte Chemie, 2022, 134, .	1.6	2
3069	Visible-Light-Induced, Palladium-Catalyzed Annulation of 1,3-Dienes to Construct Vinyl <i>N</i> -Heterocycles. Organic Letters, 2022, 24, 5407-5411.	2.4	13
3070	Visible Lightâ€induced Decarboxylative Alkylations Enabled by Electron Donorâ€Acceptor Complex. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	7
3071	Moving Beyond Cyanoarene Thermally Activated Delayed Fluorescence Compounds as Photocatalysts: An Assessment of the Performance of a Pyrimidyl Sulfone Photocatalyst in Comparison to 4CzIPN. Journal of Organic Chemistry, 2023, 88, 6364-6373.	1.7	16
3072	Construction of Benzocyclobutenes Enabled by Visibleâ€Lightâ€Induced Triplet Biradical Atom Transfer of Olefins. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
3073	Direct C(<i>sp</i>)â€"H/Siâ€"H Cross-Coupling via Copper Salts Photocatalysis. Organic Letters, 2022, 24, 5192-5196.	2.4	10

#	Article	IF	CITATIONS
3074	Visible Light Promoted Metalâ€Free Sustainable Reduction of αâ€Alkylidene Oxindoles/Succinimides. Asian Journal of Organic Chemistry, 0, , .	1.3	4
3075	Photocatalytic Activity of Triphenylphosphine and Potassium Iodide System in the Decarboxylative Alkylation of 3â€Cyanochromones. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
3076	Mechanochemical Divergent Syntheses of Oxindoles and αâ€Arylacylamides via Controllable Construction of Câ^'C and Câ^'N Bonds by Copper and Piezoelectric Materials. Angewandte Chemie, 0, , .	1.6	2
3077	Stereoselective Cyclization Cascade of Dihydroquinoxalinones by Visible-Light Photocatalysis: Access to the Polycyclic Quinoxalin-2(1 <i>H</i>)-ones. Organic Letters, 2022, 24, 5155-5160.	2.4	4
3078	Visible-Light-Driven α-Aminoalkyl Radical-Mediated C(sp ³)–C(sp) Cross-Coupling of lodoalkanes and Alkynyl Bromides. Organic Letters, 2022, 24, 5186-5191.	2.4	9
3079	An efficient free radical ester synthesis through a visible light-induced hydrogen atom transfer process. Tetrahedron Letters, 2022, 104, 154021.	0.7	3
3080	Decarbonylative C3 $\hat{a} \in Alkylation$ of Quinoxalin $\hat{a} \in 2(1 < i > H < /i >) \hat{a} \in O$ nes with Aliphatic Aldehydes via Photocatalysis. Advanced Synthesis and Catalysis, 2022, 364, 2660-2665.	2.1	12
3081	Methylene Blue as a Photo-Redox Catalyst: The Development Synthesis of Tetrahydrobenzo[b]pyran Scaffolds via a Single-Electron Transfer/Energy Transfer. Frontiers in Chemistry, 0, 10, .	1.8	2
3082	Photoinduced Dynamic Radical Processes for Isomerizations, Deracemizations, and Dynamic Kinetic Resolutions. ACS Catalysis, 2022, 12, 8911-8924.	5.5	17
3083	Mechanochemical Divergent Syntheses of Oxindoles and αâ€Arylacylamides via Controllable Construction of Câ^'C and Câ^'N Bonds by Copper and Piezoelectric Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
3084	Development of controlled reactions using an element-based design of azaporphyrinoid materials. Journal of Porphyrins and Phthalocyanines, 2022, 26, 790-806.	0.4	3
3085	Alternatives to Iridium: A Polyaza [7] helicene as a Strongly Reductive Visible Light Photoredox Catalyst. ACS Organic & Inorganic Au, 2022, 2, 415-421.	1.9	4
3086	Radial Type Ring Opening of Sulfonium Salts with Dichalcogenides by Visible Light and Copper Catalysis. Organic Letters, 2022, 24, 5391-5396.	2.4	11
3087	Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions. Journal of the American Chemical Society, 2022, 144, 12567-12583.	6.6	101
3088	The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science. ChemSusChem, 2022, 15, .	3.6	19
3089	Visible light-induced perfluoroalkylative carbonylation of unactivated alkenes. Journal of Catalysis, 2022, 413, 214-220.	3.1	14
3090	The development of knoevenagel-michael cyclocondensation through a single-electron transfer (SET)/energy transfer (EnT) pathway in the use of methylene blue (MB+) as a photo-redox catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 432, 114120.	2.0	1
3091	Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coordination Chemistry Reviews, 2022, 470, 214698.	9.5	35

#	Article	IF	CITATIONS
3092	Visible-Light-Promoted Fe(III)-Catalyzed N–H Alkylation of Amides and <i>N</i> Heterocycles. Journal of Organic Chemistry, 2022, 87, 9797-9805.	1.7	9
3093	Photocatalyst-Incorporated Cross-Linked Porous Polymer Networks. Industrial & Engineering Chemistry Research, 2022, 61, 10616-10630.	1.8	7
3094	Rapid Construction of Acridines via BF3•Et2O Promoted Cyclization of 2â^'Phenylamino Benzophenones. Tetrahedron Letters, 2022, , 154044.	0.7	1
3095	Electrophotochemical Ce-Catalyzed Ring-Opening Functionalization of Cycloalkanols under Redox-Neutral Conditions: Scope and Mechanism. Journal of the American Chemical Society, 2022, 144, 13895-13902.	6.6	41
3096	Oxidative lactonization of C(sp3)-H bond in methyl aromatic alcohols enabled by proton-coupled electron transfer. Science China Chemistry, 2022, 65, 1526-1531.	4.2	6
3097	Radical Termination via β-Scission Enables Photoenzymatic Allylic Alkylation Using "Ene―Reductases. ACS Catalysis, 2022, 12, 9801-9805.	5.5	15
3098	Light-promoted oxidation of aldehydes to carboxylic acids under aerobic and photocatalyst-free conditions. Green Chemistry, 2022, 24, 6224-6231.	4.6	25
3099	Visible-Light-Induced Decarboxylative Alkynylation of Carboxylic in Batch and Continuous Flow. SSRN Electronic Journal, 0, , .	0.4	0
3100	Recent progress in organophotoredox reaction. Organic and Biomolecular Chemistry, 2022, 20, 6721-6740.	1.5	19
3101	4,7-Diarylbenzo[<i>c</i>][1,2,5]thiadiazoles as fluorophores and visible light organophotocatalysts. Organic Chemistry Frontiers, 2022, 9, 5473-5484.	2.3	6
3102	Subphthalocyanine capsules: molecular reactors for photoredox transformations of fullerenes. Chemical Science, 2022, 13, 9249-9255.	3.7	17
3103	Photoredox-catalyzed coupling of acyl oxime acetates with thiophenols to give arylthioesters in water at room temperature. Green Chemistry, 2022, 24, 6849-6853.	4.6	7
3104	Photoinduced C–O bond cleavage for copper-catalyzed allenyl radical cyanation. Organic Chemistry Frontiers, 2022, 9, 5259-5263.	2.3	2
3105	Organic acid catalysed Minisci-type arylation of heterocycles with aryl acyl peroxides. Organic and Biomolecular Chemistry, 2022, 20, 6619-6629.	1.5	3
3106	Stern–Volmer analysis of photocatalyst fluorescence quenching within hollow-core photonic crystal fibre microreactors. Chemical Communications, 2022, 58, 10548-10551.	2.2	8
3107	Synthesis of Cageâ€Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation. Chemistry - A European Journal, 2022, 28, .	1.7	1
3108	Synthesis of \hat{I}^2 -Thiolated- \hat{I}_\pm -arylated Ketones Enabled by Photoredox and <i>N</i> -Heterocyclic Carbene-Catalyzed Radical Relay of Alkenes with Disulfides and Aldehydes. Organic Letters, 2022, 24, 5519-5524.	2.4	23
3109	Desulfonylative Coupling of Alkylsulfones with <i>gem-</i> Photoredox Catalysis. ACS Catalysis, 2022, 12, 9526-9532.	5.5	13

#	Article	IF	CITATIONS
3110	Thermally Activated Delayed Fluorescence Sensitizers As Organic and Green Alternatives in Energy-Transfer Photocatalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 9665-9678.	3.2	16
3111	Oxalamide/Amide Ligands: Enhanced and Copper-Catalyzed C–N Cross-Coupling for Triarylamine Synthesis. Organic Letters, 2022, 24, 5817-5824.	2.4	8
3112	Cluster Preface: Organic Photoredox Catalysis in Synthesis – Honoring Professor Shunichi Fukuzumi's 70th Birthday. Synlett, 2022, 33, 1135-1136.	1.0	0
3113	Visibleâ€Lightâ€Curable Acrylic Resins toward UVâ€Lightâ€Blocking Adhesives for Foldable Displays. Advanced Materials, 2023, 35, .	11.1	17
3114	One-Step Visible Light Photoredox-Catalyzed Purine C8 Alkoxylation with Alcohol. Journal of Organic Chemistry, 2022, 87, 11558-11564.	1.7	3
3115	Photoinduced Site-Selective Functionalization of Aliphatic C–H Bonds by Pyridine ⟨i⟩N⟨/i⟩-oxide Based HAT Catalysts. ACS Catalysis, 2022, 12, 10441-10448.	5.5	24
3116	Photochemical Synthesis of Succinic Ester-Containing Phenanthridines from Diazo Compounds as 1,4-Dicarbonyl Precursors. Organic Letters, 2022, 24, 6018-6023.	2.4	31
3117	Hypervalent Iodine Reagents Enable C–H Alkynylation with Iminophenylacetic Acids via Alkoxyl Radicals. Organic Letters, 2022, 24, 5951-5956.	2.4	8
3118	Access to Fully Substituted Dihydropyrimidines via Dual Copper/Photoredox atalyzed Domino Annulation of Oxime Esters and Imines. Advanced Synthesis and Catalysis, 2022, 364, 3173-3178.	2.1	3
3119	A versatile catalyst-free redox system mediated by carbon dioxide radical and dimsyl anions. Cell Reports Physical Science, 2022, 3, 100994.	2.8	10
3120	Rose Bengal Immobilized on Cellulose Paper for Sustainable Visibleâ€Light Photocatalysis. ChemPlusChem, 0, , .	1.3	1
3121	Synthesis of Diarylaminoacridinium Photocatalysts by Halogenâ€Metal Exchange Combined with Directed <i>ortho</i> Metalations. Advanced Synthesis and Catalysis, 0, , .	2.1	0
3122	Ligandâ€ŧoâ€Metal Charge Transfer (LMCT) Photochemistry at 3dâ€Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem, 2022, 14, .	1.8	82
3123	Gram-Scale Synthesis of the N-Phenyl Phenothiazine Photocatalyst by Benzyne Addition. Canadian Journal of Chemistry, 0, , .	0.6	0
3124	Highly congested spiro-compounds via photoredox-mediated dearomative annulation cascade. Communications Chemistry, 2022, 5, .	2.0	7
3125	Photoredoxâ€mediated Multicomponent Reactions. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
3126	How to Harness Electrochemical Mediators for Photocatalysis – A Systematic Approach Using the Phenanthro[9,10â€d]imidazole Framework as a Test Case. ChemCatChem, 0, , .	1.8	1
3127	Photoredox Activation of Anhydrides for the Solventâ€Controlled Switchable Synthesis of <i>gem</i> â€Difluoro Compounds**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16

#	Article	IF	CITATIONS
3128	Mechanistic Investigations into Amination of Unactivated Arenes via Cation Radical Accelerated Nucleophilic Aromatic Substitution. Journal of the American Chemical Society, 2022, 144, 15118-15131.	6.6	17
3129	Efficient photocatalytic aerobic oxidations by a molecular cobalt catalyst linked to mesoporous carbon nitride. Catalysis Communications, 2022, 170, 106498.	1.6	3
3130	Visible-Light Photocatalyzed <i>peri</i> -(3 + 2) Cycloadditions of Quinolines. Journal of the American Chemical Society, 2022, 144, 15662-15671.	6.6	20
3131	Visible-Light-Induced Photocatalytic Trifluoromethylation of Bunte Salts: Easy Access to Trifluoromethylthiolated Synthons. Journal of Organic Chemistry, 2022, 87, 11112-11120.	1.7	8
3132	Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catalysis, 2022, 12, 10661-10667.	5 . 5	26
3133	Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a Cr ^{III} Polypyridine Complex and Their Use in Photoredox Catalysis. Journal of the American Chemical Society, 2022, 144, 14181-14194.	6.6	31
3134	Sustainable Ir-Photoredox Catalysis by Means of Heterogenization. ACS Organic & Inorganic Au, 2022, 2, 427-432.	1.9	7
3135	Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. Chinese Chemical Letters, 2023, 34, 107736.	4.8	33
3136	First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chemical Reviews, 2022, 122, 14275-14345.	23.0	43
3137	Carbon Nitride Photoredox Catalysis Enables the Generation of the Dioxolanyl Radical for Conjugate Addition Reactions. ACS Catalysis, 2022, 12, 10787-10792.	5.5	10
3138	Photocatalytic molecular containers enable unique reactivity modes in confinement. Tetrahedron Letters, 2022, 105, 154052.	0.7	0
3139	New Approach to the Detection of Short-Lived Radical Intermediates. Journal of the American Chemical Society, 2022, 144, 15969-15976.	6.6	24
3140	Rose Bengal Anchored Silica-Magnetite Nanocomposite as Photosensitizer for Visible- Light-Mediated Oxidation of Thioethers. Journal of Cluster Science, 0, , .	1.7	0
3141	Monophosphoniums as Effective Photoredox Organocatalysts for Visible Light-Regulated Cationic RAFT Polymerization. ACS Macro Letters, 2022, 11, 1073-1078.	2.3	14
3142	Photocatalyzed difluoroalkylation of pyridine <i>N</i> -oxides. Synthetic Communications, 0, , 1-15.	1.1	1
3143	Photoredox Catalytic Phosphine-Mediated Deoxygenation of Hydroxylamines Enables the Construction of <i>N</i> -Acyliminophosphoranes. Organic Letters, 2022, 24, 6247-6251.	2.4	9
3144	Visibleâ€Lightâ€Induced Acylation/Arylation of Alkenes via Aryl Migration/Desulfonylation. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
3145	Preparation and Evaluation of Sterically Hindered Acridine Photocatalysts. Advanced Synthesis and Catalysis, 2022, 364, 3295-3301.	2.1	8

#	ARTICLE	IF	CITATIONS
3146	Dual Palladiumâ€Photoredox Catalyzed Câ^'H functionalization. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
3147	Electrochemical Dearomative Spirocyclization of <i>N</i> -Acyl Thiophene-2-sulfonamides. Organic Letters, 2022, 24, 6321-6325.	2.4	11
3148	Photoredox C(<i>sp</i> ³)â^'C(<i>sp</i> ³) Crossâ€Dehydrogenative Coupling of Xanthene with βâ€keto Moiety using MoS ₂ Quantum Dot (QD) Catalyst Advanced Synthesis and Catalysis, 2022, 364, 3049-3058.	2.1	5
3149	N–O Bond Activation by Energy Transfer Photocatalysis. Accounts of Chemical Research, 2022, 55, 2526-2541.	7.6	41
3150	Synthesis of Thiomorpholine via a Telescoped Photochemical Thiol–Ene/Cyclization Sequence in Continuous Flow. Organic Process Research and Development, 2022, 26, 2532-2539.	1.3	8
3151	Modeling Spin-Dependent Nonadiabatic Dynamics with Electronic Degeneracy: A Phase-Space Surface-Hopping Method. Journal of Physical Chemistry Letters, 2022, 13, 7398-7404.	2.1	11
3152	Oxyborylene als Photoreduktionsmittel: Synthese und Anwendung in Dehalogenierungen und Detosylierungen. Angewandte Chemie, 2022, 134, .	1.6	0
3153	Organophotocatalytic N–O Bond Cleavage of Weinreb Amides: Mechanism-Guided Evolution of a PET to ConPET Platform. ACS Catalysis, 2022, 12, 10047-10056.	5.5	15
3154	Discovery of a Covalent Triazine Framework Photocatalyst for Visible-Light-Driven Chemical Synthesis using High-Throughput Screening. ACS Catalysis, 2022, 12, 10057-10064.	5.5	11
3155	Visible Light Photoredox-Catalyzed Direct C–H Arylation of Quinoxalin-2(1 <i>H</i>)-ones with Diaryliodonium Salts. Journal of Organic Chemistry, 2022, 87, 10947-10957.	1.7	21
3156	Mechanism of a Luminescent Dicopper System That Facilitates Electrophotochemical Coupling of Benzyl Chlorides via a Strongly Reducing Excited State. ACS Catalysis, 2022, 12, 10781-10786.	5.5	9
3157	Toward Sustainable Photoâ€∤Electrocatalytic Carboxylation of Organic Substrates with CO ₂ . Asian Journal of Organic Chemistry, 2022, 11, .	1.3	12
3158	Design and Synthesis of Fluoroâ€containing Hypervalent Iodane (III) Reagents for Visibleâ€lightâ€triggered Cyclization of Alkynoates to 3â€Fluoroalkylated Coumarins. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	5
3159	Pyrimidopteridineâ€catalyzed Photoâ€mediated Hydroacetoxylation. Chemistry - A European Journal, 2022, 28, .	1.7	2
3160	Oxyâ€Borylenes as Photoreductants: Synthesis and Application in Dehalogenation and Detosylation Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
3161	Photoredox Activation of Anhydrides for the Solventâ€Controlled Switchable Synthesis of gemâ€Difluoro Compounds. Angewandte Chemie, 0, , .	1.6	0
3162	1,2-Radical Shifts in Photoinduced Synthetic Organic Transformations: A Guide to the Reactivity of Useful Radical Synthons. ACS Organic & Inorganic Au, 2022, 2, 435-454.	1.9	16
3163	Synergistic combination of triazine and phenanthroline moieties in a covalent triazine framework tailored for heterogeneous photocatalytic metal-free C-Br and C-Cl activation. Applied Catalysis B: Environmental, 2022, 317, 121791.	10.8	7

#	Article	IF	CITATIONS
3164	Synthesis, photophysical properties and photo-induced cytotoxicity of novel tris(diazatriphenylene)ruthenium (II) complex. Bioorganic Chemistry, 2022, 128, 106044.	2.0	1
3165	Umpolung Reactivity of Imine Ester: Visibleâ€Light Mediated Transfer Hydrogenation of αâ€Aryl Imino Esters by Phenylsilane and Water. Chemistry - A European Journal, 2022, 28, .	1.7	4
3166	Photocatalytic Desulfonylative Homocoupling of Benzylic Sulfone Derivatives. Synlett, 0, , .	1.0	1
3167	Reducing properties of triplet state organic matter (3DOM*) probed via the transformation from chlorine dioxide to chlorite. Water Research, 2022, 225, 119120.	5.3	7
3168	Wash-free photoelectrochemical DNA detection based on photoredox catalysis combined with electroreduction and light blocking by magnetic microparticles. Talanta, 2023, 253, 123872.	2.9	1
3169	Rationally designed conjugated microporous polymers for efficient photocatalytic chemical transformations of isocyanides. Catalysis Science and Technology, 2022, 12, 6548-6555.	2.1	2
3170	Photo-induced decarboxylative hydroacylation of α-oxocarboxylic acids with terminal alkynes by radical addition–translocation–cyclization in water. Organic Chemistry Frontiers, 2022, 9, 6513-6519.	2.3	6
3171	Visible-light promoted photocatalyst-free aerobic α-oxidation of tertiary amines to amides. Organic and Biomolecular Chemistry, 2022, 20, 8031-8036.	1.5	7
3172	Visible-light enabled synthesis of cyclopropane-fused indolines <i>via</i> dearomatization of indoles. Organic Chemistry Frontiers, 2022, 9, 5463-5468.	2.3	5
3173	Visible-light-induced transition-metal-free defluorosilylation of α-trifluoromethylalkenes <i>via</i> hydrogen atom transfer of silanes. Organic Chemistry Frontiers, 2022, 9, 4949-4954.	2.3	10
3174	Boron complexes of ⊨extended nitroxide ligands exhibiting three-state redox processes and near-infrared-II (NIR-II) absorption properties. Dalton Transactions, 2022, 51, 13675-13680.	1.6	0
3175	Real-time tracking of the molecular structural dynamics of photochemical pathways using vibrational spectroscopy techniques. , 2022, , 579-608.		0
3176	Visible-light-induced radical cascade reaction to prepare oxindoles <i>via</i> alkyl radical addition to <i>N</i> -arylacryl amides. Organic Chemistry Frontiers, 2022, 9, 5962-5968.	2.3	4
3177	Taming photocatalysis in flow: easy and speedy preparation of \hat{l}_{\pm} -aminoamide derivatives. Green Chemistry, 2022, 24, 6613-6618.	4.6	7
3178	Visible-light-promoted sulfenylation of 6-aminouracils under catalyst-free conditions. New Journal of Chemistry, 2022, 46, 16523-16529.	1.4	6
3179	Non-Sacrificial Photocatalysis. , 2022, , .		4
3180	Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions. Chinese Journal of Organic Chemistry, 2022, 42, 2275.	0.6	3
3181	Thiadiazole-functionalized metal–organic frameworks for photocatalytic C–N and C–C coupling reactions: tuning the ROS generation efficiency <i>via</i> cobalt introduction. Journal of Materials Chemistry C, 2022, 10, 11967-11974.	2.7	12

#	ARTICLE	IF	CITATIONS
3182	CsPbBr ₃ perovskite quantum dots as a visible light photocatalyst for cyclisation of diamines and amino alcohols: an efficient approach to synthesize imidazolidines, fused-imidazolidines and oxazolidines. Catalysis Science and Technology, 2022, 12, 5891-5898.	2.1	3
3183	Photoredox-catalyzed intermolecular dearomative trifluoromethylcarboxylation of indoles and heteroanalogues with CO ₂ and fluorinated radical precursors. Green Chemistry, 2022, 24, 7894-7899.	4.6	8
3184	Mechanistic dichotomy in the solvent dependent access to <i>E vs. Z</i> -allylic amines <i>via</i> decarboxylative vinylation of amino acids. Chemical Science, 2022, 13, 9678-9684.	3.7	12
3185	Halogen bond promoted aryl migration of allylic alcohols under visible light irradiation. Organic Chemistry Frontiers, 2022, 9, 5599-5605.	2.3	8
3186	Cooperative photoredox/gold catalysed cyclization of 2-alkynylbenzoates with arenediazonium salts: synthesis of 3,4-disubstituted isocoumarins. Organic and Biomolecular Chemistry, 2022, 20, 8065-8070.	1.5	2
3187	Photocatalytic dehydrogenated etherification of 2-aryl benzylic alcohols. Green Chemistry, 2022, 24, 7442-7447.	4.6	5
3188	Visible-light photocatalytic radical addition–translocation–cyclization to construct sulfonyl-containing azacycles. Chemical Communications, 2022, 58, 10206-10209.	2.2	1
3189	Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis. Chemical Science, 2022, 13, 11540-11550.	3.7	35
3190	Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution. Chemical Engineering Journal, 2023, 452, 139477.	6.6	22
3191	Streamlined Synthesis of Aminoacridinium Photocatalysts with Improved Photostability. Organic Process Research and Development, 2022, 26, 2756-2760.	1.3	1
3192	Photochemical C–H Arylation of Napthoquinones Using Eosin Y. ACS Omega, 2022, 7, 32615-32619.	1.6	1
3193	Photochemistry Journey to Multielectron and Multiproton Chemical Transformation. Journal of the American Chemical Society, 2022, 144, 16219-16231.	6.6	30
3194	Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nature Reviews Chemistry, 2022, 6, 782-805.	13.8	18
3196	Dearomative (3+2) Cycloadditions between Indoles and Vinyldiazo Species Enabled by a Redâ€Shifted Chromium Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
3197	Visible Lightâ€Promoted Fluorescein/Niâ€Catalyzed Synthesis of Bisâ€(βâ€Dicarbonyls) using Olefins as a Methylene Bridge Synthon. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
3198	Photochemical C(<i>sp</i> ²)â^'H Pyridination via Areneâ€"Pyridinium Electron Donorâ€"Acceptor Complexes. Angewandte Chemie, 2022, 134, .	1.6	0
3199	Synergistic interplay between photoisomerization and photoluminescence in a light-driven rotary molecular motor. Nature Communications, 2022, 13, .	5.8	10
3200	Nickel Catalyzed Regiodivergent Cross-Coupling Alkylation of Aryl Halides with Redox-Active Imines. ACS Catalysis, 2022, 12, 11563-11572.	5.5	7

#	Article	IF	CITATIONS
3201	Pyrrolo[2,1-a]isoquinolines as multitasking organophotocatalysts in chemical synthesis. Chem Catalysis, 2022, 2, 2726-2749.	2.9	3
3202	Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2. Nature Catalysis, 2022, 5, 832-838.	16.1	71
3204	Photoredoxâ€Catalyzed Deoxygenation of Hexafluoroacetone Hydrate Enables Hydroxypolyfluoroalkylation of Alkenes. Angewandte Chemie, 0, , .	1.6	0
3205	The Merger of Benzophenone HAT Photocatalysis and Silyl Radical-Induced XAT Enables Both Nickel-Catalyzed Cross-Electrophile Coupling and 1,2-Dicarbofunctionalization of Olefins. ACS Catalysis, 2022, 12, 11216-11225.	5.5	24
3206	Site-Selective Modification of (Oligo)Saccharides. ACS Catalysis, 2022, 12, 12195-12205.	5.5	10
3207	Visible-Light-Enabled Ph ₃ P/Lil-Promoted Tandem Radical Trifluoromethylation/Cyclization/Iodination of 1,6-Enynes with Togni's Reagent. Journal of Organic Chemistry, 2022, 87, 12877-12889.	1.7	8
3208	Dearomative (3+2) Cycloadditions between Indoles and Vinyldiazo Species Enabled by a Redâ€Shifted Chromium Photocatalyst. Angewandte Chemie, 0, , .	1.6	0
3209	Photoredox atalyzed Deoxygenation of Hexafluoroacetone Hydrate Enables Hydroxypolyfluoroalkylation of Alkenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
3210	Use of Photocatalytically Active Supramolecular Organic–Inorganic Magnetic Composites as Efficient Route to Remove I²-Lactam Antibiotics from Water. Catalysts, 2022, 12, 1044.	1.6	3
3211	Photochemical C(<i>sp</i> ²)â^H Pyridination via Arene–Pyridinium Electron Donor–Acceptor Complexes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
3212	Hydrotrifluoromethylation of Styrene and Phenylacetylene Derivatives under Visible-Light Photoredox Conditions. Chemistry, 2022, 4, 1010-1015.	0.9	1
3213	Functional Organic Materials for Photovoltaics: The Synthesis as a Tool for Managing Properties for Solid State Applications. Materials, 2022, 15, 6333.	1.3	2
3214	Photocatalytic Decarboxylative Coupling of Arylacetic Acids with Aromatic Aldehydes. Journal of Organic Chemistry, 2023, 88, 6322-6332.	1.7	4
3215	Enhancing Triplet–Triplet Annihilation Upconversion: From Molecular Design to Present Applications. Accounts of Chemical Research, 2022, 55, 2604-2615.	7.6	37
3217	Probing Electron Transfer Events in Radical Cation Cycloadditions: Intramolecular vs. Intermolecular. European Journal of Organic Chemistry, 0, , .	1.2	1
3218	αâ€Acylation of Alkenes by a Single Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
3220	Visible-Light-Induced Acylative Coupling of Benzoic Acid Derivatives with Alkenes to Dihydrochalcones. Organic Letters, 2022, 24, 7271-7275.	2.4	4
3224	Electron / hole catalysis: A versatile strategy for promoting chemical transformations. Tetrahedron, 2022, 126, 133065.	1.0	8

#	Article	IF	CITATIONS
3227	αâ€Acylation of Alkenes by a Single Photocatalyst. Angewandte Chemie, 0, , .	1.6	0
3228	Highly Chemoselective Catalytic Photooxidations by Using Solvent as a Sacrificial Electron Acceptor. Chemistry - A European Journal, 2022, 28, .	1.7	7
3229	Visibleâ€lightâ€driven αâ€Oxidation of Amide C(sp ³)â^'H Bonds to Imides via <i>N</i> â€Bromosuccinimide and Water. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4
3234	Direct Synthesis of Oxaspirolactones in Batch, Photoflow, and Silica Gel-Supported Solvent-free Conditions via Visible-Light Photo- and Heterogeneous Brønsted Acid Relay Catalysis. Green Chemistry, 0, , .	4.6	1
3235	Redox photocatalysis., 2022,,.		0
3236	Photoredox catalysis leading to triazolo-quinoxalinones at room temperature: selectivity of the rate determining step. Organic and Biomolecular Chemistry, 2022, 20, 9330-9336.	1.5	3
3237	C(sp ³)–C(sp ³) coupling of non-activated alkyl-iodides with electron-deficient alkenes <i>via</i> visible-light/silane-mediated alkyl-radical formation. Chemical Science, 2022, 13, 13241-13247.	3.7	15
3238	An S-scheme α-Fe ₂ O ₃ /g-C ₃ N ₄ heterojunction nanostructure with superior visible-light photocatalytic activity for the aza-Henry reaction. Journal of Materials Chemistry C, 2022, 10, 17075-17083.	2.7	3
3239	Tris(4-ethynylphenyl)amine-Based Conjugated Microporous Polymers and Its Photocatalytic Water Splitting Hydrogen Evolution. Chinese Journal of Organic Chemistry, 2022, 42, 2967.	0.6	0
3240	1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN)-based porous organic polymers for visible-light-driven organic transformations in water under aerobic oxidation. Green Chemistry, 2022, 24, 8725-8732.	4.6	14
3241	Challenges and recent advancements in the transformation of CO ₂ into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chemical Society Reviews, 2022, 51, 9371-9423.	18.7	38
3242	Photoinduced decarboxylative 1,6-addition of <i>para</i> -quinone methides with \hat{l} ±-keto acids: an eco-friendly approach to \hat{l} ±, \hat{l} ± \hat{a} €2-diarylated ketones. New Journal of Chemistry, 2022, 46, 21032-21036.	1.4	2
3243	Highly selective α-aryloxyalkyl C–H functionalisation of aryl alkyl ethers. Chemical Science, 2022, 13, 12921-12926.	3.7	4
3244	Chlorophyll: the ubiquitous photocatalyst of nature and its potential as an organo-photocatalyst in organic syntheses. Organic and Biomolecular Chemistry, 2022, 20, 8584-8598.	1.5	8
3245	From energy to electron transfer photocatalysis (PenT â†' PET): oxidative cyclobutane cleavage alters the product composition. Chemical Communications, 2022, 58, 12999-13002.	2.2	1
3246	Visible-light-driven SAQS-catalyzed aerobic oxidative dehydrogenation of alkyl 2-phenylhydrazinecarboxylates. RSC Advances, 2022, 12, 30304-30309.	1.7	7
3247	Visible-light promoted de Mayo reaction by zirconium catalysis. Chemical Communications, 2022, 58, 12979-12982.	2.2	5
3248	Facile synthesis of fully substituted 1 <i>H</i> -imidazoles from oxime esters <i>via</i> dual photoredox/copper catalyzed multicomponent reactions. Organic Chemistry Frontiers, 2022, 9, 6817-6825.	2.3	1

#	Article	IF	CITATIONS
3249	Divergent cyanoalkylation/cyanoalkylsulfonylation of enamides under organophotoredox catalytic conditions. Organic and Biomolecular Chemistry, 2022, 20, 8599-8604.	1.5	4
3250	Recent advances in photocatalytic polyfluoroarylation. Chemical Communications, 2022, 58, 12900-12912.	2.2	7
3251	Organic-Dye-Catalyzed Visible-Light-Mediated Regioselective C-3 Alkoxycarbonylation of Imidazopyridines by Carbazates. Journal of Organic Chemistry, 2022, 87, 14915-14922.	1.7	6
3253	Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility. ACS Nano, 2022, 16, 17041-17048.	7.3	8
3254	Photoredox/Ti Dualâ€Catalyzed Dehydroxylation of Cyclobutanone Oximes for γâ€Cyanoalkyl Radical Generation: Access to Cyanoalkylâ€Substituted Oxoindolines. Advanced Synthesis and Catalysis, 2022, 364, 3932-3940.	2.1	3
3255	Visible-light-induced decarboxylative alkynylation of carboxylic acids in batch and continuous flow. Green Synthesis and Catalysis, 2024, 5, 20-24.	3.7	2
3256	Strategies for Transferring Photobiocatalysis to Continuous Flow Exemplified by Photodecarboxylation of Fatty Acids. ACS Catalysis, 2022, 12, 14040-14049.	5.5	17
3257	lon-Pairing Catalysis in Stereoselective, Light-Induced Transformations. Journal of the American Chemical Society, 2022, 144, 19207-19218.	6.6	19
3258	Visible-light photocatalyst design. Chem Catalysis, 2022, 2, 2414-2416.	2.9	0
3259	Assembling Phenothiazine into a Porous Coordination Cage to Improve Its Photocatalytic Efficiency for Organic Transformations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
3260	Assembling Phenothiazine into a Porous Coordination Cage to Improve Its Photocatalytic Efficiency for Organic Transformations. Angewandte Chemie, 2022, 134, .	1.6	0
3261	Switching of Photocatalytic Tyrosine/Histidine Labeling and Application to Photocatalytic Proximity Labeling. International Journal of Molecular Sciences, 2022, 23, 11622.	1.8	5
3262	Photoinduced Nickelâ€Catalyzed Carbon–Heteroatom Coupling**. Chemistry - A European Journal, 2023, 29, .	1.7	13
3263	Decoding the Cytochrome P450 Catalytic Activity in Divergence of Benzophenone and Xanthone Biosynthetic Pathways. ACS Catalysis, 2022, 12, 13630-13637.	5.5	2
3264	Lowâ€Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
3265	Lowâ€Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angewandte Chemie, 2022, 134, .	1.6	2
3266	Metallaphotoredox Câ^'O and Câ^'N Crossâ€Coupling Using Donorâ€Acceptor Cyanoarene Photocatalysts. ChemCatChem, 2022, 14, .	1.8	5
3267	Multiâ€Resonant Thermally Activated Delayed Fluorescent (MRâ€₹ADF) Compounds as Photocatalysts**. Chemistry - A European Journal, 2023, 29, .	1.7	13

#	Article	IF	CITATIONS
3268	Application of phenacyl bromide analogs as a versatile organic intermediate for the synthesis of heterocyclic compounds via multicomponent reactions. Molecular Diversity, 2023, 27, 2399-2430.	2.1	7
3269	Visible Lightâ€Mediated Cyclopropanation: Recent Progress. European Journal of Organic Chemistry, 2022, 2022, .	1.2	20
3270	Change in the Product Selectivity in the Visible Light-Induced Selenium Radical-Mediated 1,4-Aryl Migration Process. Organic Letters, 2022, 24, 8180-8185.	2.4	7
3271	C(sp ³)â€"H/C(sp ³)â€"H Dehydrogenative Radical Coupling of Glycine Derivatives. Organic Letters, 2022, 24, 7577-7582.	2.4	11
3272	Lightâ€Induced Divergent Cyanation of Alkynes Enabled by Phosphorus Radicals. Angewandte Chemie, 2022, 134, .	1.6	0
3273	Photoinduced Ion-Pair Inner-Sphere Electron Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization. Journal of the American Chemical Society, 2022, 144, 19942-19952.	6.6	8
3274	Asymmetric Photochemical $[2 + 2]$ -Cycloaddition of Acyclic Vinylpyridines through Ternary Complex Formation and an Uncontrolled Sensitization Mechanism. Journal of the American Chemical Society, 2022, 144, 20109-20117.	6.6	8
3275	Hantzsch Ester-Mediated Visible-Light-Induced Radical Ethoxycarbonyldifluoromethylation of Aryl Alkynes: Kinetic-Controlled Stereoselective Synthesis of <i>Z</i> - <i>gem</i> -Difluoroallyl Esters. Journal of Organic Chemistry, 2022, 87, 13828-13836.	1.7	4
3276	Photoredox C _{sp} ³ â^'C _{sp} ² Reductive Crossâ€Couplings of Cereblon Ligands for PROTAC Linker Exploration in Batch and Flow. ChemCatChem, 2022, 14, .	1.8	9
3277	Stereoselective Synthesis of the DE Ring Portion of Kadcoccilactone A by a Radical Addition/Cyclization Approach. European Journal of Organic Chemistry, 0, , .	1.2	0
3278	Photochemical Radical Cation Cycloadditions of Aryl Vinyl Ethers. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
3279	Enantioselective Hydroalkylation of Alkenylpyridines Enabled by Merging Photoactive Electron Donor–Acceptor Complexes with Chiral Bifunctional Organocatalysis. ACS Catalysis, 2022, 12, 13065-13074.	5.5	9
3280	Lightâ€Induced Divergent Cyanation of Alkynes Enabled by Phosphorus Radicals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
3281	Recent Developments and Trends in Asymmetric Organocatalysis. European Journal of Organic Chemistry, 2023, 26, .	1,2	27
3282	Shining Visible Light on Reductive Elimination: Acridine–Pd-Catalyzed Cross-Coupling of Aryl Halides with Carboxylic Acids. Journal of the American Chemical Society, 2022, 144, 19592-19602.	6.6	13
3283	Bifunctional 1,8-Diazabicyclo[5.4.0]undec-7-ene for Visible Light-Induced Heck-Type Perfluoroalkylation of Alkenes. Journal of Organic Chemistry, 2022, 87, 14763-14777.	1.7	4
3284	Tuning the Photocatalytic Performance of Ruthenium(II) Polypyridine Complexes Via Ligand Modification for Visibleâ€Lightâ€Induced Phosphorylation of Tertiary Aliphatic Amines. Chemistry - A European Journal, 2023, 29, .	1.7	7
3285	Metal-Free Generation of Acyl Radical via Photoinduced Single-Electron Transfer from Lewis Base to Acyl Chloride. Organic Letters, 2022, 24, 8223-8227.	2.4	14

#	Article	IF	CITATIONS
3286	Radical C–H Sulfonation of Arenes: Its Applications on Bioactive and DNA-Encoded Molecules. Organic Letters, 2022, 24, 7961-7966.	2.4	17
3287	Diazulenylmethyl Cations with a Silicon Bridge: A π-Extended Cationic Motif to Form <i>J</i> -Aggregates with Near-Infrared Absorption and Emission. Journal of the American Chemical Society, 2022, 144, 20385-20393.	6.6	24
3288	Organophotocatalytic [2+2] Cycloaddition of Electronâ€Deficient Styrenes**. Chemistry - A European Journal, 2023, 29, .	1.7	8
3289	Dual-Role Halogen-Bonding-Assisted EDA-SET/HAT Photoreaction System with Phenol Catalyst and Aryl Iodide: Visible-Light-Driven Carbon–Carbon Bond Formation. Journal of Organic Chemistry, 2022, 87, 15499-15510.	1.7	14
3290	Excited-State Copper-Catalyzed $[4+1]$ Annulation Reaction Enables Modular Synthesis of \hat{l}_{\pm},\hat{l}^2 -Unsaturated- \hat{l}^3 -Lactams. Journal of the American Chemical Society, 2022, 144, 20884-20894.	6.6	11
3291	(+)/(â^')-Yanhusamides Aâ^'C, three pairs of unprecedented benzylisoquinoline-pyrrole hetero-dimeric alkaloid enantiomers from Corydalis yanhusuo. Acta Pharmaceutica Sinica B, 2022, , .	5.7	0
3292	Direct intermolecular C(sp)–H amidation with dioxazolones via synergistic decatungstate anion photocatalysis and nickel catalysis: A combined experimental and computational study. Journal of Catalysis, 2022, 415, 142-152.	3.1	4
3293	<i>P</i> /i>/ <i>N</i> -Heteroleptic Cu(I)-Photosensitizer-Catalyzed [3 + 2] Regiospecific Annulation of Aminocyclopropanes and Functionalized Alkynes. Journal of Organic Chemistry, 2022, 87, 15571-15581.	1.7	6
3294	Visible-Light-Promoted Xanthate-Transfer Cyclization Reactions of Unactivated Olefins under Photocatalyst- and Additive-Free Conditions. Journal of Organic Chemistry, 2022, 87, 15582-15597.	1.7	7
3295	Pyrene-tethered bismoviologens for visible light-induced C(sp3)–P and C(sp2)–P bonds formation. Chinese Chemical Letters, 2023, 34, 107958.	4.8	3
3296	Visible-Light Organophotoredox-Mediated $[3 + 2]$ Cycloaddition of Arylcyclopropylamine with Structurally Diverse Olefins for the Construction of Cyclopentylamines and Spiro $[4.n]$ Skeletons. Journal of Organic Chemistry, 2022, 87, 15511-15529.	1.7	5
3297	Visible light-initiated living cationic dark polymerization. Polymer Chemistry, 2022, 13, 6543-6550.	1.9	1
3298	Squaraines as near-infrared photocatalysts for organic reactions. Chemical Communications, 2022, 58, 13759-13762.	2.2	5
3299	Construction of bi(hetero)aryls <i>via</i> dicyanopyrazine-mediated photochemical cross-coupling. Organic and Biomolecular Chemistry, 2022, 20, 9378-9384.	1.5	4
3301	Visible-light-promoted radical cascade alkylation/cyclization: access to alkylated indolo/benzoimidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2022, 20, 9659-9671.	1.5	5
3302	Consecutive photochemical reactions enabled by a dual flow reactor coil strategy. Chemical Communications, 2022, 58, 13274-13277.	2.2	2
3303	Metal-free visible-light-induced hydroxy-perfluoroalkylation of conjugated olefins using enamine catalyst. RSC Advances, 2022, 12, 32790-32795.	1.7	9
3304	Redox-neutral synthesis of π-allylcobalt complexes from alkenes for aldehyde allylation <i>via</i> photoredox catalysis. Green Chemistry, 2022, 24, 9027-9032.	4.6	7

#	Article	IF	Citations
3305	Photoactive Copper Complexes: Properties and Applications. Chemical Reviews, 2022, 122, 16365-16609.	23.0	81
3306	Light-driven radical-polar crossover catalysis for cross-coupling with organosilanes. Tetrahedron Letters, 2022, 112, 154231.	0.7	4
3307	Visible Lightâ€Mediated Reactions of βâ€Nitroalkenes. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	0
3308	Visible Lightâ€Mediated Cyclisation Reaction for the Synthesis of Highlyâ€Substituted Tetrahydroquinolines and Quinolines Angewandte Chemie, 0, , .	1.6	0
3309	Visible Lightâ€Mediated Cyclisation Reaction for the Synthesis of Highlyâ€Substituted Tetrahydroquinolines and Quinolines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
3310	Nickel Catalysis via S _H 2 Homolytic Substitution: The Double Decarboxylative Cross-Coupling of Aliphatic Acids. Journal of the American Chemical Society, 2022, 144, 21278-21286.	6.6	35
3311	Purpurinâ€Promoted Photoâ€Redox Reduction of Benzyl Selenocyanates as Masked Selenols, Preparative, Electrochemical, Computational, and Mechanistic Study. ChemistrySelect, 2022, 7, .	0.7	1
3312	Synthesis of Isoxazolidines from Substituted Vinylnitrones and Conjugated Carbonyls via Visible‣ight Photocatalysis. ChemPhotoChem, 2023, 7, .	1.5	3
3313	Visible Lightâ€Enhanced Câ€H Amination of Cyclic Ethers with Iminoiodinanes. Advanced Synthesis and Catalysis, 0, , .	2.1	5
3314	High-Throughput Photochemistry Using Droplet Microfluidics. ACS Symposium Series, 0, , 131-143.	0.5	0
3315	Development of Advanced High Throughput Experimentation Platforms for Photocatalytic Reactions. ACS Symposium Series, 0, , 145-165.	0.5	2
3316	Photocatalytic Cleavage of Trityl Protected Thiols and Alcohols. Synthesis, 2023, 55, 1367-1374.	1.2	1
3317	Advances in Carbon arbon Bond Activation by Using Photocatalysts: A Mini Review. ChemistrySelect, 2022, 7, .	0.7	0
3318	Light-Induced Access to Carbazole-1,3-dicarbonitrile: A Thermally Activated Delayed Fluorescent (TADF) Photocatalyst for Cobalt-Mediated Allylations. Journal of Organic Chemistry, 2023, 88, 6390-6400.	1.7	10
3319	Divergent and Synergistic Photocatalysis: Hydro- and Oxoalkylation of Vinyl Arenes for the Stereoselective Synthesis of Cyclopentanols via a Formal [4+1]-Annulation of 1,3-Dicarbonyls. ACS Catalysis, 2022, 12, 14398-14407.	5 . 5	10
3320	Photocatalytic Alkylation of C(sp ³)â°'H Bonds Using Sulfonylhydrazones**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
3321	Visible-Light-Mediated Synthesis of Phenanthrenes through Successive Photosensitization and Photoredox by a Single Organocatalyst. Organic Letters, 2022, 24, 8452-8457.	2.4	7
3322	Visible-Light-Induced One-Pot Cross Coupling of <i>NH</i> -Sulfoximines with Toluene. Organic Letters, 2022, 24, 8447-8451.	2.4	5

#	Article	IF	CITATIONS
3323	Electrophotocatalytic Decoupled Radical Relay Enables Highly Efficient and Enantioselective Benzylic C–H Functionalization. Journal of the American Chemical Society, 2022, 144, 21674-21682.	6.6	42
3324	Photoinduced Dehydrogenative Borylation via Dihydrogen Bond Bridged Electron Donor and Acceptor Complexes**. Chemistry - A European Journal, 2023, 29, .	1.7	7
3325	Decatungstate-Catalyzed Photochemical Synthesis of Enaminones from Vinyl Azides and Aldehydes. Organic Letters, 2022, 24, 8942-8947.	2.4	7
3326	Photocatalytic Alkylation of C(sp3)â^'H Bonds Using Sulfonylhydrazones. Angewandte Chemie, 0, , .	1.6	1
3327	Dicyanobenzothiadiazole (DCBT) Organic Dye as a Visible Light Absorbing Strong Photoinduced Oxidant with a 16 Microsecond Longâ€Lived Excited State. Advanced Energy Materials, 2023, 13, .	10.2	3
3329	EDA mediated S–N bond coupling of nitroarenes and sodium sulfinate salts. Chemical Science, 2023, 14, 525-532.	3.7	10
3330	Sensitizer-controlled photochemical reactivity <i>via</i> viaviaviaonversion of red light. Chemical Science, 2022, 14, 149-161.	3.7	26
3331	Photochemistry electrified: pushing the boundaries of radical-based organic synthesis. Photochemistry, 2022, , 321-345.	0.2	2
3332	Photocatalytic modifications of benzamides. Photochemistry, 2022, , 371-385.	0.2	0
3333	Visible-light-photocatalysis driven denitrogenative/radical 1,3-shift of benzotriazole: access to 3-aryl-aminoquinoxalin-2(1 <i>H</i>)-one scaffolds. Organic Chemistry Frontiers, 2023, 10, 531-539.	2.3	2
3334	Friedel–Crafts arylation of aldehydes with indoles utilizing arylazo sulfones as the photoacid generator. Organic and Biomolecular Chemistry, 2023, 21, 365-369.	1.5	10
3335	Exploring visible light for carbon–nitrogen and carbon–oxygen bond formation <i>via</i> nickel catalysis. Organic Chemistry Frontiers, 2023, 10, 548-569.	2.3	15
3336	The development of highly efficient monophosphonium photocatalysts for the visible light-regulated metal-free cationic polymerization of vinyl ethers. Polymer Chemistry, 2023, 14, 486-491.	1.9	4
3337	Visible light-induced direct and highly selective C–H functionalization of quinoxalin-2(1 <i>H</i>)-one without orientating group. Catalysis Science and Technology, 2023, 13, 305-309.	2.1	2
3338	Visible-light-mediated C(sp ³)–H functionalization of alkyl arylacetates: an easy approach to <i>S</i> benzyl dithiocarbamate acetates. New Journal of Chemistry, 2023, 47, 2412-2416.	1.4	1
3339	Visible-light-induced selective defluoroalkylations of polyfluoroarenes with alcohols. Chemical Science, 2023, 14, 916-922.	3.7	11
3340	Photocatalyst-free visible light driven synthesis of <i>gem</i> -dihaloenones from alkynes, tetrahalomethanes and water. Organic and Biomolecular Chemistry, 2023, 21, 719-723.	1.5	1
3341	Divergent synthesis of quinoxalin-2(1 <i>H</i>)-one derivatives through photoinduced C–H functionalization without a photocatalyst. Organic Chemistry Frontiers, 2023, 10, 611-623.	2.3	0

#	Article	IF	CITATIONS
3342	Photocatalytic aerobic oxidative deoximation reaction with degradable Rhodamine B. Reaction Chemistry and Engineering, $0, \dots$	1.9	0
3343	Photoinduced cyclization of aryl ynones with 4-alkyl-DHPs for the divergent synthesis of indenones, thioflavones and spiro[5.5]trienones. Molecular Catalysis, 2023, 535, 112819.	1.0	17
3344	Organophotocatalytic silyl transfer of silylboranes enabled by methanol association: a versatile strategy for C–Si bond construction. Green Chemistry, 2023, 25, 256-263.	4.6	14
3345	Algorithm-driven activity-directed expansion of a series of antibacterial quinazolinones. Organic and Biomolecular Chemistry, 2022, 20, 9672-9678.	1.5	0
3346	Trifluoromethylated thermally activated delayed fluorescence molecule as a versatile photocatalyst for electron-transfer- and energy-transfer-driven reactions. Organic and Biomolecular Chemistry, 2022, 20, 9600-9603.	1.5	5
3347	Recent approaches in asymmetric non-covalent organo-photocatalysis. Photochemistry, 2022, , 283-302.	0.2	0
3348	Diastereoselectivity in Photoredox Catalysis. , 2022, , .		0
3349	Visible-light-induced intramolecular C–S bond formation for practical synthesis of 2,5-disubstituted 1,3,4-thiadiazoles. Synthetic Communications, 2023, 53, 40-48.	1.1	1
3350	Deprotection of benzyl-derived groups via photochemically mesolytic cleavage of C–N and C–O bonds. CheM, 2023, 9, 511-522.	5.8	9
3352	Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Science China Chemistry, 0, , .	4.2	4
3354	Transforming Non-innocent Phenalenyl to a Potent Photoreductant: Captivating Reductive Functionalization of Aryl Halides through Visible-Light-Induced Electron Transfer Processes. Journal of Organic Chemistry, 2022, 87, 16550-16566.	1.7	10
3355	Cu(II)-Catalyzed, Site Selective Sulfoximination to Indole and Indolines via Dual C–H/N–H Activation. Organic Letters, 2022, 24, 8729-8734.	2.4	5
3356	Properties of Amine-Containing Ligands That Are Necessary for Visible-Light-Promoted Catalysis with Divalent Europium. Inorganic Chemistry, 2022, 61, 19649-19657.	1.9	4
3357	Visible Light Organoâ€Photocatalytic Synthesis of 3â€lmidazolines. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
3359	Carboxylic Acids as Adaptive Functional Groups in Metallaphotoredox Catalysis. Accounts of Chemical Research, 2022, 55, 3481-3494.	7.6	61
3360	A general arene C–H functionalization strategy via electron donor–acceptor complex photoactivation. Nature Chemistry, 2023, 15, 43-52.	6.6	58
3361	Exploring Photoredoxâ€Catalyzed (Re)functionalizations with Coreâ€Modified Benziodoxolones. Helvetica Chimica Acta, 2023, 106, .	1.0	0
3362	AIE Polymer Micelle/Vesicle Photocatalysts Combined with Native Enzymes for Aerobic Photobiocatalysis. Journal of the American Chemical Society, 2023, 145, 288-299.	6.6	17

#	Article	IF	Citations
3363	Catalytic Conversion of Styrene to Benzaldehyde over S-Scheme Photocatalysts by Singlet Oxygen. ACS Catalysis, 2023, 13, 459-468.	5.5	38
3364	Unravelling the Effect of Water Addition in Consecutive Photocatalysis with Naphthalene Diimide. Journal of Organic Chemistry, 2023, 88, 711-716.	1.7	3
3365	Photoredox/Nickel Dual-Catalyzed Stereoselective Synthesis of Distal Cyano-Substituted Enamides. Journal of Organic Chemistry, 2023, 88, 513-524.	1.7	5
3366	Photocatalytic Synthesis of Acetals and Ketals from Aldehydes and Silylenolethers without the Use of Acids. Chemistry - A European Journal, 2023, 29, .	1.7	3
3367	Oxidative Coupling of 4â∈Hydroxycoumarins with Quinoxalinâ€2(1 <i>H</i>)â€ones Induced by Visible Light under Aerobic Conditions. European Journal of Organic Chemistry, 2023, 26, .	1.2	5
3368	Copper- and Photoredox-Catalyzed Cascade to Trifluoromethylated Divinyl Sulfones. Journal of Organic Chemistry, 2023, 88, 6538-6547.	1.7	2
3369	<i>Meso</i> â€2â€MethoxyNaphthalenylâ€BODIPY as Efficient Organic Dye for Metallaphotoredox Catalysis. ChemCatChem, 2023, 15, .	1.8	1
3370	Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. Organic Letters, 2022, 24, 9001-9006.	2.4	14
3371	Direct Excitation of Aldehyde to Activate the $C(\langle i\rangle sp\langle i\rangle \langle sup\rangle \langle i\rangle 2\langle i\rangle \langle sup\rangle)$ and by Cobaloxime Catalysis toward Fluorenones Synthesis with Hydrogen Evolution. Angewandte Chemie, 2023, 135, .	1.6	0
3372	Assessing Carbazole Derivatives as Single-Electron Photoreductants. Journal of Organic Chemistry, 2022, 87, 16928-16936.	1.7	3
3373	Visible lightâ€induced metalâ€free atom transfer radical (co)polymerization of maleimides using commercial organocatalysts. Journal of Applied Polymer Science, 2023, 140, .	1.3	1
3374	Arylamines as More Strongly Reducing Organic Photoredox Catalysts than <i>fac</i> -[lr(ppy) ₃]. ACS Catalysis, 2022, 12, 15400-15415.	5.5	17
3375	Collaborative catalysis for solar biosynthesis. Trends in Chemistry, 2023, 5, 133-146.	4.4	4
3376	Visible-light-induced sulfoxidation using chitosan-supported organic dyes photocatalyst. Dyes and Pigments, 2023, 210, 111042.	2.0	1
3377	Photoinduced Stereoselective Hydroalkylation of Terminal Arylalkynes via C(sp3)-H Functionalization. Tetrahedron Letters, 2022, , 154321.	0.7	0
3378	Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. Advanced Materials, 2023, 35, .	11.1	42
3380	Silyl Tether-Assisted Photooxygenation of Electron-Deficient Enaminoesters: Direct Access to Oxamate Formation. Journal of Organic Chemistry, 0, , .	1.7	0
3381	Stereospecific/stereoselective nickel catalyzed reductive cross-coupling: An efficient tool for the synthesis of biological active targeted molecules. Journal of Saudi Chemical Society, 2023, 27, 101589.	2.4	1

#	Article	IF	CITATIONS
3382	Multimodal Reactivity of N–H Bonds in Triazanes and Isolation of a Triazinyl Radical. Journal of the American Chemical Society, 2022, 144, 23642-23648.	6.6	9
3383	Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between <i>N</i> -Alkyl vs <i>N</i> -Aryl Maleimides. ACS Organic & Inorganic Au, 2023, 3, 96-103.	1.9	9
3384	Anthrazoline Photocatalyst for Promoting Esterification and Etherification Reactions via Photoredox/Nickel Dual Catalysis. Chinese Journal of Chemistry, 2023, 41, 411-416.	2.6	1
3385	Direct Excitation of Aldehyde to Activate the C(<i>sp</i> < ^{<i>2</i>})â^'H Bond by Cobaloxime Catalysis toward Fluorenones Synthesis with Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
3386	Photomediated core modification of diaryl dihydrophenzines through three-component alkylarylation of alkenes toward organocatalyzed ATRP. Green Synthesis and Catalysis, 2024, 5, 35-41.	3.7	0
3387	Mild and metal-free Birch-type hydrogenation of (hetero)arenes with boron carbonitride in water. Nature Catalysis, 2022, 5, 1157-1168.	16.1	19
3388	Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catalysis, 2023, 13, 308-341.	5 . 5	6
3389	The Golden Touch by Light: A Finely Engineered Luminogen Empowering High Photoactivatable and Photodynamic Efficiency for Cancer Phototheranostics. Advanced Functional Materials, 2023, 33, .	7.8	12
3390	Transitionâ€Metalâ€Free Multicomponent Reaction of Quinoxalinones with Alkenes and Zhdankin Reagent through Photoredox Catalysis. European Journal of Organic Chemistry, 2023, 26, .	1.2	2
3391	Oneâ€Electron Injectionâ€triggered Radical Reaction of Alkyl Benzoates Promoted by 1,4â€Bis(diphenylamino)benzene Photocatalysis. ChemCatChem, 2023, 15, .	1.8	2
3392	Activation of C–Br Bond of CBr ₄ and CBrCl ₃ Using 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. Journal of Organic Chemistry, 2023, 88, 573-584.	1.7	5
3393	Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field. Beilstein Journal of Organic Chemistry, 0, 18, 1672-1695.	1.3	4
3394	Photocatalyzed Synthesis of 3â€Substituted Phthalides. A Key Access to Herbaric Acid. European Journal of Organic Chemistry, 0, , .	1.2	0
3395	Photoinduced Ligandâ€ŧoâ€Metal Charge Transfer of Carboxylates: Decarboxylative Functionalizations, Lactonizations, and Rearrangements. Advanced Synthesis and Catalysis, 2022, 364, 4189-4230.	2.1	21
3396	N,N′-Diaryldihydrophenazines as a Sustainable and Cost-Effective Alternative to Precious Metal Complexes in the Photoredox-Catalyzed Alkylation of Aryl Alkyl Ketones. Molecules, 2023, 28, 221.	1.7	1
3397	Photoredox-Catalyzed Synthesis of \hat{l}^2 -Amino Alcohols: Hydroxymethylation of Imines with \hat{l}_\pm -Silyl Ether as Hydroxymethyl Radical Precursor. Organic Letters, 2023, 25, 21-26.	2.4	4
3398	Nitryl Radicalâ€Triggered Semipinacolâ€Type Rearrangement, Lactonization, and Cycloetherification of Olefins. ChemCatChem, 2023, 15, .	1.8	5
3399	Photocatalyst-free, metal-free, visible light-induced thiolation/pyridylation of styrenes using an electron donor–acceptor complex as a bifunctional reagent. Organic Chemistry Frontiers, 2023, 10, 1166-1172.	2.3	4

#	Article	IF	CITATIONS
3400	Formation and degradation of strongly reducing cyanoarene-based radical anions towards efficient radical anion-mediated photoredox catalysis. Nature Communications, 2023, 14, .	5.8	22
3401	Oneâ€pot synthesis of quinazolinones and quinazolines under visible light via decarboxylation of αâ€hydroxy acids. Journal of Heterocyclic Chemistry, 2023, 60, 681-691.	1.4	0
3402	Light-accelerated "on-water―hydroacylation of dialkyl azodicarboxylates. Organic and Biomolecular Chemistry, 2023, 21, 1284-1293.	1.5	9
3403	Recent Advances in Visible-Light-Catalyzed Câ€"C Bonds and Câ€"Heteroatom Bonds Formation Using Sulfonium Salts. Chinese Journal of Organic Chemistry, 2022, 42, 4037.	0.6	12
3404	Recent Progresses in Visible-Light-Driven Alkene Synthesis. Chinese Journal of Organic Chemistry, 2022, 42, 3923.	0.6	8
3405	Recent Advances in Photocatalytic Reactions with Isocyanides. Chinese Journal of Organic Chemistry, 2022, 42, 4220.	0.6	4
3406	Merging Photoinduced Iron-Catalyzed Decarboxylation with Copper Catalysis for C–N and C–C Couplings. ACS Catalysis, 2023, 13, 1678-1685.	5.5	28
3407	Recent Advances on the Carboxylations of C(sp3)–H Bonds Using CO2 as the Carbon Source. Synlett, 2023, 34, 1327-1342.	1.0	8
3408	Aryl radical cation promoted remote dioxygenation of cyclopropane derivatives. Cell Reports Physical Science, 2023, 4, 101233.	2.8	9
3409	The Rational Design of Reducing Organophotoredox Catalysts Unlocks Proton-Coupled Electron-Transfer and Atom Transfer Radical Polymerization Mechanisms. Journal of the American Chemical Society, 2023, 145, 1835-1846.	6.6	19
3410	Heterogeneous Photoredox Catalysis Based on Silica Mesoporous Material and Eosin Y: Impact of Material Support on Selectivity of Radical Cyclization. Molecules, 2023, 28, 549.	1.7	3
3411	Divergent Functionalization of Alkynes Enabled by Organic Photoredox Catalysis. Synlett, 0, , .	1.0	1
3412	Visibleâ€Lightâ€Induced Nâ€Heterocyclic Carbeneâ€Catalyzed Single Electron Reduction of Monoâ€Fluoroarenes. Angewandte Chemie, 0, , .	1.6	0
3413	Mechanistic explorations on the decarboxylative allylation of amino esters <i>via</i> dual photoredox and palladium catalysis. Organic and Biomolecular Chemistry, 2023, 21, 1138-1142.	1.5	1
3414	Towards a More Sustainable Photocatalyzed αâ€Arylation of Amines: Green Solvents, Catalyst Recycling and Low Loading. Advanced Synthesis and Catalysis, 2023, 365, 252-262.	2.1	4
3415	CsPbBr ₃ in the Activation of the C–Br Bond of CBrX ₃ (X = Cl, Br) under Sunlight. Chemistry of Materials, 2023, 35, 628-637.	3.2	8
3416	Intermolecular Organophotocatalytic Cyclopropanation of Unactivated Olefins. Journal of the American Chemical Society, 2023, 145, 774-780.	6.6	20
3417	Modern Photocatalytic Strategies in Natural Product Synthesis. Progress in the Chemistry of Organic Natural Products, 2023, , 1-104.	0.8	O

#	Article	IF	CITATIONS
3418	Computational Understanding of Dual Gold and Photoredox-Catalyzed Regioselective Thiosulfonylation of Alkenes. Journal of Organic Chemistry, 2023, 88, 1107-1112.	1.7	5
3419	Photoredox-Catalyzed Chlorotrifluoromethylation of Arylallenes: Synthesis of a Trifluoromethyl Building Block. Organic Letters, 2023, 25, 438-442.	2.4	6
3420	Photocatalytic One-Pot Synthesis of Quinazolinone Under Ambient Conditions. Catalysis Letters, 0, , .	1.4	1
3421	Machineâ€Learning Classification for the Prediction of Catalytic Activity of Organic Photosensitizers in the Nickel(II)â€Saltâ€Induced Synthesis of Phenols. Angewandte Chemie, 2023, 135, .	1.6	0
3422	Visibleâ€Lightâ€Induced Nâ€Heterocyclic Carbeneâ€Catalyzed Single Electron Reduction of Monoâ€Fluoroarenes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
3423	Methylene Blue sensitized Photo Fenton-like reaction for rapid RAFT polymerization in aqueous solution. Polymer Chemistry, 0, , .	1.9	2
3424	Visible-light-induced cascade reaction: a sustainable approach towards molecular complexity. Organic and Biomolecular Chemistry, 2023, 21, 1591-1628.	1.5	12
3425	Piezoelectric Metalâ€Organic Frameworks Mediated Mechanoredox Borylation and Arylation Reactions by Ball Milling. Chemistry - A European Journal, 2023, 29, .	1.7	6
3426	Investigating the photosensitization activities of flavins irradiated by blue LEDs. RSC Advances, 2023, 13, 2355-2364.	1.7	3
3427	Photoreactivity of new rose bengal-SiO2 heterogeneous photocatalysts with and without a magnetite core for drug degradation and disinfection. Catalysis Today, 2023, 413-415, 113994.	2.2	4
3428	Manipulating D–A interaction to achieve stable photoinduced organic radicals in triphenylphosphine crystals. Chemical Science, 2023, 14, 1871-1877.	3.7	3
3429	Chromium-Catalyzed Defluorinative Reductive Coupling of Aldehydes with <i>gem</i> -Difluoroalkenes. Organic Letters, 2023, 25, 549-554.	2.4	2
3430	Enhancing Dynamic Spectral Diffusion in Metal–Organic Frameworks through Defect Engineering. Journal of the American Chemical Society, 2023, 145, 1072-1082.	6.6	16
3431	Electrochemical synthesis of oxazoles <i>via</i> a phosphine-mediated deoxygenative [3 + 2] cycloaddition of carboxylic acids. Green Chemistry, 2023, 25, 1435-1441.	4.6	10
3432	Cyano-capped molecules: versatile organic materials. Journal of Materials Chemistry A, 2023, 11, 3753-3770.	5.2	8
3433	Visibleâ€Light Induced Oxidative Annulation of Enamides to 2,4,5â€Trisubstituted Oxazole Skeletons. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	3
3434	Visible-light induced eosin Y catalysed C(sp2)-H alkylation of carbonyl substrates via direct HAT. Tetrahedron, 2023, 132, 133245.	1.0	10
3435	Machine‣earning Classification for the Prediction of Catalytic Activity of Organic Photosensitizers in the Nickel(II)â€6altâ€Induced Synthesis of Phenols. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3

#	Article	IF	Citations
3436	Visibleâ€Lightâ€Active Coumarin―and Quinolinoneâ€Based Photocatalysts and Their Applications in Chemical Transformations. Chemical Record, 2023, 23, .	2.9	2
3437	Recent progress in homogeneous molecular photoredox catalysis towards hydrogen evolution reaction and future perspective. Applied Catalysis A: General, 2023, 651, 119010.	2.2	4
3438	The game between molecular photoredox catalysis and hydrogen: The golden age of hydrogen budge. Molecular Catalysis, 2023, 537, 112921.	1.0	0
3439	Visible-Light Mediated Carbamoylation of Nitrones under a Continuous Flow Regime. Journal of Organic Chemistry, 2023, 88, 6407-6419.	1.7	5
3440	Photo- and Electrochemically Initiated Thiocyanation Reactions. Russian Journal of Organic Chemistry, 2022, 58, 1712-1751.	0.3	4
3441	Diquat Based Dyes: A New Class of Photoredox Catalysts and Their Use in Aerobic Thiocyanation. Chemistry - A European Journal, 2023, 29, .	1.7	2
3442	Decarboxylative C–H silylation of N-heteroarenes with silanecarboxylic acids. Chemical Communications, 2023, 59, 2449-2452.	2.2	8
3443	Visible-light-induced reactions of methylenecyclopropanes (MCPs). Chemical Communications, 2023, 59, 2726-2738.	2.2	4
3444	A Practiceâ€Oriented Benchmark Strategy to Predict the UVâ€Vis Spectra of Organic Photocatalysts**. Chemistry Methods, 2023, 3, .	1.8	2
3445	Visible-light-promoted synthesis of <i>gem</i> -dihaloenones. Green Chemistry, 2023, 25, 1191-1200.	4.6	6
3446	Metal-free acceptorless dehydrogenative cross-coupling of aldehydes/alcohols with alcohols. Green Chemistry, 2023, 25, 1672-1678.	4.6	7
3447	Synthesis of Bibenzyl Derivatives via Visible-Light-Promoted 1,5-Hydrogen Atom Transfer/Radical Coupling Reactions of <i>N</i> -Fluorocarboxamides. Chinese Journal of Organic Chemistry, 2023, 43, 254.	0.6	2
3448	Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications: a review. Molecular Diversity, 2024, 28, 271-307.	2.1	9
3449	Organophotoredox 1,6-Addition of 3,4-Dihydroquinoxalin-2-ones to <i>para</i> -Quinone Methides Using Visible Light. ACS Organic & Inorganic Au, 0, , .	1.9	0
3450	Recent advances in photo-induced organic synthesis in water. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100766.	3.2	4
3451	Organocatalyzed Visible Light-Mediated <i>gem</i> -Borosilylcyclopropanation. Journal of Organic Chemistry, 2023, 88, 1515-1521.	1.7	2
3452	Response to Comment on "Photoinduced Protocol for Aerobic Oxidation of Aldehydes to Carboxylic Acids under Mild Conditionsâ€. ACS Sustainable Chemistry and Engineering, 2023, 11, 1622-1623.	3.2	1
3453	Recent progress in the oxidative bromination of arenes and heteroarenes. Organic and Biomolecular Chemistry, 2023, 21, 1571-1590.	1.5	5

#	Article	IF	CITATIONS
3454	BrÃ,nsted acid-catalysed aerobic photo-oxygenation of benzylic C–H bonds. Green Chemistry, 2023, 25, 940-945.	4.6	8
3455	UV Light Is No Longer Required for the Photoactivation of 1,3,4-Oxadiazolines. ACS Catalysis, 2023, 13, 1964-1973.	5.5	6
3456	Photocatalytic dehydrations for the Ritter reaction. Organic Chemistry Frontiers, 2023, 10, 1375-1379.	2.3	4
3457	Emerging Strategies for Asymmetric Synthesis: Combining Enzyme Promiscuity and Photoâ€∤Electroâ€redox Catalysis. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	3
3458	Visibleâ€Light Induced Fixation of SO ₂ into Organic Molecules with Polypyridine Chromium(III) Complexes. ChemCatChem, 2023, 15, .	1.8	10
3459	Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chemical Reviews, 2023, 123, 5225-5261.	23.0	56
3460	Photocatalytic Late-Stage C–H Functionalization. Chemical Reviews, 2023, 123, 4237-4352.	23.0	112
3461	Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation. Chemical Science, 2023, 14, 2606-2615.	3.7	3
3462	Photoinduced, metal- and photosensitizer-free decarboxylative C–H (amino)alkylation of heteroarenes in a sustainable solvent. Green Chemistry, 2023, 25, 1975-1981.	4.6	23
3463	Unveiling the Photocatalytic Activity of Carbon Dots/g-C3N4 Nanocomposite for the O-Arylation of 2-Chloroquinoline-3-carbaldehydes. Catalysts, 2023, 13, 308.	1.6	3
3464	Visible-light induced metal-free intramolecular reductive cyclisations of ketones with alkynes and allenes. Chemical Communications, 2023, 59, 2122-2125.	2.2	2
3465	Organic photoredox catalyzed dealkylation/acylation of tertiary amines to access amides. Chemical Communications, 2023, 59, 2003-2006.	2.2	6
3466	Inexpensive and bench stable diarylmethylium tetrafluoroborates as organocatalysts in the light mediated hydrosulfonylation of unactivated alkenes. Chemical Science, 2023, 14, 2721-2734.	3.7	6
3467	Photochemical Methods Applied to DNA Encoded Library (DEL) Synthesis. Accounts of Chemical Research, 2023, 56, 385-401.	7.6	15
3468	Visible-light-induced C _{sp³} â€"H functionalization of glycine derivatives by cerium catalysis. Chemical Communications, 2023, 59, 2628-2631.	2.2	4
3469	Derivatized Benzothiazoles as Two-Photon-Absorbing Organic Photosensitizers Active under Near Infrared Light Irradiation. Journal of the American Chemical Society, 2023, 145, 3535-3542.	6.6	28
3470	Breaking the Photostability and pH Limitation of Haloâ€Fluoresceins through Chitosan Conjugation. Advanced Materials, 2023, 35, .	11.1	0
3471	Recent advance in nanoparticle catalysts for C–C cross-coupling reaction. , 2023, , 41-73.		O

#	Article	IF	CITATIONS
3472	Haloperfluoroalkylation of Unactivated Terminal Alkenes over Phenylphenothiazine-Based Porous Organic Polymers. Chinese Journal of Organic Chemistry, 2023, 43, 1136.	0.6	1
3473	Synthesis of cyclopent-1-enecarbonitriles <i>via</i> a tandem Giese/HWE reaction initiated by visible light. Chemical Communications, 2023, 59, 4372-4375.	2.2	1
3474	A metal-free synthesis of pyrimidines from amidines with $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones <i>via</i> tandem [3 + 3] annulation and visible-light-enabled photo-oxidation. Organic and Biomolecular Chemistry, 2023, 21, 3411-3416.	1.5	1
3475	Contemporary photoelectrochemical strategies and reactions in organic synthesis. Chemical Communications, 2023, 59, 3487-3506.	2.2	11
3476	Visible-light-mediated \hat{l}^2 -acylative divergent alkene difunctionalization with Katritzky salt/CO ₂ . Green Chemistry, 2023, 25, 3633-3643.	4.6	5
3477	Structureâ€Property Relationships in a New Family of Photoactive Diimineâ€Diphosphine Copper(I) Complexes. Chemistry - A European Journal, 0, , .	1.7	0
3478	Photoenzymatic Hydrosulfonylation for the Stereoselective Synthesis of Chiral Sulfones. Angewandte Chemie, 0, , .	1.6	0
3479	Fullerene C ₇₀ as Photoredox Catalyst for the Synthesis of Pyrrolo[2,1â€a]isoquinolines by 1,3â€Dipolar Cycloadditionâ€Aromatization Sequence. Chemistry - A European Journal, 2023, 29, .	1.7	0
3480	Visibleâ€Lightâ€Induced Multicomponent Synthesis of Tetrasubstituted Imidazoles. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	1
3481	Expanding the Chemical Space of Nonâ€Proteinogenic <i>N</i> ⁴ â€Substituted Asparagine: Racemic, Enantioenriched, and Deuterated Derivatives. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
3482	Dual Photochemical Hâ€Atom Transfer and Cobalt Catalysis for the Desaturative Synthesis of Phenols from Cyclohexanones. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
3483	Visibleâ€Light Photoredoxâ€Catalyzed Radical Fluoromethoxylation of Olefins. Advanced Synthesis and Catalysis, 2023, 365, 1405-1412.	2.1	2
3484	Overcoming the Oxygen Dilemma in Photoredox Catalysis: Nearâ€Infrared (NIR) Lightâ€Triggered Peroxynitrite Generation for Antibacterial Applications. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
3485	Electronic transition dipole moments from time-independent excited-state density-functional tight-binding. Journal of Chemical Physics, 2023, 158, .	1.2	2
3486	Photoenzymatic Hydrosulfonylation for the Stereoselective Synthesis of Chiral Sulfones. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
3487	Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coordination Chemistry Reviews, 2023, 482, 215074.	9.5	27
3488	Role of hypercoordinated silicon(IV) complexes in activation of carbon–silicon bonds: An overview on utility in synthetic chemistry. Coordination Chemistry Reviews, 2023, 485, 215140.	9.5	2
3489	Development of Electrophilic Radical Perfluoroalkylation of Electronâ€Deficient Olefins. Chemical Record, 2023, 23, .	2.9	2

#	Article	IF	Citations
3490	Light-driven bioprocesses. ChemistrySelect, 2022, .	0.7	1
3492	Asymmetric counteranion-directed photoredox catalysis. Science, 2023, 379, 494-499.	6.0	22
3493	Recent advances in photochemical transformations using water as an oxygen source. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100759.	3.2	1
3494	Methylene blue as a photoâ€redox catalyst employed for the synthesis of pyrano[2,3â€ <i>d</i>) pyrimidine scaffolds via a singleâ€electron transfer/energy transfer pathway. Journal of Heterocyclic Chemistry, 2023, 60, 792-802.	1.4	2
3495	Polarity Transduction Enables the Formal Electronically Mismatched Radical Addition to Alkenes. Journal of the American Chemical Society, 2023, 145, 2773-2778.	6.6	13
3496	Recent Progress on Pyridine <i>N</i> à€Oxide in Organic Transformations: A Review. ChemistrySelect, 2023, 8, .	0.7	5
3497	Transition Metal-Free Regioselective Phosphonation of Pyridines: Scope and Mechanism. ACS Organic & Inorganic Au, 2023, 3, 151-157.	1.9	2
3498	Visible-Light-Promoted Dual Photoredox/Nickel-Catalyzed Chemoselective Reduction of Secondary and Tertiary Amides with Hydrosilanes in the Presence of an Ester. Journal of Organic Chemistry, 2023, 88, 2122-2131.	1.7	1
3499	Carbon Dots Based Photoinduced Reactions: Advances and Perspective. Advanced Science, 2023, 10, .	5.6	20
3500	pHâ€getriggerte Rýckgewinnung von photokatalytischen Partikeln aus organischen Polymeren zur Herstellung hochwertiger Verbindungen und verbesserter RecyclingfÃĦigkeit. Angewandte Chemie, 2023, 135, .	1.6	0
3501	Photochemical synthesis of pyrano[2,3-d]pyrimidine scaffolds using photoexcited organic dye, Na2 eosin Y as direct hydrogen atom transfer (HAT) photocatalyst via visible light-mediated under air atmosphere. BMC Chemistry, 2023, 17, .	1.6	3
3502	pHâ€Triggered Recovery of Organic Polymer Photocatalytic Particles for the Production of High Value Compounds and Enhanced Recyclability. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
3503	Metalâ€Free, Lightâ€Mediated, Siteâ€Specific, Radical C6â^'H Alkylation of Purines with Alcohols Intervened by Oxalates without Catalysts. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
3504	Photochemical Production of Molecular Hydrogen in the Presence of Substituted Acridine Salts. Russian Journal of General Chemistry, 2022, 92, 2816-2821.	0.3	0
3505	Water-Soluble Metallo-Supramolecular Nanoreactors for Mediating Visible-Light-Promoted Cross-Dehydrogenative Coupling Reactions. ACS Nano, 2023, 17, 3723-3736.	7.3	7
3506	Visible Lightâ€Triggered Radical Annulation of <i>ortho</i> òâ€Thioaryl Ynones: A General Approach to Prepare 3â€Sulfenylthiochromones. ChemCatChem, 2023, 15, .	1.8	2
3507	Metalâ€Free, Photoredoxâ€Catalyzed Synthesis of Quinazolinâ€4(3 <i>H</i>)â€ones and Benzo[4,5]imidazo[1,2â€ <i>c</i>)]quinazolines Using Trialkylamines as Alkyl Synthon. European Journal of Organic Chemistry, 2023, 26, .	1.2	4
3508	Erythrosine B Catalyzed Synthesis of trans-Dihydro-4H-furo[3,2-c]chromen-4-ones through Photocatalytic Dehydrogenative sp 3 C–O Bond Formation. Synthesis, 2023, 55, 2027-2036.	1.2	2

#	Article	IF	CITATIONS
3509	A Proton-Coupled Electron Transfer Strategy to the Redox-Neutral Photocatalytic CO ₂ Fixation. Journal of Organic Chemistry, 2023, 88, 6454-6464.	1.7	2
3510	Complexity-Building Photoinduced Cascade Involving C _{sp^{2< sup>}} Coupling of Aromatic Amides via [2 + 2] Reactivity of ESIPT-Generated ⟨i⟩o-⟨ i⟩Azaxylylenes. Organic Letters, 2023, 25, 1131-1135.	2.4	2
3511	Supramolecular Photosensitizer Enables Oxygen-Independent Generation of Hydroxyl Radicals for Photodynamic Therapy. Journal of the American Chemical Society, 2023, 145, 4081-4087.	6.6	85
3512	Anti-Markovnikov hydrochlorination and hydronitrooxylation of \hat{l}_{\pm} -olefins via visible-light photocatalysis. Nature Catalysis, 2023, 6, 196-203.	16.1	13
3513	Reactivity Tuning of Metalâ€Free Artificial Photoenzymes through Binding Site Specific Bioconjugation. European Journal of Organic Chemistry, 2023, 26, .	1.2	3
3514	Electrochemical Cycloaddition Reactions of Alkene Radical Cations: A Route toward Cyclopropanes and Cyclobutanes. Organic Letters, 2023, 25, 1142-1146.	2.4	2
3515	Continuous nucleation of metallic nanoparticles <i>via</i> photocatalytic reduction. Chemical Science, 2023, 14, 2860-2865.	3.7	1
3516	Synergistic Steric and Electronic Effects on the Photoredox Catalysis by a Multivariate Library of Titania Metal–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 4589-4600.	6.6	6
3517	Modular Synthesis of Triarylamines and Poly(triarylamine)s through a Radical Mechanism. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
3518	Nanoengineering Triplet–Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS Nano, 2023, 17, 3259-3288.	7.3	33
3519	Sunlight―or UVAâ€Lightâ€Mediated Synthesis of Hydroxamic Acids from Carboxylic Acids. European Journal of Organic Chemistry, 2023, 26, .	1.2	7
3520	Visible-light photoredox catalysis with organic polymers. Chemical Physics Reviews, 2023, 4, .	2.6	3
3521	Highly <i>E</i> â€Selective Olefin Synthesis Catalysed by Novel Quinoxalinone Photocatalyst under Visible Light Conditions. Chemistry - A European Journal, 0, , .	1.7	1
3522	Synthesis and Application Dichalcogenides as Radical Reagents with Photochemical Technology. Molecules, 2023, 28, 1998.	1.7	3
3523	Synthesis of New Amino-Functionalized Porphyrins:Preliminary Study of Their Organophotocatalytic Activity. Molecules, 2023, 28, 1997.	1.7	2
3524	Organophotocatalytic Mechanisms: Simplicity or Na \tilde{A} -vety? Diverting Reactive Pathways by Modifications of Catalyst Structure, Redox States and Substrate Preassemblies. ChemCatChem, 2023, 15, .	1.8	15
3525	Photoredox-Enabled Dearomatization of Protected Anilines: Access to Cyclohexadienone Imines with Contiguous Quaternary Centers. Organic Letters, 2023, 25, 1320-1325.	2.4	0
3526	Facile access to <i>gem</i> difluorocyclopropanes <i>via</i> an <i>N</i> heterocyclic carbene-catalyzed radical relay/cyclization strategy. Organic Chemistry Frontiers, 2023, 10, 1669-1674.	2.3	9

#	Article	IF	Citations
3527	Photoâ€Induced In Situ Generation of BrÃ,nsted Acid for Catalytic Friedel–Crafts Alkylation of Indoles. Chemistry - A European Journal, 2023, 29, .	1.7	1
3528	Visible light-enabled alkylation of enol acetates with alkylboronic acids for the synthesis of α-alkyl ketones. Organic Chemistry Frontiers, 2023, 10, 1710-1714.	2.3	3
3529	Competent production of hydrogen and hydrogenation of carboxylic acids using urea-rich waste water over visible-light-responsive rare earth doped photocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144, 104734.	2.7	4
3530	Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters. Chinese Journal of Polymer Science (English Edition), 2023, 41, 745-759.	2.0	4
3531	Lysosomes Targeting pH Activable Imagingâ€Guided Photodynamic Agents. ChemBioChem, 2023, 24, .	1.3	4
3532	Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)–H bonds. Chinese Journal of Catalysis, 2023, 46, 157-166.	6.9	5
3533	Tetrahydroxydiboron (Bisâ€boric Acid): a Versatile Reagent for Borylation, Hydrogenation, Catalysis, Radical Reactions and H ₂ Generation. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	4
3534	A Tailored COF for Visible-Light Photosynthesis of 2,3-Dihydrobenzofurans. Journal of the American Chemical Society, 2023, 145, 5074-5082.	6.6	30
3535	Practical and General Alcohol Deoxygenation Protocol. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
3536	Practical and General Alcohol Deoxygenation Protocol. Angewandte Chemie, 2023, 135, .	1.6	0
3537	Access to Azetidines via Gold Mediated Energy Transfer Photocatalysis. Organic Letters, 2023, 25, 1403-1408.	2.4	2
3538	Generation of Photoinduced Phenalenylâ€Based Radicals: Towards Designing Reductive Câ^'C Coupling Catalysis. ChemPhotoChem, 2023, 7, .	1.5	3
3539	Arthrocolins Synergizing with Fluconazole Inhibit Fluconazole-Resistant Candida albicans by Increasing Riboflavin Metabolism and Causing Mitochondrial Dysfunction and Autophagy. Microbiology Spectrum, 2023, 11, .	1.2	2
3540	A Photochemical Protocol for the Synthesis of Weinreb and Morpholine Amides from Carboxylic Acids. European Journal of Organic Chemistry, 2023, 26, .	1.2	3
3541	Applications of red light photoredox catalysis in organic synthesis. Organic and Biomolecular Chemistry, 2023, 21, 2472-2485.	1.5	7
3542	Photoredoxâ€Catalyzed Thiocyanative Cyclization of Biaryl Ynones to Thiocyanated Spiro[5.5]trienones: An Externalâ€Oxidant―and Transitionâ€Metalâ€Free Approach. ChemPhotoChem, 2023, 7, .	1.5	2
3543	Catalyst-Free Photoinduced C–C Bond Formations. Synthesis, 2023, 55, 1467-1486.	1.2	6
3544	Visible-Light-Induced Regio-selective Oxidative Coupling of Quinoxalinones with Pyrrole Derivatives. Chinese Journal of Organic Chemistry, 2023, 43, 697.	0.6	2

#	Article	IF	CITATIONS
3545	Visible-Light Photoredox-Catalyzed Giese Reaction of α-Silyl Ethers with Various Michael Acceptors. Journal of Organic Chemistry, 2023, 88, 3555-3566.	1.7	2
3546	Photoinduced Disulfide-Catalyzed Intramolecular Anti-Markovnikov Hydroamination through ⟨i⟩in Situ⟨ i⟩ Nâ€"S Species. Organic Letters, 2023, 25, 1600-1604.	2.4	7
3547	Red-Shifting Blue Light Photoredox Catalysis for Organic Synthesis: A Graphical Review. SynOpen, 2023, 07, 76-87.	0.8	5
3548	Unlocking the photo-dehydrogenation ability of naphthalene monoimide towards the synthesis of quinazolinones. Green Chemistry, 2023, 25, 2840-2845.	4.6	5
3549	Decarboxylative 1,4-Addition of α-Oxocarboxylic Acids with Michael Acceptors Enabled by Direct Excitation of Flavin-Dependent "Ene―Reductases. ACS Sustainable Chemistry and Engineering, 2023, 11, 4064-4072.	3.2	1
3550	Oxidative cross-coupling of quinoxalinones with indoles enabled by acidochromism. Organic and Biomolecular Chemistry, 2023, 21, 2709-2714.	1.5	4
3551	Sulfonamide as Photoinduced Hydrogen Atom Transfer Catalyst for Organophotoredox Hydrosilylation and Hydrogermylation of Activated Alkenes. Advanced Synthesis and Catalysis, 2023, 365, 976-982.	2.1	7
3552	An Umpolung Approach to Acyclic 1,4â€Dicarbonyl Amides via Photoredoxâ€Generated Carbamoyl Radicals. Chemistry - A European Journal, 2023, 29, .	1.7	4
3553	Visible Light Induced C-H/N-H and C-X Bonds Reactions. Reactions, 2023, 4, 189-230.	0.9	0
3554	A Visible-Light-Induced α-Aminoalkyl-Radical-Mediated Halogen-Atom Transfer Process: Modular Synthesis of Phenanthridinone Alkaloids. Organic Letters, 2023, 25, 1689-1694.	2.4	4
3555	Insights into the Role of Graphitic Carbon Nitride as a Photobase in Protonâ€Coupled Electron Transfer in (sp ³)Câ~'H Oxygenation of Oxazolidinones. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
3556	Visibleâ€Lightâ€Promoted Reaction of <i>N</i> à€Hydroxyphthalimide Esters with Vinyl Boronic Pinacol Ester. European Journal of Organic Chemistry, 2023, 26, .	1.2	4
3557	Einblicke in die Rolle von Graphitkohlenstoffnitrid als Photobase beim protonengekoppelten Elektronentransfer bei der (sp ³)Câ^'Hâ€Oxygenierung von Oxazolidinonen. Angewandte Chemie, 2023, 135, .	1.6	2
3558	Organophotoredoxâ€mediated Formal [3+2]â€Cycloaddition of 2 <i>H</i> â€Azirines with Aryldiazonium Salts: Direct Access to Trisubstituted 1,2,4â€Triazoles. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
3559	Organo-photocatalytic C–H bond oxidation: an operationally simple and scalable method to prepare ketones with ambient air. RSC Advances, 2023, 13, 7168-7178.	1.7	1
3560	Redox Inversion: A Radical Analogue of Umpolung Reactivity for Base- and Metal-Free Catalytic C(sp ³)–C(sp ³) Coupling. Journal of Organic Chemistry, 2023, 88, 3935-3940.	1.7	2
3561	Visible-Light-Induced Monofluoroalkenylation and <i>gem</i> -Difluoroallylation of Inactivated C(sp ³)â€"H Bonds via 1,5-Hydrogen Atom Transfer (HAT). Journal of Organic Chemistry, 2023, 88, 3883-3896.	1.7	3
3562	Lewisâ€Pairingâ€Induced Electrochemiluminescence Enhancement from Electron Donorâ€Acceptor Diads Decorated with Tris(pentafluorophenyl)borane as an Electrochemical Protector. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4

#	ARTICLE	IF	CITATIONS
3563	Lewisâ€Pairingâ€Induced Electrochemiluminescence Enhancement from Electron Donorâ€Acceptor Diads Decorated with Tris(pentafluorophenyl)borane as an Electrochemical Protector. Angewandte Chemie, 2023, 135, .	1.6	0
3564	Selective oxidation of benzylic alcohols <i>via</i> synergistic bisphosphonium and cobalt catalysis. Chemical Communications, 2023, 59, 4055-4058.	2.2	4
3565	Redox catalysis <i>via</i> photoinduced electron transfer. Chemical Science, 2023, 14, 4205-4218.	3.7	8
3566	Visibleâ€Lightâ€Induced Photocatalytic C3â€Trifluoroethylation of Quinoxalinâ€2â€(1 <i>H</i>)â€ones. Europea Journal of Organic Chemistry, 2023, 26, .	n 1.2	1
3567	Synthesis of thiophosphates by visible-light Daual photoredox/nickel catalysis. Tetrahedron, 2023, 136, 133338.	1.0	0
3568	Introducing Phenalenyl-Based Organic Lewis Acid as a Photocatalyst to Facilitate Oxidative Azolation of Unactivated Arenes. Organic Letters, 2023, 25, 1895-1900.	2.4	9
3569	Synthesis of pyrido $[1,2-\langle i\rangle a\langle i\rangle]$ indol-6(7 $\langle i\rangle H\langle i\rangle$)-ones $\langle i\rangle via\langle i\rangle$ a visible light-photocatalyzed formal (4 + 2) cycloaddition of indole-derived bromides and alkenes or alkynes. Green Chemistry, 2023, 25, 2453-2457.	4.6	2
3570	Organometallic Intermediates in the Synthesis of Photoluminescent Zirconium and Hafnium Complexes with Pyridine Dipyrrolide Ligands. Organometallics, 2023, 42, 1220-1231.	1.1	2
3571	Visible-light-absorbing C–N cross-coupling for the synthesis of hydrazones involving C(sp ²)–H/C(sp ³)–H functionalization. Chemical Communications, 2023, 59, 4075-4078.	2.2	6
3572	Monitoring Lightâ€Driven Oxygen Insertion Reactions into Metal Carbon Bonds by LEDâ€NMR Spectroscopy. ChemPhotoChem, 0, , .	1.5	O
3573	Visible-Light-Promoted Direct C3-H Cyanomethylation of 2 <i>H</i> li>Indazoles. ACS Omega, 2023, 8, 11192-11200.	1.6	0
3574	Triarylamines as catalytic donors in light-mediated electron donor–acceptor complexes. Chemical Science, 2023, 14, 3470-3481.	3.7	11
3575	Regioselective synthesis of phenanthridine-fused quinazolinones using a 9-mesityl-10-methylacridinium perchlorate photocatalyst. Chemical Communications, 2023, 59, 4455-4458.	2.2	7
3576	Polydopamine-Coated Polyurethane Foam as a Structured Support for the Development of an Easily Reusable Heterogeneous Photocatalyst Based on Eosin Y. Catalysts, 2023, 13, 589.	1.6	2
3577	Overcoming the Oxygen Dilemma in Photoredox Catalysis: Nearâ€Infrared (NIR) Lightâ€Triggered Peroxynitrite Generation for Antibacterial Applications. Angewandte Chemie, 0, , .	1.6	0
3578	Differentiation of Superoxide Radical Anion and Singlet Oxygen and Their Concurrent Quantifications by Nuclear Magnetic Resonance. Analytical Chemistry, 2023, 95, 5293-5299.	3.2	3
3579	Semi-heterogeneous g-C ₃ N ₄ /Nal dual catalytic C–C bond formation under visible light. Green Chemistry, 2023, 25, 3292-3296.	4.6	46
3580	Highâ€Throughput Optimization of Photochemical Reactions using Segmentedâ€Flow Nanoelectrospray <i>â€</i> i>lonization Mass Spectrometry**. Angewandte Chemie, 2023, 135, .	1.6	О

#	ARTICLE	IF	CITATIONS
3581	Highâ€Fhroughput Optimization of Photochemical Reactions using Segmentedâ€Flow Nanoelectrospray <i>â€∢/i>lonization Mass Spectrometry**. Angewandte Chemie - International Edition, 2023, 62, .</i>	7.2	3
3582	Hydrogen-bonded organic framework for red light-mediated photocatalysis. Nano Research, 2023, 16, 8809-8816.	5.8	5
3583	Construction of 3-Oxazolin-5-one via Visible Light-Induced Nondecarboxylative Coupling and Sequential Reactions. Organic Letters, 2023, 25, 2098-2102.	2.4	2
3584	Fluoroalkyl Sulfoximines for Versatile Photocatalytic Radical Fluoroalkylations. Chemical Record, 2023, 23, .	2.9	2
3585	Visible Lightâ€Induced Metalâ€Free Fluoroalkylations. Chemical Record, 2023, 23, .	2.9	4
3587	Organic transformations of isocyanides classified by their activation strategies. Bulletin of the Korean Chemical Society, 2023, 44, 578-595.	1.0	1
3588	Sulfonium Salts as Acceptors in Electron Donorâ€Acceptor Complexes. Angewandte Chemie, 0, , .	1.6	1
3589	Hydration of Arylacetylenes Promoted by the Photothermal ÂEffect of Gold Nanoparticles. Synthesis, 0, , .	1.2	0
3590	Sulfonium Salts as Acceptors in Electron Donorâ€Acceptor Complexes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
3591	Something new under the sun. Nature Chemistry, 2023, 15, 446-447.	6.6	0
3592	Increasing the Fluorescence Quantum Yield and Lifetime of the Flavin Chromophore by Rational Design. ChemPhotoChem, 2023, 7, .	1.5	2
3593	Visible-Light-Induced Radical Cascade Cross-Coupling via C(sp ³)–H Activation and C–N/N–O Cleavage: Feasible Access to Methylenebisamide Derivatives. Organic Letters, 2023, 25, 2300-2305.	2.4	4
3594	Direct detection of photo-induced reactions by IR: from Brook rearrangement to photo-catalysis. Photochemical and Photobiological Sciences, 2023, 22, 1683-1693.	1.6	1
3595	Energy-Transfer-Enabled Regioconvergent Alkylation of Azlactones via Photocatalytic Radical–Radical Coupling. ACS Catalysis, 2023, 13, 4894-4902.	5.5	2
3596	Deprotonation-Induced and Ion-Pairing-Modulated Diradical Properties of Partially Conjugated Pyrrole–Quinone Conjunction. Journal of the American Chemical Society, 2023, 145, 8122-8129.	6.6	3
3597	New application of an old dye: Bay-annulated indigo (BAI) as an organic photocatalyst for the oxidation of organic sulfides. Molecular Catalysis, 2023, 541, 113109.	1.0	1
3598	A general electron donor–acceptor complex enabled cascade cyclization of alkynes to access sulfur-containing heterocycles. Green Chemistry, 2023, 25, 3111-3116.	4.6	11
3599	Self-Sensitized Photooxidation of Naphthols to Naphthoquinones and the Use of Naphthoquinones as Visible Light Photocatalysts in Batch and Continuous Flow Reactors. Journal of Organic Chemistry, 2023, 88, 6498-6508.	1.7	3

#	ARTICLE	IF	CITATIONS
3600	Visible light induced eco sustainable synthesis of quinolines catalyzed by eosin Y. Journal of Heterocyclic Chemistry, 0 , , .	1.4	1
3601	Tungsten Oxo and Tungsten Imido Alkylidene N-Heterocyclic Carbene Complexes for the Visible-Light-Induced Ring-Opening Metathesis Polymerization of Dicyclopentadiene. Macromolecules, 2023, 56, 2878-2888.	2.2	3
3602	Metal-free photoinduced hydrogen atom transfer assisted C(sp ³)–H thioarylation. Green Chemistry, 2023, 25, 3431-3436.	4.6	7
3603	Integration of TADF Photosensitizer as "Electron Pump―and BSA as "Electron Reservoir―for Boosting Type I Photodynamic Therapy. Journal of the American Chemical Society, 2023, 145, 8130-8140.	6.6	32
3604	DNA-Encoded Libraries Via Late-Stage Functionalization Strategies: A Review. Chemical Communications, 0, , .	2.2	2
3605	Visible-light-induced chemo-, diastereo- and enantioselective α-C(sp ³)–H functionalization of alkyl silanes. Chemical Science, 0, , .	3.7	1
3606	An Efficient Lightâ€Mediated Protocol for the Direct Amide Bond Formation via a Novel Carboxylic Acid Photoactivation Mode by Pyridine Br ₄ . Chemistry - A European Journal, 2023, 29, .	1.7	6
3607	Visibleâ€Lightâ€Promoted Fluoroalkylative Cyclization of <i>N</i> â€Allylâ€4,5â€dihydroâ€3 <i>H</i> â€1â€benzazepinâ€2â€amines: Effective Synthesis of Fluoroalkylated Imidazobenzazepines. ChemistrySelect, 2023, 8, .	0.7	O
3608	Thianthrene Radical Cation as a Transient <scp>SET < /scp> Mediator: Photoinduced Thiocyanation and Selenocyanation of Arylthianthrenium Salts ^{†< /sup>. Chinese Journal of Chemistry, 2023, 41, 1979-1986.}</scp>	2.6	4
3609	Dual Photochemical Hâ€Atom Transfer & Desaturative Synthesis of Phenols from Cyclohexanones. Angewandte Chemie, 0, , .	1.6	0
3610	Graphitic carbon nitride materials in dual metallo-photocatalysis: a promising concept in organic synthesis. Green Chemistry, 2023, 25, 3374-3397.	4.6	13
3611	Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications. RSC Advances, 2023, 13, 10958-10986.	1.7	18
3612	Electrophotocatalytic Reductive 1, <scp>2â€Diarylation</scp> of Alkenes with Aryl Halides and Cyanoaromatics. Chinese Journal of Chemistry, 2023, 41, 1921-1930.	2.6	9
3614	Photocontrolled RAFT polymerization: past, present, and future. Chemical Society Reviews, 2023, 52, 3035-3097.	18.7	33
3615	Selective Cleavage of $\hat{Cl}\pm\hat{a}^{\circ}\hat{Cl}^{2}$ Bond in Lignin Models by Bifunctional Pyridinium Photocatalyst via PCET Process. Green Chemistry, 0, , .	4.6	0
3616	NHC-Catalyzed Synthesis of α-Sulfonyl Ketones via Radical-Mediated Sulfonyl Methylation of Aldehydes. Organic Letters, 2023, 25, 2657-2662.	2.4	11
3617	Nanomaterials in photocatalysed organic transformations: development, prospects and challenges. Chemical Communications, 2023, 59, 5987-6003.	2.2	5
3618	Phosphonylation of alkyl radicals. CheM, 2023, 9, 1945-1954.	5.8	15

#	Article	IF	CITATIONS
3619	Organocatalytic photoinduced carboamination of dienes. Chemical Communications, 2023, 59, 5579-5582.	2.2	2
3620	Olefination of carbonyls with alkenes enabled by electrophotocatalytic generation of distonic radical cations. Science Advances, 2023, 9, .	4.7	6
3621	Photocatalytic direct oxygen-isotopic labelings of carbonyls in ketones and aldehydes with oxygen-isotopic waters. Chinese Chemical Letters, 2023, 34, 108454.	4.8	0
3622	In(OTf)3-Catalyzed reorganization/cycloaddition of two imine units and subsequently modular assembly of acridinium photocatalysts. Chemical Science, 0, , .	3.7	2
3623	Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer. Journal of the American Chemical Society, 2023, 145, 9198-9206.	6.6	13
3624	Organic photoredox catalysts: tuning the operating mechanisms in the degradation of pollutants. Pure and Applied Chemistry, 2023, .	0.9	1
3625	Site- and Stereoselective Synthesis of Alkenyl Chlorides by Dual Functionalization of Internal Alkynes via Photoredox/Nickel Catalysis. Journal of the American Chemical Society, 2023, 145, 9876-9885.	6.6	7
3626	Heterobinuclear Metallocomplexes as Photocatalysts in Organic Synthesis. Catalysts, 2023, 13, 768.	1.6	0
3627	Photoinduced generation of ketyl radicals and application in C–C coupling withoutexternal photocatalyst. Green Chemistry, 2023, 25, 4129-4136.	4.6	9
3628	Halogen-Bonding-Promoted Photoinduced C–X Borylation of Aryl Halide Using Phenol Derivatives. Journal of Organic Chemistry, 2023, 88, 6176-6181.	1.7	7
3630	Recent advances in intramolecular [2+2] photocycloaddition for the synthesis of indoline-based scaffolds (microreview). Chemistry of Heterocyclic Compounds, 0, , .	0.6	0
3633	Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chemical Reviews, 2023, 123, 6793-6838.	23.0	11
3640	Visible-light-promoted C(sp ³)–H thiolation of aliphatic ethers with thiosulfonates. New Journal of Chemistry, 2023, 47, 9035-9039.	1.4	0
3641	Metal-organic frameworks as photocatalysts for aerobic oxidation reactions. Science China Chemistry, 2023, 66, 1634-1653.	4.2	12
3690	Visible-Light-Promoted Radical Cross-Dehydrogenative Coupling of C(sp ³)–H/C(sp ^{)–H/C(sp^{)–H via Intermolecular HAT. Organic Letters, 2023, 25, 4264-4269.}}	2.4	4
3699	Solvent-promoted photochemical carbonylation of benzylic C–H bonds under iron catalysis. Organic and Biomolecular Chemistry, 2023, 21, 5382-5386.	1.5	2
3709	Photoredox-catalyzed protecting-group-free <i>C</i> -glycosylation with glycosyl sulfinate <i>via</i> the Giese reaction. Chemical Communications, 2023, 59, 8564-8567.	2.2	3
3710	Übergangsmetallkatalysierte Kupplungsreaktionen. , 2023, , 615-751.		0

#	Article	IF	CITATIONS
3713	Moderne Radikal- und Redoxchemie. , 2023, , 859-879.		0
3722	Recent advances in catalytic decarboxylative transformations of carboxylic acid groups attached to a non-aromatic sp ² or sp carbon. Organic and Biomolecular Chemistry, 2023, 21, 5691-5724.	1.5	2
3739	Bifunctional 1-Hydroxypyrene Photocatalyst for Hydrodesulfurization via Reductive C(Aryl)–S Bond Cleavage. Organic Letters, 2023, 25, 3293-3297.	2.4	4
3745	Visible-Light Copper Catalysis for the Synthesis of α-Alkyl-Acetophenones by the Radical-Type Ring Opening of Sulfonium Salts and Oxidative Alkylation of Alkenes. Organic Letters, 2023, 25, 3260-3265.	2.4	5
3748	Photoredox-Catalyzed Multicomponent Synthesis of Functionalized Î ³ -Amino Butyric Acids via Reductive Radical Polar Crossover. Organic Letters, 2023, 25, 3429-3434.	2.4	4
3754	Visible light-assisted chemistry of vinyl azides and its applications in organic synthesis. Organic and Biomolecular Chemistry, 2023, 21, 4723-4743.	1.5	3
3765	CsPbBr ₃ Perovskite Photocatalyst in Chemodivergent Functionalization of <i>N</i> -Methylalkanamides Using CBr ₄ . Organic Letters, 2023, 25, 4075-4079.	2.4	5
3778	Mechanochemical Construction of Benzimidazole-Bridged Conjugated Porous Polymer Toward Versatile Photocatalysis. ACS Sustainable Chemistry and Engineering, 2023, 11, 10225-10232.	3.2	2
3789	Recent advances in the photocatalytic synthesis of aldehydes. Organic Chemistry Frontiers, 2023, 10, 4198-4210.	2.3	6
3799	Quantitative prediction of excited-state decay rates for radical anion photocatalysts. Chemical Communications, 2023, 59, 9726-9729.	2.2	1
3815	Combining Computational Fluid Dynamics, Photon Fate Simulation and Machine Learning to Optimize Continuous-Flow Photocatalytic Systems. Reaction Chemistry and Engineering, 0, , .	1.9	1
3826	Visible-light mediated, oxygen-promoted regioselective cross-dehydrogenative coupling of coumarins and dimethylanilines. Organic and Biomolecular Chemistry, 2023, 21, 6671-6674.	1.5	0
3832	Photoinduced activation of alkyl chlorides. Chemical Society Reviews, 2023, 52, 6120-6138.	18.7	5
3854	Photoredox-catalyzed 1,2-oxo-alkylation of vinyl arenes with 1,3-diketones: an approach to 1,4-dicarbonyls <i>via</i> C–C activation. Chemical Communications, 2023, 59, 11433-11436.	2.2	1
3865	Diastereoselectivity in Photochemistry. , 2023, , .		0
3881	Visible light-induced organophotoredox-catalyzed difunctionalization of alkenes and alkynes. Green Chemistry, 2023, 25, 8459-8493.	4.6	2
3883	Visible-light induced cross-electrophile coupling of imines and anhydrides to synthesize \hat{l} ±-amino ketones. Chemical Communications, 2023, 59, 10668-10671.	2.2	1
3890	Photoinduced copper-catalyzed selective three-component 1,2-amino oxygenation of 1,3-dienes. Chemical Communications, 2023, 59, 10388-10391.	2.2	1

#	Article	IF	Citations
3900	Bifunctional organic photocatalysts for enantioselective visible-light-mediated photocatalysis., 2023, 2, 913-925.		2
3931	Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. Journal of Materials Chemistry A, 2023, 11 , 22656-22687.	5.2	4
3933	Novel enzymatic tools for C–C bond formation through the development of new-to-nature biocatalysis. Advances in Catalysis, 2023, , .	0.1	0
3960	Photoenzymatic Catalysis for Organic Synthesis. , 2023, , .		0
3963	Aliphatic Câ€"H arylation with heteroarenes without photocatalysts. Green Chemistry, 2023, 25, 8500-8504.	4.6	2
3978	Reductive Dicarbofunctionalization of C–C π-Bonds. , 2023, , .		0
3987	Diastereoselective organophotocatalytic hydrosulfonylation of cyclopropenes. Green Chemistry, 2023, 25, 9086-9091.	4.6	1
3990	Evaluating the green credentials of flow chemistry towards industrial applications. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 0, , .	0.9	0
3996	Development and application of decatungstate catalyzed C–H ¹⁸ F- and ¹⁹ F-fluorination, fluoroalkylation and beyond. Chemical Science, 2023, 14, 12883-12897.	3.7	1
3998	Visible-light-induced bifunctionalisation of (homo)propargylic amines with CO ₂ and arylsulfinates. Chemical Communications, 2023, 59, 13711-13714.	2.2	0
4012	Recent advances in combining photo- and N-heterocyclic carbene catalysis. Chemical Science, 2023, 14, 13367-13383.	3.7	4
4020	Recent advances in ring-opening of cyclobutanone oximes for capturing SO ₂ , CO or O ₂ <i>via</i>) a radical process. Organic and Biomolecular Chemistry, 0, , .	1.5	0
4065	Cu(<scp>ii</scp>) salts as terminal oxidants in visible-light photochemical oxidation reactions. Organic and Biomolecular Chemistry, 0, , .	1.5	0
4072	Divergent process for the catalytic decarboxylative thiocyanation and isothiocyanation of carboxylic acids promoted by visible light. Chemical Communications, 0, , .	2.2	1
4085	Visible-light mediated strategies for the synthesis of nitrogen-based heterocycles. , 2023, , 410-435.		0
4094	Harnessing Photocatalytic and Electrochemical Approaches for C-H Bond Trifluoromethylation and Fluoroalkylation. Organic Chemistry Frontiers, 0, , .	2.3	0
4102	Comonomer effects in vinyl based photocatalytic polymers. , 0, , .		0
4103	Advances in Photoinduced Radical-Polar Crossover Cyclization (RPCC) of Bifunctional Alkenes. Organic Chemistry Frontiers, 0, , .	2.3	1

#	Article	IF	CITATIONS
4104	Photochemical routes to artemisinin. , 2023, , 301-330.		0
4107	Metal-free semiconductors for visible-light-induced carbocarboxylation of styrenes with aliphatic redox-active esters and CO ₂ . Green Chemistry, 2024, 26, 1317-1321.	4.6	1
4118	Arylazo sulfones: multifaceted photochemical reagents and beyond. Organic and Biomolecular Chemistry, $0, \ldots$	1.5	0
4129	Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chemical Science, 2024, 15, 1204-1236.	3.7	1
4131	Total Synthesis Involving a Stereoselective Photoredox Step. , 2024, , .		0
4132	Asymmetric Photochemical Transformations Using a Chiral Hydrogen Bond Donor. , 2024, , .		0
4149	Energy transfer photocatalysis: exciting modes of reactivity. Chemical Society Reviews, 2024, 53, 1068-1089.	18.7	7
4169	Novel applications of photobiocatalysts in chemical transformations. RSC Advances, 2024, 14, 2590-2601.	1.7	0
4184	Recent advances in oxidative chlorination. Organic and Biomolecular Chemistry, 2024, 22, 1580-1601.	1.5	0
4190	Photochemical Synthesis of Fine Chemicals. , 2024, , .		0
4196	Nature of ultrafast dynamics in the lowest-lying singlet excited state of [Ru(bpy) ₃] ²⁺ . Physical Chemistry Chemical Physics, 2024, 26, 6524-6531.	1.3	0
4199	Asymmetric Photochemical Domino/Cascade Processes. , 2024, , .		0
4203	Photocatalytic cyclization of 3-(2-isocyanophenyl)quinazolin- $4(3 < i > H < /i >)$ -ones for the construction of quinoxalino[2,1- $< i > b < /i >$] quinazolinones. Chemical Communications, 2024, 60, 2556-2559.	2.2	0
4210	Photocatalyst-free visible-light-promoted C(sp ^{>2})–P coupling: efficient synthesis of aryl phosphonates. Organic and Biomolecular Chemistry, 2024, 22, 1794-1799.	1.5	0
4216	Selected Diastereoselective Reactions: Photoredox Chemistry in Enantiopure Compounds Synthesis. , 2024, , .		0
4222	Multiple-cycle photochemical cascade reactions. Organic and Biomolecular Chemistry, 2024, 22, 2156-2174.	1.5	0
4224	Challenges and recent advancements in the synthesis of $\hat{l}_{\pm}, \hat{l}_{\pm}$ -disubstituted \hat{l}_{\pm} -amino acids. Nature Communications, 2024, 15, .	5.8	0