Dissecting direct reprogramming from fibroblast to neu

Nature 534, 391-395 DOI: 10.1038/nature18323

Citation Report

#	Article	IF	CITATIONS
1	Cycling through developmental decisions: how cell cycle dynamics control pluripotency, differentiation and reprogramming. Development (Cambridge), 2016, 143, 4301-4311.	1.2	151
2	Dominant Isoform in Alternative Splicing in HeLa S3 Cell Line Revealed by Single-cell RNA-seq. , 2016, , .		3
3	Small molecules increase direct neural conversion of human fibroblasts. Scientific Reports, 2016, 6, 38290.	1.6	48
4	Advanced Technologies Lead iNto New Reprogramming Routes. Cell Stem Cell, 2016, 19, 286-288.	5.2	0
5	InÂVivo Cellular Reprogramming: The Next Generation. Cell, 2016, 166, 1386-1396.	13.5	234
6	Computational methods for trajectory inference from singleâ€cell transcriptomics. European Journal of Immunology, 2016, 46, 2496-2506.	1.6	169
7	Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks. Development (Cambridge), 2016, 143, 2696-2705.	1.2	67
8	Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell, 2016, 19, 406-414.	5.2	182
9	Stem cells: a dish of neurons. Nature Methods, 2016, 13, 617-622.	9.0	3
10	Disentangling neural cell diversity using single-cell transcriptomics. Nature Neuroscience, 2016, 19, 1131-1141.	7.1	283
11	Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications. Stem Cell Reviews and Reports, 2016, 12, 708-720.	5.6	26
12	Cellular identity at the single-cell level. Molecular BioSystems, 2016, 12, 2965-2979.	2.9	17
13	Computational methods for direct cell conversion. Cell Cycle, 2016, 15, 3343-3354.	1.3	13
14	Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discovery, 2016, 2, 16036.	3.1	42
15	Brain versus brawn. Nature, 2016, 534, 332-333.	13.7	5
16	Pooled CRISPR screening with single-cell transcriptome readout. Nature Methods, 2017, 14, 297-301.	9.0	749
17	Single-cell mRNA quantification and differential analysis with Census. Nature Methods, 2017, 14, 309-315.	9.0	1,179
18	Studying hematopoiesis using single-cell technologies. Journal of Hematology and Oncology, 2017, 10, 27.	6.9	39

~			_	
C^{-1}		ON	DEDC	NDT
	IAH		REPC	JKT

#	ARTICLE	IF	CITATIONS
19	Dissection of Regulatory Elements During Direct Conversion of Somatic Cells Into Neurons. Journal of Cellular Biochemistry, 2017, 118, 3158-3170.	1.2	8
20	Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biology, 2017, 18, 45.	3.8	134
21	Single-Cell Transcriptome Analysis of Neural Stem Cells. Current Pharmacology Reports, 2017, 3, 68-76.	1.5	3
22	Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution. Cell Stem Cell, 2017, 20, 817-830.e8.	5.2	164
23	PRODUCTION OF A PRELIMINARY QUALITY CONTROL PIPELINE FOR SINGLE NUCLEI RNA-SEQ AND ITS APPLICATION IN THE ANALYSIS OF CELL TYPE DIVERSITY OF POST-MORTEM HUMAN BRAIN NEOCORTEX. , 2017, 22, 564-575.		8
24	Adaptation responses of individuals to environmental changes in the ciliate Euplotes crassus. Ocean Science Journal, 2017, 52, 127-138.	0.6	3
25	Towards understanding transcriptional networks in cellular reprogramming. Current Opinion in Genetics and Development, 2017, 46, 1-8.	1.5	3
26	Brain repair from intrinsic cell sources. Progress in Brain Research, 2017, 230, 69-97.	0.9	42
27	The novel tool of cell reprogramming for applications in molecular medicine. Journal of Molecular Medicine, 2017, 95, 695-703.	1.7	19
28	Measuring Signaling and RNA-Seq in the Same Cell Links Gene Expression to Dynamic Patterns of NF-κB Activation. Cell Systems, 2017, 4, 458-469.e5.	2.9	141
29	Partial Reprogramming of Pluripotent Stem Cell-Derived Cardiomyocytes into Neurons. Scientific Reports, 2017, 7, 44840.	1.6	16
30	SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics, 2017, 33, 2314-2321.	1.8	297
31	Single-Cell Transcriptional Analysis. Annual Review of Analytical Chemistry, 2017, 10, 439-462.	2.8	93
32	Future perspectives in adult stem cell turnover: Implications for endocrine physiology and disease. Molecular and Cellular Endocrinology, 2017, 445, 1-6.	1.6	3
34	Dysregulated gene expressions of MEX3D, FOS and BCL2 in human induced-neuronal (iN) cells from NF1 patients: a pilot study. Scientific Reports, 2017, 7, 13905.	1.6	13
35	The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron, 2017, 96, 542-557.	3.8	235
36	Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons. Cell Reports, 2017, 20, 3236-3247.	2.9	121
37	RNA localization is a key determinant of neurite-enriched proteome. Nature Communications, 2017, 8, 583.	5.8	176

#	Article	IF	CITATIONS
38	Reprogramming of somatic cells. Progress in Brain Research, 2017, 230, 53-68.	0.9	7
39	ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells. Cell Stem Cell, 2017, 21, 209-224.e7.	5.2	150
40	Programming and reprogramming the brain: a meeting of minds in neural fate. Development (Cambridge), 2017, 144, 2714-2718.	1.2	4
41	Enhanced Neuronal Regeneration in the CAST/Ei Mouse Strain Is Linked to Expression of Differentiation Markers after Injury. Cell Reports, 2017, 20, 1136-1147.	2.9	26
42	In vivo reprogramming for tissue regeneration and organismal rejuvenation. Current Opinion in Genetics and Development, 2017, 46, 132-140.	1.5	31
43	In Vivo Lineage Reprogramming of Fibroblasts to Cardiomyocytes for Heart Regeneration. Pancreatic Islet Biology, 2017, , 45-63.	0.1	1
44	New technologies for engineering neural tissue from stem cells. , 2017, , 181-204.		1
45	Stem cells and their applications in repairing the damaged nervous system. , 2017, , 39-64.		1
46	Single-cell Co-expression Subnetwork Analysis. Scientific Reports, 2017, 7, 15066.	1.6	19
47	Injury Activates Transient Olfactory Stem Cell States with Diverse Lineage Capacities. Cell Stem Cell, 2017, 21, 775-790.e9.	5.2	67
48	Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming. Stem Cell Reports, 2017, 9, 1780-1795.	2.3	30
49	Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nature Communications, 2017, 8, 1627.	5.8	151
50	Direct induction of functional neuronal cells from fibroblast-like cells derived from adult human retina. Stem Cell Research, 2017, 23, 61-72.	0.3	7
51	Direct Neuronal Reprogramming: Achievements, Hurdles, and New Roads to Success. Cell Stem Cell, 2017, 21, 18-34.	5.2	147
52	Engineering cell identity: establishing new gene regulatory and chromatin landscapes. Current Opinion in Genetics and Development, 2017, 46, 50-57.	1.5	29
53	Comprehensive investigation of temporal and autism-associated cell type composition-dependent and independent gene expression changes in human brains. Scientific Reports, 2017, 7, 4121.	1.6	34
54	Production of endothelial progenitor cells from skin fibroblasts by direct reprogramming for clinical usages. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 207-216.	0.7	11
55	Direct Conversion Through Trans-Differentiation: Efficacy and Safety. Stem Cells and Development, 2017, 26, 154-165.	1.1	12

#	Article	IF	CITATIONS
56	Cerebral cortical neuron diversity and development at single-cell resolution. Current Opinion in Neurobiology, 2017, 42, 9-16.	2.0	51
57	In Vivo Reprogramming in Regenerative Medicine. Pancreatic Islet Biology, 2017, , .	0.1	0
58	Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nature Communications, 2017, 8, 2225.	5.8	143
59	Genomic and molecular control of cell type and cell type conversions. Cell Regeneration, 2017, 6, 1-7.	1.1	12
60	Direct reprogramming of mouse fibroblasts into neural cells via Porphyra yezoensis polysaccharide based high efficient gene co-delivery. Journal of Nanobiotechnology, 2017, 15, 82.	4.2	7
61	Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development. BMC Genomics, 2017, 18, 946.	1.2	70
62	Mouse embryonic stem cells can differentiate via multiple paths to the same state. ELife, 2017, 6, .	2.8	63
63	Induced Pluripotent Stem Cell Neuronal Models for the Study of Autophagy Pathways in Human Neurodegenerative Disease. Cells, 2017, 6, 24.	1.8	18
64	The Human Cell Atlas. ELife, 2017, 6, .	2.8	1,547
65	Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem Cell Research and Therapy, 2017, 8, 207.	2.4	45
66	Mapping the Mouse Cell Atlas by Microwell-Seq. Cell, 2018, 172, 1091-1107.e17.	13.5	1,068
67	Materials for Neural Differentiation, Transâ€Differentiation, and Modeling of Neurological Disease. Advanced Materials, 2018, 30, e1705684.	11.1	30
68	<i>Brn2</i> Alone Is Sufficient to Convert Astrocytes into Neural Progenitors and Neurons. Stem Cells and Development, 2018, 27, 736-744.	1.1	20
69	The poly istronic expression of four transcriptional factors (CRX, RAX, NEUROâ€D, OTX2) in fibroblasts via retro―or lentivirus causes partial reprogramming into photoreceptor cells. Cell Biology International, 2018, 42, 608-614.	1.4	3
70	Will cardiac surgeons even turn pumpkins into carriages?. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1647-1649.	0.4	0
71	Reconstructing differentiation networks and their regulation from time series single-cell expression data. Genome Research, 2018, 28, 383-395.	2.4	39
72	scmap: projection of single-cell RNA-seq data across data sets. Nature Methods, 2018, 15, 359-362.	9.0	533
73	Natural and forced neurogenesis: similar and yet different?. Cell and Tissue Research, 2018, 371, 181-187.	1.5	1

#	Article	IF	CITATIONS
74	Differential gene regulatory networks in development and disease. Cellular and Molecular Life Sciences, 2018, 75, 1013-1025.	2.4	78
75	Lessons from single-cell transcriptome analysis of oxygen-sensing cells. Cell and Tissue Research, 2018, 372, 403-415.	1.5	8
76	Single-cell RNA sequencing: Technical advancements and biological applications. Molecular Aspects of Medicine, 2018, 59, 36-46.	2.7	258
77	Cell Subclass Identification in Single-Cell RNA-Sequencing Data Using Orthogonal Nonnegative Matrix Factorization. , 2018, , .		1
79	Combined Numerical and Experimental Investigation of Localized Electroporation-Based Cell Transfection and Sampling. ACS Nano, 2018, 12, 12118-12128.	7.3	85
80	Transdifferentiating Astrocytes Into Neurons Using ASCL1 Functionalized With a Novel Intracellular Protein Delivery Technology. Frontiers in Bioengineering and Biotechnology, 2018, 6, 173.	2.0	11
81	Understanding the Biology and Pathogenesis of the Kidney by Single-Cell Transcriptomic Analysis. Kidney Diseases (Basel, Switzerland), 2018, 4, 214-225.	1.2	5
82	Tracing the Origins of Axolotl Limb Regeneration. Developmental Cell, 2018, 47, 675-677.	3.1	3
83	Direct reprogramming of fibroblasts into antigen-presenting dendritic cells. Science Immunology, 2018, 3, .	5.6	62
84	Single-cell mapping of lineage and identity in direct reprogramming. Nature, 2018, 564, 219-224.	13.7	255
85	Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by Glia. Cell Reports, 2018, 24, 3619-3629.e4.	2.9	109
86	KMT2B Is Selectively Required for Neuronal Transdifferentiation, and Its Loss Exposes Dystonia Candidate Genes. Cell Reports, 2018, 25, 988-1001.	2.9	28
87	Aligning Single-Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of Myogenic Reprogramming Outcome. Cell Systems, 2018, 7, 258-268.e3.	2.9	65
88	Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases. Annual Review of Genetics, 2018, 52, 271-293.	3.2	206
89	Single-cell genomics to guide human stem cell and tissue engineering. Nature Methods, 2018, 15, 661-667.	9.0	52
90	Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell Reports, 2018, 23, 2509-2523.	2.9	168
91	Creating Lineage Trajectory Maps Via Integration of Singleâ€Cell RNAâ€ S equencing and Lineage Tracing. BioEssays, 2018, 40, e1800056.	1.2	21
93	LONGO: an R package for interactive gene length dependent analysis for neuronal identity.	1.8	19

~	~
	REPORT
CITAI	KLFOK

#	Article	IF	CITATIONS
94	Single-cell RNA-seq analysis identifies markers of resistance to targeted BRAF inhibitors in melanoma cell populations. Genome Research, 2018, 28, 1353-1363.	2.4	71
95	High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor. PLoS Genetics, 2018, 14, e1007552.	1.5	68
96	DrImpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics, 2018, 19, 220.	1.2	258
97	More than one way to induce a neuron. Nature, 2018, 557, 316-317.	13.7	3
98	Transdifferentiation: do transition states lie on the path of development?. Current Opinion in Systems Biology, 2018, 11, 18-23.	1.3	17
99	Cell fate reprogramming through engineering of native transcription factors. Current Opinion in Genetics and Development, 2018, 52, 109-116.	1.5	8
100	TCM visualizes trajectories and cell populations from single cell data. Nature Communications, 2018, 9, 2749.	5.8	18
101	Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy. Frontiers in Cell and Developmental Biology, 2018, 6, 16.	1.8	36
102	Single-Cell Transcriptomics Meets Lineage Tracing. Cell Stem Cell, 2018, 23, 166-179.	5.2	306
103	Reprogramming, oscillations and transdifferentiation in epigenetic landscapes. Scientific Reports, 2018, 8, 7358.	1.6	14
104	Diverse reprogramming codes for neuronal identity. Nature, 2018, 557, 375-380.	13.7	94
105	In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells. Scientific Reports, 2018, 8, 12060.	1.6	30
106	Transdifferentiation of human adult peripheral blood T cells into neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6470-6475.	3.3	71
107	Understanding direct neuronal reprogramming — from pioneer factors to 3D chromatin. Current Opinion in Genetics and Development, 2018, 52, 65-69.	1.5	8
108	Neural stem cell heterogeneity in the mammalian forebrain. Progress in Neurobiology, 2018, 170, 2-36.	2.8	15
109	Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nature Neuroscience, 2018, 21, 932-940.	7.1	93
110	Using Large Datasets to Understand Nanotechnology. Advanced Materials, 2019, 31, e1902798.	11.1	45
111	Distinct Molecular Trajectories Converge to Induce Naive Pluripotency. Cell Stem Cell, 2019, 25, 388-406.e8.	5.2	33

#	Article	IF	CITATIONS
112	Antioxidant Regulation of Cell Reprogramming. Antioxidants, 2019, 8, 323.	2.2	7
113	SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data Across Platforms and Across Species. Cell Systems, 2019, 9, 207-213.e2.	2.9	225
114	Single-cell landscape in mammary epithelium reveals bipotent-like cells associated with breast cancer risk and outcome. Communications Biology, 2019, 2, 306.	2.0	41
115	Reconstructing complex lineage trees from scRNA-seq data using MERLoT. Nucleic Acids Research, 2019, 47, 8961-8974.	6.5	18
116	Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. Journal of Neuroscience Methods, 2019, 325, 108350.	1.3	26
117	Single-Cell Analysis Reveals Regional Reprogramming During Adaptation to Massive Small Bowel Resection in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 407-426.	2.3	24
118	Searching for Potential Lipid Biomarkers of Parkinson's Disease in Parkin-Mutant Human Skin Fibroblasts by HILIC-ESI-MS/MS: Preliminary Findings. International Journal of Molecular Sciences, 2019, 20, 3341.	1.8	15
119	Cell Reprogramming: The Many Roads to Success. Annual Review of Cell and Developmental Biology, 2019, 35, 433-452.	4.0	51
120	Direct Lineage Reprogramming for Brain Repair:ÂBreakthroughs and Challenges. Trends in Molecular Medicine, 2019, 25, 897-914.	3.5	32
121	Direct reprogramming into interneurons: potential for brain repair. Cellular and Molecular Life Sciences, 2019, 76, 3953-3967.	2.4	23
122	Single-Cell Transcriptomic Analyses of Cell Fate Transitions during Human Cardiac Reprogramming. Cell Stem Cell, 2019, 25, 149-164.e9.	5.2	87
123	Context-Specific Transcription Factor Functions Regulate Epigenomic and Transcriptional Dynamics during Cardiac Reprogramming. Cell Stem Cell, 2019, 25, 87-102.e9.	5.2	89
124	CRISPR/dCas9â€mediated activation of multiple endogenous target genes directly converts human foreskin fibroblasts into Leydigâ€like cells. Journal of Cellular and Molecular Medicine, 2019, 23, 6072-6084.	1.6	14
125	Quantifying the interplay between genetic and epigenetic regulations in stem cell development. New Journal of Physics, 2019, 21, 103042.	1.2	12
126	Nextâ€generation disease modeling with direct conversion: a new path to old neurons. FEBS Letters, 2019, 593, 3316-3337.	1.3	38
127	Acquisition of functional neurons by direct conversion: Switching the developmental clock directly. Journal of Genetics and Genomics, 2019, 46, 459-465.	1.7	6
128	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
129	Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. ELife, 2019, 8, .	2.8	64

#	Article	IF	CITATIONS
130	Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Research and Therapy, 2019, 10, 166.	2.4	24
131	Rational Reprogramming of Cellular States by Combinatorial Perturbation. Cell Reports, 2019, 27, 3486-3499.e6.	2.9	18
132	Transcriptome Analysis of Small Molecule–Mediated Astrocyte-to-Neuron Reprogramming. Frontiers in Cell and Developmental Biology, 2019, 7, 82.	1.8	32
133	Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Analytical Biochemistry, 2019, 581, 113348.	1.1	13
134	Hand2 Selectively Reorganizes Chromatin Accessibility to Induce Pacemaker-like Transcriptional Reprogramming. Cell Reports, 2019, 27, 2354-2369.e7.	2.9	23
135	Investigating Cell Fate Decisions with ICGS Analysis of Single Cells. Methods in Molecular Biology, 2019, 1975, 251-275.	0.4	3
136	Signals trigger state-specific transcriptional programs to support diversity and homeostasis in immune cells. Science Signaling, 2019, 12, .	1.6	6
137	Continuous-state HMMs for modeling time-series single-cell RNA-Seq data. Bioinformatics, 2019, 35, 4707-4715.	1.8	34
138	Cell lineage inference from SNP and scRNA-Seq data. Nucleic Acids Research, 2019, 47, e56-e56.	6.5	21
139	Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation. PLoS Biology, 2019, 17, e2006506.	2.6	8
140	Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production. Developmental Cell, 2019, 49, 118-129.e7.	3.1	22
141	Recurrent Neural Network for Gene Regulation Network Construction on Time Series Expression Data. , 2019, , .		4
142	scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biology, 2019, 20, 264.	3.8	263
143	Understanding and Modulating Immunity With Cell Reprogramming. Frontiers in Immunology, 2019, 10, 2809.	2.2	13
144	Turning fibroblasts into cardiomyocytes: technological review of cardiac transdifferentiation strategies. FASEB Journal, 2019, 33, 49-70.	0.2	14
145	Alternative 3′ UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Research, 2019, 47, 2560-2573.	6.5	86
146	Glycolytic Switch Is Required for Transdifferentiation to Endothelial Lineage. Circulation, 2019, 139, 119-133.	1.6	35
147	Instructing neuronal identity during CNS development and astroglial-lineage reprogramming: Roles of NEUROG2 and ASCL1. Brain Research, 2019, 1705, 66-74.	1.1	20

#	Article	IF	CITATIONS
148	ELF: Extract Landmark Features By Optimizing Topology Maintenance, Redundancy, and Specificity. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 411-421.	1.9	3
149	Probing disrupted neurodevelopment in autism using human stem cellâ€derived neurons and organoids: An outlook into future diagnostics and drug development. Developmental Dynamics, 2020, 249, 6-33.	0.8	25
150	scTIM: seeking cell-type-indicative marker from single cell RNA-seq data by consensus optimization. Bioinformatics, 2020, 36, 2474-2485.	1.8	12
152	Quick Commitment and Efficient Reprogramming Route of Direct Induction of Retinal Ganglion Cell-like Neurons. Stem Cell Reports, 2020, 15, 1095-1110.	2.3	16
153	Engineering cell fate: Applying synthetic biology to cellular reprogramming. Current Opinion in Systems Biology, 2020, 24, 18-31.	1.3	13
154	Single-cell Transcriptome Profiling reveals Dermal and Epithelial cell fate decisions during Embryonic Hair Follicle Development. Theranostics, 2020, 10, 7581-7598.	4.6	46
155	Investigating higher-order interactions in single-cell data with scHOT. Nature Methods, 2020, 17, 799-806.	9.0	51
156	3Scover: Identifying Safeguard TF from Cell Type-TF Specificity Network by an Extended Minimum Set Cover Model. IScience, 2020, 23, 101227.	1.9	0
157	The iNs and Outs of Direct Reprogramming to Induced Neurons. Frontiers in Genome Editing, 2020, 2, 7.	2.7	7
158	KMT2B and Neuronal Transdifferentiation: Bridging Basic Chromatin Mechanisms to Disease Actionability. Neuroscience Insights, 2020, 15, 263310552092806.	0.9	1
159	scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data. PLoS Computational Biology, 2020, 16, e1007471.	1.5	9
160	A Widespread Neurogenic Potential of Neocortical Astrocytes Is Induced by Injury. Cell Stem Cell, 2020, 27, 605-617.e5.	5.2	77
161	Mapping regulators of cell fate determination: Approaches and challenges. APL Bioengineering, 2020, 4, 031501.	3.3	1
162	Single-Cell Analysis of Neonatal HSC Ontogeny Reveals Gradual and Uncoordinated Transcriptional Reprogramming that Begins before Birth. Cell Stem Cell, 2020, 27, 732-747.e7.	5.2	53
163	Looking at neurodevelopment through a big data lens. Science, 2020, 369, .	6.0	28
164	Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Science Immunology, 2020, 5, .	5.6	127
165	Chemicals orchestrate reprogramming with hierarchical activation of master transcription factors primed by endogenous Sox17 activation. Communications Biology, 2020, 3, 629.	2.0	7
166	Unraveling Targetable Systemic and Cell-Type-Specific Molecular Phenotypes of Alzheimer's and Parkinson's Brains With Digital Cytometry. Frontiers in Neuroscience, 2020, 14, 607215.	1.4	6

#	Article	IF	CITATIONS
167	APEC: an accesson-based method for single-cell chromatin accessibility analysis. Genome Biology, 2020, 21, 116.	3.8	12
168	Direct reprogramming of mouse fibroblasts into hepatocyte-like cells by polyethyleneimine-modified nanoparticles through epigenetic activation of hepatic transcription factors. Materials Today Chemistry, 2020, 17, 100281.	1.7	4
169	Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Bioinformatics, 2020, 36, 4774-4780.	1.8	66
170	Transcription Factor-Based Fate Specification and Forward Programming for Neural Regeneration. Frontiers in Cellular Neuroscience, 2020, 14, 121.	1.8	36
171	Time course regulatory analysis based on paired expression and chromatin accessibility data. Genome Research, 2020, 30, 622-634.	2.4	35
173	Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes. Nature Cell Biology, 2020, 22, 401-411.	4.6	38
174	CALISTA: Clustering and LINEAGE Inference in Single-Cell Transcriptional Analysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 18.	2.0	10
175	Epitranscriptomic N ⁶ -Methyladenosine Modification Is Required for Direct Lineage Reprogramming into Neurons. ACS Chemical Biology, 2020, 15, 2087-2097.	1.6	8
176	Inferring TF activation order in time series scRNA-Seq studies. PLoS Computational Biology, 2020, 16, e1007644.	1.5	9
177	Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. Biochemistry (Moscow), 2020, 85, 108-130.	0.7	13
178	Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2. EMBO Journal, 2020, 39, e102591.	3.5	20
179	A Non-Negative Matrix Factorization-Based Framework for the Analysis of Multi-Class Time-Series Single-Cell RNA-Seq Data. IEEE Access, 2020, 8, 42342-42348.	2.6	3
180	Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 131-158.	1.6	22
181	Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts. Journal of Molecular Cell Biology, 2021, 13, 29-40.	1.5	21
182	Population structure of Cydia pomonella granulovirus isolates revealed by quantitative analysis of genetic variation. Virus Evolution, 2021, 7, veaa073.	2.2	10
183	Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Molecular and Cellular Neurosciences, 2021, 110, 103568.	1.0	30
184	Deconstructing Stepwise Fate Conversion of Human Fibroblasts to Neurons by MicroRNAs. Cell Stem Cell, 2021, 28, 127-140.e9.	5.2	39
185	Identify differential genes and cell subclusters from time-series scRNA-seq data using scTITANS. Computational and Structural Biotechnology Journal, 2021, 19, 4132-4141.	1.9	6

#	Article	IF	CITATIONS
186	Direct Conversion of Human Fibroblasts to Induced Neurons. Methods in Molecular Biology, 2021, 2352, 73-96.	0.4	4
187	Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. ELife, 2021, 10, .	2.8	34
188	Automated methods for cell type annotation on scRNA-seq data. Computational and Structural Biotechnology Journal, 2021, 19, 961-969.	1.9	122
189	Direct In Vitro Reprogramming of Astrocytes into Induced Neurons. Methods in Molecular Biology, 2021, 2352, 13-29.	0.4	9
190	Generation of Induced Dopaminergic Neurons from Human Fetal Fibroblasts. Methods in Molecular Biology, 2021, 2352, 97-115.	0.4	1
191	Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 1203.	1.8	26
192	On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159.	1.0	9
193	Enhanced efficiency of nonviral direct neuronal reprogramming on topographical patterns. Biomaterials Science, 2021, 9, 5175-5191.	2.6	9
194	An Introduction to Single-Cell RNA-Seq Analysis and its Applications. , 2021, , 116-128.		0
195	Asymmetric Cell Division of Fibroblasts is An Early Deterministic Step to Generate Elite Cells during Cell Reprogramming. Advanced Science, 2021, 8, 2003516.	5.6	7
196	Stem cell quiescence: the challenging path to activation. Development (Cambridge), 2021, 148, .	1.2	54
197	Molecular Mechanisms Underlying Ascl1-Mediated Astrocyte-to-Neuron Conversion. Stem Cell Reports, 2021, 16, 534-547.	2.3	21
200	scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer. Bioinformatics, 2021, 37, 4115-4122.	1.8	3
201	Directly Reprogrammed Neurons as a Tool to Assess Neurotoxicity of the Contaminant 4-Hydroxy-2′,3,5,5′-tetrachlorobiphenyl (4′OH-CB72) in Melon-Headed Whales. Environmental Science & Technology, 2021, 55, 8159-8168.	4.6	4
202	CRISPR-Cas9—The Potential "Holy Grail―for Generating Biomedically Relevant Cells through Cell Fate Engineering. Re:GEN Open, 2021, 1, 1-13.	0.7	0
203	The Role of Neurod Genes in Brain Development, Function, and Disease. Frontiers in Molecular Neuroscience, 2021, 14, 662774.	1.4	73
204	Fusion of single-cell transcriptome and DNA-binding data, for genomic network inference in cortical development. BMC Bioinformatics, 2021, 22, 301.	1.2	0
205	Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application. Frontiers in Cell and Developmental Biology, 2021, 9, 681087.	1.8	25

#	Article	IF	CITATIONS
206	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification. Genome Medicine, 2021, 13, 111.	3.6	70
207	A model explaining mRNA level fluctuations based on activity demands and RNA age. PLoS Computational Biology, 2021, 17, e1009188.	1.5	3
208	Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Reports, 2021, 36, 109409.	2.9	19
209	New Insights From Single-Cell Sequencing Data: Synovial Fibroblasts and Synovial Macrophages in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 709178.	2.2	32
210	Clarifying the Pathophysiological Mechanisms of Neuronal Abnormalities of NF1 by Induced-Neuronal (iN) Cells from Human Fibroblasts. , 0, , .		0
211	Reactivation of the Hedgehog pathway in esophageal progenitors turns on an embryonic-like program to initiate columnar metaplasia. Cell Stem Cell, 2021, 28, 1411-1427.e7.	5.2	16
212	Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells. Genes and Development, 2021, 35, 1209-1228.	2.7	20
213	Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nature Biomedical Engineering, 2021, 5, 880-896.	11.6	18
214	The cell as a bag of RNA. Trends in Genetics, 2021, 37, 1064-1068.	2.9	16
215	NGN2 induces diverse neuron types from human pluripotency. Stem Cell Reports, 2021, 16, 2118-2127.	2.3	51
216	An intermediate state in trans-differentiation with proliferation, metabolic, and epigenetic switching. IScience, 2021, 24, 103057.	1.9	3
217	Endothelial reprogramming for vascular regeneration: Past milestones and future directions. Seminars in Cell and Developmental Biology, 2021, , .	2.3	2
218	Current Approaches and Molecular Mechanisms for Directly Reprogramming Fibroblasts Into Neurons and Dopamine Neurons. Frontiers in Aging Neuroscience, 2021, 13, 738529.	1.7	13
219	Cellular identity through the lens of direct lineage reprogramming. Current Opinion in Genetics and Development, 2021, 70, 97-103.	1.5	3
221	Transcriptional Profiling During Neural Conversion. Methods in Molecular Biology, 2021, 2352, 171-181.	0.4	0
222	Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina. Methods in Molecular Biology, 2020, 2092, 159-186.	0.4	7
223	Approaches to Regenerate Hair Cell and Spiral Ganglion Neuron in the Inner Ear. , 2020, , 89-111.		1
224	Direct cell reprogramming: approaches, mechanisms and progress. Nature Reviews Molecular Cell Biology, 2021, 22, 410-424.	16.1	178

#	Article	IF	CITATIONS
253	Of numbers and movement $\hat{a} {\in} ``$ understanding transcription factor pathogenesis by advanced microscopy. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	8
254	Evolving principles underlying neural lineage conversion and their relevance for biomedical translation. F1000Research, 2019, 8, 1548.	0.8	12
255	Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular Variability Preceding Irreversible Commitment in a Differentiation Process. PLoS Biology, 2016, 14, e1002585.	2.6	220
256	Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. PLoS Biology, 2018, 16, e2003127.	2.6	77
257	Dissecting Cellular Heterogeneity Using Single-Cell RNA Sequencing. Molecules and Cells, 2019, 42, 189-199.	1.0	45
258	Chemical modulation of transcriptionally enriched signaling pathways to optimize the conversion of fibroblasts into neurons. ELife, 2019, 8, .	2.8	38
259	Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming. ELife, 2019, 8, .	2.8	44
260	The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. ELife, 2019, 8, .	2.8	59
261	Generation of inner ear hair cells by direct lineage conversion of primary somatic cells. ELife, 2020, 9,	2.8	56
262	Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Molecular Biology, 2021, 55, 645-669.	0.4	3
264	Single-Cell Genomics: Catalyst for Cell Fate Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748942.	2.0	1
271	Transcriptional profile of induced and primary neurons reveals new candidate genes for lineage reprogramming. Matters, 0, , .	1.0	0
281	RPPAs for Cell Subpopulation Analysis. Advances in Experimental Medicine and Biology, 2019, 1188, 227-237.	0.8	0
283	Deconstructing Stepwise Fate Conversion of Human Fibroblasts to Neurons by MicroRNAs. SSRN Electronic Journal, 0, , .	0.4	0
294	Applications of Community Detection Algorithms to Large Biological Datasets. Methods in Molecular Biology, 2021, 2243, 59-80.	0.4	2
295	Therapeutic approach of stem cell transplantation for neonatal white matter injury. Pediatric Medicine, 0, 3, 11-11.	1.1	0
296	Research progress of the transcription factor Brn4 (Review). Molecular Medicine Reports, 2020, 23, .	1.1	5
297	scGET: Predicting Cell Fate Transition During Early Embryonic Development by Single-cell Graph Entropy. Genomics, Proteomics and Bioinformatics, 2021, 19, 461-474.	3.0	16

#	Article	IF	CITATIONS
298	Gene Regulatory Network Identification based on Forest Graph-embedded Deep Feedforward Network. , 2021, , .		0
299	Temporal modelling using single-cell transcriptomics. Nature Reviews Genetics, 2022, 23, 355-368.	7.7	65
300	Prediction of Time Series Gene Expression and Structural Analysis of Gene Regulatory Networks Using Recurrent Neural Networks. Entropy, 2022, 24, 141.	1.1	12
301	Transdifferentiation Meets Next-generation Biotechnologies. StemJournal, 2022, 4, 1-11.	0.8	1
302	Brahma safeguards canalization of cardiac mesoderm differentiation. Nature, 2022, 602, 129-134.	13.7	22
303	SkewC: Identifying cells with skewed gene body coverage in single-cell RNA sequencing data. IScience, 2022, 25, 103777.	1.9	4
304	Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron, 2022, 110, 366-393.	3.8	45
305	Reprogramming cellular identity <i>in vivo</i> . Development (Cambridge), 2022, 149, .	1.2	14
307	Pharmacological Perturbation of Mechanical Contractility Enables Robust Transdifferentiation of Human Fibroblasts into Neurons. Advanced Science, 2022, 9, e2104682.	5.6	7
308	Predictive Biophysical Cue Mapping for Direct Cell Reprogramming Using Combinatorial Nanoarrays. ACS Nano, 2022, 16, 5577-5586.	7.3	5
309	Single-cell transcriptional profiling informs efficient reprogramming of human somatic cells to cross-presenting dendritic cells. Science Immunology, 2022, 7, eabg5539.	5.6	16
310	Induction of functional neutrophils from mouse fibroblasts by thymidine through enhancement of Tet3 activity. , 2022, , .		1
311	MicroRNA Roles in Cell Reprogramming Mechanisms. Cells, 2022, 11, 940.	1.8	13
312	Open Frontiers in Neural Cell Type Investigations; Lessons From Caenorhabditis elegans and Beyond, Toward a Multimodal Integration. Frontiers in Neuroscience, 2021, 15, 787753.	1.4	2
313	Elevated ASCL1 activity creates de novo regulatory elements associated with neuronal differentiation. BMC Genomics, 2022, 23, 255.	1.2	15
314	Capybara: A computational tool to measure cell identity and fate transitions. Cell Stem Cell, 2022, 29, 635-649.e11.	5.2	24
315	Singleâ€cell <scp>RNA</scp> Seq reveals cellular l <scp>andscapeâ€specific</scp> characteristics and potential etiologies for adolescent idiopathic scoliosis. JOR Spine, 2021, 4, e1184.	1.5	6
316	Dynamics and Pathways of Chromosome Structural Organizations during Cell Transdifferentiation. Jacs Au, 2022, 2, 116-127.	3.6	3

#	Article	IF	CITATIONS
317	Identifying the critical states of complex diseases by the dynamic change of multivariate distribution. Briefings in Bioinformatics, 2022, 23, .	3.2	8
318	psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data. Bioinformatics, 2022, 38, i290-i298.	1.8	10
319	Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 2022, 605, 325-331.	13.7	144
320	Connecting past and present: single-cell lineage tracing. Protein and Cell, 2022, 13, 790-807.	4.8	30
337	EGF signaling promotes the lineage conversion of astrocytes into oligodendrocytes. Molecular Medicine, 2022, 28, 50.	1.9	8
338	Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Frontiers in Aging Neuroscience, 2022, 14, 750629.	1.7	4
339	Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Research, 2022, 32, 513-529.	5.7	47
340	ETV2 functions as a pioneer factor to regulate and reprogram the endothelial lineage. Nature Cell Biology, 2022, 24, 672-684.	4.6	25
341	Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice. Molecular Autism, 2022, 13, 19.	2.6	10
343	Transcriptomic analyses of NeuroD1â€mediated astrocyteâ€toâ€neuron conversion. Developmental Neurobiology, 2022, 82, 375-391.	1.5	18
344	Inferring Gene Regulatory Networks From Single-Cell Transcriptomic Data Using Bidirectional RNN. Frontiers in Oncology, 0, 12, .	1.3	3
345	Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data. BioData Mining, 2022, 15, .	2.2	2
346	Identification of microRNAs related with neural germ layer lineage-specific progenitors during reprogramming. Journal of Molecular Histology, 2022, 53, 623-634.	1.0	1
347	Statistical evidence for the presence of trajectory in single-cell data. BMC Bioinformatics, 2022, 23, .	1.2	0
348	The combined prognostic model of copper-dependent to predict the prognosis of pancreatic cancer. Frontiers in Genetics, 0, 13, .	1.1	4
349	Quantifying Chromosome Structural Reorganizations during Differentiation, Reprogramming, and Transdifferentiation. Physical Review Letters, 2022, 129, .	2.9	8
350	Construction of a prognostic model related to copper dependence in breast cancer by single-cell sequencing analysis. Frontiers in Genetics, 0, 13, .	1.1	1
351	Deciphering the dynamic niches and regeneration-associated transcriptional program of motoneurons following peripheral nerve injury. IScience, 2022, 25, 104917.	1.9	2

		CITATION REPORT		
#	Article		IF	CITATIONS
352	Microfluidics for Neuronal Cell and Circuit Engineering. Chemical Reviews, 2022, 122,	14842-14880.	23.0	22
353	A natural transdifferentiation event involving mitosis is empowered by integrating sigr with conserved plasticity factors. Cell Reports, 2022, 40, 111365.	aling inputs	2.9	6
354	Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regu Stem Cell, 2022, 29, 1491-1504.e9.	latomes. Cell	5.2	19
355	Identification of a new way to induce differentiation of dermal fibroblasts into vascular cells. Stem Cell Research and Therapy, 2022, 13, .	^r endothelial	2.4	2
357	Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion from different cell types. Scientific Reports, 2022, 12, .	on efficiency	1.6	6
358	Rhus Coriaria L. Extract: Antioxidant Effect and Modulation of Bioenergetic Capacity ir from Parkinson's Disease Patients and THP-1 Macrophages. International Journal o Sciences, 2022, 23, 12774.	l Fibroblasts f Molecular	1.8	3
359	A single cell-based computational platform to identify chemical compounds targeting transcription factors for cellular conversion. Stem Cell Reports, 2023, 18, 131-144.	desired sets of	2.3	1
361	Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent g Molecular Cell, 2022, 82, 4627-4646.e14.	ene activation.	4.5	11
362	Molecular Dissection of Somatic Skeletal Disease in Neurofibromatosis Type 1. Journal Mineral Research, 2020, 38, 288-299.	of Bone and	3.1	2
363	Seeding Activity of Skin Misfolded Proteins as a Biomarker in Prion and Prion-Like Dise 653-673.	ases. , 2023, ,		2
364	The cellular model for Alzheimer's disease research: PC12 cells. Frontiers in Molecular 1 0, 15, .	Neuroscience,	1.4	14
365	The homeodomain of Oct4 is a dimeric binder of methylated CpG elements. Nucleic Ac 2023, 51, 1120-1138.	ids Research,	6.5	3
366	MYT1L haploinsufficiency in human neurons and mice causes autism-associated pheno reversed by genetic and pharmacologic intervention. Molecular Psychiatry, 2023, 28, 2	otypes that can be 2122-2135.	4.1	7
367	Protocol Optimization for Direct Reprogramming of Primary Human Fibroblast into Inc Neurons. International Journal of Molecular Sciences, 2023, 24, 6799.	luced Striatal	1.8	1
368	Direct cardiac reprogramming: A new technology for cardiac repair. Journal of Molecul Cellular Cardiology, 2023, 178, 51-58.	ar and	0.9	0
369	Deciphering Adult Neural Stem Cells with Single-Cell Sequencing. Stem Cells and Deve	lopment, 0, , .	1.1	1
370	Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins Perspective in Glioblastoma Therapy. International Journal of Molecular Sciences, 2023		1.8	2
371	COMMD10 Is Essential for Neural Plate Development during Embryogenesis. Journal o Biology, 2023, 11, 13.	f Developmental	0.9	0

#	Article	IF	CITATIONS
372	Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges. Brain Sciences, 2023, 13, 524.	1.1	2
373	Cell Features Reconstruction from Gene Association Network of Single Cell. Interdisciplinary Sciences, Computational Life Sciences, 0, , .	2.2	0
375	Single-cell transcriptional uncertainty landscape of cell differentiation. F1000Research, 0, 12, 426.	0.8	0
409	Striatal neuronal models of Huntington's disease via direct conversion: Modeling age-dependent disease phenotypes. , 2024, , 411-425.		0