ATRIAS: Design and validation of a tether-free 3D-capal

International Journal of Robotics Research 35, 1497-1521 DOI: 10.1177/0278364916648388

Citation Report

#	Article	IF	CITATIONS
1	Mechanics-based design of underactuated robotic walking gaits: Initial experimental realization. , 2016, , .		5
2	Experimental Evaluation of Deadbeat Running on the ATRIAS Biped. IEEE Robotics and Automation Letters, 2017, 2, 1085-1092.	5.1	22
3	Robot Simulations Based on Bipedal Spring-Mass Model With Variable Slack Length and Stiffness. IEEE Access, 2017, 5, 1156-1163.	4.2	3
4	Robust optimal planning and control of non-periodic bipedal locomotion with a centroidal momentum model. International Journal of Robotics Research, 2017, 36, 1211-1242.	8.5	26
5	Template model inspired leg force feedback based control can assist human walking. , 2017, 2017, 473-478.		22
6	A force direction control method for robotic bipedal walking based on a reduced order model. , 2017, , .		4
7	GOAT: A legged robot with 3D agility and virtual compliance. , 2017, , .		28
8	Development of torque controllable leg for running robot, AiDIN-IV. , 2017, , .		7
10	Control of Motion and Compliance. , 2017, , 135-346.		3
11	Spine morphology and energetics: how principles from nature apply to robotics. Bioinspiration and Biomimetics, 2018, 13, 036002.	2.9	29
12	Morphological and control criteria for self-stable underwater hopping. Bioinspiration and Biomimetics, 2018, 13, 016001.	2.9	18
13	Coupling Reduced Order Models via Feedback Control for 3D Underactuated Bipedal Robotic Walking. , 2018, , .		22
14	An Overview on Principles for Energy Efficient Robot Locomotion. Frontiers in Robotics and AI, 2018, 5, 129.	3.2	60
15	A Novel Design of Extended Coaxial Spherical Joint Module for a New Modular Type-Multiple DOFs Robotic Platform. , 2018, , .		3
16	Bipedal Hopping: Reduced-Order Model Embedding via Optimization-Based Control. , 2018, , .		51
17	Energetic Efficiency of a Compositional Controller on a Monoped With an Articulated Leg and SLIP Dynamics. , 2018, , .		3
18	An Analytical Study on Trotting at Constant Velocity and Height. , 2018, , .		5
19	Towards a Passive Adaptive Planar Foot with Ground Orientation and Contact Force Sensing for Legged Robots. , 2018, , .		20

#	Article	IF	CITATIONS
20	A Framework for Modeling Closed Kinematic Chains with a Focus on Legged Robots. , 2018, , .		0
21	Torque-Based Dynamic Walking - A Long Way from Simulation to Experiment. , 2018, , .		27
22	A Switchable Parallel Elastic Actuator and its Application to Leg Design for Running Robots. IEEE/ASME Transactions on Mechatronics, 2018, 23, 2681-2692.	5.8	37
23	Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis with High-Torque, Low-Impedance Actuators. , 2018, 2018, 2788-2795.		38
24	The effects of electroadhesive clutch design parameters on performance characteristics. Journal of Intelligent Material Systems and Structures, 2018, 29, 3804-3828.	2.5	56
25	Investigation of a Bipedal Platform for Rapid Acceleration and Braking Manoeuvres. , 2018, , .		5
26	Control for balance of Legged-Wheel Hybrid Robot (LWHR) by regulating ground reaction force with kinematic coupling. , 2018, , .		1
27	Mammals repel mosquitoes with their tails. Journal of Experimental Biology, 2018, 221, .	1.7	19
28	Facilitating Model-Based Control Through Software-Hardware Co-Design. , 2018, , .		18
29	Dynamic Motion Generation in a Hexapod Robot Using Fixed-point Trajectories of a Simple Model with Period Scaling. , 2018, , .		0
30	Dynamic Locomotion Gaits of a Compliantly Actuated Quadruped With SLIP-Like Articulated Legs Embodied in the Mechanical Design. IEEE Robotics and Automation Letters, 2018, 3, 3908-3915.	5.1	29
31	Time-variable, event-based walking control for biped robots. International Journal of Advanced Robotic Systems, 2018, 15, 172988141876891.	2.1	4
32	Walking and Running with Passive Compliance: Lessons from Engineering: A Live Demonstration of the ATRIAS Biped. IEEE Robotics and Automation Magazine, 2018, 25, 23-39.	2.0	53
33	Dynamic bipedal locomotion over stochastic discrete terrain. International Journal of Robotics Research, 2018, 37, 1537-1553.	8.5	25
34	Control of Planar Spring–Mass Running Through Virtual Tuning of Radial Leg Damping. IEEE Transactions on Robotics, 2018, 34, 1370-1383.	10.3	11
35	Learning from outside the viability kernel: Why we should build robots that can fall with grace. , 2018, , .		1
36	Using Deep Reinforcement Learning to Learn High-Level Policies on the ATRIAS Biped. , 2019, , .		33
37	Delays in perception and action for improving walk–run transition stability in bipedal gait. Nonlinear Dynamics, 2019, 97, 1685-1698.	5.2	0

#	Article	IF	CITATIONS
38	Development of A Parallel-elastic Robot Leg for Loaded Jumping. , 2019, , .		1
39	Nimble Limbs - Intelligent attachable legs to create walking robots from variously shaped objects. , 2019, , .		4
40	Force-controllable Quadruped Robot System with Capacitive-type Joint Torque Sensor. , 2019, , .		8
41	Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control. International Journal of Robotics Research, 2019, 38, 1307-1323.	8.5	20
43	Al in Locomotion: Quadruped Bionic Mobile Robot. Communications in Computer and Information Science, 2019, , 445-451.	0.5	2
44	Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot. Bioinspiration and Biomimetics, 2019, 14, 056001.	2.9	19
45	Robust compound control of dynamic bipedal robots. Mechatronics, 2019, 59, 154-167.	3.3	9
46	Minimizing Energy Consumption and Peak Power of Series Elastic Actuators: A Convex Optimization Framework for Elastic Element Design. IEEE/ASME Transactions on Mechatronics, 2019, 24, 1334-1345.	5.8	37
47	A Robot Design Method for Weight Saving Aimed at Dynamic Motions: Design of Humanoid JAXON3-P and Realization of Jump Motions. , 2019, , .		11
48	Mechanistic Properties of Five-bar Parallel Mechanism for Leg Structure Based on Spring Loaded Inverted Pendulum. , 2019, , .		3
49	A Novel 4-DoF Robotic Link Mechanism with E-CoSMo: Kinematics Based Torque Analysis. , 2019, , .		5
50	A deep reinforcement learning based approach towards generating human walking behavior with a neuromuscular model. , 2019, , .		9
51	Mechanical Structure Design of a Robot Leg with a Parallel Rod Mechanism with Low Moment of Inertia. , 2019, , .		0
52	Control of a High Performance Bipedal Robot using Viscoelastic Liquid Cooled Actuators. , 2019, , .		13
53	Ankle Torque During Mid-Stance Does Not Lower Energy Requirements of Steady Gaits. , 2019, , .		0
54	SLIP-Based Control of Bipedal Walking Based on Two-Level Control Strategy. Robotica, 2020, 38, 1434-1449.	1.9	6
55	Baleka: A Bipedal Robot for Studying Rapid Maneuverability. Frontiers in Mechanical Engineering, 2020, 6, .	1.8	2
56	Dynamic, Robust Locomotion for a Non-Anthropomorphic Biped. , 2020, , .		2

#	Article	IF	CITATIONS
57	Morphological Computation Increases From Lower- to Higher-Level of Biological Motor Control Hierarchy. Frontiers in Robotics and Al, 2020, 7, 511265.	3.2	3
58	Development and Analysis of a Closed-Chain Wheel-Leg Mobile Platform. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33, .	3.7	4
59	Virtual Point Control for Step-Down Perturbations and Downhill Slopes in Bipedal Running. Frontiers in Bioengineering and Biotechnology, 2020, 8, 586534.	4.1	1
60	Survey on model-based biped motion control for humanoid robots. Advanced Robotics, 2020, 34, 1353-1369.	1.8	20
61	Walking Control Based on Step Timing Adaptation. IEEE Transactions on Robotics, 2020, 36, 629-643.	10.3	35
62	Control of ATRIAS in three dimensions: Walking as a forced-oscillation problem. International Journal of Robotics Research, 2020, 39, 774-796.	8.5	10
63	Towards More Possibilities: Motion Planning and Control for Hybrid Locomotion of Wheeled-Legged Robots. IEEE Robotics and Automation Letters, 2020, 5, 3723-3730.	5.1	20
64	Design and control of the rapid legged platform GAZELLE. Mechatronics, 2020, 66, 102319.	3.3	13
65	Plantar Tactile Feedback for Biped Balance and Locomotion on Unknown Terrain. International Journal of Humanoid Robotics, 2020, 17, 1950036.	1.1	9
66	Achieving Versatile Energy Efficiency With the WANDERER Biped Robot. IEEE Transactions on Robotics, 2020, 36, 959-966.	10.3	15
67	Local stability of PD controlled bipedal walking robots. Automatica, 2020, 114, 108841.	5.0	22
68	Bio-inspired neuromuscular reflex based hopping controller for a segmented robotic leg. Bioinspiration and Biomimetics, 2020, 15, 026007.	2.9	14
69	A survey on modularity and distributivity in series-parallel hybrid robots. Mechatronics, 2020, 68, 102367.	3.3	35
70	Sagittal SLIP-anchored task space control for a monopode robot traversing irregular terrain. Frontiers of Mechanical Engineering, 2020, 15, 193-208.	4.3	4
71	Transient contact-impact behavior for passive walking of compliant bipedal robots. Extreme Mechanics Letters, 2021, 42, 101076.	4.1	2
72	Toward Reactive Walking: Control of Biped Robots Exploiting an Event-Based FSM. IEEE Transactions on Robotics, 2022, 38, 683-698.	10.3	7
73	A Topological Approach to Gait Generation for Biped Robots. IEEE Transactions on Robotics, 2022, 38, 699-718.	10.3	6
74	Controllable Height Hopping of a Parallel Legged Robot. Applied Sciences (Switzerland), 2021, 11, 1421.	2.5	7

#	Article	IF	Citations
75	Bipedal Humanoid Hardware Design: a Technology Review. Current Robotics Reports, 2021, 2, 201-210.	7.9	27
76	Stiffness Modulation in a Humanoid Robotic Leg and Knee. IEEE Robotics and Automation Letters, 2021, 6, 2563-2570.	5.1	9
77	Kinematics Analysis of Leg Configuration of An Ostrich Bionic Biped Robot. , 2021, , .		2
78	Experimental study of event-based neural network control on parallel manipulator. Mechatronics, 2021, 75, 102514.	3.3	6
79	Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm. Sensors, 2021, 21, 3435.	3.8	5
80	Hybrid Parallel Compliance Allows Robots to Operate With Sensorimotor Delays and Low Control Frequencies. Frontiers in Robotics and Al, 2021, 8, 645748.	3.2	8
81	Development of a Quadruped Robot System With Torque-Controllable Modular Actuator Unit. IEEE Transactions on Industrial Electronics, 2021, 68, 7263-7273.	7.9	16
82	Anisotropic compliance of robot legs improves recovery from swing-phase collisions. Bioinspiration and Biomimetics, 2021, 16, 056001.	2.9	5
83	A Compliant Leg Structure for Terrestrial and Aquatic Walking Robots. Lecture Notes in Networks and Systems, 2022, , 69-80.	0.7	0
84	An Analytical and Modular Software Workbench for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots. Journal of Mechanisms and Robotics, 2020, 12, .	2.2	20
85	An Analytical and Modular Software Workbench for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots. , 2019, , .		7
86	Development of active self-melting bolt and its application to self-healing structure. Transactions of the JSME (in Japanese), 2018, 84, 18-00123-18-00123.	0.2	2
87	Fast Online Trajectory Optimization for the Bipedal Robot Cassie. , 0, , .		75
88	A Unified Optimization Framework and New Set of Performance Metrics for Robot Leg Design. , 2021, , .		1
89	The dynamic effect of mechanical losses of transmissions on the equation of motion of legged robots. , 2021, , .		3
90	Dynamic Walking Analysis of an Underactuated Biped Robot with Asymmetric Structure. International Journal of Humanoid Robotics, 2021, 18, .	1.1	8
91	Design and Implementation of Symmetric Legged Robot for Highly Dynamic Jumping and Impact Mitigation. Sensors, 2021, 21, 6885.	3.8	3
92	Reuleaux Triangle—Based Two Degrees of Freedom Bipedal Robot. Robotics, 2021, 10, 114.	3.5	0

#	Article	IF	CITATIONS
93	Simplified Triped Robot for Analysis of Three-Dimensional Gait Generation. Journal of Robotics and Mechatronics, 2017, 29, 528-535.	1.0	3
94	Legged Robots, Design of. , 2020, , 1-11.		0
95	Design and Development of the Cassino Biped Locomotor. Journal of Mechanisms and Robotics, 2020, 12, .	2.2	2
96	Series Elastic Actuation. , 2020, , 1-12.		1
97	A Momentum-Based Foot Placement Strategy for Stable Postural Control of Robotic Spring-Mass Running with Point Feet. , 2020, , .		1
98	Contact Force Estimation and Regulation of a Position-controlled Floating Base System without Joint Torque Information. , 2020, , .		2
99	A transformable human-carrying wheelâ \in "leg mobility for daily use. , 2021, , .		1
100	Human balance control in 3D running based on virtual pivot point concept. Journal of Experimental Biology, 2022, 225, .	1.7	4
101	Leg Configuration Analysis and Prototype Design of Biped Robot Based on Spring Mass Model. Actuators, 2022, 11, 75.	2.3	1
102	Mechanical Design and Analysis of a Novel Three-Legged, Compact, Lightweight, Omnidirectional, Serial–Parallel Robot with Compliant Agile Legs. Robotics, 2022, 11, 39.	3.5	7
103	UPed: A Quadruped Robot Platform to Study Directional Leg Compliance. Journal of Mechanisms and Robotics, 0, , 1-23.	2.2	3
104	BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching. Science Robotics, 2022, 7, eabg4055.	17.6	31
105	Design and Dynamic Analysis of a Compliant Leg Configuration towards the Biped Robot's Spring-Like Walking. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 104, 1.	3.4	9
106	Entrainment-Based Control for Underactuated Compass- Like Biped Robot. , 2021, , .		2
107	Design and Analysis of the Leg Configuration for Biped Robots' Spring-like Walking. , 2021, , .		4
108	Design of BRAVER - a bipedal robot actuated via proprioceptive electric motor. , 2021, , .		0
109	Highly Dynamic Bipedal Locomotion via an Improved Virtual Model Algorithm. , 2021, , .		1
110	Explosive Electric Actuator and Control for Legged Robots. Engineering, 2022, 12, 39-47.	6.7	7

#	Article	IF	CITATIONS
120	Design and Dynamic Locomotion Control of Quadruped Robot with Perception-Less Terrain Adaptation. Cyborg and Bionic Systems, 2022, 2022, .	7.9	22
121	Development and Analysis of a Biped Robot with Prismatic Compliance. , 2022, , .		2
122	Bipedal Walking on Constrained Footholds: Momentum Regulation via Vertical COM Control. , 2022, , .		8
123	Implementation of a Large-Scale Biped Robot Using Serial-Parallel Hybrid Leg Mechanism. , 2022, , .		0
124	A unified framework for measuring interplane and intraplane coupling in spatial biped robots. Autonomous Robots, 0, , .	4.8	0
125	A bioinspired robotic knee with controlled joint surfaces and adjustable ligaments. Bioinspiration and Biomimetics, 2022, 17, 066006.	2.9	1
126	Single-Leg Forward Hopping via Nonlinear Modes. , 2022, , .		3
127	Analysis of Redundancy and Elasticity of Actuators in Hopping Control of Bipedal Robot CARL Based on SLIP Model. Mechanisms and Machine Science, 2023, , 207-238.	0.5	0
128	Humanoid Biped Robot Locomotion via Quadratic Programming with Compound Constraints. Procedia Computer Science, 2022, 209, 67-75.	2.0	0
129	Conversion ofÂElastic Energy Stored inÂtheÂLegs ofÂaÂHexapod Robot intoÂPropulsive Force. Lecture Notes in Computer Science, 2022, , 91-102.	1.3	1
130	Learning-Based Design and Control for Quadrupedal Robots With Parallel-Elastic Actuators. IEEE Robotics and Automation Letters, 2023, 8, 1611-1618.	5.1	6
131	Comparative Model Evaluation with a Symmetric Three-Link Swimming Robot. , 2022, , .		0
132	Construction of a Simulator to Reproduce Changes in Running due to Motion Strategies Using Spring-Loaded Inverted Pendulum Model. , 2022, , .		0
133	Whole-Body Control with Motion/Force Transmissibility for Parallel-Legged Robot. , 2022, , .		1
134	Diaphragm Ankle Actuation for Efficient Series Elastic Legged Robot Hopping. , 2022, , .		2
135	TDE2-MBRL: Energy-exchange Dynamics Learning with Task Decomposition for Spring-loaded Bipedal Robot Locomotion. , 2022, , .		2
136	Parameter optimization and stability prediction of the Dual-SLIP model using evolutionary algorithms and ANN. , 2022, , .		0
137	Generative Design of XingT, A Human-sized Heavy-duty Bipedal Robot. , 2022, , .		0

ARTICLE IF CITATIONS # Direct Encoding of Tunable Stiffness Into an Origami-Inspired Jumping Robot Leg. Journal of 138 2.2 2 Mechanisms and Robotics, 2024, 16, . Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged 3.3 locomotion. Scientific Reports, 2023, 13, . Embodying Quasi-Passive Modal Trotting and Pronking in a Sagittal Elastic Quadruped. IEEE Robotics 140 5.11 and Automation Letters, 2023, 8, 2285-2292. A Compact, Two-Part Torsion Spring Architecture., 2023,,. 141 Nonlinear Model Predictive Control of a 3D Hopping Robot: Leveraging Lie Group Integrators for 142 0 Dynamically Stable Behaviors., 2023,,. Multi-segmented Adaptive Feet for Versatile Legged Locomotion in Natural Terrain., 2023, , . Design and control of BRAVER: a bipedal robot actuated via proprioceptive electric motors. 144 4.8 2 Autonomous Robots, 2023, 47, 1229-1243. Task-Oriented Systematic Design of a Heavy-Duty Electrically Actuated Quadruped Robot with High 145 3.8 Performance. Sénsors, 2023, 23, 6696. Computational design towards energy efficient optimization in overconstrained robotic limbs. 146 3.1 1 Journal of Computational Design and Engineering, 2023, 10, 1941-1956. Biarticular Muscles Improve the Stability of a Neuromechanical Model of the Rat Hindlimb. Lecture 1.3 Notes in Computer Science, 2023, , 20-37. Design, Control, and Validation of a Symmetrical Hip and Straight-Legged Vertically-Compliant Bipedal 148 2 3.3 Robot. Biomimetics, 2023, 8, 340. Hopping Motion on Heavy-Legged Bipedal Robot Based on SLIP Model and Whole Body Control., 2023, , . Time Optimal Planning-Based High-Speed Running Motion Generation for Humanoid Robots with Safety 150 0 Constraints., 2023, , . Hierarchical jumping optimization for hydraulic biped wheel-legged robots. Control Engineering 5.5 Practice, 2023, 141, 105721. Origami-Based Decoupling Clutch Achieves Energy-Efficient Legged Robots. IEEE Robotics and 152 5.10 Automation Letters, 2023, , 1-8. Do robots outperform humans in human-centered domains?. Frontiers in Robotics and AI, 0, 10, . A compliant leg design combining pantograph structure with leaf springs. Robotica, 2024, 42, 332-346. 154 1.9 1 A Novel Approximation for the Spring Loaded Inverted Pendulum Model of Locomotion., 2023, , .

IF ARTICLE CITATIONS # Development of A Dynamic Quadruped with Tunable, Compliant Legs., 2023,,. 0 156 Spring Loaded Inverted Pendulum Model Based Musculoskeletal Biped Robot Design and Sequential Jumping Experiment. , 2023, , . 158 Bipedal Running: Bioinspired Fundamentals for versatile Humanoid Robot Locomotion., 2023,,. 0 Design and Development of the MIT Humanoid: A Dynamic and Robust Research Platform., 2023,,. Design and Control of a Multi-Locomotion Parallel-Legged Bipedal Robot. IEEE Robotics and 160 5.1 0 Automation Letters, 2024, 9, 1993-2000. Humanoid Robot Co-Design: Coupling Hardware Design with Gait Generation via Hybrid Zero Dynamics. , 2023, , . Design and verification of a parallel elastic robotic leg. Bioinspiration and Biomimetics, 2024, 19, 162 2.9 0 026014. Design and sequential jumping experimental validation of a musculoskeletal bipedal robot based on the spring-loaded inverted pendulum model. Frontiers in Robotics and AI, 0, 11, . 3.2 A Simulation Based Approach to Designing a Bipedal Robot., 2023, , . 164 0 A Study on the Effect of Bellyâ€Dragging Locomotion on a Robot that Mimics a Heavy Reptile. Advanced 6.1 Intelligent Systems, 0, , .

CITATION REPORT