Determination of the Electron Transfer Number for the Theory to Experiment

ACS Catalysis 6, 4720-4728

DOI: 10.1021/acscatal.6b01581

Citation Report

#	Article	IF	CITATIONS
8	Fe–N-doped carbon-based composite as an efficient and durable electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 114553-114559.	1.7	29
9	Evaluation of methanol oxidation catalysts by rotating disc voltammetry. Electrochimica Acta, 2016, 199, 12-17.	2.6	13
10	Electrocatalysis of oxygen reduction on iron- and cobalt-containing nitrogen-doped carbon nanotubes in acid media. Electrochimica Acta, 2016, 218, 303-310.	2.6	42
11	Evaluation of ethanol oxidation catalysts by rotating disc voltammetry. Electrochimica Acta, 2016, 215, 84-92.	2.6	23
12	Surface Charge Polarization at the Interface: Enhancing the Oxygen Reduction via Precise Synthesis of Heterogeneous Ultrathin Pt/PtTe Nanowire. Chemistry of Materials, 2016, 28, 8890-8898.	3.2	24
13	Evidences of the presence of different types of active sites for the oxygen reduction reaction with Fe/N/C based catalysts. Journal of Power Sources, 2016, 327, 204-211.	4.0	28
14	Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 18470-18477.	5.2	93
15	RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution. Applied Catalysis B: Environmental, 2017, 206, 115-126.	10.8	68
16	A hierarchically structured PtCo nanoflakes–nanotube as an electrocatalyst for methanol oxidation. Inorganic Chemistry Frontiers, 2017, 4, 845-849.	3.0	6
17	Anchoring of ultrafine Co ₃ O ₄ nanoparticles on MWCNTs using supercritical fluid processing and its performance evaluation towards electrocatalytic oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 1227-1234.	2.1	29
18	Communication—Controlling Highly Dominated N Configuration in N-Doped Graphene as Oxygen Reduction Catalyst. Journal of the Electrochemical Society, 2017, 164, F256-F258.	1.3	3
19	Bioinspired electrocatalysts for oxygen reduction using recombinant silk films. Journal of Materials Chemistry A, 2017, 5, 10236-10243.	5.2	13
20	Hybrid PEDOT/MnOx nanostructured electrocatalysts for oxygen reduction. Materials Chemistry Frontiers, 2017, 1, 1668-1675.	3.2	15
21	A mesoporous tin phosphate–graphene oxide hybrid toward the oxygen reduction reaction. Chemical Communications, 2017, 53, 5721-5724.	2.2	20
22	Sm2O3 embedded in nitrogen doped carbon with mosaic structure: An effective catalyst for oxygen reduction reaction. Energy, 2017, 133, 115-120.	4.5	36
23	Taking cues from nature: Hemoglobin catalysed oxygen reduction. Applied Materials Today, 2017, 7, 82-90.	2.3	24
24	Metal-Free Motifs for Solar Fuel Applications. Annual Review of Physical Chemistry, 2017, 68, 305-331.	4.8	14
25	Waste cotton-derived N-doped carbon as a sustainable metal-free electrocatalyst for oxygen	1.3	9

#	Article	IF	CITATIONS
26	Dual-doped graphene/perovskite bifunctional catalysts and the oxygen reduction reaction. Electrochemistry Communications, 2017, 84, 65-70.	2.3	14
27	Bifunctional electro-catalytic performances of CoWO ₄ nanocubes for water redox reactions (OER/ORR). RSC Advances, 2017, 7, 45615-45623.	1.7	94
28	Facile synthesis of Co(OH)2 magnetic nanoflake deposited on reduced graphene oxide nanoflake as an efficient bi-functional electrocatalyst for oxygen evolution/reduction reactions in alkaline media. Journal of Electroanalytical Chemistry, 2017, 805, 11-17.	1.9	14
29	Effect of Dimensionality and Doping in Quasi-"One-Dimensional (1-D)―Nitrogen-Doped Graphene Nanoribbons on the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38409-38418.	4.0	16
30	Bridging Fundamental Electrochemistry with Applied Fuel Cell Testing: A Novel and Economical Rotating Disk Electrode Tip for Electrochemical Assessment of Catalyst-Coated Membranes. Electrochimica Acta, 2017, 258, 208-219.	2.6	17
31	Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material. Journal of Physical Chemistry C, 2017, 121, 20165-20176.	1.5	81
32	Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M _{0.1} Ni _{0.9} Co ₂ O ₄ (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2017, 5, 21016-21026.	5.2	115
33	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	6.6	1,215
34	Kinetics of Oxygen Electroreduction on Me–N–C (Me = Fe, Co, Cu) Catalysts in Acidic Medium: Insights on the Effect of the Transition Metal. Journal of Physical Chemistry C, 2017, 121, 17796-17817.	1.5	128
35	Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction. Journal of Power Sources, 2017, 360, 528-537.	4.0	12
36	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	11.1	266
37	Designing Binary Ru–Sn Oxides with Optimized Performances for the Air Electrode of Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 10064-10075.	4.0	46
38	Polydopamineâ€Derived, In Situ Nâ€Doped 3D Mesoporous Carbons for Highly Efficient Oxygen Reduction. ChemNanoMat, 2018, 4, 417-422.	1.5	19
39	Efficient hierarchically synthesized Fe ₂ P nanoparticles embedded in an N,P-doped mesoporous carbon catalyst for the oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 9488-9495.	1.4	7
40	Oxidized Laserâ€induced Graphene for Efficient Oxygen Electrocatalysis. Advanced Materials, 2018, 30, e1707319.	11.1	94
41	An All Solid‣tate Zincâ^'Air Battery with a Corrosionâ€Resistant Air Electrode. ChemElectroChem, 2018, 5, 1817-1821.	1.7	21
42	Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn–Air Batteries. ACS Energy Letters, 2018, 3, 1183-1191.	8.8	456
43	Ammonia modification of high-surface-area activated carbons as metal-free electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 2018, 263, 465-473.	2.6	27

#	Article	IF	CITATIONS
44	Enhanced oxygen reduction reaction of Pt deposited Fe/N-doped bimodal porous carbon nanostructure catalysts. Journal of Catalysis, 2018, 359, 46-54.	3.1	40
45	Co–VN encapsulated in bamboo-like N-doped carbon nanotubes for ultrahigh-stability of oxygen reduction reaction. Nanoscale, 2018, 10, 4311-4319.	2.8	72
46	Novel MOFâ€Derived Co@N Bifunctional Catalysts for Highly Efficient Zn–Air Batteries and Water Splitting. Advanced Materials, 2018, 30, 1705431.	11.1	667
47	Nanoscale Carbon Modified α-MnO ₂ Nanowires: Highly Active and Stable Oxygen Reduction Electrocatalysts with Low Carbon Content. ACS Applied Materials & Interfaces, 2018, 10, 2040-2050.	4.0	38
48	Electrocatalysis of As(III) oxidation by cobalt oxide nanoparticles: measurement and modeling the effect of nanoparticle amount on As(III) oxidation potential. Journal of Solid State Electrochemistry, 2018, 22, 1257-1267.	1.2	1
49	Graphene Layersâ€Wrapped Fe/Fe ₅ C ₂ Nanoparticles Supported on Nâ€doped Graphene Nanosheets for Highly Efficient Oxygen Reduction. Advanced Energy Materials, 2018, 8, 1702476.	10.2	205
50	Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2018, 43, 4716-4725.	3.8	55
51	A Bifunctional Highly Efficient FeN <i>_x</i> /C Electrocatalyst. Small, 2018, 14, 1702827.	5.2	41
52	Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 1714-1726.	5.2	30
53	Drastic enhancement of H2O2 electro-generation by pulsed current for ibuprofen degradation: Strategy based on decoupling study on H2O2 decomposition pathways. Chemical Engineering Journal, 2018, 338, 709-718.	6.6	72
54	Cobalt@Nitrogenâ€Doped Porous Carbon Fiber Derived from the Electrospun Fiber of Bimetal–Organic Framework for Highly Active Oxygen Reduction. Small Methods, 2018, 2, 1800049.	4.6	100
55	Strategies for Enhancing the Electrocatalytic Activity of M–N/C Catalysts for the Oxygen Reduction Reaction. Topics in Catalysis, 2018, 61, 1077-1100.	1.3	27
56	Use of Rotating Ringâ€Ðisk Electrodes to Investigate Graphene Nanoribbon Loadings for the Oxygen Reduction Reaction in Alkaline Medium. ChemElectroChem, 2018, 5, 1691-1701.	1.7	31
57	Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 7893-7902.	3.8	49
58	Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nature Catalysis, 2018, 1, 282-290.	16.1	699
59	Barrier-free Interface Electron Transfer on PtFe-Fe2C Janus-like Nanoparticles Boosts Oxygen Catalysis. CheM, 2018, 4, 1153-1166.	5.8	82
60	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
61	Pt Co@NCNTs cathode catalyst using ZIF-67 for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2018, 43, 3520-3526.	3.8	38

#	Article	IF	CITATIONS
62	Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy, 2018, 143, 43-55.	4.5	98
63	Influence of the Composition and Preparation of the Rotating Disk Electrode on the Performance of Mesoporous Electrocatalysts in the Alkaline Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 119-128.	1.7	17
64	Application of a non-noble Fe-N-C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell. Renewable Energy, 2018, 115, 226-237.	4.3	54
65	Peptide templated AuPt alloyed nanoparticles as highly efficient bi-functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Electrochimica Acta, 2018, 260, 168-176.	2.6	41
66	Facile synthesis of efficient core-shell structured iron-based carbon catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 1386-1395.	3.8	7
67	Au Ni alloy nanoparticles supported on reduced graphene oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 1424-1438.	3.8	42
68	Bulk Production of Nonâ€Precious Metal Catalysts with High Surface Area and Excellent Activity in the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1854-1861.	1.7	6
69	Mechanisms of Twoâ€Electron versus Fourâ€Electron Reduction of Dioxygen Catalyzed by Earthâ€Abundant Metal Complexes. ChemCatChem, 2018, 10, 9-28.	1.8	82
70	Synergic effect on oxygen reduction reaction of strapped iron porphyrins polymerized around carbon nanotubes. New Journal of Chemistry, 2018, 42, 19749-19754.	1.4	13
71	Accurate Determination of Catalyst Loading on Glassy Carbon Disk and Its Impact on Thin Film Rotating Disk Electrode for Oxygen Reduction Reaction. Analytical Chemistry, 2018, 90, 14181-14187.	3.2	34
72	Synthesis and Anisotropic Electrocatalytic Activity of Covellite Nanoplatelets with Fixed Thickness and Tunable Diameter. ACS Applied Materials & amp; Interfaces, 2018, 10, 42417-42426.	4.0	10
73	KITâ€6 Three Dimensional Template Derived Mesoporous Carbon for Oxygen Reduction Reaction: Effect of Template Removal on Catalytic Activity. ChemistrySelect, 2018, 3, 11864-11874.	0.7	9
74	Editors' Choice—Electrocatalyzed Oxygen Reduction at Manganese Oxide Nanoarchitectures: From Electroanalytical Characterization to Device-Relevant Performance in Composite Electrodes. Journal of the Electrochemical Society, 2018, 165, H777-H783.	1.3	7
75	Molten Salts Derived Copper Tungstate Nanoparticles as Bifunctional Electro atalysts for Electrolysis of Water and Supercapacitor Applications. ChemElectroChem, 2018, 5, 3938-3945.	1.7	55
76	Non-Noble Metal Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells. , 2018, , 235-262.		1
77	3D Printed Rotating Acentric Binary-Disk Electrode. Analytical Chemistry, 2018, 90, 13217-13221.	3.2	4
78	Superlong Single-Crystal Metal–Organic Framework Nanotubes. Journal of the American Chemical Society, 2018, 140, 15393-15401.	6.6	230
79	Role of Nanomorphology and Interfacial Structure of Platinum Nanoparticles in Catalyzing the Hydrogen Oxidation Reaction. ACS Catalysis, 2018, 8, 6192-6202.	5.5	21

#	Article	IF	CITATIONS
80	Electrospun Carbon Nanofibers Encapsulated with NiCoP: A Multifunctional Electrode for Supercapattery and Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. Advanced Energy Materials, 2018, 8, 1800555.	10.2	258
81	Enhanced Oxidative and Adsorptive Removal of Diclofenac in Heterogeneous Fenton-like Reaction with Sulfide Modified Nanoscale Zerovalent Iron. Environmental Science & Technology, 2018, 52, 6466-6475.	4.6	129
82	Gold Nanoparticles Incorporated in a Zincâ€Based Metalâ€Organic Framework as Multifunctional Catalyst for the Oxygen Reduction and Hydrogen Evolution Reactions. ChemElectroChem, 2018, 5, 2612-2619.	1.7	25
83	Encapsulated Laccases as Effective Electrocatalysts for Oxygen Reduction Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 11058-11062.	3.2	18
84	Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nature Chemistry, 2018, 10, 924-931.	6.6	558
85	Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn–air battery. NPG Asia Materials, 2018, 10, 670-684.	3.8	97
86	Synergism of nitrogen and reduced graphene in the electrocatalytic behavior of resorcinol - Formaldehyde based carbon aerogels. Carbon, 2018, 139, 872-879.	5.4	26
87	Copper Nitride Nanostructure for the Electrocatalytic Reduction of Oxygen: Kinetics and Reaction Pathway. Journal of Physical Chemistry C, 2018, 122, 18468-18475.	1.5	32
88	Highly active bifunctional oxygen electrocatalysts derived from nickel– or cobalt–phytic acid xerogel for zinc–air batteries. Nanoscale, 2018, 10, 15834-15841.	2.8	31
89	Self-assembled three-dimensional carbon networks with accessorial Lewis base sites and variational electron characteristics as efficient oxygen reduction reaction catalysts for alkaline metal-air batteries. Chinese Journal of Catalysis, 2018, 39, 1210-1218.	6.9	8
90	Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR. ACS Catalysis, 2018, 8, 7879-7888.	5.5	394
91	N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction. Journal of Materials Science, 2018, 53, 15246-15256.	1.7	12
92	Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018, 21, 91-105.	6.2	285
93	CoFe Nanoalloys Encapsulated in N-Doped Graphene Layers as a Pt-Free Multifunctional Robust Catalyst: Elucidating the Role of Co-Alloying and N-Doping. ACS Sustainable Chemistry and Engineering, 2018, 6, 12736-12745.	3.2	50
94	Synthesis of phosphorus-iridium nanocrystals and their superior electrocatalytic activity for oxygen evolution reaction. Electrochemistry Communications, 2018, 94, 59-63.	2.3	21
95	Synthesis, characterization, multifunctional electrochemical (OCR/ORR/SCs) and photodegradable activities of ZnWO4 nanobricks. Journal of Sol-Gel Science and Technology, 2018, 87, 137-146.	1.1	61
96	Chicken feather rachis: An improvement over feather fiber derived electrocatalyst for oxygen electroreduction. Applied Surface Science, 2019, 495, 143603.	3.1	27
97	Hydrated FePO ₄ nanoparticles supported on P-doped RGO show enhanced ORR activity compared to their dehydrated form in an alkaline medium. RSC Advances, 2019, 9, 24654-24658.	1.7	2

#	Article	IF	CITATIONS
98	Inâ€situ Oneâ€Step Preparation of Nickelâ€Tipped Nâ€doped Carbon Nanotubes for Oxygen Reduction. ChemCatChem, 2019, 11, 4818-4821.	1.8	8
99	Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Applied Catalysis B: Environmental, 2019, 259, 118054.	10.8	163
100	Nickel-tungsten sulfides nanostructures assembled nitrogen-doped graphene as a novel catalyst for effective oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2019, 848, 113343.	1.9	3
101	Iron phosphide anchored nanoporous carbon as an efficient electrode for supercapacitors and the oxygen reduction reaction. RSC Advances, 2019, 9, 25240-25247.	1.7	16
102	Electrocatalytic Production of H ₂ O ₂ by Selective Oxygen Reduction Using Earth-Abundant Cobalt Pyrite (CoS ₂). ACS Catalysis, 2019, 9, 8433-8442.	5.5	167
103	A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells. Joule, 2019, 3, 2020-2029.	11.7	28
104	Multifunctional Highâ€Performance Electrocatalytic Properties of Nb ₂ O ₅ Incorporated Carbon Nanofibers as Pt Support Catalyst. Advanced Materials Interfaces, 2019, 6, 1900565.	1.9	33
105	Pt-Decorated TiO ₂ Materials Supported on Carbon: Increasing Activities and Stabilities toward the ORR by Tuning the Pt Loading. ACS Applied Energy Materials, 2019, 2, 5759-5768.	2.5	35
106	One-pot hydrothermal synthesis of heteroatom co-doped with fluorine on reduced graphene oxide for enhanced ORR activity and stability in alkaline media. Materials Chemistry and Physics, 2019, 236, 121804.	2.0	16
107	Towards efficient oxygen reduction reaction electrocatalysts through graphene doping. Electrochimica Acta, 2019, 319, 72-81.	2.6	30
108	Catalytic Mechanisms and Design Principles for Singleâ€Atom Catalysts in Highly Efficient CO ₂ Conversion. Advanced Energy Materials, 2019, 9, 1902625.	10.2	167
109	Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1281-1286.	5.2	181
110	Zn nanosheets coated with a ZnS subnanometer layer for effective and durable CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 1418-1423.	5.2	63
111	Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catalysis, 2019, 9, 11515-11529.	5.5	245
112	Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Current Opinion in Electrochemistry, 2019, 18, 61-71.	2.5	111
113	Bioinspired one-pot fabrication of triple-layered Rh@Co@Pt-skin core-shell nanodendrites: A highly active and durable electrocatalyst towards oxygen reduction reaction. Electrochimica Acta, 2019, 321, 134660.	2.6	20
114	Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nature Communications, 2019, 10, 3899.	5.8	355
115	Marine Algae-Derived Porous Carbons as Robust Electrocatalysts for ORR. Catalysts, 2019, 9, 730.	1.6	5

#	Article	IF	CITATIONS
116	Precisely Tuning the Number of Fe Atoms in Clusters on N-Doped Carbon toward Acidic Oxygen Reduction Reaction. CheM, 2019, 5, 2865-2878.	5.8	346
117	Facile Synthesis of Mesoporous α-Fe2O3@g-C3N4-NCs for Efficient Bifunctional Electro-catalytic Activity (OER/ORR). Scientific Reports, 2019, 9, 14139.	1.6	84
118	<i>In situ</i> growth of metallic Ag ⁰ intercalated CoAl layered double hydroxides as efficient electrocatalysts for the oxygen reduction reaction in alkaline solutions. Dalton Transactions, 2019, 48, 1084-1094.	1.6	30
119	Electroless deposition of RuO2-based nanoparticles for energy conversion applications. RSC Advances, 2019, 9, 4239-4245.	1.7	8
120	A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy and Environmental Science, 2019, 12, 648-655.	15.6	318
121	Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Reviews Chemistry, 2019, 3, 442-458.	13.8	544
122	Atomically Dispersed Bimetallic FeNi Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2019, 6, 3478-3487.	1.7	58
123	Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 11841-11849.	3.2	35
124	Silver–Palladium Electrodeposition on Unsupported Vulcan XC-72R for Oxygen Reduction Reaction in Alkaline Media. ACS Applied Energy Materials, 2019, 2, 4664-4673.	2.5	21
125	A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chemical Science, 2019, 10, 6404-6422.	3.7	255
126	Selenium-Coupled Reduced Graphene Oxide as Single-Atom Site Catalyst for Direct Four-Electron Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 3624-3632.	2.5	19
127	Medium Modulated Oxygen Reduction Activity of Fe/Co Active Centreâ€engrafted Electrocatalysts. ChemElectroChem, 2019, 6, 2956-2964.	1.7	4
128	A perovskite/noble-metal composite as a bifunctional oxygen electrocatalyst for alkaline electrochemical cells. Journal of Energy Storage, 2019, 23, 537-543.	3.9	7
129	Photo-enhanced Zn–air batteries with simultaneous highly efficient <i>in situ</i> H ₂ O ₂ generation for wastewater treatment. Journal of Materials Chemistry A, 2019, 7, 14129-14135.	5.2	36
130	Transition Metal (Fe, Co, Ni) Nanoparticles on Selective Amino-N-Doped Carbon as High-Performance Oxygen Reduction Reaction Electrocatalyst. Nanomaterials, 2019, 9, 742.	1.9	29
131	Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries. Energies, 2019, 12, 925.	1.6	22
132	A 3-D nanoribbon-like Pt-free oxygen reduction reaction electrocatalyst derived from waste leather for anion exchange membrane fuel cells and zinc-air batteries. Nanoscale, 2019, 11, 7893-7902.	2.8	34
133	Selective Deposition of Metals onto Molecularly Tethered Gold Nanoparticles: The Influence of Silver Deposition on Oxygen Electroreduction. Chemistry of Materials, 2019, 31, 2750-27 <u>61.</u>	3.2	10

#	Article	IF	CITATIONS
134	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	1.7	45
135	Investigation on Template Etching Process of SBAâ€15 Derived Ordered Mesoporous Carbon on Electrocatalytic Oxygen Reduction Reaction. ChemistrySelect, 2019, 4, 2463-2474.	0.7	10
136	Mesoporous layered spinel zinc manganese oxide nanocrystals stabilized nitrogen-doped graphene as an effective catalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 545, 43-53.	5.0	18
137	One Simple Strategy towards Nitrogen and Oxygen Codoped Carbon Nanotube for Efficient Electrocatalytic Oxygen Reduction and Evolution. Catalysts, 2019, 9, 159.	1.6	9
138	Constructing MoP _{<i>x</i>} @MnP _{<i>y</i>} Heteronanoparticle-Supported Mesoporous N,P-Codoped Graphene for Boosting Oxygen Reduction and Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 2892-2904.	3.2	71
139	Pitfalls in Heterogeneous Thermal, Electro―and Photocatalysis. ChemCatChem, 2019, 11, 2563-2574.	1.8	41
140	Tailoring the electrocatalytic oxygen reduction reaction pathway by tuning the electronic states of single-walled carbon nanotubes. Carbon, 2019, 147, 35-42.	5.4	11
141	Transition Metal–Nitrogen–Carbon (M–N–C) Catalysts for Oxygen Reduction Reaction. Insights on Synthesis and Performance in Polymer Electrolyte Fuel Cells. ChemEngineering, 2019, 3, 16.	1.0	75
142	Polyacrylonitrile-derived nanostructured carbon materials. Progress in Polymer Science, 2019, 92, 89-134.	11.8	92
143	In situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts. Nano Energy, 2019, 59, 207-215.	8.2	54
144	Nanoparticle electrocatalysis: Unscrambling illusory inhibition and catalysis. Applied Materials Today, 2019, 15, 139-144.	2.3	22
145	Lowering metal loadings onto Pt–Pd–Cu/graphene nanoribbon nanocomposites affects electrode collection efficiency and oxygen reduction reaction performance. Electrochimica Acta, 2019, 303, 192-203.	2.6	23
146	Structure dependent activity and durability towards oxygen reduction reaction on Pt modified nanoporous gold. Electrochimica Acta, 2019, 298, 599-608.	2.6	14
147	Electrodes Based on Zeolites Modified with Cobalt and/or Molybdenum for Pesticide Degradation. Part I: Physicochemical Characterization and Efficiency of the Electrodes for O2 Reduction and H2O2 Production. Electrocatalysis, 2019, 10, 95-111.	1.5	6
148	Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2019, 9, 117-129.	5.5	103
149	Cost-effective preparation of metal-free electrocatalysts by phosphoric acid activation of lignocellulosic materials for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 2811-2822.	3.8	14
150	Electrocatalyst Materials for Oxygen Reduction Reaction in Microbial Fuel Cell. , 2019, , 451-483.		16
151	Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Applied Catalysis B: Environmental, 2019, 243, 195-20 <u>3</u> .	10.8	170

#	Article	IF	CITATIONS
152	Separation of kinetic and mass transport effects in the electrolysis of formic acid in a flow-through cell. Electrochimica Acta, 2019, 294, 110-116.	2.6	4
153	Modeling of oxygen reduction reaction in porous carbon materials in alkaline medium. Effect of microporosity. Journal of Power Sources, 2019, 412, 451-464.	4.0	56
154	Facile one step synthesis of Cu-g-C3N4 electrocatalyst realized oxygen reduction reaction with excellent methanol crossover impact and durability. Journal of Colloid and Interface Science, 2020, 558, 182-189.	5.0	55
155	Mixed Copper/Copperâ€Oxide Anchored Mesoporous Fullerene Nanohybrids as Superior Electrocatalysts toward Oxygen Reduction Reaction. Small, 2020, 16, e1903937.	5.2	58
156	Recent Advances and Prospects of Metalâ€Based Catalysts for Oxygen Reduction Reaction. Energy Technology, 2020, 8, 1900984.	1.8	64
157	Oxygen reduction reaction catalyzed by overhanging carboxylic acid strapped iron porphyrins adsorbed on carbon nanotubes. Journal of Porphyrins and Phthalocyanines, 2020, 24, 675-684.	0.4	6
158	Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2020, 59, 4902-4907.	7.2	97
159	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 5886-5892.	1.6	16
160	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5837-5843.	7.2	99
161	Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis. ACS Catalysis, 2020, 10, 1993-2008.	5.5	106
162	Aerobic degradation of aqueous pollutants with nanoscale zero-valent aluminum in alkaline condition: Performance and mechanism especially at particle surface. Journal of Cleaner Production, 2020, 244, 118905.	4.6	16
163	Layered Metal Hydroxides and Their Derivatives: Controllable Synthesis, Chemical Exfoliation, and Electrocatalytic Applications. Advanced Energy Materials, 2020, 10, 1902535.	10.2	90
164	Superior Oxygen Reduction Reaction on Phosphorusâ€Doped Carbon Dot/Graphene Aerogel for Allâ€Solidâ€State Flexible Al–Air Batteries. Advanced Energy Materials, 2020, 10, 1902736.	10.2	93
165	Thermodynamically Stable Mesoporous C ₃ N ₇ and C ₃ N ₆ with Ordered Structure and Their Excellent Performance for Oxygen Reduction Reaction. Small, 2020, 16, e1903572.	5.2	53
166	Exploration of cobalt@N-doped carbon nanocomposites toward hydrogen peroxide (H2O2) electrosynthesis: A two level investigation through the RRDE analysis and a polymer-based electrolyzer implementation. Electrochimica Acta, 2020, 364, 137287.	2.6	12
167	A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nature Communications, 2020, 11, 5283.	5.8	286
168	Electroless deposition of gold nanoparticles on a glassy carbon surface to attain methylene blue degradation via oxygen reduction reactions. Electrochimica Acta, 2020, 360, 136966.	2.6	23
169	Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. Nanoscale, 2020, 12, 21479-21496.	2.8	39

#	Article	IF	CITATIONS
170	Electrochemical properties of oxygen-enriched carbon-based nanomaterials. Journal of Electroanalytical Chemistry, 2020, 873, 114420.	1.9	12
171	Product-to-intermediate relay achieving complete oxygen reduction reaction (cORR) with Prussian blue integrated nanoporous polymer cathode in fuel cells. Nano Energy, 2020, 78, 105125.	8.2	7
172	A rational synthesis of single-atom iron–nitrogen electrocatalysts for highly efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 16271-16282.	5.2	52
173	Bifunctional <i>α</i> â€MnO ₂ and Co ₃ O ₄ Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ChemElectroChem, 2020, 7, 4822-4836.	1.7	21
174	Covalently functionalized layered MoS ₂ supported Pd nanoparticles as highly active oxygen reduction electrocatalysts. Nanoscale, 2020, 12, 18278-18288.	2.8	13
175	MOF-Derived CuPt/NC Electrocatalyst for Oxygen Reduction Reaction. Catalysts, 2020, 10, 799.	1.6	24
176	Carbon-supported cobalt (III) complex for direct reduction of oxygen in alkaline medium. International Journal of Hydrogen Energy, 2020, 45, 24738-24748.	3.8	4
177	Gas Accessible Membrane Electrode (GAME): A Versatile Platform for Elucidating Electrocatalytic Processes Using Real-Time and in Situ Hyphenated Electrochemical Techniques. ACS Catalysis, 2020, 10, 9684-9693.	5.5	14
178	High performance biomass-derived catalysts for the oxygen reduction reaction with excellent methanol tolerance. International Journal of Hydrogen Energy, 2020, 45, 27026-27035.	3.8	13
179	Thiourea-Zeolitic imidazolate Framework-67 assembly derived Co–CoO nanoparticles encapsulated in N, S Codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn–Air batteries. Journal of Power Sources, 2020, 473, 228570.	4.0	45
180	Reconsidering the Benchmarking Evaluation of Catalytic Activity in Oxygen Reduction Reaction. IScience, 2020, 23, 101532.	1.9	42
181	Influence of Ligand Denticity and Flexibility on the Molecular Copper Mediated Oxygen Reduction Reaction. Inorganic Chemistry, 2020, 59, 16398-16409.	1.9	38
182	A fundamental look at electrocatalytic sulfur reduction reaction. Nature Catalysis, 2020, 3, 762-770.	16.1	455
183	Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 44689-44699.	4.0	37
184	Single-Atom Co–N ₄ Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. Journal of the American Chemical Society, 2020, 142, 16861-16867.	6.6	184
185	Oxygen Reduction and Evolution Reaction (ORR and OER) Bifunctional Electrocatalyst Operating in a Wide pH Range for Cathodic Application in Li–Air Batteries. ACS Applied Energy Materials, 2020, 3, 9417-9427.	2.5	42
186	Fabrication of Fe3C caged in N doped carbon nanotube as a desirable ORR electrocatalyst by a facile method. Journal of Electroanalytical Chemistry, 2020, 871, 114316.	1.9	10
187	Role of B site ions in bifunctional oxygen electrocatalysis: a structure–property correlation study on doped Ca ₂ Fe ₂ O ₅ brownmillerites. Physical Chemistry Chemical Physics, 2020, 22, 15520-15527	1.3	3

#	Article	IF	CITATIONS
188	Low-temperature synthesis of ultrasmall spinel Mn Co3-O4 nanoparticles for efficient oxygen reduction. Chinese Journal of Catalysis, 2020, 41, 1818-1825.	6.9	14
189	Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 7454-7459.	1.6	80
190	Surface and Interface Science. , 2020, , .		0
191	Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 7384-7389.	7.2	264
192	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	5.4	41
193	Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960.	3.2	57
194	Conversion of Methane into Methanol Using the [6,6′-(2,2′-Bipyridine-6,6′-Diyl)bis(1,3,5-Triazine-2,4-Diamine)](Nitrato-O)Copper(II) Complex in a Solid Electrolyte Reactor Fuel Cell Type. ACS Omega, 2020, 5, 16003-16009.	1.6	12
195	Ru single atoms and nanoparticles on carbon nanotubes as multifunctional catalysts. Dalton Transactions, 2020, 49, 10250-10260.	1.6	13
196	Solvothermally Synthesized Iron Phthalocyanine Nanostructure for High ORR Response: A Joint Experimental Investigation and DFT Analysis. Journal of the Electrochemical Society, 2020, 167, 116501.	1.3	22
197	Hydrothermally Carbonized Waste Biomass as Electrocatalyst Support for α-MnO2 in Oxygen Reduction Reaction. Catalysts, 2020, 10, 177.	1.6	11
198	Molecular Design of Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2020, 10, 1903815.	10.2	295
199	Enriched active surface structure in nanosized tungsten-cobalt oxides electrocatalysts for efficient oxygen redox reactions. Applied Surface Science, 2020, 513, 145831.	3.1	21
200	NH ₃ -Plasma pre-treated carbon supported active iron–nitrogen catalyst for oxygen reduction in acid and alkaline electrolytes. Catalysis Science and Technology, 2020, 10, 1675-1687.	2.1	24
201	3D nitrogen-doped carbon supported non-precious metals electrocatalyst for oxygen reduction reaction. Molecular Catalysis, 2020, 485, 110834.	1.0	7
203	Cobalt Nanoparticles on Plasma-Controlled Nitrogen-Doped Carbon as High-Performance ORR Electrocatalyst for Primary Zn-Air Battery. Nanomaterials, 2020, 10, 223.	1.9	16
204	Platinum Group Metal-Free Catalysts for Oxygen Reduction Reaction: Applications in Microbial Fuel Cells. Catalysts, 2020, 10, 475.	1.6	34
205	Silver sulfide nanoparticles incorporated into graphene oxide: an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Science: Materials in Electronics, 2020, 31, 8127-8135.	1.1	5
206	Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chemical Society Reviews, 2020, 49, 3484-3524.	18.7	453

#	Article	IF	Citations
207	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolicâ€Nitrogenâ€Carbon. Advanced Energy Materials, 2020, 10, 2000789.	10.2	247
208	Characterising and evidencing the effects of porosity in nano-electrochemistry. Current Opinion in Electrochemistry, 2020, 22, 35-43.	2.5	4
209	Phosphorus- and Nitrogen-Doped Carbon Nanosheets Constructed with Monolayered Mesoporous Architectures. Chemistry of Materials, 2020, 32, 4248-4256.	3.2	41
210	Nickel Cobalt Phosphite Nanorods Decorated with Carbon Nanotubes as Bifunctional Electrocatalysts in Alkaline Medium with a High Yield of Hydrogen Peroxide. ChemElectroChem, 2020, 7, 1935-1942.	1.7	18
211	Synergistic effect of B site co-doping with Co and Ce in bifunctional oxygen electrocatalysis by oxygen deficient brownmillerite Ba2In2O5. Catalysis Today, 2021, 375, 494-500.	2.2	8
212	Recent Developments in Metalloporphyrin Electrocatalysts for Reduction of Small Molecules: Strategies for Managing Electron and Proton Transfer Reactions. ChemSusChem, 2021, 14, 293-302.	3.6	40
213	Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Research, 2021, 14, 868-878.	5.8	102
214	Electrochemical Synthesis of H2O2 by Two-Electron Water Oxidation Reaction. CheM, 2021, 7, 38-63.	5.8	155
215	Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Twoâ€Electron Transfer Pathway on Carbonâ€Based Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001360.	1.9	35
216	In situ surface-confined fabrication of single atomic Fe-N4 on N-doped carbon nanoleaves for oxygen reduction reaction. Journal of Energy Chemistry, 2021, 59, 482-491.	7.1	38
217	Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis. Advanced Energy Materials, 2021, 11, 2003323.	10.2	150
218	Recent Advances in Bioâ€Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications. ChemSusChem, 2021, 14, 758-791.	3.6	24
219	Methane conversion to higher value-added product and energy co-generation using anodes OF PdCu/C in a solid electrolyte reactor: alkaline fuel cell type monitored by differential mass spectroscopy. Research on Chemical Intermediates, 2021, 47, 743-757.	1.3	14
220	Mass production of high-performance single atomic FeNC electrocatalysts via sequenced ultrasonic atomization and pyrolysis process. Science China Materials, 2021, 64, 631-641.	3.5	14
221	Controllable Fabrication of Co3â^'xMnxO4 with Tunable External Co3+/Co2+ Ratio for Promoted Oxygen Reduction Reaction. Catalysis Letters, 2021, 151, 1810-1820.	1.4	8
222	<i>In situ</i> synthesis of Co–B-doped porous carbon through laser thermal reduction for an efficient oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 15562-15570.	1.4	1
223	Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy and Environmental Science, 2021, 14, 2639-2669.	15.6	158
224	Heteroatom-doped carbon electrocatalysts prepared from marine biomass cellulose nanocrystals and bio-inspired polydopamine for the oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 19228-19234.	1.4	4

#	Article	IF	CITATIONS
225	Solar photoelectrochemical synthesis of electrolyte-free H ₂ O ₂ aqueous solution without needing electrical bias and H ₂ . Energy and Environmental Science, 2021, 14, 3110-3119.	15.6	37
226	Interconnected surface-vacancy-rich PtFe nanowires for efficient oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 12845-12852.	5.2	18
227	Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Research, 2021, 14, 2819-2825.	5.8	16
228	Nitrogen, sulfur co-doped carbon coated zinc sulfide for efficient hydrogen peroxide electrosynthesis. Dalton Transactions, 2021, 50, 5416-5419.	1.6	6
229	High-Performance Organometallic Catalyst Based on Nickel Porphyrin/Carbon Fibre for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2021, 168, 016510.	1.3	12
230	Plasma-Modified FeGly/C as a Pt-Free Stable ORR Electrocatalyst in an Acid Electrolyte. ACS Applied Energy Materials, 2021, 4, 564-574.	2.5	16
231	Novel cost-effective synthesis of non-doped turbostratic graphene from a graphite intercalation compound: development of a durable and stable electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 18669-18681.	1.4	3
232	Insights into Electrocatalytic Oxygen Reduction Via a Dominant Two-Electron-Transfer Process on Sulfur-Doped Disordered Carbon. Journal of Physical Chemistry C, 2021, 125, 5793-5801.	1.5	9
233	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 17832-17852.	7.2	265
234	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie, 2021, 133, 17976-17996.	1.6	60
235	Pyrolysis-Derived Carbon Auto-Coated Co–Ni Oxide-based Nanoparticles on Graphene-like Nanosheets for High-Performance Oxygen Electrocatalysis. Energy & Fuels, 2021, 35, 3376-3384.	2.5	3
236	Mixed Diffusionâ€Kinetic Control of H ₂ O ₂ Oxidation at an Oxideâ€Covered Platinum Electrode in Alkaline Electrolyte: Implications for Oxygen Electroreduction Studies with a Rotating Ring Disk Electrode. ChemElectroChem, 2021, 8, 839-849.	1.7	6
237	Synergistic Modulation of Carbon-Based, Precious-Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 6989-7003.	4.0	36
238	Efficient Water Splitting System Enabled by Multifunctional Platinumâ€Free Electrocatalysts. Advanced Functional Materials, 2021, 31, 2009853.	7.8	41
239	Cobalt-Phosphorus Decorated Graphene as Electrocatalyst for Oxygen Reduction Reactions: A Density Functional Theory Study. International Journal of Electrochemical Science, 0, , 210332.	0.5	2
240	Green algae and gelatine derived nitrogen rich carbon as an outstanding competitor to Pt loaded carbon catalysts. Scientific Reports, 2021, 11, 7084.	1.6	21
241	Bifunctional electro-catalytic performances of NiMoO4-NRs@RGO nanocomposites for oxygen evolution and oxygen reduction reactions. Journal of King Saud University - Science, 2021, 33, 101317.	1.6	25
242	Thermally Controlled Construction of Fe–N <i>_x</i> Active Sites on the Edge of a Graphene Nanoribbon for an Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 15101-15112.	4.0	25

#	Article	IF	CITATIONS
243	Superior stability and methanol tolerance of a metal-free nitrogen-doped hierarchical porous carbon electrocatalyst derived from textile waste. Journal of Materials Research and Technology, 2021, 11, 1834-1846.	2.6	12
244	Surface Facet Engineering in Nanoporous Gold for Low-Loading Catalysts in Aluminum–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 13097-13105.	4.0	14
245	Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR. Nano Energy, 2021, 82, 105750.	8.2	220
246	Framework-Derived Tungsten Single-Atom Catalyst for Oxygen Reduction Reaction. Energy & Fuels, 2021, 35, 8173-8180.	2.5	16
247	Structural Effectiveness of AgCl-decorated Ag Nanowires Enhancing Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 7519-7528.	3.2	14
248	The Untold Tale of the ORR Polarization Curve. Journal of Physical Chemistry C, 2021, 125, 10378-10385.	1.5	15
249	Fe/Fe ₃ C Embedded in N-Doped Worm-like Porous Carbon for High-Rate Catalysis in Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24710-24722.	4.0	19
250	Measurement of the Stoichiometry of Ethanol Oxidation at Elevated Temperatures. Journal of the Electrochemical Society, 2021, 168, 054525.	1.3	0
251	Tailoring Electropolymerized Poly(3,4â€ethylenedioxythiophene) Films for Oxygen Reduction Reaction. Advanced Materials Technologies, 2022, 7, 2100277.	3.0	7
252	Engineering local coordination environments and site densities for highâ€performance Feâ€N oxygen reduction reaction electrocatalysis. SmartMat, 2021, 2, 154-175.	6.4	81
253	ORR performance evaluation of Al-substituted MnFe2O4/ reduced graphene oxide nanocomposite. International Journal of Hydrogen Energy, 2021, 46, 22434-22445.	3.8	10
254	CoNi Alloy Nanoparticles Encapsulated in N-Doped Graphite Carbon Nanotubes as an Efficient Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium. ACS Sustainable Chemistry and Engineering, 2021, 9, 8207-8213.	3.2	20
255	Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: Coupling effects of amorphous carbon cluster and oxygen dopant. Applied Catalysis B: Environmental, 2021, 286, 119860.	10.8	55
256	Cobalt Metaphosphates as Economic Bifunctional Electrocatalysts for Hybrid Sodium–Air Batteries. Inorganic Chemistry, 2021, 60, 11974-11983.	1.9	5
257	Direct Thermal Annealing Synthesis of Ordered Pt Alloy Nanoparticles Coated with a Thin N-Doped Carbon Shell for the Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 9355-9365.	5.5	54
258	Engineering Synergistic Edgeâ€N Dipole in Metalâ€Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2021, 31, 2103187.	7.8	54
260	Nitrogen-doped carbon quantum dots decorated on platinum catalysts for improved oxygen reduction reaction. Applied Surface Science, 2021, 554, 149594.	3.1	23
261	The Role of Bicarbonate-Based Electrolytes in H ₂ O ₂ Production through Two-Electron Water Oxidation. ACS Energy Letters, 2021, 6, 2854-2862.	8.8	67

#	Article	IF	CITATIONS
262	Reassessing the Necessity of the Drying Step in Hummer's Method for Graphene Oxide Synthesis. Electroanalysis, 2021, 33, 2323-2334.	1.5	5
263	Proton reduction in the presence of oxygen by iron porphyrin enabled with 2nd sphere redox active ferrocenes. Chinese Journal of Catalysis, 2021, 42, 1327-1331.	6.9	7
264	High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nature Energy, 2021, 6, 834-843.	19.8	238
265	Electrochemical investigation for understanding the bactericidal effect of Cu2Se and Ag2Se for biomedical applications. Journal of Applied Electrochemistry, 2022, 52, 1-15.	1.5	4
266	Study of Cr2O3 nanoparticles supported on carbonaceous materials as catalysts for O2 reduction reaction. Journal of Electroanalytical Chemistry, 2021, 895, 115441.	1.9	7
267	Co(OH)2-NiCo2O4 hybrid nanosheets coupled with N-doping reduced graphene oxide as efficient electrocatalysts for Zn-air batteries. Journal of Alloys and Compounds, 2021, 872, 159441.	2.8	8
268	Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2. Nano Research, 2022, 15, 1861-1867.	5.8	18
269	Quantitative kinetic analysis on oxygen reduction reaction: A perspective. Nano Materials Science, 2021, 3, 313-318.	3.9	64
270	Advanced Engineering for Cathode in Lithium–Oxygen Batteries: Flexible 3D Hierarchical Porous Architecture Design and Its Functional Modification. Advanced Functional Materials, 2021, 31, 2105664.	7.8	14
271	Local Field Induced Mass Transfer: New Insight into Nanoâ€electrocatalysis. Chemistry - A European Journal, 2021, 27, 17726-17735.	1.7	7
272	Investigation on Electron Transfer Process of Oxygen Reduction Reactions Catalyzed by Nitrogen-doped Graphitic Carbon in Acidic and Alkaline Media. Journal of the Electrochemical Society, 2021, 168, 096508.	1.3	4
273	A Lowâ€Temperature Carbon Encapsulation Strategy for Stable and Poisoningâ€Tolerant Electrocatalysts. Small Methods, 2021, 5, e2100937.	4.6	22
274	Insights into oxygen reduction reaction on pristine carbon nanoparticles synthesized by the plasma-in-liquid process. Electrochimica Acta, 2021, 390, 138882.	2.6	1
275	Substituents and the induced partial charge effects on cobalt porphyrins catalytic oxygen reduction reactions in acidic medium. Journal of Colloid and Interface Science, 2021, 597, 269-277.	5.0	16
276	Multifunctional Disordered Sulfur-Doped Carbon for Efficient Sodium-Ion-Exchange and 2-Electron-Transfer-Dominant Oxygen Reduction Reaction. Carbon, 2021, 182, 242-253.	5.4	17
277	Polyvinyl Alcohol-Based Gel Electrolytes with High Water Content for Flexible Zinc-Air Batteries with High Rate Capability. Journal of the Electrochemical Society, 2021, 168, 100531.	1.3	8
278	A channel flow cell with double disk electrodes for oxygen electroreduction study at elevated temperatures and pressures: Theory. Journal of Electroanalytical Chemistry, 2021, 896, 115251.	1.9	1
279	Sb-modulated synthesis of novel CoSb alloy nanoparticles anchored on N-doped carbon as oxygen electrocatalysts. Applied Surface Science, 2021, 562, 150112.	3.1	6

#	Article	IF	Citations
280	Interfacial charge transfer mechanism of oxygen reduction reaction in alkali media: Effects of molecular charge states and triphenylamine substituent on cobalt porphyrin electrocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127435.	2.3	11
281	Synergistic coupling ensuing cobalt phosphosulfide encapsulated by heteroatom-doped two-dimensional graphene shell as an excellent catalyst for oxygen electroreduction. Chemical Engineering Journal, 2021, 423, 130233.	6.6	10
282	Cobalt tetraphosphate as an efficient bifunctional electrocatalyst for hybrid sodium-air batteries. Nano Energy, 2021, 89, 106485.	8.2	11
283	Functional group tuning of two-dimensional carbon nanosheets for boosting oxygen reduction electrocatalysis. Carbon, 2021, 185, 395-403.	5.4	10
284	A durable rechargeable zinc-air battery via self-supported MnOx-S air electrode. Journal of Alloys and Compounds, 2021, 883, 160935.	2.8	27
285	A newly-explored Pd-based nanocrystal for the pH-universal electrosynthesis of H2O2. Nano Energy, 2021, 89, 106480.	8.2	25
286	Acid-directed preparation of micro/mesoporous heteroatom doped defective graphitic carbon as bifunctional electroactive material: Evaluation of trace metal impurity. Journal of Colloid and Interface Science, 2021, 604, 227-238.	5.0	2
287	Si doped Fe-N/C catalyst for oxygen reduction reaction directed by ordered mesoporous silica nanospheres template strategy. Journal of Colloid and Interface Science, 2021, 603, 706-715.	5.0	12
288	A Comprehensive Review on Oxygen Reduction Reaction in Microbial Fuel Cells. Journal of Renewable Materials, 2022, 10, 665-697.	1.1	32
289	Cobalt single atom catalysts for the efficient electrosynthesis of hydrogen peroxide. Inorganic Chemistry Frontiers, 2021, 8, 2829-2834.	3.0	29
290	Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angewandte Chemie, 2020, 132, 4932-4937.	1.6	18
291	Hierarchical Co ₃ O ₄ nanorods anchored on nitrogen doped reduced graphene oxide: a highly efficient bifunctional electrocatalyst for rechargeable Zn–air batteries. Catalysis Science and Technology, 2020, 10, 1444-1457.	2.1	13
292	A Superoxide Involved Oxygen Reduction Reaction Mechanism on a Glassy Carbon Electrode in Caustic Media. Journal of the Electrochemical Society, 2020, 167, 124518.	1.3	5
293	Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction. Energies, 2021, 14, 6385.	1.6	13
294	Dye-synthesized N, S co-doped carbon via plasma engineering as metal-free oxygen reduction reaction electrocatalysts. Journal Physics D: Applied Physics, 2022, 55, 074001.	1.3	3
295	Conductive One-Dimensional Coordination Polymers with Tunable Selectivity for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 52960-52966.	4.0	10
296	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. Journal of Energy Chemistry, 2022, 67, 432-450.	7.1	66
297	Outstanding Oxygen Reduction Reaction Catalytic Performance of In–PtNi Octahedral Nanoparticles Designed via Computational Dopant Screening. Chemistry of Materials, 2021, 33, 8895-8903.	3.2	17

		CITATION R	EPORT	
#	Article		IF	CITATIONS
298	Effective Cathode Catalysts for Oxygen Reduction Reactions in Microbial Fuel Cell. , 2020,	, 189-210.		5
299	Bias-free synthesis of hydrogen peroxide from photo-driven oxygen reduction reaction usir γ-graphyne catalyst. Applied Catalysis B: Environmental, 2022, 304, 120959.	ng N-doped	10.8	17
300	Modulatorâ€Assisted Photosynthesis: Green and Powerful Approach towards Superstructu Ï€â^Conjugated Covalent Organic Frameworks with Enhanced Electrochemical Performan ChemPhotoChem, 2022, 6, .	ıred ces.	1.5	7
301	A new spin on electrochemistry in the undergraduate lab. Chemistry Teacher International 23-37.	, 2022, 4,	0.9	3
302	Preparation and study of tungsten carbide catalyst synergistically codoped with Fe and nit oxygen reduction reaction. Journal of Materials Research and Technology, 2021, 15, 7100-	rogen for 7110.	2.6	5
303	Spatially dispersed one-dimensional carbon architecture on oxide framework for oxygen electrochemistry. Chemical Engineering Journal, 2022, 433, 133649.		6.6	10
304	Revealing the impact of small pores on oxygen reduction on carbon electrocatalysts: A jou through recent findings. Carbon, 2022, 188, 289-304.	rney	5.4	24
305	Zinc chloride-activated micro-mesoporous carbon material derived from energy grass and i electrocatalytic performance toward oxygen reduction reaction. Journal of Energy Storage 103697.	ts , 2022, 46,	3.9	9
306	Influence of the spatial distribution of copper sites on the selectivity of the oxygen reducti reaction. Dalton Transactions, 2022, 51, 1206-1215.	on	1.6	14
307	Designing methanol tolerant Pt islands at Pd on carbon promoting electrocatalytic oxyger reaction in acidic media. Ionics, 2022, 28, 1347-1357.	reduction	1.2	3
308	Facile fabrication of GCE/Nafion/Ni composite, a robust platform to detect hydrogen perox medium via oxidation reaction. Talanta, 2022, 240, 123202.	ide in basic	2.9	15
309	Best practices for ORR performance evaluation of metal-free porous carbon electrocatalys 2022, 189, 349-361.	ts. Carbon,	5.4	61
310	Materials informatics-guided superior electrocatalyst: A case of pyrolysis-free single-atom coordinated with N-graphene nanomesh. Nano Energy, 2022, 94, 106868.		8.2	31
311	Engineering Dual Singleâ€Atom Sites on 2D Ultrathin Nâ€doped Carbon Nanosheets Attai Ultraâ€Lowâ€Temperature Zincâ€Air Battery. Angewandte Chemie - International Edition,	ning 2022, 61, .	7.2	355
312	Strong metal–support interaction in copper hexacyanoferrate nanocube decorated func multiwall carbon nanotubes for enhanced bi-functional oxygen electrocatalytic activity and Sustainable Energy and Fuels, 2022, 6, 1094-1107.	tionalized d stability.	2.5	9
313	Pen-drawn air cathode featuring graphite felt substrate modified with MnO2-decorated gr flakes and PEDOT network for rechargeable zinc–air battery. Journal of Industrial and En Chemistry, 2022, 108, 411-417.	aphene gineering	2.9	1
315	Engineering Dual Singleâ€Atom Sites on 2D Ultrathin Nâ€doped Carbon Nanosheets Attai Ultra‣owâ€Temperature Zincâ€Air Battery. Angewandte Chemie, 0, , .	ning	1.6	24
316	A quick guide to the assessment of key electrochemical performance indicators for the ox reduction reaction: A comprehensive review. International Journal of Hydrogen Energy, 20 7113-7138.	/gen 22, 47,	3.8	31

#	Article	IF	CITATIONS
317	Donor-ï€-acceptor cobalt porphyrins for electrocatalytic oxygen reduction reaction in acidic medium. Journal of Alloys and Compounds, 2022, 902, 163790.	2.8	15
318	Metal coordination in C ₂ N-like materials towards dual atom catalysts for oxygen reduction. Journal of Materials Chemistry A, 2022, 10, 6023-6030.	5.2	21
319	Fabrication and Integration of Functionalized N-rGO-Ni/Ag and N-rGO-Ni/Co Nanocomposites as Synergistic Oxygen Electrocatalysts in Fuel Cells. Nanomaterials, 2022, 12, 585.	1.9	5
320	The intriguing ORR performance of iron and nitrogen co-doped biomass carbon composites incorporating surface-modified polyaniline-derived carbon. Fuel, 2022, 317, 123496.	3.4	9
321	The Enhanced Local Co Concentration for Efficient Co2 Electrolysis Towards C2 Products on Tandem Active Sites. SSRN Electronic Journal, 0, , .	0.4	0
322	Engineering metal–metal oxide surfaces for high-performance oxygen reduction on Ag–Mn electrocatalysts. Energy and Environmental Science, 2022, 15, 1611-1629.	15.6	22
323	S-doped AuPd aerogels as high efficiency catalysts for the oxygen reduction reaction by balancing the ratio between bridging S ₂ ^{2â^'} and apical S ^{2â^'} ligands. Journal of Materials Chemistry A, 2022, 10, 7800-7810.	5.2	5
324	A 2D covalent organic framework as a metal-free electrode towards electrochemical oxygen reduction reaction. Materials Today: Proceedings, 2022, 57, 228-233.	0.9	4
325	How Cation Substitutions Affect the Oxygen Reduction Reaction on La _{2â^'x} Sr _x Ni _{1â^'y} Fe _y O ₄ . ChemCatChem, 2022, 14, .	1.8	1
326	High-performance manganese and nitrogen codoped carbon (Mn–N–C) oxygen reduction electrocatalyst from Mn ²⁺ coordinated sodium alginate. Nanotechnology, 2022, 33, 245701.	1.3	4
327	Triathlete for the Oxygen Reduction Reaction in Zinc–Air Fuel Cells. Macromolecules, 2022, 55, 2524-2532.	2.2	1
328	Electrosynthesis of H2O2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. Environmental Science and Ecotechnology, 2022, 11, 100170.	6.7	29
329	Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst. Catalysis Reviews - Science and Engineering, 2023, 65, 986-1078.	5.7	3
330	Revisiting Thin-Layer Electrochemistry in a Chip-Type Cell for the Study of Electro-organic Reactions. Analytical Chemistry, 2022, 94, 1248-1255.	3.2	7
331	Versatile Tools for Understanding Electrosynthetic Mechanisms. Chemical Reviews, 2022, 122, 3292-3335.	23.0	59
332	Unveiling the Cationic Promotion Effect of H ₂ O ₂ Electrosynthesis Activity of O-Doped Carbons. ACS Applied Materials & amp; Interfaces, 2021, 13, 59904-59914.	4.0	23
333	Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte. Chemical Engineering Journal, 2022, 443, 136456.	6.6	11
334	Continuous Efficient Purification of Organic Contaminant and Metal Ions Contained Tannery Wastewater with Stainless-Steel Based Polyvinylidene Fluoride/Lanthanum/Samarium/Ceria Electrode Membrane. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
335	Cobalt Phosphotungstate-Based Composites as Bifunctional Electrocatalysts for Oxygen Reactions. Catalysts, 2022, 12, 357.	1.6	7
336	Rugaeâ€like Nâ€doped porous carbon incorporated with <scp> Feâ€N _x </scp> and <scp> Fe ₃ O ₄ </scp> dual active sites as a powerful oxygen reduction catalyst for zincâ€air batteries. International Journal of Energy Research, 2022, 46, 12378-12390.	2.2	2
337	Synthesis of Pure Thiophene–Sulfur-Doped Graphene for an Oxygen Reduction Reaction with High Performance. Journal of Physical Chemistry Letters, 2022, 13, 4350-4356.	2.1	5
338	Recent advances in electroanalytical methods for electroorganic synthesis. Current Opinion in Electrochemistry, 2022, 35, 101054.	2.5	2
339	Enhanced oxygen reduction of porous N-doped carbon nanosheets with graphitic N and defects obtained from coal-based graphene quantum dots. Journal of Alloys and Compounds, 2022, 914, 165359.	2.8	13
340	PdNi thin films for hydrogen oxidation reaction and oxygen reduction reaction in alkaline media. Electrochimica Acta, 2022, 420, 140425.	2.6	13
341	Efficient and cost-effective ORR electrocatalysts based on low content transition metals highly dispersed on C3N4/super-activated carbon composites. Carbon, 2022, 196, 378-390.	5.4	19
342	Application of Binary PdSb/C as an Anode in a Polymeric Electrolyte Reactor-Fuel Cell Type for Electrosynthesis of Methanol from Methane. Materials Research, 0, 25, .	0.6	1
343	Well-controlled Pt–CeO ₂ –nitrogen doped carbon triple-junction catalysts with enhanced activity and durability for the oxygen reduction reaction. Sustainable Energy and Fuels, 2022, 6, 2989-2995.	2.5	4
344	MXene supported transition metal nanoparticles accelerate sulfur reduction reaction kinetics. Journal of Materials Chemistry A, 2022, 10, 13758-13768.	5.2	11
345	A Stabilized Assisted Method for the Synthesis of Fe-N-C Catalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2022, 169, 062501.	1.3	2
346	The Enhanced Local Co Concentration for Efficient Co2 Electrolysis Towards C2 Products on Tandem Active Sites. SSRN Electronic Journal, 0, , .	0.4	0
347	Design of electrocatalysts with reduced Pt content supported on mesoporous NiWO4 and NiWO4-graphene nanoplatelets composite for oxygen reduction and hydrogen oxidation in acidic medium. International Journal of Hydrogen Energy, 2023, 48, 6317-6335.	3.8	7
348	Insight into the mechanisms of BPS degradation by electro-Fenton method modified by Co-based nanoparticles on the oxidized carbon cathode. Chemical Engineering Journal, 2022, 446, 137376.	6.6	23
349	Oxygen reduction reaction by noble metal-based catalysts. , 2022, , 173-203.		0
350	Enhanced catalytic activity of perovskite La _{1â~'<i>x</i>} Sr _{<i>x</i>} MnO _{3+<i>Î~</i>} for the oxygen reduction reaction. New Journal of Chemistry, 2022, 46, 13082-13088.	1.4	7
351	The in situ investigation of the polyaniline-derived N-doped carbon with the interdigitated array electrodes towards the oxygen reduction reaction. Journal of Solid State Electrochemistry, O, , .	1.2	0
352	Cattail leaf-derived nitrogen-doped carbons via hydrothermal ammonia treatment for electrocatalytic oxygen reduction in an alkaline electrolyte. International Journal of Hydrogen Energy, 2022, 47, 24738-24749.	3.8	3

#	Article	IF	CITATIONS
353	Electrochemical grafting of a pyridinium onjugated assembly on graphite for H2O2 electrochemical production. ChemElectroChem, 0, , .	1.7	0
354	What Happens to MnO ₂ When It Comes in Contact with Zn ²⁺ ? An Electrochemical Study in Aid of Zn/MnO ₂ â€Based Rechargeable Batteries. Energy Technology, 2022, 10, .	1.8	8
355	Operation Mechanism of nâ€Type Organic Electronic Metabolite Sensors. Advanced Electronic Materials, 2022, 8, .	2.6	12
356	General Carbon-Supporting Strategy to Boost the Oxygen Reduction Activity of Zeolitic-Imidazolate-Framework-Derived Fe/N/Carbon Catalysts in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 30724-30734.	4.0	7
357	Does Nitrogen Doping Enhance the Electrocatalysis of the Oxygen Reduction Reaction by Multiwalled Carbon Nanotubes?. ACS Catalysis, 2022, 12, 8740-8745.	5.5	14
358	Electrocatalytic oxidation of ascorbic acid in the basic medium over electrochemically functionalized glassy carbon surface. Surfaces and Interfaces, 2022, 33, 102200.	1.5	6
359	The enhanced local CO concentration for efficient CO2 electrolysis towards C2 products on tandem active sites. Chemical Engineering Journal, 2022, 450, 138009.	6.6	5
360	An In-Depth Exploration of the Electrochemical Oxygen Reduction Reaction (ORR) Phenomenon on Carbon-Based Catalysts in Alkaline and Acidic Mediums. Catalysts, 2022, 12, 791.	1.6	13
361	Encapsulation of Fe2P-Co2P nanoparticles in N-doped biomass-based carbon and carbon nanotube composite as an efficient oxygen reduction electrocatalyst. Electrochimica Acta, 2022, 427, 140893.	2.6	7
362	Promotion of Catalytic Oxygen Reduction Reactions: The Utility of Proton Management Substituents on Cobalt Porphyrins. Inorganic Chemistry, 2022, 61, 13085-13095.	1.9	10
363	Preparation and oxygen reduction performance of nitrogen-doped cotton stalk derived carbon. International Journal of Low-Carbon Technologies, 0, , .	1.2	0
364	Review: Two-Dimensional Layered Material Based Electrodes for Lithium Ion and Sodium Ion Batteries. Lecture Notes in Electrical Engineering, 2023, , 399-418.	0.3	1
365	Strategies for Modulating the Catalytic Activity and Selectivity of Manganese Antimonates for the Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 10826-10840.	5.5	4
366	Catalyst design, measurement guidelines, and device integration for H2O2 electrosynthesis from oxygen reduction. Cell Reports Physical Science, 2022, 3, 100987.	2.8	15
367	In-situ generating highly efficient sites for multifunctional water splitting/Zn-air battery over hierarchically architectured Fe2Ni3 nanoalloy/N-incorporated carbon matrix. Chemical Engineering Journal, 2022, 450, 138245.	6.6	9
368	Well-Dispersed Ni3fe Nanoparticles with N-Doped Porous Carbon Shell for Highly Efficient Rechargeable Zn-Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
369	Enhancing the ORR activity of fullerene-derived carbons by implanting Fe in assembled diamine–C ₆₀ spheres. CrystEngComm, 0, , .	1.3	2
370	Suppressing H ₂ O ₂ formation in the oxygen reduction reaction using Co-doped copper oxide electrodes. Journal of Materials Chemistry A, 2022, 10, 22042-22057.	5.2	0

#	Article	IF	CITATIONS
371	The extent of carbon surface oxygen affinity and its effects on the activity of metal-free carbon catalysts in the oxygen reduction reaction: the interplay of porosity and N-, O- and S-enriched surface chemistry. Materials Advances, 2022, 3, 8567-8578.	2.6	3
372	Tuning the course of the oxygen reduction reaction at a carbon electrode using alkaline electrolytes based on binary DMSO–water solvent mixtures. Electrochemistry Communications, 2022, 141, 107359.	2.3	0
373	Supramolecular Polymer Intertwined Free-Standing Bifunctional Membrane Catalysts for All-Temperature Flexible Zn–Air Batteries. Nano-Micro Letters, 2022, 14, .	14.4	14
374	Co2FeO4@rGO composite: Towards trifunctional water splitting in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 33919-33937.	3.8	35
375	Atomically Dispersed FeN ₂ at Silica Interfaces Coupled with Rich Nitrogen Doping-Hollow Carbon Nanospheres as Excellent Oxygen Reduction Reaction Catalysts. ACS Applied Energy Materials, 2022, 5, 10849-10861.	2.5	8
376	Proving ligand structure-reactivity correlation on multinuclear copper electrocatalysts supported on carbon black for the oxygen reduction reaction. Electrochimica Acta, 2022, 434, 141304.	2.6	3
377	Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis. Frontiers of Chemical Science and Engineering, 2022, 16, 1761-1771.	2.3	3
378	Regio-isomerism directed electrocatalysis for energy efficient zinc-air battery. IScience, 2022, 25, 105179.	1.9	3
379	Modulating between 2e ^{â^'} and 4e ^{â^'} pathways in the oxygen reduction reaction with laser-synthesized iron oxide-grafted nitrogen-doped carbon. Journal of Materials Chemistry A, 2022, 10, 24156-24166.	5.2	3
380	Thienothiophene and Triphenylbenzene Based Electroactive Conjugated Porous Polymer for Oxygen Reduction Reaction (ORR). ACS Applied Energy Materials, 2022, 5, 13284-13292.	2.5	15
381	One-step access to bifunctional γ-Fe2O3∫δ-FeOOH electrocatalyst for oxygen reduction reaction and acetaminophen sensing. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104569.	2.7	8
382	Critical review on the synthesis, characterization, and application of highly efficient metal chalcogenide catalysts for fuel cells. Progress in Energy and Combustion Science, 2023, 94, 101044.	15.8	19
383	Dual metal-organic frameworks-derived Fe-atomic sites bounded to fine Fe/Fe C nanoparticles for enhanced oxygen electroreduction. Chemical Engineering Journal, 2023, 453, 139820.	6.6	9
384	Sustainable chicken manure-derived carbon as a metal-free bifunctional electrocatalyst in Zn-air battery. AIP Conference Proceedings, 2022, , .	0.3	3
385	Well-dispersed Ni3Fe nanoparticles with N-doped porous carbon shell for highly efficient rechargeable Zn-air batteries. Nanoscale, 0, , .	2.8	1
386	Pt ₃ Co/Co Composite Catalysts on Porous N-Doped Carbon Support Derived from ZIF-67 with Enhanced HER and ORR Activities. Inorganic Chemistry, 2022, 61, 19309-19318.	1.9	5
387	Unraveling the Electrochemistry of Verdazyl Species in Acidic Electrolytes for the Application in Redox Flow Batteries. Chemistry of Materials, 2022, 34, 10424-10434.	3.2	4
389	Recent progress in the development of efficient biomass-based ORR electrocatalysts. Carbon, 2023, 203, 237-260.	5.4	22

#	Article	IF	CITATIONS
390	Ultrahigh pressure-induced modification of morphology and performance of MOFs-derived Cu@C electrocatalysts. Nanoscale Advances, 0, , .	2.2	0
391	Metal–organic framework derived vanadium oxide supported nanoporous carbon structure as a bifunctional electrocatalyst for potential application in metal air batteries. RSC Advances, 2022, 13, 652-664.	1.7	5
392	The effect of pyrolysis temperature on the N conversion of biochar derived from the residue of Chlorella vulgaris after lipid extraction. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105810.	2.6	4
393	Mesoporous carbon-based materials and their applications as non-precious metal electrocatalysts in the oxygen reduction reaction. Electrochimica Acta, 2023, 439, 141678.	2.6	6
394	Novel acid-free process intensification for the synthesis of non-precious metal-nitrogen-carbon electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2023, 556, 232382.	4.0	6
395	Metal-Compound-Based Electrocatalysts for Hydrogen Peroxide Electrosynthesis and the Electro-Fenton Process. ACS Energy Letters, 2023, 8, 196-212.	8.8	18
396	Positive Impact of Acidâ€Heat Treatment on the Electrocatalytic Performance of Highly Active and Low Ptâ€Based Nanostructured Alloy Catalysts for Oxygen Reduction Reactions to Electrochemical Energy Conversion Devices. Energy Technology, 2023, 11, .	1.8	1
397	Core–Shell Multiwalled Carbon Nanotube/Cobalt Corrole Hybrids for the Oxygen Reduction Reaction. Energy & Fuels, 2023, 37, 684-692.	2.5	2
398	Carbon Surface-Influenced Heterogeneity of Ni and Co Catalytic Sites as a Factor Affecting the Efficiency of Oxygen Reduction Reaction Nanomaterials, 2022, 12, 4432	1.9	2
399	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37.	0.5	6
399 400	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie, 0, , .	0.5	6
399 400 401	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie, 0, , . Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nature Communications, 2023, 14, .	0.5 1.6 5.8	6 1 49
399400401402	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie, 0, , . Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nature Communications, 2023, 14, . Subsurface oxygen reduction reaction activity on Ti ₂ N MXene revealed by <i>in situ</i> kaman spectroelectrochemistry. Sustainable Energy and Fuels, 2023, 7, 956-964.	0.5 1.6 5.8 2.5	6 1 49 3
 399 400 401 402 403 	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie, 0, , . Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nature Communications, 2023, 14, . Subsurface oxygen reduction reaction activity on Ti ₂ N MXene revealed by <i>in situ</i> Raman spectroelectrochemistry. Sustainable Energy and Fuels, 2023, 7, 956-964. Surface modification strategy for constructing Fe-Nx species and FeF2/Fe3C nanoparticles co-anchored N, F co-doped carbon nanotubes for efficient oxygen reduction. Journal of Alloys and Compounds, 2023, 941, 168922.	0.5 1.6 5.8 2.5 2.8	6 1 49 3 8
 399 400 401 402 403 404 	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie, 0, , . Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nature Communications, 2023, 14, . Subsurface oxygen reduction reaction activity on Ti ₂ N MXene revealed by <i>in situ</i> Raman spectroelectrochemistry. Sustainable Energy and Fuels, 2023, 7, 956-964. Surface modification strategy for constructing Fe-Nx species and FeF2/Fe3C nanoparticles co-anchored N, F co-doped carbon nanotubes for efficient oxygen reduction. Journal of Alloys and Compounds, 2023, 941, 168922. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie - International Edition, 2023, 62, .	0.5 1.6 5.8 2.5 2.8 7.2	6 1 49 3 8 16
 399 400 401 402 403 404 405 	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie, 0, , . Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nature Communications, 2023, 14, . Subsurface oxygen reduction reaction activity on Ti ₂ N MXene revealed by <i>in situ</i> Raman spectroelectrochemistry. Sustainable Energy and Fuels, 2023, 7, 956-964. Surface modification strategy for constructing Fe-Nx species and FeF2/Fe3C nanoparticles co-anchored N, F co-doped carbon nanotubes for efficient oxygen reduction. Journal of Alloys and Compounds, 2023, 941, 168922. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie - International Edition, 2023, 62, . A Comparison Study of the Electrocatalytic Sulfur Reduction Activity on Heteroatomâ€Doped Graphene for Liâ€"S Battery. Small Structures, 2023, 4, .	0.5 1.6 5.8 2.5 2.8 7.2 6.9	6 1 49 3 8 16 17
 399 400 401 402 403 404 405 406 	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie, 0, , . Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nature Communications, 2023, 14, . Subsurface oxygen reduction reaction activity on Ti ₂ N MXene revealed by <i>in situ</i> Raman spectroelectrochemistry. Sustainable Energy and Fuels, 2023, 7, 956-964. Surface modification strategy for constructing Fe-Nx species and FeF2/Fe3C nanoparticles co-anchored N. F co-doped carbon nanotubes for efficient oxygen reduction. Journal of Alloys and Compounds, 2023, 941, 168922. Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie - International Edition, 2023, 62, . A Comparison Study of the Electrocatalytic Sulfur Reduction Activity on Heteroatomâ€Doped Graphene for Liã€"S Battery. Small Structures, 2023, 4, . A å€cePreâ€Division Metal Clustersâ€-Strategy to Mediate Efficient Dualâ€Active Sites ORR Catalyst for Ultralong Rechargeable Znâ€Air Battery. Angewandte Chemie, 0, , .	0.5 1.6 5.8 2.5 2.8 7.2 6.9	6 1 49 3 3 8 16 17 17

#	Article	IF	CITATIONS
408	Electrochemically Quantifying Oxygen Reduction Selectivity in Nonaqueous Electrolytes. ACS Catalysis, 2023, 13, 1462-1469.	5.5	2
409	Multi-atom Pt and PtRu catalysts for high performance AEMFCs with ultra-low PGM content. Applied Catalysis B: Environmental, 2023, 325, 122375.	10.8	8
410	A quinary high entropy metal oxide exhibiting robust and efficient bidirectional O2 reduction and water oxidation. International Journal of Hydrogen Energy, 2023, 48, 10521-10531.	3.8	3
411	Bifunctional P-Containing RuO2 Catalysts Prepared from Surplus Ru Co-Ordination Complexes and Applied to Zn/Air Batteries. Nanomaterials, 2023, 13, 115.	1.9	2
412	Application of Bimetallic Cathode Catalysts for Enhancing the Performance of Microbial Fuel Cell: A Review. Water, Air, and Soil Pollution, 2023, 234, .	1.1	5
413	Spatial confinement of sliver nanoparticles in nitrogen-doped carbon framework with high catalytic activity and long-term cycling. Frontiers in Energy Research, 0, 10, .	1.2	1
414	Cr-Doped NiCo-Layered Double Hydroxide/N-Doped Graphene for a Bifunctional Electrocatalyst for Rechargeable Zinc Air Batteries. International Journal of Energy Research, 2023, 2023, 1-14.	2.2	0
415	Regulating defects and interfacial compatibility of porous carbon derived from oxygen-containing composites to enhance oxygen reduction in aqueous electrolytes. Sustainable Energy and Fuels, 2023, 7, 1955-1962.	2.5	0
416	FeNC Oxygen Reduction Electrocatalyst with High Utilization Penta oordinated Sites. Advanced Materials, 2023, 35, .	11.1	22
417	Identifying the roles of oxygen-containing functional groups in carbon materials for electrochemical synthesis of H2O2. Journal of Environmental Chemical Engineering, 2023, 11, 109826.	3.3	3
418	NiO/Bi2MoxW1â^'xO6 (0Â≤Ââ‰Â1) nanofibers as a bifunctional platform boosting photocatalytic tetracycline conversion and electrocatalytic oxygen reduction. Journal of Alloys and Compounds, 2023, 947, 169607.	2.8	4
419	Electrocatalytic activity of Cu MOF and its g-C3N4-based composites for oxygen reduction and evolution reaction in metal-air batteries. Journal of Environmental Chemical Engineering, 2023, 11, 109627.	3.3	11
420	NaNO3 assisted gelatin-derived multi-level porous carbon aerogel loaded Fe single-atom for high efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2023, 331, 122685.	10.8	4
421	Insights into the Use of Te–O Pairs as Active Centers of Carbon Nanosheets for Efficient Electrochemical Oxygen Reduction. ACS Nano, 2023, 17, 8671-8679.	7.3	40
422	Nonlinear frequency response analysis of oxygen reduction reaction on silver in strong alkaline media. Electrochimica Acta, 2023, 451, 142175.	2.6	1
423	Efficient electrocatalytic H2O2 production in simulated seawater on ZnO/reduced graphene oxide nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668, 131446.	2.3	3
424	Multicore-shell structure CuxCoy-Fe alloy nitrogen doped mesoporous hollow carbon nanotubes composites for oxygen reduction reaction. Electrochimica Acta, 2023, 443, 141972.	2.6	2
425	Chemical vapor deposition towards atomically dispersed iron catalysts for efficient oxygen reduction. Journal of Materials Chemistry A, 2023, 11, 5288-5295.	5.2	11

#	Article	IF	CITATIONS
426	Impact of catalyst loading of atomically dispersed transition metal catalysts on H2O2 electrosynthesis selectivity. Electrochimica Acta, 2023, 444, 142031.	2.6	1
427	The oxygen reduction reaction activity and selectivity of porous-carbon supported transition metals (M-C: M Mn, Fe, Co, Ni, Cu) electrocatalysts. Diamond and Related Materials, 2023, 134, 109776.	1.8	2
428	Developing Outstanding Bifunctional Electrocatalysts for Rechargeable Znâ€Air Batteries Using Highâ€Purity Spinelâ€Type ZnCo ₂ Se ₄ Nanoparticles. Small, 2023, 19, .	5.2	23
429	Regulating the activity of intrinsic sites in covalent organic frameworks by introducing electro-withdrawing groups towards highly selective H2O2 electrosynthesis. Nano Today, 2023, 49, 101792.	6.2	12
430	Co supported on N and S dual-doped reduced graphene oxide as highly active oxygen-reduction catalyst for direct ethanol fuel cells. Chemical Engineering Journal, 2023, 461, 142053.	6.6	14
431	Design strategies of carbon-based single-atom catalysts for efficient electrochemical hydrogen peroxide production. Journal of Environmental Chemical Engineering, 2023, 11, 109572.	3.3	0
432	<i>Meso</i> â€substituted Metalloporphyrinâ€based Composites for Electrocatalytic Oxygen Reduction Reactions. ChemNanoMat, 2023, 9, .	1.5	6
433	Metal-free carbon-based catalysts design for oxygen reduction reaction towards hydrogen peroxide: From 3D to 0D. Materials Today, 2023, 63, 339-359.	8.3	14
434	Sulfur adlayer on gold surface for attaining H2O2 reduction in alkaline medium: Catalysis, kinetics, and sensing activities. Journal of Electroanalytical Chemistry, 2023, 934, 117281.	1.9	4
435	Dual single-atom catalyst design to build robust oxygen reduction electrode via free radical scavenging. Chem Catalysis, 2023, 3, 100532.	2.9	17
436	The Role of the A-Site Cation on the Bifunctional Electrocatalytic Activities of Ln0.5Sr0.5CoO3- \hat{l} (Ln =) Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
437	Catalysis of Wastewater Pollutants by Ruthenium Nanooxide in Porous Glass. Springer Proceedings in Physics, 2023, , 39-46.	0.1	0
438	Rotating ring-disc electrode method: Assessing transient chemical interaction of redox intermediate with electrode surface. Journal of Electroanalytical Chemistry, 2023, , 117317.	1.9	0
439	Sulfonic Acid Functionalization-Boosted Ultrafast, Durable, and Selective Four-Electron Oxygen Reduction Reaction: Evidenced by EC-SHINERS and DFT Studies. ACS Catalysis, 2023, 13, 4155-4167.	5.5	4
440	Pyrolyzed cobalt hexacyanocobaltate dispersed on reduced-graphene-oxide as an electrocatalyst of the oxygen reduction reaction in an alkaline medium. Journal of Materials Chemistry A, 2023, 11, 7286-7298.	5.2	3
441	Insight into oxygen reduction activity and pathway on pure titanium using scanning electrochemical microscopy and theoretical calculations. Journal of Colloid and Interface Science, 2023, 643, 551-562.	5.0	5
442	A sulfite/air fuel cell for H ₂ O ₂ electrosynthesis. Green Chemistry, 2023, 25, 3940-3947.	4.6	5
443	Manganese oxide nanocrystals embedded porous Graphene-like network for electrosynthesis of H2O2 and construction of Self-powered aptasensor. Chemical Engineering Journal, 2023, 466, 143033.	6.6	1

#	Article	IF	CITATIONS
444	Engineering polymorphs in colloidal metal dichalcogenides: precursor-mediated phase control, molecular insights into crystallisation kinetics and promising electrochemical activity. Journal of Materials Chemistry A, 2023, 11, 11341-11353.	5.2	5
446	Coordination environment engineering of single-atom catalysts for the oxygen reduction reaction. Materials Chemistry Frontiers, 2023, 7, 3595-3624.	3.2	6
490	Recent advances in Fe–N–C- and Co–N–C-based materials as bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Science China Chemistry, 0, , .	4.2	0
507	Membrane Electrode Assemblies Based on Platinum-Cobalt-Ceria Doped Graphene Oxide for PEMFCs Applications. , 2023, , .		0