Projected impacts of climate change on three freshwate competitive interactions

Diversity and Distributions 22, 603-614 DOI: 10.1111/ddi.12422

Citation Report

#	Article	IF	CITATIONS
1	Predicting shifts in the climate space of freshwater fishes in Great Britain due to climate change. Biological Conservation, 2016, 203, 33-42.	1.9	37
2	Examining the effects of climate change and species invasions on Ontario walleye populations: can walleye beat the heat?. Diversity and Distributions, 2016, 22, 1069-1079.	1.9	22
3	Pattern and scale in latitude–production relationships for freshwater fishes. Ecosphere, 2017, 8, e01660.	1.0	30
4	Projected compositional shifts and loss of ecosystem services in freshwater fish communities under climate change scenarios. Hydrobiologia, 2017, 799, 135-149.	1.0	17
5	Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish. Ecology and Evolution, 2017, 7, 4109-4128.	0.8	48
6	Thermal modulation of anthropogenic estrogen exposure on a freshwater fish at two life stages. Hormones and Behavior, 2017, 94, 21-32.	1.0	17
7	Projected shifts in fish species dominance in Wisconsin lakes under climate change. Global Change Biology, 2017, 23, 1463-1476.	4.2	138
8	Walleye recruitment success is less resilient to warming water temperatures in lakes with abundant largemouth bass populations. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 106-115.	0.7	24
9	Modeling oxythermal stress for cool-water fishes in lakes using a cumulative dosage approach. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1303-1312.	0.7	11
10	The effect of consumer pressure and abiotic stress on positive plant interactions are mediated by extreme climatic events. New Phytologist, 2018, 217, 140-150.	3.5	23
11	Effect of Environmental Conditions and Morphometric Parameters on Surface Water Temperature in Polish Lakes. Water (Switzerland), 2018, 10, 580.	1.2	54
12	The impact of global warming on lake surface water temperature in Poland - the application of empirical-statistical downscaling, 1971-2100. Journal of Limnology, 2018, 77, .	0.3	44
13	Recovery of acidified Sudbury, Ontario, Canada, lakes: a multi-decade synthesis and update. Environmental Reviews, 2019, 27, 1-16.	2.1	43
14	The Distribution and Prediction of Summer Near-Surface Water Temperatures in Lakes of the Coterminous United States and Southern Canada. Geosciences (Switzerland), 2019, 9, 296.	1.0	5
15	Scientific advances and adaptation strategies for Wisconsin lakes facing climate change. Lake and Reservoir Management, 2019, 35, 364-381.	0.4	22
16	Drivers and Management Implications of Long-Term Cisco Oxythermal Habitat Decline in Lake Mendota, WI. Environmental Management, 2019, 63, 396-407.	1.2	21
17	Quantifying multiple pressure interactions affecting populations of a recreationally and commercially important freshwater fish. Global Change Biology, 2019, 25, 1049-1062.	4.2	27
18	Atmospheric change as a driver of change in the Canadian boreal zone ¹ . Environmental Reviews, 2019, 27, 346-376.	2.1	18

#	Article	IF	CITATIONS
19	Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Diversity and Distributions, 2020, 26, 126-137.	1.9	27
20	Responses to local and global stressors in the large southern perialpine lakes: Present status and challenges for research and management. Journal of Great Lakes Research, 2020, 46, 752-766.	0.8	25
21	Climatic changes and the fate of mountain herbivores. Climatic Change, 2020, 162, 2319-2337.	1.7	32
22	Warming of Near-Surface Summer Water Temperatures in Lakes of the Conterminous United States. Water (Switzerland), 2020, 12, 3381.	1.2	4
23	Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie. Freshwater Biology, 2020, 65, 1487-1508.	1.2	15
24	Northern Benguela Merluccius paradoxus Annual Growth From Otolith Chronologies Used for Age Verification and as Indicators of Fisheries-Induced and Environmental Changes. Frontiers in Marine Science, 2020, 7, .	1.2	2
25	Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 2020, 733, 137782.	3.9	368
26	Climate-induced expansions of invasive species in the Pacific Northwest, North America: a synthesis of observations and projections. Biological Invasions, 2020, 22, 2163-2183.	1.2	7
27	Impacts of climate change on geographical distributions of invasive ascidians. Marine Environmental Research, 2020, 159, 104993.	1.1	30
28	Drivers of water quality changes within the Laurentian Great Lakes region over the past 40 years. Limnology and Oceanography, 2021, 66, 237-254.	1.6	24
29	Ecosystem change as a driver of fish recruitment dynamics: A case study of two Lake Erie yellow perch populations. Freshwater Biology, 2021, 66, 1149-1168.	1.2	7
30	Golden mussel (<i>Limnoperna fortunei</i>) survival during winter at the northern invasion front implies a potential high″atitude distribution. Diversity and Distributions, 2021, 27, 1422-1434.	1.9	9
31	How Does Climate Change Affect Emergent Properties of Aquatic Ecosystems?. Fisheries, 2021, 46, 423-441.	0.6	13
32	Review on climate change and its effect on wildlife and ecosystem. Open Journal of Environmental Biology, 2021, , 008-014.	0.1	6
33	Modeling the climate change impact on the habitat suitability and potential distribution of an economically important hill stream fish, Neolissochilus hexagonolepis, in the Ganges–Brahmaputra basin of Eastern Himalayas. Aquatic Sciences, 2021, 83, 1.	0.6	6
34	Combining expertâ€based and computational approaches to design protected river networks under climate change. Diversity and Distributions, 2021, 27, 2428-2440.	1.9	4
36	Modelling temperatureâ€driven changes in species associations across freshwater communities. Global Change Biology, 2022, 28, 86-97.	4.2	5
38	Stocking Practices and Lake Characteristics Influence Probability of Stocked Walleye Survival in Wisconsin's Ceded Territory Lakes. North American Journal of Fisheries Management, 2022, 42, 523-534.	0.5	6

#	Article	IF	CITATIONS
39	Temporal and vertical variation of phytoplankton and zooplankton in two tropical reservoirs with different trophic states. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20200624.	0.3	0
40	Global impacts of climate change on avian functional diversity. Ecology Letters, 2022, 25, 673-685.	3.0	26
41	Strong but heterogeneous distributional responses to climate change are projected for temperate and semiâ€arid stream vertebrates. Aquatic Conservation: Marine and Freshwater Ecosystems, 0, , .	0.9	1
42	Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes. Ecological Indicators, 2022, 138, 108826.	2.6	10

CITATION REPORT

Behavioral traits vary with intrinsic factors and impact local survival in Song Sparrows (Melospiza) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50

44	Shifting thermal regimes influence competitive feeding and aggression dynamics of brook trout () Tj ETQq1 1 0.7 Evolution, 2022, 12, .	84314 rgB 0.8	T /Overloc O
45	Climate change alters aging patterns of reservoir aquatic habitats. Climatic Change, 2022, 174, .	1.7	2
46	Sentinel responses of Arctic freshwater systems to climate: linkages, evidence, and a roadmap for future research. Arctic Science, 2023, 9, 356-392.	0.9	4
47	Depth and temperature drive patterns of spatial overlap among fish thermal guilds in lakes across Ontario, Canada. Diversity and Distributions, 0, , .	1.9	0
48	Climate tracking by freshwater fishes suggests that fish diversity in temperate lakes may be increasingly threatened by climate warming. Diversity and Distributions, 2023, 29, 300-315.	1.9	4
49	Substantial warming of Central European mountain rivers under climate change. Regional Environmental Change, 2023, 23, .	1.4	4
50	Non-Infectious Disorders of Coldwater Fish. , 2023, , 125-162.		2
58	Application of a Fine-Scale Modeling Approach to Assess Broad-Scale Changes in Stream Salmonid Habitat in a Changing Climate. , 2024, , 461-489.		0