An Artificial Solid Electrolyte Interphase Layer for Stab

Advanced Materials 28, 1853-1858 DOI: 10.1002/adma.201504526

Citation Report

#	Article	IF	CITATIONS
1	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 2016, 138, 15825-15828.	6.6	399
2	Suppression of lithium dendrite growth by introducing a low reduction potential complex cation in the electrolyte. RSC Advances, 2016, 6, 51738-51746.	1.7	21
3	Large-Scale Production of V ₆ O ₁₃ Cathode Materials Assisted by Thermal Gravimetric Analysis–Infrared Spectroscopy Technology. ACS Applied Materials & Interfaces, 2016, 8, 25674-25679.	4.0	12
4	All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator. Journal of the American Chemical Society, 2016, 138, 11044-11050.	6.6	170
5	Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry, 2016, 25, 967-984.	7.1	409
6	Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. ACS Applied Materials & Interfaces, 2016, 8, 26091-26097.	4.0	152
7	Recent Developments of the Lithium Metal Anode for Rechargeable Nonâ€Aqueous Batteries. Advanced Energy Materials, 2016, 6, 1600811.	10.2	306
8	Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. Journal of Power Sources, 2016, 327, 212-220.	4.0	222
9	Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 2016, 1, .	19.8	1,388
10	Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li–S Cells. ACS Applied Materials & Interfaces, 2016, 8, 16386-16395.	4.0	41
11	Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Materials, 2017, 8, 194-201.	9.5	171
12	Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials, 2017, 27, 1605989.	7.8	1,189
13	Dendriteâ€Free, Highâ€Rate, Longâ€Life Lithium Metal Batteries with a 3D Crossâ€Linked Network Polymer Electrolyte. Advanced Materials, 2017, 29, 1604460.	11.1	604
14	Pretreatment of Lithium Surface by Using Iodic Acid (HIO ₃) To Improve Its Anode Performance in Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 7068-7074.	4.0	50
15	Nanostructured Metal Oxides and Sulfides for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1601759.	11.1	1,197
16	Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A, 2017, 5, 3483-3492.	5.2	258
17	Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy–High Power Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4605-4613.	4.0	67
18	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444

	CITATION R	EPORT	
#	Article	IF	CITATIONS
19	Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. CheM, 2017, 2, 258-270.	5.8	474
20	Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1691-1708.	3.2	277
21	Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy, 2017, 2, .	19.8	1,048
22	Probing the capacity loss of Li 3 VO 4 anode upon Li insertion and extraction. Journal of Power Sources, 2017, 348, 48-56.	4.0	47
23	Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12, 194-206.	15.6	4,804
24	In Situ Construction of Stable Tissueâ€Ðirected/Reinforced Bifunctional Separator/Protection Film on Lithium Anode for Lithium–Oxygen Batteries. Advanced Materials, 2017, 29, 1606552.	11.1	162
25	Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chemical Science, 2017, 8, 4285-4291.	3.7	164
26	A Highâ€Performance Composite Electrode for Vanadium Redox Flow Batteries. Advanced Energy Materials, 2017, 7, 1700461.	10.2	133
27	Garnet Solid Electrolyte Protected Li-Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18809-18815.	4.0	247
28	Review on High‣oading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307
29	Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Research, 2017, 10, 4256-4265.	5.8	76
30	Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. Small Methods, 2017, 1, 1700094.	4.6	50
31	3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 2017, 37, 177-186.	8.2	431
32	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 7764-7768.	7.2	989
33	Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy, 2017, 36, 411-417.	8.2	187
34	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 7872-7876.	1.6	186
35	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters, 2017, 2, 1385-1394.	8.8	314
36	Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery. ACS Applied Materials & Interfaces, 2017, 9, 17085-17095.	4.0	24

ARTICLE IF CITATIONS # Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Liâ€Ion Batteries. 37 10.2 122 Advanced Energy Materials, 2017, 7, 1602607. Development and perspective of the insertion anode Li 3 VO 4 for lithium-ion batteries. Energy Storage Materials, 2017, 7, 17-31. A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance 39 8.2 73 batteries. Nano Energy, 2017, 38, 504-509. Anode Improvement in Rechargeable Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1700542. 11.1 Poly(ethyl α-cyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface 41 3.2 189 Stability of Li Metal Anodes. Chemistry of Materials, 2017, 29, 4682-4689. A Superior Polymer Electrolyte with Rigid Cyclic Carbonate Backbone for Rechargeable Lithium Ion 4.0 Batteries. ACS Applied Matérials & amp; Intérfaces, 2017, 9, 17897-17905. Strategies of constructing stable and high sulfur loading cathodes based on the blade-casting 43 5.2 38 technique. Journal of Materials Chemistry A, 2017, 5, 12879-12888. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Research, 44 5.8 130 2017, 10, 4003-4026. 45 Reviewâ€"SEI: Past, Present and Future. Journal of the Electrochemical Society, 2017, 164, A1703-A1719. 1.3 1,361 Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous 4.5 Reagent Freon. Nano Letters, 2017, 17, 3731-3737. Facile fabrication of layer-cake-like nano-micro hierarchical structure for high performance Li 47 4 1.7 storage. RSC Advances, 2017, 7, 28548-28555. Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode 149 performance. Energy Storage Materials, 2017, 9, 31-38. A Toolbox for Lithiumâ€"Sulfur Battery Research: Methods and Protocols. Small Methods, 2017, 1, 49 4.6 230 1700134. The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped 5.2 44 binder network. Journal of Materials Chemistry Á, 2017, 5, 9339-9349. Flexible P-Doped Carbon Cloth: Vacuum-Sealed Preparation and Enhanced Na-Storage Properties as 51 4.0 76 Binder-Free Anode for Sodium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 12518-12527. Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon 410 Granules with 3D Conducting Skeletons. Journal of the Américan Chemical Society, 2017, 139, 5916-5922. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial 53 4.7 647 solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3, e1601659. Uniform Lithium Deposition Induced by Polyacrylonitrile Submicron Fiber Array for Stable Lithium 54 Metal Anode. ACS Applied Materials & amp; Interfaces, 2017, 9, 10360-10365.

	CITATION	Report	
#	Article	IF	CITATIONS
55	A Novel Potassiumâ€lonâ€Based Dualâ€lon Battery. Advanced Materials, 2017, 29, 1700519.	11.1	508
56	Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite-Suppressed Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11615-11625.	4.0	109
57	Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. Journal of Power Sources, 2017, 342, 175-182.	4.0	181
58	An Artificial Solid Electrolyte Interphase with High Liâ€Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. Advanced Materials, 2017, 29, 1605531.	11.1	747
59	First-Principles Investigations of the Working Mechanism of 2D <i>h</i> -BN as an Interfacial Layer for the Anode of Lithium Metal Batteries. ACS Applied Materials & (), 1087-1994.	4.0	102
60	Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes. ACS Applied Materials & Interfaces, 2017, 9, 40265-40272.	4.0	67
61	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule, 2017, 1, 563-575.	11.7	329
62	Facile synthesis of NASICON-type Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li ₃ PO ₄ SEI layer. RSC Advances, 2017, 7,	1.7	79
63	Representation of the second s	1.3	18
64	A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy, 2017, 42, 262-268.	8.2	90
65	Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. Journal of the American Chemical Society, 2017, 139, 15288-15291.	6.6	255
66	Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nature Communications, 2017, 8, 850.	5.8	240
67	Designing solid-liquid interphases for sodium batteries. Nature Communications, 2017, 8, 898.	5.8	303
68	Online Digital Holographic Method for Interface Reaction Monitoring in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 24733-24739.	1.5	13
69	Recent approaches to improving lithium metal electrodes. Current Opinion in Electrochemistry, 2017, 6, 70-76.	2.5	9
70	Suppressing Lithium Dendrite Growth with a Single-Component Coating. ACS Applied Materials & Interfaces, 2017, 9, 30635-30642.	4.0	38
71	Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Journal of the American Chemical Society, 2017, 139, 11550-11558.	6.6	398
72	Gas treatment protection of metallic lithium anode. Chinese Physics B, 2017, 26, 088202.	0.7	3

			-
#	ARTICLE	IF	CITATIONS
73	Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy, 2017, 40, 607-617.	8.2	160
74	Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. Advanced Materials, 2017, 29, 1703729.	11.1	381
75	Highâ€Energyâ€Density Metal–Oxygen Batteries: Lithium–Oxygen Batteries vs Sodium–Oxygen Batteries. Advanced Materials, 2017, 29, 1606572.	11.1	138
76	Columnar Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 14207-14211.	7.2	199
77	Columnar Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 14395-14399.	1.6	51
78	Dendrite-Free Lithium Metal Anodes in High Performance Lithium-Sulfur Batteries with Bifunctional Carbon Nanofiber Interlayers. Electrochimica Acta, 2017, 252, 127-137.	2.6	46
79	Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 2017, 39, 654-661.	8.2	163
80	Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.	11.1	596
81	Advanced Porous Carbon Materials for Highâ€Efficient Lithium Metal Anodes. Advanced Energy Materials, 2017, 7, 1700530.	10.2	208
82	Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries. Journal of Power Sources, 2017, 363, 193-198.	4.0	43
83	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 2017, 117, 10403-10473.	23.0	4,365
84	Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy, 2017, 39, 662-672.	8.2	143
85	Pre-planted nucleation seeds for rechargeable metallic lithium anodes. Journal of Materials Chemistry A, 2017, 5, 18862-18869.	5.2	28
86	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie - International Edition, 2017, 56, 13070-13077.	7.2	151
87	Carbon enables the practical use of lithium metal in a battery. Carbon, 2017, 123, 744-755.	5.4	105
88	Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. Advanced Materials, 2017, 29, 1702714.	11.1	510
89	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie, 2017, 129, 13250-13257.	1.6	11
90	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572

#	Article	IF	CITATIONS
91	The recent advances in constructing designed electrode in lithium metal batteries. Chinese Chemical Letters, 2017, 28, 2171-2179.	4.8	64
92	Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Science Advances, 2017, 3, eaao3170.	4.7	252
93	Reviving Lithiumâ€Metal Anodes for Nextâ€Generation Highâ€Energy Batteries. Advanced Materials, 2017, 29, 1700007.	11.1	908
94	Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes. Advanced Materials, 2017, 29, 1700389.	11.1	495
95	LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium. Nano Energy, 2017, 39, 262-272.	8.2	104
96	Review of nanostructured current collectors in lithium–sulfur batteries. Nano Research, 2017, 10, 4027-4054.	5.8	91
97	Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase. Chemistry of Materials, 2017, 29, 6298-6307.	3.2	155
98	Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Research, 2017, 10, 4245-4255.	5.8	52
99	Lithiumâ€Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithiumâ€Metal Batteries. Advanced Materials Interfaces, 2017, 4, 1700166.	1.9	142
100	Li–S and Li–O2 Batteries with High Specific Energy. Springer Briefs in Molecular Science, 2017, , 1-48.	0.1	3
101	Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 2017, 4, 54-70.	4.6	128
102	Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density. Carbon, 2017, 111, 493-501.	5.4	55
103	Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for Highâ€Performance Lithiumâ€Metal Battery Anodes. Advanced Materials, 2017, 29, 1603755.	11.1	454
104	Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping. Advanced Science, 2017, 4, 1600400.	5.6	220
105	Towards Highâ€ S afe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Advanced Science, 2017, 4, 1600168.	5.6	399
106	Enhanced separator wettability by LiTFSI and its application for lithium metal batteries. Journal of Membrane Science, 2017, 524, 315-320.	4.1	67
107	The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Materials, 2017, 6, 18-25.	9.5	325
108	Lithium Metal Anodes: A Recipe for Protection. Joule, 2017, 1, 649-650.	11.7	46

#	Article	IF	CITATIONS
109	Hosting Ultrahigh Areal Capacity and Dendrite-free Lithium via Porous Scaffold. ACS Sustainable Chemistry and Engineering, 2018, 6, 4776-4783.	3.2	15
110	Stacked-graphene layers as engineered solid-electrolyte interphase (SEI) grown by chemical vapour deposition for lithium-ion batteries. Carbon, 2018, 132, 678-690.	5.4	16
111	Progress of the Interface Design in Allâ€Solidâ€State Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707533.	7.8	182
112	A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy and Environmental Science, 2018, 11, 1197-1203.	15.6	273
113	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	9.5	195
114	Effective strategies for long-cycle life lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 6155-6182.	5.2	157
115	A promising bulky anion based lithium borate salt for lithium metal batteries. Chemical Science, 2018, 9, 3451-3458.	3.7	56
116	Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. Small, 2018, 14, e1704371.	5.2	130
117	Enhanced Lithium Oxygen Battery Using a Glyme Electrolyte and Carbon Nanotubes. ACS Applied Materials & Interfaces, 2018, 10, 16367-16375.	4.0	21
118	A Host onfigured Lithium–Sulfur Cell Built on 3D Nickel Photonic Crystal with Superior Electrochemical Performances. Small, 2018, 14, e1800616.	5.2	25
119	Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1703404.	10.2	274
120	Effect of LiFSI Concentrations To Form Thickness- and Modulus-Controlled SEI Layers on Lithium Metal Anodes. Journal of Physical Chemistry C, 2018, 122, 9825-9834.	1.5	131
121	Super P Carbon Modified Lithium Anode for Highâ€Performance Liâ^'O ₂ Batteries. ChemElectroChem, 2018, 5, 1702-1707.	1.7	31
122	Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 9899-9905.	5.2	137
123	Impacts of the Properties of Anode Solid Electrolyte Interface on the Storage Life of Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 9411-9416.	1.5	10
124	Dual‣ayered Film Protected Lithium Metal Anode to Enable Dendriteâ€Free Lithium Deposition. Advanced Materials, 2018, 30, e1707629.	11.1	378
125	Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Materials, 2018, 15, 148-170.	9.5	247
126	Advancing Lithium Metal Batteries. Joule, 2018, 2, 833-845.	11.7	1,052

#	Article	IF	CITATIONS
127	A carbon cloth-based lithium composite anode for high-performance lithium metal batteries. Energy Storage Materials, 2018, 14, 222-229.	9.5	69
128	Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nature Communications, 2018, 9, 1339.	5.8	265
129	Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendriteâ€Free Lithium Metal Anode Current Collector. Advanced Energy Materials, 2018, 8, 1800266.	10.2	336
130	Dissolution-regrowth synthesis of SiO 2 nanoplates and embedment into two carbon shells for enhanced lithium-ion storage. Chinese Journal of Chemical Engineering, 2018, 26, 1522-1527.	1.7	2
131	Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries. Scientific Reports, 2018, 8, 5819.	1.6	51
132	3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Materials, 2018, 14, 376-382.	9.5	114
133	Mesoporous Hybrid Electrolyte for Simultaneously Inhibiting Lithium Dendrites and Polysulfide Shuttle in Li–S Batteries. Advanced Energy Materials, 2018, 8, 1703124.	10.2	42
134	Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 1500-1507.	7.3	149
135	Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li–S Batteries with High Sulfur Mass Loading. ACS Applied Materials & Interfaces, 2018, 10, 7043-7051.	4.0	66
136	Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nature Communications, 2018, 9, 464.	5.8	250
137	Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 2018, 47, 2020-2064.	18.7	452
138	Designing Safe Electrolyte Systems for a Highâ€Stability Lithium–Sulfur Battery. Advanced Energy Materials, 2018, 8, 1702348.	10.2	266
139	Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. CheM, 2018, 4, 298-307.	5.8	63
140	3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 7069-7078.	4.0	318
141	<i>In situ</i> atomic force microscopy study of nano–micro sodium deposition in ester-based electrolytes. Chemical Communications, 2018, 54, 2381-2384.	2.2	104
142	A Material Perspective of Rechargeable Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1702296.	10.2	95
143	Stable Lithium Electrodeposition at Ultraâ€High Current Densities Enabled by 3D PMF/Li Composite Anode. Advanced Energy Materials, 2018, 8, 1703360.	10.2	194
144	Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes. Nano Letters, 2018, 18, 297-301.	4.5	130

#	Article	IF	CITATIONS
145	An ion-conductive Li1.5Al0.5Ge1.5(PO4)3-based composite protective layer for lithium metal anode in lithium-sulfur batteries. Journal of Power Sources, 2018, 377, 36-43.	4.0	47
146	Design Principles of Functional Polymer Separators for Highâ€Energy, Metalâ€Based Batteries. Small, 2018, 14, e1703001.	5.2	155
147	Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. CheM, 2018, 4, 174-185.	5.8	682
148	Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 2469-2479.	4.0	110
149	Polysulfide Stabilization: A Pivotal Strategy to Achieve High Energy Density Li–S Batteries with Long Cycle Life. Advanced Functional Materials, 2018, 28, 1704987.	7.8	60
150	A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes. Angewandte Chemie, 2018, 130, 1521-1525.	1.6	82
151	A confined "microreactor―synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes. Journal of Power Sources, 2018, 378, 105-111.	4.0	34
152	The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes. Advanced Energy Materials, 2018, 8, 1702744.	10.2	137
153	Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure. Nano Energy, 2018, 45, 463-470.	8.2	81
154	Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogenâ€Đoped Graphitic Carbon Foams for Highâ€Performance Lithium Metal Anodes. Advanced Materials, 2018, 30, 1706216.	11.1	401
155	Mixed Ionic and Electronic Conductor for Liâ€Metal Anode Protection. Advanced Materials, 2018, 30, 1705105.	11.1	92
156	Artificial Soft–Rigid Protective Layer for Dendriteâ€Free Lithium Metal Anode. Advanced Functional Materials, 2018, 28, 1705838.	7.8	470
157	Surface transformation by a "cocktail―solvent enables stable cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 2758-2766.	5.2	28
158	Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony)imide/1,2-dimethoxyethane electrolytes. Electrochimica Acta, 2018, 277, 116-126.	2.6	9
159	Buildup of the Solid Electrolyte Interphase on Lithium-Metal Anodes: Reactive Molecular Dynamics Study. Journal of Physical Chemistry C, 2018, 122, 10783-10791.	1.5	44
160	Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. ACS Applied Materials & Interfaces, 2018, 10, 18005-18011.	4.0	23
161	Structure and Solution Dynamics of Lithium Methyl Carbonate as a Protective Layer For Lithium Metal. ACS Applied Energy Materials, 2018, 1, 1864-1869.	2.5	41
162	Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 13552-13561.	4.0	95

#	Article	IF	CITATIONS
163	Progress and Perspective of Solid‧tate Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707570.	7.8	194
164	Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3770-3775.	3.3	250
165	Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge. Journal of Power Sources, 2018, 386, 77-84.	4.0	65
166	Artificial Solid Electrolyte Interphase Layer for Lithium Metal Anode in High-Energy Lithium Secondary Pouch Cells. ACS Applied Energy Materials, 2018, 1, 1674-1679.	2.5	33
167	A Li-dual carbon composite as stable anode material for Li batteries. Energy Storage Materials, 2018, 15, 116-123.	9.5	53
168	A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries. Electrochimica Acta, 2018, 270, 62-69.	2.6	31
169	Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy, 2018, 47, 503-511.	8.2	221
170	Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 6959-6966.	5.2	68
171	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Materials, 2018, 10, 199-205.	9.5	215
172	Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Materials, 2018, 11, 197-204.	9.5	117
173	Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating. Energy Storage Materials, 2018, 11, 47-56.	9.5	49
174	Recent development in lithium metal anodes of liquid-state rechargeable batteries. Journal of Alloys and Compounds, 2018, 730, 135-149.	2.8	44
175	Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1702097.	10.2	704
176	Advanced chemical strategies for lithium–sulfur batteries: A review. Green Energy and Environment, 2018, 3, 2-19.	4.7	164
177	LiPON as a protective layer on graphite anode to extend the storage life of Li-ion battery at elevated temperature. lonics, 2018, 24, 723-734.	1.2	13
178	Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery. Energy Storage Materials, 2018, 11, 16-23.	9.5	119
179	Advances in Interfaces between Li Metal Anode and Electrolyte. Advanced Materials Interfaces, 2018, 5, 1701097.	1.9	200
180	A Flexible Solid Electrolyte Interphase Layer for Long‣ife Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 1505-1509.	7.2	590

#	Article	IF	CITATIONS
181	Lithium dendrite suppression and cycling efficiency of lithium anode. Electrochemistry Communications, 2018, 87, 27-30.	2.3	39
182	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2018, 10, 593-601.	4.0	116
183	Robust Pinhole-free Li ₃ N Solid Electrolyte Grown from Molten Lithium. ACS Central Science, 2018, 4, 97-104.	5.3	197
184	Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Materials, 2018, 12, 161-175.	9.5	422
185	Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701261.	10.2	79
186	Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes. Nano Energy, 2018, 43, 368-375.	8.2	117
187	Review—Li Metal Anode in Working Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6058-A6072.	1.3	227
188	Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Materials, 2018, 10, 16-23.	9.5	174
189	A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, 1705219.	11.1	276
190	A fumed alumina induced gel-like electrolyte for great performance improvement of lithium–sulfur batteries. Chemical Communications, 2018, 54, 13567-13570.	2.2	17
191	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	1.6	23
192	Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12389-12394.	3.3	49
193	Li2O-Reinforced Solid Electrolyte Interphase on Three-Dimensional Sponges for Dendrite-Free Lithium Deposition. Frontiers in Chemistry, 2018, 6, 517.	1.8	20
194	High Performance Lithium Metal Batteries Enabled by Surface Tailoring of Polypropylene Separator with a Polydopamine/Graphene Layer. Advanced Energy Materials, 2018, 8, 1802665.	10.2	72
195	Revisiting Scientific Issues for Industrial Applications of Lithium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 196-208.	7.3	158
196	Incorporating Flexibility into Stiffness: Selfâ€Grown Carbon Nanotubes in Melamine Sponges Enable A Lithiumâ€Metalâ€Anode Capacity of 15 mA h cm ^{â^'2} Cyclable at 15 mA cm ^{â^'2} . Advanc Materials, 2019, 31, e1805654.	cetti.1	95
197	Ultralongâ€Life Quasiâ€Solidâ€State Liâ€O ₂ Batteries Enabled by Coupling Advanced Air Electrode Design with Li Metal Anode Protection. Small Methods, 2019, 3, 1800437.	4.6	35
198	Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase. Advanced Energy Materials, 2018, 8, 1802350.	10.2	147

#	Article		CITATIONS
199	An Armored Mixed Conductor Interphase on a Dendriteâ€Free Lithiumâ€Metal Anode. Advanced Materials, 2018, 30, e1804461.	11.1	338
200	Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy, 2018, 53, 958-966.	8.2	227
201	Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries. Joule, 2018, 2, 2016-2046.	11.7	266
202	Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. Joule, 2018, 2, 2208-2224.	11.7	153
203	Enhanced Cycling Performance of Li–O ₂ Battery by Using a Li ₃ PO ₄ -Protected Lithium Anode in DMSO-Based Electrolyte. ACS Applied Energy Materials, 2018, 1, 5511-5517.	2.5	20
204	Controlling Reversible Expansion of Li2O2 Formation and Decomposition by Modifying Electrolyte in Li-O2 Batteries. CheM, 2018, 4, 2685-2698.	5.8	49
205	In Situ Li ₃ PS ₄ Solid‣tate Electrolyte Protection Layers for Superior Longâ€Life and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	11.1	140
206	Combinatorial Methods for Improving Lithium Metal Cycling Efficiency. Journal of the Electrochemical Society, 2018, 165, A3000-A3013.	1.3	25
207	A Selfâ€Healing Roomâ€Temperature Liquidâ€Metal Anode for Alkaliâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1804649.	7.8	147
208	Li-B Alloy as an Anode Material for Stable and Long Life Lithium Metal Batteries. Energies, 2018, 11, 2512.	1.6	16
209	Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 2018, 54, 17-25.	8.2	168
210	Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy, 2018, 54, 375-382.	8.2	123
211	A Li ₂ Sâ€Based Sacrificial Layer for Stable Operation of Lithiumâ€Sulfur Batteries. Energy Technology, 2018, 6, 2210-2219.	1.8	4
212	Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2018, 165, A3321-A3325.	1.3	97
213	Li ₃ N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C. Nano Letters, 2018, 18, 7414-7418.	4.5	270
214	Improved Rechargeability of Lithium Metal Anode via Controlling Lithiumâ€ l on Flux. Advanced Energy Materials, 2018, 8, 1802352.	10.2	109
215	In operando plasmonic monitoring of electrochemical evolution of lithium metal. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11168-11173.	3.3	28
216	Suppressing Li Metal Dendrites Through a Solid Liâ€ŀon Backup Layer. Advanced Materials, 2018, 30, e1803869.	11.1	70

		CITATION R	EPORT	
#	Article		IF	CITATIONS
217	2D Materials for Lithium/Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1	.802833.	10.2	105
218	Mixed Lithium Oxynitride/Oxysulfide as an Interphase Protective Layer To Stabilize Lith High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 39695-39704.	ium Anodes for 2018, 10,	4.0	35
219	In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Frame Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 201	work toward 8, 6, 15219-15227.	3.2	43
220	Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion bai of Chemical Science and Engineering, 2018, 12, 577-591.	ctery. Frontiers	2.3	31
221	Favorable lithium deposition behaviors on flexible carbon microtube skeleton enable a high-performance lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 1915	59-19166.	5.2	35
222	Solubility-mediated sustained release enabling nitrate additive in carbonate electrolyte lithium metal anode. Nature Communications, 2018, 9, 3656.	s for stable	5.8	371
223	Recent advances in effective protection of sodium metal anode. Nano Energy, 2018, 5	3, 630-642.	8.2	191
224	Deposition and Stripping Behavior of Lithium Metal in Electrochemical System: Contin Study. Chemistry of Materials, 2018, 30, 6769-6776.	uum Mechanics	3.2	74
225	Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode Communications, 2018, 9, 3729.	2. Nature	5.8	331
226	A 3D conductive scaffold with lithiophilic modification for stable lithium metal batterie Materials Chemistry A, 2018, 6, 17967-17976.	s. Journal of	5.2	57
227	Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 18627-18634.		5.2	69
228	Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. Journal of Physic 2018, 122, 21462-21467.	al Chemistry C,	1.5	45
229	Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium capacitors. Electrochimica Acta, 2018, 281, 459-465.	ŀion	2.6	36
230	Self-Stabilized Solid Electrolyte Interface on a Host-Free Li-Metal Anode toward High A and Rate Utilization. Chemistry of Materials, 2018, 30, 4039-4047.	real Capacity	3.2	87
231	A Scalable Approach to Dendriteâ€Free Lithium Anodes via Spontaneous Reduction of Graphene Oxide Layers. Advanced Materials, 2018, 30, e1801213.	Sprayâ€Coated	11.1	204
232	Comparative life cycle assessment of lithium-ion batteries with lithium metal, silicon na graphite anodes. Clean Technologies and Environmental Policy, 2018, 20, 1233-1244.		2.1	43
233	Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li Nano Energy, 2018, 50, 431-440.	-S batteries.	8.2	134
234	Vertically Grown Edgeâ€Rich Graphene Nanosheets for Spatial Control of Li Nucleatior Energy Materials, 2018, 8, 1800564.	n. Advanced	10.2	145

#	Article	IF	CITATIONS
235	Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Metals, 2018, 37, 449-458.	3.6	86
236	CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Materials, 2018, 14, 335-344.	9.5	164
237	Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode. Nano Letters, 2018, 18, 3926-3933.	4.5	175
238	Use of Tween Polymer To Enhance the Compatibility of the Li/Electrolyte Interface for the High-Performance and High-Safety Quasi-Solid-State Lithium–Sulfur Battery. Nano Letters, 2018, 18, 4598-4605.	4.5	81
239	Insights into Cyclable Lithium Loss as a Key Factor in Accelerated Capacity Fade of Lithiated Silicon–Sulfur Full Cells. ACS Applied Materials & Interfaces, 2018, 10, 18709-18716.	4.0	9
240	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Materials, 2018, 15, 299-307.	9.5	92
241	Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications, 2018, 54, 6648-6661.	2.2	184
242	Uniform metal-ion flux through interface-modified membrane for highly stable metal batteries. Electrochimica Acta, 2018, 283, 517-527.	2.6	25
243	Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy and Environmental Science, 2018, 11, 2600-2608.	15.6	292
244	Robust Current Collector Promoting the Li Metal Anode Cycling with Appropriate Interspaces. Journal of the Electrochemical Society, 2018, 165, A2026-A2031.	1.3	7
245	Electrochemically Controlled Solid Electrolyte Interphase Layers Enable Superior Li–S Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24554-24563.	4.0	45
246	Lithiophilic Co/Co ₄ N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li–air batteries. Journal of Materials Chemistry A, 2018, 6, 22096-22105.	5.2	55
247	Smart short-chain bifunctional N,N-dimethylethanolamine for high-performance lithium batteries. Electrochimica Acta, 2018, 282, 711-718.	2.6	3
248	Materials for lithium-ion battery safety. Science Advances, 2018, 4, eaas9820.	4.7	958
249	Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nature Communications, 2018, 9, 2942.	5.8	138
250	g-C ₃ N ₄ /MgO nanosheets: light-independent, metal-poisoning-free catalysts for the activation of hydrogen peroxide to degrade organics. Journal of Materials Chemistry A, 2018, 6, 16421-16429.	5.2	76
251	Novel Non arbon Sulfur Hosts Based on Strong Chemisorption for Lithium–Sulfur Batteries. Small, 2018, 14, e1801987.	5.2	68
252	Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Applied Energy Materials, 2018, 1, 4341-4350.	2.5	45

#	Article	lF	CITATIONS
253	Guided Lithium Deposition by Surface Microâ€Patterning of Lithiumâ€Metal Electrodes. ChemElectroChem, 2018, 5, 3169-3175.	1.7	22
254	Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 15859-15867.	5.2	90
255	Fabrication of Lithiophilic Copper Foam with Interfacial Modulation toward High-Rate Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10, 27764-27770.	4.0	78
256	Engineering stable interfaces for three-dimensional lithium metal anodes. Science Advances, 2018, 4, eaat5168.	4.7	153
257	Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and P GeCl ₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711.	romising 11.1	186
258	Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. Chemistry of Materials, 2018, 30, 5655-5662.	3.2	49
259	Controlling Nucleation in Lithium Metal Anodes. Small, 2018, 14, e1801423.	5.2	159
260	A Dualâ€Salt Gel Polymer Electrolyte with 3D Crossâ€Linked Polymer Network for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2018, 5, 1800559.	5.6	204
261	High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 25273-25284.	4.0	53
262	Stabilizing Li Metal Anodes through a Novel Self-Healing Strategy. ACS Sustainable Chemistry and Engineering, 2018, 6, 11097-11104.	3.2	30
263	The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources, 2018, 397, 157-161.	4.0	94
264	A substrate-influenced three-dimensional unoriented dispersion pathway for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2018, 6, 14910-14918.	5.2	26
265	Understanding the critical chemistry to inhibit lithium consumption in lean lithium metal composite anodes. Journal of Materials Chemistry A, 2018, 6, 16003-16011.	5.2	15
266	Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 26972-26981.	4.0	99
267	Extremely Low Resistance of Li ₃ PO ₄ Electrolyte/Li(Ni _{0.5} Mn _{1.5})O ₄ Electrode Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 27498-27502.	4.0	41
268	Inhibiting the growth of lithium dendrites at high current densities with oriented graphene foam. Journal of Materials Chemistry A, 2018, 6, 15603-15609.	5.2	25
269	Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. Journal of Power Sources, 2018, 396, 764-773.	4.0	80
270	Improved performance of all-solid-state lithium batteries using LiPON electrolyte prepared with Li-rich sputtering target. Solid State Ionics, 2018, 324, 202-206.	1.3	48

#	Article	IF	CITATIONS
271	Lowâ€Weight 3D Al ₂ O ₃ Network as an Artificial Layer to Stabilize Lithium Deposition. ChemSusChem, 2018, 11, 3243-3252.	3.6	24
272	Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Materials, 2018, 15, 415-421.	9.5	40
273	Sulfur-Doped Carbon Nanotemplates for Sodium Metal Anodes. ACS Applied Energy Materials, 2018, 1, 1846-1852.	2.5	32
274	Zipperâ€Inspired SEI Film for Remarkably Enhancing the Stability of Li Metal Anode via Nucleation Barriers Controlled Weaving of Lithium Pits. Advanced Energy Materials, 2018, 8, 1800650.	10.2	49
275	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Materials, 2018, 15, 458-464.	9.5	108
276	Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems. ACS Applied Materials & Interfaces, 2018, 10, 30348-30356.	4.0	12
277	Dendriteâ€Free Epitaxial Growth of Lithium Metal during Charging in Li–O 2 Batteries. Angewandte Chemie, 2018, 130, 13390-13394.	1.6	53
278	Dendriteâ€Free Epitaxial Growth of Lithium Metal during Charging in Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2018, 57, 13206-13210.	7.2	76
279	Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30058-30064.	4.0	49
280	A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. Journal of Power Sources, 2018, 400, 449-456.	4.0	33
281	Constructing a Stable Lithium Metal–Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30065-30070.	4.0	45
282	Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy, 2018, 53, 168-174.	8.2	132
283	Dendriteâ€Free Lithium Deposition via Flexibleâ€Rigid Coupling Composite Network for LiNi _{0.5} Mn _{1.5} O ₄ /Li Metal Batteries. Small, 2018, 14, e1802244.	5.2	83
284	An Ultrastrong Double-Layer Nanodiamond Interface for Stable Lithium Metal Anodes. Joule, 2018, 2, 1595-1609.	11.7	155
285	Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 22201-22209.	4.0	143
286	Emerging Nonaqueous Aluminumâ€lon Batteries: Challenges, Status, and Perspectives. Advanced Materials, 2018, 30, e1706310.	11.1	301
287	Robust Expandable Carbon Nanotube Scaffold for Ultrahighâ€Capacity Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1800884.	11.1	171
288	Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Storage Materials, 2019, 16, 364-373.	9.5	31

#	Article	IF	CITATIONS
289	Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Materials, 2019, 16, 426-433.	9.5	85
290	Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Materials, 2019, 16, 411-418.	9.5	247
291	Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Materials, 2019, 18, 414-422.	9.5	110
292	Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Materials, 2019, 17, 253-259.	9.5	110
293	Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries. Chinese Chemical Letters, 2019, 30, 525-528.	4.8	42
294	Facile Patterning of Laserâ€Induced Graphene with Tailored Li Nucleation Kinetics for Stable Lithiumâ€Metal Batteries. Advanced Energy Materials, 2019, 9, 1901796.	10.2	76
295	Artificial Interphases for Highly Stable Lithium Metal Anode. Matter, 2019, 1, 317-344.	5.0	508
296	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 20325-20334.	5.2	35
297	Ultrathin Bilayer of Graphite/SiO ₂ as Solid Interface for Reviving Li Metal Anode. Advanced Energy Materials, 2019, 9, 1901486.	10.2	128
298	Facile Surface Modification Method To Achieve an Ultralow Interfacial Resistance in Garnet-Based Li Metal Batteries. ACS Applied Energy Materials, 2019, 2, 6332-6340.	2.5	20
299	Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood. , 2019, 1, 354-361.		72
300	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	4.0	38
301	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. Chemistry of Materials, 2019, 31, 7565-7573.	3.2	73
302	"Topâ€Down―Li Deposition Pathway Enabled by an Asymmetric Design for Li Composite Electrode. Advanced Energy Materials, 2019, 9, 1901491.	10.2	43
303	Carbon nanomaterials for rechargeable lithium–sulfur batteries. , 2019, , 279-309.		2
304	Advanced Lithium Metal–Carbon Nanotube Composite Anode for High-Performance Lithium–Oxygen Batteries. Nano Letters, 2019, 19, 6377-6384.	4.5	70
305	Stable lithium metal anode enabled by lithium metal partial alloying. Nano Energy, 2019, 65, 103989.	8.2	73
306	Lithiophilic Ag/Li composite anodes <i>via</i> a spontaneous reaction for Li nucleation with a reduced barrier. Journal of Materials Chemistry A, 2019, 7, 20911-20918.	5.2	66

#	Article	IF	CITATIONS
307	Anodeâ€Free Sodium Metal Batteries Based on Nanohybrid Core–Shell Templates. Small, 2019, 15, e1901274.	5.2	34
308	Facile and scalable engineering of a heterogeneous microstructure for uniform, stable and fast lithium plating/stripping. Journal of Materials Chemistry A, 2019, 7, 19104-19111.	5.2	31
309	Endowing the Lithium Metal Surface with Self-Healing Property via an in Situ Gas–Solid Reaction for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28878-28884.	4.0	24
310	Uniform Li deposition by regulating the initial nucleation barrier <i>via</i> a simple liquid-metal coating for a dendrite-free Li–metal anode. Journal of Materials Chemistry A, 2019, 7, 18861-18870.	5.2	93
311	Stabilizing polymer electrolytes in high-voltage lithium batteries. Nature Communications, 2019, 10, 3091.	5.8	98
312	Formation of Stable Mixed LiF and Liâ€Alâ€Alloy Reinforced Interface Film for Lithium Metal Anodes. ChemistrySelect, 2019, 4, 7673-7678.	0.7	7
313	Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy, 2019, 64, 103893.	8.2	106
314	A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 18126-18134.	5.2	32
315	Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nature Communications, 2019, 10, 3265.	5.8	69
316	Tuning Li ₂ O ₂ Formation Routes by Facet Engineering of MnO ₂ Cathode Catalysts. Journal of the American Chemical Society, 2019, 141, 12832-12838.	6.6	107
317	A review of naturally derived nanostructured materials for safe lithium metal batteries. Materials Today Nano, 2019, 8, 100049.	2.3	39
318	Realization of room temperature lithium metal battery with high Li+ conductive lithium garnet solid electrolyte. Ceramics International, 2019, 45, 22610-22616.	2.3	24
319	Analysis of Pouch Performance to Ensure Impact Safety of Lithium-Ion Battery. Energies, 2019, 12, 2865.	1.6	5
320	Room-temperature liquid metal and alloy systems for energy storage applications. Energy and Environmental Science, 2019, 12, 2605-2619.	15.6	122
321	Interfacial design for lithium–sulfur batteries: From liquid to solid. EnergyChem, 2019, 1, 100002.	10.1	113
322	Excellent Lithium Metal Anode Performance via In Situ Interfacial Layer Induced by Li6.75La3Zr1.75Ta0.25O12@Amorphous Li3OCl Composite Solid Electrolyte. International Journal of Electrochemical Science, 2019, 14, 4781-4798.	0.5	4
323	Surface-Based Li ⁺ Complex Enables Uniform Lithium Deposition for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2019, 2, 4602-4608.	2.5	32
324	Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1901764.	10.2	108

#	Article	IF	CITATIONS
325	Taming Interfacial Instability in Lithium–Oxygen Batteries: A Polymeric Ionic Liquid Electrolyte Solution. Advanced Energy Materials, 2019, 9, 1901967.	10.2	22
326	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 18246-18251.	7.2	60
327	Gradientâ€Distributed Nucleation Seeds on Conductive Host for a Dendriteâ€Free and Highâ€Rate Lithium Metal Anode. Small, 2019, 15, e1903520.	5.2	83
328	A 3D Lithiophilic Mo ₂ Nâ€Modified Carbon Nanofiber Architecture for Dendriteâ€Free Lithiumâ€Metal Anodes in a Full Cell. Advanced Materials, 2019, 31, e1904537.	11.1	139
329	Lithium Metal Anode Materials Design: Interphase and Host. Electrochemical Energy Reviews, 2019, 2, 509-517.	13.1	156
330	Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping. ACS Applied Materials & Interfaces, 2019, 11, 40808-40816.	4.0	89
331	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	7.8	112
332	Seed-Free Selective Deposition of Lithium Metal into Tough Graphene Framework for Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 44383-44389.	4.0	39
333	Controlling Li Ion Flux through Materials Innovation for Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1905940.	7.8	122
334	Inhibition Role of Trace Metal Ion Additives on Zinc Dendrites during Plating and Striping Processes. Advanced Materials Interfaces, 2019, 6, 1901358.	1.9	46
335	Distinct Nanoscale Interphases and Morphology of Lithium Metal Electrodes Operating at Low Temperatures. Nano Letters, 2019, 19, 8664-8672.	4.5	141
336	3D Lithiophilic "Hairy―Si Nanowire Arrays @ Carbon Scaffold Favor a Flexible and Stable Lithium Composite Anode. ACS Applied Materials & Interfaces, 2019, 11, 44325-44332.	4.0	25
337	Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 2952-2959.	8.8	108
338	Native Void Space for Maximum Volumetric Capacity in Silicon-Based Anodes. Nano Letters, 2019, 19, 8793-8800.	4.5	36
339	Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. ACS Applied Materials & Interfaces, 2019, 11, 44204-44213.	4.0	3
340	A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. Nano Research, 2019, 12, 2919-2924.	5.8	16
341	Green <i>in Situ</i> Growth Solid Electrolyte Interphase Layer with High Rebound Resilience for Long-Life Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 43200-43205.	4.0	22
342	Suppressing Sponge-Like Li Deposition via AlN-Modified Substrate for Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 42261-42270.	4.0	9

#	Article	IF	CITATIONS
343	How Far Away Are Lithium-Sulfur Batteries From Commercialization?. Frontiers in Energy Research, 2019, 7, .	1.2	124
344	A Lightweight 3D Cu Nanowire Network with Phosphidation Gradient as Current Collector for Highâ€Density Nucleation and Stable Deposition of Lithium. Advanced Materials, 2019, 31, e1904991.	11.1	114
345	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 18414-18419.	1.6	10
346	Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10, 4930.	5.8	181
347	Improved lithium deposition on silver plated carbon fiber paper. Nano Energy, 2019, 66, 104144.	8.2	38
348	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	1.3	5
349	An Ultrarobust Composite Gel Electrolyte Stabilizing Ion Deposition for Longâ€Life Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1904547.	7.8	76
350	A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes. Chemical Science, 2019, 10, 9735-9739.	3.7	29
351	Designing solid-state interfaces on lithium-metal anodes: a review. Science China Chemistry, 2019, 62, 1286-1299.	4.2	86
352	An "electronegative―bifunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and "dendrite-free―Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 22463-22474.	5.2	49
353	Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode. Matter, 2019, 1, 1215-1231.	5.0	120
354	A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes. Joule, 2019, 3, 2761-2776.	11.7	176
355	Adding lithium fluoride to improve the electrochemical properties SnO2@C/MWCNTs composite anode for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 853, 113401.	1.9	16
356	Li Alginate-Based Artificial SEI Layer for Stable Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 37726-37731.	4.0	60
357	Critical Evaluation of the Use of 3D Carbon Networks Enhancing the Long-Term Stability of Lithium Metal Anodes. Frontiers in Materials, 2019, 6, .	1.2	2
358	A Liquidâ€Metalâ€Enabled Versatile Organic Alkaliâ€Ion Battery. Advanced Materials, 2019, 31, e1806956.	11.1	99
359	Lithium fluoride layer formed by thermal evaporation for stable lithium metal anode in rechargeable batteries. Thin Solid Films, 2019, 673, 119-125.	0.8	13
360	Porous Al/Al2O3 two-phase nanonetwork to improve electrochemical properties of porous C/SiO2 as anode for Li-ion batteries. Electrochimica Acta. 2019. 300. 470-481.	2.6	19

#	Article	IF	CITATIONS
361	Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Letters, 2019, 19, 1326-1335.	4.5	193
362	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	10.2	68
363	An artificial Li3PO4 solid electrolyte interphase layer to achieve petal-shaped deposition of lithium. Solid State Ionics, 2019, 333, 101-104.	1.3	12
364	Bioâ€Inspired Stable Lithiumâ€Metal Anodes by Coâ€depositing Lithium with a 2D Vermiculite Shuttle. Angewandte Chemie - International Edition, 2019, 58, 6200-6206.	7.2	87
365	Threeâ€Ðimensional Graphene/Ag Aerogel for Durable and Stable Li Metal Anodes in Carbonateâ€Based Electrolytes. Chemistry - A European Journal, 2019, 25, 5036-5042.	1.7	25
366	Tuning the LUMO Energy of an Organic Interphase to Stabilize Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 644-650.	8.8	129
367	An ultrathin surface-nitrided porous titanium sheet as a current collector-free sulfur host for high-gravimetric-capacity lithium–sulfur batteries. Chemical Communications, 2019, 55, 1655-1658.	2.2	2
368	Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries. Journal of Materials Chemistry A, 2019, 7, 2184-2191.	5.2	30
369	UV-Initiated Soft–Tough Multifunctional Gel Polymer Electrolyte Achieves Stable-Cycling Li-Metal Battery. ACS Applied Energy Materials, 2019, 2, 4513-4520.	2.5	20
370	A universal graphene oxide protective umbrella to achieve electrode surface engineering via spraying technique. Ceramics International, 2019, 45, 19567-19571.	2.3	0
371	Fabrication of CoFe/N-doped mesoporous carbon hybrids from Prussian blue analogous as high performance cathodes for lithium-sulfur batteries. International Journal of Hydrogen Energy, 2019, 44, 20257-20266.	3.8	20
372	Modulation, Characterization, and Engineering of Advanced Materials for Electrochemical Energy Storage Applications: MoO3/V2O5 Bilayer Model System. Journal of Physical Chemistry C, 2019, 123, 16577-16587.	1.5	5
373	Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 2019, 21, 464-473.	9.5	34
374	Towards high energy density lithium battery anodes: silicon and lithium. Chemical Science, 2019, 10, 7132-7148.	3.7	134
375	A 3D Cu current collector with a biporous structure derived by a phase inversion tape casting method for stable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 17376-17385.	5.2	36
376	Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications. Energy and Environmental Science, 2019, 12, 2174-2184.	15.6	130
377	Safe Lithiumâ€Metal Anodes for Liâ^'O ₂ Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection. Batteries and Supercaps, 2019, 2, 638-658.	2.4	67
378	Recent progress in the application of in situ atomic force microscopy for rechargeable batteries. Current Opinion in Electrochemistry, 2019, 17, 134-142.	2.5	27

#	Article	IF	CITATIONS
379	Stable Liâ€Metal Deposition via a 3D Nanodiamond Matrix with Ultrahigh Young's Modulus. Small Methods, 2019, 3, 1900325.	4.6	40
380	Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1901645.	11.1	68
381	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 11364-11368.	7.2	182
382	Antioxidative Lithium Reservoir Based on Interstitial Channels of Carbon Nanotube Bundles. Nano Letters, 2019, 19, 5879-5884.	4.5	8
383	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 11486-11490.	1.6	72
384	Ultra-stable lithium plating/stripping in garnet-based lithium-metal batteries enabled by a SnO2 nanolayer. Journal of Power Sources, 2019, 433, 226691.	4.0	39
385	Artificial Thiophdiyne Ultrathin Layer as an Enhanced Solid Electrolyte Interphase for the Aluminum Foil of Dual-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23990-23999.	4.0	25
386	Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Performance Zinc-Ion Batteries. ACS Nano, 2019, 13, 7270-7280.	7.3	81
387	Lithium Bis(oxalate)borate Reinforces the Interphase on Li-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 20854-20863.	4.0	49
388	An artificial solid interphase with polymers of intrinsic microporosity for highly stable Li metal anodes. Chemical Communications, 2019, 55, 6313-6316.	2.2	29
389	Glyme-based liquid–solid electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 13331-13338.	5.2	13
390	Nanowire Array-Coated Flexible Substrate to Accommodate Lithium Plating for Stable Lithium-Metal Anodes and Flexible Lithium–Organic Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20873-20880.	4.0	23
391	Nanostructures and Nanomaterials for Lithium Metal Batteries. , 2019, , 159-214.		0
392	Metal multiple-sulfides with nitrogen doped carbon layer for high performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 798, 531-539.	2.8	7
393	Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects. , 2019, , 29-87.		0
394	Polydopamine-treated three-dimensional carbon fiber-coated separator for achieving high-performance lithium metal batteries. Journal of Power Sources, 2019, 430, 130-136.	4.0	35
395	Regulating Key Variables and Visualizing Lithium Dendrite Growth: An <i>Operando</i> X-ray Study. Journal of the American Chemical Society, 2019, 141, 8441-8449.	6.6	96
396	Physical Orphaning versus Chemical Instability: Is Dendritic Electrodeposition of Li Fatal?. ACS Energy Letters, 2019, 4, 1349-1355.	8.8	80

		CITATION REPORT		
# 397	ARTICLE Interlayers for lithium-based batteries. Energy Storage Materials, 2019, 23, 112-136.		IF 9.5	CITATIONS
398	Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electro rechargeable lithium metal batteries. Energy Storage Materials, 2019, 23, 105-111.	blyte for	9.5	102
399	Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Recharged Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 17333-17340.	ıble Lithium	4.0	25
400	Silver Nanoparticle-Doped 3D Porous Carbon Nanofibers as Separator Coating for Stat Metal Anodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 17843-17852.	vle Lithium	4.0	56
401	A stable protective layer toward high-performance lithium metal battery. lonics, 2019,	25, 4067-4074.	1.2	5
402	A high-performance lithium anode based on N-doped composite graphene. Rare Metals 1030-1036.	s, 2024, 43,	3.6	6
403	Spatial Molecular Layer Deposition of Ultrathin Polyamide To Stabilize Silicon Anodes i Batteries. ACS Applied Energy Materials, 2019, 2, 4135-4143.	n Lithium-Ion	2.5	20
404	Dithiothreitol-assisted polysulfide reduction in the interlayer of lithium–sulfur batter first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 16435-16443.	ies: a	1.3	7
405	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Ca Applied Materials & Interfaces, 2019, 11, 18361-18367.	rbon Frame. ACS	4.0	33
406	Stable Li Metal Anode by a Hybrid Lithium Polysulfidophosphate/Polymer Cross-Linking Energy Letters, 2019, 4, 1271-1278.	; Film. ACS	8.8	107
407	The Challenge of Lithium Metal Anodes for Practical Applications. Small Methods, 201	9, 3, 1800551.	4.6	74
408	Eliminating Tip Dendrite Growth by Lorentz Force for Stable Lithium Metal Anodes. Ad Functional Materials, 2019, 29, 1902630.	vanced	7.8	85
409	Lithium dendrite-free plating/stripping: a new synergistic lithium ion solvation structur reliable lithium–sulfur full batteries. Chemical Communications, 2019, 55, 5713-571	e effect for 6.	2.2	24
410	The interaction of ethylammonium tetrafluoroborate [EtNH ₃ ⁺][BF ₄ ^{â[^]}] ionic liquid on t towards understanding early SEI formation on Li metal. Physical Chemistry Chemical P 10028-10037.	he Li(001) surface: hysics, 2019, 21,	1.3	20
411	A binder-free electrode architecture design for lithium–sulfur batteries: a review. Nar Advances, 2019, 1, 2104-2122.	ioscale	2.2	46
412	Acid induced conversion towards a robust and lithiophilic interface for Li–Li ₇ La ₃ Zr ₂ O ₁₂ solid-state ba Materials Chemistry A, 2019, 7, 14565-14574.	tteries. Journal of	5.2	138
413	3D porous carbon networks with highly dispersed SiO _x by molecular-scale toward stable lithium metal anodes. Chemical Communications, 2019, 55, 6034-6037	engineering	2.2	16
414	Self-healing composite polymer electrolyte formed <i>via</i> supramolecular networks high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 103	s for 54-10362.	5.2	104

#	Article	IF	CITATIONS
415	A dual-layered artificial solid electrolyte interphase formed by controlled electrochemical reduction of LiTFSI/DME-LiNO3 for dendrite-free lithium metal anode. Electrochimica Acta, 2019, 306, 407-419.	2.6	48
416	Key Issues Hindering a Practical Lithium-Metal Anode. Trends in Chemistry, 2019, 1, 152-158.	4.4	328
417	3D Porous Cu Current Collectors Derived by Hydrogen Bubble Dynamic Template for Enhanced Li Metal Anode Performance. Advanced Functional Materials, 2019, 29, 1808468.	7.8	130
418	Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy, 2019, 60, 257-266.	8.2	118
419	An artificial Li-Al interphase layer on Li-B alloy for stable lithium-metal anode. Electrochimica Acta, 2019, 304, 255-262.	2.6	35
420	Effect of Pore Size in Three Dimensionally Ordered Macroporous Polyimide Separator on Lithium Deposition/Dissolution Behavior. Journal of the Electrochemical Society, 2019, 166, A754-A761.	1.3	28
421	Dualâ€Phase Singleâ€Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries. Advanced Materials, 2019, 31, e1808392.	11.1	224
422	Natural chalcopyrite as a sulfur source and its electrochemical performance for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2019, 6, 1217-1227.	3.0	9
423	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
424	Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4, 365-373.	19.8	681
425	Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials, 2019, 18, 384-389.	13.3	587
426	Uniform Lithium Deposition Assisted by Singleâ€Atom Doping toward Highâ€Performance Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1804019.	10.2	151
427	Spatial separation of lithiophilic surface and superior conductivity for advanced Li metal anode: the case of acetylene black and N-doped carbon spheres. Journal of Materials Chemistry A, 2019, 7, 8765-8770.	5.2	25
429	Suppressing Lithium Dendrite Growth via Sinusoidal Ripple Current Produced by Triboelectric Nanogenerators. Advanced Energy Materials, 2019, 9, 1900487.	10.2	21
430	Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Materials, 2019, 23, 539-546.	9.5	88
431	Integrated, Flexible Lithium Metal Battery with Improved Mechanical and Electrochemical Cycling Stability. ACS Applied Energy Materials, 2019, 2, 3642-3650.	2.5	15
432	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 7884-7889.	1.6	47
433	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 7802-7807.	7.2	161

#	Article	IF	CITATIONS
434	Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. Journal of Materials Chemistry A, 2019, 7, 12214-12224.	5.2	44
435	Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small, 2019, 15, e1900687.	5.2	253
436	Effects of gelation behavior of PPC-based electrolyte on electrochemical performance of solid state lithium battery. SN Applied Sciences, 2019, 1, 1.	1.5	8
437	Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. Journal of Energy Chemistry, 2019, 37, 197-203.	7.1	116
438	Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy Storage Materials, 2019, 23, 587-593.	9.5	73
439	Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithiumâ€Metal Batteries. Advanced Energy Materials, 2019, 9, 1900260.	10.2	200
440	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 2019, 119, 5416-5460.	23.0	572
441	Selfâ€Suppression of Lithium Dendrite in Allâ€Solidâ€State Lithium Metal Batteries with Poly(vinylidene) Tj ETQq1	1.0.7843 11.1	14,ggBT /⊖v
442	Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for Highâ€Voltage Lithium Metal Batteries. Advanced Materials, 2019, 31, e1807789.	11.1	333
443	Bioâ€Inspired Stable Lithiumâ€Metal Anodes by Coâ€depositing Lithium with a 2D Vermiculite Shuttle. Angewandte Chemie, 2019, 131, 6266-6272.	1.6	5
444	Lithium–Magnesium Alloy as a Stable Anode for Lithium–Sulfur Battery. Advanced Functional Materials, 2019, 29, 1808756.	7.8	148
445	A fast and stable Li metal anode incorporating an Mo ₆ S ₈ artificial interphase with super Li-ion conductivity. Journal of Materials Chemistry A, 2019, 7, 6038-6044.	5.2	34
446	Progressively providing ionic inhibitor via functional nanofiber layer to stabilize lithium metal anode. Electrochimica Acta, 2019, 302, 301-309.	2.6	9
447	Self-Assembled Monolayer Enables Slurry-Coating of Li Anode. ACS Central Science, 2019, 5, 468-476.	5.3	64
448	Bulk Nanostructured Materials Design for Fractureâ€Resistant Lithium Metal Anodes. Advanced Materials, 2019, 31, e1807585.	11.1	88
449	Highâ€Rate and Largeâ€Capacity Lithium Metal Anode Enabled by Volume Conformal and Selfâ€Healable Composite Polymer Electrolyte. Advanced Science, 2019, 6, 1802353.	5.6	133
450	Highâ€Fluorinated Electrolytes for Li–S Batteries. Advanced Energy Materials, 2019, 9, 1803774.	10.2	227
451	Sodium metal hybrid capacitors based on nanostructured carbon materials. Journal of Power Sources, 2019, 418, 218-224.	4.0	5

	CITATION	Report	
#	Article	IF	CITATIONS
452	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. Materials Horizons, 2019, 6, 871-910.	6.4	67
453	Multifunctional Co9S8 nanotubes for high-performance lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2019, 837, 184-190.	1.9	18
454	A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 6859-6868.	5.2	70
455	Locally Concentrated LiPF ₆ in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 9955-9963.	4.0	141
456	Prospect for Supramolecular Chemistry in High-Energy-Density Rechargeable Batteries. Joule, 2019, 3, 662-682.	11.7	66
457	Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO ₃ Treatment on LiCoO ₂ Cathode Thin Film Batteries. Nano Letters, 2019, 19, 1688-1694.	4.5	47
458	A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure. Nano Energy, 2019, 59, 110-119.	8.2	39
459	Lithiophilic Three-Dimensional Porous Ti ₃ C ₂ T <i>_x</i> -rGO Membrane as a Stable Scaffold for Safe Alkali Metal (Li or Na) Anodes. ACS Nano, 2019, 13, 14319-14328.	7.3	123
460	Sulfuryl chloride as a functional additive towards dendrite-free and long-life Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 25003-25009.	5.2	20
461	Probing the dynamic evolution of lithium dendrites: a review of <i>in situ</i> / <i>operando</i> characterization for lithium metallic batteries. Nanoscale, 2019, 11, 20429-20436.	2.8	26
462	Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. Journal of Materials Chemistry A, 2019, 7, 24857-24867.	5.2	48
463	Pre-treatments of Lithium Foil Surface for Improving the Cycling Life of Li Metal Batteries. Frontiers in Materials, 2019, 6, .	1.2	28
464	Self-Supporting Dendritic Copper Porous Film Inducing the Lateral Growth of Metallic Lithium for Highly Stable Li Metal Battery. Journal of the Electrochemical Society, 2019, 166, A4073-A4079.	1.3	3
465	An Interconnected Channelâ€Like Framework as Host for Lithium Metal Composite Anodes. Advanced Energy Materials, 2019, 9, 1802720.	10.2	83
466	Flexible Artificial Solid Electrolyte Interphase Formed by 1,3-Dioxolane Oxidation and Polymerization for Metallic Lithium Anodes. ACS Applied Materials & 2019, 11, 2479-1489.	4.0	40
467	Dendrite-Free Lithium Anode Enables the Lithium//Graphite Dual-Ion Battery with Much Improved Cyclic Stability. ACS Applied Energy Materials, 2019, 2, 201-206.	2.5	32
468	High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes. Journal of Materials Science, 2019, 54, 3671-3693.	1.7	95
469	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	7.2	287

#	Article	IF	CITATIONS
470	All-in-one improvement toward Li6PS5Br-Based solid electrolytes triggered by compositional tune. Journal of Power Sources, 2019, 410-411, 162-170.	4.0	134
471	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Longâ€Life Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	1.6	52
472	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 791-795.	7.2	152
473	Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Materials, 2019, 17, 284-292.	9.5	115
474	Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A89-A97.	1.3	221
475	Nanobead-reinforced outmost shell of solid-electrolyte interphase layers for suppressing dendritic growth of lithium metal. Journal of Power Sources, 2019, 414, 218-224.	4.0	4
476	Tailoring Lithium Deposition via an SElâ€Functionalized Membrane Derived from LiF Decorated Layered Carbon Structure. Advanced Energy Materials, 2019, 9, 1802912.	10.2	98
477	Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 6118-6125.	4.0	80
478	Simultaneously Regulating Lithium Ion Flux and Surface Activity for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 5159-5167.	4.0	33
479	A Scalable Approach for Dendrite-Free Alkali Metal Anodes via Room-Temperature Facile Surface Fluorination. ACS Applied Materials & amp; Interfaces, 2019, 11, 4962-4968.	4.0	42
480	Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy, 2019, 55, 316-326.	8.2	84
481	Triboelectric Nanogenerator-Enabled Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 802-810.	4.0	12
482	Scalable Synthesis of an Artificial Polydopamine Solidâ€Electrolyteâ€Interfaceâ€Assisted 3D rGO/Fe ₃ O ₄ @PDA Hydrogel for a Highly Stable Anode with Enhanced Lithiumâ€Ionâ€Storage Properties. ChemElectroChem, 2019, 6, 1069-1077.	1.7	8
483	Alkali Metal Anodes for Rechargeable Batteries. CheM, 2019, 5, 313-338.	5.8	170
484	Lithium Plating and Stripping on Carbon Nanotube Sponge. Nano Letters, 2019, 19, 494-499.	4.5	101
485	Antimonyâ€Doped Lithium Phosphate Artificial Solid Electrolyte Interphase for Dendriteâ€Free Lithiumâ€Metal Batteries. ChemElectroChem, 2019, 6, 1134-1138.	1.7	23
486	Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. Energy Storage Materials, 2019, 21, 107-114.	9.5	46
487	Synthesis of interconnected graphene framework with two-dimensional protective layers for stable lithium metal anodes. Energy Storage Materials, 2019, 17, 341-348.	9.5	26

#	Article	IF	CITATIONS
488	A corrosion-resistant current collector for lithium metal anodes. Energy Storage Materials, 2019, 18, 199-204.	9.5	48
489	Ni@Li2O co-axial nanowire based reticular anode: Tuning electric field distribution for homogeneous lithium deposition. Energy Storage Materials, 2019, 18, 155-164.	9.5	59
490	Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?. Ceramics International, 2019, 45, 30-49.	2.3	111
491	Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation. Energy Storage Materials, 2019, 17, 366-373.	9.5	97
492	Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Materials, 2019, 16, 65-84.	9.5	183
493	One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Materials, 2019, 16, 85-90.	9.5	248
494	Spatially uniform deposition of lithium metal in 3D Janus hosts. Energy Storage Materials, 2019, 16, 259-266.	9.5	112
495	Recent advances in metal-organic frameworks for lithium metal anode protection. Chinese Chemical Letters, 2020, 31, 609-616.	4.8	40
496	A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Materials, 2020, 24, 700-706.	9.5	88
497	Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries. Journal of Energy Chemistry, 2020, 42, 49-55.	7.1	16
498	PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. Journal of Energy Chemistry, 2020, 42, 83-90.	7.1	83
499	Improving metallic lithium anode with NaPF6 additive in LiPF6-carbonate electrolyte. Journal of Energy Chemistry, 2020, 42, 1-4.	7.1	20
500	P4S10 modified lithium anode for enhanced performance of lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 41, 27-33.	7.1	23
501	Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Materials, 2020, 25, 644-678.	9.5	207
502	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404
503	Three dimensional porous frameworks for lithium dendrite suppression. Journal of Energy Chemistry, 2020, 44, 73-89.	7.1	104
504	Bifunctional separator with sandwich structure for high-performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 559, 13-20.	5.0	25
505	Toward better electrode/electrolyte interfaces in the ionic-liquid-based rechargeable aluminum batteries. Journal of Energy Chemistry, 2020, 45, 98-102.	7.1	45

#	Article	IF	Citations
506	Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries. Energy Storage Materials, 2020, 25, 305-312.	9.5	45
507	Stabilized lithium metal anode by an efficient coating for high-performance Li–S batteries. Energy Storage Materials, 2020, 24, 329-335.	9.5	79
508	Graphene-based composites for electrochemical energy storage. Energy Storage Materials, 2020, 24, 22-51.	9.5	364
509	Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: A review. Energy Storage Materials, 2020, 24, 75-84.	9.5	199
510	ZnCo2O4/ZnO induced lithium deposition in multi-scaled carbon/nickel frameworks for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 43, 16-23.	7.1	39
511	Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Materials, 2020, 25, 811-826.	9.5	114
512	Three-dimensional nitrogen-doped graphene aerogel toward dendrite-free lithium-metal anode. Ionics, 2020, 26, 13-22.	1.2	17
513	Stabilizing Polymer–Lithium Interface in a Rechargeable Solid Battery. Advanced Functional Materials, 2020, 30, 1908047.	7.8	59
514	Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. Journal of Energy Chemistry, 2020, 46, 187-190.	7.1	25
515	Perpendicular MXene Arrays with Periodic Interspaces toward Dendriteâ€Free Lithium Metal Anodes with Highâ€Rate Capabilities. Advanced Functional Materials, 2020, 30, 1908075.	7.8	68
516	Constructing an inorganic/organic mixed protective film for low-cost fabrication of stable lithium metal anode. Journal of Alloys and Compounds, 2020, 818, 152862.	2.8	7
517	Engineering interfacial adhesion for high-performance lithium metal anode. Nano Energy, 2020, 67, 104242.	8.2	34
518	Multifunctional artificial solid electrolyte interphase layer for lithium metal anode in carbonate electrolyte. Solid State Ionics, 2020, 344, 115095.	1.3	7
519	A Review of Composite Lithium Metal Anode for Practical Applications. Advanced Materials Technologies, 2020, 5, .	3.0	111
520	Realizing both high gravimetric and volumetric capacities in Li/3D carbon composite anode. Nano Energy, 2020, 69, 104471.	8.2	30
521	Enabling high-performance sodium metal anodes via A sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69, 104446.	8.2	43
522	Single Zinc Atoms Immobilized on MXene (Ti ₃ C ₂ Cl _{<i>x</i>/i>}) Layers toward Dendrite-Free Lithium Metal Anodes. ACS Nano, 2020, 14, 891-898.	7.3	174
523	Self-supported TiN nanorod array/carbon textile as a lithium host that induces dendrite-free lithium plating with high rates and long cycle life. Journal of Materials Chemistry A, 2020, 8, 3293-3299.	5.2	5

		CITATION REPORT		
#	Article		IF	CITATIONS
524	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews,	2020, 49, 180-232.	18.7	522
525	Bottom-top channeling Li nucleation and growth by a gradient lithiophilic 3D conducti highly stable Li-metal anodes. Journal of Materials Chemistry A, 2020, 8, 1678-1686.	ve host for	5.2	31
526	Dendriteâ€Free Lithium Plating Induced by In Situ Transferring Protection Layer from S Advanced Functional Materials, 2020, 30, 1907020.	eparator.	7.8	43
527	Observably improving initial coulombic efficiency of C/SiOx anode using -C-O-PO3Li2 g ion batteries. Journal of Power Sources, 2020, 447, 227400.	roups in lithium	4.0	35
528	Unlocking the Poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composi Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as b adjuvant. Journal of Power Sources, 2020, 446, 227365.	te solid-state ifunctional	4.0	74
529	Three-dimensional polymer networks for solid-state electrochemical energy storage. Cl Engineering Journal, 2020, 391, 123548.	nemical	6.6	44
530	Electrolyte Regulation towards Stable Lithiumâ€Metal Anodes in Lithium–Sulfur Batt Sulfurized Polyacrylonitrile Cathodes. Angewandte Chemie - International Edition, 2020 10732-10745.		7.2	108
531	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spec Journal of the American Chemical Society, 2020, 142, 2012-2022.	ctroscopy.	6.6	142
532	3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly sta metal anode. Journal of Materials Chemistry A, 2020, 8, 313-322.	able lithium	5.2	76
533	Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable h pre-store Li for high-performance lithium–air batteries. Energy Storage Materials, 20.	nost to 20, 26, 593-603.	9.5	39
534	A Li–Al–O Solid‧tate Electrolyte with High Ionic Conductivity and Good Capabil Anode. Advanced Functional Materials, 2020, 30, 1905949.	ity to Protect Li	7.8	55
535	Multifunctional Silanization Interface for Highâ€Energy and Lowâ€Gassing Lithium Me Advanced Energy Materials, 2020, 10, 1903362.	tal Pouch Cells.	10.2	31
536	Precast solid electrolyte interface film on Li metal anode toward longer cycling life. Ion 1711-1719.	ics, 2020, 26,	1.2	4
537	Mechanism of lithium electrodeposition in a magnetic field. Solid State Ionics, 2020, 3	45, 115171.	1.3	23
538	Polymer Electrolyte Film as Robust and Deformable Artificial Protective Layer for High-F Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 2285-2292.	Performance	4.0	24
539	A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batterie areal capacity and cycling stability. Journal of Membrane Science, 2020, 596, 117739.	es with high	4.1	77
540	Electrolyte Regulation towards Stable Lithiumâ€Metal Anodes in Lithium–Sulfur Bat Sulfurized Polyacrylonitrile Cathodes. Angewandte Chemie, 2020, 132, 10821-10834.		1.6	80
541	Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Soli and Interfaces. Chemical Reviews, 2020, 120, 6820-6877.	d Electrolytes	23.0	891

#	Article	IF	CITATIONS
542	Advances in Artificial Layers for Stable Lithium Metal Anodes. Chemistry - A European Journal, 2020, 26, 4193-4203.	1.7	36
543	Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode. Chemical Engineering Journal, 2020, 392, 123691.	6.6	42
544	The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes. Journal of Energy Chemistry, 2020, 47, 128-131.	7.1	63
545	Novel Organophosphateâ€Derived Dualâ€Layered Interface Enabling Airâ€Stable and Dendriteâ€Free Lithium Metal Anode. Advanced Materials, 2020, 32, e1902724.	11.1	83
546	Advanced Characterizations of Solid Electrolyte Interphases in Lithium-Ion Batteries. Electrochemical Energy Reviews, 2020, 3, 187-219.	13.1	77
547	Electro-chemo-mechanical modeling of solid-state batteries. Electrochimica Acta, 2020, 331, 135355.	2.6	35
548	Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11, 93.	5.8	312
549	In Situ Growing Chromium Oxynitride Nanoparticles on Carbon Nanofibers to Stabilize Lithium Deposition for Lithium Metal Anodes. Small, 2020, 16, e2003827.	5.2	21
550	Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27195-27203.	3.3	44
551	Current status and future perspectives of lithium metal batteries. Journal of Power Sources, 2020, 480, 228803.	4.0	109
552	Modified solid-electrolyte interphase toward stable Li metal anode. Nano Energy, 2020, 77, 105308.	8.2	75
553	Stable lithium metal anode enabled by high-dimensional lithium deposition through a functional organic substrate. Energy Storage Materials, 2020, 33, 158-163.	9.5	19
554	CuO–C modified glass fiber films with a mixed ion and electron-conducting scaffold for highly stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 21961-21967.	5.2	6
555	Revealing and Elucidating ALDâ€Đerived Control of Lithium Plating Microstructure. Advanced Energy Materials, 2020, 10, 2002736.	10.2	37
556	Recent Progress in Designing Stable Composite Lithium Anodes with Improved Wettability. Advanced Science, 2020, 7, 2002212.	5.6	95
557	Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Select, 2020, 1, 622-638.	1.9	4
558	Design and Evaluation of a Material-adapted Handling System for All-Solid-State Lithium-Ion Battery Production. Procedia CIRP, 2020, 93, 143-148.	1.0	2
559	Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined. Chemistry of Materials, 2020, 32, 8755-8771.	3.2	28

#	Article	IF	CITATIONS
560	Li-B alloy with artificial solid electrolyte interphase layer for long-life lithium metal batteries. Solid State lonics, 2020, 354, 115408.	1.3	9
561	Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Reports Physical Science, 2020, 1, 100119.	2.8	133
562	High Voltage Stable Li Metal Batteries Enabled by Ether-Based Highly Concentrated Electrolytes at Elevated Temperatures. Journal of the Electrochemical Society, 2020, 167, 110543.	1.3	13
563	A widely applicable strategy to convert fabrics into lithiophilic textile current collector for dendrite-free and high-rate capable lithium metal anode. Chemical Engineering Journal, 2020, 388, 124256.	6.6	27
564	A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes. Journal of Energy Chemistry, 2020, 48, 203-207.	7.1	68
565	Graphene film with folds for a stable lithium metal anode. Ionics, 2020, 26, 5357-5365.	1.2	4
566	Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board. Science China Chemistry, 2020, 63, 1306-1314.	4.2	32
567	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, 49, 5407-5445.	18.7	264
568	Artificial Lithium Isopropyl-Sulfide Macromolecules as an Ion-Selective Interface for Long-Life Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54537-54544.	4.0	49
569	A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. Materials Today Energy, 2020, 18, 100520.	2.5	27
570	Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews, 2020, 120, 13312-13348.	23.0	393
571	Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30135-30141.	3.3	17
572	Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures. Energy Storage Materials, 2020, 33, 95-107.	9.5	40
573	Mirror-Like Electrodeposition of Lithium Metal under a Low-Resistance Artificial Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2020, 12, 39674-39684.	4.0	7
574	Rational Tuning of a Li ₄ SiO ₄ -Based Hybrid Interface with Unique Stepwise Prelithiation for Dendrite-Proof and High-Rate Lithium Anodes. ACS Applied Materials & Interfaces, 2020, 12, 39362-39371.	4.0	23
575	lonic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries – A review. Materials Today, 2020, 40, 140-159.	8.3	115
576	Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte. Advanced Energy Materials, 2020, 10, 2001257.	10.2	236
577	Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 37188-37196.	4.0	27

#	Article	IF	CITATIONS
578	Stable Electrochemical Li Plating/Stripping Behavior by Anchoring MXene Layers on Three-Dimensional Conductive Skeletons. ACS Applied Materials & Interfaces, 2020, 12, 37967-37976.	4.0	33
579	Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Materials, 2020, 33, 26-54.	9.5	123
580	Coupling of triporosity and strong Au–Li interaction to enable dendrite-free lithium plating/stripping for long-life lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 18094-18105.	5.2	56
581	Tuning the Interfacial Electronic Conductivity by Artificial Electron Tunneling Barriers for Practical Lithium Metal Batteries. Nano Letters, 2020, 20, 6606-6613.	4.5	43
582	Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials, 2020, 32, 306-319.	9.5	126
583	Redistributing Liâ€lon Flux by Parallelly Aligned Holey Nanosheets for Dendriteâ€Free Li Metal Anodes. Advanced Materials, 2020, 32, e2003920.	11.1	81
584	Facile Synthesis of Antâ€Nestâ€Like Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	5.2	33
585	An interconnected silver coated carbon cloth framework as a host to reduce lithium nucleation over-potential for dendrite-free lithium metal anodes. Journal of Electroanalytical Chemistry, 2020, 878, 114569.	1.9	21
586	Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nature Communications, 2020, 11, 5429.	5.8	129
587	Exploiting Selfâ€Healing in Lithium Batteries: Strategies for Nextâ€Generation Energy Storage Devices. Advanced Energy Materials, 2020, 10, 2002815.	10.2	38
588	Long-Term Failure Mechanisms of Thermal Barrier Coatings in Heavy-Duty Gas Turbines. Coatings, 2020, 10, 1022.	1.2	10
589	Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Materials, 2020, 33, 423-431.	9.5	56
590	An "Etherâ€Inâ€Water―Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2004017.	11.1	93
591	Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications. ACS Energy Letters, 2020, 5, 3140-3151.	8.8	196
592	Nanoscale observation of the solid electrolyte interface and lithium dendrite nucleation–growth process during the initial lithium electrodeposition. Journal of Materials Chemistry A, 2020, 8, 18348-18357.	5.2	19
593	Bifunctional 3D Hierarchical Hairy Foam toward Ultrastable Lithium/Sulfur Electrochemistry. Advanced Functional Materials, 2020, 30, 2004650.	7.8	29
594	Dendrite-Free lithium electrode enabled by graphene aerogels with gradient porosity. Energy Storage Materials, 2020, 33, 329-335.	9.5	28
595	Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling. Nanomaterials, 2020, 10, 1483.	1.9	9

#	Article	IF	CITATIONS
596	Integrating conductivity and active sites: Fe/Fe ₃ C@GNC as an trapping-catalyst interlayer and dendrite-free lithium host for the lithium–sulfur cell with outstanding rate performance. Journal of Materials Chemistry A, 2020, 8, 18987-19000.	5.2	54
597	500 Wh kg ^{â^'1} Class Li Metal Battery Enabled by a Selfâ€Organized Core–Shell Composite Anode. Advanced Materials, 2020, 32, e2004793.	11.1	86
598	Highâ€Performance Li–O ₂ Batteries Based on Allâ€Graphene Backbone. Advanced Functional Materials, 2020, 30, 2007218.	7.8	36
599	A Progress Report on Metal–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2004084.	7.8	78
600	Free-standing lithiophilic Ag-nanoparticle-decorated 3D porous carbon nanotube films for enhanced lithium storage. RSC Advances, 2020, 10, 30880-30886.	1.7	9
601	A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. Journal of the American Chemical Society, 2020, 142, 21393-21403.	6.6	65
602	Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 2020, 14, 16321-16347.	7.3	340
603	A coupled model of stress, creep, and diffusion in the film/substrate system. Journal of Applied Physics, 2020, 128, .	1.1	6
604	Controlled Growth of Li Dendrite Induced by Periodic Ni Mesh for Ultrastable Lithium Metal Battery. Small, 2020, 16, e2005639.	5.2	9
605	Modulating reactivity and stability of metallic lithium <i>via</i> atomic doping. Journal of Materials Chemistry A, 2020, 8, 10363-10369.	5.2	18
606	Artificial Solid Electrolyte Interphase Acting as "Armor―to Protect the Anode Materials for High-performance Lithium-ion Battery. Chemical Research in Chinese Universities, 2020, 36, 402-409.	1.3	32
607	Advanced Current Collectors for Alkali Metal Anodes. Chemical Research in Chinese Universities, 2020, 36, 386-401.	1.3	24
608	A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy, 2020, 75, 104889.	8.2	77
609	Solid Electrolyte Interphase Evolution on Lithium Metal in Contact with Glymeâ€Based Electrolytes. Small, 2020, 16, e2000756.	5.2	31
610	Stabilize lithium metal anode through constructing a lithiophilic viscoelastic interface based on hydroxypropyl methyl cellulose. Chemical Engineering Journal, 2020, 399, 125687.	6.6	22
611	Building Artificial Solidâ€Electrolyte Interphase with Uniform Intermolecular Ionic Bonds toward Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2020, 30, 2002414.	7.8	104
612	Strategies to Improve the Performance of Li Metal Anode for Rechargeable Batteries. Frontiers in Chemistry, 2020, 8, 409.	1.8	18
613	Cotton-derived carbon cloth enabling dendrite-free Li deposition for lithium metal batteries. Journal of Power Sources, 2020, 465, 228291.	4.0	29

#	Article	IF	CITATIONS
614	In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries. Energy Storage Materials, 2020, 30, 27-33.	9.5	90
615	Highly safe and cyclable Li-metal batteries with vinylethylene carbonate electrolyte. Nano Energy, 2020, 74, 104860.	8.2	64
616	Decorating carbon felt with oxides by dipping as dendrite-free host for lithium metal anode. Ionics, 2020, 26, 4381-4390.	1.2	3
617	Stable Lithium Metal Anode Enabled by 3D Soft Host. ACS Applied Materials & Interfaces, 2020, 12, 28337-28344.	4.0	36
618	A fast ionic conductor and stretchable solid electrolyte artificial interphase layer for Li metal protection in lithium batteries. Journal of Alloys and Compounds, 2020, 843, 155839.	2.8	15
619	Guiding lithium deposition in tent-like nitrogen-doped porous carbon microcavities for stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13480-13489.	5.2	25
620	Designing Dendriteâ€Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Advanced Functional Materials, 2020, 30, 2001263.	7.8	598
621	A Mixed Modified Layer Formed In Situ to Protect and Guide Lithium Plating/Stripping Behavior. ACS Applied Materials & Interfaces, 2020, 12, 31411-31418.	4.0	23
622	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	10.2	36
623	Organosulfur Compounds Enable Uniform Lithium Plating and Long-Term Battery Cycling Stability. Nano Letters, 2020, 20, 2594-2601.	4.5	29
624	Nitrogen-doped polymer nanofibers decorated with Co nanoparticles for uniform lithium nucleation/growth in lithium metal batteries. Nanoscale, 2020, 12, 8819-8827.	2.8	7
625	Lithium Metal Battery Pouch Cell Assembly and Prototype Demonstration Using Tailored Polypropylene Separator. Energy Technology, 2020, 8, 2000094.	1.8	5
626	Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy, 2020, 72, 104655.	8.2	68
627	A Janus protein-based nanofabric for trapping polysulfides and stabilizing lithium metal in lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 7377-7389.	5.2	38
628	MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes. Nanoscale, 2020, 12, 9416-9422.	2.8	34
629	3D Periodic Ion Transport Channel to Suppress Top Deposition toward Stable Lithium Metal Anode. Batteries and Supercaps, 2020, 3, 773-779.	2.4	3
630	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
631	Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of <i>ex situ</i> anodic pretreatment and an in-built gel polymer electrolyte. Journal of Materials Chemistry A, 2020, 8, 7197-7204.	5.2	91

#	Article	IF	CITATIONS
632	On Modeling the Detrimental Effects of Inhomogeneous Plating-and-Stripping at a Lithium-Metal/Solid-Electrolyte Interface in a Solid-State-Battery. Journal of the Electrochemical Society, 2020, 167, 040525.	1.3	23
633	Review on nanomaterials for nextâ€generation batteries with lithium metal anodes. Nano Select, 2020, 1, 94-110.	1.9	14
634	Room temperature surface-engineering enabling stability of high-energy-density lithium batteries. Materials Today Energy, 2020, 17, 100415.	2.5	3
635	Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Filmâ€, Advanced Materials, 2020, 32, e2003070.	11.1	88
636	Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews, 2020, 120, 6878-6933.	23.0	676
637	LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 33719-33728.	4.0	65
638	PVDF-HFP/LiF Composite Interfacial Film to Enhance the Stability of Li-Metal Anodes. ACS Applied Energy Materials, 2020, 3, 7191-7199.	2.5	33
639	Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics, 2020, 128, .	1.1	14
640	Beyond cell parameters: Exploiting cell operation towards optimizing the SEI and suppressing dendrite growth on lithium metal anodes. Energy Storage, 2020, 2, e188.	2.3	0
641	Effect of Urea as Electrolyte Additive for Stabilization of Lithium Metal Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 11123-11132.	3.2	17
642	Laserâ€Induced Silicon Oxide for Anodeâ€Free Lithium Metal Batteries. Advanced Materials, 2020, 32, e2002850.	11.1	92
643	Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31, 382-400.	9.5	74
644	Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCu nanowires for excellent Li storage performance. Science Bulletin, 2020, 65, 1907-1915.	4.3	50
645	Stabilizing Solid Electrolyte Interphases on Both Anode and Cathode for High Areal Capacity, Highâ€Voltage Lithium Metal Batteries with High Li Utilization and Lean Electrolyte. Advanced Functional Materials, 2020, 30, 2002824.	7.8	69
646	Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Highâ€energy, Safe and Adaptable Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000709.	10.2	79
647	Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13874-13895.	5.2	54
648	Suppression of hydrogen evolution at catalytic surfaces in aqueous lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 14921-14926.	5.2	15
649	Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium–Sulfur Batteries. Electrochemical Energy Reviews, 2020, 3, 613-642.	13.1	75

#	Article	IF	CITATIONS
650	A Lithiophilic 3D Conductive Skeleton for High Performance Li Metal Battery. ACS Applied Energy Materials, 2020, 3, 7265-7271.	2.5	12
651	Theoretical prediction of B/Al-doped black phosphorus as potential cathode material in lithium-sulfur batteries. Applied Surface Science, 2020, 512, 145639.	3.1	22
652	High reversible Li plating and stripping by in-situ construction a multifunctional lithium-pinned array. Energy Storage Materials, 2020, 28, 188-195.	9.5	34
653	A 3D composite lithium metal anode with pre-fabricated LiZn <i>via</i> reactive wetting. Chemical Communications, 2020, 56, 4248-4251.	2.2	15
654	Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS Nano, 2020, 14, 2628-2658.	7.3	214
655	Structureâ€Controlled Li Metal Electrodes for Postâ€Liâ€Ion Batteries: Recent Progress and Perspectives. Advanced Materials Interfaces, 2020, 7, 1902113.	1.9	33
656	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13280-13291.	1.6	40
657	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 13180-13191.	7.2	727
658	Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 48, 375-382.	7.1	23
659	Toward Stable Lithium Plating/Stripping by Successive Desolvation and Exclusive Transport of Li Ions. ACS Applied Materials & Interfaces, 2020, 12, 10461-10470.	4.0	50
660	Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 2020, 11, 829.	5.8	246
661	A Highly Reversible, Dendriteâ€Free Lithium Metal Anode Enabled by a Lithiumâ€Fluorideâ€Enriched Interphase. Advanced Materials, 2020, 32, e1906427.	11.1	168
662	Effect of conductor materials in lithium composite anode on plating and stripping of lithium. Ionics, 2020, 26, 3307-3314.	1.2	3
663	A Review on Materials for Flame Retarding and Improving the Thermal Stability of Lithium Ion Batteries. International Journal of Electrochemical Science, 2020, 15, 1391-1411.	0.5	20
664	The charge transfer of intercalated Li atoms around islands on Li-halide (F, Br, Cl) surface of SEIs: A first principles calculation. Computational Materials Science, 2020, 176, 109535.	1.4	19
665	Effect of Crystal Orientation of Cu Current Collectors on Cycling Stability of Li Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 9341-9346.	4.0	24
666	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm ^{â^'2} /20 mAh cm ^{â''2} Realized by Selective Nucleation within Microchannel Walls. Advanced Energy Materials, 2020, 10, 1903753.	10.2	62
667	Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature Communications, 2020, 11, 488.	5.8	158

#	Article	IF	Citations
668	In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Research, 2020, 13, 430-436.	5.8	49
669	In-situ organic SEI layer for dendrite-free lithium metal anode. Energy Storage Materials, 2020, 27, 69-77.	9.5	70
670	Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries. Nano Energy, 2020, 70, 104504.	8.2	61
671	Single Atom Array Mimic on Ultrathin MOF Nanosheets Boosts the Safety and Life of Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e1906722.	11.1	205
672	Simultaneously suppressing lithium dendrite growth and Mn dissolution by integration of a safe inorganic separator in a LiMn ₂ O ₄ /Li battery. Journal of Materials Chemistry A, 2020, 8, 3859-3864.	5.2	23
673	Largeâ€5cale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. Small, 2020, 16, e1905620.	5.2	71
674	Countersolvent Electrolytes for Lithiumâ€Metal Batteries. Advanced Energy Materials, 2020, 10, 1903568.	10.2	200
675	Self-Regulated Phenomenon of Inorganic Artificial Solid Electrolyte Interphase for Lithium Metal Batteries. Nano Letters, 2020, 20, 4029-4037.	4.5	78
676	Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29, 310-331.	9.5	63
677	Polymer Electrolyte Membrane with High Ionic Conductivity and Enhanced Interfacial Stability for Lithium Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 22710-22720.	4.0	23
678	An Outlook on Low-Volume-Change Lithium Metal Anodes for Long-Life Batteries. ACS Central Science, 2020, 6, 661-671.	5.3	83
679	Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1909887.	7.8	251
680	Analyzing Energy Materials by Cryogenic Electron Microscopy. Advanced Materials, 2020, 32, e1908293.	11.1	61
681	Lithium Metal Interface Modification for Highâ€Energy Batteries: Approaches and Characterization. Batteries and Supercaps, 2020, 3, 828-859.	2.4	38
682	A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy, 2020, 73, 104786.	8.2	120
683	Realizing Dendrite-Free Lithium Deposition with a Composite Separator. Nano Letters, 2020, 20, 3798-3807.	4.5	66
684	An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation. ACS Energy Letters, 2020, 5, 1438-1447.	8.8	214
685	In Situ Li ₃ PO ₄ /PVA Solid Polymer Electrolyte Protective Layer Stabilizes the Lithium Metal Anode. ACS Omega, 2020, 5, 8299-8304.	1.6	13

#	Article	IF	CITATIONS
686	Self‣uppression of Lithium Dendrite with Aluminum Nitride Nanoflake Additive in 3D Carbon Paper for Lithium Metal Batteries. Energy Technology, 2020, 8, 1901463.	1.8	14
687	Nonuniform Ionic and Electronic Transport of Ceramic and Polymer/Ceramic Hybrid Electrolyte by Nanometerâ€ S cale Operando Imaging for Solidâ€State Battery. Advanced Energy Materials, 2020, 10, 2000219.	10.2	22
688	Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter, 2020, 3, 57-94.	5.0	334
689	In-Situ Formed Protecting Layer from Organic/Inorganic Concrete for Dendrite-Free Lithium Metal Anodes. Nano Letters, 2020, 20, 3911-3917.	4.5	58
690	Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Materials, 2020, 29, 84-91.	9.5	64
691	Control of Dendritic Growth of the Lithium Metal in All-Solid-State Lithium Metal Batteries: Effect of the Current Collector with Microsized Pores. ACS Applied Materials & amp; Interfaces, 2020, 12, 22798-22803.	4.0	18
692	Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO ₂ -Supported Gel Polymer Electrolyte. ACS Energy Letters, 2020, 5, 1681-1688.	8.8	85
693	Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1644-1652.	8.8	74
694	Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49, 3040-3071.	18.7	473
695	Challenges and Strategies for Highâ€Energy Aqueous Electrolyte Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 598-616.	7.2	272
696	WÄ z srige Hochleistungsbatterien: Herausforderungen und Strategien. Angewandte Chemie, 2021, 133, 608-626.	1.6	14
697	A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 52, 310-317.	7.1	41
698	Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells. Advanced Materials, 2021, 33, e1905245.	11.1	30
699	A Lightweight, Adhesive, Dualâ€Functionalized Overâ€Coating Interphase Toward Ultraâ€Stable Highâ€Current Density Lithium Metal Anodes. Energy and Environmental Materials, 2021, 4, 103-110.	7.3	8
700	Hybrid solid electrolyte enabled dendrite-free Li anodes for high-performance quasi-solid-state lithium-oxygen batteries. National Science Review, 2021, 8, nwaa150.	4.6	41
701	A lithiated gel polymer electrolyte with superior interfacial performance for safe and long-life lithium metal battery. Journal of Energy Chemistry, 2021, 55, 313-322.	7.1	27
702	Ultrahigh coulombic efficiency electrolyte enables Li SPAN batteries with superior cycling performance. Materials Today, 2021, 42, 17-28.	8.3	50
703	Solid‣tate Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Advanced Energy Materials, 2021, 11, .	10.2	312

#	Article	IF	CITATIONS
704	Interface Issues and Challenges in All‧olid‧tate Batteries: Lithium, Sodium, and Beyond. Advanced Materials, 2021, 33, e2000721.	11.1	248
705	A robust interface enabled by electrospun membrane with optimal resistance in lithium metal batteries. Journal of Energy Chemistry, 2021, 55, 1-9.	7.1	15
706	Asymmetric Polymer Electrolyte Constructed by Metal–Organic Framework for Solid‣tate, Dendriteâ€Free Lithium Metal Battery. Advanced Functional Materials, 2021, 31, 2007198.	7.8	123
707	In-situ construction of lithiophilic interphase in vertical micro-channels of 3D copper current collector for high performance lithium-metal batteries. Energy Storage Materials, 2021, 34, 22-27.	9.5	35
708	Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth. Journal of Energy Chemistry, 2021, 56, 463-469.	7.1	18
709	An interface-modified solid-state electrochemical device for lithium extraction from seawater. Journal of Power Sources, 2021, 482, 228938.	4.0	10
710	Elongating the cycle life of lithium metal batteries in carbonate electrolyte with gradient solid electrolyte interphase layer. Energy Storage Materials, 2021, 34, 241-249.	9.5	52
711	A Facile Way to Construct Stable and Ionic Conductive Lithium Sulfide Nanoparticles Composed Solid Electrolyte Interphase on Li Metal Anode. Advanced Functional Materials, 2021, 31, 2006380.	7.8	43
712	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy, 2021, 80, 105516.	8.2	111
713	Construction of 3D porous CeO2 ceramic hosts with enhanced lithiophilicity for dendrite-free lithium metal anode. Journal of Power Sources, 2021, 484, 229253.	4.0	15
714	A review on the failure and regulation of solid electrolyte interphase in lithium batteries. Journal of Energy Chemistry, 2021, 59, 306-319.	7.1	183
715	Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode. Journal of Materials Science and Technology, 2021, 76, 156-165.	5.6	6
716	Aluminumâ^'lithium alloy as a stable and reversible anode for lithium batteries. Electrochimica Acta, 2021, 368, 137626.	2.6	33
717	Honeycomb Inspired Lithiophilic Scaffold for Ultra-Stable, High-Areal-Capacity Metallic Deposition. Energy Storage Materials, 2021, 35, 378-387.	9.5	11
718	Highly Thermal Conductive Separator with Inâ€Built Phosphorus Stabilizer for Superior Niâ€Rich Cathode Based Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003285.	10.2	19
719	Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Materials Chemistry Frontiers, 2021, 5, 1771-1794.	3.2	34
720	Spatially anchoring the lithiophilic composites within the mixed-conducting phase: A hybrid storage mechanism enabled by the Al-Si@AlSiOX composite. Chemical Engineering Journal, 2021, 417, 127915.	6.6	5
721	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117

#	Article	IF	CITATIONS
722	A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2021, 56, 391-394.	7.1	26
723	Constructing nanoporous Ni foam current collectors for stable lithium metal anodes. Journal of Energy Chemistry, 2021, 58, 124-132.	7.1	26
724	Thin buffer layer assist carbon-modifying separator for long-life lithium metal anodes. Journal of Energy Chemistry, 2021, 57, 61-68.	7.1	8
725	High Performance Li Metal Anode Enabled by Robust Covalent Triazine Frameworkâ€Based Protective Layer. Advanced Functional Materials, 2021, 31, 2006159.	7.8	36
726	Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy, 2021, 80, 105563.	8.2	87
727	Modulating the electrical conductivity of a graphene oxide-coated 3D framework for guiding bottom-up lithium growth. Journal of Materials Chemistry A, 2021, 9, 1822-1834.	5.2	22
728	Electron cloud migration effect-induced lithiophobicity/lithiophilicity transformation for dendrite-free lithium metal anodes. Nanoscale, 2021, 13, 3027-3035.	2.8	8
729	Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Materials Chemistry Frontiers, 2021, 5, 5211-5232.	3.2	22
730	Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chemical Society Reviews, 2021, 50, 3178-3210.	18.7	126
731	Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews, 2021, 50, 3889-3956.	18.7	109
732	<i>In situ</i> coating of a lithiophilic interphase on a biporous Cu scaffold with vertical microchannels for dendrite-free Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 13642-13652.	5.2	9
733	Regulated lithium plating and stripping by a nano-scale gradient inorganic–organic coating for stable lithium metal anodes. Energy and Environmental Science, 2021, 14, 4085-4094.	15.6	48
734	Materials chemistry among the artificial solid electrolyte interphases of metallic lithium anodes. Materials Chemistry Frontiers, 2021, 5, 5194-5210.	3.2	9
735	Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries. Journal of Materials Chemistry A, 2021, 9, 6070-6088.	5.2	21
736	Amidinothiourea as a new deposition-regulating additive for dendrite-free lithium metal anodes. Chemical Communications, 2021, 57, 10055-10058.	2.2	9
737	Surface Engineered Li Metal Anode for Allâ€Solidâ€State Lithium Metal Batteries with High Capacity. ChemElectroChem, 2021, 8, 386-389.	1.7	23
738	Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chemical Science, 2021, 12, 8945-8966.	3.7	72
739	Toward high-performance anodeless batteries based on controlled lithium metal deposition: a review. Journal of Materials Chemistry A, 2021, 9, 14656-14681.	5.2	33

#	Article	IF	CITATIONS
740	An aqueous polyethylene oxide-based solid-state electrolyte with high voltage stability for dendrite-free lithium deposition <i>via</i> a self-healing electrostatic shield. Dalton Transactions, 2021, 50, 14296-14302.	1.6	7
741	Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal. Advanced Science, 2021, 8, 2003301.	5.6	146
742	A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. Materials Chemistry Frontiers, 2021, 5, 6294-6314.	3.2	35
743	Lithium storage performance of α-Ni(OH)2 regulated by partial interlayer anion exchange. lonics, 2021, 27, 1125-1135.	1.2	7
744	Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.	15.6	156
745	Water based synthesis of highly conductive GaxLi7â^'3xLa3Hf2O12 garnets with comparable critical current density to analogous GaxLi7â^'3xLa3Zr2O12 systems. Dalton Transactions, 2021, 50, 2364-2374.	1.6	6
746	Advanced <i>in situ</i> technology for Li/Na metal anodes: an in-depth mechanistic understanding. Energy and Environmental Science, 2021, 14, 3872-3911.	15.6	27
747	Additive stabilization of SEI on graphite observed using cryo-electron microscopy. Energy and Environmental Science, 2021, 14, 4882-4889.	15.6	73
748	Rational Designs for Lithium‣ulfur Batteries with Low Electrolyte/Sulfur Ratio. Advanced Functional Materials, 2021, 31, 2010499.	7.8	70
749	Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode. Nano Research, 2021, 14, 3999-4005.	5.8	24
751	Long-cycling and dendrite-free lithium metal anodes via salt chemistry. Green Energy and Environment, 2021, 6, 791-793.	4.7	7
752	Liquid Alloy Enabled Solid‣tate Batteries for Conformal Electrode–Electrolyte Interfaces. Advanced Functional Materials, 2021, 31, 2010863.	7.8	29
753	Li–Zn Overlayer to Facilitate Uniform Lithium Deposition for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 9985-9993.	4.0	19
754	High Power and Energy Density Aqueous Proton Battery Operated at â^' 90Â ° C. Advanced Functional Materials, 2021, 31, 2010127.	7.8	77
755	Lowâ€Cost Regulating Lithium Deposition Behaviors by Transition Metal Oxide Coating on Separator. Advanced Functional Materials, 2021, 31, 2007255.	7.8	28
756	Strategy to Enhance the Cycling Stability of the Metallic Lithium Anode in Li-Metal Batteries. Nano Letters, 2021, 21, 1896-1901.	4.5	25
757	Effect of LiTFSI and LiFSI on Cycling Performance of Lithium Metal Batteries Using Thermoplastic Polyurethane/Halloysite Nanotubes Solid Electrolyte. Acta Metallurgica Sinica (English Letters), 2021, 34, 359-372.	1.5	16
758	A robust solid electrolyte interphase layer coated on polyethylene separator surface induced by Ge interlayer for stable Li-metal batteries. Electrochimica Acta, 2021, 370, 137703.	2.6	10

#	Article	IF	CITATIONS
759	Critical Current Density in Solid‧tate Lithium Metal Batteries: Mechanism, Influences, and Strategies. Advanced Functional Materials, 2021, 31, 2009925.	7.8	239
760	Improving Cyclability of Lithium Metal Anode via Constructing Atomic Interlamellar Ion Channel for Lithium Sulfur Battery. Nanoscale Research Letters, 2021, 16, 52.	3.1	13
761	Nano Cellulose Fibers and Graphene Oxide Coating on Polyolefin Separator With Uniform Li+ Transportation Channels for Long-Life and High-Safety Li Metal Battery. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	3
762	Lithium Metal Electrode with Increased Air Stability and Robust Solid Electrolyte Interphase Realized by Silane Coupling Agent Modification. Advanced Materials, 2021, 33, e2008133.	11.1	122
763	Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nature Energy, 2021, 6, 378-387.	19.8	282
764	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	1.6	2
765	Electrochemically Regulated Li Deposition by Crown Ether. ACS Applied Materials & Interfaces, 2021, 13, 15872-15880.	4.0	5
766	Monitoring the mechanical properties of the solid electrolyte interphase (SEI) using electrochemical quartz crystal microbalance with dissipation. Chinese Chemical Letters, 2021, 32, 1139-1143.	4.8	18
767	An Overview on Protecting Metal Anodes with Alloyâ€Type Coating. Batteries and Supercaps, 2021, 4, 1252-1266.	2.4	13
768	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	7.2	71
769	Dendritic Zn Deposition in Zincâ€Metal Batteries and Mitigation Strategies. Advanced Energy and Sustainability Research, 2021, 2, 2000082.	2.8	23
770	High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Metals, 2021, 40, 3175.	3.6	72
771	Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 12099-12105.	4.0	38
772	Status and Prospects of MXeneâ€Based Lithium–Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2100457.	7.8	147
773	Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 2021, 6, 1839-1848.	8.8	200
774	Highly Lithiophilic Copper-Reinforced Scaffold Enables Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 20240-20250.	4.0	24
775	Enabling interfacial stability via 3D networking single ion conducting nano fiber electrolyte for high performance lithium metal batteries. Journal of Power Sources, 2021, 490, 229545.	4.0	16
776	Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery. Chemical Engineering Journal, 2021, 410, 128415.	6.6	42

#	Article	IF	CITATIONS
777	Ultrafast Zinc–Ion–Conductor Interface toward Highâ€Rate and Stable Zinc Metal Batteries. Advanced Energy Materials, 2021, 11, 2100186.	10.2	223
778	Lithiophilic 3D VN@N-rGO as a Multifunctional Interlayer for Dendrite-Free and Ultrastable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 20125-20136.	4.0	32
779	Nitrate Additives Coordinated with Crown Ether Stabilize Lithium Metal Anodes in Carbonate Electrolyte. Advanced Functional Materials, 2021, 31, 2102128.	7.8	56
780	Li metal coated with Li3PO4 film via atomic layer deposition as battery anode. Ionics, 2021, 27, 2445-2454.	1.2	10
781	Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter, 2021, 4, 1142-1188.	5.0	116
782	Enhanced electrochemical performance of garnet-based solid-state lithium metal battery with modified anodic and cathodic interfaces. Chinese Journal of Chemical Engineering, 2022, 44, 140-147.	1.7	1
783	Superâ€Assembled Hierarchical CoO Nanosheetsâ€Cu Foam Composites as Multiâ€Level Hosts for Highâ€Performance Lithium Metal Anodes. Small, 2021, 17, e2101301.	5.2	33
784	Edge Engineering in 2D Molybdenum Disulfide: Simultaneous Regulation of Lithium and Polysulfides for Stable Lithium–Sulfur Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100053.	2.8	6
785	Semi-liquid anode for dendrite-free K-ion and Na-ion batteries. Chemical Engineering Journal, 2021, 412, 128597.	6.6	11
786	Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule, 2021, 5, 1119-1142.	11.7	233
787	Electrochemical properties of surface-modified hard carbon electrodes for lithium-ion batteries. Electrochimica Acta, 2021, 379, 138175.	2.6	8
788	Cu(NO3)2 as efficient electrolyte additive for 4ÂV class Li metal batteries with ultrahigh stability. Energy Storage Materials, 2021, 37, 1-7.	9.5	33
789	Freestanding polyimide fiber network as thermally safer separator for high-performance Li metal batteries. Electrochimica Acta, 2021, 377, 138069.	2.6	11
790	Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Storage Materials, 2021, 37, 315-324.	9.5	46
791	Harnessing Stiffness and Anticorrosion of Chromium in an Artificial SEI to Achieve a Longevous Lithium-Metal Anode. ACS Applied Energy Materials, 2021, 4, 5043-5049.	2.5	6
792	Simple route to lithium dendrite prevention for long cycle-life lithium metal batteries. Applied Materials Today, 2021, 23, 101062.	2.3	8
793	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560.	7.2	80
794	Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. IScience, 2021, 24, 102578.	1.9	17

#	Article	IF	CITATIONS
795	Li-Ion Conductivity Enhancement of LiBH ₄ · <i>x</i> NH ₃ with <i>In Situ</i> Formed Li ₂ O Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 31635-31641.	4.0	14
796	Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling. Journal of Alloys and Compounds, 2021, 865, 158748.	2.8	27
797	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie, 2021, 133, 16690-16696.	1.6	12
798	Recent smart lithium anode configurations for high-energy lithium metal batteries. Energy Storage Materials, 2021, 38, 262-275.	9.5	47
799	Molecular Engineering Approaches to Fabricate Artificial Solidâ€Electrolyte Interphases on Anodes for Liâ€ion Batteries: A Critical Review. Advanced Energy Materials, 2021, 11, 2101173.	10.2	50
800	Homogeneous bottom-growth of lithium metal anode enabled by double-gradient lithiophilic skeleton. Journal of Energy Chemistry, 2021, 57, 392-400.	7.1	35
801	Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced Chemical Reactions. Angewandte Chemie - International Edition, 2021, 60, 19183-19190.	7.2	36
802	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	9.5	52
803	Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries. Electrochimica Acta, 2021, 382, 138346.	2.6	42
804	Electrolyte interface design for regulating Li dendrite growth in rechargeable Li-metal batteries: A theoretical study. Journal of Power Sources, 2021, 496, 229791.	4.0	14
805	Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced Chemical Reactions. Angewandte Chemie, 2021, 133, 19332-19339.	1.6	1
806	Efficient degradation of tetracycline in wide pH range using MgNCN/MgO nanocomposites as novel H2O2 activator. Water Research, 2021, 198, 117149.	5.3	60
807	Magnetron sputtering Al–Sc alloying layer gifts long cycle life for lithium metal batteries. Materials Letters, 2021, 294, 129705.	1.3	1
808	Realizing Compact Lithium Deposition via Elaborative Nucleation and Growth Regulation for Stable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34248-34257.	4.0	1
809	Preventing Electrolyte Decomposition on a Ca Metal Electrode Interface Using an Artificial Solidâ€Electrolyte Interphase. Advanced Theory and Simulations, 2021, 4, 2100018.	1.3	7
810	An Artificial Interface for High Cell Voltage Aqueous-Based Electrochemical Capacitors. Journal of the Electrochemical Society, 2021, 168, 070520.	1.3	3
811	LixCu alloy nanowires nested in Ni foam for highly stable Li metal composite anode. Science China Materials, 2022, 65, 69-77.	3.5	13
812	Ice-colloidal templated carbon host for highly efficient, dendrite free Li metal anode. Carbon, 2021, 179, 256-265.	5.4	7

#	Article	IF	CITATIONS
813	N, O odoped Carbon Nanosheet Array Enabling Stable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2102354.	7.8	45
814	In Situâ€Formed Dualâ€Conductive Protecting Layer for Dendriteâ€Free Li Metal Anodes in Allâ€Solidâ€State Batteries. Energy Technology, 2021, 9, 2100087.	1.8	12
815	V ₂ CT _{<i>x</i>} MXene Artificial Solid Electrolyte Interphases toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9961-9969.	3.2	13
816	Low-Cost Li SPAN Batteries Enabled by Sustained Additive Release. ACS Applied Energy Materials, 2021, 4, 6422-6429.	2.5	2
817	Unveiling the Role of Li ⁺ Solvation Structures with Commercial Carbonates in the Formation of Solid Electrolyte Interphase for Lithium Metal Batteries. Small Methods, 2021, 5, e2100441.	4.6	42
818	High Interfacialâ€Energy and Lithiophilic Janus Interphase Enables Stable Lithium Metal Anodes. Small, 2021, 17, e2102196.	5.2	15
819	Two-Dimensional Protective Layers of MX ₃ to Stabilize Lithium and Sodium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 8653-8659.	2.5	4
820	Revisiting lithium-storage mechanisms of molybdenum disulfide. Chinese Chemical Letters, 2022, 33, 1779-1797.	4.8	21
821	Au-modified 3D carbon cloth as a dendrite-free framework for Li metal with excellent electrochemical stability. Journal of Alloys and Compounds, 2021, 871, 159491.	2.8	10
822	Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: interfacial chemistry, dendrite growth, and critical current densities. Ionics, 2021, 27, 4105-4126.	1.2	24
823	A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes. Energy Storage Materials, 2021, 39, 403-411.	9.5	33
824	Accelerated Electrochemical Investigation of Li Plating Efficiency as Key Parameter for Li Metal Batteries Utilizing a Scanning Droplet Cell. ChemElectroChem, 2021, 8, 3143-3149.	1.7	3
825	Advanced Electrolytes Enabling Safe and Stable Rechargeable Liâ€Metal Batteries: Progress and Prospects. Advanced Functional Materials, 2021, 31, 2105253.	7.8	102
826	Negatively charged polymeric interphase for regulated uniform lithium-ion transport in stable lithium metal batteries. Nano Energy, 2021, 87, 106214.	8.2	18
827	Characterizing Batteries by In Situ Electrochemical Atomic Force Microscopy: A Critical Review. Advanced Energy Materials, 2021, 11, 2101518.	10.2	40
828	Updated Insights into 3D Architecture Electrodes for Micropower Sources. Advanced Materials, 2021, 33, e2103304.	11.1	28
829	Enabling Argyrodite Sulfides as Superb Solid‣tate Electrolyte with Remarkable Interfacial Stability Against Electrodes. Energy and Environmental Materials, 2022, 5, 852-864.	7.3	43
830	An armor-like artificial solid electrolyte interphase layer for high performance lithium-sulfur batteries. Applied Materials Today, 2021, 24, 101108.	2.3	4

#	Article	IF	Citations
831	Formation of a Stable Solid-Electrolyte Interphase at Metallic Lithium Anodes Induced by LiNbO ₃ Protective Layers. ACS Applied Energy Materials, 2021, 4, 10333-10343.	2.5	11
832	Fatigueâ€Resistant Interfacial Layer for Safe Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 25712-25717.	1.6	7
833	Porous polyimide separator promotes uniform lithium plating for lithiumâ€free cells. Electrochemical Science Advances, 2022, 2, e2100091.	1.2	5
834	Unveiling the Working Mechanism of g-C ₃ N ₄ as a Protection Layer for Lithium- and Sodium-Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 46821-46829.	4.0	11
835	Abrasive Blasting of Lithium Metal Surfaces Yields Clean and 3D‣tructured Lithium Metal Anodes with Superior Properties. Energy Technology, 2021, 9, 2100455.	1.8	3
836	Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries. Applied Physics Reviews, 2021, 8, .	5.5	14
837	Multifunctional High-Efficiency Additive with Synergistic Anion and Cation Coordination for High-Performance LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46783-46793.	4.0	26
838	Self-leveling electrolyte enabled dendrite-free lithium deposition for safer and stable lithium metal batteries. Chemical Engineering Journal, 2021, 419, 129494.	6.6	11
839	Lithium Fluoride in Electrolyte for Stable and Safe Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2102134.	11.1	91
840	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
841	Cotton pad derived 3D lithiophilic carbon host for robust Li metal anode: In-situ generated ionic conductive Li3N protective decoration. Chemical Engineering Journal, 2022, 430, 132722.	6.6	34
842	In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition. Science Bulletin, 2021, 66, 1754-1763.	4.3	16
843	Fatigueâ€Resistant Interfacial Layer for Safe Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 25508-25513.	7.2	73
844	Coupling a Three-Dimensional Nanopillar and Robust Film to Guide Li-Ion Flux for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 45416-45425.	4.0	8
845	Dendrite-Free and Micron-Columnar Li Metal Deposited from LiNO ₃ -Based Electrolytes. ACS Applied Energy Materials, 2021, 4, 11336-11342.	2.5	7
846	Strategies for Dendrite-Free lithium metal Anodes: A Mini-review. Journal of Electroanalytical Chemistry, 2021, 897, 115499.	1.9	20
847	General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. Science China Materials, 2022, 65, 337-348.	3.5	38
848	Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability. InformaÄnÃ-Materiály, 2022, 4, .	8.5	19

#	Article	IF	CITATIONS
849	Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Materials, 2021, 41, 448-465.	9.5	60
850	Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Materials, 2021, 41, 485-494.	9.5	66
851	Achieving dendrite-free lithium deposition on the anode of Lithium–Sulfur battery by LiF-rich regulation layer. Electrochimica Acta, 2021, 393, 138981.	2.6	16
852	Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances. Journal of Energy Chemistry, 2021, 61, 104-134.	7.1	80
853	Lithium–copper alloy embedded in 3D porous copper foam with enhanced electrochemical performance toward lithium metal batteries. Materials Today Energy, 2021, 22, 100871.	2.5	11
854	Critical role of surface craters for improving the reversibility of Li metal storage in porous carbon frameworks. Nano Energy, 2021, 88, 106243.	8.2	16
855	1-Hydroxyethylidene-1, 1-diphosphonic acid: A multifunctional interface modifier for eliminating HF in silicon anode. Energy Storage Materials, 2021, 42, 493-501.	9.5	23
856	An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Materials, 2021, 42, 145-153.	9.5	42
857	Flexible ordered MnS@CNC/carbon nanofibers membrane based on microfluidic spinning technique as interlayer for stable lithium-metal battery. Journal of Membrane Science, 2021, 637, 119615.	4.1	22
858	New insight into Li metal protection: Regulating the Li-ion flux via dielectric polarization. Nano Energy, 2021, 89, 106334.	8.2	13
859	Controlling a lithium surface with an alkyl halide nucleophile exchange. Journal of Energy Chemistry, 2021, 62, 617-626.	7.1	3
860	Soft, robust, Li-ion friendly halloysite-based hybrid protective layer for dendrite-free Li metal anode. Chemical Engineering Journal, 2021, 424, 130326.	6.6	20
861	ZnF2 doped porous carbon nanofibers as separator coating for stable lithium-metal batteries. Chemical Engineering Journal, 2021, 424, 130346.	6.6	27
862	In-situ growth of Ag particles anchored Cu foam scaffold for dendrite-free lithium metal anode. Journal of Alloys and Compounds, 2021, 885, 160882.	2.8	11
863	Synergistic effect of lithiophilic Zn nanoparticles and N-doping for stable Li metal anodes. Journal of Energy Chemistry, 2022, 65, 439-447.	7.1	16
864	A multifunctional Cu6Sn5 interface layer for dendritic-free lithium metal anode. Journal of Colloid and Interface Science, 2022, 605, 223-230.	5.0	8
865	Uniformly distributed reaction by 3D host-lithium composite anode for high rate capability and reversibility of Li-O2 batteries. Chemical Engineering Journal, 2022, 427, 130914.	6.6	10
866	3D TiO2/ZnO hybrid framework: Stable host for lithium metal anodes. Chemical Engineering Journal, 2022, 427, 132026.	6.6	22

			2
#	ARTICLE	IF	CITATIONS
867	Highly reversible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy. Applied Surface Science, 2022, 572, 151439.	3.1	8
868	Li salt initiated in-situ polymerized solid polymer electrolyte: new insights via in-situ electrochemical impedance spectroscopy. Chemical Engineering Journal, 2022, 429, 132483.	6.6	27
869	A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries. Journal of Energy Chemistry, 2022, 64, 485-495.	7.1	20
870	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 66, 260-294.	7.1	149
871	A mixed ion-electron conducting network derived from a porous CoP film for stable lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 5486-5496.	3.2	7
872	Ag coated 3D-Cu foam as a lithiophilic current collector for enabling Li ₂ S-based anode-free batteries. Chemical Communications, 2021, 57, 3708-3711.	2.2	21
873	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
874	Artificial Single-Ion Conducting Polymer Solid Electrolyte Interphase Layer toward Highly Stable Lithium Anode. ACS Applied Energy Materials, 2021, 4, 862-869.	2.5	18
875	Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 999.	0.6	1
876	A lithiophilic carbon scroll as a Li metal host with low tortuosity design and "Dead Li―self-cleaning capability. Journal of Materials Chemistry A, 2021, 9, 13332-13343.	5.2	15
877	Morphological control of electrodeposited lithium metal <i>via</i> seeded growth: stepwise spherical to fibrous lithium growth. Journal of Materials Chemistry A, 2021, 9, 1803-1811.	5.2	11
878	Interfacial processes in electrochemical energy systems. Chemical Communications, 2021, 57, 10453-10468.	2.2	28
879	The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium–Metal Anode Surface. Journal of Physical Chemistry Letters, 2021, 12, 1300-1306.	2.1	43
880	The Role of Ex Situ Solid Electrolyte Interphase in Lithium Metal Batteries. , 2021, , 479-511.		0
881	A Protective Layer for Lithium Metal Anode: Why and How. Small Methods, 2021, 5, e2001035.	4.6	55
882	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	11.1	205
883	Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy and Environmental Science, 2021, 14, 1835-1853.	15.6	150
884	Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2003092.	10.2	271

#	Article	IF	CITATIONS
885	Red Phosphorousâ€Derived Protective Layers with High Ionic Conductivity and Mechanical Strength on Dendriteâ€Free Sodium and Potassium Metal Anodes. Advanced Energy Materials, 2021, 11, 2003381.	10.2	102
886	Three-dimensional lithiophilic Cu@Sn nanocones for dendrite-free lithium metal anodes. Science China Materials, 2021, 64, 1087-1094.	3.5	13
887	Catalytic Effects in the Cathode of Li-S Batteries: Accelerating polysulfides redox conversion. EnergyChem, 2020, 2, 100036.	10.1	35
888	Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Materials, 2019, 18, 389-396.	9.5	149
889	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Materials, 2020, 30, 206-227.	9.5	95
890	A rational VO2 nanotube/graphene binary sulfur host for superior lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 838, 155504.	2.8	18
891	Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries. Matter, 2020, 2, 805-815.	5.0	130
892	High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 27794-27802.	4.0	31
893	Three-dimensional carbon nanotube networks enhanced sodium trimesic: a new anode material for sodium ion batteries and Na-storage mechanism revealed by ex situ studies. Journal of Materials Chemistry A, 2017, 5, 16622-16629.	5.2	54
894	A self-smoothing Li-metal anode enabled <i>via</i> a hybrid interface film. Journal of Materials Chemistry A, 2020, 8, 12045-12054.	5.2	24
895	A Double-Layer Artificial SEI Film Fabricated by Controlled Electrochemical Reduction of LiODFB-FEC Based Electrolyte for Dendrite-Free Lithium Meal Anode. Journal of the Electrochemical Society, 2020, 167, 160535.	1.3	10
896	Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes. Research, 2019, 2019, 1-11.	2.8	33
897	A review for modified Li composite anode: Principle, preparation and challenge. Nanotechnology Reviews, 2020, 9, 1610-1624.	2.6	15
899	Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes. Research, 2019, 2019, 4608940.	2.8	29
900	Vertical Graphenes Grown on a Flexible Graphite Paper as an All-Carbon Current Collector towards Stable Li Deposition. Research, 2020, 2020, 7163948.	2.8	12
901	Failure mechanism of lithium metal anode under practical conditions. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228501.	0.2	8
902	A Highâ€performance Lithium Metal Battery with a Multilayer Hybrid Electrolyte. Energy and Environmental Materials, 2023, 6, .	7.3	41
903	High-energy silicon-sulfurized poly(acrylonitrile) battery based on a nitrogen evolution reaction. Science Bulletin, 2022, 67, 256-262.	4.3	3

#	Article	IF	CITATIONS
904	High-Rate Lithium Metal Plating and Stripping on Solid Electrolytes Using a Porous Current Collector with a High Aperture Ratio. ACS Applied Energy Materials, 2021, 4, 12613-12622.	2.5	4
905	Organophosphorus Hybrid Solid Electrolyte Interphase Layer Based on Li <i>_x</i> PO ₄ Enables Uniform Lithium Deposition for Highâ€Performance Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, 2107923.	7.8	27
906	Impact of the Solidâ€Electrolyte Interface on Dendrite Formation: A Case Study Based on Zinc Metal Electrodes. ChemElectroChem, 2022, 9, .	1.7	1
907	Dendrite-Free Non-Newtonian Semisolid Lithium Metal Anode. ACS Energy Letters, 2021, 6, 3761-3768.	8.8	19
908	Understanding the Effects of Alloy Films on the Electrochemical Behavior of Lithium Metal Anodes with Operando Optical Microscopy. Journal of the Electrochemical Society, 2021, 168, 100517.	1.3	10
909	1.二次電æ±ã«ãŠãʿã,‹Lié‡ʿå±žè²æ¥μã®å^©ç"¨. Denki Kagaku, 2018, 86, 281-285.	0.0	0
910	Rechargeable Lithium Metal Batteries. , 2019, , 147-203.		0
911	Stabilizing Polymer Electrolytes in High-Voltage Lithium Batteries. Springer Theses, 2019, , 199-227.	0.0	0
912	Designing Solid-Liquid Interphases for Sodium Batteries. Springer Theses, 2019, , 95-116.	0.0	0
913	Advanced Coupling of Energy Storage and Photovoltaics. , 2019, , 317-350.		0
914	New High-energy Anode Materials. , 2019, , 1-25.		1
915	Electroless Formation of Hybrid Lithium Anodes for High Interfacial Ion Transport. Springer Theses, 2019, , 117-135.	0.0	0
916	Strategic Approaches to the Dendritic Growth and Interfacial Reaction of Lithium Metal Anode. Chemistry - an Asian Journal, 2021, 16, 4010-4017.	1.7	17
917	LiF-doped Li1.3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries. Ionics, 2022, 28, 73-83.	1.2	8
918	The importance of electrode interfaces and interphases for rechargeable metal batteries. Nature Communications, 2021, 12, 6240.	5.8	49
919	An effective artificial layer boosting high-performance all-solid-state lithium batteries with high coulombic efficiency. Journal of Materiomics, 2022, 8, 257-265.	2.8	2
920	Stable Rooted Solid Electrolyte Interphase for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2021, 12, 10521-10531.	2.1	6
921	Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for Highâ€Performance Lithium Metal Anodes. Chemistry - A European Journal, 2021, , .	1.7	3

\sim		<u>_</u>	
		Repo	DT
\sim	IIAI	KLPU	ALC L

#	Article	IF	CITATIONS
922	A Designed Lithiophilic Carbon Channel on Separator to Regulate Lithium Deposition Behavior. Small, 2022, 18, e2104390.	5.2	8
923	In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries. Microporous and Mesoporous Materials, 2022, 329, 111544.	2.2	7
924	Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy, 2022, 92, 106720.	8.2	34
925	A 3D Porous Inverse Opal Ni Structure on a Cu Current Collector for Stable Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, e202100257.	2.4	5
926	An overview of the key challenges and strategies for lithium metal anodes. Journal of Energy Storage, 2022, 47, 103641.	3.9	14
927	Electrochemical Dealloying-Enabled 3D Hierarchical Porous Cu Current Collector of Lithium Metal Anodes for Dendrite Growth Inhibition. ACS Applied Energy Materials, 2021, 4, 13903-13911.	2.5	12
928	In Situ Formed Lithiophilic LixNbyO in a Carbon Nanofiber Network for Dendrite-Free Li-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 56498-56509.	4.0	6
929	High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Letters, 2021, 6, 4416-4425.	8.8	63
930	Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chemical Engineering Journal, 2022, 433, 133570.	6.6	24
931	Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendriteâ€Free Lithiumâ€Metal Anodes. Small, 2022, 18, e2104735.	5.2	10
932	Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Science Advances, 2021, 7, eabj3423.	4.7	84
933	Polymer Zwitterion-Based Artificial Interphase Layers for Stable Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 57489-57496.	4.0	26
934	Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Materials Today Energy, 2022, 23, 100893.	2.5	24
935	In Situ Grown 1T′â€MoTe ₂ Nanosheets on Carbon Nanotubes as an Efficient Electrocatalyst and Lithium Regulator for Stable Lithium–Sulfur Full Cells. Advanced Energy Materials, 2022, 12, .	10.2	40
936	A composite PEO electrolyte with amide-based polymer matrix for suppressing lithium dendrite growth in all-solid-state lithium battery. Chinese Chemical Letters, 2022, 33, 3894-3898.	4.8	38
937	Nanostructured alkali and alkaline earth metal interfaces for high-energy batteries. Frontiers of Nanoscience, 2021, 19, 327-359.	0.3	1
938	The Lithiophilcity of Collector by LiCuO Particles Decorate Cu Form To Restrain Lithium Dendrite Growth. SSRN Electronic Journal, 0, , .	0.4	0
939	Strategies for improving rechargeable lithium-ion batteries: From active materials to CO ₂ emissions. Nanotechnology Reviews, 2021, 10, 1993-2026.	2.6	9

	Сітатіо	n Report	
#	Article	IF	CITATIONS
940	A gradient topology host for a dendrite-free lithium metal anode. Nano Energy, 2022, 94, 106937.	8.2	41
941	Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. Journal of Power Sources, 2022, 521, 230921.	4.0	24
942	Sulfonated poly(vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode. Electrochimica Acta, 2022, 406, 139840.	2.6	13
943	A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries. Chemical Engineering Journal, 2022, 431, 134019.	6.6	16
944	Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. Journal of Colloid and Interface Science, 2022, 611, 317-326.	5.0	22
945	Imbedding Li2CO3 in Li-nafion film to protect Li anode from unexpected dendrites growth. Journal of Alloys and Compounds, 2022, 900, 163444.	2.8	8
946	Superior removal of dyes by mesoporous MgO/g-C3N4 fabricated through ultrasound method: Adsorption mechanism and process modeling. Environmental Research, 2022, 205, 112543.	3.7	43
947	Assembling Iron Oxide Nanoparticles into Aggregates by Li ₃ PO ₄ : A Universal Strategy Inspired by Frogspawn for Robust Li-Storage. ACS Nano, 2022, 16, 2968-2977.	7.3	12
948	In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface. Energy Storage Materials, 2022, 47, 61-69.	9.5	46
949	Designing gradient solid electrolyte interphase for stable lithium metal batteries. Green Energy and Environment, 2022, 7, 1129-1131.	4.7	5
950	A surface-nitridized 3D nickel host for lithium metal anodes with long cycling life at a high rate. Nanoscale, 2022, 14, 3480-3486.	2.8	5
951	Electroâ€Chemoâ€Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	105
952	Constructing a brand-new advanced oxidation process system composed of MgO ₂ nanoparticles and MgNCN/MgO nanocomposites for organic pollutant degradation. Environmental Science: Nano, 2022, 9, 335-348.	2.2	5
953	Investigating lithium metal anodes with nonaqueous electrolytes for safe and high-performance batteries. Sustainable Energy and Fuels, 2022, 6, 954-970.	2.5	11
954	Lithium reduction reaction for interfacial regulation of lithium metal anode. Chemical Communications, 2022, 58, 2597-2611.	2.2	14
955	Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, 6, 588-616.	11.7	191
956	Engineering and characterization of interphases for lithium metal anodes. Chemical Science, 2022, 13, 1547-1568.	3.7	17
957	A Valence Gradient Protective Layer for Dendriteâ€Free and Highly Stable Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	26

#	Article	IF	CITATIONS
958	Solid Electrolyte Interphase Growth in Lithium Metal Cells With Normal Electrolyte Flow. Frontiers in Chemical Engineering, 2022, 4, .	1.3	3
959	Improving interfacial stability by in situ protective layer formation in 4.2V poly(ethylene oxide) based solid state lithium batteries. Journal of Power Sources, 2022, 523, 231062.	4.0	6
960	On the interaction of lithium nitride with lithium metal. Solid State Ionics, 2022, 377, 115870.	1.3	1
961	New insights into designation of single-ion conducting gel polymer electrolyte for high-performance lithium metal batteries. Journal of Membrane Science, 2022, 647, 120287.	4.1	17
962	Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy, 2022, 95, 106983.	8.2	83
963	Synthetic Methodologies for Si ontaining Li‧torage Electrode Materials. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	6
964	A Facile Surface Passivation Method to Stabilized Lithium Metal Anodes Facilitate the Practical Application of Quasiâ€6olidâ€6tate Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	6
965	Polysulfide regulation vs anode modification: Perspectives on commercializing lithium–sulfur batteries. APL Materials, 2022, 10, .	2.2	3
966	A review of concepts and contributions in lithium metal anode development. Materials Today, 2022, 53, 173-196.	8.3	74
967	Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes. Matter, 2022, 5, 1263-1276.	5.0	15
968	An integrated interfacial engineering for efficiently confining the asymmetric strain in scalable silicon anode. Journal of Power Sources, 2022, 524, 231086.	4.0	3
969	Quantitative analysis of the inhibition effect of rising temperature and pulse charging on Lithium dendrite growth. Journal of Energy Storage, 2022, 49, 104137.	3.9	20
970	Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat, 2021, 1, 506-536.	7.8	93
971	Organic-Inorganic Composite SEI for a Stable Li Metal Anode by In-Situ Polymerization. SSRN Electronic Journal, 0, , .	0.4	0
972	Lithium Dendrite Suppression with Li3n-Rich Protection LayerÂFormation on 3d Anode Via Ultra-Low Temperature Nitriding. SSRN Electronic Journal, 0, , .	0.4	0
973	Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation. Materials Advances, 2022, 3, 3055-3069.	2.6	14
974	Controlling Li deposition below the interface. EScience, 2022, 2, 47-78.	25.0	110
976	Double interface regulation: Toward highly stable lithium metal anode with high utilization. InformaÄnÄ-MateriA¡ly, 2022, 4, .	8.5	21

ARTICLE IF CITATIONS CuCl₂â€Modified Lithium Metal Anode via Dynamic Protection Mechanisms for Dendriteâ€Free 977 10.2 28 Longâ€Life Charging/Discharge Processes. Advanced Energy Materials, 2022, 12, . Achieve Stable Lithium Metal Anode by Sulfurized-Polyacrylonitrile Modified Separator for 978 4.0 High-Performance Lithium Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 14264-14273. Covalent Organic Framework as an Efficient Protection Layer for a Stable Lithiumâ€Metal Anode. 979 1.6 8 Angewandte Chemie, 2022, 134, . Highly stabilized and lowly polarized Li anodes using a hybrid surface film with inner Li-Zn nucleation sites and outer LiF-rich protection texture. Science China Materials, 2022, 65, 1779-1788. Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition. 981 5.8 9 Nano Research, 2022, 15, 5143-5152. Applications of polymers in lithium-ion batteries with enhanced safety and cycle life. Journal of Polymer Research, 2022, 29, 1. 1.2 Anion Immobilization Enabled by Cationâ€Selective Separators for Dendriteâ€Free Lithium Metal Batteries. 983 7.8 46 Advanced Functional Materials, 2022, 32, . Improving Cycling Stability of the Lithium Anode by a Spin-Coated High-Purity Li₃PS₄ Artificial SEI Layer. ACS Applied Materials & amp; Interfaces, 2022, 14, 984 4.0 24 15214-15224. Covalent Organic Framework as an Efficient Protection Layer for a Stable Lithiumâ€Metal Anode. 985 7.2 45 Angewandte Chemie - International Edition, 2022, 61, . Carbon Nanotube Interwoven Polyhedrons with Inside-out Lithiophilic Gradients toward Stable 6.6 Lithium Metal Battery. Chemical Engineering Journal, 2022, , 136256. Seamlessly integrated alloy-polymer interphase for high-rate and long-life lithium metal anodes. 987 2.5 5 Materials Today Energy, 2022, 26, 100988. Insideâ€Outside Li Deposition Achieved by the Unusual Strategy of Constructing the Hierarchical 988 2.4 Lithiophilicity for Dendriteâ€Free and Durable Li Metal Anode. Batteries and Supercaps, 0, , . A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. 989 11.1 46 Advanced Materials, 2022, 34, e2110323. High-performance lithium metal battery realized by regulating Li+ flux distribution on artificial-solid-electrolyte-interphase functionalized 3D carbon framework-Li anode. Materials Today Physics, 2022, 24, 100672. 991 Rationally designed alloy phases for highly reversible alkali metal batteries. Energy Storage Materials, 992 20 9.5 2022, 48, 223-243. In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. 993 Materials Today Energy, 2022, 26, 100984. Dual-Conductive Li alloy composite anode constructed by a synergetic Conversion-Alloying reaction 994 6.6 10 with LiMgPO4. Chemical Engineering Journal, 2022, 439, 135705. Lithium dendrite suppression with Li3N-rich protection layer formation on 3D anode via ultra-low 995 6.6 temperature nitriding. Chemical Engineering Journal, 2022, 441, 136067.

#	Article	IF	CITATIONS
996	Hollow spherical organic polymer artificial layer enabled stable Li metal anode. Chemical Engineering Journal, 2022, 442, 136155.	6.6	9
997	Sodium vanadium oxides: From nanostructured design to high-performance energy storage materials. Journal of Materials Science and Technology, 2022, 121, 80-92.	5.6	7
998	MOFâ€Enabled Ionâ€Regulating Gel Electrolyte for Long ycling Lithium Metal Batteries Under High Voltage. Small, 2022, 18, e2106225.	5.2	26
999	Breathable Artificial Interphase for Dendriteâ€Free and Chemoâ€Resistive Lithium Metal Anode. Small, 2022, 18, e2105724.	5.2	10
1000	Practical Prelithiation of 4.5 V LiCoO ₂ Graphite Batteries by a Passivated Lithium arbon Composite. Small, 2022, 18, e2106394.	5.2	12
1001	Probe the Localized Electrochemical Environment Effects and Electrode Reaction Dynamics for Metal Batteries using In Situ 3D Microscopy. Advanced Energy Materials, 2022, 12, .	10.2	14
1002	An Artificial SEI Layer Based on an Inorganic Coordination Polymer with Selfâ€Healing Ability for Longâ€Lived Rechargeable Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, .	2.4	8
1003	Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2021, 13, 60678-60688.	4.0	9
1004	Stabilizing Li Plating by a Fluorinated Hybrid Protective Layer. ACS Applied Energy Materials, 2021, 4, 14407-14414.	2.5	3
1006	Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. Inorganics, 2022, 10, 5.	1.2	4
1007	The quest for the holy grail of solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 1840-1860.	15.6	48
1008	A Dendriteâ€Free Lithiumâ€Metal Anode Enabled by Designed Ultrathin MgF ₂ Nanosheets Encapsulated Inside Nitrogenâ€Doped Grapheneâ€Like Hollow Nanospheres. Advanced Materials, 2022, 34, e2201801.	11.1	26
1009	Two-dimensional nanofluidic suppressing anion mobility towardÂdendrite-free lithium metal anode. Materials Today Energy, 2022, 26, 101015.	2.5	6
1010	Interactions Between Solid Electrolyte Interphase and Lithium Dendrite. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	5
1011	Direct ink writing of conductive materials for emerging energy storage systems. Nano Research, 2022, 15, 6091-6111.	5.8	11
1012	Electrolyte chemistry for lithium metal batteries. Science China Chemistry, 2022, 65, 840-857.	4.2	25
1015	One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 19437-19447.	4.0	4
1016	A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nature Nanotechnology, 2022, 17, 613-621.	15.6	152

#	Article	IF	CITATIONS
1017	Suppressing Growth of Lithium Dendrites by Introducing Deep Eutectic Solvents for Stable Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1018	Advanced carbon-based nanostructure frameworks for lithium anodes. , 2022, , 499-520.		0
1019	Bi-doped carbon dots for a stable lithium metal anode. Chemical Communications, 2022, 58, 6449-6452.	2.2	10
1020	Recyclability, circular economy, and environmental aspects of lithium–sulfur batteries. , 2022, , 653-672.		0
1021	Phase-Separation-Induced Porous Polymer Membrane with Uniform Lithium-Ion Transport for Stable Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1022	Design of a Solid-State Lithium Battery Based on LiFePO4 Cathode and Polymer Gel Electrolyte with Silicon Dioxide Nanoparticles. Russian Journal of Electrochemistry, 2022, 58, 329-340.	0.3	2
1023	Targeted Deposition in a Lithiophilic Silverâ€Modified 3D Cu Host for Lithiumâ€Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	11
1024	Facile Lithiophilic 3D Copper Current Collector for Stable Li Metal Anode. Journal of Electronic Materials, 2022, 51, 4248-4256.	1.0	4
1025	Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nature Energy, 2022, 7, 484-494.	19.8	138
1026	Unveiling the Stressâ€Buffering Mechanism of Deep Lithiated Ag Nanowires: A Polymer Segmental Motion Strategy toward Ultraâ€Robust Li Metal Anodes. Advanced Functional Materials, 2022, 32, .	7.8	13
1027	Experimental and first-principles study on amorphous aluminum nitride induced island-like nucleation and planar growth of lithium metal anode. Electrochimica Acta, 2022, 421, 140520.	2.6	1
1028	Track-etched polyimide separator decorated with polyvinylpyrrolidone for self-assembling a robust protective layer on lithium-metal anode. Chemical Engineering Journal, 2022, 445, 136801.	6.6	11
1029	A Pressure Responsive Artificial Interphase Layer of BaTiO ₃ against Dendrite Growth for Stable Lithium Metal Anodes. Batteries and Supercaps, 2022, 5, .	2.4	3
1030	Prediction of SEI Formation in Allâ€Solidâ€State Batteries: Computational Insights from PCLâ€based Polymer Electrolyte Decomposition on Lithiumâ€Metal. Batteries and Supercaps, 2022, 5, .	2.4	11
1031	Research Progress and Perspective on Lithium/Sodium Metal Anodes for Nextâ€Generation Rechargeable Batteries. ChemSusChem, 2022, 15, .	3.6	22
1032	Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector. Science China Materials, 2022, 65, 2385-2392.	3.5	11
1033	Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Research, 2022, 15, 7180-7189.	5.8	28
1034	Fullerene-Derivative C60-(OLi)n Modified Separators toward Stable Wide-Temperature Lithium Metal Batteries. Chemical Engineering Journal, 2022, 446, 137207.	6.6	9

#	Article	IF	CITATIONS
1035	Suppressing growth of lithium dendrites by introducing deep eutectic solvents for stable lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 15449-15459.	5.2	14
1036	Observation of the surface layer of lithium metal using <i>in situ</i> spectroscopy. Applied Physics Letters, 2022, 120, .	1.5	2
1037	Rational Engineering of Anode Current Collector for Dendrite-Free Lithium Deposition: Strategy, Application, and Perspective. Frontiers in Chemistry, 2022, 10, .	1.8	5
1038	Modifying the Lithiophilicity of Cu ₂ O/Cu Collector by LiCuO to Restrain Lithium Dendrite Growth. ChemistrySelect, 2022, 7, .	0.7	1
1039	Phosphorus-based nanomaterials for lithium-ion battery anode. , 2023, , 533-549.		5
1040	3D-Printed Sodiophilic V ₂ CT _{<i>x</i>} /rGO-CNT MXene Microgrid Aerogel for Stable Na Metal Anode with High Areal Capacity. ACS Nano, 2022, 16, 9105-9116.	7.3	60
1041	Enabling Sustainable Lithium Metal Electrodes via Cholesteric Liquid Crystalline Cellulose Nanocrystal Nanomembranes. Advanced Energy Materials, 2022, 12, .	10.2	2
1042	One-Dimensional Porous Li-Confinable Hosts for High-Rate and Stable Li-Metal Batteries. ACS Nano, 2022, 16, 11892-11901.	7.3	22
1043	Brushed Metals for Rechargeable Metal Batteries. Advanced Materials, 2022, 34, .	11.1	11
1044	Tuning the Metal Ions of Prussian Blue Analogues in Separators to Enable High-Power Lithium Metal Batteries. Nano Letters, 2022, 22, 4861-4869.	4.5	8
1045	Three-dimensional porous framework constructed by hybrid of carbon nanotubes and carbon nanocoils for stable lithium metal anode. Journal of Materials Research, 0, , .	1.2	1
1046	Intercalation-deposition mechanism induced by aligned carbon fiber toward dendrite-free metallic potassium batteries. Energy Storage Materials, 2022, 51, 122-129.	9.5	17
1047	Three-dimensional graphene with charge transfer doping for stable lithium metal anode. Journal of Electroanalytical Chemistry, 2022, 918, 116512.	1.9	1
1048	Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Materials, 2022, 50, 783-791.	9.5	6
1049	Back to the Basics: Advanced Understanding of the As-Defined Solid Electrolyte Interphase on Lithium Metal Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
1051	A Solutionâ€Processable Highâ€Modulus Crystalline Artificial Solid Electrolyte Interphase for Practical Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	10
1052	A 2D Ultrathin Nanopatterned Interlayer to Suppress Lithium Dendrite Growth in Highâ€Energy Lithiumâ€Metal Anodes. Advanced Materials, 2022, 34, .	11.1	18
1053	Ionic Conductivity, Na Plating–Stripping, and Battery Performance of Solid Polymer Na Ion Electrolyte Based on Poly(vinylidene fluoride) and Poly(vinyl pyrrolidone). ACS Applied Energy Materials, 2022, 5, 8812-8822.	2.5	4

#	Article	IF	CITATIONS
1054	Regulation of Dendrite-Free Li Plating via Lithiophilic Sites on Lithium-Alloy Surface. ACS Applied Materials & Interfaces, 2022, 14, 33952-33959.	4.0	15
1055	Enhancing Li-ion conduction and mechanical properties via addition of fluorine-containing metal—organic frameworks in all-solid-state cross-linked hyperbranched polymer electrolytes. Nano Research, 2022, 15, 8946-8954.	5.8	12
1056	Rapid Formation of an Artificial Polymer Cladding on a Lithium Metal Anode by In Situ Ultraviolet Curing to Regulate Lithium Ion Flux. ACS Applied Energy Materials, 2022, 5, 9118-9130.	2.5	4
1057	A dual-lithiophilic interfacial layer with intensified Lewis basicity and orbital hybridization for high-performance lithium metal batteries. Energy Storage Materials, 2022, 51, 777-788.	9.5	4
1058	Carbonâ€Based Materials as Lithium Hosts for Lithium Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	9
1059	Long-term stable Li metal anode enabled by strengthened and protected lithiophilic LiZn alloys. Journal of Power Sources, 2022, 543, 231839.	4.0	6
1060	Extraordinary electrochemical performance of lithium–sulfur battery with 2D ultrathin BiOBr/rGO sheet as an efficient sulfur host. Journal of Colloid and Interface Science, 2022, 626, 374-383.	5.0	13
1061	Quasi-metallic lithium encapsulated in the subnanopores of hard carbon for hybrid lithium–ion/lithium metal batteries. Chemical Engineering Journal, 2022, 450, 138049.	6.6	8
1062	Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes. Journal of Materials Science and Technology, 2023, 132, 50-58.	5.6	27
1063	Influence of Long-Term Storage Conditions on Lithium Metal Anode Surface in Liquid Carbonate-Based Electrolyte. Journal of the Electrochemical Society, 2022, 169, 080526.	1.3	1
1064	Pomegranateâ€Inspired Graphene Parcel Enables Highâ€Performance Dendriteâ€Free Lithium Metal Anodes. Advanced Science, 2022, 9, .	5.6	7
1065	Designer Cathode Additive for Stable Interphases on High-Energy Anodes. Journal of the American Chemical Society, 2022, 144, 15100-15110.	6.6	12
1066	Metalâ€Organic Framework Confined Solvent Ionic Liquid Enables Long Cycling Life Quasiâ€Solidâ€State Lithium Battery in Wide Temperature Range. Small, 2022, 18, .	5.2	13
1067	A promising protective layer towards practical lithium metal batteries. Science Bulletin, 2022, 67, 1732-1734.	4.3	2
1068	Constructing methyl methacrylate/MXene artificial solid-electrolyte interphase layer for lithium metal batteries with high electrochemical performance. Applied Surface Science, 2022, 605, 154586.	3.1	7
1069	Design of a 3D mixed conducting scaffold toward stable metallic sodium anodes. Rare Metals, 2022, 41, 3336-3342.	3.6	9
1070	Polymorphic Phosphorus Applied to Alkaliâ€ion Battery Electrodes. Small Methods, 2022, 6, .	4.6	1
1072	Interfacial engineering on metal anodes in rechargeable batteries. EnergyChem, 2022, 4, 100089.	10.1	12

#	Article	IF	CITATIONS
1073	A review of Li-ion batteries for autonomous mobile robots: Perspectives and outlook for the future. Journal of Power Sources, 2022, 545, 231943.	4.0	20
1074	Theoretical progresses in silicon anode substitutes for Lithium-ion batteries. Journal of Energy Storage, 2022, 55, 105352.	3.9	8
1075	An artificial zinc phosphide interface toward stable zinc anodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 129970.	2.3	2
1076	Guided lithium nucleation and growth on lithiophilic tin-decorated copper substrate. Journal of Energy Chemistry, 2022, 74, 412-419.	7.1	11
1077	Constructing robust polymer/two-dimensional Ti3C2TX solid-state electrolyte interphase via in-situ polymerization for high-capacity long-life and dendrite-free lithium metal anodes. Journal of Colloid and Interface Science, 2022, 628, 583-594.	5.0	5
1078	Enhancement of lithium argyrodite interface stability through MoO2 substitution and its application in lithium solid state batteries. Journal of Alloys and Compounds, 2022, 925, 166596.	2.8	9
1079	Dendrite-free Li metal anodes with confined volume change towards long lifetime. Separation and Purification Technology, 2022, 301, 122040.	3.9	4
1080	Back to the basics: Advanced understanding of the as-defined solid electrolyte interphase on lithium metal electrodes. Journal of Power Sources, 2022, 549, 232118.	4.0	9
1081	Porous polymer membrane with uniform lithium-ion transport via phase separation for stable lithium metal batteries. Journal of Power Sources, 2022, 547, 232018.	4.0	6
1082	Designable ultra-stable electrode surface engineering by the electrophoretic deposition of modified graphene oxide for rechargeable batteries. Applied Surface Science, 2022, 605, 154704.	3.1	2
1083	Dendrite-free lithium metal batteries achieved with Ce-MOF membrane coating with one-dimensional continuous oxygen-containing channels for rapid migration of Li ions. Journal of Materials Chemistry A, 2022, 10, 18248-18255.	5.2	8
1084	Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chemical Communications, 2022, 58, 10973-10976.	2.2	9
1085	Electrodeposited 3d Lithiophilic Ni Microvia Host for Long Cycling Li Metal Anode at High Current Density. SSRN Electronic Journal, 0, , .	0.4	0
1086	Effect of a layer-by-layer assembled ultra-thin film on the solid electrolyte and Li interface. Nanoscale Advances, 0, , .	2.2	2
1087	A Novel Triple Crosslinking Strategy on Carbon Nanofiber Membranes as Flexible Electrodes for Lithium-Ion Batteries. Polymers, 2022, 14, 3528.	2.0	3
1088	Engineering current collectors for advanced alkali metal anodes: A review and perspective. EcoMat, 2023, 5, .	6.8	18
1089	Stabilizing lithium plating in polymer electrolytes by concentration-polarization-induced phase transformation. Joule, 2022, 6, 2372-2389.	11.7	15
1090	Atomic and Molecular Layer Deposition as Surface Engineering Techniques for Emerging Alkali Metal Rechargeable Batteries. Molecules, 2022, 27, 6170.	1.7	4

#	Article	IF	CITATIONS
1091	Stabilization of Lithium Metal Interfaces by Constructing Composite Artificial Solid Electrolyte Interface with Mesoporous TiO ₂ and Perfluoropolymers. Small, 2022, 18, .	5.2	7
1092	Metalâ€organic framework derived porous structures towards lithium rechargeable batteries. EcoMat, 2023, 5, .	6.8	33
1093	Heterogeneous Interfacial Layers Derived from the In Situ Reaction of CoF ₂ Nanoparticles with Sodium Metal for Dendriteâ€Free Na Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	27
1094	Lithiumâ€Metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency. Small Structures, 2022, 3, .	6.9	26
1095	Collaborative Assembly of a Fluorine-Enriched Heterostructured Solid Electrolyte Interphase for Ultralong-Life Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 43917-43925.	4.0	1
1096	Three-dimensional SEI framework induced by ion regulation in toroidal magnetic field for lithium metal battery. Cell Reports Physical Science, 2022, 3, 101080.	2.8	8
1097	Computational studies on defect chemistry and Li-ion conductivity of spinel-type LiAl5O8 as coating material for Li-metal electrode. Scientific Reports, 2022, 12, .	1.6	3
1098	Achieving a dendrite-free lithium metal anode through lithiophilic surface modification with sodium diethyldithiocarbamate. Inorganic Chemistry Frontiers, 2022, 9, 6498-6509.	3.0	3
1099	Molten Salt Driven Conversion Reaction Enabling Lithiophilic and Airâ€Stable Garnet Surface for Solidâ€State Lithium Batteries. Advanced Functional Materials, 2022, 32, .	7.8	44
1100	In Situ Growth of a Metal–Organic Framework-Based Solid Electrolyte Interphase for Highly Reversible Zn Anodes. ACS Energy Letters, 2022, 7, 4168-4176.	8.8	44
1101	Probing the Mechanically Stable Solid Electrolyte Interphase and the Implications in Design Strategies. Advanced Materials, 2023, 35, .	11.1	11
1102	Hierarchically Porous Ferroelectric Layer with the Aligned Dipole Moment for a High-Performance Aqueous Zn Metal Battery. ACS Applied Materials & Interfaces, 2022, 14, 48570-48581.	4.0	5
1103	In Situ Construction of Composite Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 50982-50991.	4.0	8
1104	Post lithium-sulfur battery era: challenges and opportunities towards practical application. Science China Chemistry, 2024, 67, 106-121.	4.2	3
1105	Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes. Energy Storage Materials, 2023, 54, 732-775.	9.5	22
1106	In situ formed synaptic Zn@LiZn host derived from ZnO nanofiber decorated Zn foam for dendrite-free lithium metal anode. Nano Research, 2023, 16, 8345-8353.	5.8	5
1107	Facile design of alloy-based hybrid layer to stabilize lithium metal anode. Electrochimica Acta, 2022, 436, 141464.	2.6	1
1108	A Nickel-decorated porous graphitized carbon/sulfur cathode enabling excellent cycling stability of all-solid-state lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2022, 926, 116908.	1.9	2

#	Article	IF	CITATIONS
1109	Tuning Li nucleation and growth via oxygen vacancy-enriched 3D flexible self-supporting protection layer of P-Mn3O4â^' for advanced lithium-sulfur batteries. Journal of Energy Chemistry, 2023, 76, 339-348.	7.1	10
1110	Oxygen doped argyrodite electrolyte for all-solid-state lithium batteries. Applied Physics Letters, 2022, 121, .	1.5	6
1111	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
1112	Regulating Lithium Plating/Stripping Behavior by a Composite Polymer Electrolyte Endowed with Designated Ion Channels. Small, 2022, 18, .	5.2	5
1113	Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries. Polymers, 2022, 14, 4804.	2.0	8
1114	An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries. Journal of Energy Storage, 2022, 56, 105955.	3.9	5
1115	Synergized N, P dual-doped 3D carbon host derived from filter paper for durable lithium metal anodes. Journal of Colloid and Interface Science, 2023, 632, 1-10.	5.0	5
1116	An ultrastrong 3D architecture interface with fast and smooth Li-ion deposition for high-capacity Li metal anode. Journal of Alloys and Compounds, 2023, 938, 168494.	2.8	0
1117	An experimental investigating on the effect of contact resistance for pouch-type lithium-ion batteries on the performance and safety. , 2022, , .		0
1118	Review—Lithium Carbon Composite Material for Practical Lithium Metal Batteries. Chinese Journal of Chemistry, 2023, 41, 814-824.	2.6	4
1119	Anode-Free Rechargeable Sodium-Metal Batteries. Batteries, 2022, 8, 272.	2.1	7
1120	Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers, 2022, 14, 5327.	2.0	5
1121	Atomistic Investigation of Solid Electrolyte Interphase: nanostructure, Chemical Composition and Mechanical Properties. Journal of the Electrochemical Society, 2022, 169, 120520.	1.3	1
1122	Airâ€Stable Protective Layers for Lithium Anode Achieving Safe Lithium Metal Batteries. Small Methods, 2023, 7, .	4.6	49
1123	Grafting of Lithiophilic and Electronâ€Blocking Interlayer for Garnetâ€Based Solidâ€State Li Metal Batteries via Oneâ€Step Anhydrous Polyâ€Phosphoric Acid Postâ€Treatment. Advanced Functional Materials, 2023, 33, .	7.8	27
1124	Transforming Interface Chemistry throughout Garnet Electrolyte for Dendrite-Free Solid-State Batteries. ACS Energy Letters, 2023, 8, 537-544.	8.8	16
1125	Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. , 2023, 2, e9120046.		22
1126	Dimensionally Stable Composite Li Electrode with Cu Skeleton and Lithophilic Li–Mg Alloy Microstructure. ACS Applied Materials & Interfaces, 2022, 14, 56801-56807.	4.0	1

#	Article	IF	CITATIONS
1127	Engineering Lithiophilic Silver Sponge Integrated with Ion-Conductive PVDF/LiF Protective Layer for Dendrite-Free and High-Performance Lithium Metal Batteries. ACS Applied Energy Materials, 2023, 6, 519-529.	2.5	8
1128	Recent progress on lithium anode protection for lithium–sulfur batteries: Review and perspective. APL Materials, 2023, 11, .	2.2	9
1129	Li+ migration and transformation at the interface: A review for stable Li metal anode. Energy Storage Materials, 2023, 55, 782-807.	9.5	12
1130	In-situ polymerized carbonate induced by Li-Ga alloy as novel artificial interphase on Li metal anode. Chinese Chemical Letters, 2023, 34, 108151.	4.8	3
1131	Blending a Li3N/Li3YCl6 solid electrolyte with Li6PS5Cl argyrodite structure to improve interface stability and electrochemical performance in Lithium solid-state batteries. Journal of Alloys and Compounds, 2023, 940, 168867.	2.8	4
1132	Electrodeposited 3D lithiophilic Ni microvia host for long cycling Li metal anode at high current density. Electrochimica Acta, 2023, 441, 141797.	2.6	5
1133	Robust artificial HfO2/PEDOT:PSS polarity layer for increasing stability of Li metal anodes. Journal of Alloys and Compounds, 2023, 939, 168703.	2.8	0
1134	Robust Transport: An Artificial Solid Electrolyte Interphase Design for Anodeâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	21
1135	Selfâ€Assembled Tentâ€Like Nanocavities for Spaceâ€Confined Stable Lithium Metal Anode. Advanced Functional Materials, 2023, 33, .	7.8	12
1136	Realizing Holistic Charging–Discharging for Dendrite-Free Lithium Metal Anodes via Constructing Three-Dimensional Li ⁺ Conductive Networks. ACS Applied Materials & Interfaces, 2023, 15, 6666-6675.	4.0	2
1137	Environmental-friendly and effectively regenerate anode material of spent lithium-ion batteries into high-performance P-doped graphite. Waste Management, 2023, 161, 52-60.	3.7	10
1138	Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack. Chemical Engineering Journal, 2023, 463, 142336.	6.6	11
1139	Near-perfect suppression of Li dendrite growth by novel porous hollow carbon fibers embedded with ZnO nanoparticles as stable and efficient anode for Li metal batteries. Chemical Engineering Journal, 2023, 464, 142713.	6.6	7
1140	In situ construction of PVA/LiF composite artificial protective layer to assist dendrite-free Li metal anode. Applied Surface Science, 2023, 620, 156809.	3.1	7
1141	3D porous and Li-rich Sn–Li alloy scaffold with mixed ionic-electronic conductivity for dendrite-free lithium metal anodes. Journal of Alloys and Compounds, 2023, 947, 169362.	2.8	3
1142	Cycle-stable Si-based composite anode for lithium-ion batteries enabled by the synergetic combination of mixed lithium phosphates and void-preserving F-doped carbon. Materials Today Nano, 2023, 22, 100322.	2.3	7
1143	One step hot-pressing method for hybrid Li metal anode of solid-state lithium metal batteries. Journal of Materials Science and Technology, 2023, 153, 32-40.	5.6	8
1144	Dendrite-free Li-metal anode via a dual-function protective interphase layer for stable Li-metal pouch cell. Sustainable Materials and Technologies, 2023, 36, e00585.	1.7	2

#	Article	IF	CITATIONS
1145	Stabilizing nucleation seeds in Li metal anode via ion-selective graphene oxide interfaces. Energy Storage Materials, 2023, 56, 572-581.	9.5	13
1146	Multi-chain hydrophobic polymer protective layer with high elasticity for stable lithium metal anode. Journal of Materials Science, 2023, 58, 2713-2720.	1.7	1
1147	In Situ Atomic Force Microscopy and Xâ€ray Computed Tomography Characterization of Allâ€Solidâ€State Lithium Batteries: Both Local and Overall. Energy Technology, 2023, 11, .	1.8	2
1148	Designing Bidirectionally Functional Polymer Electrolytes for Stable Solid Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	14
1149	Construction of Lithium Metal Anode with High Lithium Utilization and its Application in Lithium-Sulfur Batteries. Hans Journal of Nanotechnology, 2023, 13, 7-28.	0.1	0
1150	Complementary combination of lithium protection strategies for robust and longevous lithium metal batteries. Energy Storage Materials, 2023, 57, 229-248.	9.5	16
1151	Recent Advances in Potassiumâ€lon Batteries: From Material Design to Electrolyte Engineering. Advanced Materials Technologies, 2023, 8, .	3.0	9
1152	Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode. Advanced Science, 2023, 10, .	5.6	41
1153	The free-standing N-CoO matrix towards optimizing dual-electrodes for high-performance Li-O2 batteries. Chemical Engineering Journal, 2023, 461, 142004.	6.6	2
1154	Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Materials, 2023, 57, 429-459.	9.5	11
1155	Anomalous doping effects on stabilizing unusual phases of lithium fluoride for enhanced rechargeable battery interfaces. Acta Materialia, 2023, 248, 118813.	3.8	4
1156	Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes. Advanced Energy Materials, 2023, 13, .	10.2	34
1157	Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nature Communications, 2023, 14, .	5.8	28
1158	Reinforcing Native Solidâ€Electrolyte Interphase Layers via Electrolyteâ€Swellable Softâ€Scaffold for Lithium Metal Anode. Advanced Energy Materials, 2023, 13, .	10.2	5
1159	The Inducement and "Rejuvenation―of Li Dendrites by Space Confinement and Positive Fe/Co‧ites. Small, 2023, 19, .	5.2	4
1160	All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs. Batteries, 2023, 9, 186.	2.1	8
1161	Review on Electrode Degradation at Fast Charging of Li-Ion and Li Metal Batteries from a Kinetic Perspective. Electrochem, 2023, 4, 156-180.	1.7	3
1162	A Selfâ€Reconfigured, Dual‣ayered Artificial Interphase Toward High urrentâ€Density Quasiâ€Solidâ€State Lithium Metal Batteries. Advanced Materials, 2023, 35, .	11.1	20

#	Article	IF	CITATIONS
1163	Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	26
1164	Modified metallic current collectors for sodium metal anodes. Journal of Solid State Electrochemistry, 2023, 27, 1345-1362.	1.2	1
1165	Improved electrochemical performance and chemical stability of thin-film lithium phosphorus oxynitride electrolyte by appropriate fluorine plasma treatment. Electrochimica Acta, 2023, 454, 142411.	2.6	0
1166	Carbide-mediated catalytic hydrogenolysis: defects in graphene on a carbonaceous lithium host for liquid and all-solid-state lithium metal batteries. Energy and Environmental Science, 2023, 16, 2505-2517.	15.6	10
1167	Lithium Plating and Stripping: Toward Anodeâ€Free Solidâ€State Batteries. Advanced Energy and Sustainability Research, 0, , .	2.8	2
1168	Artificial Solid Electrolyte Interphase Engineering toward Dendrite-Free Lithium Anodes. ACS Sustainable Chemistry and Engineering, 2023, 11, 6879-6889.	3.2	25
1169	Mixed Ion/Electron Conductive Li ₃ N–Mo Interphase Enabling Stable and Ultrahigh-Rate Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2023, 15, 21066-21074.	4.0	1
1184	Realizing fast Li-ion conduction of Li ₃ PO ₄ solid electrolyte at low temperature by mechanochemical formation of lithium-containing dual-shells. Materials Advances, 0, ,	2.6	0
1187	A polythiourea protective layer for stable lithium metal anodes. Journal of Materials Chemistry A, 2023, 11, 10155-10163.	5.2	2
1196	Transition metals for stabilizing lithium metal anode: advances and perspectives. Tungsten, 2024, 6, 212-229.	2.0	2
1216	Garnet-type solid-state electrolytes: crystal structure, interfacial challenges and controlling strategies. Rare Metals, 2023, 42, 3177-3200.	3.6	2
1238	Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries. Nano-Micro Letters, 2024, 16, .	14.4	7
1242	Recent advances in multifunctional metal-organic frameworks for lithium metal batteries. Science China Chemistry, 2024, 67, 759-773.	4.2	1
1243	3D-hosted lithium metal anodes. Chemical Society Reviews, 0, , .	18.7	1
1260	Mechanism and solutions of lithium dendrite growth in lithium metal batteries. Materials Chemistry Frontiers, 2024, 8, 1282-1299.	3.2	1
1268	Strategies to regulate the interface between Li metal anodes and all-solid-state electrolytes. Materials Chemistry Frontiers, 2024, 8, 1421-1450.	3.2	0
1278	Closed Battery Systems. The Materials Research Society Series, 2024, , 173-211.	0.2	0