Nanometals for Solarâ€toâ€Chemical Energy Conversion Photocatalysis to Plasmonâ€Mediated Photocatalysis as

Advanced Materials 28, 6781-6803

DOI: 10.1002/adma.201600305

Citation Report

#	Article	IF	Citations
2	Design and synthesis of magnetically separable photocatalyst incorporated with urchin-like Ni as magnetic component to enhance photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 126-133.	2.0	4
3	Photoactive materials based on semiconducting nanocarbons – A challenge opening new possibilities for photocatalysis. Journal of Energy Chemistry, 2017, 26, 207-218.	7.1	31
4	Au/La ₂ Ti ₂ O ₇ Nanostructures Sensitized with Black Phosphorus for Plasmonâ€Enhanced Photocatalytic Hydrogen Production in Visible and Nearâ€Infrared Light. Angewandte Chemie - International Edition, 2017, 56, 2064-2068.	7.2	284
5	Au/La ₂ Ti ₂ O ₇ Nanostructures Sensitized with Black Phosphorus for Plasmonâ€Enhanced Photocatalytic Hydrogen Production in Visible and Nearâ€Infrared Light. Angewandte Chemie, 2017, 129, 2096-2100.	1.6	51
6	Advent of 2D Rhenium Disulfide (ReS ₂): Fundamentals to Applications. Advanced Functional Materials, 2017, 27, 1606129.	7.8	296
7	Au nanoparticles@MoS 2 core-shell structures with moderate MoS 2 coverage for efficient photocatalytic water splitting. Journal of Alloys and Compounds, 2017, 706, 82-88.	2.8	40
8	Surface Plasmon Aided Ethanol Dehydrogenation Using Ag–Ni Binary Nanoparticles. ACS Catalysis, 2017, 7, 2294-2302.	5.5	42
9	Efficient photocatalytic CO 2 reduction in all-inorganic aqueous environment: Cooperation between reaction medium and Cd(II) modified colloidal ZnS. Nano Energy, 2017, 34, 524-532.	8.2	74
10	Non-noble bimetallic NiMoO 4 nanosheets integrated Si photoanodes for highly efficient and stable solar water splitting. Nano Energy, 2017, 34, 8-14.	8.2	78
11	On the Effect of Native SiO ₂ on Si over the SPRâ€mediated Photocatalytic Activities of Au and Ag Nanoparticles. Chemistry - A European Journal, 2017, 23, 7185-7190.	1.7	11
12	Efficient photodecomposition of 2,4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi ₂ O ₃ coupled with phosphate-bridged nano-SnO ₂ . Environmental Science: Nano, 2017, 4, 1147-1154.	2.2	37
13	In Situ Goldâ€Loaded Fluorinated Titania Inverse Opal Photocatalysts for Enhanced Solarâ€Lightâ€Driven Hydrogen Production. ChemNanoMat, 2017, 3, 503-510.	1.5	15
14	Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter, 2017, 29, 203002.	0.7	1,184
15	Enhanced Visible-Light-Driven Photocatalytic H ₂ Evolution from Water on Noble-Metal-Free CdS-Nanoparticle-Dispersed Mo ₂ C@C Nanospheres. ACS Sustainable Chemistry and Engineering, 2017, 5, 5449-5456.	3.2	77
16	Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 32, 1-20.	5.6	36
17	Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrods array and photo-optimized surface-enhanced Raman scattering. Applied Catalysis B: Environmental, 2017, 217, 37-47.	10.8	27
18	Metal nanoparticles induced photocatalysis. National Science Review, 2017, 4, 761-780.	4.6	161
19	Wide spectrum responsive CdS/NiTiO ₃ /CoS with superior photocatalytic performance for hydrogen evolution. Catalysis Science and Technology, 2017, 7, 2524-2530.	2.1	45

#	Article	IF	CITATIONS
20	Fabrication of metal/semiconductor hybrid Ag/AgInO ₂ nanocomposites with enhanced visible-light-driven photocatalytic properties. RSC Advances, 2017, 7, 30392-30396.	1.7	13
21	Direct photocatalysis of supported metal nanostructures for organic synthesis. Journal Physics D: Applied Physics, 2017, 50, 283001.	1.3	20
22	Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy, 2017, 35, 405-414.	8.2	162
23	Optimization of plasmon-induced photocatalysis in electrospun Au/CeO 2 hybrid nanofibers for selective oxidation of benzyl alcohol. Journal of Catalysis, 2017, 348, 256-264.	3.1	97
24	Light-directed growth of metal and semiconductor nanostructures. Journal of Materials Chemistry C, 2017, 5, 5628-5642.	2.7	19
25	Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. Journal of Materials Chemistry A, 2017, 5, 2288-2296.	5. 2	66
26	Solar energy storage in the rechargeable batteries. Nano Today, 2017, 16, 46-60.	6.2	175
27	Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO ₂ Nanosheets for Enhanced Solar-Light Photocatalytic Reactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36907-36916.	4.0	59
28	Photocatalyzing CO ₂ to CO for Enhanced Cancer Therapy. Advanced Materials, 2017, 29, 1703822.	11.1	122
29	Recent Progress in Semiconductorâ€Based Nanocomposite Photocatalysts for Solarâ€toâ€Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700529.	10.2	189
30	Synergistically enhanced photocatalysis from plasmonics and a co-catalyst in Au@ZnO–Pd ternary core–shell nanostructures. Inorganic Chemistry Frontiers, 2017, 4, 2088-2096.	3.0	51
31	Synthesis of Ag Nanorods with Highly Tunable Plasmonics toward Optimal Surfaceâ€Enhanced Raman Scattering Substrates Selfâ€Assembled at Interfaces. Advanced Optical Materials, 2017, 5, 1700581.	3.6	50
32	Fabricating efficient CdSe–CdS photocatalyst systems by spatially resetting water splitting sites. Journal of Materials Chemistry A, 2017, 5, 20131-20135.	5.2	21
33	Efficient Photocatalytic Hydrogen Evolution via Band Alignment Tailoring: Controllable Transition from Typeâ€l to Typeâ€l. Small, 2017, 13, 1702163.	5.2	47
34	Facile Gel-Based Morphological Control of Ag/ <i>g</i> -C ₃ N ₄ Porous Nanofibers for Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2017, 5, 10633-10639.	3.2	122
35	Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. Research on Chemical Intermediates, 2017, 43, 5169-5186.	1.3	88
36	Photocatalytic Formaldehyde Oxidation over Plasmonic Au/TiO ₂ under Visible Light: Moisture Indispensability and Light Enhancement. ACS Catalysis, 2017, 7, 6514-6524.	5 . 5	121
37	Controllable fabrication of metallic photonic crystals for ultra-sensitive SERS and photodetectors. RSC Advances, 2017, 7, 55851-55858.	1.7	5

#	ARTICLE	IF	CITATIONS
38	Ti ³⁺ Self-Doped Black TiO ₂ Nanotubes with Mesoporous Nanosheet Architecture as Efficient Solar-Driven Hydrogen Evolution Photocatalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 6894-6901.	3.2	95
39	One-step synthesis of amine-functionalized TiO2 surface for photocatalytic decolorization under visible light irradiation. Journal of Industrial and Engineering Chemistry, 2017, 45, 229-236.	2.9	37
40	Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems. Advanced Functional Materials, 2017, 27, 1604080.	7.8	67
41	Photodriven CO ₂ Reduction Assisted by Surface Plasmon Resonance of Nanometals. Hyomen Kagaku, 2017, 38, 280-285.	0.0	1
42	Synthesis and Characterization of Hybrid Particles Obtained in a One-Pot Process through Simultaneous Sol-Gel Reaction of (3-Mercaptopropyl)trimethoxysilane and Emulsion Polymerization of Styrene. Colloids and Interfaces, 2017, 1, 7.	0.9	3
43	Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires <i>via</i> metal quasiparticle film decoration. Nanoscale, 2018, 10, 5678-5688.	2.8	25
44	Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Applied Catalysis B: Environmental, 2018, 231, 283-291.	10.8	92
45	Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion. Chinese Journal of Catalysis, 2018, 39, 760-770.	6.9	36
46	Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds. ACS Applied Materials & Sacrificial Cobalt Boride Scaffolds. ACS Applied Materials & Sacrificial Cobalt Boride Scaffolds.	4.0	17
47	Tunable photoelectric response in NiO-based heterostructures by various orientations. Applied Physics Letters, 2018, 112, .	1.5	3
48	Composition and Band Gap Tailoring of Crystalline (GaN) _{1â€"<i>x</i>} (ZnO) _{<i>x</i>} Solid Solution Nanowires for Enhanced Photoelectrochemical Performance. Inorganic Chemistry, 2018, 57, 5240-5248.	1.9	31
49	ZnO nanosheets with atomically thin ZnS overlayers for photocatalytic water splitting. Journal of Materials Chemistry A, 2018, 6, 9057-9063.	5.2	59
50	Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catalysis Science and Technology, 2018, 8, 1686-1695.	2.1	70
51	Photonic crystal-assisted visible light activated TiO2 photocatalysis. Applied Catalysis B: Environmental, 2018, 230, 269-303.	10.8	173
52	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 3276-3281.	1.6	29
53	Recent developments of metallic nanoparticle-graphene nanocatalysts. Progress in Materials Science, 2018, 94, 306-383.	16.0	102
54	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 3222-3227.	7.2	157
55	Plasmonâ€Dictated Photoâ€Electrochemical Water Splitting for Solarâ€toâ€Chemical Energy Conversion: Current Status and Future Perspectives. Advanced Materials Interfaces, 2018, 5, 1701098.	1.9	92

#	Article	IF	CITATIONS
56	Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts. Applied Catalysis B: Environmental, 2018, 226, 269-277.	10.8	166
57	Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. Journal of Materials Chemistry A, 2018, 6, 2193-2199.	5.2	232
58	Recent development of plasmon-mediated photocatalysts and their potential in selectivity regulation. Journal of Materials Chemistry A, 2018, 6, 1941-1966.	5.2	56
59	Photoâ€Initiated Reduction of CO 2 by H 2 on Silica Surface. ChemSusChem, 2018, 11, 1163-1168.	3.6	2
60	Negative impact of surface Ti3+ defects on the photocatalytic hydrogen evolution activity of SrTiO3. Applied Physics Letters, 2018, 112, .	1.5	13
61	Green synthesis of ZnO, Ag/ZnO photocatalyst on Sn foil at room temperature and physicochemical characterization for removal of methyl orange from wastewater. Research on Chemical Intermediates, 2018, 44, 4365-4373.	1.3	12
62	Enhancement of plasmonic activity by Pt/Ag bimetallic nanocatalyst supported on mesoporous silica in the hydrogen production from hydrogen storage material. Applied Catalysis B: Environmental, 2018, 223, 10-15.	10.8	97
63	Effect of reaction atmosphere on photodeposition of Pt nanoparticles and photocatalytic hydrogen evolution from SrTiO3 suspension system. International Journal of Hydrogen Energy, 2018, 43, 5331-5336.	3.8	21
64	Synthesis of Au nanoparticle-decorated carbon nitride nanorods with plasmon-enhanced photoabsorption and photocatalytic activity for removing various pollutants from water. Journal of Hazardous Materials, 2018, 344, 1188-1197.	6.5	81
65	Superior photocatalytic disinfection effect of Ag-3D ordered mesoporous CeO2 under visible light. Applied Catalysis B: Environmental, 2018, 224, 27-37.	10.8	171
66	Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Materials Horizons, 2018, 5, 9-27.	6.4	586
67	Semiconductorâ€Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis. Chemistry - an Asian Journal, 2018, 13, 127-142.	1.7	47
68	Surface-Plasmon-Driven Hot Electron Photochemistry. Chemical Reviews, 2018, 118, 2927-2954.	23.0	966
69	Spreading CdS Nanocrystals on GdBO3:Ce,Tb Substrates for Enhancing Their Photocatalytic Performance. Catalysis Letters, 2018, 148, 523-530.	1.4	2
70	Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 408-416.	4.0	179
71	Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Applied Catalysis B: Environmental, 2018, 224, 725-732.	10.8	155
72	Au Nanorod Photosensitized La ₂ Ti ₂ O ₇ Nanosteps: Successive Surface Heterojunctions Boosting Visible to Near-Infrared Photocatalytic H ₂ Evolution. ACS Catalysis, 2018, 8, 122-131.	5 . 5	114
73	Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nature Communications, 2018, 9, 4986.	5.8	168

#	ARTICLE	IF	CITATIONS
74	Plasmon-Enhanced Photodegradation of Ionic Liquids with Ag Nanocubes/ZnO Microsphere Composites. Industrial & Engineering Chemistry Research, 2018, 57, 15597-15605.	1.8	14
75	Fischer-Tropsch Synthesis Steps into the Solar Era: Lower Olefins from Syngas. CheM, 2018, 4, 2741-2743.	5.8	10
76	Non-noble metals applied to solar water splitting. Energy and Environmental Science, 2018, 11, 3128-3156.	15.6	134
77	Photo-Driven Syngas Conversion to Lower Olefins over Oxygen-Decorated Fe5C2 Catalyst. CheM, 2018, 4, 2917-2928.	5.8	62
78	Strong Photothermal Effect of Plasmonic Pt Nanoparticles for Efficient Degradation of Volatile Organic Compounds under Solar Light Irradiation. ACS Applied Nano Materials, 2018, 1, 6368-6377.	2.4	43
79	Assembling Carbon into Anatase TiO2 as Interstitial Atoms towards Photocatalytic Activity. European Journal of Inorganic Chemistry, 2018, 2018, 4370-4374.	1.0	5
80	Thermodynamic evaluation of a distributed energy system integrating a solar thermochemical process with a double-axis tracking parabolic trough collector. Applied Thermal Engineering, 2018, 145, 541-551.	3.0	17
81	Tiâ€Substituted Kegginâ€Type Polyoxotungstate as Proton and Electron Reservoir Encaged into Metalâ€"Organic Framework for Carbon Dioxide Photoreduction. Advanced Materials Interfaces, 2018, 5, 1801062.	1.9	62
82	Metal@I ₂ â€"Ilâ€"IVâ€"VI ₄ coreâ€"shell nanocrystals: controlled synthesis by aqueous cation exchange for efficient photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 11898-11908.	5.2	20
83	Recent Advances on Black Phosphorus for Energy Storage, Catalysis, and Sensor Applications. Advanced Materials, 2018, 30, e1800295.	11.1	215
84	Photothermally promoted cleavage of \hat{l}^2 -1,4-glycosidic bonds of cellulosic biomass on Ir/HY catalyst under mild conditions. Applied Catalysis B: Environmental, 2018, 237, 660-664.	10.8	47
85	Light-assisted surface reactions on metal nanoparticles. Catalysis Science and Technology, 2018, 8, 3718-3727.	2.1	32
86	A synergistic interaction between isolated Au nanoparticles and oxygen vacancies in an amorphous black TiO ₂ nanoporous film: toward enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 12978-12984.	5.2	44
87	Construction of a Stable Ru–Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2018, 57, 8276-8286.	1.9	98
88	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	11.1	100
89	Graphene-assisted photothermal effect on promoting catalytic activity of layered MnO2 for gaseous formaldehyde oxidation. Applied Catalysis B: Environmental, 2018, 239, 77-85.	10.8	120
90	Assembly of TiO2 ultrathin nanosheets with surface lattice distortion for solar-light-driven photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 239, 317-323.	10.8	77
91	Visible-Light-Mediated Methane Activation for Steam Methane Reforming under Mild Conditions: A Case Study of Rh/TiO ₂ Catalysts. ACS Catalysis, 2018, 8, 7556-7565.	5.5	126

#	Article	IF	CITATIONS
92	Highly efficient photoelectrocatalytic reduction of CO ₂ 0n the Ti ₃ C ₂ /g-C ₃ N ₄ heterojunction with rich Ti ³⁺ and pyri-N species. Journal of Materials Chemistry A, 2018, 6, 15213-15220.	5.2	85
93	Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47, 8134-8172.	18.7	1,119
94	Polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework for photocatalytic hydrogen peroxide production under visible light. Journal of Catalysis, 2018, 366, 98-106.	3.1	61
95	Rare-earth doping engineering in nanostructured ZnO: a new type of eco-friendly photocatalyst with enhanced photocatalytic characteristics. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	15
96	Photocatalytic conversion of ethylenediaminetetraacetic acid dissolved in real electroplating wastewater to hydrogen in a solar light-responsive system. Water Science and Technology, 2018, 77, 2851-2857.	1.2	4
97	Al2O3 support triggering highly efficient photoreduction of CO2 with H2O on noble-metal-free CdS/Ni9S8/Al2O3. Applied Catalysis B: Environmental, 2019, 240, 174-181.	10.8	28
98	Solar-Energy-Mediated Methane Conversion. Joule, 2019, 3, 1606-1636.	11.7	252
99	Photoâ€assisted electrochemical hydrogen evolution by plasmonic Ag nanoparticle/nanorod heterogeneity. InformaÄnÃ-MateriĀ¡ly, 2019, 1, 417-425.	8.5	52
100	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
101	Enhanced performance of TiO2/reduced graphene oxide doped by rare-earth ions for degrading phenol in seawater excited by weak visible light. Advanced Powder Technology, 2019, 30, 1920-1931.	2.0	15
102	Synthesis of BiVO4 quantum dots/reduced graphene oxide composites for CO2 reduction. Materials Science in Semiconductor Processing, 2019, 102, 104578.	1.9	34
103	Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. CheM, 2019, 5, 2296-2325.	5.8	331
104	Alcohol solvothermal reduction for commercial P25 to harvest weak visible light and fabrication of the resulting floating photocatalytic spheres. Scientific Reports, 2019, 9, 13878.	1.6	4
105	Ultra-robust carbon fibers for multi-media purification <i>via</i> solar-evaporation. Journal of Materials Chemistry A, 2019, 7, 586-593.	5. 2	136
106	Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13, 636-653.	2.3	49
107	Beyond the Thermal Equilibrium Limit of Ammonia Synthesis with Dual Temperature Zone Catalyst Powered by Solar Light. CheM, 2019, 5, 2702-2717.	5.8	91
108	Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil–Water Interface. Langmuir, 2019, 35, 13340-13350.	1.6	25
109	Enhanced selectivity for photodegrading ciprofloxacin by a magnetic photocatalyst modified with a POPD–CdS heterojunction embedded imprinted layer. New Journal of Chemistry, 2019, 43, 2610-2623.	1.4	15

#	Article	IF	CITATIONS
110	Plasmene Metasurface Absorbers: Electromagnetic Hot Spots and Hot Carriers. ACS Photonics, 2019, 6, 314-321.	3.2	23
111	Progress in the Utilization Efficiency Improvement of Hot Carriers in Plasmon-Mediated Heterostructure Photocatalysis. Applied Sciences (Switzerland), 2019, 9, 2093.	1.3	10
112	Construct of MoSe2/Bi2Se3 nanoheterostructure: Multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials, 2019, 217, 119282.	5.7	119
113	Fabrication of visible-light-active ZnO/ZnFe-LDH heterojunction on Ni foam for pollutants removal with enhanced photoelectrocatalytic performance. Solar Energy, 2019, 188, 593-602.	2.9	44
114	Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Applied Catalysis B: Environmental, 2019, 257, 117855.	10.8	244
115	Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 256, 117854.	10.8	271
116	Design of Heterostructured Hollow Photocatalysts for Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2019, 31, e1900281.	11.1	307
117	Facile synthesis of Bi2S3/BiOCl0.5Br0.5 microspheres with enhanced photocatalytic activity under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 220-229.	2.7	8
118	Enhanced photoexcited carrier separation in CdS–SnS ₂ heteronanostructures: a new 1D–0D visible-light photocatalytic system for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 13614-13628.	5.2	102
119	Solar driven reduction of CO ₂ using Pt–Cu/C as a catalyst in a photoelectrochemical cell: experiment and mechanism study. RSC Advances, 2019, 9, 10635-10644.	1.7	4
120	Simultaneous Realization of Direct Photoinduced Deposition and Improved H ₂ -Evolution Performance of Sn-Nanoparticle-Modified TiO ₂ Photocatalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 10084-10094.	3.2	81
121	Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi4Ti3O12 nanosheets. Chinese Journal of Catalysis, 2019, 40, 886-894.	6.9	32
122	P3HT/Ag/TiO2 ternary photocatalyst with significantly enhanced activity under both visible light and ultraviolet irradiation. Applied Surface Science, 2019, 488, 228-236.	3.1	19
123	Anchoring Pt Single Atoms on Te Nanowires for Plasmonâ€Enhanced Dehydrogenation of Formic Acid at Room Temperature. Advanced Science, 2019, 6, 1900006.	5.6	49
124	Silver halide-based composite photocatalysts: an updated account. Rendiconti Lincei, 2019, 30, 453-467.	1.0	7
125	Plasmonic Nearâ€Complete Optical Absorption and Its Applications. Advanced Optical Materials, 2019, 7, 1801660.	3.6	42
126	Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. Inorganic Chemistry Communication, 2019, 104, 171-177.	1.8	47
127	Cu-Based mixed metal oxides for an efficient photothermal catalysis of the water-gas shift reaction. Catalysis Science and Technology, 2019, 9, 2125-2131.	2.1	21

#	ARTICLE	IF	CITATIONS
128	$10 ilde{A}$ —Enhanced Heterogeneous Nanocatalysis on a Nanoporous Gold Disk Array with High-Density Hot Spots. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13499-13506.	4.0	33
129	Black Phosphorus Sensitized TiO ₂ Mesocrystal Photocatalyst for Hydrogen Evolution with Visible and Near-Infrared Light Irradiation. ACS Catalysis, 2019, 9, 3618-3626.	5.5	115
130	Thermoâ€Photocatalysis: Environmental and Energy Applications. ChemSusChem, 2019, 12, 2098-2116.	3.6	115
131	Construction of a novel ternary composite of Co-doped CdSe loaded on biomass carbon spheres as visible light photocatalysts for efficient photocatalytic applications. Dalton Transactions, 2019, 48, 6824-6833.	1.6	13
132	Enhanced Generation of Non-Oxygen Dependent Free Radicals by Schottky-type Heterostructures of Au–Bi ₂ S ₃ Nanoparticles ⟨i>via X-ray-Induced Catalytic Reaction for Radiosensitization. ACS Nano, 2019, 13, 5947-5958.	7.3	126
133	Solar- versus Thermal-Driven Catalysis for Energy Conversion. Joule, 2019, 3, 920-937.	11.7	153
134	Nitrogen Vacancies-Assisted Enhanced Plasmonic Photoactivities of Au/g-C ₃ N ₄ Crumpled Nanolayers: A Novel Pathway toward Efficient Solar Light-Driven Photocatalysts. Industrial & Engineering Chemistry Research, 2019, 58, 3698-3706.	1.8	32
135	Synthesis and Photocatalytic Activity of Fe3O4–WO3–CQD Multifunctional System. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1297-1304.	1.9	3
136	Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Applied Catalysis B: Environmental, 2019, 250, 10-16.	10.8	142
137	Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catalysis Communications, 2019, 123, 69-72.	1.6	63
138	Synthesis of Bi ₄ Ti ₃ O ₁₂ decussated nanoplates with enhanced piezocatalytic activity. Nanoscale, 2019, 11, 21128-21136.	2.8	101
139	An elemental S/P photocatalyst for hydrogen evolution from water under visible to near-infrared light irradiation. Chemical Communications, 2019, 55, 13160-13163.	2.2	16
140	Near-Field Enhancement Contribution to the Photoactivity in Magnetite–Gold Hybrid Nanostructures. Journal of Physical Chemistry C, 2019, 123, 29891-29899.	1.5	6
141	Titania photonic crystal photocatalysts functionalized by graphene oxide nanocolloids. Applied Catalysis B: Environmental, 2019, 240, 277-290.	10.8	43
142	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	23.0	745
143	Effect of molecular weight of polyethylene glycol on the sheet-thickness and photocatalytic performance of MoS2 nanoparticles. Applied Surface Science, 2019, 469, 312-315.	3.1	8
144	A Photoresponsive Rutile TiO ₂ Heterojunction with Enhanced Electron–Hole Separation for Highâ€Performance Hydrogen Evolution. Advanced Materials, 2019, 31, e1806596.	11.1	240
145	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	18.7	350

#	Article	IF	CITATIONS
146	The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO2 ordered porous catalysts under simulated solar irradiation. Journal of Catalysis, 2019, 370, 88-96.	3.1	69
147	Constructing Pd/2D-C3N4 composites for efficient photocatalytic H2 evolution through nonplasmon-induced bound electrons. Applied Surface Science, 2019, 467-468, 151-157.	3.1	78
148	Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Applied Catalysis B: Environmental, 2019, 244, 641-649.	10.8	94
149	Ultrathin Visibleâ€Lightâ€Driven Mo Incorporating In ₂ O ₃ â€"ZnIn ₂ Se ₄ Zâ€Scheme Nanosheet Photocatalysts. Advanced Materials, 2019, 31, e1807226.	11.1	165
150	Wafer-scale Si nanoconed arrays induced syngas in the photoelectrochemical CO2 reduction. Catalysis Today, 2020, 339, 321-327.	2.2	15
151	Visible-light-driven reduction of nitrostyrene utilizing plasmonic silver nanoparticle catalysts immobilized on oxide supports. Catalysis Today, 2020, 355, 620-626.	2.2	14
152	Template-free and surfactant-free synthesis of CeO2 nanodiscs with enhanced photocatalytic activity. Applied Surface Science, 2020, 503, 144102.	3.1	57
153	A Cu2O-CDs-Cu three component catalyst for boosting oxidase-like activity with hot electrons. Chemical Engineering Journal, 2020, 382, 122484.	6.6	41
154	Kopplung von Solarenergie und WÄrmeenergie zur Kohlendioxidreduktion: Aktueller Stand und Perspektiven. Angewandte Chemie, 2020, 132, 8092-8111.	1.6	27
155	Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angewandte Chemie - International Edition, 2020, 59, 8016-8035.	7.2	323
156	LSPR-excited obvious hydrogen yield enhancement for TiO2:Er3+, Yb3+@W18O49 quasi-core/shell heterostructure. Journal of Materials Science, 2020, 55, 2958-2966.	1.7	5
157	Au-nanoparticle-supported ZnO as highly efficient photocatalyst for H2O2 production. Catalysis Communications, 2020, 134, 105860.	1.6	39
158	Improved visible light photocatalytic activity on Z-scheme g-C3N4 decorated TiO2 nanotube arrays by a simple impregnation method. Materials Research Bulletin, 2020, 124, 110757.	2.7	47
159	Direct Z-scheme Znln2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution. International Journal of Hydrogen Energy, 2020, 45, 4113-4121.	3.8	75
160	Coupling effect of piezomaterial and DSA catalyst for degradation of metronidazole: Finding of induction electrocatalysis from remnant piezoelectric filed. Journal of Catalysis, 2020, 381, 530-539.	3.1	17
161	Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Advanced Materials, 2020, 32, e1904717.	11.1	213
162	Photoinduced Defect Engineering: Enhanced Photothermal Catalytic Performance of 2D Black In ₂ O _{3â^²} <i></i> Nanosheets with Bifunctional Oxygen Vacancies. Advanced Materials, 2020, 32, e1903915.	11.1	208
163	Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets. Nature Communications, 2020, 11, 4899.	5.8	124

#	Article	IF	CITATIONS
164	Semiconductor-free nanoplasmonic photoelectrochemistry of H2O2 over Ag nanowires. NPG Asia Materials, 2020, 12 , .	3.8	3
165	Photo-driven Fischer–Tropsch synthesis. Journal of Materials Chemistry A, 2020, 8, 24253-24266.	5.2	21
166	Metal–organic frameworks containing xanthene dyes for photocatalytic applications. Dalton Transactions, 2020, 49, 17520-17526.	1.6	13
167	Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coordination Chemistry Reviews, 2020, 424, 213516.	9.5	64
168	Multifunctional Nickel Sulfide Nanosheet Arrays for Solarâ€Intensified Oxygen Evolution Reaction. Small, 2020, 16, e2002550.	5.2	25
169	Photothermal Conversion of CO ₂ with Tunable Selectivity Using Fe-Based Catalysts: From Oxide to Carbide. ACS Catalysis, 2020, 10, 10364-10374.	5.5	99
170	A \hat{I}^2 -cyclodextrin Modified Graphitic Carbon Nitride with Au Co-Catalyst for Efficient Photocatalytic Hydrogen Peroxide Production. Nanomaterials, 2020, 10, 1969.	1.9	15
171	Photothermal effect enhanced photocatalysis realized by photonic crystal and microreactor. Applied Surface Science, 2020, 534, 147640.	3.1	16
172	Phaseâ€Changing Microcapsules Incorporated with Black Phosphorus for Efficient Solar Energy Storage. Advanced Science, 2020, 7, 2000602.	5.6	95
173	Incorporating Transitionâ€Metal Phosphides Into Metalâ€Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie, 2020, 132, 22937-22943.	1.6	34
174	Incorporating Transitionâ€Metal Phosphides Into Metalâ€Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 22749-22755.	7.2	166
175	Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO ₂ Photocatalysis. Advanced Materials, 2020, 32, e2000014.	11.1	109
176	Solarâ€Driven Carbon Nanoreactor Coupling Gold and Platinum Nanocatalysts for Alcohol Oxidations. Small, 2020, 16, e2002236.	5.2	21
177	Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study. Applied Catalysis B: Environmental, 2020, 277, 119226.	10.8	40
178	Photocatalytic CO ₂ reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst. Nanoscale, 2020, 12, 7206-7213.	2.8	80
179	Recent progress on photocatalytic heterostructures with full solar spectral responses. Chemical Engineering Journal, 2020, 393, 124719.	6.6	123
180	Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion. Nanomaterials, 2020, 10, 564.	1.9	8
181	Enhancing Photocatalytic Activity of Au-Capped CdS–PbS Heterooctahedrons by Morphology Control. Journal of Physical Chemistry C, 2020, 124, 7938-7945.	1.5	11

#	Article	IF	CITATIONS
182	Selective Oxidation of Crude Glycerol to Dihydroxyacetone in a Biphasic Photoreactor. Catalysts, 2020, 10, 360.	1.6	4
183	Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nature Communications, 2020, 11, 1615.	5.8	84
184	Can Plasmon Change Reaction Path? Decomposition of Unsymmetrical Iodonium Salts as an Organic Probe. Journal of Physical Chemistry Letters, 2020, 11, 5770-5776.	2.1	27
185	Microstructure Induced Thermodynamic and Kinetic Modulation to Enhance CO ₂ Photothermal Reduction: A Case of Atomic-Scale Dispersed Co–N Species Anchored Co@C Hybrid. ACS Catalysis, 2020, 10, 4726-4736.	5.5	84
186	Ruthenium Nanoparticles Supported on Mg(OH) ₂ Microflowers as Catalysts for Photothermal Carbon Dioxide Hydrogenation. ACS Applied Nano Materials, 2020, 3, 3028-3033.	2.4	25
187	Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chemical Reviews, 2020, 120, 2123-2170.	23.0	206
188	The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41, 642-671.	6.9	151
189	Branched TiO ₂ Nanorod Arrays Decorated with Au Nanostructure for Plasmon-Enhanced Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 2020, 167, 026509.	1.3	15
190	Effect of the phase structure on the catalytic activity of MoO ₃ and potential application for indoor clearance. Journal of Materials Chemistry C, 2020, 8, 2475-2482.	2.7	16
191	Enhanced Photocatalytic Hydrogen Generation by Optimized Plasmonic Hot Electron Injection in Structure-Adjustable Au-ZnO Hybrids. Catalysts, 2020, 10, 376.	1.6	1
192	Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %. Applied Catalysis B: Environmental, 2020, 272, 118965.	10.8	42
193	Historical development and prospects of photocatalysts for pollutant removal in water. Journal of Hazardous Materials, 2020, 395, 122599.	6.5	245
194	Single Cobalt Atom Anchored Black Phosphorous Nanosheets as an Effective Cocatalyst Promotes Photocatalysis. ChemCatChem, 2020, 12, 3870-3879.	1.8	34
195	Charge separation and interfacial selectivity induced by synergistic effect of ferroelectricity and piezoelectricity on PbTiO3 monocrystalline nanoplates. Nano Energy, 2020, 73, 104768.	8.2	51
196	Ternary Composite of Co-Doped CdSe@electrospun Carbon Nanofibers: A Novel Reusable Visible Light-Driven Photocatalyst with Enhanced Performance. Catalysts, 2020, 10, 348.	1.6	18
197	Folic Acid Modified Bismuth Sulfide and Gold Heterodimers for Enhancing Radiosensitization of Mice Tumors to X-ray Radiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 5260-5269.	3.2	34
198	Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Advanced Materials, 2021, 33, e2000086.	11.1	232
199	Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis. Chinese Journal of Catalysis, 2021, 42, 184-192.	6.9	26

#	Article	IF	CITATIONS
200	A direct Z-scheme oxygen vacant BWO/oxygen-enriched graphitic carbon nitride polymer heterojunction with enhanced photocatalytic activity. Chemical Engineering Journal, 2021, 403, 126363.	6.6	72
201	Gasâ€Phase Photoelectrocatalysis Mediated by Oxygen Ions for Uphill Conversion of Greenhouse Gases. ChemPhotoChem, 2021, 5, 275-281.	1.5	7
202	Thermally-assisted photocatalytic CO2 reduction to fuels. Chemical Engineering Journal, 2021, 408, 127280.	6.6	90
203	Photoâ€responsive nanozymes: Mechanism, activity regulation, and biomedical applications. View, 2021, 2, 20200045.	2.7	36
204	A Metalâ€Segregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of Syngas to Light Olefins. Solar Rrl, 2021, 5, 2000488.	3.1	16
205	Laser triggered exothermic chemical reaction in Au nanoparticle@ Ti3C2 MXene membrane: A route toward efficient light to high-temperature pulse conversion. Chemical Engineering Journal, 2021, 420, 127672.	6.6	16
206	Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. Journal of Energy Chemistry, 2021, 59, 108-125.	7.1	46
207	Accurate SERS monitoring of the plasmon mediated UV/visible/NIR photocatalytic and photothermal catalytic process involving Ag@carbon dots. Nanoscale, 2021, 13, 1006-1015.	2.8	20
208	Fundamentals and applications of photo-thermal catalysis. Chemical Society Reviews, 2021, 50, 2173-2210.	18.7	339
209	Plasmonic nanocatalysts for visible-NIR light induced hydrogen generation from storage materials. Materials Advances, 2021, 2, 880-906.	2.6	22
210	Enhanced dye-sensitized photocatalysis for water purification by an alveoli-like bilayer Janus membrane. Chemical Engineering Journal, 2021, 407, 127214.	6.6	25
211	Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light. Journal of Materials Science and Technology, 2021, 77, 19-27.	5.6	23
212	Electron-donating tris(p-fluorophenyl)phosphine-modified g-C3N4 for photocatalytic hydrogen evolution and p-chlorophenol degradation. International Journal of Hydrogen Energy, 2021, 46, 1976-1988.	3.8	2
213	Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Lightâ€Driven Catalytic CO ₂ Reduction on Bi ₂ O _{3â°'<i>x</i> Sub> Angewandte Chemie, 2021, 133, 923-929.}	1.6	39
214	Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Lightâ€Driven Catalytic CO ₂ Reduction on Bi ₂ O _{3â°'<i>x</i>} . Angewandte Chemie - International Edition, 2021, 60, 910-916.	7.2	171
215	CO ₂ activation and dissociation on In ₂ O ₃ (110) supported Pd _n Pt _(4a^'n) (<i>n</i> = 0ae"4) catalysts: a density functional theory study. Physical Chemistry Chemical Physics, 2021, 23, 11557-11567.	1.3	10
216	Establishing plasmon contribution to chemical reactions: alkoxyamines as a thermal probe. Chemical Science, 2021, 12, 4154-4161.	3.7	12
217	Facilely Anchoring Cu nanoparticles on WO ₃ Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 325.	0.6	2

#	ARTICLE	IF	CITATIONS
218	Plasmonic Metal Nanoparticles Decorated ZnO Nanostructures for Photoelectrochemical (PEC) Applications., 2021,, 293-328.		2
219	Visible light initiated oxidative coupling of alcohols and <i>o</i> -phenylenediamines to synthesize benzimidazoles over MIL-101(Fe) promoted by plasmonic Au. Green Chemistry, 2021, 23, 4161-4169.	4.6	33
220	Recent Progress in Photocatalytic Antibacterial. ACS Applied Bio Materials, 2021, 4, 3909-3936.	2.3	100
221	Localized surface plasmon resonance for enhanced electrocatalysis. Chemical Society Reviews, 2021, 50, 12070-12097.	18.7	112
222	Nanoparticles for improving and augmenting plant functions. , 2021, , 171-227.		5
223	The simultaneous adsorption, activation and $\langle i \rangle$ in situ $\langle j \rangle$ reduction of carbon dioxide over Au-loading BiOCl with rich oxygen vacancies. Nanoscale, 2021, 13, 2585-2592.	2.8	41
224	lonic liquid-assisted synthesis of a novel PANI/ZnWO ₄ /WO ₃ ternary nanocomposite: a facile double electron transfer photocatalyst for efficient degradation of a herbicide. Environmental Science: Nano, 2021, 8, 2676-2692.	2.2	7
225	Au/TiO ₂ nanobelts: thermal enhancement <i>vs.</i> plasmon enhancement for visible-light-driven photocatalytic selective oxidation of amines into imines. Catalysis Science and Technology, 2021, 11, 7060-7071.	2.1	13
226	Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chemical Science, 2021, 12, 5701-5719.	3.7	129
227	Plasmon-induced catalytic CO ₂ hydrogenation by a nano-sheet Pt/H _x MoO _{3â^3y} hybrid with abundant surface oxygen vacancies. Journal of Materials Chemistry A, 2021, 9, 13898-13907.	5.2	31
228	Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO ₂ Photocatalysis. ACS Nano, 2021, 15, 5696-5705.	7.3	164
230	Plasmonic Alloys Reveal a Distinct Metabolic Phenotype of Early Gastric Cancer. Advanced Materials, 2021, 33, e2007978.	11.1	103
231	Efficient Combination of G ₃ N ₄ and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications. Small, 2021, 17, e2007523.	5.2	93
232	Plasmonic Photocatalysis for CO ₂ Conversion to Chemicals and Fuels., 2021, 3, 574-598.		106
233	Control of Chemical Reaction Pathways by Light–Matter Coupling. Annual Review of Physical Chemistry, 2021, 72, 423-443.	4.8	30
234	A novel sery of SO3H-functionalized heterostructure nano-semiconductors; an efficient strategy to prepare visible-light responsive photocatalysts. Research on Chemical Intermediates, 2021, 47, 3329-3347.	1.3	2
235	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
236	A review on plasmonic nanoparticle-semiconductor photocatalysts for water splitting. Journal of Cleaner Production, 2021, 294, 126200.	4.6	65

#	Article	IF	CITATIONS
237	An efficient Ag/MIL-100(Fe) catalyst for photothermal conversion of CO2 at ambient temperature. Chinese Chemical Letters, 2021, 32, 3505-3508.	4.8	21
238	Metalâ€Semiconductor Heterostructures for Photoredox Catalysis: Where Are We Now and Where Do We Go?. Advanced Functional Materials, 2021, 31, 2101103.	7.8	41
239	Cadmium sulfide/titanate hybrid green light photocatalysis for selective aerobic oxidative homocoupling of amines. Journal of Colloid and Interface Science, 2021, 590, 387-395.	5.0	21
240	Copperâ€Based Plasmonic Catalysis: Recent Advances and Future Perspectives. Advanced Materials, 2021, 33, e2008145.	11.1	131
241	Rational design of $\{0\ 0\ 1\}$ -faceted TiO2 nanosheet arrays/graphene foam with superior charge transfer interfaces for efficient photocatalytic degradation of toxic pollutants. Separation and Purification Technology, 2021, 265, 118444.	3.9	21
242	A Review of MOFs and Their Compositesâ€Based Photocatalysts: Synthesis and Applications. Advanced Functional Materials, 2021, 31, 2104231.	7.8	243
243	Photocatalytic Synthesis of High-Energy-Density Fuel: Catalysts, Mechanisms, and Challenges. Transactions of Tianjin University, 2021, 27, 280-294.	3.3	8
244	Artificial light-triggered smart nanochannels relying on optoionic effects. CheM, 2021, 7, 1802-1826.	5.8	25
245	Photothermal catalytic CO2 reduction over nanomaterials. Chem Catalysis, 2021, 1, 272-297.	2.9	150
246	Research progress on methane conversion coupling photocatalysis and thermocatalysis. , 2021, 3, 519-540.		67
247	Analysis on interaction between solar light and suspended nanoparticles in nanofluids. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 269, 107692.	1.1	12
248	Nanostructured materials with localized surface plasmon resonance for photocatalysis. Chinese Chemical Letters, 2022, 33, 1154-1168.	4.8	41
249	Dual-plasmon-induced photocatalytic performance enhancement in Au-PbS-CdS nanodumbbells with double Au caps on the ends. Optical Materials, 2021, 117, 111210.	1.7	7
250	A Fullâ€Spectrum Porphyrin–Fullerene D–A Supramolecular Photocatalyst with Giant Builtâ€In Electric Field for Efficient Hydrogen Production. Advanced Materials, 2021, 33, e2101026.	11.1	122
251	Conceptual Developments of Aryldiazonium Salts as Modifiers for Gold Colloids and Surfaces. Langmuir, 2021, 37, 8897-8907.	1.6	17
252	Titaniaâ€Supported Ni ₂ P/Ni Catalysts for Selective Solarâ€Driven CO Hydrogenation. Advanced Materials, 2021, 33, e2103248.	11.1	41
253	Recent Advances in Plasmonic Photocatalysis Based on TiO ₂ and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. Small, 2022, 18, e2101638.	5.2	190
254	Toward Quantum Confinement in Graphitic Carbon Nitride-Based Polymeric Monolayers. Journal of Physical Chemistry A, 2021, 125, 7597-7606.	1.1	5

#	Article	IF	CITATIONS
255	Probing the Mechanism of Plasmon-Enhanced Ammonia Borane Methanolysis on a CuAg Alloy at a Single-Particle Level. ACS Catalysis, 2021, 11, 10814-10823.	5.5	48
256	Photocatalytic Degradation of Organic Pollutants Using Porous g ₃ N ₄ Nanosheets Decorated with Gold Nanoparticles. ChemistrySelect, 2021, 6, 9458-9466.	0.7	5
257	Highly Efficient Simulated Solar Lightâ€Driven Photocatalytic Degradation of 4â€Nitrophenol over CdS/Carbon/MoS _x Hybrids. Chemistry - A European Journal, 2021, 27, 15806-15814.	1.7	8
258	Coordinating ultra-low content Au modified CdS with coupling selective oxidation and reduction system for improved photoexcited charge utilization. Journal of Catalysis, 2021, 402, 72-82.	3.1	19
259	Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental, 2021, 297, 120389.	10.8	49
260	Photo-/thermal synergies in heterogeneous catalysis: Towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Applied Catalysis B: Environmental, 2021, 296, 120320.	10.8	66
261	Pronounced interfacial interaction in icosahedral Au@C60 core-shell nanostructure for boosting direct plasmonic photocatalysis under alkaline condition. Journal of Materials Science and Technology, 2021, 94, 10-21.	5.6	5
262	Fabrication of a La-doped BiVO4@CN step-scheme heterojunction for effective tetracycline degradation with dual-enhanced molecular oxygen activation. Separation and Purification Technology, 2021, 277, 119224.	3.9	31
263	Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120519.	10.8	55
264	Fabrication of hierarchical hybrid ZnO/Au micro-/nanostructures for efficient dye degradation: role of gold nanostructures in photophysical process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127555.	2.3	3
265	Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst. Applied Catalysis B: Environmental, 2021, 298, 120551.	10.8	26
266	Thermo-photo coupled catalytic CO2 reforming of methane: A review. Chemical Engineering Journal, 2022, 428, 131222.	6.6	24
267	Gel-assisted synthesis of CIZS for visible-light photocatalytic reduction reaction. Chemical Engineering Journal, 2022, 429, 132364.	6.6	14
268	Reactive Oxygenated Species Generated on Iodideâ€Doped BiVO ₄ /BaTiO ₃ Heterostructures with Ag/Cu Nanoparticles by Coupled Piezophototronic Effect and Plasmonic Excitation. Advanced Functional Materials, 2021, 31, 2009594.	7.8	80
269	Recent Advances of Epitaxial BiVO4 Thin Film: Preparation and Physical and Photoelectrochemical Properties. Brazilian Journal of Physics, 2020, 50, 185-191.	0.7	7
270	Compensation of band-edge positions in titanium-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ta</mml:mi><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> photoanode for enhanced water splitting performance: A first-principles insight. Physical Review	1>30.9	mn>
271	Recent advances in Co-based co-catalysts for efficient photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2022, 608, 1553-1575.	5.0	15
272	Strong Visible Light Absorption and Abundant Hotspots in Au-Decorated WO ₃ Nanobricks for Efficient SERS and Photocatalysis. ACS Omega, 2021, 6, 28347-28355.	1.6	7

#	Article	IF	CITATIONS
273	Light-Enhanced Carbon Dioxide Reforming of Methane by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles. Springer Theses, 2020, , 55-73.	0.0	0
274	Visible Light-Mediated Methane Activation for Steam Methane Reforming over Rh/TiO2 Catalysts Under Mild Conditions. Springer Theses, 2020, , 31-53.	0.0	0
277	Plasmonic Metal Nanoparticles for Artificial Photosynthesis: Advancements, Mechanisms, and Perspectives. Solar Rrl, 2021, 5, 2100611.	3.1	12
278	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	10.2	35
279	Photocatalytic degradation of water pollutants using II-VI semiconducting catalysts: A comprehensive review. Journal of Environmental Chemical Engineering, 2021, 9, 106734.	3.3	13
280	Solar-driven photoelectron injection effect on MgCo2O4@WO3 core–shell heterostructure for efficient overall water splitting. Applied Surface Science, 2022, 578, 152049.	3.1	41
281	Plasmon-Enhanced 5-Hydroxymethylfurfural Production from the Photothermal Conversion of Cellulose in a Biphasic Medium. ACS Sustainable Chemistry and Engineering, 2021, 9, 16115-16122.	3.2	9
282	Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts. Materials, 2021, 14, 7117.	1.3	4
283	Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. Advanced Science, 2022, 9, e2103926.	5.6	61
284	Photocatalytic reaction mechanisms at the gas–solid interface for environmental and energy applications. Catalysis Science and Technology, 2021, 11, 7807-7839.	2.1	12
285	Recent advances in photo-assisted electrocatalysts for energy conversion. Journal of Materials Chemistry A, 2021, 9, 27193-27214.	5.2	19
286	Precise Regulation of Ultra-Thin Pt Decorated Au/g-C $<$ sub>3 $<$ /sub>N $<$ sub>4 $<$ /sub> Photocatalysts by ALD for Efficient Degradation of RhB Under Simulated Sunlight. SSRN Electronic Journal, 0, , .	0.4	0
287	2Dâ€"3D graphene-coated diatomite as a support toward growing ZnO for advanced photocatalytic degradation of methylene blue. RSC Advances, 2021, 11, 38505-38514.	1.7	19
288	Precise Regulation of Ultra-Thin Pt Decorated Au/g-C $<$ sub>3 $<$ /sub>N $<$ sub>4 $<$ /sub> Photocatalysts by ALD for Efficient Degradation of RhB Under Simulated Sunlight. SSRN Electronic Journal, 0, , .	0.4	0
289	Interface Engineering Between Multiâ€Elemental Alloy Nanoparticles and a Carbon Support Toward Stable Catalysts. Advanced Materials, 2022, 34, e2106436.	11.1	30
290	Solar fuels: research and development strategies to accelerate photocatalytic CO ₂ conversion into hydrocarbon fuels. Energy and Environmental Science, 2022, 15, 880-937.	15.6	304
291	Light Harvesting in Magnetite-Coated Plasmonic Metal Nanospheres. Journal of Physical Chemistry C, 2022, 126, 885-891.	1.5	1
292	Photothermocatalytic System Designed by Facetâ€heterojunction to Enhance the Synergistic Effect of Toluene Oxidation. ChemCatChem, 2022, 14, .	1.8	3

#	Article	IF	CITATIONS
293	New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applications. EnergyChem, 2022, 4, 100070.	10.1	13
294	2D-C ₃ N ₄ encapsulated perovskite nanocrystals for efficient photo-assisted thermocatalytic CO ₂ reduction. Chemical Science, 2022, 13, 1335-1341.	3.7	29
296	Plasmon excitation facilitating generation of electrons and reactive oxygen species for broad spectrum photocatalytic activity. Applied Surface Science, 2022, 584, 152655.	3.1	5
297	Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin. Applied Catalysis B: Environmental, 2022, 306, 121092.	10.8	53
298	Blue light photocatalysis of carbazole-based conjugated microporous polymers: Aerobic hydroxylation of phenylboronic acids to phenols. Applied Catalysis B: Environmental, 2022, 309, 121210.	10.8	35
299	Electrosynthesis of highly efficient WO3- <i>x</i> /graphene (photo-)electrocatalyst by two-electrode electrolysis system for oxygen evolution reaction. Chinese Journal of Chemical Physics, 2023, 36, 113-124.	0.6	2
300	Emerging Bismuth Chalcogenides Based Nanodrugs for Cancer Radiotherapy. Frontiers in Pharmacology, 2022, 13, 844037.	1.6	15
301	Engineering the Defects and Microstructures in Ferroelectrics for Enhanced/Novel Properties: An Emerging Way to Cope with Energy Crisis and Environmental Pollution. Advanced Science, 2022, 9, e2105368.	5.6	46
302	Experimental characterization techniques for plasmon-assisted chemistry. Nature Reviews Chemistry, 2022, 6, 259-274.	13.8	56
303	Precursor self-derived Cu@TiO2 hybrid Schottky junction for enhanced solar-to-hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 10628-10637.	3.8	13
304	Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. Applied Catalysis B: Environmental, 2022, 309, 121263.	10.8	38
305	Nanocatalysts as potential candidates in transforming CO2 into valuable fuels and chemicals: A review. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100671.	1.7	1
306	Thermo-photo catalysis: a whole greater than the sum of its parts. Chemical Society Reviews, 2022, 51, 3609-3647.	18.7	95
307	Electron Donor–Acceptor Interface of TPPS/PDI Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Advanced Science, 2022, 9, e2201134.	5.6	62
308	Metal-free photocatalyst for nitrogen fixation under visible light based on COF/g-C3N4/ CNT nanocomposite. Journal of Environmental Chemical Engineering, 2022, 10, 107713.	3.3	20
309	Phase-changing hydrogels incorporated with copper sulfide-carbon nanotubes for smart thermal management and solar energy storage. Journal of Energy Storage, 2022, 50, 104653.	3.9	10
310	Gold-modified ZnO nanocomposites for photo-Fenton-like catalysis of Escherichia coli disinfection. Materials Letters, 2022, 319, 132275.	1.3	6
311	Solar Energy Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	58

#	Article	IF	CITATIONS
312	Encapsulating Ir nanoparticles into UiO-66 for photo-thermal catalytic CO ₂ methanation under ambient pressure. Journal of Materials Chemistry A, 2022, 10, 12157-12167.	5.2	15
313	The Nature of Active Sites for Plasmonâ€Mediated Photothermal Catalysis and Heatâ€Coupled Photocatalysis in Dry Reforming of Methane. Energy and Environmental Materials, 2023, 6, .	7.3	4
314	Solar Energy Catalysis. Angewandte Chemie, 2022, 134, .	1.6	11
315	Challenges of photocatalysis and their coping strategies. Chem Catalysis, 2022, 2, 1315-1345.	2.9	83
316	Enhancement of Plasmonâ€Induced Photoelectrocatalytic Water Oxidation over Au/TiO ₂ with Lithium Intercalation. Angewandte Chemie, 2022, 134, .	1.6	1
317	Enhancement of Plasmonâ€Induced Photoelectrocatalytic Water Oxidation over Au/TiO ₂ with Lithium Intercalation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
318	<i>En route $\langle i \rangle$ to artificial photosynthesis: the role of polyoxometalate based photocatalysts. Journal of Materials Chemistry A, 2022, 10, 13152-13169.</i>	5 . 2	12
319	Metal nanoparticle arrays via a water-based lift-off scheme using a block copolymer template. Nanotechnology, 2022, 33, 325302.	1.3	2
320	In situ observation of photo-induced shortening of single Au nanorod for plasmon-enhanced formic acid dehydrogenation., 2022, , 100014.		0
321	Precise regulation of Ultra-thin platinum decorated Gold/Graphite carbon nitride photocatalysts by atomic layer deposition for efficient degradation of Rhodamine B under simulated sunlight. Arabian Journal of Chemistry, 2022, 15, 103951.	2.3	7
322	Cellulose nanofiber/molybdenum disulfide aerogels for ultrahigh photothermal effect. Journal of Colloid and Interface Science, 2022, 624, 70-78.	5.0	11
323	Spatially distributed Z-scheme heterojunction of g-C3N4/SnIn4S8 for enhanced photocatalytic hydrogen production and pollutant degradation. Applied Surface Science, 2022, 598, 153870.	3.1	15
324	Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-Zn Cd1-S graphene aerogel via synergy of adsorption and photocatalysis under visible light. Journal of Environmental Sciences, 2023, 124, 360-370.	3.2	20
325	Chapter 8. Nanocatalysis With Sustainability. RSC Nanoscience and Nanotechnology, 2022, , 220-254.	0.2	1
326	Towards Fullâ€spectrum Photocatalysis: Extending to the Nearâ€infrared Region. ChemCatChem, 2022, 14, .	1.8	9
327	Photodriven CO ₂ Hydrogenation into Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2022, 13, 5291-5303.	2.1	18
328	A highly efficient solar-driven CO2 reforming of methane on Ni/MgAlO -LDH loaded Ni foam reactors with heat recovery: Experimental measurements and numerical simulations. Chemical Engineering Journal, 2022, 446, 137437.	6.6	18
329	Ag Bridged Step-Scheme Mos2/Bi4o5br2 Heterojunction for Enhanced Visible Light Driven Photocatalytic Disinfection Activity. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
330	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4, 100078.	10.1	232
331	Synthesis of a Defective WO _{3â€"<i>y</i>} /TiO _{2â€"<i>x</i>} Composite Catalyst for Photocatalytic CO ₂ Highly Selective Reduction. Energy & Energ	2.5	9
332	W Singleâ€Atom Catalyst for CH ₄ Photooxidation in Water Vapor. Advanced Materials, 2022, 34, .	11.1	31
333	Solid-state Z-scheme assisted hydrated tungsten trioxide/Znln ₂ S ₄ photocatalyst for efficient photocatalytic H ₂ production. Materials Futures, 2022, 1, 035103.	3.1	11
334	Photocatalytic Reduction of Carbon Dioxide to Methane at the Pd-Supported TiO ₂ Interface: Mechanistic Insights from Theoretical Studies. ACS Catalysis, 2022, 12, 8558-8571.	5.5	23
335	One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A. Separation and Purification Technology, 2022, 298, 121658.	3.9	17
336	Interfacial microenvironment-regulated cascade charge transport in Co6Mo6C2-MoO2-CoNC@ZnIn2S4 photocatalyst for efficient hydrogen evolution. Chemical Engineering Journal, 2022, 450, 138130.	6.6	24
337	Twoâ^dimensional nanomaterials confined single atoms: New opportunities for environmental remediation. Nano Materials Science, 2023, 5, 15-38.	3.9	10
338	Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions. Nature Communications, 2022, 13, .	5.8	100
339	Plasmonic Effect of Ag/Au Composite Structures on the Material Transition. Nanomaterials, 2022, 12, 2927.	1.9	5
340	Recent Advances in Photothermal CO _{<i>x</i>} Conversion. Solar Rrl, 2022, 6, .	3.1	14
341	Light-responsive organic artificial enzymes: Material designs and bio-applications. Nano Research, 0, , .	5.8	5
342	Progress in thermoplasmonics for solar energy applications. Physics Reports, 2022, 981, 1-50.	10.3	31
343	Photothermalâ€induced Electrical Behavior of Micronâ€Sized Platinum Structures and Their Efficient Photodetection. Energy Technology, 0, , .	1.8	0
344	Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews, 2022, 472, 214765.	9.5	15
345	A review on ZnS-based photocatalysts for CO ₂ reduction in all-inorganic aqueous medium. Nanoscale, 2022, 14, 14455-14465.	2.8	22
346	Designing SnS/MoS ₂ van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation. Physical Chemistry Chemical Physics, 2022, 24, 21321-21330.	1.3	3
347	Ni-Phyllosilicate Nanotubes Coated by Ceria Nanolayer for Record-High Efficiency of 36.9% and Near-Limit Co2 Conversion in Solar-Driven Co2-to-Fuel Conversion. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
348	Ag bridged step-scheme MoS2/Bi4O5Br2 heterojunction for enhanced visible light driven photocatalytic disinfection activity. Applied Surface Science, 2023, 607, 155056.	3.1	13
349	Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications—A review. Nano Research, 2022, 15, 10268-10291.	5.8	15
350	Efficient Reduction Photocatalyst of 4-Nitrophenol Based on Ag-Nanoparticles-Doped Porous ZnO Heterostructure. Nanomaterials, 2022, 12, 2863.	1.9	4
351	Implanting CoO <i></i> Implanting CoO <i><td>11.1</td><td>40</td></i>	11.1	40
352	Parametrization of the PM7 Semiempirical Quantum Mechanical Method for Silver Nanoclusters. Journal of Physical Chemistry A, 2022, 126, 6558-6569.	1.1	0
353	Inverse DVD-R grating structured SPR sensor platform with high sensitivity and figure of merit. Journal of Industrial and Engineering Chemistry, 2022, 116, 321-330.	2.9	3
354	Enhanced CO2 Photoreduction over Bi2Te3/TiO2 Nanocomposite via a Seebeck Effect. Catalysts, 2022, 12, 1323.	1.6	2
355	A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols. Journal of Energy Chemistry, 2023, 77, 80-118.	7.1	42
356	Ni-phyllosilicate nanotubes coated by CeO2 for ultra-efficiency of 36.9% and near-limit CO2 conversion Âin solar-driven conversion of CO2-to-fuel. Chemical Engineering Journal, 2023, 454, 140063.	6.6	13
357	Tipping Gold Nanobipyramids with Titania for the Use of Plasmonic Hotspots to Drive Amine Coupling. ACS Applied Materials & Drive Amine Coupling.	4.0	3
358	OD/2D CuFe2O4/MXene Z-scheme heterojunction for improved photocatalytic selective oxidation reaction. Applied Surface Science, 2023, 611, 155670.	3.1	2
359	Photocatalytic CO2 Reduction Reactions. RSC Green Chemistry, 2022, , 285-307.	0.0	1
360	Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. Journal of Controlled Release, 2023, 353, 1050-1067.	4.8	5
361	Plasmonic noble metal doped titanium dioxide nanocomposites: Newer and exciting materials in the remediation of water contaminated with micropollutants. Journal of Water Process Engineering, 2023, 51, 103360.	2.6	8
362	Light-enhanced thermochemical production of solar fuels from methane via nickel-based redox cycle. Fuel, 2023, 335, 127035.	3.4	5
363	Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis. Journal of Colloid and Interface Science, 2023, 634, 290-299.	5.0	19
364	Regulating the Electronic Structure of Fe3+-Doped BiOClxI1â€"x Solid Solution by an Amidoxime-Functionalized Fibrous Support for Efficient Photocatalysis. Advanced Fiber Materials, 2023, 5, 266-281.	7.9	11
365	Enhanced photocatalytic water splitting over nickel-doped CdS nanocomposites synthesized via one-step controllable irradiation routine at ambient conditions. Applied Surface Science, 2023, 614, 156190.	3.1	7

#	Article	IF	CITATIONS
366	Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts. Chemistry - A European Journal, 2023, 29, .	1.7	3
367	Viable production of hydrogen and methane from polluted water using eco-friendly plasmonic Pd–TiO ₂ nanocomposites. RSC Advances, 2023, 13, 770-780.	1.7	3
368	Initiating highly efficient (Bi,Ce) ₂ (O,S) _{3â^'<i>x</i>} oxysulfide catalysts with rich oxygen vacancies for hydrogen evolution <i>via</i> of Materials Chemistry A, 2023, 11, 4126-4141.	5.2	17
369	Mo ₂ TiC ₂ MXene-Supported Ru Clusters for Efficient Photothermal Reverse Water–Gas Shift. ACS Nano, 2023, 17, 1550-1559.	7.3	39
370	Enhanced photocatalytic hydrogen evolution and CO2 to CH4 selectivity of Co3O4/Ti3+-TiO2 hollow S-scheme heterojunction via ZIF-67 self-template and Ti3+/Ov. International Journal of Hydrogen Energy, 2023, 48, 15574-15585.	3.8	11
371	High-Performance Organic Electrochemical Transistor Based on Photo-annealed Plasmonic Gold Nanoparticle-Doped PEDOT:PSS. ACS Applied Materials & Interfaces, 2023, 15, 3224-3234.	4.0	13
372	Linkage-Affected Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Hydrogen Production. Processes, 2023, 11, 347.	1.3	2
373	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	1.6	14
374	Hydrophobic modification for CO photo-hydrogenation to olefins with low CO2 selectivity. Nano Energy, 2023, 110, 108350.	8.2	3
375	Construction of a Nâ^'Moâ^'O bond bridged MoO2/Mo-doped g-C3N4 Schottky heterojunction composite with enhanced interfacial compatibility for efficient photocatalytic degradation of tetracycline. Separation and Purification Technology, 2023, 314, 123546.	3.9	4
376	Eicosane-based thermo-conductive phase change composite for efficient capture solar energy and using in real-environment as power source. Chemical Engineering Journal, 2023, 462, 142273.	6.6	6
377	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	81
378	Enhanced interfacial charge transfer and photothermal effect via in-situ construction of atom co-sharing Bi plasmonic/Bi4O5Br2 nanosheet heterojunction towards improved full-spectrum photocatalysis. Chemical Engineering Journal, 2023, 459, 141557.	6.6	19
379	Near-infrared photothermal conversion of polyoxometalate-modified gold nanorods for plasmon-enhanced catalysis. Inorganic Chemistry Frontiers, 2023, 10, 1852-1862.	3.0	11
380	Experimental study and kinetic model analysis on photothermal catalysis of formaldehyde by manganese and cerium based catalytic materials. Journal of the Air and Waste Management Association, 2023, 73, 345-361.	0.9	0
381	Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS Nano, 2023, 17, 4193-4229.	7.3	38
382	Visible Light Driven Photocatalytic Degradation of Norfloxacin Using 3D Supramolecular Compounds. Journal of Cluster Science, 2023, 34, 2643-2652.	1.7	3
383	Plasmonic Photocatalysis for CO ₂ Reduction: Advances, Understanding and Possibilities. Chemistry - A European Journal, 2023, 29, .	1.7	12

#	ARTICLE	IF	CITATIONS
384	Plasmon Driven Nanocrystal Transformation by Aluminum Nano-Islands with an Alumina Layer. Nanomaterials, 2023, 13, 907.	1.9	1
385	Niche Applications of MXene Materials in Photothermal Catalysis. Chemistry, 2023, 5, 492-510.	0.9	7
386	Photothermal CO-PROX reaction over ternary CuCoMnO _{<i>x</i>} spinel oxide catalysts: the effect of the copper dopant and thermal treatment. Physical Chemistry Chemical Physics, 2023, 25, 8064-8073.	1.3	3
387	Research on photocatalytic CO ₂ conversion to renewable synthetic fuels based on localized surface plasmon resonance: current progress and future perspectives. Catalysis Science and Technology, 2023, 13, 1932-1975.	2.1	5
388	Understanding and Controlling Photothermal Responses in MXenes. Nano Letters, 2023, 23, 2677-2686.	4.5	7
389	Plasmonic Photoresistor Based on Interconnected Metalâ€Semiconductor Grating. Advanced Functional Materials, 2023, 33, .	7.8	3
390	A novel metal-free porous covalent organic polymer for efficient room-temperature photocatalytic CO2 reduction via dry-reforming of methane. Green Energy and Environment, 2023, , .	4.7	5
391	Hydrogel-based solar-driven interfacial evaporation: Current progress and future challenges. , 2023, 1, 100011.		2
392	A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater. Journal of Materials Science, 2023, 58, 6474-6515.	1.7	12
393	Photocatalytic and Electrocatalytic Generation of Hydrogen Peroxide: Principles, Catalyst Design and Performance. Nano-Micro Letters, 2023, 15, .	14.4	17
394	Elucidating the Origin of Plasmon-Generated Hot Holes in Water Oxidation. ACS Nano, 2023, 17, 7813-7820.	7.3	3
395	Highly Efficient Piezocatalytic Activity of Poly(tetrafluoroethylene) for Large-Scale Organic Wastewater Purification. ACS Applied Polymer Materials, 2023, 5, 3585-3594.	2.0	5
417	Cocatalysts in photocatalytic methane conversion: recent achievements and prospects. Science China Chemistry, 2023, 66, 2532-2557.	4.2	3
430	Advances in ultrasound-assisted photocatalyst synthesis and piezo-photocatalysts. Journal of Materials Chemistry A, 2023, 11, 22608-22630.	5.2	0
449	Atomic interface regulation of rare-marth metal single atom catalysts for energy conversion. Nano Research, 2024, 17, 3493-3515.	5.8	1