Association of pain and CNS structural changes after sp

Scientific Reports 6, 18534 DOI: 10.1038/srep18534

Citation Report

#	Article	IF	CITATIONS
1	The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation. Journal of Immunology Research, 2016, 2016, 1-9.	2.2	51
2	Commentary: Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain. Frontiers in Human Neuroscience, 2016, 10, 544.	2.0	7
3	Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1260-1270.	3.4	49
4	Usefulness of laser-evoked potentials and quantitative sensory testing in the diagnosis of neuropathic spinal cord injury pain: a multiple case study. Spinal Cord, 2017, 55, 575-582.	1.9	14
5	Neuroplasticity of Supraspinal Structures Associated with Pathological Pain. Anatomical Record, 2017, 300, 1481-1501.	1.4	40
6	Improved Diagnosis of Cervical Spondylotic Myelopathy with Contact Heat Evoked Potentials. Journal of Neurotrauma, 2017, 34, 2045-2053.	3.4	40
7	Assessments of sensory plasticity after spinal cord injury across species. Neuroscience Letters, 2017, 652, 74-81.	2.1	3
9	Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury. NeuroImage: Clinical, 2017, 15, 494-501.	2.7	15
10	Factors Affecting Volume Changes of the Somatosensory Cortex in Patients with Spinal Cord Injury: To Be Considered for Future Neuroprosthetic Design. Frontiers in Neurology, 2017, 8, 662.	2.4	7
11	Brain Gray Matter Atrophy after Spinal Cord Injury: A Voxel-Based Morphometry Study. Frontiers in Human Neuroscience, 2017, 11, 211.	2.0	36
12	Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury. Neural Plasticity, 2017, 2017, 1-14.	2.2	90
13	Chromaffin cell transplantation for neuropathic pain after spinal cord injury: a report of two cases. Journal of Neurorestoratology, 2017, Volume 5, 47-50.	2.5	2
14	Progressive neurodegeneration following spinal cord injury. Neurology, 2018, 90, e1257-e1266.	1.1	97
15	Brain changes after spinal cord injury, a quantitative meta-analysis and review. Neuroscience and Biobehavioral Reviews, 2018, 90, 272-293.	6.1	57
16	Cortical morphometric changes after spinal cord injury. Brain Research Bulletin, 2018, 137, 107-119.	3.0	35
17	A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neuroscience and Biobehavioral Reviews, 2018, 84, 407-423.	6.1	22
18	Assessment of synchronous neural activities revealed by regional homogeneity in individuals with acute eye pain: a resting-state functional magnetic resonance imaging study. Journal of Pain Research, 2018, Volume 11, 843-850.	2.0	20
19	Whether Visual-related Structural and Functional Changes Occur in Brain of Patients with Acute Incomplete Cervical Cord Injury: A Multimodal Based MRI Study. Neuroscience, 2018, 393, 284-294.	2.3	27

# 20	ARTICLE Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. NeuroImage: Clinical, 2018, 20, 556-563.	IF 2.7	CITATIONS
21	7 Tesla magnetic resonance imaging of caudal anterior cingulate and posterior cingulate cortex atrophy in patients with trigeminal neuralgia. Magnetic Resonance Imaging, 2018, 51, 144-150.	1.8	15
22	Guiding Device for Precision Grafting of Peripheral Nerves in Complete Thoracic Spinal Cord Injury: Design and Sizing for Clinical Trial. Frontiers in Neurology, 2018, 9, 356.	2.4	1
23	MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurology, The, 2019, 18, 1123-1135.	10.2	125
24	Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers. Spinal Cord, 2019, 57, 717-728.	1.9	40
25	Pathological pain processing in mouse models of multiple sclerosis and spinal cord injury: contribution of plasma membrane calcium ATPase 2 (PMCA2). Journal of Neuroinflammation, 2019, 16, 207.	7.2	14
26	Post-Transcriptional Regulation of Soluble Guanylate Cyclase that Governs Neuropathic Pain in Alzheimer's Disease1. Journal of Alzheimer's Disease, 2019, 71, 1331-1338.	2.6	9
27	Residual descending motor pathways influence spasticity after spinal cord injury. Annals of Neurology, 2019, 86, 28-41.	5.3	44
28	Specific Brain Morphometric Changes in Spinal Cord Injury: A Voxel-Based Meta-Analysis of White and Gray Matter Volume. Journal of Neurotrauma, 2019, 36, 2348-2357.	3.4	17
29	Effects of continuous theta-burst stimulation of the primary motor and secondary somatosensory areas on the central processing and the perception of trigeminal nociceptive input in healthy volunteers. Pain, 2019, 160, 172-186.	4.2	11
30	Differences in Cortical Gray Matter Atrophy of Paraplegia and Tetraplegia after Complete Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 2045-2051.	3.4	23
31	Sensorimotor plasticity after spinal cord injury: a longitudinal and translational study. Annals of Clinical and Translational Neurology, 2019, 6, 68-82.	3.7	19
32	Inconsistency between cortical reorganization and functional connectivity alteration in the sensorimotor cortex following incomplete cervical spinal cord injury. Brain Imaging and Behavior, 2020, 14, 2367-2377.	2.1	13
33	Characteristic cerebral structural changes identified using voxel-based morphometry in patients with post-surgical chronic myelopathic pain. Spinal Cord, 2020, 58, 467-475.	1.9	4
34	Altered Topological Properties of Brain Structural Covariance Networks in Patients With Cervical Spondylotic Myelopathy. Frontiers in Human Neuroscience, 2020, 14, 364.	2.0	11
35	Alterations in power spectral density in motor- and pain-related networks on neuropathic pain after spinal cord injury. NeuroImage: Clinical, 2020, 28, 102342.	2.7	9
36	On the Relationship Between White Matter Structure and Subjective Pain. Lessons From an Acute Surgical Pain Model. Frontiers in Human Neuroscience, 2020, 14, 558703.	2.0	4
37	Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Frontiers in Cellular Neuroscience, 2020, 14, 187.	3.7	25

#	Article	IF	Citations
38	Ventral posterior nucleus volume is associated with neuropathic pain intensity in neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2020, 46, 102579.	2.0	14
39	Extrapyramidal plasticity predicts recovery after spinal cord injury. Scientific Reports, 2020, 10, 14102.	3.3	7
40	Tracking the neurodegenerative gradient after spinal cord injury. NeuroImage: Clinical, 2020, 26, 102221.	2.7	18
41	Central Nervous System Reorganization and Pain After Spinal Cord Injury: Possible Targets for Physical Therapy—A Systematic Review of Neuroimaging Studies. Physical Therapy, 2020, 100, 946-962.	2.4	8
42	The Reorganization of Insular Subregions in Individuals with Below-Level Neuropathic Pain following Incomplete Spinal Cord Injury. Neural Plasticity, 2020, 2020, 1-9.	2.2	13
43	Metabolites of neuroinflammation relate to neuropathic pain after spinal cord injury. Neurology, 2020, 95, e805-e814.	1.1	25
44	Heritability of cervical spinal cord structure. Neurology: Genetics, 2020, 6, e401.	1.9	7
45	Disentangling the Effects of Spinal Cord Injury and Related Neuropathic Pain on Supraspinal Neuroplasticity: A Systematic Review on Neuroimaging. Frontiers in Neurology, 2019, 10, 1413.	2.4	18
46	Regional Hyperexcitability and Chronic Neuropathic Pain Following Spinal Cord Injury. Cellular and Molecular Neurobiology, 2020, 40, 861-878.	3.3	29
47	Virtual reality for the treatment of neuropathic pain in people with spinal cord injuries: A scoping review. Journal of Spinal Cord Medicine, 2021, 44, 8-18.	1.4	36
48	Modelling atâ€level allodynia after midâ€thoracic contusion in the rat. European Journal of Pain, 2021, 25, 801-816.	2.8	3
49	Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density. Frontiers in Neurology, 2021, 12, 598336.	2.4	3
50	Peripheral Nerve-Derived Stem Cell Spheroids Induce Functional Recovery and Repair after Spinal Cord Injury in Rodents. International Journal of Molecular Sciences, 2021, 22, 4141.	4.1	10
51	From acute to long-term alterations in pain processing and modulation after spinal cord injury. Pain, 2021, Publish Ahead of Print, .	4.2	4
52	Microstructural plasticity in nociceptive pathways after spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 863-871.	1.9	10
53	Altered Functional Connectivity of the Primary Visual Cortex in Patients With Iridocyclitis and Assessment of Its Predictive Value Using Machine Learning. Frontiers in Immunology, 2021, 12, 660554.	4.8	12
54	Supraspinal nociceptive networks in neuropathic pain after spinal cord injury. Human Brain Mapping, 2021, 42, 3733-3749.	3.6	19
55	Brain changes correlate with neuropathic pain in patients with neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2021, 53, 103048.	2.0	5

#	ARTICLE	IF	CITATIONS
56	Human Pluripotent Stem Cells for Spinal Cord Injury. Current Stem Cell Research and Therapy, 2020, 15, 135-143.	1.3	9
57	The Potential Role of Glycogen Synthase Kinase-3î² in Neuropathy-Induced Apoptosis in Spinal Cord. Basic and Clinical Neuroscience, 2020, 11, 15-30.	0.6	6
59	Devil's advocate: Why past and future animal models of neuropathic pain in spinal cord injury are without merit. , 2022, , 113-123.		0
60	The antibodies to glutamate receptors as potential biomarkers for the spinal cord injury. Russian Journal of Neurosurgery, 2020, 22, 41-48.	0.2	0
61	Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neuroscience and Biobehavioral Reviews, 2022, 133, 104497.	6.1	25
62	Rethinking the Body in the Brain after Spinal Cord Injury. Journal of Clinical Medicine, 2022, 11, 388.	2.4	14
63	Comparison of multicenter <scp>MRI</scp> protocols for visualizing the spinal cord gray matter. Magnetic Resonance in Medicine, 2022, 88, 849-859.	3.0	4
64	NT3 treatment alters spinal cord injury-induced changes in the gray matter volume of rhesus monkey cortex. Scientific Reports, 2022, 12, 5919.	3.3	5
65	Roles of neuronal toll-like receptors in neuropathic pain and central nervous system injuries and diseases. Brain, Behavior, and Immunity, 2022, 102, 163-178.	4.1	17
67	Impact of injury duration on a sensorimotor functional network in complete spinal cord injury. Journal of Neuroscience Research, 2022, 100, 1765-1774.	2.9	6
68	Future Treatment of Neuropathic Pain in Spinal Cord Injury: The Challenges of Nanomedicine, Supplements or Opportunities?. Biomedicines, 2022, 10, 1373.	3.2	4
69	18F-FDG positron emission tomography imaging of cortical reorganization in spinal trauma. Indian Journal of Nuclear Medicine, 2022, 37, 126.	0.3	1
70	Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. Journal of Biological Chemistry, 2022, 298, 102207.	3.4	4
71	Motor Neuroplastic Effects of a Novel Paired Stimulation Technology in an Incomplete Spinal Cord Injury Animal Model. International Journal of Molecular Sciences, 2022, 23, 9447.	4.1	3
72	Disrupted interhemispheric functional connectivity in primary angle-closure glaucoma: a functional MRI study: voxel-mirrored homotopic connectivity in primary angle-closure glaucoma patients. NeuroReport, 2022, 33, 604-611.	1.2	4
73	Brain morphology changes after spinal cord injury: A voxel-based meta-analysis. Frontiers in Neurology, 0, 13, .	2.4	4
74	Lateralized Supraspinal Functional Connectivity Correlate with Pain and Motor Dysfunction in Rat Hemicontusion Cervical Spinal Cord Injury. Neurotrauma Reports, 2022, 3, 421-432.	1.4	2
75	Dynamics of progressive degeneration of major spinal pathways following spinal cord injury: A longitudinal study. NeuroImage: Clinical, 2023, 37, 103339.	2.7	1

#	Article	IF	CITATIONS
76	Spinal cord atrophy after spinal cord injury – A systematic review and meta-analysis. NeuroImage: Clinical, 2023, 38, 103372.	2.7	3
77	Spinal cord injury in mice amplifies anxiety: A novel light-heat conflict test exposes increased salience of anxiety over heat. Experimental Neurology, 2023, 364, 114382.	4.1	3
78	Resting state functional connectivity differentiation of neuropathic and nociceptive pain in i	2.7	2
79	The role of the insula in chronic pain following spinal cord injury: A restingâ€state fMRI study. Journal of Neuroimaging, 2023, 33, 781-791.	2.0	3
80	The gray matter atrophy and related network changes occur in the higher cognitive region rather than the primary sensorimotor cortex after spinal cord injury. PeerJ, 0, 11, e16172.	2.0	0
81	Exploring Functional Connectivity in Chronic Spinal Cord Injury Patients With Neuropathic Pain Versus Without Neuropathic Pain. Neurotrauma Reports, 2024, 5, 16-27.	1.4	0
82	The possible neural mechanism of neuropathic pain evoked by motor imagery in pediatric patients with complete spinal cord injury: A preliminary brain structure study based on VBM. Heliyon, 2024, 10, e24569.	3.2	0
83	Brain region changes following a spinal cord injury. Neurochemistry International, 2024, 174, 105696.	3.8	0
84	Neuropathic pain development and maintenance and its association with motor recovery after cervical spinal cord injury. Journal of Spinal Cord Medicine, 0, , 1-8.	1.4	0