The appeasement of Doug: a synthetic approach to enha

Integrative Biology (United Kingdom) 8, 475-484 DOI: 10.1039/c5ib00321k

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	A Fully Synthetic Transcriptional Platform for a Multicellular Eukaryote. Cell Reports, 2017, 18, 287-296.	2.9	33
2	Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development (Cambridge), 2017, 144, 3855-3866.	1.2	34
3	Using synthetic biology to study gene regulatory evolution. Current Opinion in Genetics and Development, 2017, 47, 91-101.	1.5	25
4	Synthetic enhancer design by in silico compensatory evolution reveals flexibility and constraint in cis-regulation. BMC Systems Biology, 2017, 11, 116.	3.0	23
5	Hunchback is counter-repressed to regulate even-skipped stripe 2 expression in Drosophila embryos. PLoS Genetics, 2018, 14, e1007644.	1.5	25
6	Quantitative Comparison of the Anterior-Posterior Patterning System in the Embryos of Five <i>Drosophila</i> Species. G3: Genes, Genomes, Genetics, 2019, 9, 2171-2182.	0.8	9
7	Synthetic Developmental Biology: Understanding Through Reconstitution. Annual Review of Cell and Developmental Biology, 2020, 36, 339-357.	4.0	16
8	Dense and pleiotropic regulatory information in a developmental enhancer. Nature, 2020, 587, 235-239.	13.7	58
9	Regulatory encoding of quantitative variation in spatial activity of a <i>Drosophila</i> enhancer. Science Advances, 2020, 6, .	4.7	18
10	Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity. BioEssays, 2020, 42, e1900188.	1.2	18
11	Multimodal transcriptional control of pattern formation in embryonic development. Proceedings of the United States of America, 2020, 117, 836-847.	3.3	82
12	Defining Kinetic Roles of Transcriptional Activators in the Early Drosophila Embryo. SSRN Electronic Journal, 0, , .	0.4	0
13	Understanding the molecular mechanisms of transcriptional bursting. Physical Chemistry Chemical Physics, 2021, 23, 21399-21406.	1.3	3
15	Enhancer grammar in development, evolution, and disease: dependencies and interplay. Developmental Cell, 2021, 56, 575-587.	3.1	81
16	Transcription Factor Dynamics. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040949.	2.3	37
17	The Systems and Synthetic Biology of Auxin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040071.	2.3	2
31	A synthetic synthesis to explore animal evolution and development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	5
34	Synthetic gene circuits take root. Science, 2022, 377, 711-712.	6.0	1

CITATION REPORT

#	Article	IF	CITATIONS
35	Transcriptional Regulatory Activity as the Default State for DNA in Animal Development. SSRN Electronic Journal, 0, , .	0.4	0
36	Predictive modeling reveals that higher-order cooperativity drives transcriptional repression in a synthetic developmental enhancer. ELife, 0, 11, .	2.8	8
37	Enhancer architecture and chromatin accessibility constrain phenotypic space during Drosophila development. Developmental Cell, 2023, 58, 51-62.e4.	3.1	15
38	Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient. Cell Systems, 2023, 14, 220-236.e3.	2.9	8
39	Competing constraints shape the nonequilibrium limits of cellular decision-making. Proceedings of the United States of America, 2023, 120, .	3.3	4
40	Transcriptional activators in the early Drosophila embryo perform different kinetic roles. Cell Systems, 2023, 14, 258-272.e4.	2.9	2