The diurnal cycle of rainfall over New Guinea in convec

Atmospheric Chemistry and Physics 16, 161-175

DOI: 10.5194/acp-16-161-2016

Citation Report

#	Article	IF	CITATIONS
2	Evolution of the Diurnal Precipitation Cycle with the Passage of a Madden–Julian Oscillation Event through the Maritime Continent. Monthly Weather Review, 2016, 144, 1983-2005.	1.4	67
3	How important is tropospheric humidity for coastal rainfall in the tropics?. Geophysical Research Letters, 2016, 43, 5860-5868.	4.0	42
4	Scale Interactions between the MJO and the Western Maritime Continent. Journal of Climate, 2016, 29, 2471-2492.	3.2	115
5	The Diurnal Cycle of Tropical Cloudiness and Rainfall Associated with the Madden–Julian Oscillation. Journal of Climate, 2017, 30, 3999-4020.	3.2	43
6	Formation and Maintenance of a Long-Lived Taiwan Rainband during 1–3 March 2003. Journals of the Atmospheric Sciences, 2017, 74, 1211-1232.	1.7	12
7	A 10-Year Austral Summer Climatology of Observed and Modeled Intraseasonal, Mesoscale, and Diurnal Variations over the Maritime Continent. Journal of Climate, 2017, 30, 3807-3828.	3.2	48
8	Uncertainties in TRMMâ€Era multisatelliteâ€based tropical rainfall estimates over the Maritime Continent. Earth and Space Science, 2017, 4, 275-302.	2.6	34
9	Diurnal Convectionâ€Wind Coupling in the Bay of Bengal. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9705-9720.	3.3	19
10	Factors Controlling Rain on Small Tropical Islands: Diurnal Cycle, Large-Scale Wind Speed, and Topography. Journals of the Atmospheric Sciences, 2017, 74, 3515-3532.	1.7	67
11	Diurnal Cycle of Precipitation Observed in the Western Coastal Area of Sumatra Island: Offshore Preconditioning by Gravity Waves. Monthly Weather Review, 2017, 145, 3745-3761.	1.4	71
12	The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over aÂtropical island. Atmospheric Chemistry and Physics, 2017, 17, 13213-13232.	4.9	47
13	Scatterometer estimates of the tropical seaâ€breeze circulation near Darwin, with comparison to regional models. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2818-2831.	2.7	7
15	On the Role of NAO-Driven Interannual Variability in Rainfall Seasonality on Water Resources and Hydrologic Design in a Typical Mediterranean Basin. Journal of Hydrometeorology, 2018, 19, 485-498.	1.9	16
16	Diurnal Cycle of Rainfall and Winds near the South Coast of China. Journals of the Atmospheric Sciences, 2018, 75, 2065-2082.	1.7	47
17	Investigating the mechanisms of diurnal rainfall variability over Peninsular Malaysia using the non-hydrostatic regional climate model. Meteorology and Atmospheric Physics, 2018, 130, 611-633.	2.0	14
18	Diurnal cycle over a coastal area of the Maritime Continent as derived by special networked soundings over Jakarta during HARIMAU2010. Progress in Earth and Planetary Science, 2018, 5, .	3.0	15
19	Using Global and Regional Model Simulations to Understand Maritime Continent Wetâ€Season Rainfall Variability. Geophysical Research Letters, 2018, 45, 12,534.	4.0	2
20	Mesoscale Variation in Diabatic Heating around Sumatra, and Its Modulation with the Madden–Julian Oscillation. Monthly Weather Review, 2018, 146, 2599-2614.	1.4	24

#	Article	IF	Citations
21	Homogenization and Trend Analysis of the 1958–2016 In Situ Surface Solar Radiation Records in China. Journal of Climate, 2018, 31, 4529-4541.	3.2	61
22	Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes. Atmosphere, 2018, 9, 80.	2.3	111
23	Environmental Conditions for Nighttime Offshore Migration of Precipitation Area as Revealed by In Situ Observation off Sumatra Island. Monthly Weather Review, 2019, 147, 3391-3407.	1.4	28
24	Diurnal Cycle of IMERG V06 Precipitation. Geophysical Research Letters, 2019, 46, 13584-13592.	4.0	81
25	Intraseasonal Variability of the Diurnal Cycle of Precipitation in the Philippines. Journals of the Atmospheric Sciences, 2019, 76, 3633-3654.	1.7	18
26	Causes of Dimming and Brightening in China Inferred from Homogenized Daily Clear-Sky and All-Sky in situ Surface Solar Radiation Records (1958–2016). Journal of Climate, 2019, 32, 5901-5913.	3.2	51
27	On the Diurnal Cycle of GPS-Derived Precipitable Water Vapor over Sumatra. Journals of the Atmospheric Sciences, 2019, 76, 3529-3552.	1.7	12
28	Diurnal Cycle of Surface Winds in the Maritime Continent Observed through Satellite Scatterometry. Monthly Weather Review, 2019, 147, 2023-2044.	1.4	29
29	Understanding Biases in Simulating the Diurnal Cycle of Convection over the Western Coast of Sumatra: Comparison with Pre-YMC Observation Campaign. Monthly Weather Review, 2019, 147, 1615-1631.	1.4	15
30	Evaluating Forecast Skills of Moisture from Convective-Permitting WRF-ARW Model during 2017 North American Monsoon Season. Atmosphere, 2019, 10, 694.	2.3	14
31	Physical Mechanisms Controlling the Offshore Propagation of Convection in the Tropics: 1. Flat Island. Journal of Advances in Modeling Earth Systems, 2019, 11, 3042-3056.	3.8	17
32	Physical Mechanisms Controlling the Offshore Propagation of Convection in the Tropics: 2. Influence of Topography. Journal of Advances in Modeling Earth Systems, 2019, 11, 3251-3264.	3.8	10
33	Role of Coastal Convection to Moisture Buildup during the South China Sea Summer Monsoon Onset. Journal of the Meteorological Society of Japan, 2019, 97, 1155-1171.	1.8	3
34	Superenhancement of Precipitation at the Center of Tropical Islands. Geophysical Research Letters, 2019, 46, 14872-14880.	4.0	5
35	Contemporary GCM Fidelity in Representing the Diurnal Cycle of Precipitation Over the Maritime Continent. Journal of Geophysical Research D: Atmospheres, 2019, 124, 747-769.	3.3	29
36	CHOCO-JEX: A Research Experiment Focused on the Choc \tilde{A}^3 Low-Level Jet over the Far Eastern Pacific and Western Colombia. Bulletin of the American Meteorological Society, 2019, 100, 779-796.	3.3	54
37	Topographic Effects on the Luzon Diurnal Cycle during the BSISO. Journals of the Atmospheric Sciences, 2020, 77, 3-30.	1.7	18
38	Detecting and Tracking Coastal Precipitation in the Tropics: Methods and Insights into Multiscale Variability of Tropical Precipitation. Journal of Climate, 2020, 33, 6689-6705.	3.2	4

3

#	ARTICLE	IF	Citations
39	Precipitation Features of the Maritime Continent in Parameterized and Explicit Convection Models. Journal of Climate, 2020, 33, 2449-2466.	3.2	20
40	The Diurnal Cycle of Rainfall and the Convectively Coupled Equatorial Waves over the Maritime Continent. Journal of Climate, 2020, 33, 3307-3331.	3.2	34
41	Years of the Maritime Continent. Geophysical Research Letters, 2020, 47, e2020GL087182.	4.0	49
42	Locally forced convection in subkilometreâ€scale simulations with the Unified Model and WRF. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 3450-3465.	2.7	4
43	Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography. Atmospheric Environment, 2020, 227, 117418.	4.1	16
44	Relative Roles of Lowâ€Level Wind Speed and Moisture in the Diurnal Cycle of Rainfall Over a Tropical Island Under Monsoonal Flows. Geophysical Research Letters, 2020, 47, e2020GL087467.	4.0	17
45	The semi-diurnal cycle of deep convective systems over Eastern China and its surrounding seas in summer based on an automatic tracking algorithm. Climate Dynamics, 2021, 56, 357-379.	3.8	10
46	Systematic Patterns in Land Precipitation Due to Convection in Neighboring Islands in the Maritime Continent During MJO Propagation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033465.	3.3	8
47	Formation of Nocturnal Offshore Rainfall near the West Coast of Sumatra: Land Breeze or Gravity Wave?. Monthly Weather Review, 2021, 149, 715-731.	1.4	15
48	Taiwan Rainbands Formed in the Outer Region of Tropical Cyclones. Monthly Weather Review, 2021, 149, 1403-1418.	1.4	1
49	Recent trends in summer atmospheric circulation in the North Atlantic/European region: is there a role for anthropogenic aerosols?. Journal of Climate, 2021, , 1-49.	3.2	5
50	<scp>Convection</scp> â€permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e731.	8.1	74
51	Convective Cold Pool Associated with Offshore Propagation of Convection System over the East Coast of Southern Sumatra, Indonesia. Advances in Meteorology, 2021, 2021, 1-13.	1.6	11
52	A local-to-large scale view of Maritime Continent rainfall: control by ENSO, MJO and equatorial waves. Journal of Climate, 2021, , 1-52.	3.2	17
53	Diurnal Cycle of Precipitation Over the Maritime Continent Under Modulation of MJO: Perspectives From Cloudâ€Permitting Scale Simulations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032529.	3.3	21
54	Gravity Waves and Other Mechanisms Modulating the Diurnal Precipitation over One of the Rainiest Spots on Earth: Observations and Simulations in 2016. Monthly Weather Review, 2020, 148, 3933-3950.	1.4	12
55	Quasi-Biweekly Extensions of the Monsoon Winds and the Philippines Diurnal Cycle. Monthly Weather Review, 2021, , .	1.4	2
56	On the Sensitivity of the Simulated Diurnal Cycle of Precipitation to 3-Hourly Radiosonde Assimilation: A Case Study over the Western Maritime Continent. Monthly Weather Review, 2021, 149, 3449-3468.	1.4	5

#	Article	IF	CITATIONS
57	Diurnal cycle of precipitation and near-surface atmospheric conditions over the maritime continent: land–sea contrast and impacts of ambient winds in cloud-permitting simulations. Climate Dynamics, 2022, 58, 2421-2449.	3.8	3
58	Representations of Precipitation Diurnal Cycle in the Amazon as Simulated by Observationally Constrained Cloudâ€System Resolving and Global Climate Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002586.	3.8	7
59	Propagation of Convective Systems Associated with Early Morning Precipitation and Different Northerly Background Winds over Western Java. Journal of the Meteorological Society of Japan, 2022, 100, 99-113.	1.8	7
60	Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 338-350.	2.7	9
61	Meridional Migration of Diurnal Heavy Rainfall during Extreme Events over Java and Surrounding Waters and Its Relation to Madden Julian Oscillation. IOP Conference Series: Earth and Environmental Science, 2021, 893, 012016.	0.3	0
62	Understanding the role of topography on the diurnal cycle of precipitation in the Maritime Continent during MJO propagation. Climate Dynamics, 2022, 58, 3003-3019.	3.8	6
63	Influences of MJO on the Diurnal Variation and Associated Offshore Propagation of Rainfall near Western Coast of Sumatra. Atmosphere, 2022, 13, 330.	2.3	8
66	A Climatology of Mesoscale Convective Systems in Northwest Mexico during the North American Monsoon. Atmosphere, 2022, 13, 665.	2.3	5
67	Diurnal to Intraseasonal Precipitation Variation Around the Northwestern Coast of Luzon Island: Results From YMCâ€BSM 2018 Field Campaign. Geophysical Research Letters, 2022, 49, .	4.0	1
68	Mechanisms for extreme precipitation changes in a tropical archipelago. Journal of Climate, 2022, , 1-53.	3.2	0
69	Sensitivity of Cloudâ€Radiative Effects to Cloud Fraction Parametrizations in Tropical, Mid‣atitude and Arctic Kilometreâ€Scale Simulations. Quarterly Journal of the Royal Meteorological Society, 0, , .	2.7	2
70	Retrospective sub-seasonal forecasts of extreme precipitation events in the Arabian Peninsula using convective-permitting modeling. Climate Dynamics, 0, , .	3.8	1
71	Highâ€resolution simulations of tropical island thunderstorms: Does an increase in resolution improve the representation of extreme rainfall?. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 3303-3318.	2.7	2
72	Role of air-sea interaction in propagation of early morning precipitation over the northern coast of West Java. AIP Conference Proceedings, 2022, , .	0.4	O
73	The Tropical Diurnal Cycle under Varying States of the Monsoonal Background Wind. Journals of the Atmospheric Sciences, 2023, 80, 235-258.	1.7	3
74	A Case Study of a West Sumatra Squall Line Using Satellite Observations. Monthly Weather Review, 2023, 151, 523-543.	1.4	1
75	The effect of cross-scale modulation of synoptic systems by the cold air pool on autumn nighttime rainfall over Hainan Island. Atmospheric Research, 2023, 283, 106563.	4.1	0
76	Climatological characteristics of nocturnal eastwardâ€propagating diurnal precipitation peak over South India during summer monsoon: Role of monsoon lowâ€level circulation and gravity waves. Meteorological Applications, 2022, 29, .	2.1	2

#	Article	IF	CITATIONS
77	A global survey of diurnal offshore propagation of rainfall. Nature Communications, 2022, 13, .	12.8	7
78	Numerical Investigations of Precise Wind Field in Main Landing Area during the Landing Phase of "Shen Zhou―Series Spacecraft Mission. Aerospace, 2023, 10, 37.	2.2	1
80	The Diurnal Cycle of East Pacific Convection, Moisture, and CYGNSS Wind Speed and Fluxes. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	1
81	Characteristics of diurnal condensational heating at the Western Maritime Continent during MJO eastward propagation. Climate Dynamics, 0, , .	3.8	0
82	Diurnal Cycle of Wind Speed and Precipitation Over the Northern Australia Coastal Region: CYGNSS Observations. Geophysical Research Letters, 2023, 50, .	4.0	1
83	The Use of Regional Data Assimilation to Improve Numerical Simulations of Diurnal Characteristics of Precipitation during an Active Madden–Julian Oscillation Event over the Maritime Continent. Remote Sensing, 2023, 15, 2405.	4.0	0
84	Diurnal Rainfall Pattern in Riau Islands as Observed by Rain Gauge and IMERG Data. Springer Proceedings in Physics, 2023, , 317-324.	0.2	0
85	Diurnal Cycle of Tropospheric Winds over West Sumatra and Its Variability Associated with Various Climate and Weather Modes. Atmosphere, 2023, 14, 1521.	2.3	0
86	Impacts of tidal mixing on diurnal and intraseasonal air-sea interactions in the Maritime Continent. Deep-Sea Research Part II: Topical Studies in Oceanography, 2023, 212, 105343.	1.4	0
87	The Diurnal Cycle of Rainfall and Deep Convective Clouds Around Sumatra and the Associated MJOâ€Induced Variability During Austral Summer in Himawariâ€8. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	1
88	The role of sea surface temperature in shaping the characteristics of future convective afternoon rainfall in Taiwan. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	1
89	Validating IMERG data for diurnal rainfall analysis across the Indonesian maritime continent using gauge observations. Remote Sensing Applications: Society and Environment, 2024, 34, 101186.	1.5	0
90	SINGV-RCM: the convection-permitting regional climate model for Singapore. Climate Dynamics, 0, , .	3.8	О