Replication and shedding of MERS-CoV in Jamaican fru

Scientific Reports 6, 21878 DOI: 10.1038/srep21878

Citation Report

#	Article	IF	CITATIONS
1	MERS-CoV at the Animal–Human Interface: Inputs on Exposure Pathways from an Expert-Opinion Elicitation. Frontiers in Veterinary Science, 2016, 3, 88.	0.9	19
2	Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir. Virology Journal, 2016, 13, 87.	1.4	228
3	Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Scientific Reports, 2016, 6, 37796.	1.6	51
4	Bat–man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations. Cell Death Discovery, 2016, 2, 16048.	2.0	121
5	SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 2016, 14, 523-534.	13.6	2,752
6	Broad and Temperature Independent Replication Potential of Filoviruses on Cells Derived From Old and New World Bat Species. Journal of Infectious Diseases, 2016, 214, S297-S302.	1.9	22
7	DRodVir: A resource for exploring the virome diversity in rodents. Journal of Genetics and Genomics, 2017, 44, 259-264.	1.7	23
8	Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus. One Health, 2017, 3, 34-40.	1.5	14
9	Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infection, Genetics and Evolution, 2017, 48, 10-18.	1.0	56
10	Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt. Emerging Microbes and Infections, 2017, 6, 1-7.	3.0	55
11	MERS-CoV spike protein: a key target for antivirals. Expert Opinion on Therapeutic Targets, 2017, 21, 131-143.	1.5	236
12	Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats. MSphere, 2017, 2, .	1.3	20
13	Avian Viral Pathogens in Swallows, Zimbabwe. EcoHealth, 2017, 14, 805-809.	0.9	18
14	Tissue Distribution of the MERS-Coronavirus Receptor in Bats. Scientific Reports, 2017, 7, 1193.	1.6	34
15	Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Scientific Reports, 2017, 7, 2232.	1.6	79
16	Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants. Journal of Virology, 2017, 91, .	1.5	69
17	Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy. Virology Journal, 2017, 14, 239.	1.4	53
18	Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances. F1000Research, 2017, 6, 1628.	0.8	23

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Tools to study pathogen-host interactions in bats. Virus Research, 2018, 248, 5-12.		1.1	29
20	Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle I Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Bindin Infectious Diseases, 2018, 218, 197-207.	East Respiratory g. Journal of	1.9	80
21	Metabolic cost of acute phase response in the frugivorous bat, Artibeus lituratus. Mam 2018, 63, 397-404.	mal Research,	0.6	14
22	SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus Viruses, 2018, 10, 727.	aegyptiacus).	1.5	21
23	Commentary: Phyllostomid bat microbiome composition is associated to host phyloger strategies. Frontiers in Microbiology, 2018, 9, 2863.	וץ and feeding	1.5	2
24	Replication of MERS and SARS coronaviruses in bat cells offers insights to their ancestr Emerging Microbes and Infections, 2018, 7, 1-11.	al origins.	3.0	33
25	Ebola Virus Maintenance: If Not (Only) Bats, What Else?. Viruses, 2018, 10, 549.		1.5	44
26	Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavi accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidy Scientific Reports, 2018, 8, 9778.	rus is /l peptidase 4.	1.6	33
27	Astrovirus infections induce age-dependent dysbiosis in gut microbiomes of bats. ISME 12, 2883-2893.	Journal, 2018,	4.4	38
28	Prospects for a MERS-CoV spike vaccine. Expert Review of Vaccines, 2018, 17, 677-686	5.	2.0	106
29	Adaptive Evolution of MERS-CoV to Species Variation in DPP4. Cell Reports, 2018, 24,	1730-1737.	2.9	108
30	Detection of MERS-CoV antigen on formalin-fixed paraffin-embedded nasal tissue of alg immunohistochemistry using human monoclonal antibodies directed against different spike protein. Veterinary Immunology and Immunopathology, 2019, 218, 109939.	acas by epitopes of the	0.5	5
31	Bat Influenza A(HL18NL11) Virus in Fruit Bats, Brazil. Emerging Infectious Diseases, 20	19, 25, 333-337.	2.0	34
32	Experimental Zika virus infection of Jamaican fruit bats (Artibeus jamaicensis) and poss virus into brain via activated microglial cells. PLoS Neglected Tropical Diseases, 2019, 1	ble entry of 3, e0007071.	1.3	29
33	Species-Specific Colocalization of Middle East Respiratory Syndrome Coronavirus Attac Entry Receptors. Journal of Virology, 2019, 93, .	hment and	1.5	33
34	Bat tolerance to viral infections. Nature Microbiology, 2019, 4, 728-729.		5.9	45
35	Lack of Middle East Respiratory Syndrome Coronavirus Transmission in Rabbits. Viruses	s, 2019, 11, 381.	1.5	9
36	Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses, 2019, 11, 28	30	1.5	55

CITATION REPORT

#	Article	IF	CITATIONS
37	Disentangling serology to elucidate henipa―and filovirus transmission in Madagascar fruit bats. Journal of Animal Ecology, 2019, 88, 1001-1016.	1.3	36
38	Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses, 2019, 11, 192.	1.5	104
39	Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiology, 2019, 4, 789-799.	5.9	245
40	Enhanced Ability of Oligomeric Nanobodies Targeting MERS Coronavirus Receptor-Binding Domain. Viruses, 2019, 11, 166.	1.5	23
41	Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat. Viruses, 2019, 11, 152.	1.5	33
42	Activation of RNase L in Egyptian Rousette Bat-Derived RoNi/7 Cells Is Dependent Primarily on OAS3 and Independent of MAVS Signaling. MBio, 2019, 10, .	1.8	17
43	Epidemiology and predictors of survival of MERS-CoV infections in Riyadh region, 2014–2015. Journal of Infection and Public Health, 2019, 12, 171-177.	1.9	22
44	Bats and Coronaviruses. Viruses, 2019, 11, 41.	1.5	357
45	Advances in MERS-CoV Vaccines and Therapeutics Based on the Receptor-Binding Domain. Viruses, 2019, 11, 60.	1.5	97
46	Rousettus aegyptiacus Bats Do Not Support Productive Nipah Virus Replication. Journal of Infectious Diseases, 2020, 221, S407-S413.	1.9	19
47	Novel Insights Into Immune Systems of Bats. Frontiers in Immunology, 2020, 11, 26.	2.2	212
48	SARS-CoV, MERS-CoV, and 2019-nCoV viruses: an overview of origin, evolution, and genetic variations. VirusDisease, 2020, 31, 411-423.	1.0	32
49	SARS-CoV-2 as a Factor to Disbalance the Renin–Angiotensin System: A Suspect in the Case of Exacerbated IL-6 Production. Journal of Immunology, 2020, 205, 1198-1206.	0.4	18
50	Fast Response to Superspreading: Uncertainty and Complexity in the Context of COVID-19. International Journal of Environmental Research and Public Health, 2020, 17, 7884.	1.2	24
51	Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathogens, 2020, 16, e1008758.	2.1	127
52	Origin and cross-species transmission of bat coronaviruses in China. Nature Communications, 2020, 11, 4235.	5.8	264
53	From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respiratory Research, 2020, 21, 224.	1.4	429
54	Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology, 2020, 13, 877-891.	2.7	155

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
55	Bat-Borne Coronaviruses in Jordan and Saudi Arabia: A Threat to Public Health?. Viruses, 2020, 12, 1413.	1.5	4
56	Zoonotic origins and animal hosts of coronaviruses causing human disease pandemics: A review. Onderstepoort Journal of Veterinary Research, 2020, 87, e1-e9.	0.6	23
57	Infection of bat and human intestinal organoids by SARS-CoV-2. Nature Medicine, 2020, 26, 1077-1083.	15.2	441
58	Bat-borne virus diversity, spillover and emergence. Nature Reviews Microbiology, 2020, 18, 461-471.	13.6	298
59	Positive Selection of a Serine Residue in Bat IRF3 Confers Enhanced Antiviral Protection. IScience, 2020, 23, 100958.	1.9	34
60	The World Goes Bats: Living Longer and Tolerating Viruses. Cell Metabolism, 2020, 32, 31-43.	7.2	89
61	Selection of viral variants during persistent infection of insectivorous bat cells with Middle East respiratory syndrome coronavirus. Scientific Reports, 2020, 10, 7257.	1.6	22
62	Molecular Basis of Binding between Middle East Respiratory Syndrome Coronavirus and CD26 from Seven Bat Species. Journal of Virology, 2020, 94, .	1.5	16
63	Animal models for the risk assessment of viral pandemic potential. Laboratory Animal Research, 2020, 36, 11.	1.1	5
64	Asymptomatic Infection of Marburg Virus Reservoir Bats Is Explained by a Strategy of Immunoprotective Disease Tolerance. Current Biology, 2021, 31, 257-270.e5.	1.8	51
65	Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Human Vaccines and Immunotherapeutics, 2021, 17, 62-83.	1.4	25
66	COVIDâ€19, varying genetic resistance to viral disease and immune tolerance checkpoints. Immunology and Cell Biology, 2021, 99, 177-191.	1.0	10
67	Lessons from the host defences of bats, a unique viral reservoir. Nature, 2021, 589, 363-370.	13.7	217
68	Can NLRP3 inhibitors improve on dexamethasone for the treatment of COVID-19?. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100048.	1.7	6
69	The risk from SARS oVâ€2 to bat species in england and mitigation options for conservation field workers. Transboundary and Emerging Diseases, 2022, 69, 694-705.	1.3	11
70	Coronaviruses in Bats: A Review for the Americas. Viruses, 2021, 13, 1226.	1.5	13
71	Learning from Bats to Escape from Potent or Severe Viral Infections. , 0, , .		4
72	Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses. Viruses, 2021, 13, 1509.	1.5	18

#	Article	IF	CITATIONS
73	Role of body temperature variations in bat immune response to viral infections. Journal of the Royal Society Interface, 2021, 18, 20210211.	1.5	5
74	Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes?. Frontiers in Microbiology, 2021, 12, 682603.	1.5	10
75	Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virology Journal, 2021, 18, 166.	1.4	105
76	Distinct interferon response in bat and other mammalian cell lines infected with Pteropine orthoreovirus. Virus Genes, 2021, 57, 510-520.	0.7	10
78	Characterization of bat coronaviruses: a latent global threat. Journal of Veterinary Science, 2021, 22, e72.	0.5	1
79	Application of a quantitative entry assessment model to compare the relative risk of incursion of zoonotic bat-borne viruses into European Union Member States. Microbial Risk Analysis, 2017, 7, 8-28.	1.3	1
80	A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. Journal of General Virology, 2017, 98, 2297-2309.	1.3	44
82	Challenge infection model for MERS-CoV based on naturally infected camels. Virology Journal, 2020, 17, 77.	1.4	8
83	Middle East Respiratory Syndrome Coronavirus and the One Health concept. PeerJ, 2019, 7, e7556.	0.9	29
84	Establishment of Intestinal Organoid from Rousettus leschenaultii and the Susceptibility to Bat-Associated Viruses, SARS-CoV-2 and Pteropine Orthoreovirus. International Journal of Molecular Sciences, 2021, 22, 10763.	1.8	14
86	Hematologic Values of Jamaican Fruit Bats (<i>Artibeus jamaicensis</i>) and the Effects of Isoflurane Anesthesia. Journal of the American Association for Laboratory Animal Science, 2020, 59, 275-281.	0.6	6
87	Liberty and Pandemics: A Libertarian Approach to the Global COVID-19 Situation. SSRN Electronic Journal, 0, , .	0.4	0
88	Viral Zoonoses: Wildlife Perspectives. Livestock Diseases and Management, 2020, , 339-378.	0.5	0
89	A comprehensive profiling of innate immune responses in <i>Eptesicus</i> bat cells. Microbiology and Immunology, 2022, 66, 97-112.	0.7	8
90	Animal models for SARS oVâ€⊋ infection and pathology. MedComm, 2021, 2, 548-568.	3.1	19
91	Advances in mRNA and other vaccines against MERS-CoV. Translational Research, 2022, 242, 20-37.	2.2	11
92	Ecology, evolution and spillover of coronaviruses from bats. Nature Reviews Microbiology, 2022, 20, 299-314.	13.6	108
93	Striking lineage diversity of severe acute respiratory syndrome coronavirus 2 from non-human sources. One Health, 2022, 14, 100363.	1.5	3

#	Article	IF	CITATIONS
95	In-vitro and In-vivo Experimental Models for MERS-CoV, SARS-CoV and SARS-CoV-2 Viral Infection: A Compendious Review. Recent Patents on Biotechnology, 2022, 16, .	0.4	1
96	Middle East respiratory syndrome coronavirus infection in camelids. Veterinary Pathology, 2022, 59, 546-555.	0.8	6
97	Different but Not Unique: Deciphering the Immunity of the Jamaican Fruit Bat by Studying Its Viriome. Viruses, 2022, 14, 238.	1.5	3
98	Serum Proteomics Identifies Immune Pathways and Candidate Biomarkers of Coronavirus Infection in Wild Vampire Bats. Frontiers in Virology, 2022, 2, .	0.7	6
99	Reduced IFN-ß inhibitory activity of Lagos bat virus phosphoproteins in human compared to Eidolon helvum bat cells. PLoS ONE, 2022, 17, e0264450.	1.1	4
101	Testing bats in rehabilitation for <scp>SARS oV</scp> â€2 before release into the wild. Conservation Science and Practice, 2022, 4, .	0.9	8
102	Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Molecular Ecology, 2022, 31, 3342-3359.	2.0	16
103	From bats to pangolins: new insights into species differences in the structure and function of the immune system. Innate Immunity, 2022, 28, 107-121.	1.1	4
104	Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system?. IScience, 2022, 25, 104782.	1.9	8
105	Molecular, ecological, and behavioral drivers of the bat-virus relationship. IScience, 2022, 25, 104779.	1.9	16
106	Lessons from SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections: What We Know So Far. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-13.	0.7	5
107	Immunological Insights of Bat Coexistence with Viruses and beyond: A Holistic Review. , 0, , .		0
108	Landscape and age dynamics of immune cells in the Egyptian rousette bat. Cell Reports, 2022, 40, 111305.	2.9	15
109	Transcriptional dynamics of transposable elements in the type I IFN response in Myotis lucifugus cells. Mobile DNA, 2022, 13, .	1.3	3
110	A study of viral pathogens in bat species in the Iberian Peninsula: identification of new coronavirus genetic variants. International Journal of Veterinary Science and Medicine, 2022, 10, 100-110.	0.8	3
111	Coronaviruses of wild and semidomesticated animals with the potential for zoonotic transmission. , 2023, , 275-340.		0
112	Middle Eastern respiratory syndrome. , 2023, , 125-172.		0
113	Single-cell transcriptome analysis of the inÂvivo response to viral infection in the cave nectar bat Eonycteris spelaea. Immunity, 2022, 55, 2187-2205.e5.	6.6	7

		CITATION REPORT		
#	Article		IF	CITATIONS
114	Analogous comparison unravels heightened antiviral defense and boosted viral infection immunosuppression in bat organoids. Signal Transduction and Targeted Therapy, 2022	n upon 2, 7, .	7.1	5
116	Urban Bats, Public Health, and Human-Wildlife Conflict. Fascinating Life Sciences, 202	2, , 153-166.	0.5	2
117	Bat Coronaviruses in the World. Journal of Global Humanities and Social Sciences, 202	3, , 1-34.	0.3	0
118	Strengthening a One Health approach to emerging zoonoses. Facets, 2023, 8, 1-64.		1.1	3
120	Histopathological and health risk assessment of heavy metals in the straw-colored fruithely helvum, in Nigeria. Environmental Monitoring and Assessment, 2023, 195, .	: bat, Eidolon	1.3	1
121	Infection Studies with Airway Organoids from <i>Carollia perspicillata</i> Indicate Tha Respiratory Epithelium Is Not a Barrier for Interspecies Transmission of Influenza Viruse Microbiology Spectrum, 2023, 11, .	: the es.	1.2	3
122	An overview of the recent progress in Middle East Respiratory Syndrome Coronavirus (drug discovery. Expert Opinion on Drug Discovery, 2023, 18, 385-400.	MERS-CoV)	2.5	0
136	Bioaccumulation and foraging behavior. , 2024, , 261-285.			0