Formaldehyde stabilization facilitates lignin monomer periode depolymentization

Science 354, 329-333 DOI: 10.1126/science.aaf7810

Citation Report

#	Article	IF	CITATIONS
4	Production of Glucosamine from Chitin by Coâ€solvent Promoted Hydrolysis and Deacetylation. ChemCatChem, 2017, 9, 2790-2796.	1.8	66
5	Ligninâ€Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification. ChemSusChem, 2017, 10, 830-835.	3.6	41
6	Sustainable sources need reliable standards. Faraday Discussions, 2017, 202, 281-301.	1.6	8
7	Effect of sodium dodecyl sulfate and cetyltrimethylammonium bromide catanionic surfactant on the enzymatic hydrolysis of Avicel and corn stover. Cellulose, 2017, 24, 669-676.	2.4	13
8	Selectivity Control for Cellulose to Diols: Dancing on Eggs. ACS Catalysis, 2017, 7, 1939-1954.	5.5	162
9	Selective production of mono-aromatics from lignocellulose over Pd/C catalyst: the influence of acid co-catalysts. Faraday Discussions, 2017, 202, 141-156.	1.6	69
10	Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization. ChemSusChem, 2017, 10, 2111-2115.	3.6	36
11	Molecular Products and Fundamentally Based Reaction Pathways in the Gas-Phase Pyrolysis of the Lignin Model Compound <i>p</i> -Coumaryl Alcohol. Journal of Physical Chemistry A, 2017, 121, 3352-3371.	1.1	34
12	Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4709-4714.	3.3	107
13	Expanding the biomass derived chemical space. Chemical Science, 2017, 8, 4724-4738.	3.7	101
14	Microbial treatment of industrial lignin: Successes, problems and challenges. Renewable and Sustainable Energy Reviews, 2017, 77, 1179-1205.	8.2	85
15	P doped Co ₂ Mo ₃ Se nanosheets grown on carbon fiber cloth as an efficient hybrid catalyst for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 12043-12047.	5.2	31
16	Lignin Acidolysis Predicts Formaldehyde Generation in Pine Wood. ACS Sustainable Chemistry and Engineering, 2017, 5, 4830-4836.	3.2	22
17	Towards high-yield lignin monomer production. Green Chemistry, 2017, 19, 3752-3758.	4.6	121
18	Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 2017, 3, e1603301.	4.7	352
19	Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy and Environmental Science, 2017, 10, 1551-1557.	15.6	503
20	Redox Catalysis Facilitates Lignin Depolymerization. ACS Central Science, 2017, 3, 621-628.	5.3	216
21	Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts. Energy, 2017, 135, 1-13	4.5	27

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
22	Highly effective C–C bond cleavage of lignin model compounds. Green Chemistry, 2017, 19, 3135-3141.	4.6	65
23	Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts. Applied Catalysis A: General, 2017, 542, 163-173.	2.2	41
24	Visible-Light-Driven Self-Hydrogen Transfer Hydrogenolysis of Lignin Models and Extracts into Phenolic Products. ACS Catalysis, 2017, 7, 4571-4580.	5.5	191
25	Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al ₂ O ₃ catalyst pellets during lignin-first fractionation. Green Chemistry, 2017, 19, 3313-3326.	4.6	251
26	Preparation of Concrete Water Reducer via Fractionation and Modification of Lignin Extracted from Pine Wood by Formic Acid. ACS Sustainable Chemistry and Engineering, 2017, 5, 4214-4222.	3.2	32
27	Chemoselective Methylation of Phenolic Hydroxyl Group Prevents Quinone Methide Formation and Repolymerization During Lignin Depolymerization. ACS Sustainable Chemistry and Engineering, 2017, 5, 3913-3919.	3.2	55
28	Promoting Lignin Depolymerization and Restraining the Condensation via an Oxidationâ^'Hydrogenation Strategy. ACS Catalysis, 2017, 7, 3419-3429.	5.5	172
29	Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Current Opinion in Biotechnology, 2017, 45, 120-126.	3.3	95
30	Probing the Lignin Disassembly Pathways with Modified Catalysts Based on Cu-Doped Porous Metal Oxides. ACS Sustainable Chemistry and Engineering, 2017, 5, 3158-3169.	3.2	42
31	Hydrogen generation from glucose catalyzed by organoruthenium catalysts under mild conditions. Chemical Communications, 2017, 53, 4230-4233.	2.2	10
32	Effects of Substituents on the SN2 Free Energy of Activation for α-O-4 Lignin Model Compounds. Journal of Physical Chemistry C, 2017, 121, 7603-7614.	1.5	5
33	Phenolic acetals from lignins of varying compositions via iron(<scp>iii</scp>) triflate catalysed depolymerisation. Green Chemistry, 2017, 19, 2774-2782.	4.6	136
34	An efficient CoS ₂ /CoSe ₂ hybrid catalyst for electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 2504-2507.	5.2	91
35	Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016.	2.3	84
36	Nanocellulose: Common Strategies for Processing of Nanocomposites. ACS Symposium Series, 2017, , 203-225.	0.5	9
37	Insights of biomass recalcitrance in natural <i>Populus trichocarpa</i> variants for biomass conversion. Green Chemistry, 2017, 19, 5467-5478.	4.6	82
38	Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins. Green Chemistry, 2017, 19, 5131-5143.	4.6	74
39	A combined theoretical-experimental investigation on the mechanism of lignin pyrolysis: Role of heating rates and residence times. Journal of Analytical and Applied Pyrolysis, 2017, 128, 208-216.	2.6	42

	Сітатіої	CITATION REPORT	
#	Article	IF	CITATIONS
40	Flowthrough Reductive Catalytic Fractionation of Biomass. Joule, 2017, 1, 613-622.	11.7	197
41	Structural Characteristics of Lignin Macromolecules from Different <i>Eucalyptus</i> Species. ACS Sustainable Chemistry and Engineering, 2017, 5, 11618-11627.	3.2	122
42	Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall. ACS Applied Materials & Interfaces, 2017, 9, 36154-36163.	4.0	175
43	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. Angewandte Chemie - International Edition, 2017, 56, 14868-14872.	7.2	72
44	Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresource Technology, 2017, 245, 1184-1193.	4.8	209
45	Rapid and near-complete dissolution of wood lignin at â‰80°C by a recyclable acid hydrotrope. Science Advances, 2017, 3, e1701735.	4.7	276
46	Bio-based amines through sustainable heterogeneous catalysis. Green Chemistry, 2017, 19, 5303-5331.	4.6	210
47	Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide. ACS Catalysis, 2017, 7, 7535-7542.	5.5	198
48	A strategy for generating high-quality cellulose and lignin simultaneously from woody biomass. Green Chemistry, 2017, 19, 4849-4857.	4.6	82
49	Selective Utilization of the Methoxy Group in Lignin to Produce Acetic Acid. Angewandte Chemie, 2017, 129, 15064-15068.	1.6	13
50	Effect of Methoxy Substituent Position on Thermal Properties and Solvent Resistance of Lignin-Inspired Poly(dimethoxyphenyl methacrylate)s. ACS Macro Letters, 2017, 6, 802-807.	2.3	54
51	Efficient and Product-Controlled Depolymerization of Lignin Oriented by Raney Ni Cooperated with Cs x H3 â^' x PW12O40. Bioenergy Research, 2017, 10, 1155-1162.	2.2	16
52	Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nature Communications, 2017, 8, 16104.	5.8	346
53	Blend configuration in functional polymeric materials with a high lignin content. Faraday Discussions, 2017, 202, 43-59.	1.6	14
54	Insight into the effect of ZnCl2 on analytical pyrolysis behavior of cellulolytic enzyme corn stover lignin. Journal of Analytical and Applied Pyrolysis, 2017, 127, 444-450.	2.6	23
55	Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass. Bioresource Technology, 2017, 244, 496-508.	4.8	12
56	Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresource Technology, 2017, 245, 419-425.	4.8	82
57	The effect of flash pyrolysis temperature on compositional variability of pyrolyzates from birch lignin. Journal of Analytical and Applied Pyrolysis, 2017, 127, 211-222.	2.6	20

#	Article	IF	CITATIONS
58	Fractionation and DOSY NMR as Analytical Tools: From Model Polymers to a Technical Lignin. ACS Omega, 2017, 2, 8466-8474.	1.6	26
59	Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chemistry, 2017, 19, 5767-5771.	4.6	164
60	Sell a dummy: Adjacent functional group modification strategy for the catalytic cleavage of lignin β–O–4 linkage. Chinese Journal of Catalysis, 2017, 38, 1102-1107.	6.9	32
61	Biobased Epoxy Resins from Deconstructed Native Softwood Lignin. Biomacromolecules, 2017, 18, 2640-2648.	2.6	97
62	Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes. World Journal of Microbiology and Biotechnology, 2017, 33, 125.	1.7	23
63	Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition. Polymers, 2017, 9, 428.	2.0	63
64	Catalytic Acetalization: An Efficient Strategy for High-Value Utilization of Biodiesel-Derived Glycerol. Catalysts, 2017, 7, 184.	1.6	9
65	Production of isoprene, one of the high-density fuel precursors, from peanut hull using the high-efficient lignin-removal pretreatment method. Biotechnology for Biofuels, 2017, 10, 297.	6.2	15
66	Production of vanillin from lignin: The relationship between β-O-4 linkages and vanillin yield. Industrial Crops and Products, 2018, 116, 116-121.	2.5	106
67	Acid-Free Conversion of Cellulose to 5-(Hydroxymethyl)furfural Catalyzed by Hot Seawater. Industrial & Engineering Chemistry Research, 2018, 57, 3545-3553.	1.8	61
68	Kinetic Studies of Lignin Solvolysis and Reduction by Reductive Catalytic Fractionation Decoupled in Flow-Through Reactors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7951-7959.	3.2	106
69	Branching-First: Synthesizing C–C Skeletal Branched Biobased Chemicals from Sugars. ACS Sustainable Chemistry and Engineering, 2018, 6, 7940-7950.	3.2	5
70	Coupling organosolv fractionation and reductive depolymerization of woody biomass in a two-step catalytic process. Green Chemistry, 2018, 20, 2308-2319.	4.6	74
71	Selective Fragmentation of Biorefinery Corncob Lignin into <i>p</i> â€Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst. ChemSusChem, 2018, 11, 2114-2123.	3.6	73
72	Efficient reductive depolymerization of hardwood and softwood lignins with Brookhart's iridium(iii) catalyst and hydrosilanes. Green Chemistry, 2018, 20, 1981-1986.	4.6	32
73	Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application. Chemical Engineering Journal, 2018, 346, 217-225.	6.6	146
74	Aqueous Choline Chloride: A Novel Solvent for Switchgrass Fractionation and Subsequent Hemicellulose Conversion into Furfural. ACS Sustainable Chemistry and Engineering, 2018, 6, 6910-6919.	3.2	56
75	Selective reductive cleavage of C O bond in lignin model compounds over nitrogen-doped carbon-supported iron catalysts. Molecular Catalysis, 2018, 452, 36-45.	1.0	42

#	Article	IF	CITATIONS
76	One-Pot Catalytic Transformation of Lignocellulosic Biomass into Alkylcyclohexanes and Polyols. ACS Sustainable Chemistry and Engineering, 2018, 6, 4390-4399.	3.2	62
77	Straightforward sustainability assessment of sugar-derived molecules from first-generation biomass. Current Opinion in Green and Sustainable Chemistry, 2018, 10, 11-20.	3.2	18
78	Covalent triazine framework catalytic oxidative cleavage of lignin models and organosolv lignin. Green Chemistry, 2018, 20, 1270-1279.	4.6	57
79	Lignin-First Approach to Biorefining: Utilizing Fenton's Reagent and Supercritical Ethanol for the Production of Phenolics and Sugars. ACS Sustainable Chemistry and Engineering, 2018, 6, 4958-4965.	3.2	58
80	Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chemistry, 2018, 20, 1050-1058.	4.6	66
81	Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 2018, 118, 614-678.	23.0	1,473
82	Seeking Brightness from Nature: J-Aggregation-Induced Emission in Cellulolytic Enzyme Lignin Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 3169-3175.	3.2	80
83	Protection Group Effects During α,γâ€Diol Lignin Stabilization Promote Highâ€Selectivity Monomer Production. Angewandte Chemie, 2018, 130, 1370-1374.	1.6	49
84	Lignin Conversion to Low-Molecular-Weight Aromatics via an Aerobic Oxidation-Hydrolysis Sequence: Comparison of Different Lignin Sources. ACS Sustainable Chemistry and Engineering, 2018, 6, 3367-3374.	3.2	118
85	NH ₂ OH–Mediated Lignin Conversion to Isoxazole and Nitrile. ACS Sustainable Chemistry and Engineering, 2018, 6, 3748-3753.	3.2	39
86	Lignin extraction and catalytic upgrading from genetically modified poplar. Green Chemistry, 2018, 20, 745-753.	4.6	96
87	Controlled deposition of titanium oxide overcoats by non-hydrolytic sol gel for improved catalyst selectivity and stability. Journal of Catalysis, 2018, 358, 50-61.	3.1	25
88	Carbon Modification of Nickel Catalyst for Depolymerization of Oxidized Lignin to Aromatics. ACS Catalysis, 2018, 8, 1614-1620.	5.5	134
89	Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nature Catalysis, 2018, 1, 82-92.	16.1	350
90	Lignin-first depolymerization of native corn stover with an unsupported MoS ₂ catalyst. RSC Advances, 2018, 8, 1361-1370.	1.7	35
91	Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 2018, 47, 852-908.	18.7	1,708
92	Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures. Bioresource Technology, 2018, 253, 214-219.	4.8	30
93	Size-dependent catalytic performance of ruthenium nanoparticles in the hydrogenolysis of a β-O-4 lignin model compound. Catalysis Science and Technology, 2018, 8, 735-745.	2.1	65

#	ARTICLE	IF	CITATIONS
94	Selective Oxidation of Lignin Model Compounds. ChemSusChem, 2018, 11, 2045-2050.	3.6	39
95	New Insights Toward Quantitative Relationships between Lignin Reactivity to Monomers and Their Structural Characteristics. ChemSusChem, 2018, 11, 2146-2155.	3.6	19
96	Selective hydrodeoxygenation of lignin \hat{l}^2 -O-4 model compounds and aromatic ketones promoted by palladium chloride with acidic CO2/MeOH system. Journal of CO2 Utilization, 2018, 24, 328-333.	3.3	9
97	Performances of Several Solvents on the Cleavage of Inter―and Intramolecular Linkages of Lignin in Corncob Residue. ChemSusChem, 2018, 11, 1494-1504.	3.6	34
98	Effect of structural characteristics on the depolymerization of lignin into phenolic monomers. Fuel, 2018, 223, 366-372.	3.4	55
99	Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 5694-5707.	3.2	140
100	Determination of \hat{I}^3 -valerolactone content in its synthesis and biorefinery processes by headspace analysis technique. Fuel, 2018, 224, 17-22.	3.4	3
101	Quenching of reactive intermediates during mechanochemical depolymerization of lignin. Catalysis Today, 2018, 302, 180-189.	2.2	47
102	Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts. Catalysis Today, 2018, 302, 190-195.	2.2	49
103	Imidazoliumâ€Based Ionic Liquids as Efficient Reagents for the Câ^'O Bond Cleavage of Lignin. ChemSusChem, 2018, 11, 439-448.	3.6	35
104	Kinetic study on catalytic dehydration of 1,2-propanediol and 1,2-butanediol over H-Beta for bio-ethylene glycol purification. Chemical Engineering Journal, 2018, 335, 530-538.	6.6	15
105	Mechanistic Investigation of Rice Straw Lignin Subunit Bond Cleavages and Subsequent Formation of Monophenols. ACS Sustainable Chemistry and Engineering, 2018, 6, 430-437.	3.2	20
106	Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent. Bioresource Technology, 2018, 249, 737-743.	4.8	32
107	<i>In Vitro</i> Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units. Applied and Environmental Microbiology, 2018, 84, .	1.4	41
108	Valorization of Grass Lignins: Swift and Selective Recovery of Pendant Aromatic Groups with Ozone. ACS Sustainable Chemistry and Engineering, 2018, 6, 71-76.	3.2	30
109	Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116. Metabolic Engineering, 2018, 45, 200-210.	3.6	125
110	Quantitative analysis of products from lignin depolymerisation in high-temperature water. European Polymer Journal, 2018, 99, 38-48.	2.6	28
111	Protection Group Effects During α,γâ€Điol Lignin Stabilization Promote High‣electivity Monomer Production. Angewandte Chemie - International Edition, 2018, 57, 1356-1360.	7.2	174

#	Article	IF	CITATIONS
112	Production of Jet Fuelâ€Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts. ChemSusChem, 2018, 11, 285-291.	3.6	88
113	Comparison of two multifunctional catalysts [M/Nb ₂ O ₅ (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catalysis Science and Technology, 2018, 8, 6129-6136.	2.1	26
114	Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomycarditis virus. RSC Advances, 2018, 8, 35888-35896.	1.7	23
115	Oxidative Biphasic Depolymerization (BPD) of Kraft Lignin at Low pH. ChemistrySelect, 2018, 3, 11680-11686.	0.7	11
116	Novel Kinetic Models of Xylan Dissolution and Degradation during Ethanol Based Auto-Catalyzed Organosolv Pretreatment of Bamboo. Polymers, 2018, 10, 1149.	2.0	11
117	Selective Primary Alcohol Oxidation of Lignin Streams from Butanolâ€Pretreated Agricultural Waste Biomass. ChemSusChem, 2019, 12, 542-548.	3.6	31
118	State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catalysis Science and Technology, 2018, 8, 6275-6296.	2.1	90
119	Localized Liquefaction Coupled with Rapid Solidification for Miniaturizing/Nanotexturizing Microfibrous Bioassemblies into Robust, Liquid-Resistant Sheet. ACS Sustainable Chemistry and Engineering, 2018, 6, 15697-15707.	3.2	5
120	An "ideal lignin―facilitates full biomass utilization. Science Advances, 2018, 4, eaau2968.	4.7	184
121	Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nature Catalysis, 2018, 1, 772-780.	16.1	442
122	Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nature Energy, 2018, 3, 969-977.	19.8	58
123	Advancement in technologies for the depolymerization of lignin. Fuel Processing Technology, 2018, 181, 115-132.	3.7	159
124	Recent Efforts to Prevent Undesirable Reactions From Fractionation to Depolymerization of Lignin: Toward Maximizing the Value From Lignin. Frontiers in Energy Research, 2018, 6, .	1.2	63
125	Cleavage of the β–O–4 bond in a lignin model compound using the acidic ionic liquid 1-H-3-methylimidazolium chloride as catalyst: a DFT mechanistic study. Journal of Molecular Modeling, 2018, 24, 322.	0.8	17
126	Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste. Biomass and Bioenergy, 2018, 119, 446-455.	2.9	21
127	A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. Journal of the American Chemical Society, 2018, 140, 16001-16005.	6.6	63
128	Effects of nascent char on ex-situ catalytic fast pyrolysis of wheat straw. Energy Conversion and Management, 2018, 177, 765-772.	4.4	30
129	Highly Active and Selective RuPd Bimetallic NPs for the Cleavage of the Diphenyl Ether C–O Bond. ACS Catalysis, 2018, 8, 11174-11183.	5.5	60

#	Article	IF	CITATIONS
130	Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization. Nature Chemistry, 2018, 10, 1222-1228.	6.6	66
132	Nitrogen-Doped Carbon-Modified Cobalt-Nanoparticle-Catalyzed Oxidative Cleavage of Lignin β-O-4 Model Compounds under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 14188-14196.	3.2	55
133	Lignin from Hardwood and Softwood Biomass as a Lubricating Additive to Ethylene Glycol. Molecules, 2018, 23, 537.	1.7	37
134	Formation and Fate of Carboxylic Acids in the Lignin-First Biorefining of Lignocellulose via H-Transfer Catalyzed by Raney Ni. ACS Sustainable Chemistry and Engineering, 2018, 6, 13408-13419.	3.2	52
135	Chemicals from lignin: Recent depolymerization techniques and upgrading extended pathways. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 33-39.	3.2	55
136	Microwave-assisted efficient depolymerization of alkaline lignin in methanol/formic acid media. Bioresource Technology, 2018, 264, 238-243.	4.8	65
137	A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers. Science Advances, 2018, 4, eaaq0266.	4.7	19
138	Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chemical Engineering Journal, 2018, 350, 173-180.	6.6	105
139	From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass. ACS Central Science, 2018, 4, 701-708.	5.3	116
140	Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions. Topics in Current Chemistry, 2018, 376, 30.	3.0	66
141	Variation in energy sorghum hybrid TX08001 biomass composition and lignin chemistry during development under irrigated and non-irrigated field conditions. PLoS ONE, 2018, 13, e0195863.	1.1	24
142	Effects of Sugars, Furans, and their Derivatives on Hydrodeoxygenation of Biorefinery Ligninâ€Rich Wastes to Hydrocarbons. ChemSusChem, 2018, 11, 2562-2568.	3.6	30
143	The effect of alkali-soluble lignin on purified core cellulase and hemicellulase activities during hydrolysis of extractive ammonia-pretreated lignocellulosic biomass. Royal Society Open Science, 2018, 5, 171529.	1.1	3
144	Direct production of lignin nanoparticles (LNPs) from wood using <i>p</i> -toluenesulfonic acid in an aqueous system at 80A°C: characterization of LNP morphology, size, and surface charge. Holzforschung, 2018, 72, 933-942.	0.9	32
145	Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus. Metabolic Engineering, 2018, 49, 69-83.	3.6	50
146	Catalytic lignocellulose biorefining in <i>n</i> -butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chemistry, 2018, 20, 4607-4619.	4.6	113
147	Slowing the Kinetics of Alumina Sol–Gel Chemistry for Controlled Catalyst Overcoating and Improved Catalyst Stability and Selectivity. Small, 2018, 14, e1801733.	5.2	14
148	Single-step conversion of lignin monomers to phenol: Bridging the gap between lignin and high-value chemicals. Chinese Journal of Catalysis, 2018, 39, 1445-1452.	6.9	81

# 149	ARTICLE Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microbial Cell Factories, 2018, 17, 115.	lF 1.9	CITATIONS
150	Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5â€Hydroxymethylfurfural, and Furfural. ChemSusChem, 2018, 11, 2758-2765.	3.6	60
151	Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chemical Science, 2018, 9, 6348-6360.	3.7	143
152	The current and emerging sources of technical lignins and their applications. Biofuels, Bioproducts and Biorefining, 2018, 12, 756-787.	1.9	131
153	Revisiting alkaline aerobic lignin oxidation. Green Chemistry, 2018, 20, 3828-3844.	4.6	114
154	Tuning hydroxyl groups for quality carbon fiber of lignin. Carbon, 2018, 139, 500-511.	5.4	48
155	Reductive Catalytic Fractionation of C-Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 11211-11218.	3.2	89
156	Catalytic Strategies Towards Lignin-Derived Chemicals. Topics in Current Chemistry, 2018, 376, 36.	3.0	75
157	Catalytic transfer hydrogenolysis as an efficient route in cleavage of lignin and model compounds. Green Energy and Environment, 2018, 3, 328-334.	4.7	76
158	Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica. Applied Energy, 2018, 229, 745-755.	5.1	20
159	Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresource Technology, 2018, 269, 465-475.	4.8	298
160	BBr ₃ -Assisted Preparation of Aromatic Alkyl Bromides from Lignin and Lignin Model Compounds. Journal of Organic Chemistry, 2018, 83, 11019-11027.	1.7	10
161	Selective C–C Bond Cleavage of Methylene-Linked Lignin Models and Kraft Lignin. ACS Catalysis, 2018, 8, 6507-6512.	5.5	86
162	An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: a mechanistic study. Green Chemistry, 2018, 20, 4224-4235.	4.6	132
163	Transformation of lignin model compounds to <i>N</i> -substituted aromatics <i>via</i> Beckmann rearrangement. Green Chemistry, 2018, 20, 3318-3326.	4.6	23
164	Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chemical Communications, 2018, 54, 7725-7745.	2.2	58
165	Selective catalytic tailoring of the H unit in herbaceous lignin for methyl <i>p</i> -hydroxycinnamate production over metal-based ionic liquids. Green Chemistry, 2018, 20, 3743-3752.	4.6	50
166	Dealkylation of Lignin to Phenol via Oxidation–Hydrogenation Strategy. ACS Catalysis, 2018, 8, 6837-6843.	5.5	74

#	Article	IF	CITATIONS
167	Iridium-catalysed primary alcohol oxidation and hydrogen shuttling for the depolymerisation of lignin. Green Chemistry, 2018, 20, 3214-3221.	4.6	50
168	Photocatalytic Cleavage of Aryl Ether in Modified Lignin to Non-phenolic Aromatics. ACS Catalysis, 2019, 9, 8843-8851.	5.5	55
169	Cleavage of lignin C–O bonds over a heterogeneous rhenium catalyst through hydrogen transfer reactions. Green Chemistry, 2019, 21, 5556-5564.	4.6	62
170	Fast Pyrolysis of Organosolv Lignin: Effect of Adding Stabilization Reagents to the Extraction Process. Energy & Fuels, 2019, 33, 8676-8682.	2.5	11
171	One-step alcoholysis of lignin into small-molecular aromatics: Influence of temperature, solvent, and catalyst. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00363.	2.1	7
172	A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction. Journal of the American Chemical Society, 2019, 141, 12545-12557.	6.6	73
173	Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnology Advances, 2019, 37, 107418.	6.0	36
174	Establishing lignin structure-upgradeability relationships using quantitative ¹ H– ¹³ C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) spectroscopy. Chemical Science, 2019, 10, 8135-8142.	3.7	50
175	Catalytic Processes For Lignin Valorization into Fuels and Chemicals (Aromatics). Current Catalysis, 2019, 8, 20-40.	0.5	8
176	Catalytic Scissoring of Lignin into Aryl Monomers. Advanced Materials, 2019, 31, e1901866.	11.1	112
177	Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, 2019, 291, 121878.	4.8	177
178	Catalytic Conversion of Lignin in Woody Biomass into Phenolic Monomers in Methanol/Water Mixtures without External Hydrogen. ACS Sustainable Chemistry and Engineering, 2019, 7, 13764-13773.	3.2	82
179	Mild Alkaline Pretreatment for Isolation of Native-Like Lignin and Lignin-Containing Cellulose Nanofibers (LCNF) from Crop Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 14135-14142.	3.2	72
180	Activation of lignin by selective oxidation: An emerging strategy for boosting lignin depolymerization to aromatics. Bioresource Technology, 2019, 291, 121885.	4.8	73
181	Nitrogen/sulfur co-doped ordered carbon nanoarrays for superior sulfur hosts in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2019, 554, 711-721.	5.0	41
182	A two-stage pretreatment using dilute sodium hydroxide solution followed by an ionic liquid at low temperatures: Toward construction of lignin-first biomass pretreatment. Bioresource Technology Reports, 2019, 7, 100286.	1.5	11
183	Rapid flow-through fractionation of biomass to preserve labile aryl ether bonds in native lignin. Green Chemistry, 2019, 21, 4625-4632.	4.6	36
184	Supported β-Mo ₂ C on Carbon Materials for Kraft Lignin Decomposition into Aromatic Monomers in Ethanol. Industrial & Engineering Chemistry Research, 2019, 58, 12602-12610.	1.8	17

#	Article	IF	CITATIONS
185	Selective Production of Diethyl Maleate via Oxidative Cleavage of Lignin Aromatic Unit. CheM, 2019, 5, 2365-2377.	5.8	62
186	Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. CheM, 2019, 5, 2520-2546.	5.8	337
187	Synthesis-Controlled α- and β-Molybdenum Carbide for Base-Promoted Transfer Hydrogenation of Lignin to Aromatic Monomers in Ethanol. Industrial & Engineering Chemistry Research, 2019, 58, 20270-20281.	1.8	31
188	Efficient Utilization and Conversion of Whole Components in Waste Biomass with One-Pot-Oriented Liquefaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 18142-18152.	3.2	8
189	Identification and structural characterization of oligomers formed from the pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104696.	2.6	22
190	From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. ACS Central Science, 2019, 5, 1707-1716.	5.3	82
191	Stepwise degradation of hydroxyl compounds to aldehydes <i>via</i> successive C–C bond cleavage. Chemical Communications, 2019, 55, 925-928.	2.2	22
192	Immobilized Ni Clusters in Mesoporous Aluminum Silica Nanospheres for Catalytic Hydrogenolysis of Lignin. ACS Sustainable Chemistry and Engineering, 2019, 7, 19034-19041.	3.2	32
193	Selective Hydrogenolysis of Lignin Catalyzed by the Cost-Effective Ni Metal Supported on Alkaline MgO. ACS Sustainable Chemistry and Engineering, 2019, 7, 19750-19760.	3.2	49
194	Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nature Communications, 2019, 10, 5123.	5.8	67
195	Lignin-KMC: A Toolkit for Simulating Lignin Biosynthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 18313-18322.	3.2	33
196	Depolymerization of Lignin over a Ni–Pd Bimetallic Catalyst Using Isopropanol as an in Situ Hydrogen Source. Energy & Fuels, 2019, 33, 8786-8793.	2.5	31
197	Controlled Preparation of Corncob Lignin Nanoparticles and their Size-Dependent Antioxidant Properties: Toward High Value Utilization of Lignin. ACS Sustainable Chemistry and Engineering, 2019, 7, 17166-17174.	3.2	47
198	New Generation Urban Biorefinery toward Complete Utilization of Waste Derived Lignocellulosic Biomass for Biofuels and Value-Added Products. Energy Procedia, 2019, 158, 918-925.	1.8	39
199	Catalyst Support and Solvent Effects during Lignin Depolymerization and Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2019, 7, 16952-16958.	3.2	37
200	Redox-neutral photocatalytic strategy for selective C–C bond cleavage of lignin and lignin models via PCET process. Science Bulletin, 2019, 64, 1658-1666.	4.3	64
201	Selective utilization of methoxy groups in lignin for <i>N</i> -methylation reaction of anilines. Chemical Science, 2019, 10, 1082-1088.	3.7	33
202	Valorization of native sugarcane bagasse lignin to bio-aromatic esters/monomers <i>via</i> a one pot oxidation–hydrogenation process. Green Chemistry, 2019, 21, 861-873.	4.6	31

#	Article	IF	CITATIONS
203	Sustainable hydrothermal self-assembly of hafnium–lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural. Green Chemistry, 2019, 21, 1421-1431.	4.6	78
204	Ligninâ€polystyrene composite foams through high internal phase emulsion polymerization. Polymer Engineering and Science, 2019, 59, 964-972.	1.5	16
205	Optimization of Lignin Extraction from Pine Wood for Fast Pyrolysis by Using a Î ³ -Valerolactone-Based Binary Solvent System. ACS Sustainable Chemistry and Engineering, 2019, 7, 4058-4068.	3.2	21
206	Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie, 2019, 131, 4988-4991.	1.6	59
207	Rapid Nondestructive Fractionation of Biomass (â‰⊉5â€min) by using Flowâ€Through Recyclable Formic Acid toward Whole Valorization of Carbohydrate and Lignin. ChemSusChem, 2019, 12, 1213-1221.	3.6	28
208	Catalytic Transfer Hydrogenolysis Reactions for Lignin Valorization to Fuels and Chemicals. Catalysts, 2019, 9, 43.	1.6	47
209	Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie - International Edition, 2019, 58, 4934-4937.	7.2	164
210	Synthesis and electrochemical performance of nickel–cobalt oxide/carbon nanocomposites for use in efficient oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2019, 30, 4144-4151.	1.1	11
211	High β-O-4 polymeric lignin and oligomeric phenols from flow-through fractionation of wheat straw using recyclable aqueous formic acid. Industrial Crops and Products, 2019, 131, 142-150.	2.5	17
212	Is oxidation–reduction a real robust strategy for lignin conversion? A comparative study on lignin and model compounds. Green Chemistry, 2019, 21, 803-811.	4.6	46
213	Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. Reaction Chemistry and Engineering, 2019, 4, 165-206.	1.9	108
214	In Situ Preparation of Ru@N-Doped Carbon Catalyst for the Hydrogenolysis of Lignin To Produce Aromatic Monomers. ACS Catalysis, 2019, 9, 5828-5836.	5.5	110
215	Selective Depolymerisation of γâ€Oxidised Lignin via NHC Catalysed Redox Esterification. ChemCatChem, 2019, 11, 3182-3186.	1.8	10
216	Sequential Catalytic Modification of the Lignin α-Ethoxylated β-O-4 Motif To Facilitate C–O Bond Cleavage by Ruthenium-Xantphos Catalyzed Hydrogen Transfer. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
217	Biomass Bricks with Excellent Indoor Formaldehyde Capture and Transformation Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 11493-11499.	3.2	9
218	Highly Efficient Lignin Depolymerization via Effective Inhibition of Condensation during Polyoxometalate-Mediated Oxidation. Energy & Fuels, 2019, 33, 6483-6490.	2.5	32
219	Nickel nanoparticles inlaid in lignin-derived carbon as high effective catalyst for lignin depolymerization. Bioresource Technology, 2019, 289, 121629.	4.8	51
220	Molybdenum atalyzed Oxidative Cleavage of Raw Poplar Sawdust into Monoâ€Aromatics and Organic Acid Esters. Asian Journal of Organic Chemistry, 2019, 8, 1348-1353.	1.3	1

#	Article	IF	Citations
221	Pretreatment of the corncob enzymatic residue with p-toluenesulfonic acid and valorization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 296-305.	2.3	3
222	Correlation of the catalytic performance with Nb2O5 surface properties in the hydrodeoxygenation of lignin model compound. Journal of Catalysis, 2019, 375, 202-212.	3.1	61
223	Recent progress in the thermal and catalytic conversion of lignin. Renewable and Sustainable Energy Reviews, 2019, 111, 422-441.	8.2	141
224	Preserving Both Lignin and Cellulose Chemical Structures: Flow-Through Acid Hydrotropic Fractionation at Atmospheric Pressure for Complete Wood Valorization. ACS Sustainable Chemistry and Engineering, 2019, 7, 10808-10820.	3.2	53
225	Supercritical methanol depolymerization and hydrodeoxygenation of lignin and biomass over reduced copper porous metal oxides. Green Chemistry, 2019, 21, 2988-3005.	4.6	63
226	Toward Sustainable and Complete Wood Valorization by Fractionating Lignin with Low Condensation Using an Acid Hydrotrope at Low Temperatures (â‰80 °C). Industrial & Engineering Chemistry Research, 2019, 58, 7063-7073.	1.8	34
227	Diol pretreatment to fractionate a reactive lignin in lignocellulosic biomass biorefineries. Green Chemistry, 2019, 21, 2788-2800.	4.6	109
228	Discovery of a Highly Active Catalyst for Hydrogenolysis of Câ^'O Bonds via Systematic, Multiâ€metallic Catalyst Screening. ChemCatChem, 2019, 11, 2743-2752.	1.8	7
229	Mild Redox-Neutral Depolymerization of Lignin with a Binuclear Rh Complex in Water. ACS Catalysis, 2019, 9, 4441-4447.	5.5	74
230	Breaking the Limit of Lignin Monomer Production via Cleavage of Interunit Carbon–Carbon Linkages. CheM, 2019, 5, 1521-1536.	5.8	167
231	Convergent production of 2,5-furandicarboxylic acid from biomass and CO ₂ . Green Chemistry, 2019, 21, 2923-2927.	4.6	52
232	Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. Nature Communications, 2019, 10, 2033.	5.8	127
233	Selective hydrodeoxygenation of lignin oil to valuable phenolics over Au/Nb ₂ O ₅ in water. Green Chemistry, 2019, 21, 3081-3090.	4.6	75
234	Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9062-9079.	3.2	89
235	Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review. Fuel Processing Technology, 2019, 191, 181-201.	3.7	206
236	Controlled Radical Polymerization of Crude Lignin Bio-oil Containing Multihydroxyl Molecules for Methacrylate Polymers and the Potential Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 9050-9060.	3.2	19
237	Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and pretreatment. Biotechnology for Biofuels, 2019, 12, 87.	6.2	67
238	Kinetic and mechanistic insights into hydrogenolysis of lignin to monomers in a continuous flow reactor. Green Chemistry, 2019, 21, 3561-3572.	4.6	56

#	Article	IF	CITATIONS
239	Using Fractionation and Diffusion Ordered Spectroscopy to Study Lignin Molecular Weight ChemistryOpen, 2019, 8, 601-605.	0.9	16
240	Catalytic valorization of the acetate fraction of biomass to aromatics and its integration into the carboxylate platform. Green Chemistry, 2019, 21, 2801-2809.	4.6	12
241	Tungsten-based catalysts for lignin depolymerization: the role of tungsten species in C–O bond cleavage. Catalysis Science and Technology, 2019, 9, 2144-2151.	2.1	28
244	Lignin structure and its engineering. Current Opinion in Biotechnology, 2019, 56, 240-249.	3.3	533
245	Mechanistic Insights into Formaldehyde-Blocked Lignin Condensation: A DFT Study. Journal of Physical Chemistry C, 2019, 123, 8640-8648.	1.5	14
246	Theoretical Elucidation of β-O-4 Bond Cleavage of Lignin Model Compound Promoted by Sulfonic Acid-Functionalized Ionic Liquid. Frontiers in Chemistry, 2019, 7, 78.	1.8	24
247	Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catalysis, 2019, 9, 4054-4064.	5.5	106
248	Bacterial conversion of depolymerized Kraft lignin. Biotechnology for Biofuels, 2019, 12, 56.	6.2	36
249	Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnology for Biofuels, 2019, 12, 51.	6.2	79
250	Metal–acid nanoplate-supported ultrafine Ru nanoclusters for efficient catalytic fractionation of lignin into aromatic alcohols. Green Chemistry, 2019, 21, 2739-2751.	4.6	28
251	Screening Solvents Based on Hansen Solubility Parameter Theory To Depolymerize Lignocellulosic Biomass Efficiently under Low Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 8678-8686.	3.2	31
252	Oxidative Depolymerization of Cellulolytic Enzyme Lignin over Silicotungvanadium Polyoxometalates. Polymers, 2019, 11, 564.	2.0	10
253	Physiological characterization and sequence analysis of a syringate-consuming Actinobacterium. Bioresource Technology, 2019, 285, 121327.	4.8	13
254	Post-synthesis deposition of mesoporous niobic acid with improved thermal stability by kinetically controlled sol–gel overcoating. Journal of Materials Chemistry A, 2019, 7, 23803-23811.	5.2	3
255	Preparation of Renewable Epoxy-Amine Resins With Tunable Thermo-Mechanical Properties, Wettability and Degradation Abilities From Lignocellulose- and Plant Oils-Derived Components. Frontiers in Chemistry, 2019, 7, 159.	1.8	26
256	Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports. Chinese Journal of Catalysis, 2019, 40, 609-617.	6.9	57
257	Green chemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 995-1077.	2.3	3
258	Heterogeneous Catalysis as a Tool for Production of Aromatic Compounds From Lignin. Studies in Surface Science and Catalysis, 2019, 178, 257-275.	1.5	11

#	Article	IF	CITATIONS
259	Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel, 2019, 244, 247-257.	3.4	76
260	Fragmentation of Woody Lignocellulose into Primary Monolignols and Their Derivatives. ACS Sustainable Chemistry and Engineering, 2019, 7, 4666-4674.	3.2	56
261	Aromatics from lignin through ultrafast reactions in water. Green Chemistry, 2019, 21, 1351-1360.	4.6	38
262	Near-complete removal of non-cellulosic components from bamboo by 1-pentanol induced organosolv pretreatment under mild conditions for robust cellulose enzymatic hydrolysis. Cellulose, 2019, 26, 3801-3814.	2.4	24
263	Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Nature Protocols, 2019, 14, 921-954.	5.5	91
264	Modifying MgO with Carbon for Valorization of Lignin to Aromatics. ACS Sustainable Chemistry and Engineering, 2019, 7, 5751-5763.	3.2	19
265	Functionalized spirolactones by photoinduced dearomatization of biaryl compounds. Chemical Science, 2019, 10, 3681-3686.	3.7	46
266	Corncob Biorefinery for Platform Chemicals and Lignin Coproduction: Metal Chlorides as Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 5309-5317.	3.2	18
267	Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresource Technology, 2019, 279, 228-233.	4.8	117
268	Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst. Green Chemistry, 2019, 21, 1498-1504.	4.6	65
270	Cloning and characterization of the lignin biosynthesis genes NcCSE and NcHCT from Neolamarckia cadamba. AMB Express, 2019, 9, 152.	1.4	3
271	Efficient Mild Organosolv Lignin Extraction in a Flow-Through Setup Yielding Lignin with High β-O-4 Content. Polymers, 2019, 11, 1913.	2.0	39
272	Extraordinary solution-processability of lignin in phenol–maleic anhydride and dielectric films with controllable properties. Journal of Materials Chemistry A, 2019, 7, 23162-23172.	5.2	16
273	Au–Pd alloy cooperates with covalent triazine frameworks for the catalytic oxidative cleavage of β-O-4 linkages. Green Chemistry, 2019, 21, 6707-6716.	4.6	30
274	Self-supported hydrogenolysis of aromatic ethers to arenes. Science Advances, 2019, 5, eaax6839.	4.7	39
275	Topology of Pretreated Wood Fibers Using Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2019, 123, 30407-30415.	1.5	22
277	Highly Efficient Dissolution of Lignin by Eutectic Molecular Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 23438-23444.	1.8	24
278	A Feasible Way to Produce Carbon Nanofiber by Electrospinning from Sugarcane Bagasse. Polymers, 2019, 11, 1968.	2.0	16

#	ARTICLE	IF	CITATIONS
279	Grafting strategies for hydroxy groups of lignin for producing materials. Green Chemistry, 2019, 21, 5714-5752.	4.6	134
280	Activating molecular oxygen with Au/CeO2 for the conversion of lignin model compounds and organosolv lignin. RSC Advances, 2019, 9, 31070-31077.	1.7	11
281	Molecular footprint of co-solvents in hydrothermal liquefaction (HTL) of Fallopia Japonica. Journal of Supercritical Fluids, 2019, 143, 211-222.	1.6	12
282	Hydrogenolysis of biorefinery corncob lignin into aromatic phenols over activated carbon-supported nickel. Sustainable Energy and Fuels, 2019, 3, 401-408.	2.5	45
283	From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 2019, 271, 449-461.	4.8	565
284	Highly Selective Oxidation and Depolymerization of α,γâ€Diolâ€Protected Lignin. Angewandte Chemie - International Edition, 2019, 58, 2649-2654.	7.2	84
285	A waste-minimized biorefinery scenario for the hierarchical conversion of agricultural straw into prebiotic xylooligosaccharides, fermentable sugars and lithium-sulfur batteries. Industrial Crops and Products, 2019, 129, 269-280.	2.5	33
286	Highly Selective Oxidation and Depolymerization of α,γâ€Diolâ€Protected Lignin. Angewandte Chemie, 2019, 131, 2675-2680.	1.6	21
287	Promising Techniques for Depolymerization of Lignin into Valueâ€added Chemicals. ChemCatChem, 2019, 11, 639-654.	1.8	65
288	Catalytic valorization of lignin to liquid fuels over solid acid catalyst assisted by microwave heating. Fuel, 2019, 239, 239-244.	3.4	43
289	ReO _{<i>x</i>} /AC-Catalyzed Cleavage of C–O Bonds in Lignin Model Compounds and Alkaline Lignins. ACS Sustainable Chemistry and Engineering, 2019, 7, 208-215.	3.2	47
290	Transformation of Ammonia Fiber Expansion (AFEX) corn stover lignin into microbial lipids by Rhodococcus opacus. Fuel, 2019, 240, 119-125.	3.4	38
291	Catalytic Synthesis of <i>N</i> â€(5â€Methylfurfuryl)aniline from Bioâ€Derived Carbohydrates. Asian Journal of Organic Chemistry, 2019, 8, 328-334.	1.3	5
293	Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst. Bioresource Technology, 2019, 276, 310-317.	4.8	68
294	Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. Current Opinion in Biotechnology, 2019, 56, 193-201.	3.3	264
295	Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2′-biphenols. Nature Chemistry, 2019, 11, 45-51.	6.6	71
296	Lignin characterization of rice <i>CONIFERALDEHYDE 5â€HYDROXYLASE</i> lossâ€ofâ€function mutants generated with the <scp>CRISPR</scp> /Cas9 system. Plant Journal, 2019, 97, 543-554.	2.8	40
297	Dual Function Lewis Acid Catalyzed Depolymerization of Industrial Corn Stover Lignin into Stable Monomeric Phenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 1362-1371.	3.2	25

#	Article	IF	CITATIONS
298	Ionic liquids and gamma-valerolactone as case studies for green solvents in the deconstruction and refining of biomass. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 20-24.	3.2	16
299	Production of phenolic hydrocarbons from organosolv lignin and lignocellulose feedstocks of hardwood, softwood, grass and agricultural waste. Journal of Industrial and Engineering Chemistry, 2019, 69, 304-314.	2.9	27
300	Selectively transform lignin into value-added chemicals. Chinese Chemical Letters, 2019, 30, 15-24.	4.8	90
301	Lignocellulosic conversion into value-added products: A review. Process Biochemistry, 2020, 89, 110-133.	1.8	91
302	Support effects in the de-methoxylation of lignin monomer 4-propylguaiacol over molybdenum-based catalysts. Fuel Processing Technology, 2020, 199, 106224.	3.7	23
303	Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem, 2020, 12, 401-425.	1.8	62
304	Downregulated CHI3L1 alleviates skeletal muscle stem cell injury in a mouse model of sepsis. IUBMB Life, 2020, 72, 214-225.	1.5	3
306	The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 2020, 301, 122784.	4.8	396
307	Liquefaction and Hydrodeoxygenation of Polymeric Lignin Using a Hierarchical Ni Microreactor Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 2158-2166.	3.2	23
308	Selective catalytic transformation of lignin with guaiacol as the only liquid product. Chemical Science, 2020, 11, 1347-1352.	3.7	68
309	Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts. Green Chemistry, 2020, 22, 725-736.	4.6	52
310	Construction of electron transfer chains with methylene blue and ferric ions for direct conversion of lignocellulosic biomass to electricity in a wide pH range. Applied Catalysis B: Environmental, 2020, 265, 118578.	10.8	23
311	A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Industrial & Engineering Chemistry Research, 2020, 59, 526-555.	1.8	45
312	Microwave-Assisted Catalytic Cleavage of C–C Bond in Lignin Models by Bifunctional Pt/CDC-SiC. ACS Sustainable Chemistry and Engineering, 2020, 8, 38-43.	3.2	20
313	Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. ChemSusChem, 2020, 13, 4181-4198.	3.6	126
315	The effect of Ru/C and MgCl2 on the cleavage of inter- and intra-molecular linkages during cornstalk hydrolysis residue valorization. Cellulose, 2020, 27, 799-823.	2.4	9
316	Light-Driven Depolymerization of Native Lignin Enabled by Proton-Coupled Electron Transfer. ACS Catalysis, 2020, 10, 800-805.	5.5	82
318	Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. Applied Energy, 2020, 260, 114242.	5.1	141

	CHATION R	LFORT	
#	ARTICLE	IF	CITATIONS
319	The rise of lignin biorefinery. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 1-6.	3.2	99
320	Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst. Applied Catalysis B: Environmental, 2020, 268, 118429.	10.8	85
321	A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass and Bioenergy, 2020, 132, 105432.	2.9	129
322	Reductive catalytic fractionation of agricultural residue and energy crop lignin and application of lignin oil in antimicrobials. Green Chemistry, 2020, 22, 7435-7447.	4.6	48
323	Effects of steam to enhance the production of light olefins from ex-situ catalytic fast pyrolysis of biomass. Fuel Processing Technology, 2020, 210, 106562.	3.7	35
324	Optimization of wheatâ€strawâ€extracted cellulose via response surface methodology and mechanical properties of its poly(lactide)â€based biocomposites. Polymer Composites, 2020, 41, 5355-5364.	2.3	9
325	Mechanistic Insight into the Stereoselective Cationic Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2020, 142, 17175-17186.	6.6	26
326	Hydrothermal liquefaction and gasification of biomass and model compounds: a review. Green Chemistry, 2020, 22, 8210-8232.	4.6	85
327	Towards Lignin-Derived Chemicals Using Atom-Efficient Catalytic Routes. Trends in Chemistry, 2020, 2, 898-913.	4.4	22
328	Integrative analysis of wood biomass and developing xylem transcriptome provide insights into mechanisms of lignin biosynthesis in wood formation of Pinus massoniana. International Journal of Biological Macromolecules, 2020, 163, 1926-1937.	3.6	15
329	Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. Science of the Total Environment, 2020, 749, 141972.	3.9	63
330	Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment. Journal of Materials Chemistry B, 2020, 8, 10788-10796.	2.9	55
331	Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catalysis, 2020, 10, 12487-12506.	5.5	36
332	The fractionation of woody biomass under mild conditions using bifunctional phenol-4-sulfonic acid as a catalyst and lignin solvent. Green Chemistry, 2020, 22, 5414-5422.	4.6	33
333	Nucleophilic Thiols Reductively Cleave Ether Linkages in Lignin Model Polymers and Lignin. ChemSusChem, 2020, 13, 4394-4399.	3.6	26
334	Oxidative depolymerization of lignins for producing aromatics: variation of botanical origin and extraction methods. Biomass Conversion and Biorefinery, 2022, 12, 3795-3808.	2.9	29
335	1,3-Dioxins, Oxathiins, Dithiins, and Their Benzo Derivatives. , 2020, , .		0
336	Acid-catalysed α-O-4 aryl-ether bond cleavage in methanol/(aqueous) ethanol: understanding depolymerisation of a lignin model compound during organosolv pretreatment. Scientific Reports, 2020, 10, 11037.	1.6	41

#	Article	IF	CITATIONS
337	Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. ChemSusChem, 2020, 13, 4296-4317.	3.6	207
338	Synthesis of lignin-derived nitrogen-doped carbon as a novel catalyst for 4-NP reduction evaluation. Scientific Reports, 2020, 10, 20075.	1.6	19
339	Hydrogenolysis of aromatic ethers under lignin-first conditions. Molecular Catalysis, 2020, 497, 111228.	1.0	32
340	Advances in Single-Atom Catalysts for Lignin Conversion. ACS Symposium Series, 2020, , 93-125.	0.5	2
341	Review on Conversion of Lignin Waste into Value-Added Resources in Tropical Countries. Waste and Biomass Valorization, 2021, 12, 5285-5302.	1.8	29
342	Visible-light photoredox-catalyzed C–O bond cleavage of diaryl ethers by acridinium photocatalysts at room temperature. Nature Communications, 2020, 11, 6126.	5.8	39
343	Antimicrobial Properties of Corn Stover Lignin Fractions Derived from Catalytic Transfer Hydrogenolysis in Supercritical Ethanol with a Ru/C Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 18455-18467.	3.2	20
344	Influence of extraction methods on antimicrobial activities of lignin-based materials: A review. Sustainable Chemistry and Pharmacy, 2020, 18, 100342.	1.6	23
345	Production of <i>p</i> -Coumaric Acid from Corn GVL-Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 17427-17438.	3.2	41
346	Acid-Catalyzed α-O-4 Aryl-Ether Cleavage Mechanisms in (Aqueous) γ-Valerolactone: Catalytic Depolymerization Reactions of Lignin Model Compound During Organosolv Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 17475-17486.	3.2	28
347	Impact mechanisms of supercritical CO2–ethanol–water on extraction behavior and chemical structure of eucalyptus lignin. International Journal of Biological Macromolecules, 2020, 161, 1506-1515.	3.6	9
348	Effect of catalyst and reaction conditions on aromatic monomer yields, product distribution, and sugar yields during lignin hydrogenolysis of silver birch wood. Bioresource Technology, 2020, 316, 123907.	4.8	10
349	Power-to-chemicals: Low-temperature plasma for lignin depolymerisation in ethanol. Bioresource Technology, 2020, 318, 123917.	4.8	18
350	Downstream Processing Strategies for Ligninâ€First Biorefinery. ChemSusChem, 2020, 13, 5199-5212.	3.6	62
351	Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 2020, 49, 6198-6223.	18.7	374
352	A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co ₃ O ₄ nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative <i>in situ</i> hydrogenation. Nanoscale, 2020, 12, 17373-17384.	2.8	10
353	The surface structure of β-NiOOH (001) under reaction conditions and its effect on OER activity: An ab initio study. Molecular Catalysis, 2020, 493, 111082.	1.0	1
354	Low temperature lignin depolymerization to aromatic compounds with a redox couple catalyst. Fuel, 2020, 281, 118799.	3.4	14

#	Article	IF	CITATIONS
355	Biobased Epoxy Thermoset Polymers from Depolymerized Native Hardwood Lignin. ACS Macro Letters, 2020, 9, 1155-1160.	2.3	52
356	Preface to Special Issue ofChemSusChemon Lignin Valorization: From Theory to Practice. ChemSusChem, 2020, 13, 4175-4180.	3.6	10
357	Nano molybdenum carbides supported on porous zeolites for Kraft lignin decomposition to aromatic monomers in ethanol. Bioresource Technology Reports, 2020, 11, 100484.	1.5	3
358	Esterification of lignin to produce pharmaceutical intermediates using mSiO2@Al mesoporous molecular sieve spheres as a catalyst. Powder Technology, 2020, 375, 533-538.	2.1	6
359	<i>tert</i> -Butanol intervention enables chemoselective conversion of xylose to furfuryl alcohol over heteropolyacids. Green Chemistry, 2020, 22, 5656-5665.	4.6	18
360	Coproduction of Furfural, Phenolated Lignin and Fermentable Sugars from Bamboo with One-Pot Fractionation Using Phenol-Acidic 1,4-Dioxane. Energies, 2020, 13, 5294.	1.6	3
361	Weak Bonds Joint Effects Catalyze the Cleavage of Strong Câ^'C Bond of Ligninâ€Inspired Compounds and Lignin in Air by Ionic Liquids. ChemSusChem, 2020, 13, 5945-5953.	3.6	7
362	Improved biomethanation of horse manure through acid-thermal pretreatment and supplementation of iron nanoparticles under mesophilic and thermophilic conditions. Biomass Conversion and Biorefinery, 2022, 12, 2993-3006.	2.9	2
363	Depolymerization of Lignin into Monophenolics by Ferrous/Persulfate Reagent under Mild Conditions. ChemSusChem, 2020, 13, 6582-6593.	3.6	13
364	Effect of Various Microwave Absorbents on the Microwave-Assisted Lignin Depolymerization Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 16086-16090.	3.2	15
365	Paving the Way for the Lignin Hydrogenolysis Mechanism by Deuterium-Incorporated β-O-4 Mimics. ACS Catalysis, 2020, 10, 12229-12238.	5.5	38
366	Progress in the solvent depolymerization of lignin. Renewable and Sustainable Energy Reviews, 2020, 133, 110359.	8.2	72
367	Understanding Plant Biomass via Computational Modeling. Advanced Materials, 2021, 33, e2003206.	11.1	34
368	Catalytic Hydrodeoxygenation of Lignin-Derived Feedstock Into Arenes and Phenolics. Frontiers in Chemical Engineering, 2020, 2, .	1.3	7
369	Aldehyde-Assisted Lignocellulose Fractionation Provides Unique Lignin Oligomers for the Design of Tunable Polyurethane Bioresins. Biomacromolecules, 2020, 21, 4135-4148.	2.6	35
370	Reductive catalytic fractionation of lignocellulose: when should the catalyst meet depolymerized lignin fragments?. Sustainable Energy and Fuels, 2020, 4, 5588-5594.	2.5	21
371	Understanding the Structural Changes of Lignin Macromolecules From Balsa Wood at Different Growth Stages. Frontiers in Energy Research, 2020, 8, .	1.2	14
372	Preparation of Graphene-Like Porous Carbons With Enhanced Thermal Conductivities From Lignin Nano-particles by Combining Hydrothermal Carbonization and Pyrolysis. Frontiers in Energy Research, 2020, 8, .	1.2	36

#	Article	IF	CITATIONS
373	Catalytic Transfer Hydrogenolysis of Native Lignin to Monomeric Phenols over a Ni–Pd Bimetallic Catalyst. Energy & Fuels, 2020, 34, 9754-9762.	2.5	34
374	Hydrogen-Free Production of 4-Alkylphenols from Lignin via Self-Reforming-Driven Depolymerization and Hydrogenolysis. ACS Catalysis, 2020, 10, 15197-15206.	5.5	57
375	Huang, Luterbacher, and Mauter: Winners of the 2021 <i>ACS Sustainable Chemistry & Engineering</i> Lectureship Awards. ACS Sustainable Chemistry and Engineering, 2020, 8, 17607-17607.	3.2	1
376	Effective Depolymerization of Sodium Lignosulfonate over SO42â^'/TiO2 Catalyst. Catalysts, 2020, 10, 995.	1.6	3
377	Selective valorization of lignin to phenol by direct transformation of C _{sp2} –C _{sp3} and C–O bonds. Science Advances, 2020, 6, .	4.7	62
378	Towards a waste-free biorefinery: A cascade valorization of bamboo for efficient fractionation, enzymatic hydrolysis and lithium-sulfur cathode. Industrial Crops and Products, 2020, 149, 112364.	2.5	18
379	Molecular shape selectivity of HZSM-5 in catalytic conversion of biomass pyrolysis vapors: The effective pore size. Energy Conversion and Management, 2020, 210, 112678.	4.4	55
380	Unlocking Structure–Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Phenolic Monomers. ChemSusChem, 2020, 13, 4548-4556.	3.6	58
381	Valorization of Bamboo Biomass by Selective Liquefaction Reaction for the Production of Sugar and Phenolic Platform Chemicals. Energy & Fuels, 2020, 34, 7131-7139.	2.5	5
382	Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Industrial & Engineering Chemistry Research, 2020, 59, 16957-16969.	1.8	76
383	Combined lignin defunctionalisation and synthesis gas formation by acceptorless dehydrogenative decarbonylation. Green Chemistry, 2020, 22, 3791-3801.	4.6	18
385	Synthesis of glycidyl methacrylate modified hyperâ€crossâ€linked resins and enhancing their adsorptions toward levulinic acid and furfural from sugarcane bagasse hydrolysate. Journal of Chemical Technology and Biotechnology, 2020, 95, 2537-2548.	1.6	5
386	Productâ€oriented Direct Cleavage of Chemical Linkages in Lignin. ChemSusChem, 2020, 13, 4367-4381.	3.6	66
387	Heteroatom-participated lignin cleavage to functionalized aromatics. Chemical Society Reviews, 2020, 49, 3748-3763.	18.7	84
388	Using Lignin Monomer As a Novel Capping Agent for Efficient Acid-Catalyzed Depolymerization of High Molecular Weight Lignin to Improve Its Antioxidant Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 9104-9114.	3.2	23
389	Amineâ€Mediated Bond Cleavage in Oxidized Lignin Models. ChemSusChem, 2020, 13, 4660-4665.	3.6	22
390	Insights into Structural Changes of Lignin toward Tailored Properties during Deep Eutectic Solvent Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 9783-9793.	3.2	72
391	An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. ChemSusChem, 2020, 13, 4238-4265.	3.6	50

#	Article	IF	CITATIONS
392	Lignin Depolymerization: A Comparison of Methods to Analyze Monomers and Oligomers. ChemSusChem, 2020, 13, 4633-4648.	3.6	17
393	Toward a Consolidated Lignin Biorefinery: Preserving the Lignin Structure through Additiveâ€Free Protection Strategies. ChemSusChem, 2020, 13, 4666-4677.	3.6	31
394	A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies. Fuel Processing Technology, 2020, 208, 106485.	3.7	103
395	Development of â€~Lignin-First' Approaches for the Valorization of Lignocellulosic Biomass. Molecules, 2020, 25, 2815.	1.7	85
396	A combination of experimental and computational methods to study the reactions during a Lignin-First approach. Pure and Applied Chemistry, 2020, 92, 631-639.	0.9	9
397	Mild Organosolv Lignin Extraction with Alcohols: The Importance of Benzylic Alkoxylation. ACS Sustainable Chemistry and Engineering, 2020, 8, 5119-5131.	3.2	100
398	Aldehydes-Aided Lignin-First Deconstruction Strategy for Facilitating Lignin Monomers and Fermentable Glucose Production from Poplar Wood. Energies, 2020, 13, 1113.	1.6	4
399	100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Letters, 2020, 9, 476-493.	2.3	105
400	Taking on all of the biomass for conversion. Science, 2020, 367, 1305-1306.	6.0	53
401	Heteroexpression of Osa-miR319b improved switchgrass biomass yield and feedstock quality by repression of PvPCF5. Biotechnology for Biofuels, 2020, 13, 56.	6.2	12
402	Lignin Chemistry. Topics in Current Chemistry Collections, 2020, , .	0.2	7
403	Mechanistic Study of Diaryl Ether Bond Cleavage during Palladiumâ€Catalyzed Lignin Hydrogenolysis. ChemSusChem, 2020, 13, 4487-4494.	3.6	36
404	Solvent Selection for the Separation of Lignin-Derived Monomers Using the Conductor-like Screening Model for Real Solvents. Industrial & Engineering Chemistry Research, 2020, 59, 7755-7764.	1.8	17
405	A biomass pretreatment using cellulose-derived solvent Cyrene. Green Chemistry, 2020, 22, 2862-2872.	4.6	77
406	Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall. ACS Sustainable Chemistry and Engineering, 2020, 8, 4997-5012.	3.2	184
407	Hydrothermal conversion of beef cattle manure can enhance energy recovery in confined feedlots. Environmental Science: Water Research and Technology, 2020, 6, 1125-1138.	1.2	8
408	Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry, 2020, 22, 4676-4682.	4.6	25
409	An Investigation Into the Upgrading Process of Lignin Model Dimer—Phenethyl Phenyl Ether by in situ2H NMR and GC-MS. Frontiers in Energy Research, 2020, 8, .	1.2	0

#	Article	IF	CITATIONS
410	Downstream processing of lignin derived feedstock into end products. Chemical Society Reviews, 2020, 49, 5510-5560.	18.7	305
411	Lignin Source and Structural Characterization. ChemSusChem, 2020, 13, 4385-4393.	3.6	150
412	Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules, 2020, 162, 985-1024.	3.6	223
413	Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. Journal of Analytical and Applied Pyrolysis, 2020, 147, 104780.	2.6	93
414	Biphasic fractionation of rice straw under mild condition in acidified 2-phenoxyethanol/water system. Industrial Crops and Products, 2020, 145, 112091.	2.5	20
415	Ligninâ€First Fractionation of Softwood Lignocellulose Using a Mild Dimethyl Carbonate and Ethylene Glycol Organosolv Process. ChemSusChem, 2020, 13, 4468-4477.	3.6	66
416	In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment. Green Chemistry, 2020, 22, 1851-1858.	4.6	123
417	Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Applied Microbiology and Biotechnology, 2020, 104, 3245-3252.	1.7	23
418	Structure-tunable assembly of lignin sub-micro spheres by modifying the amphiphilic interfaces of lignin via n-alkane. European Polymer Journal, 2020, 126, 109539.	2.6	20
419	Lignin extraction and upgrading using deep eutectic solvents. Industrial Crops and Products, 2020, 147, 112241.	2.5	159
420	Hydrogen bond promoted thermal stability enhancement of acetate based ionic liquid. Chinese Journal of Chemical Engineering, 2020, 28, 1293-1301.	1.7	11
421	Effect of highly selective oxypropylation of phenolic hydroxyl groups on subsequent lignin pyrolysis: Toward the lignin valorization. Energy Conversion and Management, 2020, 207, 112551.	4.4	26
422	High Purity and Low Molecular Weight Lignin Nano-Particles Extracted from Acid-Assisted MIBK Pretreatment. Polymers, 2020, 12, 378.	2.0	14
423	A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 2020, 367, 1385-1390.	6.0	631
424	Catalyst Evolution Enhances Production of Xylitol from Acetal-Stabilized Xylose. ACS Sustainable Chemistry and Engineering, 2020, 8, 1709-1714.	3.2	10
425	Complementing Vanillin and Cellulose Production by Oxidation of Lignocellulose with Stirring Control. ACS Sustainable Chemistry and Engineering, 2020, 8, 2361-2374.	3.2	49
426	Atomic Force Microscopy and Molecular Dynamics Simulations for Study of Lignin Solution Selfâ€Assembly Mechanisms in Organic–Aqueous Solvent Mixtures. ChemSusChem, 2020, 13, 4420-4427.	3.6	97
427	Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Industrial Crops and Products, 2020, 146, 112144.	2.5	103

#	Article	IF	CITATIONS
428	Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes. Green Chemistry, 2020, 22, 1072-1098.	4.6	130
429	Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel. Journal of the American Chemical Society, 2020, 142, 4037-4050.	6.6	40
430	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie, 2020, 132, 11800-11812.	1.6	19
431	Synergistic effect of hydrogen peroxide and ammonia on lignin. Industrial Crops and Products, 2020, 146, 112177.	2.5	92
432	Mechanochemical cleavage of lignin models and lignin <i>via</i> oxidation and a subsequent base-catalyzed strategy. Green Chemistry, 2020, 22, 3489-3494.	4.6	31
433	Zeoliteâ€Assisted Ligninâ€First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shapeâ€6elective Catalysis. ChemSusChem, 2020, 13, 4528-4536.	3.6	30
434	Mesoscale Reaction–Diffusion Phenomena Governing Ligninâ€First Biomass Fractionation. ChemSusChem, 2020, 13, 4495-4509.	3.6	35
435	Effect of the interaction of phenolic hydroxyl with the benzene rings on lignin pyrolysis. Bioresource Technology, 2020, 309, 123351.	4.8	25
436	Lignin Functionalization for the Production of Novel Materials. Trends in Chemistry, 2020, 2, 440-453.	4.4	163
437	The Protection of Câ^'O Bond of Pine Lignin in Different Organic Solvent Systems. ChemistrySelect, 2020, 5, 3850-3858.	0.7	4
438	Thermal behavior and kinetics of enzymatic hydrolysis lignin modified products. Thermochimica Acta, 2020, 688, 178593.	1.2	14
439	Basic carrier promoted Pt-catalyzed hydrogenolysis of alkaline lignin. Catalysis Today, 2021, 365, 193-198.	2.2	9
440	Oxidized demethylated lignin as a bio-based adhesive for wood bonding. Journal of Adhesion, 2021, 97, 873-890.	1.8	56
441	Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure. ChemSusChem, 2021, 14, 373-378.	3.6	8
442	Lignin valorization using biological approach. Biotechnology and Applied Biochemistry, 2021, 68, 459-468.	1.4	19
443	Improved catalytic depolymerization of lignin waste using carbohydrate derivatives. Environmental Pollution, 2021, 268, 115674.	3.7	4
444	Insights into the oxidation–reduction strategy for lignin conversion to high-value aromatics. Fuel, 2021, 283, 119333.	3.4	25
445	Guidelines for performing lignin-first biorefining. Energy and Environmental Science, 2021, 14, 262-292.	15.6	416

#	Article	IF	CITATIONS
446	Catalytic hydrogenolysis of lignin in ethanol/isopropanol over an activated carbon supported nickel-copper catalyst. Bioresource Technology, 2021, 319, 124238.	4.8	45
447	Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 2021, 23, 119-231.	4.6	223
448	Lignin valorization beyond energy use: has lignin's time finally come?. Biofuels, Bioproducts and Biorefining, 2021, 15, 32-36.	1.9	24
449	Oxidation of organosolv lignin in a novel surfactant-free microemulsion reactor. Bioresource Technology, 2021, 321, 124466.	4.8	9
450	Tandem conversion of lignin to catechols via demethylation and catalytic hydrogenolysis. Industrial Crops and Products, 2021, 159, 113095.	2.5	27
451	Hydroconversion of Kraft lignin for biofuels production using bifunctional rhenium-molybdenum supported zeolitic imidazolate framework nanocatalyst. Bioresource Technology, 2021, 321, 124443.	4.8	21
452	Lignin-derived sulfonated porous carbon from cornstalk for efficient and selective removal of cationic dyes. Industrial Crops and Products, 2021, 159, 113071.	2.5	31
453	New Opportunities in the Valorization of Technical Lignins. ChemSusChem, 2021, 14, 1016-1036.	3.6	94
454	Hydrogenolysis of organosolv hydrolyzed lignin over high-dispersion Ni/Al-SBA-15 catalysts for phenolic monomers. Chinese Journal of Chemical Engineering, 2021, 32, 307-314.	1.7	7
455	Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bioâ€Based C 2 Platform Molecule. Angewandte Chemie, 2021, 133, 12312-12331.	1.6	5
456	Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bioâ€Based C ₂ Platform Molecule. Angewandte Chemie - International Edition, 2021, 60, 12204-12223.	7.2	47
457	Novel and Efficient Lignin Fractionation Processes for Tailing Lignin-Based Materials. , 2021, , 363-387.		0
458	Catalytic cleavage of lignin C O and C C bonds. Advances in Inorganic Chemistry, 2021, 77, 175-218.	0.4	5
459	Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes. Polymers, 2021, 13, 364.	2.0	10
460	An Electrocatalytic Strategy for C–C Bond Cleavage in Lignin Model Compounds and Lignin under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 1932-1940.	3.2	49
461	Understanding the promoting effect of non-catalytic protein on enzymatic hydrolysis efficiency of lignocelluloses. Bioresources and Bioprocessing, 2021, 8, .	2.0	26
462	Tailoring Lignin Structure to Maximize the Value from Lignin. ACS Symposium Series, 2021, , 13-36.	0.5	0
463	Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chemistry, 2021, 23, 2868-2899.	4.6	65

#	Article	IF	CITATIONS
464	Formation of <i>p</i> -Unsubstituted Phenols in Base-catalyzed Lignin Depolymerization. MATEC Web of Conferences, 2021, 333, 05006.	0.1	2
465	Deep eutectic solvents: A greener approach towards biorefineries. , 2021, , 193-219.		7
466	Reductive Catalytic Fractionation: From Waste Wood to Functional Phenolic Oligomers for Attractive, Value-Added Applications. ACS Symposium Series, 2021, , 37-60.	0.5	5
467	The tree fractionation. , 2021, , 33-84.		1
468	Effective Lignin Utilization Strategy: Major Depolymerization Technologies, Purification Process and Production of Valuable Material. Chemistry Letters, 2021, 50, 1123-1130.	0.7	7
469	The Use of GVL for Holistic Utilization of Biomass. Computer Aided Chemical Engineering, 2021, 50, 1955-1961.	0.3	0
470	Continuous hydrogenolysis of acetal-stabilized lignin in flow. Green Chemistry, 2021, 23, 320-327.	4.6	15
471	Non-plasmonic Ni nanoparticles catalyzed visible light selective hydrogenolysis of aryl ethers in lignin under mild conditions. Green Chemistry, 2021, 23, 7780-7789.	4.6	16
472	Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nature Communications, 2021, 12, 416.	5.8	97
473	Role of peracetic acid on the disruption of lignin packing structure and its consequence on lignin depolymerisation. Green Chemistry, 2021, 23, 8468-8479.	4.6	11
474	Simultaneous extraction and controlled chemical functionalization of hardwood lignin for improved phenolation. Green Chemistry, 2021, 23, 3459-3467.	4.6	27
475	Effects of formaldehyde on fermentable sugars production in the low-cost pretreatment of corn stalk based on ionic liquids. Chinese Journal of Chemical Engineering, 2022, 42, 406-414.	1.7	4
476	Efficient demethylation of aromatic methyl ethers with HCl in water. Green Chemistry, 2021, 23, 1995-2009.	4.6	28
477	An efficient method to prepare aryl acetates by the carbonylation of aryl methyl ethers or phenols. New Journal of Chemistry, 2021, 45, 2683-2687.	1.4	3
478	Mechanisms of Caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. Journal of Catalysis, 2021, 394, 94-103.	3.1	25
479	Twists and Turns in the Salicylate Catabolism of <i>Aspergillus terreus</i> , Revealing New Roles of the 3-Hydroxyanthranilate Pathway. MSystems, 2021, 6, .	1.7	7
480	Breaking the lignin conversion bottleneck for multiple products: Co-production of aryl monomers and carbon nanospheres using one-step catalyst-free depolymerization. Fuel, 2021, 285, 119211.	3.4	25
481	Melanin-Inspired Design: Preparing Sustainable Photothermal Materials from Lignin for Energy Generation. ACS Applied Materials & Interfaces, 2021, 13, 7600-7607.	4.0	87

#	Article	IF	CITATIONS
482	Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catalysis, 2021, 11, 2524-2560.	5.5	75
483	Evaluation of chemical additives in hydrothermal pre-treatment of wood for the integrated production of monosugars and hydrolysis lignins for PLA-based biocomposites. Biomass Conversion and Biorefinery, 2023, 13, 7491-7503.	2.9	6
484	Transformation of Corn Lignin into Sun Cream Ingredients. ChemSusChem, 2021, 14, 1586-1594.	3.6	17
485	Preparation and Formation Mechanism of Covalent–Noncovalent Forces Stabilizing Lignin Nanospheres and Their Application in Superhydrophobic and Carbon Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 3811-3820.	3.2	34
486	Pharmaceutically relevant (hetero)cyclic compounds and natural products from lignin-derived monomers: Present and perspectives. IScience, 2021, 24, 102211.	1.9	32
487	Organosolv Fractionation of Walnut Shell Biomass to Isolate Lignocellulosic Components for Chemical Upgrading of Lignin to Aromatics. ACS Omega, 2021, 6, 8142-8150.	1.6	15
488	Fractionation of Poplar Wood Using a Bifunctional Aromatic Acid under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 5364-5376.	3.2	20
489	Recent advances in the valorization of plant biomass. Biotechnology for Biofuels, 2021, 14, 102.	6.2	122
491	Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biotechnology for Biofuels, 2021, 14, 108.	6.2	10
492	Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling. Biotechnology for Biofuels, 2021, 14, 103.	6.2	10
493	Valence Photoionization and Energetics of Vanillin, a Sustainable Feedstock Candidate. Journal of Physical Chemistry A, 2021, 125, 3327-3340.	1.1	9
494	Staged organosolv pretreatment to increase net energy and reactive lignin yield in whole oil palm tree biorefinery. Bioresource Technology, 2021, 326, 124766.	4.8	18
495	Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. ChemSusChem, 2021, 14, 2268-2294.	3.6	20
496	Highly Efficient Semi-Continuous Extraction and In-Line Purification of High β-O-4 Butanosolv Lignin. Frontiers in Chemistry, 2021, 9, 655983.	1.8	19
497	Visualizing plant cell wall changes proves the superiority of hydrochloric acid over sulfuric acid catalyzed 13-valerolactone pretreatment. Chemical Engineering Journal, 2021, 412, 128660.	6.6	26
498	Lignin-based polymers. ChemistrySelect, 2023, 8, 1069-1105.	0.7	0
499	Identifying the Interunit Linkages Connecting Free Phenolic Terminal Units in Lignin. ChemSusChem, 2021, 14, 2554-2563.	3.6	2
500	Oxidative Catalytic Fractionation and Depolymerization of Lignin in a One-Pot Single-Catalyst System. ACS Sustainable Chemistry and Engineering, 2021, 9, 7719-7727.	3.2	36

#	Article	IF	CITATIONS
501	The Impact of Biomass and Acid Loading on Methanolysis during Two-Step Lignin-First Processing of Birchwood. Catalysts, 2021, 11, 750.	1.6	11
502	Nano \hat{I}^2 -Mo2C supported on ordered mesoporous carbon for Kraft lignin decomposition to aromatic monomers. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1
503	"Lignin-first―catalytic valorization for generating higher value from lignin. Chem Catalysis, 2021, 1, 8-11.	2.9	12
504	Advances in metal/ biochar catalysts for biomass hydro-upgrading: A review. Journal of Cleaner Production, 2021, 303, 126825.	4.6	38
505	Selective Production of Phenol on Bifunctional, Hierarchical ZSM-5 Zeolites. Molecules, 2021, 26, 3576.	1.7	5
506	A flow-through reactor for fast fractionation and production of structure-preserved lignin. Industrial Crops and Products, 2021, 164, 113350.	2.5	9
507	Electro-reductive Fragmentation of Oxidized Lignin Models. Journal of Organic Chemistry, 2021, 86, 15927-15934.	1.7	16
508	Staged biorefinery of Moso bamboo by integrating polysaccharide hydrolysis and lignin reductive catalytic fractionation (RCF) for the sequential production of sugars and aromatics. Industrial Crops and Products, 2021, 164, 113358.	2.5	8
509	Metal Sulfide Photocatalysts for Lignocellulose Valorization. Advanced Materials, 2021, 33, e2007129.	11.1	106
510	Dual Valorization of Lignin as a Versatile and Renewable Matrix for Enzyme Immobilization and (Flow) Bioprocess Engineering. ChemSusChem, 2021, 14, 3198-3207.	3.6	18
511	Characterization of lignin streams during ionic liquid/hydrochloric acid/formaldehyde pretreatment of corn stalk. Bioresource Technology, 2021, 331, 125064.	4.8	13
512	Electrocatalytic Lignin Oxidation. ACS Catalysis, 2021, 11, 10104-10114.	5.5	60
513	Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals. Energy & Fuels, 2021, 35, 16965-16994.	2.5	39
514	Bacterial Community Coexisting with White-Rot Fungi in Decayed Wood in Nature. Current Microbiology, 2021, 78, 3212-3217.	1.0	8
515	Sustainable production of benzene from lignin. Nature Communications, 2021, 12, 4534.	5.8	100
516	Valorization of Rice Straw via Hydrotropic Lignin Extraction and Its Characterization. Molecules, 2021, 26, 4123.	1.7	4
517	High Yields of Aromatic Monomers from Acidolytic Oxidation of Kraft Lignin in a Biphasic System. Industrial & Engineering Chemistry Research, 2021, 60, 11009-11018.	1.8	9
518	Investigation of the combustion and emissions of ligninâ€derived aromatic oxygenates in a marine diesel engine. Biofuels, Bioproducts and Biorefining, 2021, 15, 1709.	1.9	3

#	Article	IF	Citations
519	Sustainable Production of Benzylamines from Lignin. Angewandte Chemie - International Edition, 2021, 60, 20666-20671.	7.2	66
520	Sustainable Production of Benzylamines from Lignin. Angewandte Chemie, 2021, 133, 20834-20839.	1.6	4
521	Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2–ZrO2/WO3/γ-Al2O3 catalyst. Chinese Journal of Chemical Engineering, 2022, 48, 191-201.	1.7	6
522	Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catalysis, 2021, 11, 10508-10536.	5.5	49
523	Advances and Challenges in the Valorization of Bio-Oil: Hydrodeoxygenation Using Carbon-Supported Catalysts. Energy & Fuels, 2021, 35, 17008-17031.	2.5	39
524	Pyrolysis of Aesculus chinensis Bunge Seed with Fe2O3/NiO as nanocatalysts for the production of bio-oil material. Journal of Hazardous Materials, 2021, 416, 126012.	6.5	16
525	Tailoring renewable materials via plant biotechnology. Biotechnology for Biofuels, 2021, 14, 167.	6.2	25
526	Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catalysis, 2021, 11, 11336-11359.	5.5	81
527	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113
528	Utilization of a Methoxy Group in Lignin to Prepare Amides by the Carbonylation of Amines. ACS Sustainable Chemistry and Engineering, 2021, 9, 11667-11673.	3.2	4
529	Bridging Scales in Bioenergy and Catalysis: A Review of Mesoscale Modeling Applications, Methods, and Future Directions. Energy & Fuels, 2021, 35, 14382-14400.	2.5	12
530	Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation. Science Advances, 2021, 7, eabg4585.	4.7	40
531	Tunable and functional deep eutectic solvents for lignocellulose valorization. Nature Communications, 2021, 12, 5424.	5.8	116
532	Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. Journal of the American Chemical Society, 2021, 143, 15462-15470.	6.6	65
533	Self-hydrogen transfer hydrogenolysis of native lignin over Pd-PdO/TiO2. Applied Catalysis B: Environmental, 2022, 301, 120767.	10.8	33
534	Selective biomass photoreforming for valuable chemicals and fuels: A critical review. Renewable and Sustainable Energy Reviews, 2021, 148, 111266.	8.2	70
535	Effect of metal triflates on the microwave-assisted catalytic hydrogenolysis of birch wood lignin to monophenolic compounds. Industrial Crops and Products, 2021, 167, 113515.	2.5	7
536	Monitoring Aqueous Phase Reactions by Operando ATRâ€IR Spectroscopy at High Temperature and Pressure: A Biomass Conversion Showcase. Chemistry Methods, 0, , .	1.8	1

ARTICLE IF CITATIONS Monitoring Aqueous Phase Reactions by Operando ATRâ€IR Spectroscopy at High Temperature and 537 1.8 0 Pressure: A Biomass Conversion Showcase. Chemistry Methods, 2021, 1, 452. Improved value and carbon footprint by complete utilization of corncob lignocellulose. Chemical 6.6 Engineering Journal, 2021, 419, 129565. Effects of solid base catalysts on depolymerization of alkali lignin for the production of phenolic 539 4.3 33 monomer compounds. Renewable Energy, 2021, 175, 270-280. In Situ Reactor-Integrated Electrospray Ionization Mass Spectrometry for Heterogeneous Catalytic Reactions and Its Application in the Process Analysis of High-Pressure Liquid-Phase Lignin Depolymerization. Analytical Chemistry, 2021, 93, 12987-12994. 540 Economical concerns of lignin in the energy sector. Cleaner Engineering and Technology, 2021, 4, 541 2.1 14 100258. Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable 8.2 materials and value-added chemicals. Renewable and Sustainable Energy Reviews, 2021, 149, 111368. Dual lignin valorization enabled by carbon quantum dots and lithium-sulfur cathode. Industrial 543 2.5 10 Crops and Products, 2021, 170, 113801. Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic 544 4.8 79 catalýst. Bioresource Technology, 2021, 337, 125439. Promoting catalytic hydrogenolysis degradation of black liquor crude lignin by extended 545 2.5 5 soda-oxygen cooking. Industrial Crops and Products, 2021, 170, 113788. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. 546 38 Chinese Journal of Catalysis, 2021, 42, 1831-1842. Synthesis of Î³-valerolactone (GVL) and their applications for lignocellulosic deconstruction for 547 3.4 52 sustainable green biorefineries. Fuel, 2021, 303, 121333. A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis. Industrial 2.5 58 Crops and Products, 2021, 172, 114008. Ethylene glycol co-solvent enhances alkyl levulinate production from concentrated feeds of sugars 549 3.4 10 in monohydric alcohols. Fuel, 2021, 304, 121471. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. Journal of Environmental Management, 2021, 299, 113597. 3.8 Quantitative insights on de/repolymerization and deoxygenation of lignin in subcritical water. 551 4.8 1 Bioresource Technology, 2021, 342, 125974. Catalytic depolymerization of Kraft lignin towards liquid fuels over bifunctional molybdenum oxide based supported catalyst. Fuel, 2021, 306, 121599 Selective photocatalytic conversion of guaiacol using g-C3N4 metal free nanosheets photocatalyst to add-value products. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113513. 553 2.0 5 Deconstruction of biomass into lignin oil and platform chemicals over heteropoly acids with 554 carbon-supported palladium as a hybrid catalyst under mild conditions. Bioresource Technology, 2021, 4.8 341, 125848.

#	Article	IF	Citations
555	In-situ oxidation/reduction facilitates one-pot conversion of lignocellulosic biomass to bulk chemicals in alkaline solution. Chemical Engineering Journal, 2022, 429, 132365.	6.6	21
556	Hydrodeoxygenation of lignin-derived phenolics over facile prepared bimetallic RuCoNx/NC. Fuel, 2022, 308, 121979.	3.4	21
557	High-solid ethylenediamine pretreatment to fractionate new lignin streams from lignocellulosic biomass. Chemical Engineering Journal, 2022, 427, 130962.	6.6	38
558	Capitalizing on lignin and tannin value. , 2021, , 183-258.		0
559	Electrochemically site-selective alkoxylation of twisted 2-arylbenzoic acids <i>via</i> spirolactonization. Organic Chemistry Frontiers, 2021, 8, 5130-5138.	2.3	12
560	The RCF biorefinery: Building on a chemical platform from lignin. Advances in Inorganic Chemistry, 2021, , 241-297.	0.4	8
561	Flow-through solvolysis enables production of native-like lignin from biomass. Green Chemistry, 2021, 23, 5437-5441.	4.6	25
562	Diformylxylose as a new polar aprotic solvent produced from renewable biomass. Green Chemistry, 2021, 23, 4790-4799.	4.6	16
563	On the chemical interactions of the biomass processing agents γ-valerolactone (GVL) and <i>N</i> -methylmorpholine- <i>N</i> -oxide (NMMO). Green Chemistry, 2021, 23, 5832-5848.	4.6	5
564	Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals. Advances in Inorganic Chemistry, 2021, 77, 99-136.	0.4	10
565	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
566	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie - International Edition, 2020, 59, 11704-11716.	7.2	82
567	Lignin valorization and cleavage of arylether bonds in chemical processing of wood: a mini-review. Wood Science and Technology, 2020, 54, 787-820.	1.4	27
568	In-situ extraction of depolymerization products by membrane filtration against lignin condensation. Bioresource Technology, 2020, 311, 123530.	4.8	10
569	Facile synthesis of vanillin from fractionated Kraft lignin. Industrial Crops and Products, 2020, 145, 112095.	2.5	27
570	Catalytic Lignin Depolymerization to Aromatic Chemicals. Accounts of Chemical Research, 2020, 53, 470-484.	7.6	280
571	Alkali-Based Pretreatment-Facilitated Lignin Valorization: A Review. Industrial & Engineering Chemistry Research, 2020, 59, 16923-16938.	1.8	70
572	Aldehyde-Assisted Fractionation Enhances Lignin Valorization in Endocarp Waste Biomass. ACS Sustainable Chemistry and Engineering, 2020, 8, 16737-16745.	3.2	20

#	Article	IF	CITATIONS
573	Stabilization strategies in biomass depolymerization using chemical functionalization. Nature Reviews Chemistry, 2020, 4, 311-330.	13.8	214
574	Catalytic Processes and Catalyst Development in Biorefining. RSC Green Chemistry, 2018, , 25-64.	0.0	8
575	Cleavage of aryl–ether bonds in lignin model compounds using a Co–Zn-beta catalyst. RSC Advances, 2020, 10, 43599-43606.	1.7	17
577	Lignin for Bioeconomy: The Present and Future Role of Technical Lignin. International Journal of Molecular Sciences, 2021, 22, 63.	1.8	60
578	Revealing Structural Modifications of Lignin in Acidic Î ³ -Valerolactone-H2O Pretreatment. Polymers, 2020, 12, 116.	2.0	10
579	Knockout of the lignin pathway gene <scp><i>BnF5H</i></scp> decreases the S/G lignin compositional ratio and improves <i>Sclerotinia sclerotiorum</i> resistance in <i>Brassica napus</i> . Plant, Cell and Environment, 2022, 45, 248-261.	2.8	33
580	Self-assembly of biopolymer films for UV protection of wood. Journal of Materials Research, 2022, 37, 55-66.	1.2	1
581	Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers. Journal of the American Chemical Society, 2021, 143, 17226-17235.	6.6	43
582	Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renewable and Sustainable Energy Reviews, 2021, 152, 111722.	8.2	86
583	Flow chemistry for a better fractionation of lignocellulosic biomass in products structure and yield. Industrial Crops and Products, 2021, 173, 114124.	2.5	3
584	Ionic Liquids as Solvents for the Production of Materials from Biomass. , 2019, , 1-22.		0
585	A method for high-throughput screening hydrolase of lignin \hat{l}^2 -aryl ether linkage from directed evolution by glutathione (GSH) assay. Bioresources and Bioprocessing, 2020, 7, .	2.0	2
586	Synthesis and Characterization of Lignin- <i>graft</i> -poly(ethylene brassylate): a Biomass-Based Polyester with High Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 14766-14776.	3.2	9
587	Effects of solvents in the depolymerization of lignin into value-added products: a review. Biomass Conversion and Biorefinery, 2023, 13, 11383-11416.	2.9	10
588	Challenges and Perspective of Recent Biomass Pretreatment Solvents. Frontiers in Chemical Engineering, 2021, 3, .	1.3	8
589	Polar solvents enhance the efficiency of microwave pre-treatment of woody biomass. Biomass and Bioenergy, 2021, 155, 106281.	2.9	6
590	Recent Advances in Enzymatic Conversion of Lignin to Value Added Products. , 2021, , 439-471.		1
591	Formaldehyde from Lignin Acidolysis Might Be Useful for In-Line Control of Industrial Biomass Processing. ACS Sustainable Chemistry and Engineering, 2021, 9, 207-215.	3.2	7

#	Article	IF	Citations
592	Mild fractionation of poplar into reactive lignin via lignin-first strategy and its enhancement on cellulose saccharification. Bioresource Technology, 2022, 343, 126122.	4.8	25
593	Systematic evaluation of fractionation and valorization of lignocellulose via two-stage hydrothermal liquefaction. Fuel, 2022, 310, 122358.	3.4	10
594	Fractionation and quantitative structural analysis of lignin from a lignocellulosic biorefinery process by gradient acid precipitation. Fuel, 2022, 309, 122153.	3.4	14
595	One-pot production of oxygenated monomers and selectively oxidized lignin from biomass based on plasma electrolysis. Green Chemistry, 0, , .	4.6	4
596	Extracted lignin from oil palm empty fruit bunch as natural eco-friendly poly (vinyl chloride) photo-stabilizer. Materials Science for Energy Technologies, 2022, 5, 15-21.	1.0	7
598	Scission of C–O and C–C linkages in lignin over RuRe alloy catalyst. Journal of Energy Chemistry, 2022, 67, 492-499.	7.1	41
599	Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promising Method of its Integrated Processing. Kataliz V Promyshlennosti, 2021, 21, 425-443.	0.2	1
600	Using poly(N-Vinylcaprolactam) to Improve the Enzymatic Hydrolysis Efficiency of Phenylsulfonic Acid-Pretreated Bamboo. Frontiers in Bioengineering and Biotechnology, 2021, 9, 804456.	2.0	4
601	Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4. CheM, 2022, 8, 465-479.	5.8	61
602	Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. Bioresource Technology, 2022, 346, 126419.	4.8	22
603	Lignin valorisation via enzymes: A sustainable approach. Fuel, 2022, 311, 122608.	3.4	64
604	Organic amine mediated cleavage of C _{aromatic} –C _α bonds in lignin and its platform molecules. Chemical Science, 2021, 12, 15110-15115.	3.7	6
605	Lignin monomer conversion into biolubricant base oils. Green Chemistry, 2021, 23, 10090-10100.	4.6	9
606	Assessment of the Efficiency of Chemical and Thermochemical Depolymerization Methods for Lignin Valorization: Principal Component Analysis (PCA) Approach. Polymers, 2022, 14, 194.	2.0	11
607	Unimolecular thermal decarbonylation of vanillin stifled by the bimolecular reactivity of methyl-loss intermediate. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105410.	2.6	8
608	A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresource Technology, 2022, 346, 126591.	4.8	48
609	Ultrafast fractionation of wild-type and CSE down-regulated poplars by microwave-assisted deep eutectic solvents (DES) for cellulose bioconversion enhancement and lignin nanoparticles fabrication. Industrial Crops and Products, 2022, 176, 114275.	2.5	19
610	Enhanced enzymatic hydrolysis of poplar cellulosic residue fractionated by a magnetic carbon-based solid-acid catalyst in the γ-valerolactone–water system. Industrial Crops and Products, 2022, 176, 114397.	2.5	6

#	Article	IF	CITATIONS
611	Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renewable and Sustainable Energy Reviews, 2022, 156, 111986.	8.2	98
612	Reductive Catalytic Fractionation of Lignocellulose over Ni/Al ₂ O ₃ Catalyst Prepared by an EDTA-Assisted Impregnation Method. Energy & Fuels, 2022, 36, 1929-1938.	2.5	5
613	Pathway to fully-renewable biobased polyesters derived from HMF and phenols. Polymer Chemistry, 2022, 13, 1215-1227.	1.9	1
614	Protected lignin biorefining through cyclic extraction: gaining fundamental insights into the tuneable properties of lignin by chemometrics. Green Chemistry, 2022, 24, 1211-1223.	4.6	14
615	Depolymerization of lignin for biological conversion through sulfonation and a chelator-mediated Fenton reaction. Green Chemistry, 2022, 24, 1627-1643.	4.6	6
616	Toward a Fundamental Understanding of the Role of Lignin in the Biorefinery Process. Frontiers in Energy Research, 2022, 9, .	1.2	13
617	Electrocatalytic hydrogenation of lignin monomer to methoxy-cyclohexanes with high faradaic efficiency. Green Chemistry, 2022, 24, 142-146.	4.6	11
618	Lignin depolymerization for monomers production by sustainable processes. , 2022, , 65-110.		0
619	Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions. Green Chemistry, 2022, 24, 846-857.	4.6	15
620	Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization. Green Chemistry, 2022, 24, 1285-1293.	4.6	16
621	Ligninâ€First Monomers to Catechol: Rational Cleavage of Câ^'O and Câ^'C Bonds over Zeolites. ChemSusChem, 2022, 15, .	3.6	19
622	Effect of Cobalt(II) on Acid-Modified Attapulgite-Supported Catalysts on the Depolymerization of Alkali Lignin. Industrial & Engineering Chemistry Research, 2022, 61, 1675-1683.	1.8	9
623	Depolymerization of Lignin via a Microscopic Reverse Biosynthesis Pathway. ACS Catalysis, 2022, 12, 2532-2539.	5.5	8
624	Integration of Ru/C and base for reductive catalytic fractionation of triploid poplar. Chinese Journal of Catalysis, 2022, 43, 802-810.	6.9	9
625	Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydrate Polymers, 2022, 281, 119050.	5.1	81
626	Efficient conversion of Kraft lignin to guaiacol and 4-alkyl guaiacols over Fe-Fe3C/C based catalyst under supercritical ethanol. Fuel, 2022, 315, 123249.	3.4	19
627	Promoted Production of Phenolic Monomers from Lignin-First Depolymerization of Lignocellulose over Ru Supported on Biochar by N,P- <i>co</i> -Doping. ACS Sustainable Chemistry and Engineering, 2022, 10, 2343-2354.	3.2	22
628	Effective Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Ðiformylfuran by an Acetal Protection Strategy. ChemSusChem, 2022, 15, .	3.6	7

ARTICLE IF CITATIONS # Tailored one-pot lignocellulose fractionation to maximize biorefinery toward versatile 629 43 4.6 xylochemicals and nanomaterials. Green Chemistry, 2022, 24, 3257-3268. Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery. Green 4.6 Chemistry, 2022, 24, 2680-2721. Chemicals from lignin by diol-stabilized acidolysis: reaction pathways and kinetics. Green Chemistry, 631 4.6 15 2022, 24, 3193-3207. Experimental-based mechanistic study and optimization of hydrothermal liquefaction of anaerobic digestates. Sustainable Energy and Fuels, 2022, 6, 2314-2329. Production of Hydroxymethylfurfural Derivatives From Furfural Derivatives via Hydroxymethylation. 633 2.0 3 Frontiers in Bioengineering and Biotechnology, 2022, 10, 851668. Study on Selective Preparation of Phenolic Products from Lignin over Ru–Ni Bimetallic Catalysts Supported on Modified HY Zeolite. Industrial & amp; Engineering Chemistry Research, 2022, 61, 3206-3217. 634 1.8 Isolation, Characterization, and Depolymerization of <scp>l</scp>â€Cysteine Substituted 635 1.8 2 <i>Eucalyptus</i>Lignin. Global Challenges, 2022, 6, 2100130. Back to the Future with Biorefineries: Bottomâ€Up and Topâ€Down Approaches toward Polymers and 1.1 Monomers. Macromolecular Chemistry and Physics, 0, , 2200017. A Catalytic Strategy for Selective Production of 5â€Formylfuranâ€2â€carboxylic Acid and 637 1.8 6 Furanâ€2,5â€dicarboxylic Acid. ChemCatChem, 2022, 14,. Double-Interpenetrating-Network Lignin-based Epoxy Resin Adhesives for Resistance to Extreme 2.6 Environment. Biomacromolecules, 2022, 23, 779-788. Manipulation of Lignin Monomer Composition Combined with the Introduction of Monolignol Conjugate Biosynthesis Leads to Synergistic Changes in Lignin Structure. Plant and Cell Physiology, 639 12 1.5 2022, 63, 744-754. Functional and structural insight into the flexibility of cytochrome P450 reductases from Sorghum 640 1.6 bicolor and its implications for lignin composition. Journal of Biological Chemistry, 2022, 298, 101761. Co-pyrolysis of lignin and spent bleaching clay: Insight into the catalytic characteristic and hydrogen 641 2.6 13 supply of spent bleaching clay. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105491. Comparative study on the hydrogenolysis performance of solid residues from different bamboo pretreatments. Bioresource Technology, 2022, 352, 127095. 642 4.8 Oxidative catalytic valorization of industrial lignin into phenolics: Effect of reaction parameters and 643 4.8 11 metal oxides. Bioresource Technology, 2022, 352, 127032. Enhancing Î²-aryl ether bond cleavage of lignin model dimer via benzylic alcohol dehydration. Fuel, 2022, 318, 123630. 644 Ferric chloride aided peracetic acid pretreatment for effective utilization of sugarcane bagasse. Fuel, 645 3.4 10 2022, 319, 123739. 646 Hydrodemethoxylation/Dealkylation on Bifunctional Nanosized Zeolite Beta. Molecules, 2021, 26, 7694.

#	Article	IF	CITATIONS
647	Fundamental Investigation of Biomass Interaction for Green Composites: Experiments and Molecular Dynamics Simulations. Advanced Functional Materials, 2022, 32, .	7.8	11
648	Production of Jet Fuel Precursors from Waste Kraft Lignin with a Complex Copper Acid Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 495-507.	3.2	12
649	Recent Advances in the Valorization of Lignin: A Key Focus on Pretreatment, Characterization, and Catalytic Depolymerization Strategies for Future Biorefineries. Advanced Sustainable Systems, 2022, 6,	2.7	14
650	Heterogeneous strategies for selective conversion of lignocellulosic polysaccharides. Cellulose, 2022, 29, 3059-3077.	2.4	15
651	Biodegradation of Lignin into Low-Molecular-Weight Oligomers by Multicopper Laccase-Mimicking Nanozymes of the Cu/GMP Complex at Room Temperature. ACS Sustainable Chemistry and Engineering, 2022, 10, 5489-5499.	3.2	16
652	Effective biomass fractionation and lignin stabilization using a diol DES system. Chemical Engineering Journal, 2022, 443, 136395.	6.6	60
653	Skeletal Ni electrode-catalyzed C-O cleavage of diaryl ethers entails direct elimination via benzyne intermediates. Nature Communications, 2022, 13, 2050.	5.8	4
654	Ligninâ€First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotubeâ€Supported Ruthenium: Impact of Lignin Sources. ChemSusChem, 2022, 15, .	3.6	23
655	Online Investigation of Lignin Depolymerization via Reactor-integrated Electrospray Ionization High-resolution Mass Spectrometry. Applications in Energy and Combustion Science, 2022, , 100069.	0.9	1
656	Production of oxygen-containing fuels via supercritical methanol hydrodeoxygenation of lignin bio-oil over Cu/CuZnAlOx catalyst. Applied Energy, 2022, 316, 119129.	5.1	22
662	Effect of Two-Step Formosolv Fractionation on the Structural Properties and Antioxidant Activity of Lignin. Molecules, 2022, 27, 2905.	1.7	2
663	Selective production of 2-(tert-butyl)-3-methylphenol from depolymerization of enzymatic hydrolysis lignin with MoS2 catalyst. Catalysis Today, 2023, 408, 194-203.	2.2	4
664	Tuning lignin properties by mild ionic-liquid-mediated selective alcohol incorporation. Chem Catalysis, 2022, 2, 1407-1427.	2.9	5
665	H-lignin can be deposited independently of CINNAMYL ALCOHOL DEHYDROGENASE C and D in Arabidopsis. Plant Physiology, 2022, 189, 2015-2028.	2.3	4
666	Extraction and Surfactant Properties of Glyoxylic Acidâ \in Functionalized Lignin. ChemSusChem, 2022, 15, .	3.6	11
667	Enabling dual valorization of lignocellulose by fluorescent lignin carbon dots and biochar-supported persulfate activation: Towards waste-treats-pollutant. Journal of Hazardous Materials, 2022, 435, 129072.	6.5	17
668	Catalytic conversion of high S-lignin to a sustainable tri-epoxide polymer precursor. Green Chemistry, 2022, 24, 4958-4968.	4.6	8
669	Electrochemical Depolymerization of Lignin in a Biomassâ€based Solvent**. ChemSusChem, 2022, 15, .	3.6	16

#	Article	IF	CITATIONS
670	The use of GVL for holistic valorization of biomass. Computers and Chemical Engineering, 2022, 164, 107849.	2.0	4
671	Depolymerization of Kraft lignin to liquid fuels with MoS2 derived oxygen-vacancy-enriched MoO3 in a hydrogen-donor solvent system. Fuel, 2022, 324, 124674.	3.4	15
672	Bacterial conversion routes for lignin valorization. Biotechnology Advances, 2022, 60, 108000.	6.0	16
673	Highly swellable hydrogels prepared from extensively oxidized lignin. Giant, 2022, 10, 100106.	2.5	8
674	Enhancing \hat{I}_{\pm} -etherification of lignin in Eucalyptus diol pretreatment to improve lignin monomer production. Industrial Crops and Products, 2022, 185, 115130.	2.5	21
675	Lignin fractionation-inspired carbon dots to enable trimodule fluorescent sensing of pH, silver ion and cysteine. Industrial Crops and Products, 2022, 185, 115127.	2.5	7
676	Depolymerization of Lignin by Homogeneous Photocatalysis. Springer Handbooks, 2022, , 1537-1562.	0.3	1
677	Sustainable polymers. Nature Reviews Methods Primers, 2022, 2, .	11.8	78
678	Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing. Catalysis in Industry, 2022, 14, 231-250.	0.3	3
679	Integrated strategy for the synthesis of aromatic building blocks via upcycling of real-life plastic wastes. CheM, 2022, 8, 2472-2484.	5.8	33
680	Sustainable polyesters via direct functionalization of lignocellulosic sugars. Nature Chemistry, 2022, 14, 976-984.	6.6	32
681	Preparation of biomass-based gas separation membranes from biochar residue obtained by depolymerization of lignin with ZSM-5 to promote a circular bioeconomy. International Journal of Biological Macromolecules, 2022, 214, 45-53.	3.6	5
682	Promotion of Biomass Pyrolytic Saccharification and Lignin Depolymerization Via Nucleophilic Reagents Quenching of the Carbonium Ions. SSRN Electronic Journal, 0, , .	0.4	0
683	Utilization of Guaiacol-Based Deep Eutectic Solvent for Achieving a Sustainable Biorefinery. SSRN Electronic Journal, 0, , .	0.4	0
684	Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nature Communications, 2022, 13, .	5.8	52
685	Endophytes in Lignin Valorization: A Novel Approach. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
686	High-purity lignin fractions and nanospheres rich in phenolic hydroxyl and carboxyl groups isolated with alkaline deep eutectic solvent from wheat straw. Bioresource Technology, 2022, 360, 127570.	4.8	15
687	Hemicellulose degradation: An overlooked issue in acidic deep eutectic solvents pretreatment of lignocellulosic biomass. Industrial Crops and Products, 2022, 187, 115335.	2.5	48

#	Article	IF	CITATIONS
688	A photosensitive sustainable lignin nanoplatform for multimodal image-guided mitochondria-targeted photodynamic and photothermal therapy. Materials Today Chemistry, 2022, 26, 101000.	1.7	2
689	Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy and Environment, 2023, 8, 10-114.	4.7	151
690	Efficient separation of eucalyptus hemicellulose and improvement of the stability of the remaining components by 1-amino-2-naphthol-4-sulfonic acid pretreatment. Industrial Crops and Products, 2022, 187, 115406.	2.5	14
692	Lignin derived carbon materials: current status and future trends. , 2022, 1, .		87
693	Lignin molecular design to transform green manufacturing. Matter, 2022, 5, 3513-3529.	5.0	7
694	A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Frontiers in Microbiology, 0, 13, .	1.5	6
695	Producing performance-advantaged bioplastics. Nature Chemistry, 2022, 14, 967-969.	6.6	3
696	Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nature Communications, 2022, 13, .	5.8	52
697	Simultaneous Generation of Methyl Esters and CO in Lignin Transformation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
698	Catalytic Hydrogenolysis of Lignin into Phenolics by Internal Hydrogen over Ru Catalyst. ChemCatChem, 2022, 14, .	1.8	5
699	Simultaneous Generation of Methyl Esters and CO in Lignin Transformation. Angewandte Chemie, 0, , .	1.6	0
700	Lignin-Based Water-Soluble Polymers Exhibiting Biodegradability and Activity as Flocculating Agents. ACS Sustainable Chemistry and Engineering, 2022, 10, 11117-11129.	3.2	6
701	The temptation from homogeneous linear catechyl lignin. Trends in Chemistry, 2022, 4, 948-961.	4.4	21
702	Breaking C─C Bonds and Preserving C─O Bonds in Aromatic Plastics and Lignin via a Reversing Bond Energy Cleavage Strategy. ACS Catalysis, 2022, 12, 10690-10699.	5.5	11
703	Utilization of guaiacol-based deep eutectic solvent for achieving a sustainable biorefinery. Bioresource Technology, 2022, 362, 127771.	4.8	15
704	A sustainable and environmental benign catalytic process for the production of valuable flavors and fragrances from lignin platform chemicals. Industrial Crops and Products, 2022, 187, 115460.	2.5	0
705	Promotion of biomass pyrolytic saccharification and lignin depolymerization via nucleophilic reagents quenching of the carbonium ions. Bioresource Technology, 2022, 363, 127876.	4.8	3
706	Low-condensed lignin and high-purity cellulose production from poplar by synergistic deep eutectic solvent-hydrogenolysis pretreatment. Bioresource Technology, 2022, 363, 127905.	4.8	19

#	Article	IF	CITATIONS
707	Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: Application, mechanism, and prospective. Environmental Research, 2022, 215, 114291.	3.7	12
708	Microwave-Assisted Fractionation of Poplar Sawdust into High-Yield Noncondensed Lignin and Carbohydrates in Methanol/P-Toluenesulfonic Acid. SSRN Electronic Journal, 0, , .	0.4	0
709	Continuous hydrodeoxygenation of lignin to jet-range aromatic hydrocarbons. Joule, 2022, 6, 2324-2337.	11.7	26
713	Revisiting alkaline cupric oxide oxidation method for lignin structural analysis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
714	Catalytic hydrogenolysis of lignin to phenolic monomers over Ru supported N,S-co-doped biochar: The importance of doping atmosphere. Frontiers in Chemistry, 0, 10, .	1.8	1
715	Plasmaâ€electrified upâ€carbonization for lowâ€carbon clean energy. , 2023, 5, .		10
716	Electrospun Lignin-Based Phase-Change Nanofiber Films for Solar Energy Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 13081-13090.	3.2	18
717	Analyzing the delignification, carbohydrate degradation kinetics, and mechanism of wet-storage bagasse in oxygen-alkali cooking. Cellulose, 2022, 29, 9421-9435.	2.4	1
719	Impact of composting factors on the biodegradation of lignin in Eichhornia crassipes (water) Tj ETQq0 0 0 rgBT /	Overlock 1 1.4	0
720	Lignin derived aromatic monomers from birch wood by laccase (LccH) pretreatment and Ru/C catalyst: a two-pot approach for sustainable biorefineries. Biomass Conversion and Biorefinery, 2023, 13, 14697-14712.	2.9	1
721	Effect of different washing methods on reducing the inhibition of surface lignin in the tetraethylammonium chloride/oxalic acid-based deep eutectic solvent pretreatment. Industrial Crops and Products, 2022, 188, 115728.	2.5	2
722	Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. International Journal of Biological Macromolecules, 2022, 222, 1400-1413.	3.6	47
723	Lignin as a bioactive polymer and heavy metal absorber- an overview. Chemosphere, 2022, 309, 136564.	4.2	8
724	Lignin: A Sustainable Antiviral Coating Material. ACS Sustainable Chemistry and Engineering, 2022, 10, 14001-14010.	3.2	12
725	From Lignin to Chemicals: An Expedition from Classical to Modern Catalytic Valorization Technologies. Chemie-Ingenieur-Technik, 2022, 94, 1611-1627.	0.4	4
726	Advances in Catalytic Depolymerization of Lignin. ChemistrySelect, 2022, 7, .	0.7	6
727	Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chemical Reviews, 2023, 123, 2609-2734.	23.0	53

728	collector. An encient catalyst for the depolymenzation and upgrading of lightcendlose to	71
120	albulauclabovanale with collulace integet Journal of Energy Chamistry 2022 77, 101,100	/•L .
	alkylcyclohexanols with cellulose intact. Journal of Energy Chemistry, 2023, 77, 191-199.	

#	Article	IF	CITATIONS
729	Forward-looking on new microbial consortia: Combination of rot fungi and rhizobacteria on plant growth-promoting abilities. Applied Soil Ecology, 2023, 182, 104689.	2.1	7
730	Efficient liquefaction of Kraft lignin over N-doped carbon supported size-controlled MoC nanoparticles in supercritical ethanol. Fuel, 2023, 333, 126360.	3.4	4
731	Evaluation of kraft and hydrolysis lignin hydroconversion over unsupported NiMoS catalyst. Chemical Engineering Journal, 2023, 453, 139829.	6.6	9
732	Microwave-assisted fractionation of poplar sawdust into high-yield noncondensed lignin and carbohydrates in methanol/p-toluenesulfonic acid. Chemical Engineering Journal, 2023, 454, 140237.	6.6	8
733	Integrated lignocellulosic biorefinery for efficient production of furans and photothermal materials. Chemical Engineering Journal, 2023, 453, 139688.	6.6	11
734	Overexpression of PtoMYB115 improves lignocellulose recalcitrance to enhance biomass digestibility and bioethanol yield by specifically regulating lignin biosynthesis in transgenic poplar. , 2022, 15, .		5
735	Preparation of small-size LCN from alkali lignin and its physico-chemical structure analysis. Functional Materials Letters, 0, , .	0.7	0
736	Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresource Technology, 2023, 368, 128356.	4.8	17
737	Acylation of phenols to phenolic esters with organic salts. Green Chemistry, 2022, 24, 9763-9771.	4.6	3
738	Poplar lignin structural changes during extraction in Î ³ -valerolactone (GVL). Green Chemistry, 2023, 25, 336-347.	4.6	10
739	Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization. International Journal of Biological Macromolecules, 2023, 226, 646-659.	3.6	20
740	Preparation of lignin-based carbon nanotubes using micelles as soft template. Industrial Crops and Products, 2023, 191, 116009.	2.5	6
741	Insights into the recent advances in the pretreatment of biomass for sustainable bioenergy and bio-products synthesis: Challenges and future directions. European Journal of Sustainable Development Research, 2023, 7, em0209.	0.4	3
742	Production of aromatic monomers at one atmospheric pressure through depolymerization of lignin using combined alkaline solution and aqueous ChCl:urea. Industrial Crops and Products, 2023, 192, 115911.	2.5	4
743	In-situ lignin sulfonation for enhancing enzymatic hydrolysis of poplar using mild organic solvent pretreatment. Bioresource Technology, 2023, 369, 128410.	4.8	3
744	High value valorization of lignin as environmental benign antimicrobial. Materials Today Bio, 2023, 18, 100520.	2.6	13
745	Phenol-assisted depolymerisation of condensed lignins to mono-/poly-phenols and bisphenols. Chemical Engineering Journal, 2023, 455, 140628.	6.6	11
746	Bioadhesive Design Toward Renewable Composites: Adhesive Distribution and Molecular Adhesion. Advanced Engineering Materials, 2023, 25, .	1.6	3

#	Article	IF	CITATIONS
747	Structure and Properties of Lignin Extracted from Cotton Stalk by Non-polluting Ethanol-Assisted Hot Water Pretreatment and its High-Value Utilization for Methylene Blue Removal. Waste and Biomass Valorization, 2023, 14, 2085-2101.	1.8	6
748	Valorization of corn cob toward multipurpose fractionation with a recyclable acid hydrotrope: furfural, phenolic compounds, and pulp. Cellulose, 2023, 30, 1503-1515.	2.4	4
749	Highly Efficient Fractionation of Cornstalk into Noncondensed Lignin, Xylose, and Cellulose in Formic Acid. Journal of Agricultural and Food Chemistry, 2022, 70, 15430-15438.	2.4	8
750	Lignin Stabilization and Carbohydrate Nature in Hâ€ŧransfer Reductive Catalytic Fractionation: The Role of Solvent Fractionation of Lignin Oil in Structural Profiling**. ChemSusChem, 2023, 16, .	3.6	5
752	Dipolar Modification in Heterogeneous Catalysts under Electron Beam Irradiation for the Conversion of Biomass-Derived Platform Molecules. ACS Catalysis, 2022, 12, 15618-15625.	5.5	4
753	Lignin-First Biorefinery for Converting Lignocellulosic Biomass into Fuels and Chemicals. Energies, 2023, 16, 125.	1.6	10
754	Chemical recycling of a lignin-based non-isocyanate polyurethane foam. Nature Sustainability, 2023, 6, 316-324.	11.5	16
755	SMRT and Illumina sequencing provide insights into mechanisms of lignin and terpenoids biosynthesis in Pinus massoniana Lamb. International Journal of Biological Macromolecules, 2023, 232, 123267.	3.6	3
756	Efficient Fractionation and Valorization of Raw Biomass in ε aprolactone and Water. ChemSusChem, 0, , .	3.6	1
757	Catalytic co-pyrolysis of lignin and spent bleaching clay via binder-modified HZSM-5: Evolution of coke composition. Microporous and Mesoporous Materials, 2023, 350, 112429.	2.2	1
758	Fractionation of lignin from rice straw using an acidified biphasic solvent system. International Journal of Biological Macromolecules, 2023, 230, 123249.	3.6	2
759	A cascade valorization of Kenaf stalk for the preparation of lignin sunscreens and papermaking. International Journal of Biological Macromolecules, 2023, 230, 123122.	3.6	9
760	Formic acid-facilitated hydrothermal pretreatment of raw biomass for co-producing xylo-oligosaccharides, glucose, and lignin. Industrial Crops and Products, 2023, 193, 116195.	2.5	10
761	A strategy for generating value-added aromatic monomers and lignocellulosic nanofibrils simultaneously from lignocellulosic biomass via polyoxometalate-mediated oxidative fractionation. Industrial Crops and Products, 2023, 193, 116215.	2.5	5
762	Enhanced adsorption of bio-oil on activated biochar in slurry fuels and the adsorption selectivity. Fuel, 2023, 338, 127224.	3.4	4
763	Acid-promoted lignin reductive depolymerization under mild conditions via a condensation minimizing approach: From organosolv lignin to woody biomass. Fuel, 2023, 338, 127311.	3.4	7
764	Depolymerization of technical lignin to valuable platform aromatics in lower alcohol without added catalyst and external hydrogen. Fuel Processing Technology, 2023, 242, 107637.	3.7	10
765	Photocatalytic Depolymerization of Native Lignin toward Chemically Recyclable Polymer Networks. ACS Central Science, 2023, 9, 48-55.	5.3	10

ARTICLE IF CITATIONS Hydrogenolysis of lignin to aromatics over Ru-based catalysts. Biomass Conversion and Biorefinery, 0, 766 2.9 1 Lignin condensation, an unsolved mystery. Trends in Chemistry, 2023, 5, 163-166. 4.4 A high-solid DES pretreatment using never-dried biomass as the starting material: towards 768 4.6 14 high-quality lignin fractionation. Green Chemistry, 2023, 25, 1571-1581. One-Pot Protolignin Extraction by Targeted Unlocking Lignin–Carbohydrate Esters via Nucleophilic Addition–Elimination Strategy. Research, 2023, 6, 0069. Simultaneous Oxidative Cleavage of Lignin and Reduction of Furfural via Efficient Electrocatalysis by 770 11.1 27 Pâ€Doped CoMoO₄. Advanced Materials, 2023, 35, . Characterization of the Ensemble of Lignin-Remodeling DyP-Type Peroxidases from Streptomyces 771 1.6 coelicolor A3(2). Energies, 2023, 16, 1557. Discovery, disassembly, depolymerization and derivatization of catechyl lignin in Chinese tallow seed 772 3.6 7 coats. International Journal of Biological Macromolecules, 2023, 239, 124256. Use of a fully biobased and non-reprotoxic epoxy polymer and woven hemp fabric to prepare environmentally friendly composite materials with excellent physical properties. Composites Part B: 5.9 Engineering, 2023, 258, 110692. The driving force of biomass value-addition: Selective catalytic depolymerization of lignin to 774 3.3 13 high-value chemicals. Journal of Environmental Chemical Engineering, 2023, 11, 109719. Current strategies for industrial plastic production from non-edible biomass. Current Opinion in 3.2 Green and Sustainable Chemistry, 2023, 41, 100780. Flower-like bismuth oxycarbonate-mediated selective oxidative cleavage of C–C bond in the presence 776 0 1.9 of molecular oxygen. Materials Today Sustainability, 2023, 22, 100380. High quantum-yield lignin fluorescence materials based on polymer confinement strategy and its 2.5 application as a natural ratiometric pH sensor film. Industrial Crops and Products, 2023, 194, 116384. Highly effective fractionation chemistry to overcome the recalcitrance of softwood lignocellulose. 778 5.1 2 Carbóhydrate Polymers, 2023, 312, 120815. Enhanced catalytic cleavage of C-O and C-C bonds of raw biomass into lignin monomers and glucose. Industrial Crops and Products, 2023, 197, 116659. 779 2.5 Understanding the Interactive Relationship between Aliphatic Series Deep Eutectic Solvents and Lignocellulosic Dimer Model Compounds. ACS Sustainable Chemistry and Engineering, 2023, 11, 780 3.2 1 2416-2426. Ionic Liquids as Solvents for the Production of Materials from Biomass., 2022, , 642-663. The chemical and physical properties of lignin bio-oils, facts and needs. Current Opinion in Green and 783 3.26 Sustainable Chemistry, 2023, 40, 100781. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and 784 24 Agricultural Applications. Biomacromolecules, 2023, 24, 1065-1077.

#	Article	IF	Citations
785	Lignin-derived dual-doped carbon nanocomposites as low-cost electrocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131105.	2.3	0
787	Thiourea dioxide as a green reductant for selective depolymerization of lignin to guaiacol. Industrial Crops and Products, 2023, 194, 116176.	2.5	0
788	Catalytic conversion of diformylxylose to furfural in biphasic solvent systems. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	0
789	Lignin as Feedstock for Nanoparticles Production. , 0, , .		2
790	Herbaceous plants-derived hydroxycinnamic units for constructing recyclable and controllable copolyesters. Green Chemistry, 2023, 25, 2458-2465.	4.6	6
791	Highly efficient metal-acid synergetic catalytic fractionation of lignocellulose under mild conditions over lignin-coordinated N-anchoring Co single-atom catalyst. Chemical Engineering Journal, 2023, 462, 142109.	6.6	12
792	Relay catalysis of Pt single atoms and nanoclusters enables alkyl/aryl C-O bond scission for oriented lignin upgrading and N-functionalization. Chemical Engineering Journal, 2023, 462, 142225.	6.6	6
793	Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects. Bioresources and Bioprocessing, 2023, 10, .	2.0	10
794	The Future Biorefinery: The Impact of Upscaling the Reductive Catalytic Fractionation of Lignocellulose Biomass on the Quality of the Lignin Oil, Carbohydrate Products, and Pulp. ACS Sustainable Chemistry and Engineering, 2023, 11, 5440-5450.	3.2	8
795	Reductive Partial Depolymerization of Acetone Organosolv Lignin to Tailor Lignin Molar Mass, Dispersity, and Reactivity for Polymer Applications. ACS Sustainable Chemistry and Engineering, 2023, 11, 6070-6080.	3.2	4
796	Catalytic Strategies and Mechanism Analysis Orbiting the Center of Critical Intermediates in Lignin Depolymerization. Chemical Reviews, 2023, 123, 4510-4601.	23.0	45
797	Biomass Photoreforming for Hydrogen and Valueâ€Added Chemicals Coâ€Production on Hierarchically Porous Photocatalysts. Advanced Energy Materials, 2023, 13, .	10.2	16
798	Engineering Innovations, Challenges, and Opportunities for Lignocellulosic Biorefineries: Leveraging Biobased Polymer Production. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 109-140.	3.3	10
799	Lignin Structure and Reactivity in the Organosolv Process Studied by NMR Spectroscopy, Mass Spectrometry, and Density Functional Theory. Biomacromolecules, 2023, 24, 2314-2326.	2.6	10
826	Acetalization strategy in biomass valorization: a review. , 2024, 2, 30-56.		3
840	The lignin challenge in catalytic conversion of biomass solids to chemicals and fuels. , 0, , .		0
858	Room-temperature phosphorescent materials derived from natural resources. Nature Reviews Chemistry, 2023, 7, 800-812.	13.8	10
862	Sustainable Production of Nitriles from Biomass. Biofuels and Biorefineries, 2023, , 143-162.	0.5	0

#	Article	IF	CITATIONS
882	Research progress in green preparation of advanced wood-based composites. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	2
887	A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals. , 2024, 2, 37-90.		3
892	Hydrodeoxygenation of condensed lignins followed by acid-mediated methylolation enables preparation of lignin-based wood adhesives. Green Chemistry, 0, , .	4.6	0
895	Organosolv biorefinery: resource-based process optimisation, pilot technology scale-up and economics. Green Chemistry, 0, , .	4.6	0
898	Supramolecular interaction-driven delignification of lignocellulose. Green Chemistry, 2024, 26, 287-294.	4.6	1
910	Biochar: A Pyrolyzed Green Fuel from Paddy Straw. Clean Energy Production Technologies, 2024, , 213-229.	0.3	0
925	Transforming lignin into value-added products: Perspectives on lignin chemistry, lignin-based biocomposites, and pathways for augmenting ligninolytic enzyme production. Advanced Composites and Hybrid Materials, 2024, 7, .	9.9	0