A review of the coordination chemistry of hydrotherma changes make ore deposits?

Chemical Geology 447, 219-253 DOI: 10.1016/j.chemgeo.2016.10.021

Citation Report

#	Article	IF	CITATIONS
1	Species fine structure of transition metal Cu(II) in aqueous chloride-bearing solutions: Insights from X-ray absorption spectroscopy and ab initio XANES calculations. Journal of Molecular Liquids, 2017, 230, 200-208.	4.9	10
2	Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chemical Geology, 2017, 463, 29-49.	3.3	70
3	NANO- TO MICRON-SCALE PARTICULATE GOLD HOSTED BY MAGNETITE: A PRODUCT OF GOLD SCAVENGING BY BISMUTH MELTS. Economic Geology, 2017, 112, 993-1010.	3.8	50
4	Revisiting the hydrothermal geochemistry of europium(II/III) in light of new in-situ XAS spectroscopy results. Chemical Geology, 2017, 459, 61-74.	3.3	43
5	Structure, acidity, and metal complexing properties of oxythioarsenites in hydrothermal solutions. Chemical Geology, 2017, 471, 131-140.	3.3	1
6	Hydration Is the Key for Gold Transport in CO2–HCl–H2O Vapor. ACS Earth and Space Chemistry, 2017, 1, 368-375.	2.7	12
7	Smoking gun for thallium geochemistry in volcanic arcs: Nataliyamalikite, Tll, a new thallium mineral from an active fumarole at Avacha Volcano, Kamchatka Peninsula, Russia. American Mineralogist, 2017, 102, 1736-1746.	1.9	13
8	Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia. Minerals (Basel, Switzerland), 2017, 7, 202.	2.0	26
9	The dissociation mechanism and thermodynamic properties of HCl(aq) in hydrothermal fluids (to) Tj ETQq0 0 0 rg 226, 84-106.	gBT /Overl 3.9	ock 10 Tf 50 29
10	Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization. Lithos, 2018, 308-309, 118-133.	1.4	22
11	Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Et Cosmochimica Acta, 2018, 220, 499-511.	3.9	95
11 12	Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Et Cosmochimica Acta, 2018, 220, 499-511. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250â€ ⁻ °C. Geochimica Et Cosmochimica Acta, 2018, 222, 130-145.	3.9 3.9	95 32
11 12 13	Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Et Cosmochimica Acta, 2018, 220, 499-511.A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250â€Â°C. Geochimica Et Cosmochimica Acta, 2018, 222, 130-145.Complexation of copper in acetate-rich low-temperature hydrothermal fluids: Evidence from ab initio molecular dynamics simulations. Chemical Geology, 2018, 476, 100-118.	3.9 3.9 3.3	95 32 9
11 12 13 14	Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Et Cosmochimica Acta, 2018, 220, 499-511. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250â€Â°C. Geochimica Et Cosmochimica Acta, 2018, 222, 130-145. Complexation of copper in acetate-rich low-temperature hydrothermal fluids: Evidence from ab initio molecular dynamics simulations. Chemical Geology, 2018, 476, 100-118. Pseudomorphic Rhythmically Banded and Oscillatory Tetrahedrite–Tennantite Aggregates in the Darasun Gold Deposit (Eastern Transbaikalia, Russia): A Result of Coupled Dissolution–Reprecipitation Reactions. Doklady Earth Sciences, 2018, 483, 1431-1436.	3.93.93.30.7	95 32 9 4
11 12 13 14 15	Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Et Cosmochimica Acta, 2018, 220, 499-511. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250â€ [^] °C. Geochimica Et Cosmochimica Acta, 2018, 222, 130-145. Complexation of copper in acetate-rich low-temperature hydrothermal fluids: Evidence from ab initio molecular dynamics simulations. Chemical Geology, 2018, 476, 100-118. Pseudomorphic Rhythmically Banded and Oscillatory Tetrahedriteâ€ ^{(**} Tennantite Aggregates in the Darasun Gold Deposit (Eastern Transbaikalia, Russia): A Result of Coupled Dissolutionâ€ ^{(**} Reprecipitation Reactions. Doklady Earth Sciences, 2018, 483, 1431-1436. An experimental method for gold partitioning between two immiscible fluids: Brine and n-dodecane. Chemical Geology, 2018, 501, 35-50.	 3.9 3.9 3.3 0.7 3.3 	95 32 9 4
11 12 13 14 15 16	Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Et Cosmochimica Acta, 2018, 220, 499-511. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250â€ ^A °C. Geochimica Et Cosmochimica Acta, 2018, 222, 130-145. Complexation of copper in acetate-rich low-temperature hydrothermal fluids: Evidence from ab initio molecular dynamics simulations. Chemical Geology, 2018, 476, 100-118. Pseudomorphic Rhythmically Banded and Oscillatory Tetrahedriteâ€ ^C Tennantite Aggregates in the Darasun Gold Deposit (Eastern Transbaikalia, Russia): A Result of Coupled Dissolutionâ€ ^C Reprecipitation Reactions. Doklady Earth Sciences, 2018, 483, 1431-1436. An experimental method for gold partitioning between two immiscible fluids: Brine and n-dodecane. Chemical Geology, 2018, 501, 35-50. The role of Pb(II) complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study. Chemical Geology, 2018, 502, 88-106.	 3.9 3.9 3.3 0.7 3.3 3.3 	 95 32 9 4 9 27
 11 12 13 14 15 16 17 	Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochimica Et Cosmochimica Acta, 2018, 220, 499-511. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250â€Â°C. Geochimica Et Cosmochimica Acta, 2018, 222, 130-145. Complexation of copper in acetate-rich low-temperature hydrothermal fluids: Evidence from ab initio molecular dynamics simulations. Chemical Geology, 2018, 476, 100-118. Pseudomorphic Rhythmically Banded and Oscillatory Tetrahedrite–Tennantite Aggregates in the Darasun Gold Deposit (Eastern Transbaikalia, Russia): A Result of Coupled Dissolution–Reprecipitation Reactions. Doklady Earth Sciences, 2018, 483, 1431-1436. An experimental method for gold partitioning between two immiscible fluids: Brine and n-dodecane. Chemical Geology, 2018, 501, 35-50. The role of Pb(II) complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study. Chemical Geology, 2018, 502, 88-106. Uranium Transport in F-Cl-Bearing Fluids and Hydrothermal Upgrading of U-Cu Ores in IOCG Deposits. Geofluids, 2018, 2018, 1-22.	 3.9 3.9 3.3 0.7 3.3 3.3 0.7 	 95 32 9 4 9 27 33

#	Article	IF	CITATIONS
19	Organic, Gas, and Element Geochemistry of Hydrothermal Fluids of the Newly Discovered Extensive Hydrothermal Area in the Wallis and Futuna Region (SW Pacific). Geofluids, 2018, 2018, 1-25.	0.7	3
20	CuCl Complexation in the Vapor Phase: Insights from Ab Initio Molecular Dynamics Simulations. Geofluids, 2018, 2018, 1-12.	0.7	9
21	Uranyl-chloride speciation and uranium transport in hydrothermal brines: Comment on Migdisov et al. (2018) "A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250â€Â°Câ€; Geochim. Cosmochim. Acta 222, 130–145. Geochimica Et Cosmochimica Acta, 2018, 235, 50	3.9)5-508.	3
22	Fluids, Metals, and Mineral/Ore Deposits. Geofluids, 2018, 2018, 1-6.	0.7	13
23	In-situ sulfur isotope and trace element analysis of pyrite from the Xiwang uranium ore deposit in South China: Implication for ore genesis. Journal of Geochemical Exploration, 2018, 195, 49-65.	3.2	22
24	Copper complexation and solubility in high-temperature hydrothermal fluids: A combined study by Raman, X-ray fluorescence, and X-ray absorption spectroscopies and ab initio molecular dynamics simulations. Chemical Geology, 2018, 494, 69-79.	3.3	14
25	Uranyl Arsenate Complexes in Aqueous Solution: Insights from First-Principles Molecular Dynamics Simulations. Inorganic Chemistry, 2018, 57, 5801-5809.	4.0	9
26	Geology, mineral paragenesis and fluid inclusion studies of the Yueyang Ag-Au-Cu deposit, South China: implications for ore genesis and exploration. Geochemistry: Exploration, Environment, Analysis, 2018, 18, 303-318.	0.9	10
27	The aqueous chemistry of polonium (Po) in environmental and anthropogenic processes. Journal of Hazardous Materials, 2019, 380, 120725.	12.4	37
28	The influence of hydrothermal activity during the origin of Co-rich manganese crusts of the N-W Pacific. E3S Web of Conferences, 2019, 98, 08016.	0.5	2
29	The crystal structures of the mixed-valence tellurium oxysalts tlapallite, (Ca,Pb) ₃ CaCu ₆ [Te ⁴⁺ ₃ Te ⁶⁺ O ₁₂]< and carlfriesite, CaTe ⁴⁺ ₂ Te ⁶⁺ O ₈ . Mineralogical Magazine, 2019, 83, 539-549.	sub>2 <td>uby (Te<sup< td=""></sup<></td>	uby (Te <sup< td=""></sup<>
30	Uranyl speciation in sulfate-bearing hydrothermal solutions up to 250â€ [−] °C. Geochimica Et Cosmochimica Acta, 2019, 267, 75-91.	3.9	18
31	Oxidation state and coordination environment of Pb in U-bearing minerals. Geochimica Et Cosmochimica Acta, 2019, 265, 109-131.	3.9	21
32	The discreditation of oboyerite and a note on the crystal structure of plumbotellurite. Mineralogical Magazine, 2019, 83, 791-797.	1.4	2
33	Colloidal gold in sulphur and citrate-bearing hydrothermal fluids: An experimental study. Ore Geology Reviews, 2019, 114, 103142.	2.7	22
34	Tracking Fe mobility and Fe speciation in subduction zone fluids at the slab-mantle interface in a subduction channel: A tale of whiteschist from the Western Alps. Geochimica Et Cosmochimica Acta, 2019, 267, 1-16.	3.9	27
35	Crude oils as ore fluids: An experimental in-situ XAS study of gold partitioning between brine and organic fluid from 25 to 250â€Â°C. Geochimica Et Cosmochimica Acta, 2019, 244, 352-365.	3.9	23
36	Zinc transport in hydrothermal fluids: On the roles of pressure and sulfur vs. chlorine complexing. American Mineralogist, 2019, 104, 158-161.	1.9	13

#	Article	IF	CITATIONS
37	Cr(VI) reduction by Fe(II) sorbed to silica surfaces. Chemosphere, 2019, 234, 98-107.	8.2	18
38	Characterisation of a rare earth element- and zirconium-bearing ion-adsorption clay deposit in Madagascar. Chemical Geology, 2019, 522, 93-107.	3.3	46
39	Thermodynamic modelling of fluids from surficial to mantle conditions. Journal of the Geological Society, 2019, 176, 348-374.	2.1	25
40	Coupled Dissolution–Precipitation Reactions of Tennantite–Tetrahedrite Minerals in the Darasun Gold Deposit (Eastern Transbaikalia, Russia). Geology of Ore Deposits, 2019, 61, 530-548.	0.7	5
41	Gold partitioning between 1-dodecanethiol and brine at elevated temperatures: Implications of Au transport in hydrocarbons for oil-brine ore systems. Chemical Geology, 2019, 504, 28-37.	3.3	10
42	Gold Transport in Hydrothermal Chloride-Bearing Fluids: Insights from in Situ X-ray Absorption Spectroscopy and ab Initio Molecular Dynamics. ACS Earth and Space Chemistry, 2019, 3, 240-261.	2.7	19
43	The role of fluorine in hydrothermal mobilization and transportation of Fe, U and REE and the formation of IOCG deposits. Chemical Geology, 2019, 504, 158-176.	3.3	46
44	Fingerprinting multiple gold mineralization events at the Dome mine in Timmins, Ontario, Canada: Trace element and gold content of pyrite. Ore Geology Reviews, 2019, 104, 603-619.	2.7	12
45	Sn isotope fractionation during volatilization of Sn(IV) chloride: Laboratory experiments and quantum mechanical calculations. Geochimica Et Cosmochimica Acta, 2020, 269, 184-202.	3.9	18
46	Oxybarometry and valence quantification based on microscale X-ray absorption fine structure (XAFS) spectroscopy of multivalent elements. Chemical Geology, 2020, 531, 119305.	3.3	15
47	Gold solubility in alkaline and ammonia-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations. Geochimica Et Cosmochimica Acta, 2020, 291, 62-78.	3.9	17
48	The role of sulfur in molybdenum transport in hydrothermal fluids: Insight from in situ synchrotron XAS experiments and molecular dynamics simulations. Geochimica Et Cosmochimica Acta, 2020, 290, 162-179.	3.9	12
49	Selective removal of radioactive 210Pb(II) and nonradioactive Pb(II) isotopes from Cu(II)-rich acidic chloride solution by a new polyamine anion exchanger. Separation and Purification Technology, 2020, 251, 117359.	7.9	5
50	Coordination of Zr4+/Hf4+/Nb5+/Ta5+ in silicate melts: insight from first principles molecular dynamics simulations. Chemical Geology, 2020, 555, 119814.	3.3	8
51	Synchrotron X-ray radiation and the African earth sciences: A critical review. Journal of African Earth Sciences, 2020, 172, 104012.	2.0	2
52	Future migration: Key environmental indicators of Pu accumulation in terrestrial sediments of Queensland, Australia. Journal of Environmental Radioactivity, 2020, 223-224, 106398.	1.7	3
53	Gold metallogeny: A tribute to Academician Yusheng Zhai. Ore Geology Reviews, 2020, 123, 103580.	2.7	0
54	Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle. Geochimica Et Cosmochimica Acta, 2020, 282, 113-132.	3.9	39

#	Article	IF	CITATIONS
55	Textural and geochemical analysis of chalcopyrite, galena and sphalerite across the Mount Isa Cu to Pb-Zn transition: Implications for a zoned Cu-Pb-Zn system. Ore Geology Reviews, 2020, 124, 103647.	2.7	24
56	Trace-element remobilisation from W–Sn–U–Pb zoned hematite: Nanoscale insights into a mineral geochronometer behaviour during interaction with fluids. Mineralogical Magazine, 2020, 84, 502-516.	1.4	7
57	Advances in Numerical Simulations of Hydrothermal Ore Forming Processes. Geofluids, 2020, 2020, 1-4.	0.7	2
58	Love is in the Earth: A review of tellurium (bio)geochemistry in surface environments. Earth-Science Reviews, 2020, 204, 103150.	9.1	53
59	Genesis of the Zaozigou gold deposit, West Qinling orogen, China: Constraints from sulfide trace element and stable isotope geochemistry. Ore Geology Reviews, 2020, 122, 103477.	2.7	12
60	Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits. National Science Review, 2020, 7, 1319-1330.	9.5	20
61	Types of ore deposits and their origin. , 2020, , 45-85.		1
62	Shedding light on ore deposits: A review of synchrotron X-ray radiation use in ore geology research. Ore Geology Reviews, 2020, 117, 103328.	2.7	16
63	Pyrite chemistry: A new window into Au-Te ore-forming processes in alkaline epithermal districts, Cripple Creek, Colorado. Geochimica Et Cosmochimica Acta, 2020, 274, 172-191.	3.9	63
64	Yttrium complexation and hydration in chloride-rich hydrothermal fluids: A combined ab initio molecular dynamics and in situ X-ray absorption spectroscopy study. Geochimica Et Cosmochimica Acta, 2020, 281, 168-189.	3.9	18
65	Experimental partitioning of osmium between pyrite and fluid: Constraints on the mid-ocean ridge hydrothermal flux of osmium to seawater. Geochimica Et Cosmochimica Acta, 2021, 293, 240-255.	3.9	4
66	Insights into salty metamorphic fluid evolution from scapolite in the Trans-North China Orogen: Implication for ore genesis. Geochimica Et Cosmochimica Acta, 2021, 293, 256-276.	3.9	12
67	Bis (tridentate) divalent first-row transition metal ion (Zn, Mn, Fe, Ni, Co) complexes: Crystal structure, nonlinear optical property, and magnetic resonance imaging. Journal of Organometallic Chemistry, 2021, 933, 121655.	1.8	2
68	Lead (Pb) sorption and co-precipitation on natural sulfide, sulfate and oxide minerals under environmental conditions. Minerals Engineering, 2021, 163, 106801.	4.3	13
69	Crystal Chemistry of Zemannite-Type Structures: III. Keystoneite, the Ni2+-Analogue of Zemannite, and Ferrotellurite Discredited. Canadian Mineralogist, 2021, 59, 355-364.	1.0	5
70	Trace element catalyses mineral replacement reactions and facilitates ore formation. Nature Communications, 2021, 12, 1388.	12.8	19
71	First-Principles Hydrothermal Synthesis Design to Optimize Conditions and Increase the Yield of Quaternary Heteroanionic Oxychalcogenides. Chemistry of Materials, 2021, 33, 2726-2741.	6.7	15
72	Trace Element Signatures in Pyrite and Marcasite From Shallow Marine Island Arc-Related Hydrothermal Vents, Calypso Vents, New Zealand, and Paleochori Bay, Greece. Frontiers in Earth Science, 2021, 9	1.8	10

#	Article	IF	CITATIONS
73	Experimental investigation of the reactions between pyrite and aqueous Cu(I) chloride solution at 100–250†°C. Geochimica Et Cosmochimica Acta, 2021, 298, 1-20.	3.9	11
74	Thermodynamic properties of ruthenium (IV) chloride complex and the transport of ruthenium in magmatic-hydrothermal fluids. Ore Geology Reviews, 2021, 131, 104043.	2.7	5
75	XANES reflects coordination change and underlying surface disorder of zinc adsorbed to silica. Journal of Synchrotron Radiation, 2021, 28, 1119-1126.	2.4	7
76	Sn(II) chloride speciation and equilibrium Sn isotope fractionation under hydrothermal conditions: A first principles study. Geochimica Et Cosmochimica Acta, 2021, 300, 25-43.	3.9	23
77	Selective radionuclide co-sorption onto natural minerals in environmental and anthropogenic conditions. Journal of Hazardous Materials, 2021, 409, 124989.	12.4	10
78	The Relation between Trace Element Composition of Cu-(Fe) Sulfides and Hydrothermal Alteration in a Porphyry Copper Deposit: Insights from the Chuquicamata Underground Mine, Chile. Minerals (Basel,) Tj ETQq1	1 0278 431	4 ngBT /Ove
79	Origin of the Qiyugou gold deposit in the southern margin of the North China Craton: Insights from trace elements of pyrite and mineralogy of Bi-minerals. Ore Geology Reviews, 2021, 133, 104085.	2.7	5
80	Gold solubility in silicate melts and fluids: Advances from high-pressure and high-temperature experiments. Science China Earth Sciences, 2021, 64, 1481-1491.	5.2	2
81	An experimental study of the solubility of rare earth chloride salts (La, Nd, Er) in HCl bearing water vapor from 350 to 425°C. Geochimica Et Cosmochimica Acta, 2021, , .	3.9	1
82	The role of sulfides in the chalcophile and siderophile element budget of the subducted oceanic crust. Geochimica Et Cosmochimica Acta, 2021, 304, 191-215.	3.9	9
83	Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits. Geochimica Et Cosmochimica Acta, 2021, 305, 1-18.	3.9	24
84	Gold speciation in hydrothermal fluids revealed by in situ high energy resolution X-ray absorption spectroscopy. American Mineralogist, 2022, 107, 369-376.	1.9	8
85	Trace element fractionation and precipitation in submarine back-arc hydrothermal systems, Nifonea caldera, New Hebrides subduction zone. Ore Geology Reviews, 2021, 135, 104211.	2.7	8
86	Experimental study on Fe solubility in vapor-rich hydrothermal fluids at 400–500â€ ⁻ °C, 215–510â€ ⁻ bar: Implication for Fe mobility in seafloor vent systems. Geochimica Et Cosmochimica Acta, 2021, 314, 209-222.	3.9	4
88	Liquid structure under extreme conditions: high-pressure x-ray diffraction studies. Journal of Physics Condensed Matter, 2021, 33, 503004.	1.8	8
89	Transferable Gaussian Attractive Potentials for Organic/Oxide Interfaces. Journal of Physical Chemistry B, 2021, 125, 10843-10853.	2.6	8
90	Chlorine isotope fractionation during serpentinization and hydrothermal mineralization: A density functional theory study. Chemical Geology, 2021, 581, 120406.	3.3	6
91	Zinc isotopic fractionation between aqueous fluids and silicate magmas: An experimental study. Geochimica Et Cosmochimica Acta, 2021, 311, 226-237.	3.9	3

#	Article	IF	CITATIONS
92	Anatomy of a complex mineral replacement reaction: Role of aqueous redox, mineral nucleation, and ion transport properties revealed by an in-situ study of the replacement of chalcopyrite by copper sulfides. Chemical Geology, 2021, 581, 120390.	3.3	10
93	Boiling effects on trace element and sulfur isotope compositions of sulfides in shallow-marine hydrothermal systems: Evidence from Milos Island, Greece. Chemical Geology, 2021, 583, 120457.	3.3	14
94	Saline fluids drive Cu mineralization in Precambrian metasediments: Evidence from the Trans-North China Orogen. Ore Geology Reviews, 2021, 139, 104462.	2.7	1
95	A molecular dynamics study of Li speciation in hydrothermal fluids and silicate melts. Chemical Geology, 2021, 584, 120528.	3.3	5
96	Geochemical signatures of mineralizing events in the Juomasuo Au–Co deposit, Kuusamo belt, northeastern Finland. Mineralium Deposita, 2021, 56, 1195-1222.	4.1	17
97	Experimental constraints on metal transport in fumarolic gases. Journal of Volcanology and Geothermal Research, 2020, 400, 106929.	2.1	12
98	Characteristics of hydrothermal alteration and material migration of Mianhuakeng uranium deposit in northern Guangdong Province. Acta Petrologica Sinica, 2019, 35, 2745-2764.	0.8	8
99	Magmatic-Hydrothermal Fluids. Elements, 2020, 16, 401-406.	0.5	30
100	Extending the dataset of fluid geochemistry of the Menez Gwen, Lucky Strike, Rainbow, TAG and Snake Pit hydrothermal vent fields: Investigation of temporal stability and organic contribution. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 179, 103630.	1.4	5
101	Mineral chemistry of magnetite and its constraints on ore-forming processes of the Dulong Sn-Zn-In polymetallic deposit, southeastern Yunnan Province. Acta Petrologica Sinica, 2020, 36, 154-170.	0.8	3
102	Tungsten (VI) speciation in hydrothermal solutions up to 400°C as revealed by in-situ Raman spectroscopy. Geochimica Et Cosmochimica Acta, 2022, 317, 306-324.	3.9	9
103	Silver complexation in chlorine- and sulfur-rich hydrothermal fluids: Insight from ab initio molecular dynamics simulations. Chemical Geology, 2022, 589, 120684.	3.3	1
104	The new mineral tomiolloite, Al12(Te4+O3)5[(SO3)0.5(SO4)0.5](OH)24: A unique microporous tellurite structure. American Mineralogist, 2022, 107, 2167-2175.	1.9	4
105	Provenance of Jurassic Sediments from Yuqia Sandstone-Type Uranium Deposits in the Northern Margin of Qaidam Basin, China and Its Implications for Uranium Mineralization. Minerals (Basel,) Tj ETQq1 1 0.78	4 321 & rgBT	/Øverlock
106	Bismuth: Economic geology and value chains. Ore Geology Reviews, 2022, 143, 104722.	2.7	26
107	Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland. Solid Earth, 2022, 13, 271-299.	2.8	10
108	Goldilocks effect of fluorine and chlorine in albitisation. Chemical Geology, 2022, 591, 120728.	3.3	2
109	Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu	2.7	6

#	Article	IF	CITATIONS
110	A molecular simulation study of Cs-Cl and Cs-F ion pairs in hydrothermal fluids. Acta Geochimica, 0, , 1.	1.7	0
111	An experimental and thermodynamic study of sphalerite solubility in chloride-bearing fluids at 300–450°C, 500Âbar: implications for zinc transport in seafloor hydrothermal systems. Geochimica Et Cosmochimica Acta, 2022, 330, 131-147.	3.9	7
112	Trace elements in pyrite from five different gold ore deposit classes: a review and meta-analysis. Geological Society Special Publication, 2022, 516, 47-83.	1.3	10
113	Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rearâ€Arc. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	5
114	Firstâ€principles Study on Equilibrium Sn Isotope Fractionations in Hydrothermal Fluids. Acta Geologica Sinica, 2022, 96, 2125-2134.	1.4	2
115	Speciation and thermodynamic properties of La(III)-Cl complexes in hydrothermal fluids: A combined molecular dynamics and in situ X-ray absorption spectroscopy study. Geochimica Et Cosmochimica Acta, 2022, 330, 27-46.	3.9	5
116	Yttrium speciation in sulfate-rich hydrothermal ore-forming fluids. Geochimica Et Cosmochimica Acta, 2022, 325, 278-295.	3.9	4
117	Trace Element and Isotope Systematics in Vent Fluids and Sulphides From Maka Volcano, North Eastern Lau Spreading Centre: Insights Into Three-Component Fluid Mixing. Frontiers in Earth Science, 2021, 9, .	1.8	6
118	Cobalt-rich characteristics and existing problems of porphyry gold-copper deposit: A case study of Jinchang deposit in Heilongjiang Province. Chinese Science Bulletin, 2022, 67, 3708-3723.	0.7	3
119	Scheelite chemistry from skarn systems: implications for ore-forming processes and mineral exploration. Mineralium Deposita, 2022, 57, 1469-1497.	4.1	14
120	Germanium redistribution during weathering of Zn mine wastes: Implications for environmental mobility and recovery of a critical mineral. Applied Geochemistry, 2022, 143, 105341.	3.0	4
121	A high-efficiency gold precipitation model associated with Fe carbonates: Example from the Jiudian deposit of the world-class Jiaodong gold province. Ore Geology Reviews, 2022, 145, 104894.	2.7	4
122	Co–Ni decoupling indicates fluid exsolution during the formation of podiform chromitites: Insights from the Luobusa ophiolite, southern Tibet. Lithos, 2022, 420-421, 106714.	1.4	1
123	Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems. Geochimica Et Cosmochimica Acta, 2022, 329, 185-205.	3.9	18
124	The Distribution and Structures of Ferric Aqua and Chloro Complexes in Hydrochloric Acid Solutions. ISIJ International, 2022, 62, 912-921.	1.4	2
125	Distinct Au and Ag precipitation mechanism in the Xiayingfang Au–Ag deposit, North China Craton. Ore Geology Reviews, 2022, , 104968.	2.7	0
126	In situ Lu–Hf geochronology of calcite. Geochronology, 2022, 4, 353-372.	2.5	13
127	Crystal structure and investigation of Bi2TeO6·nH2O (0 â‰≇€‰n â‰≇€‰\$\${aise0.5exhbox{\$script	style 2\$}) 0.8	Tj ETQq1 1 1

#	Article	IF	CITATIONS
128	Episodic ore-forming fluid evolution processes in the Jiudian gold deposit, Jiaodong Peninsula: Constrains from texture, trace element and S isotope composition of pyrite. Ore Geology Reviews, 2022, 148, 105023.	2.7	1
129	Toward quantitative experiment using hydrothermal diamond anvil cell: Solubility of sylvite up to 1.6ÂGPa. Chemical Geology, 2022, 609, 121071.	3.3	2
130	Co-precipitation of gold and base metal sulfides during fluid boiling triggered by fault-valve processes in orogenic gold deposits. Ore Geology Reviews, 2022, 149, 105090.	2.7	7
131	Multi-source and multi-stage metal mobilization during the tectonic evolution of the Central Lapland Greenstone Belt, Finland: implications for the formation of orogenic Au deposits. Mineralium Deposita, 2023, 58, 461-488.	4.1	8
132	Deep sourced magma and ore-metal mobility in the D. João de Castro submarine volcano (Azores): a mineral chemistry and melt inclusion study. Contributions To Mineralogy and Petrology, 2022, 177, .	3.1	0
133	Integrated O, Fe, and Ti isotopic analysis elucidates multiple metal and fluid sources for magnetite from the Ernest Henry Iron oxide copper gold (IOCG) Deposit, Queensland, Australia. Ore Geology Reviews, 2022, 150, 105170.	2.7	2
134	In-situ trace element and S isotope systematics in pyrite from three porphyry-epithermal prospects, Limnos Island, Greece. Frontiers in Earth Science, 0, 10, .	1.8	0
135	Speciation of chromium aqua and chloro complexes in hydrochloric acid solutions at 298 K. RSC Advances, 2022, 12, 32722-32736.	3.6	3
136	Mineralogical distribution and genetic aspects of cobalt at the active Fåvne and Loki's Castle seafloor massive sulfide deposits, Arctic Mid-Ocean Ridges. Ore Geology Reviews, 2023, 153, 105261.	2.7	4
137	Vein-type gold formation during late extensional collapse of the Eastern Desert, Egypt: the Gidami deposit. Mineralium Deposita, 2023, 58, 681-706.	4.1	2
138	Fluid evolution and ore genesis of the Tiantangshan granite-related vein-type Rb-Sn-W deposit, south China: constraints from LA-ICP-MS analyses of fluid inclusions. Mineralium Deposita, 2023, 58, 751-769.	4.1	4
139	The performance evaluation of Alamine336 in solvent extraction and polymer inclusion membrane methods for valuable ions extraction: A case study of Te(IV) separation intensification. Chemical Engineering and Processing: Process Intensification, 2023, 184, 109268.	3.6	1
140	Orogenic Au deposits with atypical metal association (Cu, Co, Ni): Insights from the Pohjanmaa Belt, western Finland. Ore Geology Reviews, 2023, 154, 105326.	2.7	0
141	Hydrothermal alteration and element migration in the Egongtang uranium deposit, central Nanling Range, South China. Geological Magazine, 0, , 1-21.	1.5	0
142	Processes of Enrichment of Trace Metals for High-Tech Applications in Hydrothermal Veins of the Ruhr Basin and the Rhenish Massif, Germany. Canadian Mineralogist, 2022, 60, 881-912.	1.0	0
143	Sources, transport, and deposition of metal(loid)s recorded by sulfide and rock geochemistry: constraints from a vertical profile through the epithermal Profitis Ilias Au prospect, Milos Island, Greece. Mineralium Deposita, 2023, 58, 1101-1122.	4.1	1
144	Nature and coordination geometry of geologically relevant aqueous Uranium(VI) complexes up to 400 ºC: A review and new data. Journal of Hazardous Materials, 2023, 452, 131309.	12.4	0
145	Apatite and fluorite control the transport of tungsten in calcium-bearing hydrothermal fluids. Geochimica Et Cosmochimica Acta, 2023, 346, 1-14.	3.9	1

#	Article	IF	CITATIONS
146	Coupling and decoupling of Au and As in pyrite from Carlin-type Au deposits, southwest China. Journal of Asian Earth Sciences, 2023, 246, 105582.	2.3	3
147	Revealing the orogenic genesis of Huogeqi Cu-Pb-Zn deposit: Evidence from the machine learning-based data interpretation of pyrite geochemistry. Ore Geology Reviews, 2023, 154, 105350.	2.7	1
148	Mineralogy, Geochemistry and Fluid Inclusion Study of the Stibnite Vein-Type Mineralization at Rizana, Northern Greece. Geosciences (Switzerland), 2023, 13, 61.	2.2	2
149	Ferromanganese Crusts of the North Pacific Ocean. Russian Journal of Pacific Geology, 2023, 17, 101-133.	0.7	3
150	Equilibrium Sn isotope fractionation between aqueous Sn and Sn-bearing minerals: Constrained by first-principles calculations. American Mineralogist, 2024, 109, 265-273.	1.9	0
151	Direct H ₂ S, HS ^{â^`} and pH Measurements of Highâ€Temperature Hydrothermal Vent Fluids With In Situ Raman Spectroscopy. Geophysical Research Letters, 2023, 50, .	4.0	0
152	Complex sulfur speciation in scapolite – Implications for the role of scapolite as a redox and fluid chemistry buffer in crustal fluids. Gondwana Research, 2023, 121, 418-435.	6.0	2
153	Effects of fluorine on dynamic reaction interfaces in hydrothermal feldspar alteration. Chemical Geology, 2023, 634, 121574.	3.3	0
154	Between defects and inclusions: The fate of tellurium in pyrite. Chemical Geology, 2023, 635, 121633.	3.3	1
155	Local Atomic Environment of Zn2+ Ions in a Low-Concentration ZnCl2 Aqueous Solution: XANES Study. Crystallography Reports, 2023, 68, 242-246.	0.6	0
156	Factors controlling reaction pathways during fluid–rock interactions. Contributions To Mineralogy and Petrology, 2023, 178, .	3.1	1
157	From biomolecules to biogeochemistry: Exploring the interaction of an indigenous bacterium with gold. Chemosphere, 2023, 339, 139657.	8.2	0
158	In-situ geochemical and sulfur isotope signature of pyrite: Constraints on ore-forming processes of the Qulong Cu-Mo deposit, Tibet. Ore Geology Reviews, 2023, 162, 105639.	2.7	0
159	Cortesognoite, CaV2Si2O7(OH)2·H2O, a New Mineral from the Molinello Manganese Mine, Graveglia Valley, Italy. Crystals, 2023, 13, 1295.	2.2	0
160	Geochemical signatures of the Neoarchean and Paleoproterozoic copper systems in the CarajÃis Mineral Province, NW Brazil: Implications for metal endowment. Journal of Geochemical Exploration, 2023, 254, 107306.	3.2	0
161	Copper Isotope Fractionation in Archean Hydrothermal Systems: Evidence From the Mesoarchean Carlow Castle Cuâ€Coâ€Au Deposit. Geochemistry, Geophysics, Geosystems, 2023, 24, .	2.5	0
162	Ab-initio calculations and molecular dynamics simulations of In, Ag, and Cu replacing Zn in sphalerite: Implications for critical metal mineralization. Ore Geology Reviews, 2023, 163, 105699.	2.7	1
163	New insights on the formation of the Jingchong Cu-Co-Pb-Zn deposit, South China: Evidence from sphalerite mineralogy and muscovite 40Ar-39Ar dating. Ore Geology Reviews, 2023, 162, 105667.	2.7	0

#	Article	IF	Citations
165	A mining industry overview of cobalt in Finland: exploration, deposits, and utilization. , 0, , .		0
166	Cobalt distribution and enrichment in skarn iron deposits: A case study of the Zhuchong skarn iron deposit, Eastern China. Ore Geology Reviews, 2023, 163, 105778.	2.7	1
167	Speciation and Thermodynamic Properties of Pb-HS Complexes in Sulfur-Rich Hydrothermal Fluids: Insights from <i>Ab Initio</i> Molecular Dynamics Simulations. ACS Earth and Space Chemistry, 0, , .	2.7	0
168	Cobalt mineralization in the Northeastern Hunan Province of South China: New evidence from the Jintang hydrothermal Co polymetallic ore district. Ore Geology Reviews, 2023, 163, 105799.	2.7	0
169	Iron mobility in subduction zone fluids at forearc depths and implications for mantle redox heterogeneity. Chemical Geology, 2024, 644, 121879.	3.3	0
170	Nature and origin of primary ore-forming fluids in the highly metamorphosed Archean Hongtoushan VMS deposit, North China: Insights from in situ S isotopes and trace elements of sulfides. Journal of Asian Earth Sciences, 2024, 260, 105956.	2.3	2
171	Complexation of Zr and Hf in fluoride-rich hydrothermal aqueous fluids and its significance for high field strength element fractionation. Geochimica Et Cosmochimica Acta, 2023, , .	3.9	0
172	Estimates of chlorine isotope fractionation factors using density functional theory: Applications to ore-forming systems. Geochimica Et Cosmochimica Acta, 2024, 367, 1-15.	3.9	0
173	Provenance and Tectonic Setting of the Lower Cretaceous Huanhe Formation in the Northwestern Ordos Basin and Its Implications for Uranium Mineralization. ACS Omega, 0, , .	3.5	0
174	Formation of the giant Luiswishi Cu-Co deposit in the Central African Copperbelt by Neoproterozoic syn-sedimentary-diagenetic processes overprinted by Pan-African orogenic mineralization events. Precambrian Research, 2024, 402, 107299.	2.7	0
175	Hydrothermal Plume Fallout, Mass Wasting, and Volcanic Eruptions Contribute to Sediments at Loki's Castle Vent Field, Mohns Ridge. Geochemistry, Geophysics, Geosystems, 2024, 25, .	2.5	0
176	Temperature-controlled Se-S isotope fractionation during seawater mixing and sulfide precipitation in black smoker chimneys. Geochimica Et Cosmochimica Acta, 2024, 372, 13-27.	3.9	0
177	Co enrichment and Au–Cu–Co association in the Yundukala deposit in East Junggar, NW China: An in situ LA-ICP-MS study. Ore Geology Reviews, 2024, 167, 105986.	2.7	0