Quantification of chrysolaminarin from the model diate

Algal Research 20, 180-188

DOI: 10.1016/j.algal.2016.10.008

Citation Report

#	Article	IF	CITATIONS
1	Modulation of lipid biosynthesis by stress in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160407.	1.8	97
2	Sulfate amendment improves the growth and bioremediation capacity of a cyanobacteria cultured on municipal wastewater centrate. Algal Research, 2018, 32, 30-37.	2.4	9
3	Characterization of the Nannochloropsis gaditana storage carbohydrate: A 1,3-beta glucan with limited 1,6-branching. Algal Research, 2018, 36, 152-158.	2.4	21
4	Antioxidant capacity and immunomodulatory effects of a chrysolaminarin-enriched extract in Senegalese sole. Fish and Shellfish Immunology, 2018, 82, 1-8.	1.6	51
5	Characterization of nutrient status of <i>Halamphora luciae</i> (Bacillariophyceae) using matrix-assisted ultraviolet laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF) Tj ETQq0 0 (0 r gB 9Γ/Ον	erl s ck 10 Tf 5
6	Orchestration of transcriptome, proteome and metabolome in the diatom Phaeodactylum tricornutum during nitrogen limitation. Algal Research, 2018, 35, 33-49.	2.4	90
7	Overproduction of Bioactive Algal Chrysolaminarin by the Critical Carbon Flux Regulator Phosphoglucomutase. Biotechnology Journal, 2019, 14, 1800220.	1.8	25
8	Yeast \hat{l}^2 -glucans and microalgal extracts modulate the immune response and gut microbiome in Senegalese sole (Solea senegalensis). Fish and Shellfish Immunology, 2019, 92, 31-39.	1.6	47
9	Role of Polysaccharides in Diatom Thalassiosira pseudonana and its Associated Bacteria in Hydrocarbon Presence. Plant Physiology, 2019, 180, 1898-1911.	2.3	40
10	Unraveling the subtleties of \hat{l}^2 -($1\hat{a}^2$)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families. Journal of Biological Chemistry, 2019, 294, 6483-6493.	1.6	16
11	The Fluctuating Cell-Specific Light Environment and Its Effects on Cyanobacterial Physiology. Plant Physiology, 2019, 181, 547-564.	2.3	26
12	Relationship between acyl-lipid and sterol metabolisms in diatoms. Biochimie, 2020, 169, 3-11.	1.3	24
13	Storage Compound Accumulation in Diatoms as Response to Elevated CO2 Concentration. Biology, 2020, 9, 5.	1.3	24
14	Toward Enhanced Fixation of CO2 in Aquatic Biomass: Focus on Microalgae. Frontiers in Energy Research, 2020, 8, .	1.2	28
15	Molecular Basis for Substrate Recognition and Catalysis by a Marine Bacterial Laminarinase. Applied and Environmental Microbiology, 2020, 86, .	1.4	9
16	Mitochondrial fatty acid βâ€oxidation is required for storageâ€lipid catabolism in a marine diatom. New Phytologist, 2020, 228, 946-958.	3.5	25
17	The Influence of Dissolved Organic Carbon on the Microbial Community Associated with Tetraselmis striata for Bio-Diesel Production. Applied Sciences (Switzerland), 2020, 10, 3601.	1.3	3
18	Aquatic Biopolymers. Springer Series on Polymer and Composite Materials, 2020, , .	0.5	6

#	ARTICLE	IF	CITATIONS
19	Sea foam-associated pathogenic bacteria along the west coast of India. Environmental Monitoring and Assessment, 2021, 193, 27.	1.3	9
20	Diurnal transcript profiling of the diatom <i>Seminavis robusta</i> reveals adaptations to a benthic lifestyle. Plant Journal, 2021, 107, 315-336.	2.8	15
21	Development of a Phaeodactylum tricornutum biorefinery to sustainably produce omega-3 fatty acids and protein. Journal of Cleaner Production, 2021, 300, 126839.	4.6	10
22	High-cell-density cultivation of the flagellate alga Poterioochromonas malhamensis for biomanufacturing the water-soluble \hat{i}^2 -1,3-glucan with multiple biological activities. Bioresource Technology, 2021, 337, 125447.	4.8	18
23	CRISPR/Cas9 disruption of glucan synthase in Nannochloropsis gaditana attenuates accumulation of \hat{l}^2 -1,3-glucose oligomers. Algal Research, 2021, 58, 102385.	2.4	5
24	Laminarins. Springer Series on Polymer and Composite Materials, 2020, , 189-210.	0.5	1
25	Extracts and Bioactives from Microalgae (Sensu Stricto): Opportunities and Challenges for a New Generation of Cosmetics., 2020,, 295-349.		4
26	Laminarin, a Major Polysaccharide in Stramenopiles. Marine Drugs, 2021, 19, 576.	2.2	27
27	Phaeodactylum tricornutum extracts as structuring agents for food applications: Physicochemical and functional properties. Food Hydrocolloids, 2022, 124, 107276.	5 . 6	10
29	Computer-aided solvent screening for the fractionation of wet microalgae biomass. Green Chemistry, 2021, 23, 10014-10029.	4.6	4
30	The Transition Toward Nitrogen Deprivation in Diatoms Requires Chloroplast Stand-By and Deep Metabolic Reshuffling. Frontiers in Plant Science, 2021, 12, 760516.	1.7	11
31	Mass cultivation of marine diatoms using local salts and its impact on growth and productivity. Bioresource Technology, 2022, 352, 127128.	4.8	6
32	Nutrient acclimation in benthic diatoms with adaptive laboratory evolution. Bioresource Technology, 2022, 351, 126955.	4.8	6
33	Lipid Constituents of Diatoms (Halamphora) as Components for Production of Lipid Nanoparticles. Pharmaceutics, 2022, 14, 1171.	2.0	3
34	Media engineering in marine diatom <i>Phaeodactylum tricornutum</i> employing costâ€effective substrates for sustainable production of highâ€value renewables. Biotechnology Journal, 2022, 17, .	1.8	3
35	The Microalgae Phaeodactylum tricornutum Is Well Suited as a Food with Positive Effects on the Intestinal Microbiota and the Generation of SCFA: Results from a Pre-Clinical Study. Nutrients, 2022, 14, 2504.	1.7	10
36	Microalgal applications in biomedicine and healthcare. , 2022, , 133-156.		1
37	Phaeodactylum tricornutum as a source of value-added products: A review on recent developments in cultivation and extraction technologies. Bioresource Technology Reports, 2022, 19, 101122.	1.5	7

#	Article	IF	CITATIONS
38	Chrysolaminarin biosynthesis in the diatom is enhanced by overexpression of 1,6- \hat{l}^2 -transglycosylase. Algal Research, 2022, 66, 102817.	2.4	1
39	Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochemical Engineering Journal, 2022, 187, 108593.	1.8	15
41	Algal polysaccharides for 3D printing: A review. Carbohydrate Polymers, 2023, 300, 120267.	5.1	30
42	Use of crude glycerol for mixotrophic culture of Phaeodactylum tricornutum. Algal Research, 2023, 69, 102929.	2.4	3
43	Golgi fucosyltransferase 1 reveals its important role in \hat{l}_{\pm} -1,4-fucose modification of N-glycan in CRISPR/Cas9 diatom Phaeodactylum tricornutum. Microbial Cell Factories, 2023, 22, .	1.9	2
44	Comparing three different Phaeodactylum tricornutum strains for the production of chrysolaminarin in flat panel airlift photobioreactors. Journal of Applied Phycology, 2023, 35, 11-24.	1.5	4
47	Natural Renewable Polymers Part I: Polysaccharides. , 2024, , .		0
49	Laminarine. , 2024, , 211-235.		0