Computer keyboard interaction as an indicator of early

Scientific Reports 6, 34468

DOI: 10.1038/srep34468

Citation Report

#	Article	IF	CITATIONS
1	Detection of Motor Impairment in Parkinson's Disease Via Mobile Touchscreen Typing. IEEE Transactions on Biomedical Engineering, 2017, 64, 1994-2002.	4.2	81
2	Typing competencies in Alzheimer's disease: An exploration of copy tasks. Computers in Human Behavior, 2017, 73, 311-319.	8.5	27
3	Technologies Assessing Limb Bradykinesia in Parkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 65-77.	2.8	50
4	High-accuracy detection of early Parkinson's Disease using multiple characteristics of finger movement while typing. PLoS ONE, 2017, 12, e0188226.	2.5	80
5	Tablet-Based Application for Objective Measurement of Motor Fluctuations in Parkinson Disease. Digital Biomarkers, 2018, 1, 126-135.	4.4	21
6	Detecting Parkinson's Disease from Interactions with a Search Engine. , 2018, , .		3
7	Motor Impairment Estimates via Touchscreen Typing Dynamics Toward Parkinson's Disease Detection From Data Harvested In-the-Wild. Frontiers in ICT, 2018, 5, .	3.6	25
8	How Mobile Health Technology and Electronic Health Records Will Change Care of Patients with Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, S41-S45.	2.8	33
9	Who Should Have Access to my Pointing Data?. , 2018, , .		17
10	A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Fullâ€Range Human–Machine Interfacing. Small, 2018, 14, e1803018.	10.0	156
11	Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease. Scientific Reports, 2018, 8, 7663.	3.3	59
11 12	Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's	3.3 2.5	59
	Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease. Scientific Reports, 2018, 8, 7663. Pattern analysis of computer keystroke time series in healthy control and early-stage Parkinson's disease subjects using fuzzy recurrence and scalable recurrence network features. Journal of		
12	Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinsonâ∈™s disease. Scientific Reports, 2018, 8, 7663. Pattern analysis of computer keystroke time series in healthy control and early-stage Parkinson's disease subjects using fuzzy recurrence and scalable recurrence network features. Journal of Neuroscience Methods, 2018, 307, 194-202. Artificial intelligence for assisting diagnostics and assessment of Parkinsonâ∈™s diseaseâ€"A review.	2.5	26
12	Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease. Scientific Reports, 2018, 8, 7663. Pattern analysis of computer keystroke time series in healthy control and early-stage Parkinson's disease subjects using fuzzy recurrence and scalable recurrence network features. Journal of Neuroscience Methods, 2018, 307, 194-202. Artificial intelligence for assisting diagnostics and assessment of Parkinson's diseaseâ€"A review. Clinical Neurology and Neurosurgery, 2019, 184, 105442. Comparison of computer-key-hold-time and alternating-finger-tapping tests for early-stage Parkinson's	2.5	26
12 13 14	Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease. Scientific Reports, 2018, 8, 7663. Pattern analysis of computer keystroke time series in healthy control and early-stage Parkinson's disease subjects using fuzzy recurrence and scalable recurrence network features. Journal of Neuroscience Methods, 2018, 307, 194-202. Artificial intelligence for assisting diagnostics and assessment of Parkinson's diseaseâ€"A review. Clinical Neurology and Neurosurgery, 2019, 184, 105442. Comparison of computer-key-hold-time and alternating-finger-tapping tests for early-stage Parkinson's disease. PLoS ONE, 2019, 14, e0219114. A machine learning algorithm successfully screens for Parkinson's in web users. Annals of Clinical	2.5 1.4 2.5	26 110 3
12 13 14 15	Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinsonâ∈™s disease. Scientific Reports, 2018, 8, 7663. Pattern analysis of computer keystroke time series in healthy control and early-stage Parkinson's disease subjects using fuzzy recurrence and scalable recurrence network features. Journal of Neuroscience Methods, 2018, 307, 194-202. Artificial intelligence for assisting diagnostics and assessment of Parkinsonâ∈™s diseaseâ∈"A review. Clinical Neurology and Neurosurgery, 2019, 184, 105442. Comparison of computer-key-hold-time and alternating-finger-tapping tests for early-stage Parkinsonâ∈™s disease. PLoS ONE, 2019, 14, e0219114. A machine learning algorithm successfully screens for Parkinson's in web users. Annals of Clinical and Translational Neurology, 2019, 6, 2503-2509. Application of Quantitative Motor Assessments in Friedreich Ataxia and Evaluation of Their Relation	2.5 1.4 2.5 3.7	26 110 3 15

#	ARTICLE	IF	CITATIONS
19	Remote Monitoring of Treatment Response in Parkinson's Disease: The Habit of Typing on a Computer. Movement Disorders, 2019, 34, 1488-1495.	3.9	31
20	Application of Machine Learning in a Parkinson's Disease Digital Biomarker Dataset Using Neural Network Construction (NNC) Methodology Discriminates Patient Motor Status. Frontiers in ICT, 2019, 6, .	3.6	22
21	New Sensor and Wearable Technologies to Aid in the Diagnosis and Treatment Monitoring of Parkinson's Disease. Annual Review of Biomedical Engineering, 2019, 21, 111-143.	12.3	71
22	A Handwriting-Based Protocol for Assessing Neurodegenerative Dementia. Cognitive Computation, 2019, 11, 576-586.	5.2	43
23	Reduced habit-driven errors in Parkinson's Disease. Scientific Reports, 2019, 9, 3423.	3.3	7
24	Handwriting movements for assessment of motor symptoms in schizophrenia spectrum disorders and bipolar disorder. PLoS ONE, 2019, 14, e0213657.	2.5	13
25	Classification of short time series in early Parkinsons disease with deep learning of fuzzy recurrence plots. IEEE/CAA Journal of Automatica Sinica, 2019, 6, 1306-1317.	13.1	52
26	Early Parkinson's Disease Detection via Touchscreen Typing Analysis using Convolutional Neural Networks. , 2019, 2019, 3535-3538.		14
27	Detecting Early Parkinson's Disease from Keystroke Dynamics using the Tensor-Train Decomposition. , 2019, , .		4
28	Social Determinants of Health in the Digital Age. JAMA - Journal of the American Medical Association, 2019, 321, 247.	7.4	20
29	Detecting Parkinsonian Tremor From IMU Data Collected in-the-Wild Using Deep Multiple-Instance Learning. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2559-2569.	6.3	42
30	Detection of early Parkinson's disease with wavelet features using finger typing movements on a keyboard. SN Applied Sciences, 2020, 2, 1.	2.9	6
31	Unobtrusive detection of Parkinson's disease from multi-modal and in-the-wild sensor data using deep learning techniques. Scientific Reports, 2020, 10, 21370.	3.3	32
32	Scaling behavior in measured keystroke time series from patients with Parkinson's disease. European Physical Journal B, 2020, 93, 1.	1.5	5
33	How people decide what they want to know. Nature Human Behaviour, 2020, 4, 14-19.	12.0	168
34	Systematic Review Looking at the Use of Technology to Measure Free-Living Symptom and Activity Outcomes in Parkinson's Disease in the Home or a Home-like Environment. Journal of Parkinson's Disease, 2020, 10, 429-454.	2.8	43
35	Online Handwriting, Signature and Touch Dynamics: Tasks and Potential Applications in the Field of Security and Health. Cognitive Computation, 2021, 13, 1406-1421.	5 . 2	10
36	Less is More: Univariate Modelling to Detect Early Parkinson's Disease from Keystroke Dynamics. Lecture Notes in Computer Science, 2018, , 435-446.	1.3	8

#	ARTICLE	lF	Citations
37	Keystroke Mobile Authentication: Performance of Long-Term Approaches and Fusion with Behavioral Profiling. Lecture Notes in Computer Science, 2019, , 12-24.	1.3	5
38	Analysis of Keystroke Dynamics for Fatigue Recognition. Lecture Notes in Computer Science, 2017, , 235-247.	1.3	10
39	Discovering the Typing Behaviour of Parkinson's Patients Using Topic Models. Lecture Notes in Computer Science, 2017, , 89-97.	1.3	1
40	Detecting Motor Impairment in Early Parkinson's Disease via Natural Typing Interaction With Keyboards: Validation of the neuroQWERTY Approach in an Uncontrolled At-Home Setting. Journal of Medical Internet Research, 2018, 20, e89.	4.3	46
42	Sharing Practices for Datasets Related to Accessibility and Aging., 2021, 1, .		6
43	On Capturing Older Adults' Smartphone Keyboard Interaction as a Means for Behavioral Change Under Emotional Stimuli Within i-PROGNOSIS Framework. Lecture Notes in Computer Science, 2017, , 346-356.	1.3	2
44	Detection of signs of Parkinson's disease using dynamical features via an indirect pointing device. IFAC-PapersOnLine, 2020, 53, 16347-16352.	0.9	0
45	Keyboard typing for the detection of early Parkinson's disease. , 2020, , 331-344.		0
46	Ambient Assisted Living At-Home Laboratory for Motor Status Diagnostics in Parkinson's Disease Patients and Aged People. Advances in Computer and Electrical Engineering Book Series, 2020, , 176-201.	0.3	1
47	Applications in Biomedicine. , 2020, , 99-167.		0
48	Bug or Feature? Covert Impairments to Human Computer Interaction. , 2020, , .		3
49	A Review of Emotion Recognition Methods From Keystroke, Mouse, and Touchscreen Dynamics. IEEE Access, 2021, 9, 162197-162213.	4.2	11
50	Individual differences in information-seeking. Nature Communications, 2021, 12, 7062.	12.8	30
51	Leveraging the Potential of Digital Technology for Better Individualized Treatment of Parkinson's Disease. Frontiers in Neurology, 2022, 13, 788427.	2.4	18
52	Remote Assessments of Hand Function in Neurological Disorders: Systematic Review. JMIR Rehabilitation and Assistive Technologies, 2022, 9, e33157.	2.2	12
53	Touchscreen-based finger tapping: Repeatability and configuration effects on tapping performance. PLoS ONE, 2021, 16, e0260783.	2.5	5
55	Ambient Assisted Living At-Home Laboratory for Motor Status Diagnostics in Parkinson's Disease Patients and Aged People., 2022,, 836-862.		2
56	Diagnostic accuracy of keystroke dynamics as digital biomarkers for fine motor decline in neuropsychiatric disorders: a systematic review and meta-analysis. Scientific Reports, 2022, 12, 7690.	3.3	30

#	ARTICLE	IF	CITATIONS
57	Imbalanced Ensemble Learning in Determining Parkinson's Disease Using Keystroke Dynamics. SSRN Electronic Journal, $0, , .$	0.4	0
58	Quantitative Digitography Measures Motor Symptoms and Disease Progression in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 1979-1990.	2.8	7
59	Keystroke-Dynamics for Parkinson's Disease Signs Detection in an At-Home Uncontrolled Population: A New Benchmark and Method. IEEE Transactions on Biomedical Engineering, 2023, 70, 182-192.	4.2	9
60	Use of deep learning-based radiomics to differentiate Parkinson's disease patients from normal controls: a study based on [18F]FDG PET imaging. European Radiology, 2022, 32, 8008-8018.	4.5	9
61	Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. Nano-Micro Letters, 2022, 14, .	27.0	75
62	A Systematic Literature Review on Latest Keystroke Dynamics Based Models. IEEE Access, 2022, 10, 92192-92236.	4.2	5
63	A novel framework to estimate cognitive impairment via finger interaction with digital devices. Brain Communications, 2022, 4, .	3.3	2
64	Quantifying Touch: New Metrics for Characterizing What Happens During a Touch., 2022,,.		1
65	Detection of Mental Fatigue in the General Population: Feasibility Study of Keystroke Dynamics as a Real-world Biomarker. JMIR Biomedical Engineering, 2022, 7, e41003.	1.2	4
66	Imbalanced ensemble learning in determining Parkinson's disease using Keystroke dynamics. Expert Systems With Applications, 2023, 217, 119522.	7.6	9
67	Using Explainable Artificial Intelligence in the Clock Drawing Test to Reveal the Cognitive Impairment Pattern. International Journal of Neural Systems, 2023, 33, .	5.2	9
68	Predicting Useful Information From Typing Patterns Using a Bootstrapped-Based Homogeneous Ensemble Approach. Lecture Notes in Networks and Systems, 2023, , 3-31.	0.7	0
69	Quick computer aided differential diagnostics based on repetitive finger tapping in Parkinson's disease and atypical parkinsonisms. Heliyon, 2023, 9, e14824.	3.2	1
70	A scoping review of neurodegenerative manifestations in explainable digital phenotyping. Npj Parkinson's Disease, 2023, 9, .	5.3	5
71	Leveraging Unlabelled Data in Multiple-Instance Learning Problems for Improved Detection of Parkinsonian Tremor in Free-Living Conditions. IEEE Journal of Biomedical and Health Informatics, 2023, , 1-10.	6.3	0
72	Exploring Asymmetric Fine Motor Impairment Trends in Early Parkinson's Disease via Keystroke Typing. Movement Disorders Clinical Practice, 2023, 10, 1530-1535.	1.5	О
73	Dominant Hand Invariant Parkinson's Disease Detection Using 1-D CNN Model and STFT-based IMU Data Fusion. , 2023, , .		0
74	Comparative Study in Parkinson's Disease Diagnosis Using Machine Learning. Lecture Notes in Networks and Systems, 2023, , 161-167.	0.7	0

CITATION REPORT

#	Article	IF	CITATIONS
75	Keystroke Biometrics as a Tool for the Early Diagnosis and Clinical Assessment of Parkinson's Disease. Diagnostics, 2023, 13, 3061.	2.6	0
76	Estimation of motor severity scales in Parkinson's disease by linear models of bimanual non-alternating index finger tapping features. Expert Systems With Applications, 2024, 246, 123077.	7.6	O
77	(Re)configuration of digital health records to optimize diagnosis and therapy., 2024, , 287-300.		0
78	Generalizing Parkinson's disease detection using keystroke dynamics: a self-supervised approach. Journal of the American Medical Informatics Association: JAMIA, 0, , .	4.4	0