Selective deposition and stable encapsulation of lithiun growth

Nature Energy

1,

DOI: 10.1038/nenergy.2016.10

Citation Report

#	Article	IF	CITATIONS
1	Carbon-coated nanoparticle superlattices for energy applications. Nanoscale, 2016, 8, 14359-14368.	2.8	11
2	Rechargeable Mg–Li hybrid batteries: status and challenges. Journal of Materials Research, 2016, 31, 3125-3141.	1.2	92
3	An electrochemical surfaceâ€enhanced Raman spectroscopic study on nanorodâ€structured lithium prepared by electrodeposition. Journal of Raman Spectroscopy, 2016, 47, 1017-1023.	1.2	30
4	Li2O-Reinforced Cu Nanoclusters as Porous Structure for Dendrite-Free and Long-Lifespan Lithium Metal Anode. ACS Applied Materials & Interfaces, 2016, 8, 26801-26808.	4.0	77
5	Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography. ACS Nano, 2016, 10, 7990-7997.	7.3	108
6	Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. ACS Applied Materials & Interfaces, 2016, 8, 26091-26097.	4.0	152
7	Few-Layer Graphene Island Seeding for Dendrite-Free Li Metal Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 26895-26901.	4.0	63
8	High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. ACS Energy Letters, 2016, 1, 1247-1255.	8.8	281
9	Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. Journal of the American Chemical Society, 2016, 138, 15443-15450.	6.6	386
10	Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. Journal of Materials Chemistry A, 2017, 5, 4809-4817.	5.2	61
11	Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. Nano Letters, 2017, 17, 1296-1301.	4.5	248
12	Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Letters, 2017, 17, 1132-1139.	4.5	1,081
13	High performance lithium metal anode: Progress and prospects. Energy Storage Materials, 2017, 7, 115-129.	9.5	160
14	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444
15	Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. CheM, 2017, 2, 258-270.	5.8	474
16	Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy, 2017, 2, .	19.8	1,048
17	Conductivity Modulation of Gold Thin Film at Room Temperature via All-Solid-State Electric-Double-Layer Gating Accelerated by Nonlinear Ionic Transport. ACS Applied Materials & Interfaces, 2017, 9, 5056-5061.	4.0	8
18	Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes. ACS Central Science, 2017, 3, 135-140.	5.3	162

ITATION REDO

	CITATION R	ation Report	
#	ARTICLE Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12, 194-206.	IF	CITATIONS
19	Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12, 194-206.	15.6	4,804
20	New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Letters, 2017, 17, 2034-2042.	4.5	386
21	A high performance lithium–selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte. Journal of Materials Chemistry A, 2017, 5, 9350-9357.	5.2	94
22	Toward Practical Highâ€Energy Batteries: A Modularâ€Assembled Ovalâ€Like Carbon Microstructure for Thick Sulfur Electrodes. Advanced Materials, 2017, 29, 1700598.	11.1	110
23	Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4613-4618.	3.3	285
24	Taming lithium metal through seeded growth. National Science Review, 2017, 4, 17-18.	4.6	5
25	Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. ACS Nano, 2017, 11, 5853-5863.	7.3	155
26	Review on Highâ€Loading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307
27	3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 2017, 37, 177-186.	8.2	431
28	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 7764-7768.	7.2	989
29	Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. Nano Letters, 2017, 17, 3792-3797.	4.5	243
30	Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 7872-7876.	1.6	186
31	Lithium Batteries with Nearly Maximum Metal Storage. ACS Nano, 2017, 11, 6362-6369.	7.3	180
32	Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Research, 2017, 10, 4003-4026.	5.8	130
33	Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. Nano Letters, 2017, 17, 3731-3737.	4.5	377
34	The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network. Journal of Materials Chemistry A, 2017, 5, 9339-9349.	5.2	44
35	Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. Journal of the American Chemical Society, 2017, 139, 5916-5922.	6.6	410
36	Advanced Na-NiCl ₂ Battery Using Nickel-Coated Graphite with Core–Shell Microarchitecture. ACS Applied Materials & Interfaces, 2017, 9, 11609-11614.	4.0	39

#	Article	IF	CITATIONS
37	Lithium Metal Anodes with an Adaptive "Solid-Liquid―Interfacial Protective Layer. Journal of the American Chemical Society, 2017, 139, 4815-4820.	6.6	460
38	Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X-ray Phase Contrast Tomography. ACS Energy Letters, 2017, 2, 94-104.	8.8	89
39	Strong texturing of lithium metal in batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12138-12143.	3.3	188
40	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. Joule, 2017, 1, 563-575.	11.7	329
41	Solid electrolyte interphase formation by propylene carbonate reduction for lithium anode. Physical Chemistry Chemical Physics, 2017, 19, 28772-28780.	1.3	18
42	A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy, 2017, 42, 262-268.	8.2	90
43	Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. Journal of the American Chemical Society, 2017, 139, 15288-15291.	6.6	255
44	Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Advanced Functional Materials, 2017, 27, 1704391.	7.8	141
45	A lithium–carbon nanotube composite for stable lithium anodes. Journal of Materials Chemistry A, 2017, 5, 23434-23439.	5.2	70
46	Recent approaches to improving lithium metal electrodes. Current Opinion in Electrochemistry, 2017, 6, 70-76.	2.5	9
47	In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy, 2017, 42, 122-128.	8.2	53
48	Nanostructured Electrode Materials for High-Energy Rechargeable Li, Na and Zn Batteries. Chemistry of Materials, 2017, 29, 9589-9604.	3.2	80
49	Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nature Communications, 2017, 8, .	5.8	301
50	Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres. Journal of the American Chemical Society, 2017, 139, 13492-13498.	6.6	264
51	Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF ₃ framework. Science Advances, 2017, 3, e1701301.	4.7	199
52	Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. Advanced Materials, 2017, 29, 1703729.	11.1	381
53	High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots. Scientific Reports, 2017, 7, 11222.	1.6	224
54	Nanodiamonds suppress the growth of lithium dendrites. Nature Communications, 2017, 8, 336.	5.8	327

#	Article	IF	CITATIONS
55	Perovskite La0.6Sr0.4CoO3-l´ as a new polysulfide immobilizer for high-energy lithium-sulfur batteries. Nano Energy, 2017, 40, 360-368.	8.2	69
56	Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 2017, 39, 654-661.	8.2	163
57	Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.	11.1	596
58	Advanced Porous Carbon Materials for Highâ€Efficient Lithium Metal Anodes. Advanced Energy Materials, 2017, 7, 1700530.	10.2	208
59	Dendriteâ€6uppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li ₃ N. Advanced Energy Materials, 2017, 7, 1700732.	10.2	190
60	Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Advanced Energy Materials, 2017, 7, 1701003.	10.2	780
61	An Effective Lithium Sulfide Encapsulation Strategy for Stable Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1701122.	10.2	47
62	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 2017, 117, 10403-10473.	23.0	4,365
63	Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy, 2017, 39, 662-672.	8.2	143
64	Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces. Physical Review E, 2017, 96, 022107.	0.8	6
65	Carbon enables the practical use of lithium metal in a battery. Carbon, 2017, 123, 744-755.	5.4	105
66	Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. Advanced Materials, 2017, 29, 1702714.	11.1	510
67	Processable and Moldable Sodiumâ€Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 11921-11926.	7.2	186
68	Processable and Moldable Sodiumâ€Metal Anodes. Angewandte Chemie, 2017, 129, 12083-12088.	1.6	64
69	Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity. Accounts of Chemical Research, 2017, 50, 2895-2905.	7.6	258
70	The recent advances in constructing designed electrode in lithium metal batteries. Chinese Chemical Letters, 2017, 28, 2171-2179.	4.8	64
71	Electrochemical performance and interfacial properties of Li-metal in lithium bis(fluorosulfonyl)imide based electrolytes. Scientific Reports, 2017, 7, 15925.	1.6	16
72	Reviving Lithiumâ€Metal Anodes for Nextâ€Generation Highâ€Energy Batteries. Advanced Materials, 2017, 29, 1700007.	11.1	908

ARTICLE IF CITATIONS # Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li 73 11.1 495 Anodes. Advanced Materials, 2017, 29, 1700389. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas 74 4.5 Environments. Nano Letters, 2017, 17, 5171-5178. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. 75 15.6 376 Nature Nanotechnology, 2017, 12, 993-999. Review of nanostructured current collectors in lithium–sulfur batteries. Nano Research, 2017, 10, 5.8 4027-4054. Anion Hosting Cathodes in Dual-Ion Batteries. ACS Energy Letters, 2017, 2, 1762-1770. 77 8.8 220 Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Advanced Materials, 2017, 29, 1603436. 11.1 Towards Highâ€Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. 79 5.6 399 Advanced Science, 2017, 4, 1600168. Facile Synthesis of Nickel Nanofoam Architectures for Applications in Liâ€Ion Batteries. Energy 1.8 Technology, 2017, 5, 422-427. Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance 81 1.9 41 Li-Ion Batteries. Nanomaterials, 2017, 7, 325. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft 19.8 353 substrates. Nature Energy, 2018, 3, 227-235. Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 2018, 19, 84-107. 83 6.2 365 A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy and Environmental Science, 2018, 11, 1197-1203. 84 15.6 Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Materials, 2018, 85 9.5 213 14, 22-48. Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries. Joule, 2018, 11.7 609 2,764-777 Problem, Status, and Possible Solutions for Lithium Metal Anode of Rechargeable Batteries. ACS 87 2.5135 Applied Energy Materials, 2018, 1, 910-920. Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 195 199-221. Effective strategies for long-cycle life lithiumâ€"sulfur batteries. Journal of Materials Chemistry A, 89 5.2157 2018, 6, 6155-6182. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal 2.8 battery. Nanoscale, 2018, 10, 6125-6138.

#	Article	IF	CITATIONS
91	Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. Small, 2018, 14, e1704371.	5.2	130
92	Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1703404.	10.2	274
93	Effect of LiFSI Concentrations To Form Thickness- and Modulus-Controlled SEI Layers on Lithium Metal Anodes. Journal of Physical Chemistry C, 2018, 122, 9825-9834.	1.5	131
94	A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy, 2018, 49, 179-185.	8.2	138
95	Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 9899-9905.	5.2	137
96	Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes. ACS Nano, 2018, 12, 4824-4834.	7.3	141
97	Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Materials, 2018, 15, 148-170.	9.5	247
98	Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nature Communications, 2018, 9, 1339.	5.8	265
99	A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC Advances, 2018, 8, 13034-13039.	1.7	21
100	Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendriteâ€Free Lithium Metal Anode Current Collector. Advanced Energy Materials, 2018, 8, 1800266.	10.2	336
101	Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources, 2018, 389, 120-134.	4.0	359
102	Dendrite formation in silicon anodes of lithium-ion batteries. RSC Advances, 2018, 8, 5255-5267.	1.7	55
103	Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nature Communications, 2018, 9, 464.	5.8	250
104	Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1703152.	10.2	144
105	Dendriteâ€Free and Performanceâ€Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives. Advanced Energy Materials, 2018, 8, 1703022.	10.2	123
106	Achieving a stable Na metal anode with a 3D carbon fibre scaffold. Inorganic Chemistry Frontiers, 2018, 5, 864-869.	3.0	40
107	A Material Perspective of Rechargeable Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1702296.	10.2	95
108	Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes. Nano Letters, 2018, 18, 297-301.	4.5	130

ARTICLE IF CITATIONS Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability 109 4.0 110 of Lithium Metal Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 2469-2479. A Flexible Solid Electrolyte Interphase Layer for Longâ€Life Lithium Metal Anodes. Angewandte Chemie, 1.6 2018, 130, 1521-1525. Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium 111 1.6 17 Metal Anode. Angewandte Chemie, 2018, 130, 1375-1379. Lithiophilic Cuâ€CuOâ€Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal 11.1 Anodes. Advanced Materials, 2018, 30, 1705830. Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional 113 8.2 81 structure. Nano Energy, 2018, 45, 463-470. Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogenâ€Doped Graphitic Carbon Foams for Highâ€Performance Lithium Metal Anodes. Advanced Materials, 2018, 30, 1706216. 11.1 Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cmâ²2. Nano Energy, 2018, 45, 203-209. 115 8.2 153 A new binder-free and conductive-additive-free TiO2/WO3-W integrative anode material produced by 4.0 laser ablation. Journal of Power Sources, 2018, 378, 362-368. Insight into the effect of lithium-dendrite suppression by lithium 117 2.6 9 bis(fluorosulfony)imide/1,2-dimethoxyethane electrolytes. Electrochimica Acta, 2018, 277, 116-126. Multidimensional Evolution of Carbon Structures Underpinned by Temperatureâ€Induced Intermediate 118 5.6 of Chloride for Sodiumâ€lon Batteries. Advanced Science, 2018, 5, 1800080. Uniform Li deposition regulated <i>via</i> three-dimensional polyvinyl alcohol nanofiber networks 119 2.8 46 for effective Li metal anodes. Nanoscale, 2018, 10, 10018-10024. Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for 2.2 38 stable lithium metal anodes. Chemical Communications, 2018, 54, 5330-5333. High Voltage Operation of Niâ€Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. 121 10.2 298 Advanced Energy Materials, 2018, 8, 1800297. Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & amp; Interfaces, 2018, 10, 13552-13561. Dendriteâ€Free Metallic Lithium in Lithiophilic Carbonized Metal–Organic Frameworks. Advanced 123 10.2 144 Energy Materials, 2018, 8, 1703505. Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type 124 99 cathodes. Naño Énergy, 2018, 48, 369-376. Silicon-Based Composite Negative Electrode Prepared from Recycled Silicon-Slicing Slurries and 125 3.249 Lignin/Lignocellulose for Li-Ion Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 4759-4766. All nanocarbon Li-Ion capacitor with high energy and high power density. Materials Today Energy, 2018, 8, 109-117.

#	Article	IF	CITATIONS
127	A Li-dual carbon composite as stable anode material for Li batteries. Energy Storage Materials, 2018, 15, 116-123.	9.5	53
128	A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy, 2018, 48, 101-106.	8.2	132
129	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy, 2018, 48, 35-43.	8.2	143
130	Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating. Energy Storage Materials, 2018, 14, 143-148.	9.5	99
131	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. Joule, 2018, 2, 184-193.	11.7	300
132	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Materials, 2018, 10, 199-205.	9.5	215
133	Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating. Energy Storage Materials, 2018, 11, 47-56.	9.5	49
134	Recent development in lithium metal anodes of liquid-state rechargeable batteries. Journal of Alloys and Compounds, 2018, 730, 135-149.	2.8	44
135	Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1702097.	10.2	704
136	A Flexible Solid Electrolyte Interphase Layer for Long‣ife Lithium Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 1505-1509.	7.2	590
137	Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode. Angewandte Chemie - International Edition, 2018, 57, 1361-1365.	7.2	131
138	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2018, 10, 593-601.	4.0	116
139	Robust Pinhole-free Li ₃ N Solid Electrolyte Grown from Molten Lithium. ACS Central Science, 2018, 4, 97-104.	5.3	197
140	Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701261.	10.2	79
141	Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries. Joule, 2018, 2, 110-124.	11.7	280
142	Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF ₆ and Cyclic Carbonate Additives. ACS Energy Letters, 2018, 3, 14-19.	8.8	161
143	Bendingâ€Tolerant Anodes for Lithiumâ€Metal Batteries. Advanced Materials, 2018, 30, 1703891.	11.1	113
144	Rethinking sodium-ion anodes as nucleation layers for anode-free batteries. Journal of Materials Chemistry A, 2018, 6, 23875-23884.	5.2	55

#	Article	IF	CITATIONS
145	Revisiting Scientific Issues for Industrial Applications of Lithium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 196-208.	7.3	158
146	Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li ₆ La ₃ ZrTaO ₁₂ Garnet. Journal of the Electrochemical Society, 2018, 165, A3648-A3655.	1.3	172
147	Incorporating Flexibility into Stiffness: Selfâ€Grown Carbon Nanotubes in Melamine Sponges Enable A Lithiumâ€Metalâ€Anode Capacity of 15 mA h cm ^{â^'2} Cyclable at 15 mA cm ^{â^'2} . Advan Materials, 2019, 31, e1805654.	cetti.1	95
148	Lightweight, Thin, and Flexible Silver Nanopaper Electrodes for High apacity Dendriteâ€Free Sodium Metal Anodes. Advanced Functional Materials, 2018, 28, 1804038.	7.8	73
149	Interfaces in Solid-State Lithium Batteries. Joule, 2018, 2, 1991-2015.	11.7	444
150	Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy. Joule, 2018, 2, 2167-2177.	11.7	284
151	A Hierarchical Silverâ€Nanowire–Graphene Host Enabling Ultrahigh Rates and Superior Longâ€Term Cycling of Lithiumâ€Metal Composite Anodes. Advanced Materials, 2018, 30, e1804165.	11.1	221
152	Strain Redistribution in Metalâ€6ulfideâ€Composite Anode for Enhancing Volumetric Lithium Storage. ChemElectroChem, 2018, 5, 3906-3912.	1.7	7
153	Activate metallic copper as high-capacity cathode for lithium-ion batteries via nanocomposite technology. Nano Energy, 2018, 54, 59-65.	8.2	22
154	Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018, 4, eaat5383.	4.7	337
155	Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nature Energy, 2018, 3, 889-898.	19.8	347
156	Combinatorial Methods for Improving Lithium Metal Cycling Efficiency. Journal of the Electrochemical Society, 2018, 165, A3000-A3013.	1.3	25
157	Oriented growth of Li metal for stable Li/carbon composite negative electrode. Electrochimica Acta, 2018, 292, 227-233.	2.6	20
158	Mechanistic insight into dendrite–SEI interactions for lithium metal electrodes. Journal of Materials Chemistry A, 2018, 6, 19664-19671.	5.2	105
159	Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 2018, 54, 17-25.	8.2	168
160	Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2018, 165, A3321-A3325.	1.3	97
161	Cryogenic Electron Microscopy for Characterizing and Diagnosing Batteries. Joule, 2018, 2, 2225-2234.	11.7	118
162	Improved Rechargeability of Lithium Metal Anode via Controlling Lithiumâ€lon Flux. Advanced Energy Materials, 2018, 8, 1802352.	10.2	109

#	Article	IF	CITATIONS
163	In operando plasmonic monitoring of electrochemical evolution of lithium metal. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11168-11173.	3.3	28
164	A proof-of-concept graphite anode with a lithium dendrite suppressing polymer coating. Journal of Power Sources, 2018, 406, 63-69.	4.0	50
165	Mixed Lithium Oxynitride/Oxysulfide as an Interphase Protective Layer To Stabilize Lithium Anodes for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39695-39704.	4.0	35
166	In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 15219-15227.	3.2	43
167	Pseudocapacitance Induced Uniform Plating/Stripping of Li Metal Anode in Vertical Graphene Nanowalls. Advanced Functional Materials, 2018, 28, 1805638.	7.8	65
168	Favorable lithium deposition behaviors on flexible carbon microtube skeleton enable a high-performance lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 19159-19166.	5.2	35
169	Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nature Communications, 2018, 9, 3656.	5.8	371
170	A 3D conductive scaffold with lithiophilic modification for stable lithium metal batteries. Journal of Materials Chemistry A, 2018, 6, 17967-17976.	5.2	57
171	Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 18627-18634.	5.2	69
172	Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 2018, 3, 2259-2266.	8.8	124
173	A Chemically Engineered Porous Copper Matrix with Cylindrical Core–Shell Skeleton as a Stable Host for Metallic Sodium Anodes. Advanced Functional Materials, 2018, 28, 1802282.	7.8	104
174	Highly Reversible Li Plating Confined in Three-Dimensional Interconnected Microchannels toward High-Rate and Stable Metallic Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20387-20395.	4.0	42
175	Vertically Grown Edgeâ€Rich Graphene Nanosheets for Spatial Control of Li Nucleation. Advanced Energy Materials, 2018, 8, 1800564.	10.2	145
176	Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Materials, 2018, 14, 289-296.	9.5	48
177	Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Metals, 2018, 37, 510-519.	3.6	32
178	CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Materials, 2018, 14, 335-344.	9.5	164
179	Dendriteâ€Free Sodiumâ€Metal Anodes for Highâ€Energy Sodiumâ€Metal Batteries. Advanced Materials, 2018, 30, e1801334.	11.1	267
180	Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces. Energy Storage Materials, 2018, 15, 282-290.	9.5	121

#	Article	IF	CITATIONS
181	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	11.1	163
182	The effects of lithium salt and solvent on lithium metal anode performance. Solid State Ionics, 2018, 324, 144-149.	1.3	19
183	Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application. Electrochemical Energy Reviews, 2018, 1, 239-293.	13.1	298
184	AlF ₃ -Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes. Chemical Communications, 2018, 54, 8347-8350.	2.2	28
185	Incorporating Ionic Paths into 3D Conducting Scaffolds for High Volumetric and Areal Capacity, High Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1801328.	11.1	134
186	Electron-rich functional doping carbon host as dendrite-free lithium metal anode. Electrochimica Acta, 2018, 284, 376-381.	2.6	27
187	Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Applied Energy Materials, 2018, 1, 4341-4350.	2.5	45
188	A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes. Advanced Materials Interfaces, 2018, 5, 1800807.	1.9	25
189	Lithium metal stripping beneath the solid electrolyte interphase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8529-8534.	3.3	150
190	Horizontal Centripetal Plating in the Patterned Voids of Li/Graphene Composites for Stable Lithium-Metal Anodes. CheM, 2018, 4, 2192-2200.	5.8	107
191	Mesoscale Complexations in Lithium Electrodeposition. ACS Applied Materials & Interfaces, 2018, 10, 26320-26327.	4.0	61
192	Engineering stable interfaces for three-dimensional lithium metal anodes. Science Advances, 2018, 4, eaat5168.	4.7	153
193	Controlling Nucleation in Lithium Metal Anodes. Small, 2018, 14, e1801423.	5.2	159
194	Silver sites guide spatially homogeneous plating of lithium metal in 3D host. Journal of Electroanalytical Chemistry, 2018, 824, 175-180.	1.9	31
195	Electrochemical solid-state amorphization in the immiscible Cu-Li system. Science Bulletin, 2018, 63, 1208-1214.	4.3	8
196	Lowâ€Weight 3D Al ₂ O ₃ Network as an Artificial Layer to Stabilize Lithium Deposition. ChemSusChem, 2018, 11, 3243-3252.	3.6	24
197	High oulombicâ€Efficiency Carbon/Li Clusters Composite Anode without Precycling or Prelithiation. Small, 2018, 14, e1802226.	5.2	31
198	In Situ Scanning Electron Microscope Observations of Li Plating/Stripping Reactions with Pt Current Collectors on LiPON Electrolyte. Journal of the Electrochemical Society, 2018, 165, A1338-A1347.	1.3	26

#	Article	IF	CITATIONS
199	Self-Healing Wide and Thin Li Metal Anodes Prepared Using Calendared Li Metal Powder for Improving Cycle Life and Rate Capability. ACS Applied Materials & Interfaces, 2018, 10, 16521-16530.	4.0	29
200	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	10.2	196
201	Development of a Wire Reference Electrode for Lithium All-Solid-State Batteries with Polymer Electrolyte: FEM Simulation and Experiment. Journal of the Electrochemical Society, 2018, 165, A1363-A1371.	1.3	23
202	Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes. Advanced Functional Materials, 2018, 28, 1804133.	7.8	142
203	Inhibition of lithium dendrite growth by forming rich polyethylene oxide-like species in a solid-electrolyte interphase in a polysulfide/carbonate electrolyte. Journal of Materials Chemistry A, 2018, 6, 16818-16823.	5.2	7
204	Electron Energy-Loss Spectroscopy and Imaging \hat{a}^{\dagger} t. , 2018, , .		0
205	Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel. Nanoscale, 2018, 10, 16562-16567.	2.8	44
206	Operando monitoring the lithium spatial distribution of lithium metal anodes. Nature Communications, 2018, 9, 2152.	5.8	96
207	Tailoring Rodâ€Like FeSe ₂ Coated with Nitrogenâ€Doped Carbon for Highâ€Performance Sodium Storage. Advanced Functional Materials, 2018, 28, 1801765.	7.8	287
208	Developing Highâ€Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress. Advanced Materials, 2018, 30, e1706375.	11.1	335
209	Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 22059-22066.	4.0	226
210	Advanced Transmission Electron Microscopy for Electrode and Solidâ€Electrolyte Materials in Lithiumâ€Ion Batteries. Small Methods, 2018, 2, 1800006.	4.6	41
211	A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes. Science China Materials, 2019, 62, 87-94.	3.5	53
212	Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Storage Materials, 2019, 16, 364-373.	9.5	31
213	Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Materials, 2019, 18, 320-327.	9.5	102
214	Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Materials, 2019, 18, 414-422.	9.5	110
215	PMMA-assisted Li deposition towards 3D continuous dendrite-free lithium anode. Energy Storage Materials, 2019, 16, 203-211.	9.5	53
216	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 20325-20334.	5.2	35

#	Article	IF	CITATIONS
217	Lithiated NiCo ₂ O ₄ Nanorods Anchored on 3D Nickel Foam Enable Homogeneous Li Plating/Stripping for High-Power Dendrite-Free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 31824-31831.	4.0	40
218	Single-Atom Iron as Lithiophilic Site To Minimize Lithium Nucleation Overpotential for Stable Lithium Metal Full Battery. ACS Applied Materials & Interfaces, 2019, 11, 32008-32014.	4.0	64
219	High-Rate Cycling of Lithium-Metal Batteries Enabled by Dual-Salt Electrolyte-Assisted Micropatterned Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 31777-31785.	4.0	20
220	Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nanowetting Effect. ACS Applied Materials & Interfaces, 2019, 11, 32046-32051.	4.0	223
221	Plasma‣trengthened Lithiophilicity of Copper Oxide Nanosheet–Decorated Cu Foil for Stable Lithium Metal Anode. Advanced Science, 2019, 6, 1901433.	5.6	106
222	Boosting the Reversibility of Sodium Metal Anode via Heteroatomâ€Doped Hollow Carbon Fibers. Small, 2019, 15, e1902688.	5.2	76
223	Toward High-Performance Li Metal Anode via Difunctional Protecting Layer. Frontiers in Chemistry, 2019, 7, 572.	1.8	12
224	ZnO nanoconfined 3D porous carbon composite microspheres to stabilize lithium nucleation/growth for high-performance lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 19442-19452.	5.2	42
225	Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current Density. Joule, 2019, 3, 2165-2178.	11.7	298
226	A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries. Journal of Materials Chemistry A, 2019, 7, 19970-19976.	5.2	32
227	Encapsulating Metallic Lithium into Carbon Nanocages Which Enables a Low-Volume Effect and a Dendrite-Free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 30902-30910.	4.0	24
228	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie - International Edition, 2019, 58, 15841-15847.	7.2	648
229	Lithiophilic Ag/Li composite anodes <i>via</i> a spontaneous reaction for Li nucleation with a reduced barrier. Journal of Materials Chemistry A, 2019, 7, 20911-20918.	5.2	66
230	Uniform Li deposition by regulating the initial nucleation barrier <i>via</i> a simple liquid-metal coating for a dendrite-free Li–metal anode. Journal of Materials Chemistry A, 2019, 7, 18861-18870.	5.2	93
231	Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy, 2019, 4, 683-689.	19.8	603
232	Batteries Safety: Recent Progress and Current Challenges. Frontiers in Energy Research, 2019, 7, .	1.2	93
233	Effect of stress-dependent activation enthalpy on electrochemical reaction and diffusion-reaction-induced stress in spherical electrodes. Results in Physics, 2019, 14, 102407.	2.0	7
234	Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8337-8346.	7.3	152

#	Article	IF	Citations
235	A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 18126-18134.	5.2	32
236	Dual Insurance Design Achieves Long-Life Cycling of Li-Metal Batteries under a Wide Temperature Range. ACS Applied Energy Materials, 2019, 2, 5292-5299.	2.5	7
237	Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes. Journal of Materials Chemistry A, 2019, 7, 23747-23755.	5.2	77
238	Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes. Joule, 2019, 3, 2030-2049.	11.7	292
239	Electrodeposition Technologies for Liâ€Based Batteries: New Frontiers of Energy Storage. Advanced Materials, 2020, 32, e1903808.	11.1	70
240	Nanoengineering Carbon Spheres as Nanoreactors for Sustainable Energy Applications. Advanced Materials, 2019, 31, e1903886.	11.1	251
241	A Coaxialâ€Interweaved Hybrid Lithium Metal Anode for Longâ€Lifespan Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1901932.	10.2	73
242	Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities. Angewandte Chemie, 2019, 131, 18637-18641.	1.6	7
243	Gradientâ€Distributed Nucleation Seeds on Conductive Host for a Dendriteâ€Free and Highâ€Rate Lithium Metal Anode. Small, 2019, 15, e1903520.	5.2	83
244	Nâ€Doped Carbon Nanofibers with Interweaved Nanochannels for Highâ€Performance Sodiumâ€ion Storage. Small, 2019, 15, e1904054.	5.2	45
245	Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth. Nano Energy, 2019, 66, 104178.	8.2	40
246	Dendritic cracking in solid electrolytes driven by lithium insertion. Journal of Power Sources, 2019, 442, 227226.	4.0	67
247	Lithium Metal Anode Materials Design: Interphase and Host. Electrochemical Energy Reviews, 2019, 2, 509-517.	13.1	156
248	Surface Reinforcing Balloon Trick-Inspired Separator/Li Metal Integrated Assembly To Improve the Electrochemical Performance of Li Metal Batteries. ACS Applied Materials & 2019, 11, 43122-43129.	4.0	9
249	Self-sacrificing template based hollow carbon spheres/molybdenum dioxide nanocomposite for high-performance Lithium-ion batteries. Materials Today Communications, 2019, 21, 100694.	0.9	10
250	Scalable and Physical Synthesis of 2D Silicon from Bulk Layered Alloy for Lithium-Ion Batteries and Lithium Metal Batteries. ACS Nano, 2019, 13, 13690-13701.	7.3	143
251	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	7.8	112
252	Dendrite-Free Li Metal Plating/Stripping Onto Three-Dimensional Vertical-Graphene@Carbon-Cloth Host. Frontiers in Chemistry, 2019, 7, 714.	1.8	24

#	Article	IF	CITATIONS
253	Controlling Li Ion Flux through Materials Innovation for Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1905940.	7.8	122
254	Non-Dendritic Zn Electrodeposition Enabled by Zincophilic Graphene Substrates. ACS Applied Materials & Interfaces, 2019, 11, 44077-44089.	4.0	129
255	Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 2952-2959.	8.8	108
256	A Review of Carbon-Based Materials for Safe Lithium Metal Anodes. Frontiers in Chemistry, 2019, 7, 721.	1.8	30
257	Nonflammable and High-Voltage-Tolerated Polymer Electrolyte Achieving High Stability and Safety in 4.9 V-Class Lithium Metal Battery. ACS Applied Materials & Interfaces, 2019, 11, 45048-45056.	4.0	73
258	Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities. Angewandte Chemie - International Edition, 2019, 58, 18466-18470.	7.2	67
259	Suppressing Sponge-Like Li Deposition via AlN-Modified Substrate for Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 42261-42270.	4.0	9
260	Nucleation and Growth Mechanism of Lithium Metal Electroplating. Journal of the American Chemical Society, 2019, 141, 18612-18623.	6.6	144
261	A Lightweight 3D Cu Nanowire Network with Phosphidation Gradient as Current Collector for Highâ€Density Nucleation and Stable Deposition of Lithium. Advanced Materials, 2019, 31, e1904991.	11.1	114
262	Marginal Magnesium Doping for Highâ€Performance Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902278.	10.2	47
263	Artificial Solidâ€Electrolyte Interphase Enabled Highâ€Capacity and Stable Cycling Potassium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902697.	10.2	81
264	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie, 2019, 131, 17210-17216.	1.6	49
265	A Sodiophilic Interphaseâ€Mediated, Dendriteâ€Free Anode with Ultrahigh Specific Capacity for Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 17054-17060.	7.2	119
266	Improved lithium deposition on silver plated carbon fiber paper. Nano Energy, 2019, 66, 104144.	8.2	38
267	Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes. Science Advances, 2019, 5, eaax5587.	4.7	84
268	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	1.3	5
269	A high-energy potassium–sulfur battery enabled by facile and effective imidazole-solvated copper catalysts. Journal of Materials Chemistry A, 2019, 7, 20584-20589.	5.2	30
270	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie, 2019, 131, 15988-15994.	1.6	116

	CHATION		
#	Article	IF	Citations
271	Defect Mitigation in Areaâ€Selective Atomic Layer Deposition of Ruthenium on Titanium Nitride/Dielectric Nanopatterns. Advanced Materials Interfaces, 2019, 6, 1900896.	1.9	16
272	Tandem Interface and Bulk Li-Ion Transport in a Hybrid Solid Electrolyte with Microsized Active Filler. ACS Energy Letters, 2019, 4, 2336-2342.	8.8	80
273	Partly lithiated graphitic carbon foam as 3D porous current collectors for dendrite-free lithium metal anodes. Electrochemistry Communications, 2019, 107, 106535.	2.3	26
274	Understanding and Predicting Lithium Crystal Growth on Perfect and Defective Interfaces: A Kohn–Sham Density Functional Study. ACS Applied Materials & Interfaces, 2019, 11, 37239-37246.	4.0	14
275	Lithium-magnesium Alloy as an Anode for Lithium-Sulfur Based Batteries. International Journal of Electrochemical Science, 2019, , 8595-8600.	0.5	5
276	A strategy to stabilize 4â€V-class cathode with ether-containing electrolytes in lithium metal batteries. Journal of Power Sources, 2019, 440, 227101.	4.0	5
277	Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 22930-22938.	5.2	17
278	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
279	Mega High Utilization of Sodium Metal Anodes Enabled by Single Zinc Atom Sites. Nano Letters, 2019, 19, 7827-7835.	4.5	86
280	Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustainable Chemistry and Engineering, 2019, 7, 17737-17746.	3.2	151
281	Improved Electrochemical Performance of Li _{1.15} Ni _{0.17} Co _{0.11} Mn _{0.57} O ₂ by Li ₂ O Cathode Additive. Journal of the Electrochemical Society, 2019, 166, A3387-A3390.	1.3	4
282	On the Reliability of Sodium Metal Anodes: The Influence of Neglected Parameters. Journal of the Electrochemical Society, 2019, 166, A3122-A3131.	1.3	17
283	Stable lithium–sulfur full cells enabled by dual functional and interconnected mesocarbon arrays. Journal of Materials Chemistry A, 2019, 7, 3289-3297.	5.2	29
284	Area-selective atomic layer deposition of cobalt oxide to generate patterned cobalt films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	15
285	Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 8148-8154.	4.0	120
286	Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Letters, 2019, 19, 1326-1335.	4.5	193
287	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie, 2019, 131, 4002-4006.	1.6	13
288	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie - International Edition, 2019, 58, 3962-3966.	7.2	44

#	Article	IF	Citations
289	Effective Electrochemical Charge Storage in the High-Lithium Compound Li ₈ ZrO ₆ . ACS Applied Energy Materials, 2019, 2, 1274-1287.	2.5	4
290	Threeâ€Ðimensional Graphene/Ag Aerogel for Durable and Stable Li Metal Anodes in Carbonateâ€Based Electrolytes. Chemistry - A European Journal, 2019, 25, 5036-5042.	1.7	25
291	Electrochemical impedance analysis of the Li/Au-Li7La3Zr2O12 interface during Li dissolution/deposition cycles: Effect of pre-coating Li7La3Zr2O12 with Au. Journal of Electroanalytical Chemistry, 2019, 835, 143-149.	1.9	33
292	Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries. Journal of Materials Chemistry A, 2019, 7, 2184-2191.	5.2	30
293	Efficient Li-Metal Plating/Stripping in Carbonate Electrolytes Using a LiNO ₃ -Gel Polymer Electrolyte, Monitored by Operando Neutron Depth Profiling. Chemistry of Materials, 2019, 31, 4564-4574.	3.2	65
294	UV-Initiated Soft–Tough Multifunctional Gel Polymer Electrolyte Achieves Stable-Cycling Li-Metal Battery. ACS Applied Energy Materials, 2019, 2, 4513-4520.	2.5	20
295	Liquid Polydimethylsiloxane Grafting to Enable Dendriteâ€Free Li Plating for Highly Reversible Liâ€Metal Batteries. Advanced Functional Materials, 2019, 29, 1902220.	7.8	137
296	A platinum nanolayer on lithium metal as an interfacial barrier to shuttle effect in Li-S batteries. Journal of Power Sources, 2019, 427, 201-206.	4.0	36
297	Electrodeposition behavior of lithium metal on carbon substrates with surface silvering. Carbon, 2019, 152, 503-510.	5.4	16
298	A 3D and Stable Lithium Anode for Highâ€Performance Lithium–Iodine Batteries. Advanced Materials, 2019, 31, e1902399.	11.1	137
299	Cathode electrolyte interface enabling stable Li–S batteries. Energy Storage Materials, 2019, 21, 474-480.	9.5	59
300	Alloy Anodes for Rechargeable Alkali-Metal Batteries: Progress and Challenge. , 2019, 1, 217-229.		135
301	Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 2019, 21, 464-473.	9.5	34
302	Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendriteâ€Free Metallic Lithium Anodes. Advanced Materials, 2019, 31, e1901820.	11.1	174
303	Lithiophilic CuO Nanoflowers on Tiâ€Mesh Inducing Lithium Lateral Plating Enabling Stable Lithiumâ€Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life. Advanced Energy Materials, 2019, 9, 1900853.	10.2	103
304	Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 18267-18274.	5.2	71
305	A critical study on a 3D scaffold-based lithium metal anode. Electrochimica Acta, 2019, 318, 220-227.	2.6	15
306	Electrolyte for lithium protection: From liquid to solid. Green Energy and Environment, 2019, 4, 360-374.	4.7	110

#	Article	IF	CITATIONS
307	Enabling Safe Sodium Metal Batteries by Solid Electrolyte Interphase Engineering: A Review. Industrial & Engineering Chemistry Research, 2019, 58, 9758-9780.	1.8	88
308	The controllable synthesis of Si/Ge composites with a synergistic effect for enhanced Li storage performance. Inorganic Chemistry Frontiers, 2019, 6, 1897-1903.	3.0	8
309	Single-cluster Au as an usher for deeply cyclable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 14496-14503.	5.2	51
310	Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1901645.	11.1	68
311	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 11364-11368.	7.2	182
312	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 11486-11490.	1.6	72
313	Challenges and opportunities towards fast-charging battery materials. Nature Energy, 2019, 4, 540-550.	19.8	1,053
314	Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 15871-15879.	5.2	68
315	In-Plane Highly Dispersed Cu ₂ O Nanoparticles for Seeded Lithium Deposition. Nano Letters, 2019, 19, 4601-4607.	4.5	75
316	A highly stable glass fiber host for lithium metal anode behaving enhanced coulombic efficiency. Electrochimica Acta, 2019, 317, 333-340.	2.6	10
317	Conclusions and Perspectives on New Opportunities of Nanostrucutres and Nanomaterials in Batteries. , 2019, , 359-379.		0
318	Sâ€Doped Grapheneâ€Regional Nucleation Mechanism for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1804000.	10.2	74
319	Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. Nano Energy, 2019, 62, 55-63.	8.2	127
320	Nanostructures and Nanomaterials for Lithium Metal Batteries. , 2019, , 159-214.		0
321	The Inhibition Mechanism of Lithium Dendrite on Nitrogen-Doped Defective Graphite: The First Principles Studies. Journal of the Electrochemical Society, 2019, 166, A1603-A1610.	1.3	2
322	Polydopamine-treated three-dimensional carbon fiber-coated separator for achieving high-performance lithium metal batteries. Journal of Power Sources, 2019, 430, 130-136.	4.0	35
323	Space-confined strategy to stabilize the lithium storage in the graphene and silver nanoparticles (AgNPs@GO) composite anode of lithium metal batteries. Materials Letters, 2019, 251, 118-121.	1.3	6
324	Synthesis and characterization of a hierarchically structured three-dimensional conducting scaffold for highly stable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 12882-12892.	5.2	20

#	Article	IF	CITATIONS
325	Unusual Conformal Li Plating on Alloyable Nanofiber Frameworks to Enable Dendrite Suppression of Li Metal Anode. ACS Applied Energy Materials, 2019, 2, 4379-4388.	2.5	35
326	An Autotransferable gâ€C ₃ N ₄ Li ⁺ â€Modulating Layer toward Stable Lithium Anodes. Advanced Materials, 2019, 31, e1900342.	11.1	205
327	Silver Nanoparticle-Doped 3D Porous Carbon Nanofibers as Separator Coating for Stable Lithium Metal Anodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 17843-17852.	4.0	56
328	Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nature Communications, 2019, 10, 1896.	5.8	256
329	Electrodeposition of the NaK Alloy with a Liquid Organic Electrolyte. ACS Applied Energy Materials, 2019, 2, 3009-3012.	2.5	11
330	A high-performance lithium anode based on N-doped composite graphene. Rare Metals, 2024, 43, 1030-1036.	3.6	6
331	Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1900858.	10.2	333
332	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. ACS Applied Materials & Interfaces, 2019, 11, 18361-18367.	4.0	33
333	A Single-Crystal Open-Capsule Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7906-7916.	6.6	179
334	A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 13225-13233.	5.2	49
335	The Challenge of Lithium Metal Anodes for Practical Applications. Small Methods, 2019, 3, 1800551.	4.6	74
336	Eliminating Tip Dendrite Growth by Lorentz Force for Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1902630.	7.8	85
337	Li/C composites as anodes for high energy density rechargeable Li batteries. Journal of Semiconductors, 2019, 40, 040401.	2.0	1
338	A binder-free electrode architecture design for lithium–sulfur batteries: a review. Nanoscale Advances, 2019, 1, 2104-2122.	2.2	46
339	Stable high capacity cycling of Li metal via directed and confined Li growth with robust composite sponge. Journal of Power Sources, 2019, 428, 1-7.	4.0	19
340	3D porous carbon networks with highly dispersed SiO _x by molecular-scale engineering toward stable lithium metal anodes. Chemical Communications, 2019, 55, 6034-6037.	2.2	16
341	Deterministic growth of a sodium metal anode on a pre-patterned current collector for highly rechargeable seawater batteries. Journal of Materials Chemistry A, 2019, 7, 9773-9781.	5.2	41
342	Porous scaffold of TiO2 for dendrite-free lithium metal anode. Journal of Alloys and Compounds, 2019, 791, 364-370.	2.8	20

#	Article	IF	CITATIONS
343	Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials, 2019, 18, 384-389.	13.3	587
344	Uniform Lithium Deposition Assisted by Singleâ€Atom Doping toward Highâ€Performance Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1804019.	10.2	151
345	Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage. Advanced Energy Materials, 2019, 9, 1803900.	10.2	220
346	Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook. Journal of Materials Chemistry A, 2019, 7, 8700-8722.	5.2	135
347	Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Science Advances, 2019, 5, eaau5655.	4.7	79
348	Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Materials, 2019, 23, 539-546.	9.5	88
349	Porous equipotential body with heterogeneous nucleation sites: A novel 3D composite current collector for lithium metal anode. Electrochimica Acta, 2019, 309, 460-468.	2.6	21
350	Integrated, Flexible Lithium Metal Battery with Improved Mechanical and Electrochemical Cycling Stability. ACS Applied Energy Materials, 2019, 2, 3642-3650.	2.5	15
351	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 7884-7889.	1.6	47
352	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 7802-7807.	7.2	161
353	A 3D free-standing lithiophilic silver nanowire aerogel for lithium metal batteries without lithium dendrites and volume expansion: <i>in operando</i> X-ray diffraction. Chemical Communications, 2019, 55, 5689-5692.	2.2	32
354	Failure mechanism of Au@Co9S8 yolk-shell anode in Li-ion batteries unveiled by <i>in-situ</i> transmission electron microscopy. Applied Physics Letters, 2019, 114, .	1.5	30
355	Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Science Advances, 2019, 5, eaau6264.	4.7	130
356	Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small, 2019, 15, e1900687.	5.2	253
357	Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy, 2019, 61, 47-53.	8.2	69
358	Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Materials Today Nano, 2019, 6, 100032.	2.3	125
359	Electrochemically induced highly ion conductive porous scaffolds to stabilize lithium deposition for lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 11683-11689.	5.2	47
360	Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy Storage Materials, 2019, 23, 587-593.	9.5	73

#	Article	IF	CITATIONS
361	Mixed Ion and Electron onducting Scaffolds for Highâ€Rate Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1900193.	10.2	91
362	Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium. Advanced Energy Materials, 2019, 9, 1900574.	10.2	123
363	Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Materials, 2019, 23, 547-555.	9.5	148
364	Recent Advances in Hollow Porous Carbon Materials for Lithium–Sulfur Batteries. Small, 2019, 15, e1804786.	5.2	314
365	Achieving carbon-rich silicon-containing ceramic anode for advanced lithium ion battery. Ceramics International, 2019, 45, 10572-10580.	2.3	58
366	Lithium–Magnesium Alloy as a Stable Anode for Lithium–Sulfur Battery. Advanced Functional Materials, 2019, 29, 1808756.	7.8	148
367	Tuning Two Interfaces with Fluoroethylene Carbonate Electrolytes for High-Performance Li/LCO Batteries. ACS Omega, 2019, 4, 3220-3227.	1.6	24
368	Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. Journal of Power Sources, 2019, 416, 141-147.	4.0	31
369	Self-Assembled Monolayer Enables Slurry-Coating of Li Anode. ACS Central Science, 2019, 5, 468-476.	5.3	64
370	Stable Na Plating and Stripping Electrochemistry Promoted by In Situ Construction of an Alloyâ€Based Sodiophilic Interphase. Advanced Materials, 2019, 31, e1807495.	11.1	135
371	Dual Lithiophilic Structure for Uniform Li Deposition. ACS Applied Materials & Interfaces, 2019, 11, 10616-10623.	4.0	43
372	ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. Journal of Materials Chemistry A, 2019, 7, 7752-7759.	5.2	120
373	Highâ€Fluorinated Electrolytes for Li–S Batteries. Advanced Energy Materials, 2019, 9, 1803774.	10.2	227
374	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. Materials Horizons, 2019, 6, 871-910.	6.4	67
375	Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy, 2019, 59, 500-507.	8.2	45
376	Surface Restraint Synthesis of an Organic–Inorganic Hybrid Layer for Dendrite-Free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 8717-8724.	4.0	39
377	Highly dispersed ultrasmall NiS ₂ nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale, 2019, 11, 4688-4695.	2.8	107
378	Prospect for Supramolecular Chemistry in High-Energy-Density Rechargeable Batteries. Joule, 2019, 3, 662-682.	11.7	66

#	Article	IF	CITATIONS
379	Efficient and robust lithium metal electrodes enabled by synergistic surface activation–passivation of copper frameworks. Journal of Materials Chemistry A, 2019, 7, 23208-23215.	5.2	21
380	Probing the dynamic evolution of lithium dendrites: a review of <i>in situ</i> / <i>operando</i> characterization for lithium metallic batteries. Nanoscale, 2019, 11, 20429-20436.	2.8	26
381	Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 24262-24270.	5.2	44
382	Aluminum-Based Metal–Organic Frameworks Derived Al ₂ O ₃ -Loading Mesoporous Carbon as a Host Matrix for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 47939-47947.	4.0	26
383	Confined Red Phosphorus in Edible Fungus Slag-Derived Porous Carbon as an Improved Anode Material in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 47948-47955.	4.0	18
384	High-performance sodium-ion batteries with a hard carbon anode: transition from the half-cell to full-cell perspective. Nanoscale, 2019, 11, 22196-22205.	2.8	75
385	Conducting and Lithiophilic MXene/Graphene Framework for High-Capacity, Dendrite-Free Lithium–Metal Anodes. ACS Nano, 2019, 13, 14308-14318.	7.3	155
386	Anode Overpotential Control via Interfacial Modification: Inhibition of Lithium Plating on Graphite Anodes. ACS Applied Materials & Interfaces, 2019, 11, 46864-46874.	4.0	32
387	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
388	Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons, 2019, 4, 77-98.	4.1	79
389	Mitigating Metal Dendrite Formation in Lithium–Sulfur Batteries via Morphology-Tunable Graphene Oxide Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 2060-2070.	4.0	19
390	Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 3092-3096.	7.2	122
391	An Interconnected Channel‣ike Framework as Host for Lithium Metal Composite Anodes. Advanced Energy Materials, 2019, 9, 1802720.	10.2	83
392	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie - International Edition, 2019, 58, 2093-2097.	7.2	89
393	Dendrite-Free Lithium Anode Enables the Lithium//Graphite Dual-Ion Battery with Much Improved Cyclic Stability. ACS Applied Energy Materials, 2019, 2, 201-206.	2.5	32
394	Regulating Lithium Nucleation via CNTs Modifying Carbon Cloth Film for Stable Li Metal Anode. Small, 2019, 15, e1803734.	5.2	108
395	Suppression of dendrites and granules in surface-patterned Li metal anodes using CsPF6. Journal of Power Sources, 2019, 413, 344-350.	4.0	14
396	Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes. Advanced Energy Materials, 2019, 9, 1802777.	10.2	109

#	Article	IF	CITATIONS
397	Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode. National Science Review, 2019, 6, 247-256.	4.6	57
398	Pillared MXene with Ultralarge Interlayer Spacing as a Stable Matrix for High Performance Sodium Metal Anodes. Advanced Functional Materials, 2019, 29, 1805946.	7.8	242
399	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long‣ife Li Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 1094-1099.	7.2	287
400	Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long‣ife Li Metal Batteries. Angewandte Chemie, 2019, 131, 1106-1111.	1.6	52
401	Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Research, 2019, 12, 525-529.	5.8	79
402	High-Energy Li Metal Battery with Lithiated Host. Joule, 2019, 3, 732-744.	11.7	160
403	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie, 2019, 131, 2115-2119.	1.6	11
404	Three-dimensional monolithic corrugated graphene/Ni foam for highly stable and efficient Li metal electrode. Journal of Power Sources, 2019, 413, 467-475.	4.0	23
405	Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale, 2019, 11, 2710-2720.	2.8	118
406	Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 3124-3128.	1.6	8
407	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	10.2	147
408	Recent advances in Li1+xAlxTi2â^'x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Materials, 2019, 19, 379-400.	9.5	210
409	Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Materials, 2019, 19, 24-30.	9.5	157
410	Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Materials, 2019, 21, 180-189.	9.5	132
411	Stainless steel as low-cost high-voltage cathode via stripping/deposition in metal-lithium battery. Electrochimica Acta, 2019, 298, 186-193.	2.6	15
412	Alkali Metal Anodes for Rechargeable Batteries. CheM, 2019, 5, 313-338.	5.8	170
413	In Situ Formed Shields Enabling Li ₂ CO ₃ -Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 898-905.	4.0	147
414	Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. Carbon, 2019, 143, 878-889.	5.4	70

# 415	ARTICLE Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1802534.	IF 10.2	CITATIONS
416	Synthesis of interconnected graphene framework with two-dimensional protective layers for stable lithium metal anodes. Energy Storage Materials, 2019, 17, 341-348.	9.5	26
417	Study on dead-Li suppression mechanism of Li-hosting vapor-grown-carbon-nanofiber-based protective layer for Li metal anodes. Journal of Power Sources, 2019, 409, 132-138.	4.0	14
418	Design of Hollow Nanostructures for Energy Storage, Conversion and Production. Advanced Materials, 2019, 31, e1801993.	11.1	313
419	Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Materials, 2019, 16, 65-84.	9.5	183
420	Spatially uniform deposition of lithium metal in 3D Janus hosts. Energy Storage Materials, 2019, 16, 259-266.	9.5	112
421	Recent advances in metal-organic frameworks for lithium metal anode protection. Chinese Chemical Letters, 2020, 31, 609-616.	4.8	40
422	PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. Journal of Energy Chemistry, 2020, 42, 83-90.	7.1	83
423	Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. Energy Storage Materials, 2020, 24, 635-643.	9.5	139
424	Synergetic Coupling of Lithiophilic Sites and Conductive Scaffolds for Dendriteâ€Free Lithium Metal Anodes. Small Methods, 2020, 4, 1900177.	4.6	31
425	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404
426	Lithiophilic 3D Porous CuZn Current Collector for Stable Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 180-186.	8.8	159
427	How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 050502.	1.3	43
428	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
429	ZnCo2O4/ZnO induced lithium deposition in multi-scaled carbon/nickel frameworks for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 43, 16-23.	7.1	39
430	An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 382, 122714.	6.6	40
431	Homogenous charge distribution by free-standing porous structure for dendrite-free Li metal anode. Journal of Energy Chemistry, 2020, 44, 68-72.	7.1	15
432	Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Materials, 2020, 25, 811-826.	9.5	114

#	Article	IF	CITATIONS
433	Paraffin wax protecting 3D non-dendritic lithium for backside-plated lithium metal anode. Energy Storage Materials, 2020, 24, 153-159.	9.5	20
434	Modeling Overcharge at Graphite Electrodes: Plating and Dissolution of Lithium. Journal of the Electrochemical Society, 2020, 167, 013504.	1.3	21
435	Covalently bonded 3D rebar graphene foam for ultrahigh-areal-capacity lithium-metal anodes by in-situ loose powder metallurgy synthesis. Carbon, 2020, 158, 536-544.	5.4	22
436	Revisiting the Electroplating Process for Lithiumâ€Metal Anodes for Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6730-6739.	1.6	17
437	Revisiting the Electroplating Process for Lithiumâ€Metal Anodes for Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6665-6674.	7.2	137
438	The influence of surface inhomogeneity on the overcharge and lithium plating of graphite electrodes. JPhys Energy, 2020, 2, 014004.	2.3	9
439	Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode. Nano Energy, 2020, 70, 104479.	8.2	34
440	Cycling Performance and Kinetic Mechanism Analysis of a Li Metal Anode in Series-Concentrated Ether Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 8366-8375.	4.0	29
441	Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Materials, 2020, 26, 223-233.	9.5	100
442	Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes. Nano Energy, 2020, 69, 104443.	8.2	52
443	A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 1911-1919.	5.2	49
444	Stable Nanoâ€Encapsulation of Lithium Through Seedâ€Free Selective Deposition for Highâ€Performance Li Battery Anodes. Advanced Energy Materials, 2020, 10, 1902956.	10.2	65
445	Realizing both high gravimetric and volumetric capacities in Li/3D carbon composite anode. Nano Energy, 2020, 69, 104471.	8.2	30
446	Enabling high-performance sodium metal anodes via A sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69, 104446.	8.2	43
447	Understanding the dropping of lithium plating potential in carbonate electrolyte. Nano Energy, 2020, 70, 104486.	8.2	42
448	Single Zinc Atoms Immobilized on MXene (Ti ₃ C ₂ Cl _{<i>x</i>/i>}) Layers toward Dendrite-Free Lithium Metal Anodes. ACS Nano, 2020, 14, 891-898.	7.3	174
449	Self-supported TiN nanorod array/carbon textile as a lithium host that induces dendrite-free lithium plating with high rates and long cycle life. Journal of Materials Chemistry A, 2020, 8, 3293-3299.	5.2	5
450	Bottom-top channeling Li nucleation and growth by a gradient lithiophilic 3D conductive host for highly stable Li-metal anodes. Journal of Materials Chemistry A, 2020, 8, 1678-1686.	5.2	31

#	Article	IF	CITATIONS
451	Towards high rate Li metal anodes: enhanced performance at high current density in a superconcentrated ionic liquid. Journal of Materials Chemistry A, 2020, 8, 3574-3579.	5.2	25
452	Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering. Energy Storage Materials, 2020, 26, 56-64.	9.5	73
453	High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework. Energy Storage Materials, 2020, 26, 73-82.	9.5	79
454	Airâ€Stable and Dendriteâ€Free Lithium Metal Anodes Enabled by a Hybrid Interphase of C ₆₀ and Mg. Advanced Energy Materials, 2020, 10, 1903292.	10.2	57
455	Porosity―and Graphitization ontrolled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1908721.	7.8	159
456	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	7.8	176
457	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020, 142, 2012-2022.	6.6	142
458	3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 313-322.	5.2	76
459	Lithium metal anodes: Present and future. Journal of Energy Chemistry, 2020, 48, 145-159.	7.1	311
460	Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries. Energy Storage Materials, 2020, 26, 593-603.	9.5	39
461	Topotactic Transformation Synthesis of 2D Ultrathin GeS ₂ Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries. ACS Nano, 2020, 14, 531-540.	7.3	71
462	Inducing the Formation of In Situ Li ₃ N-Rich SEI via Nanocomposite Plating of Mg ₃ N ₂ with Lithium Enables High-Performance 3D Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 627-636.	4.0	64
463	Solid–Liquid Coexisting LiNO ₃ Electrolyte for Extremely Stable Lithium Metal Anodes on a Bare Cu Foil. ACS Sustainable Chemistry and Engineering, 2020, 8, 706-713.	3.2	11
464	Scalable synthesis of lotus-seed-pod-like Si/SiOx@CNF: Applications in freestanding electrode and flexible full lithium-ion batteries. Carbon, 2020, 158, 163-171.	5.4	30
465	Regulating lithium nucleation and growth by zinc modified current collectors. Nano Research, 2020, 13, 45-51.	5.8	19
466	Facile and Scalable Modification of a Cu Current Collector toward Uniform Li Deposition of the Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 3681-3687.	4.0	28
467	Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11, 93.	5.8	312
468	Sodium Deposition with a Controlled Location and Orientation for Dendriteâ€Free Sodium Metal Batteries. Advanced Energy Materials, 2020, 10, 2002308.	10.2	69

#	Article	IF	CITATIONS
469	Creep-Enabled 3D Solid-State Lithium-Metal Battery. CheM, 2020, 6, 2878-2892.	5.8	63
470	A superb 3D composite lithium metal anode prepared by in-situ lithiation of sulfurized polyacrylonitrile. Energy Storage Materials, 2020, 33, 452-459.	9.5	14
471	Silicon anode design for Li ion batteries: Synergic effects of Ag nanoparticles and ionic liquid electrolytes. Chemical Engineering Journal Advances, 2020, 4, 100037.	2.4	4
472	Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries. IScience, 2020, 23, 101586.	1.9	4
473	High apacity, Dendriteâ€Free, and Ultrahighâ€Rate Lithiumâ€Metal Anodes Based on Monodisperse Nâ€Dope Hollow Carbon Nanospheres. Small, 2020, 16, e2004770.	d _{5.2}	27
474	Revealing and Elucidating ALDâ€Đerived Control of Lithium Plating Microstructure. Advanced Energy Materials, 2020, 10, 2002736.	10.2	37
475	Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Select, 2020, 1, 622-638.	1.9	4
476	Minimizing lithium deactivation during high-rate electroplating via sub-ambient thermal gradient control. Materials Today Energy, 2020, 18, 100538.	2.5	7
477	The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110308.	8.2	141
478	Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined. Chemistry of Materials, 2020, 32, 8755-8771.	3.2	28
479	Hard carbons for sodium-ion batteries and beyond. Progress in Energy, 2020, 2, 042002.	4.6	130
480	Self-supported NiSe@Ni3S2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor. Ionics, 2020, 26, 3997-4007.	1.2	19
481	Lithiophilic Li-Zn alloy modified 3D Cu foam for dendrite-free lithium metal anode. Journal of Power Sources, 2020, 472, 228520.	4.0	58
482	Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003657.	11.1	86
483	Pyridinic-to-graphitic conformational change of nitrogen in graphitic carbon nitride by lithium coordination during lithium plating. Energy Storage Materials, 2020, 31, 505-514.	9.5	20
484	Unexpected Kirkendall effect in twinned icosahedral nanocrystals driven by strain gradient. Nano Research, 2020, 13, 2641-2649.	5.8	17
485	On-Site Fluorination for Enhancing Utilization of Lithium in a Lithium–Sulfur Full Battery. ACS Applied Materials & Interfaces, 2020, 12, 53860-53868.	4.0	12
486	The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy and Environmental Science, 2020, 13, 4808-4833.	15.6	91

#	Article	IF	CITATIONS
487	Two-Dimensional Silicon/Carbon from Commercial Alloy and CO ₂ for Lithium Storage and Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Lithium–Metal Batteries. ACS Nano, 2020, 14, 17574-17588.	7.3	108
488	Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews, 2020, 120, 13312-13348.	23.0	393
489	Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30135-30141.	3.3	17
490	Guiding Smooth Li Plating and Stripping by a Spherical Island Model for Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 38098-38105.	4.0	17
491	Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures. Energy Storage Materials, 2020, 33, 95-107.	9.5	40
492	Mirror-Like Electrodeposition of Lithium Metal under a Low-Resistance Artificial Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2020, 12, 39674-39684.	4.0	7
493	Horizontal Stress Release for Protuberanceâ€Free Li Metal Anode. Advanced Functional Materials, 2020, 30, 2002522.	7.8	22
494	The stable lithium metal cell with two-electrode biomass carbon. Electrochimica Acta, 2020, 356, 136824.	2.6	11
495	Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials, 2020, 32, 386-401.	9.5	136
496	Coupling of triporosity and strong Au–Li interaction to enable dendrite-free lithium plating/stripping for long-life lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 18094-18105.	5.2	56
497	Porous Materials Applied in Nonaqueous Li–O ₂ Batteries: Status and Perspectives. Advanced Materials, 2020, 32, e2002559.	11.1	115
498	Multi-scale Imaging of Solid-State Battery Interfaces: From Atomic Scale to Macroscopic Scale. CheM, 2020, 6, 2199-2218.	5.8	64
499	Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. Energy Storage Materials, 2020, 32, 115-150.	9.5	74
500	Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials, 2020, 32, 306-319.	9.5	126
501	Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chemical Reviews, 2020, 120, 7745-7794.	23.0	468
502	Revealing the Magnesiumâ€Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Abâ€Initio Simulations. Angewandte Chemie - International Edition, 2020, 59, 21728-21735.	7.2	34
503	Facile Synthesis of Antâ€Nestâ€Like Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	5.2	33
504	Scaffold-structured polymer binders for long-term cycle performance of stabilized lithium-powder electrodes. Electrochimica Acta, 2020, 364, 136878.	2.6	14

		CITATION REPORT	
#	Article	IF	CITATIONS
505	Threeâ€Dimensional Hierarchical Framework Loaded with Lithiophilic Nanorod Arrays for Highâ€Performance Lithiumâ€Metal Anodes. ChemElectroChem, 2020, 7, 4201-4207.	1.7	3
506	An interconnected silver coated carbon cloth framework as a host to reduce lithium nucleation over-potential for dendrite-free lithium metal anodes. Journal of Electroanalytical Chemistry, 2020, 878, 114569.	1.9	21
507	A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries. Journal of Power Sources, 2020, 477, 228754.	4.0	41
508	Lithium and Stannum Hybrid Anodes for Flexible Wireâ€Type Lithium–Oxygen Batteries. Small Structures, 2020, 1, 2000015.	6.9	26
509	Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Materials, 2020, 33, 423-431.	9.5	56
510	Bottom-Up Lithium Growth Triggered by Interfacial Activity Gradient on Porous Framework for Lithium-Metal Anode. ACS Energy Letters, 2020, 5, 3108-3114.	8.8	102
511	A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry. Energy & Fuels, 2020, 34, 11942-11961.	2.5	83
512	Bifunctional 3D Hierarchical Hairy Foam toward Ultrastable Lithium/Sulfur Electrochemistry. Advanced Functional Materials, 2020, 30, 2004650.	7.8	29
513	A Perspective on interfacial engineering of lithium metal anodes and beyond. Applied Physics Letters, 2020, 117, .	1.5	18
514	Dualâ€Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002271.	10.2	137
515	Electrical Dynamic Switching of Magnetic Plasmon Resonance Based on Selective Lithium Deposition. Advanced Materials, 2020, 32, e2000058.	11.1	16
516	Semihollow Core–Shell Nanoparticles with Porous SiO ₂ Shells Encapsulating Elemental Sulfur for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 47368-47376.	4.0	12
517	Robustness-Heterogeneity-Induced Ultrathin 2D Structure in Li Plating for Highly Reversible Li–Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 46132-46145.	4.0	29
518	High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite. Energy and Environmental Science, 2020, 13, 3723-3731.	15.6	44
519	Tutorial review on structure – dendrite growth relations in metal battery anode supports. Chemical Society Reviews, 2020, 49, 7284-7300.	18.7	130
520	Revealing the Magnesiumâ€Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Abâ€Initio Simulations. Angewandte Chemie, 2020, 132, 21912-21919.	1.6	4
521	Recent Advances of Emerging 2D MXene for Stable and Dendriteâ€Free Metal Anodes. Advanced Functional Materials, 2020, 30, 2004613.	7.8	140
522	Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications. Journal of Materials Chemistry A, 2020, 8, 18826-18839.	5.2	40

#	Article	IF	CITATIONS
523	Free-standing lithiophilic Ag-nanoparticle-decorated 3D porous carbon nanotube films for enhanced lithium storage. RSC Advances, 2020, 10, 30880-30886.	1.7	9
524	Electrode Protection in High-Efficiency Li–O ₂ Batteries. ACS Central Science, 2020, 6, 2136-2148.	5.3	62
525	Ice-Templated Free-Standing Reduced Graphene Oxide for Dendrite-Free Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 11053-11060.	2.5	18
526	Electrophoretic Deposited Black Phosphorus on 3D Porous Current Collectors to Regulate Li Nucleation for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 51563-51572.	4.0	30
527	Spontaneously Splitting Copper Nanowires into Quantum Dots on Graphdiyne for Suppressing Lithium Dendrites. Advanced Materials, 2020, 32, e2004379.	11.1	74
528	A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy, 2020, 75, 104889.	8.2	77
529	A Powder Metallurgic Approach toward Highâ€₽erformance Lithium Metal Anodes. Small, 2020, 16, e2000794.	5.2	22
530	Core–Shell C@Sb Nanoparticles as a Nucleation Layer for High-Performance Sodium Metal Anodes. Nano Letters, 2020, 20, 4464-4471.	4.5	75
531	Fundamentals, impedance, and performance of solid-state Li-metal microbatteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 033212.	0.9	3
532	Selective Lithium Deposition on 3D Porous Heterogeneous Lithiophilic Skeleton for Ultrastable Lithium Metal Anodes. ChemNanoMat, 2020, 6, 1200-1207.	1.5	10
533	In Situ Formed LiZn Alloy Skeleton for Stable Lithium Anodes. ACS Applied Materials & Interfaces, 2020, 12, 25818-25825.	4.0	32
534	Three-Dimensional Magnesiophilic Scaffolds for Reduced Passivation toward High-Rate Mg Metal Anodes in a Noncorrosive Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 28298-28305.	4.0	40
535	Cu3Pt alloy-functionalized Cu mesh as current collector for dendritic-free anodes of potassium metal batteries. Nano Energy, 2020, 75, 104914.	8.2	49
536	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	5.2	16
537	In-situ growth of hierarchical N-doped CNTs/Ni Foam scaffold for dendrite-free lithium metal anode. Energy Storage Materials, 2020, 29, 332-340.	9.5	80
538	Atomic layer deposition-strengthened lithiophilicity of ultrathin TiO2 film decorated Cu foil for stable lithium metal anode. Journal of Power Sources, 2020, 463, 228157.	4.0	33
539	Decorating carbon felt with oxides by dipping as dendrite-free host for lithium metal anode. Ionics, 2020, 26, 4381-4390.	1.2	3
540	Stable Lithium Metal Anode Enabled by 3D Soft Host. ACS Applied Materials & Interfaces, 2020, 12, 28337-28344.	4.0	36

#	Article	IF	CITATIONS
541	A Lithium Metal Anode Surviving Battery Cycling Above 200 °C. Advanced Materials, 2020, 32, e2000952.	11.1	35
542	Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs. Small, 2020, 16, e2000699.	5.2	63
543	Manipulating metals for adaptive thermal camouflage. Science Advances, 2020, 6, eaba3494.	4.7	128
544	3D Flexible, Conductive, and Recyclable Ti ₃ C ₂ T _{<i>x</i>} MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14, 8678-8688.	7.3	164
545	Kinetic- versus Diffusion-Driven Three-Dimensional Growth in Magnesium Metal Battery Anodes. Joule, 2020, 4, 1324-1336.	11.7	98
546	Two-pronged approach to regulate Li etching for a stable anode. Journal of Power Sources, 2020, 455, 227988.	4.0	14
547	A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2002013.	7.8	60
548	Design Principles of Single Atoms on Carbons for Lithium–Sulfur Batteries. Small Methods, 2020, 4, 2000315.	4.6	84
549	N-Doped carbon nanotubes decorated with Fe/Ni sites to stabilize lithium metal anodes. Inorganic Chemistry Frontiers, 2020, 7, 2747-2752.	3.0	12
550	Three-Dimensional Ordered Macro/Mesoporous Cu/Zn as a Lithiophilic Current Collector for Dendrite-Free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 31542-31551.	4.0	60
551	Generalized Domino-Driven Synthesis of Hollow Hybrid Carbon Spheres with Ultrafine Metal Nitrides/Oxides. Matter, 2020, 3, 246-260.	5.0	30
552	Modulating Lithium Nucleation Behavior through Ultrathin Interfacial Layer for Superior Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 6692-6699.	2.5	8
553	Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chemical Engineering Journal, 2020, 400, 125843.	6.6	115
554	Atomically dispersed materials for rechargeable batteries. Nano Energy, 2020, 76, 105085.	8.2	18
555	Recent Advances in Lithiophilic Porous Framework toward Dendrite-Free Lithium Metal Anode. Applied Sciences (Switzerland), 2020, 10, 4185.	1.3	33
556	Silicon Quantum Dots Induce Uniform Lithium Plating in a Sandwiched Metal Anode. ChemElectroChem, 2020, 7, 2026-2032.	1.7	8
557	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.	4.7	157
558	Functionality of Dualâ€Phase Lithium Storage in a Porous Carbon Host for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1910538.	7.8	68

#	Article	IF	CITATIONS
559	Morphological and Chemical Mapping of Columnar Lithium Metal. Chemistry of Materials, 2020, 32, 2803-2814.	3.2	10
560	Hybrid Effect of Micropatterned Lithium Metal and Three Dimensionally Ordered Macroporous Polyimide Separator on the Cycle Performance of Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 3721-3727.	2.5	14
561	Lithiophilic Silver Coating on Lithium Metal Surface for Inhibiting Lithium Dendrites. Frontiers in Chemistry, 2020, 8, 109.	1.8	16
562	Li–LiAl alloy composite with memory effect as high-performance lithium metal anode. Journal of Power Sources, 2020, 455, 227977.	4.0	30
563	Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition. Nano Letters, 2020, 20, 2724-2732.	4.5	134
564	High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy, 2020, 5, 299-308.	19.8	932
565	MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes. Nanoscale, 2020, 12, 9416-9422.	2.8	34
566	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
567	A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2020, 132, 12245-12251.	1.6	21
568	A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 12147-12153.	7.2	115
569	Ionic liquid assisted electrochemical coating zinc nanoparticles on carbon cloth as lithium dendrite suppressing host. Science Bulletin, 2020, 65, 1094-1102.	4.3	18
570	Impact of hydrogen on lithium storage on graphene edges. Applied Surface Science, 2020, 515, 145886.	3.1	5
571	Atomic-scale simulations for lithium dendrite growth driven by strain gradient. Applied Mathematics and Mechanics (English Edition), 2020, 41, 533-542.	1.9	5
572	Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode. , 2020, 2, 358-366.		19
573	Current Density Regulated Atomic to Nanoscale Process on Li Deposition and Solid Electrolyte Interphase Revealed by Cryogenic Transmission Electron Microscopy. ACS Nano, 2020, 14, 8766-8775.	7.3	54
574	Temperatureâ€Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotronâ€Based Imaging Techniques. Advanced Materials, 2020, 32, e2002550.	11.1	53
575	Recent advances in research on anodes for safe and efficient lithium–metal batteries. Nanoscale, 2020, 12, 15528-15559.	2.8	31
576	Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics, 2020, 128, .	1.1	14

#	Article	IF	CITATIONS
577	Dendrite-Free Sodium Metal Batteries Enabled by the Release of Contact Strain on Flexible and Sodiophilic Matrix. Nano Letters, 2020, 20, 6112-6119.	4.5	42
578	Promoting lithium electrodeposition towards the bottom of 3-D copper meshes in lithium-based batteries. Journal of Power Sources, 2020, 472, 228495.	4.0	9
579	Laserâ€Induced Silicon Oxide for Anodeâ€Free Lithium Metal Batteries. Advanced Materials, 2020, 32, e2002850.	11.1	92
580	Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCu nanowires for excellent Li storage performance. Science Bulletin, 2020, 65, 1907-1915.	4.3	50
581	Hollow multishelled structures revive high energy density batteries. Nanoscale Horizons, 2020, 5, 1287-1292.	4.1	31
582	Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13874-13895.	5.2	54
583	Coaxially Encapsulating Ultrafine Metal Nitrides/Oxides into Hollow Carbon Spheres by a Domino-Driven Strategy. Matter, 2020, 3, 16-18.	5.0	1
584	Platinum nano-interlayer enhanced interface for stable all-solid-state batteries observed <i>via</i> cryo-transmission electron microscopy. Journal of Materials Chemistry A, 2020, 8, 13541-13547.	5.2	47
585	Affinity-engineered carbon nanofibers as a scaffold for Na metal anodes. Journal of Materials Chemistry A, 2020, 8, 14757-14768.	5.2	22
586	Enabling Rapid Charging Lithium Metal Batteries via Surface Acoustic Waveâ€Driven Electrolyte Flow. Advanced Materials, 2020, 32, e1907516.	11.1	35
587	An amalgam route to stabilize potassium metal anodes over a wide temperature range. Chemical Communications, 2020, 56, 3512-3515.	2.2	43
588	Porous Carbons: Structureâ€Oriented Design and Versatile Applications. Advanced Functional Materials, 2020, 30, 1909265.	7.8	316
589	Unveiling a bimetallic FeCo-coupled MoS ₂ composite for enhanced energy storage. Nanoscale, 2020, 12, 10532-10542.	2.8	15
590	Toward Stable Lithium Plating/Stripping by Successive Desolvation and Exclusive Transport of Li Ions. ACS Applied Materials & Interfaces, 2020, 12, 10461-10470.	4.0	50
591	Electrical Conductivity Gradient Based on Heterofibrous Scaffolds for Stable Lithiumâ€Metal Batteries. Advanced Functional Materials, 2020, 30, 1908868.	7.8	64
592	The Role of Interlayer Chemistry in Liâ€Metal Growth through a Garnetâ€Type Solid Electrolyte. Advanced Energy Materials, 2020, 10, 1903993.	10.2	119
593	Lithiophilicity Acetylene Bonds Induced Nucleation and Deposition of Dendrite-Free Lithium Metal Anode. ACS Applied Energy Materials, 2020, 3, 2623-2633.	2.5	18
594	Basal Nanosuit of Graphite for High-Energy Hybrid Li Batteries. ACS Nano, 2020, 14, 1837-1845.	7.3	40

#	Article	IF	CITATIONS
595	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm ^{â^'2} /20 mAh cm ^{â^'2} Realized by Selective Nucleation within Microchannel Walls. Advanced Energy Materials, 2020, 10, 1903753.	10.2	62
596	Dendrite-Free Lithium Anodes Enabled by a Commonly Used Copper Antirusting Agent. ACS Applied Materials & Interfaces, 2020, 12, 8168-8175.	4.0	35
597	Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature Communications, 2020, 11, 488.	5.8	158
598	Redox-Driven Lithium Perfusion to Fabricate Li@Ni–Foam Composites for High Lithium-Loading 3D Anodes. ACS Applied Materials & Interfaces, 2020, 12, 9355-9364.	4.0	24
599	Multi-electron reactions of vanadium-based nanomaterials for high-capacity lithium batteries: challenges and opportunities. Materials Today Nano, 2020, 10, 100073.	2.3	30
600	Largeâ€Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. Small, 2020, 16, e1905620.	5.2	71
601	Longâ€Life Sodium Metal Anodes Achieved by Cuprous Oxide–Modified Ni Foam Host. Energy Technology, 2020, 8, 1901250.	1.8	22
602	Lithiophilicity conversion of carbon paper with uniform Cu2+1O coating: Boosting stable Li-Cu2+1O-CP composite anode through melting infusion. Chemical Engineering Journal, 2020, 388, 124238.	6.6	5
603	Solubility-Dependent Protective Effects of Binary Alloys for Lithium Anode. ACS Applied Energy Materials, 2020, 3, 2278-2284.	2.5	16
604	Fast ion/electron conducting scaffold of Li-Zn dual-phase alloy enable uniform deposition of Li metal at high current densities. Journal of Energy Chemistry, 2020, 51, 285-292.	7.1	32
605	The synergistic effect of Cu2O and boric acid forming solid electrolyte interphase layer to restrain the dendritic growth. Journal of Power Sources, 2020, 458, 228055.	4.0	13
606	An Outlook on Low-Volume-Change Lithium Metal Anodes for Long-Life Batteries. ACS Central Science, 2020, 6, 661-671.	5.3	83
607	Lithium Metal Interface Modification for Highâ€Energy Batteries: Approaches and Characterization. Batteries and Supercaps, 2020, 3, 828-859.	2.4	38
608	Morphologically controllable Li plating with stable electrochemistry realized in a newly developed DOL-DMM electrolyte system on Au-modified Cu current collector. Ionics, 2020, 26, 3979-3988.	1.2	5
609	Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chemical Engineering Journal, 2020, 395, 124922.	6.6	61
610	Tortuosity Effects in Lithium-Metal Host Anodes. Joule, 2020, 4, 938-952.	11.7	150
611	A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. Nano Energy, 2020, 73, 104731.	8.2	36
612	Artificial nucleation sites with stable SEI for Li metal anodes by aggressive Al pulverization. Nano Energy, 2020, 73, 104746.	8.2	22

#	Article	IF	CITATIONS
613	Realizing Dendrite-Free Lithium Deposition with a Composite Separator. Nano Letters, 2020, 20, 3798-3807.	4.5	66
614	Uniform Li Deposition Sites Provided by Atomic Layer Deposition for the Dendrite-free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 19530-19538.	4.0	30
615	Improving Lithium Metal Composite Anodes with Seeding and Pillaring Effects of Silicon Nanoparticles. ACS Nano, 2020, 14, 4601-4608.	7.3	61
616	Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. National Science Review, 2020, 7, 1367-1386.	4.6	31
617	Clusters of CuO nanorods arrays for stable lithium metal anode. Journal of Materials Science, 2020, 55, 9048-9056.	1.7	4
618	Uniform Li Plating/Stripping within Ni Macropore Arrays Enabled by Regulated Electric Field Distribution for Ultra-Stable Li-Metal Anodes. IScience, 2020, 23, 101089.	1.9	1
619	Stable Lithium Metal Anode Enabled by a Lithiophilic and Electron/Ion Conductive Framework. ACS Nano, 2020, 14, 5618-5627.	7.3	81
620	Solid–Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. Journal of the American Chemical Society, 2020, 142, 8818-8826.	6.6	199
621	Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49, 3040-3071.	18.7	473
622	Long-lifespan lithium–metal batteries obtained using a perovskite intercalation layer to stabilize the lithium electrode. Journal of Materials Chemistry A, 2020, 8, 9137-9145.	5.2	4
623	Enhanced conductivity and structure stability of BiPO ₄ @void@C/CNT particles for high-performance bismuth-based batteries. Dalton Transactions, 2020, 49, 5636-5645.	1.6	9
624	Anodeâ€Free Full Cells: A Pathway to Highâ€Energy Density Lithiumâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2000804.	10.2	232
625	Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery. Journal of Energy Chemistry, 2021, 52, 67-74.	7.1	43
626	A 3D conducting scaffold with in-situ grown lithiophilic Ni2P nanoarrays for high stability lithium metal anodes. Journal of Energy Chemistry, 2021, 54, 301-309.	7.1	32
627	Ag-modified hydrogen titanate nanowire arrays for stable lithium metal anode in a carbonate-based electrolyte. Journal of Energy Chemistry, 2021, 54, 282-290.	7.1	16
628	A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition. Energy Storage Materials, 2021, 34, 708-715.	9.5	15
629	Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Materials Today, 2021, 42, 137-161.	8.3	64
630	Lithium Induced Nanoâ€Sized Copper with Exposed Lithiophilic Surfaces to Achieve Dense Lithium Deposition for Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2006950.	7.8	84

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
631	Electrolyte additives: Adding the stability of lithium metal anodes. Nano Select, 2021, 2	2, 16-36.	1.9	28
632	Solidâ€State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Their Interfaces. Advanced Energy Materials, 2021, 11, .	Electrolytes and	10.2	312
633	Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal b Chemical Engineering Journal, 2021, 404, 126469.	patteries.	6.6	35
634	Porous conductive interlayer for dendrite-free lithium metal battery. Journal of Energy (2021, 53, 412-418.	Chemistry,	7.1	13
635	Na-K liquid alloy: A review on wettability enhancement and ionic carrier selection mech Chemical Letters, 2021, 32, 983-989.	anism. Chinese	4.8	8
636	Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growt Energy Chemistry, 2021, 56, 463-469.	h. Journal of	7.1	18
637	Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy 2021, 57, 451-468.	y Chemistry,	7.1	245
638	Interfacial challenges towards stable Li metal anode. Nano Energy, 2021, 79, 105507.		8.2	115
639	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano 80, 105516.	Energy, 2021,	8.2	111
640	2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium with a high utilization. Nano Energy, 2021, 79, 105457.	metal anodes	8.2	46
641	Construction of 3D porous CeO2 ceramic hosts with enhanced lithiophilicity for dendr lithium metal anode. Journal of Power Sources, 2021, 484, 229253.	ite-free	4.0	15
642	Domino Effect: Gold Electrocatalyzing Lithium Reduction to Accelerate Nitrogen Fixatio Angewandte Chemie - International Edition, 2021, 60, 5257-5261.	on.	7.2	58
643	Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode. Journal of Science and Technology, 2021, 76, 156-165.	Materials	5.6	6
644	Design principles of MOF-related materials for highly stable metal anodes in secondary batteries. Materials Today Energy, 2021, 19, 100608.	metal-based	2.5	30
645	A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra‣ong Cycle Sodi∟ Advanced Science, 2021, 8, 2003178.	ım Metal Anode.	5.6	62
646	In Situ Construction of Lithium Silicide Host with Unhindered Lithium Spread for Dend Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2008786.	riteâ€Free	7.8	18
647	Highly efficient lithium utilization in lithium metal full-cell by simulated missile guidanc confinement systems. Science China Materials, 2021, 64, 830-839.	e and	3.5	6
648	Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy and E Science, 2021, 14, 602-642.	nvironmental	15.6	95

#	Article	IF	CITATIONS
649	A dendrite-free composite Li metal anode enabled by lithiophilic Co, N codoped porous carbon nanofibers. Journal of Power Sources, 2021, 483, 229188.	4.0	26
650	Allâ€Solidâ€State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnetâ€Based Electrolyte. Advanced Materials, 2021, 33, e2002325.	11.1	99
651	Artificial Solidâ€Electrolyte Interphase for Lithium Metal Batteries. Batteries and Supercaps, 2021, 4, 445-455.	2.4	56
652	Li dendrites inhibition realized by lithiophilic and ion/electron conductive 3D skeleton for Li metal anodes. Chemical Engineering Journal, 2021, 421, 127872.	6.6	11
653	Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chemical Engineering Journal, 2021, 416, 128062.	6.6	75
654	Honeycomb Inspired Lithiophilic Scaffold for Ultra-Stable, High-Areal-Capacity Metallic Deposition. Energy Storage Materials, 2021, 35, 378-387.	9.5	11
655	Manipulating Particle Chemistry for Hollow Carbon-based Nanospheres: Synthesis Strategies, Mechanistic Insights, and Electrochemical Applications. Accounts of Chemical Research, 2021, 54, 221-231.	7.6	39
656	Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy and Environmental Science, 2021, 14, 1794-1834.	15.6	45
657	Research Progress and Future Perspectives on Rechargeable Naâ€O ₂ and Naâ€CO ₂ Batteries. Energy and Environmental Materials, 2021, 4, 158-177.	7.3	25
658	Spatially Controlled Lithium Deposition on Silverâ€Nanocrystalsâ€Decorated TiO ₂ Nanotube Arrays Enabling Ultrastable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2009605.	7.8	40
659	Spatially anchoring the lithiophilic composites within the mixed-conducting phase: A hybrid storage mechanism enabled by the Al-Si@AlSiOX composite. Chemical Engineering Journal, 2021, 417, 127915.	6.6	5
660	Alternating nanolayers as lithiophilic scaffolds for Li-metal anode. Journal of Energy Chemistry, 2021, 57, 131-139.	7.1	8
661	Phosphonium Bromides Regulating Solid Electrolyte Interphase Components and Optimizing Solvation Sheath Structure for Suppressing Lithium Dendrite Growth. Advanced Functional Materials, 2021, 31, 2009013.	7.8	75
662	Recent Developments in Dendrite-Free Lithium-Metal Deposition through Tailoring of Micro- and Nanoscale Artificial Coatings. ACS Nano, 2021, 15, 29-46.	7.3	80
663	Flexible MnO nanoparticle-anchored N-doped porous carbon nanofiber interlayers for superior performance lithium metal anodes. Nanoscale Advances, 2021, 3, 1136-1147.	2.2	12
664	Domino Effect: Gold Electrocatalyzing Lithium Reduction to Accelerate Nitrogen Fixation. Angewandte Chemie, 2021, 133, 5317-5321.	1.6	12
665	Liâ€containing alloys beneficial for stabilizing lithium anode: A review. Engineering Reports, 2021, 3, e12339.	0.9	26
666	Polysiloxane Crossâ€Linked Mechanically Stable MXeneâ€Based Lithium Host for Ultrastable Lithium Metal Anodes with Ultrahigh Current Densities and Capacities. Advanced Functional Materials, 2021, 31, 2008044.	7.8	57

#	Article	IF	CITATIONS
667	Constructing nanoporous Ni foam current collectors for stable lithium metal anodes. Journal of Energy Chemistry, 2021, 58, 124-132.	7.1	26
668	High-loading lateral Li deposition realized by a Scalable Fluorocarbon Bonded Laminates. Carbon, 2021, 171, 894-906.	5.4	8
669	Rational Design of Multifunctional Integrated Host Configuration with Lithiophilicityâ€Sulfiphilicity toward Highâ€Performance Li–S Full Batteries. Advanced Functional Materials, 2021, 31, 2006033.	7.8	64
670	Safer Lithiumâ€ion Batteries from the Separator Aspect: Development and Future Perspectives. Energy and Environmental Materials, 2021, 4, 336-362.	7.3	104
671	Modulating the electrical conductivity of a graphene oxide-coated 3D framework for guiding bottom-up lithium growth. Journal of Materials Chemistry A, 2021, 9, 1822-1834.	5.2	22
672	Electron cloud migration effect-induced lithiophobicity/lithiophilicity transformation for dendrite-free lithium metal anodes. Nanoscale, 2021, 13, 3027-3035.	2.8	8
673	Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Materials Chemistry Frontiers, 2021, 5, 5211-5232.	3.2	22
674	Recent advances in separator engineering for effective dendrite suppression of Liâ€metal anodes. Nano Select, 2021, 2, 993-1010.	1.9	22
675	Stable alkali metal anodes enabled by crystallographic optimization – a review. Journal of Materials Chemistry A, 2021, 9, 20957-20984.	5.2	32
676	An Anode-Free Zn–MnO ₂ Battery. Nano Letters, 2021, 21, 1446-1453.	4.5	131
677	Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chemical Society Reviews, 2021, 50, 3178-3210.	18.7	126
677 678			126 45
	Chemical Society Reviews, 2021, 50, 3178-3210. The lithium metal anode in Li–S batteries: challenges and recent progress. Journal of Materials	18.7	
678	 Chemical Society Reviews, 2021, 50, 3178-3210. The lithium metal anode in Li–S batteries: challenges and recent progress. Journal of Materials Chemistry A, 2021, 9, 10012-10038. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn 	18.7 5.2	45
678 679	 Chemical Society Reviews, 2021, 50, 3178-3210. The lithium metal anode in Li–S batteries: challenges and recent progress. Journal of Materials Chemistry A, 2021, 9, 10012-10038. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Letters, 2021, 6, 404-412. Dendriteâ€free lithium and sodium metal anodes with deep plating/stripping properties for lithium and 	18.7 5.2	45 148
678 679 680	 Chemical Society Reviews, 2021, 50, 3178-3210. The lithium metal anode in Li–S batteries: challenges and recent progress. Journal of Materials Chemistry A, 2021, 9, 10012-10038. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Letters, 2021, 6, 404-412. Dendriteâ€free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. , 2021, 3, 153-166. Covalent Organic Frameworks Construct Precise Lithiophilic Sites for Uniform Lithium Deposition. 	18.7 5.2 8.8	45 148 47
678 679 680 681	 Chemical Society Reviews, 2021, 50, 3178-3210. The lithium metal anode in Li–S batteries: challenges and recent progress. Journal of Materials Chemistry A, 2021, 9, 10012-10038. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Letters, 2021, 6, 404-412. Dendriteâ€free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. , 2021, 3, 153-166. Covalent Organic Frameworks Construct Precise Lithiophilic Sites for Uniform Lithium Deposition. Matter, 2021, 4, 253-264. Growing Nanostructured CuO on Copper Foil via Chemical Etching to Upgrade Metallic Lithium 	18.7 5.2 8.8 5.0	45 148 47 73

#	Article	IF	CITATIONS
685	Slow surface diffusion on Cu substrates in Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 11042-11048.	5.2	15
686	<i>In situ</i> synthesis of graphitic C ₃ N ₄ –poly(1,3-dioxolane) composite interlayers for stable lithium metal anodes. Sustainable Energy and Fuels, 2021, 5, 2433-2440.	2.5	30
687	Uniform and dendrite-free zinc deposition enabled by <i>in situ</i> formed AgZn ₃ for the zinc metal anode. Journal of Materials Chemistry A, 2021, 9, 8452-8461.	5.2	121
688	Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A, 2021, 9, 7396-7406.	5.2	65
689	Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal. Advanced Science, 2021, 8, 2003301.	5.6	146
690	Three-Dimensional (3D) Nanostructured Skeleton Substrate Composed of Hollow Carbon Fiber/Carbon Nanosheet/ZnO for Stable Lithium Anode. ACS Applied Materials & Interfaces, 2021, 13, 3078-3088.	4.0	34
691	A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. Materials Chemistry Frontiers, 2021, 5, 6294-6314.	3.2	35
692	Manganese dioxide nanosheet coated carbon cloth as a multifunctional interlayer for advanced lithium–sulfur batteries. Materials Advances, 2021, 2, 688-691.	2.6	5
693	Stable sodium metal anodes with a high utilization enabled by an interfacial layer composed of yolk–shell nanoparticles. Journal of Materials Chemistry A, 2021, 9, 13200-13208.	5.2	21
694	Advanced <i>in situ</i> technology for Li/Na metal anodes: an in-depth mechanistic understanding. Energy and Environmental Science, 2021, 14, 3872-3911.	15.6	27
695	Engineering nanoreactors for metal–chalcogen batteries. Energy and Environmental Science, 2021, 14, 540-575.	15.6	70
696	Mechanism for Zincophilic Sites on Zincâ€Metal Anode Hosts in Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2003419.	10.2	233
697	Favourites after five. Nature Energy, 2021, 6, 7-12.	19.8	0
698	Understanding the Selective Deposition of Li Metal on Nonuniform Electrode Surfaces Using Atomic Force Microscopy. Journal of the Electrochemical Society, 2021, 168, 020534.	1.3	0
699	Dendriteâ€Free Liâ€Metal Anode Enabled by Dendritic Structure. Advanced Functional Materials, 2021, 31, 2009712.	7.8	43
700	Rational Designs for Lithium‣ulfur Batteries with Low Electrolyte/Sulfur Ratio. Advanced Functional Materials, 2021, 31, 2010499.	7.8	70
701	Tortuosity Modulation toward Highâ€Energy and Highâ€Power Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003663.	10.2	46
702	Li–Zn Overlayer to Facilitate Uniform Lithium Deposition for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 9985-9993.	4.0	19

#	Article	IF	CITATIONS
703	Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework. ACS Energy Letters, 2021, 6, 816-825.	8.8	46
704	Lowâ€Cost Regulating Lithium Deposition Behaviors by Transition Metal Oxide Coating on Separator. Advanced Functional Materials, 2021, 31, 2007255.	7.8	28
705	Lithiophilic and Antioxidative Copper Current Collectors for Highly Stable Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2009805.	7.8	47
706	Critical Current Density in Solidâ€State Lithium Metal Batteries: Mechanism, Influences, and Strategies. Advanced Functional Materials, 2021, 31, 2009925.	7.8	239
707	Harnessing the Unique Features of 2D Materials toward Dendriteâ€free Metal Anodes. Energy and Environmental Materials, 2022, 5, 45-67.	7.3	33
708	Nano Cellulose Fibers and Graphene Oxide Coating on Polyolefin Separator With Uniform Li+ Transportation Channels for Long-Life and High-Safety Li Metal Battery. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	3
709	Nitrogenâ€Ðoped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 8515-8520.	7.2	115
710	Porous Mixed Ionic Electronic Conductor Interlayers for Solid-State Batteries. Energy Material Advances, 2021, 2021, .	4.7	31
711	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Liâ€lon and Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2100372.	10.2	114
712	Superwetting behaviors at the interface between electrode and electrolyte. Cell Reports Physical Science, 2021, 2, 100374.	2.8	22
713	Hollow SiO _{<i>x</i>} /C Microspheres with Semigraphitic Carbon Coating as the "Lithium Host―for Dendrite-Free Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 3905-3912.	2.5	20
714	An Overview on Protecting Metal Anodes with Alloyâ€Type Coating. Batteries and Supercaps, 2021, 4, 1252-1266.	2.4	13
715	Design of Robust, Lithiophilic, and Flexible Inorganicâ€Polymer Protective Layer by Separator Engineering Enables Dendriteâ€Free Lithium Metal Batteries with LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathode. Small, 2021, 17, e2007717.	5.2	108
716	Pore-assisted lithium deposition in hierarchically porous and hollow carbon textile for highly stable lithium anode. Journal of Power Sources, 2021, 489, 229464.	4.0	17
717	Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Energy Letters, 0, , 1550-1559.	8.8	20
718	Metal Atom-Decorated Carbon Nanomaterials for Enhancing Li-S/Se Batteries Performances: A Mini Review. Frontiers in Energy Research, 2021, 9, .	1.2	12
719	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie, 2021, 133, 8596-8601.	1.6	17
720	Nanometer-Scale Surface Roughness of a 3-D Cu Substrate Promoting Li Nucleation in Li-Metal Batteries. ACS Applied Energy Materials, 2021, 4, 2644-2651.	2.5	14

#	Article	IF	CITATIONS
721	The synthesis of crystalline Ni microwire-nanosheet monolith for recoverable host of dendrite-free Li anode. Journal of Power Sources, 2021, 487, 229418.	4.0	8
722	Uniform Zn Deposition Achieved by Ag Coating for Improved Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16869-16875.	4.0	129
723	Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 12099-12105.	4.0	38
724	Scallion-Inspired Graphene Scaffold Enabled High Rate Lithium Metal Battery. Nano Letters, 2021, 21, 2347-2355.	4.5	20
725	Mechanisms of the Planar Growth of Lithium Metal Enabled by the 2D Lattice Confinement from a Ti ₃ C ₂ T <i>_x</i> MXene Intermediate Layer. Advanced Functional Materials, 2021, 31, 2010987.	7.8	33
726	Stable Lithium-Carbon Composite Enabled by Dual-Salt Additives. Nano-Micro Letters, 2021, 13, 111.	14.4	11
727	Realizing superior energy in a full-cell LIB employing a Li-metal anode via the rational design of a Cu-scaffold host structure with an extremely high porosity. Energy Storage Materials, 2021, 36, 326-332.	9.5	5
728	Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Research, 2021, 14, 3576-3584.	5.8	95
729	Fluorinated Interface Layer with Embedded Zinc Nanoparticles for Stable Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 17690-17698.	4.0	17
730	Highly Lithiophilic Copper-Reinforced Scaffold Enables Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 20240-20250.	4.0	24
731	Self-Formed Lithiophilic Alloy Buffer Layer on Copper Foam Framework for Advanced Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 4879-4886.	2.5	8
732	Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries. Accounts of Chemical Research, 2021, 54, 2088-2099.	7.6	59
733	Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. Chemical Reviews, 2021, 121, 5986-6056.	23.0	165
734	Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes. Nano Energy, 2021, 82, 105723.	8.2	50
735	Iron carbide allured lithium metal storage in carbon nanotube cavities. Energy Storage Materials, 2021, 36, 459-465.	9.5	39
736	Ultrafast Microwave Polarizing Electrons to Form Vertically Aligned Metal Hybrids as Lithiophilic Buffer for Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16594-16601.	4.0	9
737	Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy, 2021, 82, 105736.	8.2	24
738	Covalent Assembly of Twoâ€Dimensional COFâ€onâ€MXene Heterostructures Enables Fast Charging Lithium Hosts. Advanced Functional Materials, 2021, 31, 2101194.	7.8	83

#	Article	IF	CITATIONS
739	Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode. Energy Storage Materials, 2021, 36, 504-513.	9.5	66
740	Interfacial Engineering of Bifunctional Niobium (V)â€Based Heterostructure Nanosheet Toward High Efficiency Leanâ€Electrolyte Lithium–Sulfur Full Batteries. Advanced Functional Materials, 2021, 31, 2102314.	7.8	93
741	Sowing Silver Seeds within Patterned Ditches for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2021, 8, e2100684.	5.6	42
742	Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries. Green Energy and Environment, 2023, 8, 318-330.	4.7	12
743	Selective elimination of the reactive groups of porous biochar 3D host for stable lithium anodes. Electrochimica Acta, 2021, 388, 138632.	2.6	3
744	Dimensionality, Function and Performance of Carbon Materials in Energy Storage Devices. Advanced Energy Materials, 2022, 12, 2100775.	10.2	96
745	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20102-20118.	7.2	123
746	Regulating alkali metal deposition behavior via Li/Na-philic Ni nanoparticles modified 3D hierarchical carbon skeleton. Chemical Engineering Journal, 2021, 412, 128661.	6.6	19
747	Self-Assembly Lightweight Honeycomb-Like Prussian Blue Analogue on Cu Foam for Lithium Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 23803-23810.	4.0	19
748	Lithium Storage in Bowl-like Carbon: The Effect of Surface Curvature and Space Geometry on Li Metal Deposition. ACS Energy Letters, 2021, 6, 2145-2152.	8.8	41
749	A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Science Advances, 2021, 7, .	4.7	212
750	Uniform lithium plating within 3D Cu foam enabled by Ag nanoparticles. Electrochimica Acta, 2021, 379, 138152.	2.6	18
751	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 20262-20278.	1.6	13
752	Regulating the Stable Lithium and Polysulfide Deposition in Batteries by a Gold Nanoparticle Modified Vertical Graphene Host. Advanced Energy and Sustainability Research, 2021, 2, 2100044.	2.8	4
753	Recent Advances in Understanding the Formation and Mitigation of Dendrites in Lithium Metal Batteries. Energy & Fuels, 2021, 35, 9187-9208.	2.5	14
754	Planting CuGa2 seeds assisted with liquid metal for selective wrapping deposition of lithium. Energy Storage Materials, 2021, 37, 466-475.	9.5	38
755	Redistributing Li-ion flux and homogenizing Li-metal growth by N-doped hierarchically porous membranes for dendrite-free Lithium metal batteries. Energy Storage Materials, 2021, 37, 233-242.	9.5	41
756	Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries. Nano Letters, 2021, 21, 4757-4764.	4.5	44

#	Article	IF	CITATIONS
757	Templateâ€Sacrificed Hot Fusion Construction and Nanoseed Modification of 3D Porous Copper Nanoscaffold Host for Stableâ€Cycling Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2102735.	7.8	51
758	Sustainable and Robust Graphene Cellulose Paper Decorated with Lithiophilic Au Nanoparticles to Enable Dendriteâ€free and Highâ€Power Lithium Metal Anode. Chemistry - A European Journal, 2021, 27, 8168-8177.	1.7	7
759	Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Storage Materials, 2021, 37, 315-324.	9.5	46
760	Dualâ€Solvent Liâ€Ion Solvation Enables Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2021, 33, e2008619.	11.1	123
761	Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Liâ€Metal Batteries. Angewandte Chemie, 2021, 133, 14159-14169.	1.6	16
762	Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nature Communications, 2021, 12, 3083.	5.8	167
763	Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Liâ€Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 14040-14050.	7.2	70
764	Inhibition of Lithium Dendrite Formation in Lithium Metal Batteries via Regulated Cation Transport through Ultrathin Subâ€Nanometer Porous Carbon Nanomembranes. Advanced Energy Materials, 2021, 11, 2100666.	10.2	45
765	Lithium dendrite suppression by facile interfacial barium engineering for stable 5ÂV-class lithium metal batteries with carbonate-based electrolyte. Chemical Engineering Journal, 2021, 414, 128928.	6.6	19
766	Lithium-Rich Anti-perovskite Li ₂ OHBr-Based Polymer Electrolytes Enabling an Improved Interfacial Stability with a Three-Dimensional-Structured Lithium Metal Anode in All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28108-28117.	4.0	13
767	Recent smart lithium anode configurations for high-energy lithium metal batteries. Energy Storage Materials, 2021, 38, 262-275.	9.5	47
768	Homogeneous bottom-growth of lithium metal anode enabled by double-gradient lithiophilic skeleton. Journal of Energy Chemistry, 2021, 57, 392-400.	7.1	35
769	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	9.5	52
770	Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries. Materials Today, 2021, 50, 259-275.	8.3	35
771	Lithiophilic amide-functionalized carbon nanotube skeleton for dendrite-free lithium metal anodes. Chemical Engineering Journal, 2021, 414, 128698.	6.6	31
772	Lithium Host:Advanced architecture components for lithium metal anode. Energy Storage Materials, 2021, 38, 276-298.	9.5	89
773	Investigating Parasitic Reactions in Anode-Free Li Metal Cells with Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 060527.	1.3	12
774	Effect of diffusion constant on the morphology of dendrite growth in lithium metal batteries. Journal of Chemical Physics, 2021, 154, 234705.	1.2	1

	CITATION	Report	
# 775	ARTICLE Au@rGO modified Ni foam as a stable host for lithium metal anode. Solid State Ionics, 2021, 364, 115636.	IF 1.3	CITATIONS
776	Quantitatively Designing Porous Copper Current Collectors for Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6454-6465.	2.5	17
777	Forging Inspired Processing of Sodiumâ€Fluorinated Graphene Composite as Dendriteâ€Free Anode for Longâ€Life Na–CO ₂ Cells. Energy and Environmental Materials, 2022, 5, 572-581.	7.3	8
778	Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. ACS Nano, 2021, 15, 11828-11842.	7.3	140
779	In situ monitoring nanoscale solid-state phase transformation of Ag nanowire during electrochemical reaction. Scripta Materialia, 2021, 199, 113835.	2.6	1
780	A Sandwich Structure Composite Solid Electrolyte with Enhanced Interface Stability and Electrochemical Properties For Solid-state Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 070513.	1.3	10
781	Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 2021, 4, 601-631.	13.1	69
782	Hydrogenâ€Bonding Crosslinking MXene to Highly Robust and Ultralight Aerogels for Strengthening Lithium Metal Anode. Small Science, 2021, 1, 2100021.	5.8	41
783	Cations Coordinationâ€Regulated Reversibility Enhancement for Aqueous Znâ€Ion Battery. Advanced Functional Materials, 2021, 31, 2105736.	7.8	59
784	Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating. Nano Research, 2021, 14, 3585-3597.	5.8	17
785	LixCu alloy nanowires nested in Ni foam for highly stable Li metal composite anode. Science China Materials, 2022, 65, 69-77.	3.5	13
786	Ice-colloidal templated carbon host for highly efficient, dendrite free Li metal anode. Carbon, 2021, 179, 256-265.	5.4	7
787	Anticorrosive Copper Current Collector Passivated by Selfâ€Assembled Porous Membrane for Highly Stable Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2104930.	7.8	32
788	N, O odoped Carbon Nanosheet Array Enabling Stable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2102354.	7.8	45
789	Intermetallic interphases in lithium metal and lithium ion batteries. InformaÄnÃ-Materiály, 2021, 3, 1083-1109.	8.5	35
790	Effects of a nanometrically formed lithiophilic silver@copper current collector on the electrochemical nucleation and growth behaviors of lithium metal anodes. Applied Surface Science, 2021, 554, 149578.	3.1	11
791	Highly Cyclable Allâ€Solidâ€State Battery with Depositionâ€Type Lithium Metal Anode Based on Thin Carbon Black Layer. Advanced Energy and Sustainability Research, 2021, 2, 2100066.	2.8	23
792	A Three-Dimensional Surface Layer and a Composite Aphroid Layer Constructed by a Facile Rolling Method for High-Performance Li Metal Anodes. ACS Applied Energy Materials, 2021, 4, 8108-8116.	2.5	8

#	Article	IF	CITATIONS
793	Challenges in regulating interfacialâ€chemistry of the sodiumâ€metal anode for roomâ€ŧemperature <scp>sodiumâ€sulfur</scp> batteries. Energy Storage, 2022, 4, e264.	2.3	18
794	Chemical dealloying pore structure control of porous copper current collector for dendrite-free lithium anode. Journal of Porous Materials, 2021, 28, 1813-1822.	1.3	8
795	Effectively Regulating More Robust Amorphous Li Clusters for Ultrastable Dendriteâ€Free Cycling. Advanced Science, 2021, 8, e2101584.	5.6	9
796	Dendrite-Free and Stable Lithium Metal Battery Achieved by a Model of Stepwise Lithium Deposition and Stripping. Nano-Micro Letters, 2021, 13, 170.	14.4	26
797	Revealing the Effect of Nickel Nanoparticles for Li Plating and Stripping Processes on Niâ^'N x Doped Hollow Carbon Sphere. ChemElectroChem, 2021, 8, 3832.	1.7	0
798	Atomistic Mechanism and Long-Term Stability of Using Chlorinated Graphdiyne Film to Reduce Lithium Dendrites in Rechargeable Lithium Metal Batteries. Nano Letters, 2021, 21, 7284-7290.	4.5	12
799	Coupling a 3D Lithophilic Skeleton with a Fluorine-Enriched Interface to Enable Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 37162-37171.	4.0	18
800	Research progress on graphene-based materials for high-performance lithium-metal batteries. New Carbon Materials, 2021, 36, 711-728.	2.9	26
801	Self-Assembled Monolayers for Batteries. Journal of the American Chemical Society, 2021, 143, 12897-12912.	6.6	47
802	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	7.3	71
803	Conformal coating of lithium-zinc alloy on 3D conducting scaffold for high areal capacity dendrite-free lithium metal batteries. Carbon, 2021, 181, 99-106.	5.4	19
804	Uncovering the Relationship between Aging and Cycling on Lithium Metal Battery Self-Discharge. ACS Applied Energy Materials, 2021, 4, 7589-7598.	2.5	21
805	Dendrite-Free and Ultra-Long-Life Lithium Metal Anode Enabled via a Three-Dimensional Ordered Porous Nanostructure. ACS Applied Materials & Interfaces, 2021, 13, 41744-41752.	4.0	11
806	Hierarchical porous carbon nanofibers with lithiophilic metal oxide crystalline grains for long-life Li metal anodes. Composites Communications, 2021, 26, 100789.	3.3	14
807	Research Progress on Copper-Based Current Collector for Lithium Metal Batteries. Energy & Fuels, 2021, 35, 12921-12937.	2.5	43
808	Mixed ionic/electronic conducting nanosheet arrays for stable lithium storage. Nanotechnology, 2021, 32, 475703.	1.3	3
809	Dendriteâ€Free Reverse Lithium Deposition Induced by Ion Rectification Layer toward Superior Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2104081.	7.8	39
810	Electrospun carbon nanofibers for lithium metal anodes: Progress and perspectives. Chinese Chemical Letters, 2022, 33, 141-152.	4.8	44

#	Article	IF	CITATIONS
811	How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 2021, 86, 106142.	8.2	116
812	In-situ transmission electron microscopy for probing the dynamic processes in materials. Journal Physics D: Applied Physics, 2021, 54, 443002.	1.3	13
813	Robust silver nanowire membrane with high porosity to construct stable Li metal anodes. Materials Today Energy, 2021, 21, 100751.	2.5	9
814	Stabilizing Lithium Metal Anodes by a Self-Healable and Li-Regulating Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 44983-44990.	4.0	17
815	Interfacial modification by lithiophilic oxide facilitating uniform and thin solid electrolyte interphase towards stable lithium metal anodes. Materials Today Energy, 2021, 21, 100748.	2.5	3
816	Research on the Anode Protection of Lithium. Journal of Physics: Conference Series, 2021, 2011, 012084.	0.3	0
817	Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor. Journal of Power Sources, 2021, 506, 230197.	4.0	43
818	The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Science Advances, 2021, 7, eabi5520.	4.7	110
819	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
820	Self-Healing Nucleation Seeds Induced Long-Term Dendrite-Free Lithium Metal Anode. Nano Letters, 2021, 21, 7715-7723.	4.5	45
821	From Lithiumâ€Metal toward Anodeâ€Free Solidâ€State Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials, 2021, 31, 2106608.	7.8	98
822	Cotton pad derived 3D lithiophilic carbon host for robust Li metal anode: In-situ generated ionic conductive Li3N protective decoration. Chemical Engineering Journal, 2022, 430, 132722.	6.6	34
823	Control of electronic conductivity and ionic conductivity of mixed electron–ion conductor and their effects on lithium plating. Ionics, 2021, 27, 5167-5177.	1.2	0
824	Strategies for Dendrite-Free lithium metal Anodes: A Mini-review. Journal of Electroanalytical Chemistry, 2021, 897, 115499.	1.9	20
825	Capacity‣imited Na–M foil Anode: toward Practical Applications of Na Metal Anode. Small, 2021, 17, e2102126.	5.2	16
826	Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation towardÂhigh-areal-capacity lithium metal anode. Materials Today Energy, 2021, 21, 100770.	2.5	25
827	Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. , 2021, 3, 957-975.		64
828	Feasibility of a Spherical Hollow Carbon Framework as a Stable Host Material for Reversible Metallic Li Storage. ACS Applied Materials & Interfaces, 2021, 13, 42732-42740.	4.0	5

#	Article	IF	CITATIONS
829	Ultrahigh density nucleation leading to extraordinary long-cycle dendrite-free Li metal deposition. Carbon, 2021, 183, 641-651.	5.4	6
830	Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Materials, 2021, 41, 448-465.	9.5	60
831	Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chemical Engineering Journal, 2021, 422, 130017.	6.6	33
832	Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials, 2021, 41, 715-737.	9.5	93
833	Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Materials, 2021, 41, 485-494.	9.5	66
834	N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode. Solid State Ionics, 2021, 368, 115711.	1.3	24
835	"Mechanical–electrochemical―coupling structure and the application as a three-dimensional current collector for lithium metal anode. Applied Surface Science, 2021, 563, 150247.	3.1	10
836	Lithium–copper alloy embedded in 3D porous copper foam with enhanced electrochemical performance toward lithium metal batteries. Materials Today Energy, 2021, 22, 100871.	2.5	11
837	Lithium- gel polymer electrolyte composite anode with large electrolyte-lithium interface for solid-state battery. Electrochimica Acta, 2021, 394, 139123.	2.6	4
838	Breaking dendrites of lithium metal electrode by resonance: A theoretical calculation of lattice dynamics. Chemical Physics Letters, 2021, 780, 138921.	1.2	0
839	F–N–S doped lithiophilic interphases for stable Li metal and alloy anodes. Journal of Power Sources, 2021, 508, 230334.	4.0	2
840	Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode. Chemical Engineering Journal, 2021, 421, 129685.	6.6	42
841	Can metallic lithium be electrochemically extracted from water, the universal solvent?. Journal of Molecular Liquids, 2021, 342, 117545.	2.3	3
842	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	5.4	14
843	State of the art two-dimensional covalent organic frameworks: Prospects from rational design and reactions to applications for advanced energy storage technologies. Coordination Chemistry Reviews, 2021, 447, 214152.	9.5	73
844	Flexible ordered MnS@CNC/carbon nanofibers membrane based on microfluidic spinning technique as interlayer for stable lithium-metal battery. Journal of Membrane Science, 2021, 637, 119615.	4.1	22
845	SnSb binary alloy induced heterogeneous nucleation within the confined nanospace: Toward dendrite-free, flexible and energy/power dense sodium metal batteries. Energy Storage Materials, 2021, 42, 219-230.	9.5	28
846	A strongly interactive adatom/substrate interface for dendrite-free and high-rate Li metal anodes. Journal of Energy Chemistry, 2021, 62, 179-190.	7.1	22

#	Article	IF	CITATIONS
847	A mismatch electrical conductivity skeleton enables dendrite–free and high stability lithium metal anode. Nano Energy, 2021, 89, 106421.	8.2	17
848	An ultrahigh-energy-density lithium metal capacitor. Energy Storage Materials, 2021, 42, 154-163.	9.5	13
849	Hierarchically porous nanofibers comprising multiple core–shell Co3O4@graphitic carbon nanoparticles grafted within N-doped CNTs as functional interlayers for excellent Li–S batteries. Chemical Engineering Journal, 2021, 426, 130805.	6.6	49
850	Lithiophilic Sn sites on 3D Cu current collector induced uniform lithium plating/stripping. Chemical Engineering Journal, 2021, 425, 130177.	6.6	21
851	Promoting the reversibility of lithium ion/lithium metal hybrid graphite anode by regulating solid electrolyte interface. Nano Energy, 2021, 90, 106510.	8.2	20
852	In situ nanocrystal seeding perovskite crystallization towardÂhigh-performance solar cells. Materials Today Energy, 2021, 22, 100855.	2.5	9
853	A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chemical Engineering Journal, 2021, 425, 130643.	6.6	57
854	Synergistic effect of lithiophilic Zn nanoparticles and N-doping for stable Li metal anodes. Journal of Energy Chemistry, 2022, 65, 439-447.	7.1	16
855	Interconnected stacked hollow carbon spheres uniformly embedded with Ni2P nanoparticles as scalable host for practical Li metal anode. Chemical Engineering Journal, 2022, 428, 132648.	6.6	18
856	Sandwiched Li plating between Lithiophilic-Lithiophobic gradient Silver@Fullerene interphase layer for ultrastable lithium metal anodes. Chemical Engineering Journal, 2022, 429, 132156.	6.6	36
857	Bottom-up lithium growth guided by Ag concentration gradient in 3D PVDF framework towards stable lithium metal anode. Journal of Energy Chemistry, 2022, 65, 666-673.	7.1	27
858	Ultrathin graphitic C3N4 lithiophilic nanosheets regulating Li+ flux for lithium metal batteries. Ionics, 2021, 27, 1069-1079.	1.2	20
859	Stabilization of lithium metal anodes by conductive metal–organic framework architectures. Journal of Materials Chemistry A, 2021, 9, 12099-12108.	5.2	10
860	Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Advances, 2021, 3, 6271-6293.	2.2	27
861	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
862	Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems. Science Advances, 2021, 7, .	4.7	209
863	Dual-regulation of ions/electrons in a 3D Cu–Cu _x O host to guide uniform lithium growth for high-performance lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 10393-10403.	5.2	20
864	Directing the deposition of lithium metal to the inner concave surface of graphitic carbon tubes to enable lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 16936-16942.	5.2	5

#	Article	IF	CITATIONS
865	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
866	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	11.1	205
867	Large areal capacity and dendrite-free anodes with long lifetime enabled by distributed lithium plating with mossy manganese oxides. Journal of Materials Chemistry A, 2021, 9, 9291-9300.	5.2	6
868	Recent Advances in Heterostructure Engineering for Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003689.	10.2	269
869	Superior Sodium Metal Anodes Enabled by Sodiophilic Carbonized Coconut Framework with 3D Tubular Structure. Advanced Energy Materials, 2021, 11, 2003699.	10.2	77
870	Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1565-1583.	2.4	26
871	High-performance lithium battery driven by hybrid lithium storage mechanism in 3D architectured carbonized eggshell membrane anode. Carbon, 2020, 166, 26-35.	5.4	9
872	Li2S-based anode-free full batteries with modified Cu current collector. Energy Storage Materials, 2020, 30, 179-186.	9.5	71
873	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Materials, 2020, 30, 206-227.	9.5	95
874	Building Better Li Metal Anodes in Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Interfaces, 2021, 13, 18-33.	4.0	41
875	Li metal deposition and stripping in a solid-state battery via Coble creep. Nature, 2020, 578, 251-255.	13.7	333
876	A self-smoothing Li-metal anode enabled <i>via</i> a hybrid interface film. Journal of Materials Chemistry A, 2020, 8, 12045-12054.	5.2	24
877	Using ultrathin double-layer gas-permeable capping metal to form sensitive low-power gas sensors. Semiconductor Science and Technology, 2020, 35, 124001.	1.0	2
878	Lithium-Gold Reference Electrode for Potential Stability During In Situ Electron Microscopy Studies of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 110515.	1.3	10
879	Improved Capacity Retention of Lithium Ion Batteries under Fast Charge via Metal-Coated Graphite Electrodes. Journal of the Electrochemical Society, 2020, 167, 160503.	1.3	11
880	Review—Lithium Plating Detection Methods in Li-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160552.	1.3	83
881	Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes. Research, 2019, 2019, 1-11.	2.8	33
882	Storage stability of encapsulated anthocyanin-rich extract from black carrot (Daucus carota ssp.) Tj ETQq1 1 0.78	34314 rgB ⁻	[Overlock]

#	Article	IF	CITATIONS
883	Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes. Research, 2019, 2019, 4608940.	2.8	29
884	Vertical Graphenes Grown on a Flexible Graphite Paper as an All-Carbon Current Collector towards Stable Li Deposition. Research, 2020, 2020, 7163948.	2.8	12
885	<i>In Situ</i> / <i>Operando</i> Advances of Electrode Processes in Solid-state Lithium Batteries. Acta Chimica Sinica, 2021, 79, 1197.	0.5	2
886	A Sodium–Antimony–Telluride Intermetallic Allows Sodiumâ€Metal Cycling at 100% Depth of Discharge and as an Anodeâ€Free Metal Battery. Advanced Materials, 2022, 34, e2106005.	11.1	40
887	Quasi-compensatory effect in emerging anode-free lithium batteries. EScience, 2021, 1, 3-12.	25.0	48
888	Deeply Cyclable and Ultrahighâ€Rate Lithium Metal Anodes Enabled by Coaxial Nanochamber Heterojunction on Carbon Nanofibers. Advanced Science, 2021, 8, e2101940.	5.6	14
889	Lithiophilic Property of Artificial Alkoxides and Mercaptide Layers to Guide Uniform Li Nucleation for Stable Lithium Metal Anodes. Journal of Physical Chemistry C, 2021, 125, 22493-22501.	1.5	3
890	Mechanistic Probing of Encapsulation and Confined Growth of Lithium Crystals in Carbonaceous Nanotubes. Advanced Materials, 2021, 33, e2105228.	11.1	14
891	Thermodynamic Regulation of Dendrite-Free Li Plating on Li ₃ Bi for Stable Lithium Metal Batteries. Nano Letters, 2021, 21, 8664-8670.	4.5	25
892	From Flowerâ€Like to Spherical Deposition: A GCNT Aerogel Scaffold for Fastâ€Charging Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2102454.	10.2	14
893	Realizing Spherical Lithium Deposition by In Situ Formation of a Li ₂ S/Li–Sn Alloy Mixed Layer on Carbon Paper for Stable and Safe Li Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 48828-48837.	4.0	10
894	Recent Advanced Development of Artificial Interphase Engineering for Stable Sodium Metal Anodes. Small, 2022, 18, e2102250.	5.2	46
895	<i>In Situ</i> Formed Li–Ag Alloy Interface Enables Li ₁₀ GeP ₂ S ₁₂ Based All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 50076-50082.	4.0	27
896	Understanding the Effects of Alloy Films on the Electrochemical Behavior of Lithium Metal Anodes with Operando Optical Microscopy. Journal of the Electrochemical Society, 2021, 168, 100517.	1.3	10
897	Linking the Defects to the Formation and Growth of Li Dendrite in Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2102148.	10.2	61
898	Rechargeable Lithium Metal Batteries. , 2019, , 147-203.		Ο
899	Lithium Metal Growth Kinetics on LLZO Garnet Type Solid Electrolytes – <i>Operando</i> Study of Lithium Deposition and Dendrite Growth. SSRN Electronic Journal, 0, , .	0.4	0
900	N-doped Porous Host with Lithiophilic Co Nanoparticles Implanted into 3D Carbon Nanotubes for Dendrite-Free Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 12871-12881.	2.5	14

#	Article	IF	CITATIONS
901	Mapping the Distribution and the Microstructural Dimensions of Metallic Lithium Deposits in an Anode-Free Battery by In Situ EPR Imaging. Chemistry of Materials, 2021, 33, 8223-8234.	3.2	24
902	LiCoO ₂ Ultrathin Layer for Uniform Lithium Deposition toward a Highly Stable Lithium Metal Anode. ACS Sustainable Chemistry and Engineering, 2021, 9, 14663-14669.	3.2	5
903	Phase Diagram Determined Lithium Plating/Stripping Behaviors on Lithiophilic Substrates. ACS Energy Letters, 2021, 6, 4118-4126.	8.8	65
904	Revisiting Classical Rocking Chair Lithium-Ion Battery. Macromolecular Research, 2020, 28, 1175-1191.	1.0	14
905	Straining copper foils to regulate the nucleation of lithium for stable lithium metal anode. Energy Storage Materials, 2022, 44, 278-284.	9.5	22
906	Asymmetric separator integrated with ferroelectric-BaTiO3 and mesoporous-CNT for the reutilization of soluble polysulfide in lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 893, 162272.	2.8	25
907	Acylamino-functionalized crosslinker to synthesize all-solid-state polymer electrolytes for high-stability lithium batteries. Chemical Engineering Journal, 2022, 430, 132948.	6.6	17
908	LiF headspace affixed metallic Li composite enables Li accommodation on the anode surface with excellent electrochemical performance. Chemical Engineering Journal, 2022, 430, 132970.	6.6	11
909	Optimization of lithium nucleation by current density toward dendrite-free Li metal anode. Journal of Alloys and Compounds, 2022, 893, 162389.	2.8	10
910	Mechanism, strategies, and characterizations of Li plating in solid state batteries. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228204-228204.	0.2	1
911	Lithiophilic NiF2 coating inducing LiF-rich solid electrolyte interphase by a novel NF3 plasma treatment for highly stable Li metal anode. Electrochimica Acta, 2022, 402, 139561.	2.6	9
912	A Zn ion hybrid capacitor with enhanced energy density for anode-free. Journal of Power Sources, 2022, 518, 230740.	4.0	6
913	Architecture design principles for stable electrodeposition behavior-towards better alkali metal (Li/Na/K) anodes. Energy Storage Materials, 2022, 45, 48-73.	9.5	34
914	Mechanistic insights into the electrochemical Li/Na/K-ion storage for aqueous bismuth anode. Energy Storage Materials, 2022, 45, 33-39.	9.5	23
915	Regulating the growth of lithium dendrite by coating an ultra-thin layer of gold on separator for improving the fast-charging ability of graphite anode. Journal of Energy Chemistry, 2022, 67, 467-473.	7.1	29
916	Artificial Alloy/Li ₃ N Double-Layer Enabling Stable High-Capacity Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 13132-13139.	2.5	10
917	A 3D Porous Inverse Opal Ni Structure on a Cu Current Collector for Stable Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, e202100257.	2.4	5
918	An overview of the key challenges and strategies for lithium metal anodes. Journal of Energy Storage, 2022, 47, 103641.	3.9	14

#	Article	IF	CITATIONS
919	In Situ Formed Lithiophilic LixNbyO in a Carbon Nanofiber Network for Dendrite-Free Li-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 56498-56509.	4.0	6
920	Li migration, nucleation and growth behavior regulated by a lithiophilic cobalt phosphide-doped carbon nanofibers derived ion/electron conductive framework. Energy Storage Materials, 2022, 45, 1109-1119.	9.5	30
921	High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Letters, 2021, 6, 4416-4425.	8.8	63
922	Toward Achieving High Kinetics in Anodeless Li ₂ S Battery: Surface Modification of Cu Current Collector. Advanced Functional Materials, 2022, 32, .	7.8	7
923	3D Carbon-Based Porous Anode with a Pore-Size Gradient for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55227-55234.	4.0	17
924	Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendriteâ€Free Lithiumâ€Metal Anodes. Small, 2022, 18, e2104735.	5.2	10
925	Li + solvation mediated interfacial kinetic of alloying matrix for stable Li anodes. Energy and Environmental Materials, 0, , .	7.3	0
926	In Search of the Best Solid Electrolyte-Layered Oxide Pairing for Assembling Practical All-Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 13575-13585.	2.5	26
927	Stable lithium metal anode achieved by shortening diffusion path on solid electrolyte interface derived from Cu2O lithiophilic layer. Chemical Engineering Journal, 2022, 433, 133689.	6.6	10
928	Constructing stable lithium interfaces via coordination of fluorinated ether and liquid crystal for room-temperature solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 433, 133562.	6.6	8
929	Scalable Synthesis of Nano‣ized Bi for Separator Modifying in 5V lass Lithium Metal Batteries and Potassium Ion Batteries Anodes. Small, 2022, 18, e2104264.	5.2	19
930	A novel artificial film of lithiophilic polyethersulfone for inhibiting lithium dendrite. Electrochimica Acta, 2022, 403, 139668.	2.6	3
931	In Situ Formed Agâ€Li Intermetallic Layer for Stable Cycling of Allâ€Solidâ€State Lithium Batteries. Advanced Science, 2022, 9, e2103826.	5.6	27
932	Constructing porous nanosphere structure current collector by nitriding for lithium metal batteries. Journal of Energy Storage, 2022, 47, 103665.	3.9	6
933	Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries. Chemical Engineering Journal, 2022, 431, 133902.	6.6	32
934	Highly stable lithium anodes from recycled hemp textile. Chemical Communications, 2022, 58, 1946-1949.	2.2	4
935	A gradient topology host for a dendrite-free lithium metal anode. Nano Energy, 2022, 94, 106937.	8.2	41
936	Molten-Li infusion of ultra-thin interfacial modification layer towards the highly-reversible, energy-dense metallic batteries. Energy Storage Materials, 2022, 45, 796-804.	9.5	9

ARTICLE IF CITATIONS # Gold-incorporated porous hollow carbon nanofiber for reversible magnesium-metal batteries. 937 6.6 18 Chemical Engineering Journal, 2022, 431, 133968. Ultrastable sodium metal plating/striping by engineering heterogeneous nucleation on TiO2 nanotube 6.6 arrays. Chemical Engineering Journal, 2022, 431, 134272. 939 A facile, scalable, high stability Lithium metal anode. SusMat, 2022, 2, 104-112. 7.8 50 A Li–In alloy anode and Nb₂CT_{<i>X</i>}artificial solid-electrolyte interphase 940 for practical Li metal batteries. Journal of Materials Chemistry A, 2022, 10, 4157-4169. Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem, 941 10.1 43 2022, 4, 100069. Argentophilic pyridinic nitrogen for embedding lithiophilic silver nanoparticles in a three-dimensional carbon scaffold for reversible lithium plating/stripping. Journal of Materials 5.2 Chemistry A, 2022, 10, 1768-1779. Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings 943 4.5 118 Enables Highly Reversible Zinc Anodes. Nano Letters, 2022, 22, 1017-1023. Singleâ€Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes. Advanced Energy Materials, 944 10.2 49 2022, 12, . Principles and Challenges of Lithiumâ€"Sulfur Batteries. Modern Aspects of Electrochemistry, 2022, , 945 0.2 1 1-18. In Situ Construction of Efficient Interface Layer with Lithiophilic Nanoseeds toward Dendriteâ€Free and 946 5.6 Low N/P Ratio Li Metal Batteries. Advanced Ścience, 2022, 9, e2104391. Regulating the Interfacial Electric Field for a Stable Lithium Metal Anode. ACS Sustainable Chemistry 947 4 3.2 and Engineering, 2022, 10, 956-966. A surface-nitridized 3D nickel host for lithium metal anodes with long cycling life at a high rate. 948 2.8 Nanoscale, 2022, 14, 3480-3486. Multifunctional interfacial and structural anode for dendrite-free lithium metal-based batteries. 949 1.2 3 Journal of Central South University, 2022, 29, 373-385. Intercalation pseudocapacitance of hollow carbon bubbles with multilayered shells for boosting 5.2 K-ion storage. Journal of Materials Chemistry A, 2022, 10, 2075-2084. Fibrous skeletonâ€framed, flexible highâ€energyâ€density quasiâ€solidâ€state lithium metal batteries. , 2022, 1, . 951 21 Lithium reduction reaction for interfacial regulation of lithium metal anode. Chemical 2.2 Communications, 2022, 58, 2597-2611. 953 Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, 6, 588-616. 11.7 191 Mechanistic and nanoarchitectonics insight into Li–host interactions in carbon hosts for reversible 954 8.2 Li metal storage. Nano Energy, 2022, 95, 106999.

#	Article	IF	CITATIONS
955	Toward Practical Highâ€Energy and Highâ€Power Lithium Battery Anodes: Present and Future. Advanced Science, 2022, 9, e2105213.	5.6	84
956	The roles of nucleation and growth kinetics in determining Li metal morphology for Li metal batteries: columnar <i>versus</i> spherical growth. Journal of Materials Chemistry A, 2022, 10, 5520-5529.	5.2	13
957	High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO ₂ batteries <i>via</i> a modified mechanical suppression effect. Journal of Materials Chemistry A, 2022, 10, 3122-3133.	5.2	17
958	Application and research of current collector for lithium-sulfur battery. Ionics, 2022, 28, 1713-1738.	1.2	6
959	Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries. Chinese Chemical Letters, 2023, 34, 107130.	4.8	15
960	Customized Structure Design and Functional Mechanism Analysis of Carbon Spheres for Advanced Lithium–Sulfur Batteries. Small, 2022, 18, e2104469.	5.2	31
961	Processing robust lithium metal anode for high-security batteries: A minireview. Energy Storage Materials, 2022, 47, 122-133.	9.5	28
962	Engineering Sodium Metal Anode with Sodiophilic Bismuthide Penetration for Dendrite-Free and High-Rate Sodium-Ion Battery. Engineering, 2022, 11, 87-94.	3.2	18
963	PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy, 2022, 95, 107009.	8.2	27
964	Highly stable lithium metal composite anode with a flexible 3D lithiophilic skeleton. Nano Energy, 2022, 95, 107013.	8.2	19
965	Controlled Lithium Deposition. Frontiers in Energy Research, 2022, 10, .	1.2	3
966	Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode. Frontiers in Chemistry, 2022, 10, 837978.	1.8	14
967	Homogeneous electric field and Li+ flux regulation in three-dimensional nanofibrous composite framework for ultra-long-life lithium metal anode. Journal of Colloid and Interface Science, 2022, 614, 138-146.	5.0	11
968	Scalable hierarchical lithiophilic engineering of metal foam enables stable lithium metal batteries. Chemical Engineering Journal, 2022, 435, 134643.	6.6	23
969	Circumferential Li metal deposition at high rates enabled by the synergistic effect of a lithiophilic and ionic conductive network. Journal of Materials Chemistry A, 2022, 10, 5391-5401.	5.2	4
970	é",çj«ç"µæ±ç»¼åîæ€§èf½ååææå≢ç–ç•¥. Chinese Science Bulletin, 2022, , .	0.4	1
971	A lithiophilic/lithiophobic ternary alloy anode with Ag concentration gradients guides uniform Li deposition. Chemical Communications, 2022, 58, 3158-3161.	2.2	7
972	A Novel Dendriteâ€Free Lithium Metal Anode via Oxygen and Boron Codoped Honeycomb Carbon Skeleton. Small, 2022, 18, e2104876.	5.2	21

#	Article	IF	CITATIONS
973	Affinityâ€Engineered Flexible Scaffold toward Energyâ€Dense, Highly Reversible Na Metal Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	11
974	A review of concepts and contributions in lithium metal anode development. Materials Today, 2022, 53, 173-196.	8.3	74
975	Synergizing Conformal Lithiophilic Granule and Dealloyed Porous Skeleton toward Pragmatic Li Metal Anodes. Small Science, 2022, 2, .	5.8	27
976	Highly Reversible and Anticorrosive Zn Anode Enabled by a Ag Nanowires Layer. ACS Applied Materials & Interfaces, 2022, 14, 9097-9105.	4.0	19
977	Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. Energy and Environmental Science, 2022, 15, 1907-1919.	15.6	62
978	The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A–DA′D–A type acceptors. Energy and Environmental Science, 2022, 15, 2011-2020.	15.6	73
979	Lithiophilic Ti ₃ C ₂ T <i>_x</i> -Modified Cu Foam by Electrophoretic Deposition for Dendrite-Free Lithium Metal Anodes. ACS Applied Energy Materials, 2022, 5, 2514-2521.	2.5	8
980	Compact Interlaminar Lithium Plating Realized by Silver Nanowires Imbedded in a Stacked Graphene Host with a Rational Void Space. ACS Applied Energy Materials, 2022, 5, 3100-3109.	2.5	0
981	MXenes for metal-ion and metal-sulfur batteries: Synthesis, properties, and electrochemistry. Materials Reports Energy, 2022, 2, 100077.	1.7	1
982	Controlling Li deposition below the interface. EScience, 2022, 2, 47-78.	25.0	110
982 983	Controlling Li deposition below the interface. EScience, 2022, 2, 47-78. The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, .	25.0 4.6	110 9
	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary		
983	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, . Double interface regulation: Toward highly stable lithium metal anode with high utilization.	4.6	9
983 984	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, . Double interface regulation: Toward highly stable lithium metal anode with high utilization. InformaÄnÄ-MateriA;ly, 2022, 4, . 2D PdTe ₂ Thin-Film-Coated Current Collectors for Long-Cycling Anode-Free Rechargeable	4.6 8.5	9 21
983 984 985	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, . Double interface regulation: Toward highly stable lithium metal anode with high utilization. InformaÄnÄ-MateriA¡ly, 2022, 4, . 2D PdTe ₂ Thin-Film-Coated Current Collectors for Long-Cycling Anode-Free Rechargeable Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 15080-15089.	4.6 8.5 4.0	9 21 14
983 984 985 986	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, . Double interface regulation: Toward highly stable lithium metal anode with high utilization. InformaÄnÄ-MateriA ₁ ly, 2022, 4, . 2D PdTe ₂ Thin-Film-Coated Current Collectors for Long-Cycling Anode-Free Rechargeable Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 15080-15089. Advances in carbon materials for stable lithium metal batteries. New Carbon Materials, 2022, 37, 1-24. A Combined Lithium Intercalation and Plating Mechanism Using Conductive Carbonâ€Fiber Electrodes.	4.6 8.5 4.0 2.9	9 21 14 31
983 984 985 986 987	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, . Double interface regulation: Toward highly stable lithium metal anode with high utilization. InformaÄnÄ-MateriA ₁ ly, 2022, 4, . 2D PdTe ₂ Thin-Film-Coated Current Collectors for Long-Cycling Anode-Free Rechargeable Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 15080-15089. Advances in carbon materials for stable lithium metal batteries. New Carbon Materials, 2022, 37, 1-24. A Combined Lithium Intercalation and Plating Mechanism Using Conductive Carbonâ€Fiber Electrodes. Batteries and Supercaps, 0, . Regulated lithium deposition behavior by an artificial coating of Cu foil for dendrite-free lithium	4.6 8.5 4.0 2.9 2.4	9 21 14 31 1

#	Article	IF	CITATIONS
991	Seamless alloying stabilizes solid-electrolyte interphase for highly reversible lithium metal anode. Cell Reports Physical Science, 2022, 3, 100785.	2.8	21
992	Ag ₂ S-modified 3D Carbon Cloth as a Dendrite Suppressing Framework for High Energy Lithium-Sulfur Batteries. Chemistry Letters, 2022, 51, 504-507.	0.7	2
993	Au-coated carbon fabric as Janus current collector for dendrite-free flexible lithium metal anode and battery. Applied Physics Reviews, 2022, 9, .	5.5	18
994	Two Birds with One Stone: Using Indium Oxide Surficial Modification to Tune Inner Helmholtz Plane and Regulate Nucleation for Dendriteâ€free Lithium Anode. Small Methods, 2022, 6, e2200113.	4.6	10
995	Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Znâ€ l on Batteries. Small, 2022, 18, e2200006.	5.2	105
996	Constructing 3D Porous Current Collectors for Stable and Dendriteâ€Free Lithium Metal Anodes. Advanced Sustainable Systems, 2022, 6, .	2.7	19
997	Boron-doped three-dimensional MXene host for durable lithium-metal anode. Rare Metals, 2022, 41, 2217-2222.	3.6	16
998	CuO Nanofilm-Covered Cu Microcone Coating for a Long Cycle Li Metal Anode by In Situ Formed Li ₂ O. ACS Applied Energy Materials, 2022, 5, 3773-3782.	2.5	13
999	Carbon Nanotube Interwoven Polyhedrons with Inside-out Lithiophilic Gradients toward Stable Lithium Metal Battery. Chemical Engineering Journal, 2022, , 136256.	6.6	4
1000	Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries. Energy and Environmental Materials, 2023, 6, .	7.3	2
1001	Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Materials, 2022, 49, 135-143.	9.5	23
1002	A Robust Li-Intercalated Interlayer with Strong Electron Withdrawing Ability Enables Durable and High-Rate Li Metal Anode. ACS Energy Letters, 2022, 7, 1594-1603.	8.8	36
1003	Synergistic effect of modest pores and lithiophilic surface on 3D current collectors for stable Li metal anodes. Journal of Alloys and Compounds, 2022, , 164925.	2.8	3
1004	Insideâ€Outside Li Deposition Achieved by the Unusual Strategy of Constructing the Hierarchical Lithiophilicity for Dendriteâ€Free and Durable Li Metal Anode. Batteries and Supercaps, 0, , .	2.4	2
1005	Porous carbon architectures with different dimensionalities for lithium metal storage. Science and Technology of Advanced Materials, 2022, 23, 169-188.	2.8	21
1006	Review—Advances in Rechargeable Li-S Full Cells. Journal of the Electrochemical Society, 2022, 169, 040525.	1.3	11
1008	High-performance lithium metal battery realized by regulating Li+ flux distribution on artificial-solid-electrolyte-interphase functionalized 3D carbon framework-Li anode. Materials Today Physics, 2022, 24, 100672.	2.9	3
1009	Rationally designed alloy phases for highly reversible alkali metal batteries. Energy Storage Materials, 2022, 48, 223-243.	9.5	20

#	Article	IF	CITATIONS
1010	Commercial carbon cloth: An emerging substrate for practical lithium metal batteries. Energy Storage Materials, 2022, 48, 172-190.	9.5	50
1011	High area capacity and dendrite-free anode constructed by highly potassiophilic Pd/Cu current collector for low-temperature potassium metal battery. Nano Energy, 2022, 96, 107131.	8.2	30
1012	Morphologically and chemically regulated 3D carbon for Dendrite-free lithium metal anodes by a plasma processing. Journal of Colloid and Interface Science, 2022, 619, 198-206.	5.0	7
1013	LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries. Chemical Engineering Journal, 2022, 442, 136243.	6.6	31
1014	Probe the Localized Electrochemical Environment Effects and Electrode Reaction Dynamics for Metal Batteries using In Situ 3D Microscopy. Advanced Energy Materials, 2022, 12, .	10.2	14
1015	<i>Operando</i> Visualization of Morphological Evolution in Mg Metal Anode: Insight into Dendrite Suppression for Stable Mg Metal Batteries. ACS Energy Letters, 2022, 7, 162-170.	8.8	50
1016	Failure Mechanism of Lithiophilic Sites in Composite Lithium Metal Anode under Practical Conditions. Advanced Energy Materials, 2022, 12, .	10.2	56
1017	High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1212-1221.	4.0	15
1018	Enriched Cavities to ZIF-8-Derived Porous Carbon for Reversible Metallic Lithium Storage. ACS Applied Energy Materials, 2021, 4, 14520-14525.	2.5	5
1019	Effect of Highly Periodic Au Nanopatterns on Dendrite Suppression in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60978-60986.	4.0	14
1020	Recent progress and future perspectives of flexible metalâ€air batteries. SmartMat, 2021, 2, 519-553.	6.4	43
1021	A Dendriteâ€Free Lithiumâ€Metal Anode Enabled by Designed Ultrathin MgF ₂ Nanosheets Encapsulated Inside Nitrogenâ€Doped Grapheneâ€Like Hollow Nanospheres. Advanced Materials, 2022, 34, e2201801.	11.1	26
1022	Development of Highâ€Energy Anodes for Allâ€Solidâ€State Lithium Batteries Based on Sulfide Electrolytes. Angewandte Chemie, 2022, 134, .	1.6	6
1023	Scalable Lithiophilic/Sodiophilic Porous Buffer Layer Fabrication Enables Uniform Nucleation and Growth for Lithium/Sodium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
1024	Lithiophilic Nickel Phosphide Modifying Carbon Nanofibers for a Highly Reversible Lithium-Metal Anode. ACS Applied Energy Materials, 2022, 5, 4733-4742.	2.5	7
1025	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	13.8	429
1026	Multidimensional <scp>Co₃O₄</scp> NiO heterojunctions with richâ€boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InformaÄnÃ-Materiály, 2022, 4, .	8.5	19
1027	Development of Highâ€Energy Anodes for Allâ€Solidâ€State Lithium Batteries Based on Sulfide Electrolytes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40

#	Article	IF	CITATIONS
1028	Advanced Current Collector Materials for Highâ€Performance Lithium Metal Anodes. Small, 2022, 18, e2200010.	5.2	33
1030	One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 19437-19447.	4.0	4
1031	A microgrid-patterned silicon electrode as an electroactive lithium host. Energy and Environmental Science, 2022, 15, 2581-2590.	15.6	12
1032	Advanced carbon-based nanostructure frameworks for lithium anodes. , 2022, , 499-520.		Ο
1033	Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy and Environmental Science, 2022, 15, 2889-2899.	15.6	63
1034	A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li NCM811 cells with a wide temperature range of 100 °C. Energy and Environmental Science, 2022, 15, 2435-2444.	15.6	104
1035	Nanocomposites for binder-free Li-S electrodes. , 2022, , 99-119.		0
1036	Status and perspectives of hierarchical porous carbon materials in terms of highâ€performance lithium–sulfur batteries. , 2022, 4, 346-398.		65
1037	No Evidence of Benefits of Host Nano-Carbon Materials for Practical Lithium Anode-Free Cells. Nanomaterials, 2022, 12, 1413.	1.9	5
1038	Enabled Uniform Zn Stripping/Plating by Natural Halloysite Nanotube Coating with Opposite Charge for Aqueous Zn-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 5838-5846.	3.2	13
1039	Understanding and modifications on lithium deposition in lithium metal batteries. Rare Metals, 2022, 41, 2800-2818.	3.6	18
1040	Targeted Deposition in a Lithiophilic Silverâ€Modified 3D Cu Host for Lithiumâ€Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	11
1041	Facile Lithiophilic 3D Copper Current Collector for Stable Li Metal Anode. Journal of Electronic Materials, 2022, 51, 4248-4256.	1.0	4
1042	Thermodynamic Analysis of Initial Steps for Void Formation at Lithium/Solid Electrolyte Interphase Interfaces. ACS Energy Letters, 2022, 7, 1953-1959.	8.8	7
1043	Thiophilic–Lithiophilic Hierarchically Porous Membrane-Enabled Full Lithium–Sulfur Battery with a Low N/P Ratio. ACS Applied Materials & Interfaces, 2022, 14, 23408-23419.	4.0	10
1044	Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode. Science Advances, 2022, 8, eabm7489.	4.7	42
1045	Unveiling the Stressâ€Buffering Mechanism of Deep Lithiated Ag Nanowires: A Polymer Segmental Motion Strategy toward Ultraâ€Robust Li Metal Anodes. Advanced Functional Materials, 2022, 32, .	7.8	13
1046	Sea-Urchin-like Hierarchical Carbon Spheres with Conical Pores as a Three-Dimensional Lithium Host for Dendrite Suppression. ACS Applied Energy Materials, 2022, 5, 5919-5927.	2.5	0

#	Article	IF	CITATIONS
1047	Experimental and first-principles study on amorphous aluminum nitride induced island-like nucleation and planar growth of lithium metal anode. Electrochimica Acta, 2022, 421, 140520.	2.6	1
1048	Lithiophilic ZnO confined in microscale carbon cubes as a stable host for lithium metal anodes. Carbon, 2022, 196, 92-101.	5.4	4
1049	A review on current collector coating methods for next-generation batteries. Chemical Engineering Journal, 2022, 446, 136860.	6.6	30
1050	A dual-confined lithium nucleation and growth design enables dendrite-free lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 11659-11666.	5.2	6
1051	Dendrite-free Zn anode supported with 3D carbon nanofiber skeleton towards stable zinc ion batteries. Journal of Colloid and Interface Science, 2022, 623, 1181-1189.	5.0	13
1052	Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nature Materials, 2022, 21, 1050-1056.	13.3	84
1053	Salt–solvent synchro-constructed robust electrolyte–electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 19903-19913.	5.2	10
1054	An Anodeâ€Free Zn–Graphite Battery. Advanced Materials, 2022, 34, e2201957.	11.1	31
1055	Highly Potassiophilic Graphdiyne Skeletons Decorated with Cu Quantum Dots Enable Dendriteâ€Free Potassiumâ€Metal Anodes. Advanced Materials, 2022, 34, e2202685.	11.1	26
1056	An Anodeâ€Free Potassiumâ€Metal Battery Enabled by a Directly Grown Grapheneâ€Modulated Aluminum Current Collector. Advanced Materials, 2022, 34, e2202902.	11.1	27
1057	Finelyâ€Dispersed Ni ₂ Co Nanoalloys on Flowerâ€Like Graphene Microassembly Empowering a Biâ€Service Matrix for Superior Lithium–Sulfur Electrochemistry. Advanced Functional Materials, 2022, 32, .	7.8	22
1058	Powder metallurgical 3D nickel current collectors with plasma-induced Ni3N nanocoatings enabling long-life and dendrite-free lithium metal anode. Journal of Energy Chemistry, 2022, 72, 149-157.	7.1	16
1059	N-Doped C/ZnO-Modified Cu Foil Current Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 7303-7311.	1.8	4
1060	Cu Foam-Loaded Cu ₂ Mg Alloy with High Electrochemical Stability to Regulate the Nucleation of Lithium for Dendrite-Free Lithium Metal Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 7149-7157.	3.2	4
1061	Lithiophilic pore-gradient structured and oxygen-enriched carbon fiber as dense lithium nucleation enabler for stable lithium metal batteries. Carbon, 2022, 196, 663-675.	5.4	4
1062	A sodiophilic VN interlayer stabilizing a Na metal anode. Nanoscale Horizons, 2022, 7, 899-907.	4.1	9
1063	Anodeâ€Free Solidâ€State Lithium Batteries: A Review. Advanced Energy Materials, 2022, 12, .	10.2	81
1064	Silver Copper Oxide Nanowires by Electrodeposition for Stable Lithium Metal Anode in Carbonate-Based Electrolytes. ACS Sustainable Chemistry and Engineering, 2022, 10, 7196-7204.	3.2	7

#	Article	IF	Citations
1065	Ag Nanoparticle-Decorated Mesocarbon Microbeads for Homogeneous Lithium Deposition toward Stable Hybrid Anodes. ACS Applied Nano Materials, 2022, 5, 7908-7916.	2.4	1
1066	Modifying the Lithiophilicity of Cu ₂ O/Cu Collector by LiCuO to Restrain Lithium Dendrite Growth. ChemistrySelect, 2022, 7, .	0.7	1
1067	Synergistic regulating of dynamic trajectory and lithiophilic nucleation by Heusler alloy for dendrite-free Li deposition. Energy Storage Materials, 2022, 50, 505-513.	9.5	25
1068	Progress of carbon and Metal-Based Three-Dimensional materials for Dendrite-Proof and Interface-Compatible lithium metal anode. Applied Surface Science, 2022, 598, 153785.	3.1	11
1069	One-Dimensional Porous Li-Confinable Hosts for High-Rate and Stable Li-Metal Batteries. ACS Nano, 2022, 16, 11892-11901.	7.3	22
1070	Li-Ca Alloy Composite Anode with Ant-Nest-Like Lithiophilic Channels in Carbon Cloth Enabling High-Performance Li Metal Batteries. Research, 2022, 2022, .	2.8	6
1071	Sodiophilic skeleton based on the packing of hard carbon microspheres for stable sodium metal anode without dead sodium. Journal of Energy Chemistry, 2022, 73, 400-406.	7.1	11
1072	Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2022, 14, .	14.4	65
1073	Bilayer carbon-based structure with the promotion of homogenous nucleation for lithium metal anodes. Science China Technological Sciences, 2022, 65, 1558-1566.	2.0	4
1074	Asymmetric N, <scp>O oordinated</scp> Single Atomic Co Sites for Stable Lithium Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	11
1075	K _{<i>x</i>} C _{<i>y</i>} phase induced expanded interlayer in ultraâ€ŧhin carbon toward full potassiumâ€ion capacitors. , 2022, 4, 1151-1168.		18
1076	Tuning 4fâ€Center Electron Structure by Schottky Defects for Catalyzing Li Diffusion to Achieve Longâ€Term Dendriteâ€Free Lithium Metal Battery. Advanced Science, 2022, 9, .	5.6	24
1077	Three-dimensional graphene with charge transfer doping for stable lithium metal anode. Journal of Electroanalytical Chemistry, 2022, 918, 116512.	1.9	1
1078	Modification of Cu current collectors for lithium metal batteries – A review. Progress in Materials Science, 2022, 130, 100996.	16.0	56
1079	Lithiophilic Sn–Co nano-seeds sealed in a hollow carbon shell to stabilize lithium metal anodes. Chemical Communications, 2022, 58, 9194-9197.	2.2	1
1080	Reversing the dendrite growth direction and eliminating the concentration polarization <i>via</i> an internal electric field for stable lithium metal anodes. Chemical Science, 2022, 13, 9277-9284.	3.7	9
1081	Influence of amorphous carbon interlayers on nucleation and early growth of lithium metal at the current collector-solid electrolyte interface. Journal of Materials Chemistry A, 2022, 10, 15535-15542.	5.2	8
1082	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5

#	Article	IF	CITATIONS
1083	Construction of a N,P doped 3D dendrite-free lithium metal anode by using silicon-containing lithium metal. Dalton Transactions, 2022, 51, 13210-13226.	1.6	1
1084	Recent advances of non-lithium metal anode materials for solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 16761-16778.	5.2	23
1085	Future prospects for lithium-sulfur batteries: The criticality of solid electrolytes. , 2022, , 327-351.		0
1086	Modification of a Cu Mesh with Nanowires and Magnesiophilic Ag Sites to Induce Uniform Magnesium Deposition. ACS Applied Materials & Interfaces, 2022, 14, 31148-31159.	4.0	8
1087	Recent Advances in Carbonâ€Based Current Collectors/Hosts for Alkali Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	6
1088	<scp>Singleâ€Atom</scp> Lithiophilic Sites Confined within Ordered Porous Carbon for <scp>Ultrastable</scp> Lithium Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	5
1089	Builtâ€In Stable Lithiophilic Sites in 3D Current Collectors for Dendrite Free Li Metal Electrode. Small, 2022, 18, .	5.2	11
1090	<scp>Highâ€Energy</scp> Lithiumâ€Ion Batteries: Recent Progress and a Promising Future in Applications. Energy and Environmental Materials, 2023, 6, .	7.3	77
1091	Enhanced Cyclability of Lithium Metal Anodes Enabled by Anti-aggregation of Lithiophilic Seeds. Nano Letters, 2022, 22, 5874-5882.	4.5	26
1092	Boosting the Temperature Adaptability of Lithium Metal Batteries via a Moisture/Acidâ€Purified, Ionâ€Diffusion Accelerated Separator. Advanced Energy Materials, 2022, 12, .	10.2	20
1093	Electrical resistance of the current collector controls lithium morphology. Nature Communications, 2022, 13, .	5.8	20
1094	Regulation of Dendrite-Free Li Plating via Lithiophilic Sites on Lithium-Alloy Surface. ACS Applied Materials & Interfaces, 2022, 14, 33952-33959.	4.0	15
1096	A dual-lithiophilic interfacial layer with intensified Lewis basicity and orbital hybridization for high-performance lithium metal batteries. Energy Storage Materials, 2022, 51, 777-788.	9.5	4
1097	Application of Ag-based materials in high-performance lithium metal anode: A review. Journal of Materials Science and Technology, 2023, 133, 165-182.	5.6	18
1098	Lithiophilic onion-like carbon spheres as lithium metal uniform deposition host. Journal of Colloid and Interface Science, 2022, 627, 783-792.	5.0	12
1099	Measuring the Nucleation Overpotential in Lithium Metal Batteries: Never Forget the Counter Electrode!. Journal of the Electrochemical Society, 2022, 169, 070509.	1.3	21
1100	Electrosynthesis of Vertically Aligned Zinc Oxide Nanoflakes on 3D Porous Cu Foam Enables Dendrite-Free Li-Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 33400-33409.	4.0	13
1101	A Gelationâ€Assisted Approach for Versatile MXene Inks. Advanced Functional Materials, 2022, 32, .	7.8	10

#	Article	IF	CITATIONS
1102	Long-term stable Li metal anode enabled by strengthened and protected lithiophilic LiZn alloys. Journal of Power Sources, 2022, 543, 231839.	4.0	6
1103	Facile synthesis of three-dimensional conducting scaffold with magnesiophilic decorations toward non-dendritic Mg-metal batteries. Journal of Power Sources, 2022, 541, 231724.	4.0	8
1104	Dendrite-free and corrosion-resistant sodium metal anode for enhanced sodium batteries. Applied Surface Science, 2022, 600, 154168.	3.1	15
1105	A dimensionally stable lithium alloy based composite electrode for lithium metal batteries. Chemical Engineering Journal, 2022, 450, 138074.	6.6	6
1106	Three-dimensional Ag/carbon nanotube-graphene foam for high performance dendrite free lithium/sodium metal anodes. Journal of Materials Science and Technology, 2023, 132, 50-58.	5.6	27
1107	In Situ Grown MnO ₂ Nanoflower Arrays on Ni Foam (MnO ₂ @NF) as 3D Lithiophilic Hosts for a Stable Lithium Metal Anode. ACS Applied Energy Materials, 2022, 5, 10034-10044.	2.5	6
1108	Enhancing the Electrochemical Stability of Lithium Anode by Introducing Lithiophilic Three-dimensional Framework Li2Cu3Zn. Journal of Alloys and Compounds, 2022, , 166437.	2.8	2
1109	Stable Li Metal–Electrolyte Interface Enabled by SEI Improvement and Cation Shield Functionality of the Azamacrocyclic Ligand in Carbonate Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 35645-35653.	4.0	11
1110	Bulk/Interfacial Synergetic Approaches Enable the Stable Anode for High Energy Density All-Solid-State Lithium–Sulfur Batteries. ACS Energy Letters, 2022, 7, 2761-2770.	8.8	23
1111	Carbon/Lithium Composite Anode for Advanced Lithium Metal Batteries: Design, Progress, In Situ Characterization, and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	40
1112	Crystallographically Textured Electrodes for Rechargeable Batteries: Symmetry, Fabrication, and Characterization. Chemical Reviews, 2022, 122, 14440-14470.	23.0	37
1113	Selfâ€densified ultrathin solid electrolyte membrane fabricated from monodispersed sulfide electrolyte nanoparticles. Journal of the American Ceramic Society, 2022, 105, 7344-7354.	1.9	4
1114	Advanced Nonflammable Organic Electrolyte Promises Safer Liâ€Metal Batteries: From Solvation Structure Perspectives. Advanced Materials, 2023, 35, .	11.1	35
1115	Interface Crystallographic Optimization of Crystal Plane for Stable Metallic Lithium Anode. ACS Applied Materials & Interfaces, 2022, 14, 38696-38705.	4.0	11
1116	Sb ₂ S ₃ Nanorod Hierarchies Enabling Homogeneous Sodium Deposition for Dendrite-Free Sodium-Metal Batteries. ACS Applied Energy Materials, 2022, 5, 10952-10960.	2.5	4
1117	Emerging catalytic materials for practical lithium-sulfur batteries. Journal of Energy Chemistry, 2023, 76, 127-145.	7.1	43
1118	Roomâ€Temperature Anode‣ess Allâ€Solidâ€State Batteries via the Conversion Reaction of Metal Fluorides. Advanced Materials, 2022, 34, .	11.1	24
1119	Pomegranateâ€Inspired Graphene Parcel Enables Highâ€Performance Dendriteâ€Free Lithium Metal Anodes. Advanced Science, 2022, 9, .	5.6	7

#	Article	IF	CITATIONS
1120	Advances in the Emerging Gradient Designs of Li Metal Hosts. Research, 2022, 2022, .	2.8	14
1121	Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective. Polymers, 2022, 14, 3452.	2.0	3
1122	Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nature Communications, 2022, 13, .	5.8	54
1123	A Diluted Electrolyte for Long-Life Sulfurized Polyacrylonitrile-Based Anode-Free Li-S Batteries. Polymers, 2022, 14, 3312.	2.0	4
1124	CO ₂ Laser Direct-Write Process for Micro-Gradient-Patterned Carbon Composed of Graphene-like and Disordered Carbon Forms for a Robust Anode-Free Li–Metal Battery. ACS Applied Energy Materials, 2022, 5, 10940-10951.	2.5	2
1125	Facile and scalable fabrication of lithiophilic Cu O enables stable lithium metal anode. Journal of Energy Chemistry, 2022, 75, 285-292.	7.1	19
1126	Understanding the electro-chemo-mechanics of Li plating in anode-free solid-state batteries with operando 3D microscopy. Matter, 2022, 5, 3912-3934.	5.0	34
1127	Constructing methyl methacrylate/MXene artificial solid-electrolyte interphase layer for lithium metal batteries with high electrochemical performance. Applied Surface Science, 2022, 605, 154586.	3.1	7
1128	Construction and Modification of Copper Current Collectors for Improved Li Metal Batteries. , 0, , .		1
1129	Designing 3D Anode Based on Poreâ€Sizeâ€Dependent Li Deposition Behavior for Reversible Liâ€Free Allâ€Solidâ€State Batteries. Advanced Science, 2022, 9, .	5.6	12
1130	Rationalized design of hyperbranched trans-scale graphene arrays for enduring high-energy lithium metal batteries. Science Advances, 2022, 8, .	4.7	14
1131	Dual Vertically Aligned Electrodeâ€Inspired Highâ€Capacity Lithium Batteries. Advanced Science, 2022, 9, .	5.6	13
1132	Stable Imprinted Zincophilic Zn Anodes with High Capacity. Advanced Functional Materials, 2022, 32, .	7.8	35
1133	Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Science Advances, 2022, 8, .	4.7	40
1134	Constructing low N/P ratio sodium-based batteries by reversible Na metal electrodeposition on sodiophilic zinc-metal-decorated hard carbons. Journal of Power Sources, 2022, 544, 231862.	4.0	3
1135	Guided lithium nucleation and growth on lithiophilic tin-decorated copper substrate. Journal of Energy Chemistry, 2022, 74, 412-419.	7.1	11
1136	Lithiophilic Ni3S2 layer decorated nickel foam (Ni3S2@Ni foam) with fast ion transfer kinetics for long-life lithium metal anodes. Chemical Engineering Journal, 2022, 450, 138384.	6.6	21
1137	A multifunctional subassembly of carbon nanotube paper for stable lithium metal anodes. Materials Today Energy, 2022, 29, 101134.	2.5	1

#	Article	IF	CITATIONS
1138	Synergistic effects between dual salts and Li nitrate additive in ether electrolytes for Li-metal anode protection in Li secondary batteries. Journal of Power Sources, 2022, 548, 232017.	4.0	10
1139	Recent progress on enhancing the Lithiophilicity of hosts for dendrite-free lithium metal batteries. Energy Storage Materials, 2022, 53, 156-182.	9.5	8
1140	Mesoporous copper-based metal glass as current collector for Li metal anode. Chemical Engineering Journal, 2023, 451, 138910.	6.6	21
1141	Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy and Environmental Science, 2022, 15, 3805-3814.	15.6	39
1142	Dendrite-free lithium metal batteries achieved with Ce-MOF membrane coating with one-dimensional continuous oxygen-containing channels for rapid migration of Li ions. Journal of Materials Chemistry A, 2022, 10, 18248-18255.	5.2	8
1143	An anodeless, mechanically flexible and energy/power dense sodium battery prototype. Energy and Environmental Science, 2022, 15, 4686-4699.	15.6	15
1144	<i>In situ</i> imaging of lithium superoxide dynamics in an all-solid-state Li–O ₂ nanobattery. Journal of Materials Chemistry A, 2022, 10, 20294-20301.	5.2	2
1145	Li ⁺ -intercalated carbon cloth for anode-free Li-ion batteries with unprecedented cyclability. Journal of Materials Chemistry A, 2022, 10, 21456-21464.	5.2	5
1146	Insights on the work function of the current collector surface in anode-free lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 20984-20992.	5.2	7
1147	Carbon Nanotube Current Collector for Anode-free Battery. Fibers and Polymers, 2022, 23, 2149-2155.	1.1	1
1148	Engineering current collectors for advanced alkali metal anodes: A review and perspective. EcoMat, 2023, 5, .	6.8	18
1149	Highâ€Energy and Longâ€Lifespan Potassium–Sulfur Batteries Enabled by Concentrated Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	16
1150	Anionic Coordination Manipulation of Multilayer Solvation Structure Electrolyte for Highâ€Rate and Lowâ€Temperature Lithium Metal Battery. Advanced Energy Materials, 2022, 12, .	10.2	42
1151	Dualâ€Functional Stacked Polymer Fibers for Stable Lithium Metal Batteries in Carbonateâ€Based Electrolytes. Small Structures, 2022, 3, .	6.9	7
1152	Revisiting the Role of Physical Confinement and Chemical Regulation of 3D Hosts for Dendrite-Free Li Metal Anode. Nano-Micro Letters, 2022, 14, .	14.4	23
1153	Metalâ€organic framework derived porous structures towards lithium rechargeable batteries. EcoMat, 2023, 5, .	6.8	33
1154	Sodiophilic Current Collectors Based on MOFâ€Derived Nanocomposites for Anode‣ess Naâ€Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	26
1155	Facile Replacement Reaction Enables Nano-Ag-Decorated Three-Dimensional Cu Foam as High-Rate Lithium Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 42030-42037.	4.0	11

#	Article	IF	CITATIONS
1156	Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth. EScience, 2022, 2, 655-665.	25.0	25
1157	Facile Electroless Plating Method to Fabricate a Nickel–Phosphorus-Modified Copper Current Collector for a Lean Lithium-Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 45433-45443.	4.0	9
1158	Lithiumâ€Metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency. Small Structures, 2022, 3, .	6.9	26
1159	Role of Coatings as Artificial Solid Electrolyte Interphases on Lithium Metal Self-Discharge. Journal of Physical Chemistry C, 2022, 126, 17490-17501.	1.5	5
1160	Interfacial high-concentration electrolyte for stable lithium metal anode: Theory, design, and demonstration. Nano Research, 2023, 16, 8321-8328.	5.8	2
1161	Achieving a dendrite-free lithium metal anode through lithiophilic surface modification with sodium diethyldithiocarbamate. Inorganic Chemistry Frontiers, 2022, 9, 6498-6509.	3.0	3
1162	Strategies and challenges of carbon materials in the practical applications of lithium metal anode: a review. Physical Chemistry Chemical Physics, 2022, 24, 26356-26370.	1.3	13
1163	Lithium deposition mechanism on Si and Cu substrates in the carbonate electrolyte. Energy and Environmental Science, 2022, 15, 5284-5299.	15.6	18
1164	<i>In-situ</i> Modification of Carbon Nanotubes with Metallic Bismuth Nanoparticles for Uniform Lithium Deposition. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 1337.	0.6	3
1165	Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries. Journal of Energy Chemistry, 2023, 77, 123-136.	7.1	31
1166	Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries. Science Advances, 2022, 8, .	4.7	13
1167	Toward Dendrite-Free Metallic Lithium Anodes: From Structural Design to Optimal Electrochemical Diffusion Kinetics. ACS Nano, 2022, 16, 17729-17760.	7.3	50
1168	Intrinsic Zn in Brass Enables Li Anode Dendriteâ€free. Batteries and Supercaps, 0, , .	2.4	0
1169	Uniform Lithium Deposition Induced by ZnFx(OH)y for High-Performance Sulfurized Polyacrylonitrile-Based Lithium-Sulfur Batteries. Polymers, 2022, 14, 4494.	2.0	2
1170	Elucidating the suppression of lithium dendrite growth with a void-reduced anti-perovskite solid-state electrolyte pellet for stable lithium metal anodes. Journal of Energy Chemistry, 2023, 77, 62-69.	7.1	4
1171	Room-Temperature Liquid-Metal Coated Zn Electrode for Long Life Cycle Aqueous Rechargeable Zn-Ion Batteries. Batteries, 2022, 8, 208.	2.1	3
1172	Advanced Material Engineering to Tailor Nucleation and Growth towards Uniform Deposition for Anode‣ess Lithium Metal Batteries. Small, 2022, 18, .	5.2	9
1173	Facile design of alloy-based hybrid layer to stabilize lithium metal anode. Electrochimica Acta, 2022, 436, 141464.	2.6	1

#	Article	IF	CITATIONS
1174	A high-performance solid sodium battery enabled by a thin Na-Ti3C2Tx composite anode. Electrochimica Acta, 2022, 436, 141424.	2.6	4
1175	Electrochemical behavior and morphological evolution of Li metal anode under high cycling capacity. Energy Storage Materials, 2023, 54, 146-155.	9.5	4
1176	Highly reversible Li metal anode using a binary alloy interface. Chemical Communications, 2022, 58, 13455-13458.	2.2	2
1177	From anode to cell: synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes. Energy Storage Materials, 2023, 54, 623-640.	9.5	41
1178	Stable copper anode enabled by an ionic conducting sulfurized interphase. Electrochimica Acta, 2023, 437, 141490.	2.6	2
1179	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
1180	lsotropic Amorphous Protective Layer with Uniform Interfacial Zincophobicity for Stable Zinc Anode. Small, 2022, 18, .	5.2	26
1181	Fast-Charging of Hybrid Lithium-Ion/Lithium-Metal Anodes by Nanostructured Hard Carbon Host. ACS Energy Letters, 2022, 7, 4417-4426.	8.8	14
1182	Dual-Layered 3D Composite Skeleton Enables Spatially Ordered Lithium Plating/Stripping for Lithium Metal Batteries with Ultra-Low N/P Ratios. ACS Applied Energy Materials, 2022, 5, 14071-14080.	2.5	3
1183	High-Power Hybrid Solid-State Lithium–Metal Batteries Enabled by Preferred Directional Lithium Growth Mechanism. ACS Energy Letters, 2023, 8, 9-20.	8.8	21
1184	Introducing KI as a functional electrolyte additive to stabilize Li metal anode. Chemical Engineering Journal, 2023, 454, 140395.	6.6	7
1185	Electrochemical Solvometallurgy Pathway for the Sustainable Recovery of Bulk Metallic Lithium. , 2023, 1, 59-67.		2
1186	Advances in Nanofibrous Materials for Stable Lithium-Metal Anodes. ACS Nano, 2022, 16, 17891-17910.	7.3	11
1187	An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries. Journal of Energy Storage, 2022, 56, 105955.	3.9	5
1188	A Review of the Application of Carbon Materials for Lithium Metal Batteries. Batteries, 2022, 8, 246.	2.1	9
1189	Construction of lithophilic solid electrolyte interfaces with a bottom-up nucleation barrier difference for low-N/P ratio Li-metal batteries. Energy Storage Materials, 2023, 54, 885-894.	9.5	18
1190	Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries. Energy Storage Materials, 2023, 54, 689-712.	9.5	11
1191	Synergized N, P dual-doped 3D carbon host derived from filter paper for durable lithium metal anodes. Journal of Colloid and Interface Science, 2023, 632, 1-10.	5.0	5

#	Article	IF	CITATIONS
1192	Favorable nucleation and continuous regulation direct uniform and oblate Li deposition. Inorganic Chemistry Frontiers, 2023, 10, 1091-1100.	3.0	1
1193	Surface modification of carbon fiber cloth with graphene oxide through an electrophoresis method for lithium metal anode. Carbon, 2023, 203, 743-752.	5.4	13
1194	In-situ formation of LiF-rich solid-electrolyte interphases on 3D lithiophilic skeleton for stable lithium metal anode. Energy Storage Materials, 2023, 55, 301-311.	9.5	11
1195	Flexible, high-temperature-resistant, highly conductive, and porous siloxane-based single-ion conducting electrolyte membranes for safe and dendrite-free lithium-metal batteries. Journal of Membrane Science, 2023, 668, 121275.	4.1	7
1196	Bis(fluorosulfonyl)imide- and allyl-functionalized electrolyte additive as an interface stabilizer for Li-metal batteries. Applied Surface Science, 2023, 614, 156140.	3.1	1
1197	The thermodynamically directed dendrite-free lithium metal batteries on LiZn alloy surface. Nano Research, 2023, 16, 8354-8359.	5.8	2
1198	Bismuthene Arrays Harvesting Reversible Platingâ€Alloying Electrochemistry Toward Robust Lithium Metal Batteries. Small Structures, 2023, 4, .	6.9	5
1199	Porous Metal Current Collectors for Alkali Metal Batteries. Advanced Science, 2023, 10, .	5.6	17
1200	Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications. Science China Chemistry, 2023, 66, 65-77.	4.2	16
1201	Lithium deposition behavior in hard carbon hosts: Optical microscopy and scanning electron microscopy study. Nano Research, 2023, 16, 8368-8376.	5.8	0
1202	Three-dimensional MOF-derived host with surface-preferred and spatial-selective effect for dendrite-free lithium metal battery. Journal of Alloys and Compounds, 2023, 938, 168542.	2.8	2
1203	Spatially Distributed Lithiophilic Gradient in Lowâ€Tortuosity 3D Hosts via Capillary Action for Highâ€Performance Li Metal Anodes. Advanced Energy Materials, 2023, 13, .	10.2	9
1204	Breaking the structural anisotropy of ZnO enables dendrite-free lithium-metal anode with ultra-long cycling lifespan. Cell Reports Physical Science, 2022, 3, 101164.	2.8	1
1205	Stable Anodeâ€Free Allâ€Solidâ€State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector. Advanced Materials, 2023, 35, .	11.1	23
1206	Insights into the Enhanced Reversibility of Graphite Anode Upon Fast Charging Through Li Reservoir. ACS Nano, 2022, 16, 20197-20205.	7.3	7
1207	Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers, 2022, 14, 5327.	2.0	5
1208	Columnar Lithium Deposition Guided by Graphdiyne Nanowalls toward a Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 55700-55708.	4.0	3
1209	Building lithium metal batteries under lean electrolyte conditions: Challenges and progress. Energy Storage Materials, 2023, 55, 708-726.	9.5	16

#	Article	IF	CITATIONS
1210	Tensionâ€Induced Cavitation in Liâ€Metal Stripping. Advanced Materials, 2023, 35, .	11.1	5
1211	Challenges and Developments of High Energy Density Anode Materials in Sulfideâ€Based Solidâ€State Batteries. ChemElectroChem, 2022, 9, .	1.7	2
1212	Influence of Lithiophilic Substrates on Lithium Metal Batteries at Low Temperature. Journal of the Electrochemical Society, 2022, 169, 120509.	1.3	0
1213	Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies, Interfacial Optimization, and Perspectives. Small, 2023, 19, .	5.2	10
1214	Engineering Lithiophilic Silver Sponge Integrated with Ion-Conductive PVDF/LiF Protective Layer for Dendrite-Free and High-Performance Lithium Metal Batteries. ACS Applied Energy Materials, 2023, 6, 519-529.	2.5	8
1215	Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. , 2023, 2, e9120048.		26
1216	Synergistic modulation of Li nucleation/growth enabled by CNTs-wrapped lithiophilic CoP/Co2P decorated hollow carbon polyhedron host for stable lithium metal anodes. Nano Research, 2023, 16, 4961-4969.	5.8	3
1217	Biomass-derived carbon fibers modified by Ag/rGO for high-performance Li metal composite anode. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
1218	Recent progress on lithium anode protection for lithium–sulfur batteries: Review and perspective. APL Materials, 2023, 11, .	2.2	9
1219	Inâ€Situ Constructing A Heterogeneous Layer on Lithium Metal Anodes for Dendriteâ€Free Lithium Deposition and High Liâ€ion Flux. Angewandte Chemie, 0, , .	1.6	2
1220	Inâ€Situ Constructing A Heterogeneous Layer on Lithium Metal Anodes for Dendriteâ€Free Lithium Deposition and High Liâ€ion Flux. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
1221	In situ construction of a stable composite solid electrolyte interphase for dendrite-free Zn batteries. Journal of Energy Chemistry, 2023, 79, 450-458.	7.1	14
1222	Reversible Lithium Electroplating for High-Energy Rechargeable Batteries. Journal of the Electrochemical Society, 0, , .	1.3	3
1223	One-step construction of hollow hybrid carbon spheres embedded with ultrafine Nb2O5. Carbon, 2023, , .	5.4	0
1224	A 3D multifunctional host anode from commercial carbon cloth for lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 4205-4219.	5.2	10
1225	Anode-less all-solid-state batteries: recent advances and future outlook. Materials Futures, 2023, 2, 013502.	3.1	4
1226	A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Research, 2023, 16, 8097-8138.	5.8	36
1227	Electrodeposited 3D lithiophilic Ni microvia host for long cycling Li metal anode at high current density. Electrochimica Acta, 2023, 441, 141797.	2.6	5

#	Article	IF	CITATIONS
1228	Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Materials, 2023, 56, 141-154.	9.5	11
1229	Early Stage Li Plating by Liquid Phase and Cryogenic Transmission Electron Microscopy. ACS Energy Letters, 2023, 8, 715-721.	8.8	9
1230	Highly Stable Lithium Metal Anode Constructed by Three-Dimensional Lithiophilic Materials. Batteries, 2023, 9, 30.	2.1	5
1231	Interfacial Anchored Sesame Ball-like Ag/C To Guide Lithium Even Plating and Stripping Behavior. ACS Applied Materials & Interfaces, 2023, 15, 1934-1943.	4.0	2
1232	First fluorescent probe for graphite anodes of lithium-ion battery. Matter, 2023, 6, 873-886.	5.0	7
1233	Superfast Mass Transport of Na/K Via Mesochannels for Dendriteâ€Free Metal Batteries. Advanced Materials, 0, , 2210447.	11.1	8
1234	Highly Reversible Lithium Metal Anode Enabled by 3D Lithiophilic–Lithiophobic Dualâ€ S keletons. Advanced Materials, 0, , 2211203.	11.1	24
1235	Realizing Holistic Charging–Discharging for Dendrite-Free Lithium Metal Anodes via Constructing Three-Dimensional Li ⁺ Conductive Networks. ACS Applied Materials & Interfaces, 2023, 15, 6666-6675.	4.0	2
1236	Tuning Lithiophilic Sites of Ag-Embedded N-Doped Carbon Hollow Spheres via Intentional Blocking Strategy for Ultrastable Li Metal Anode in Rechargeable Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 1785-1796.	3.2	3
1237	High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites. Journal of Materials Chemistry A, 2023, 11, 12713-12718.	5.2	10
1238	Composite lithium metal anodes for solid-state battery applications. , 2023, , 81-94.		1
1239	Uniform lithium deposition guided by Au nanoparticles in vertical-graphene/carbon-cloth skeleton for dendrite-free and stable lithium metal anode. Scripta Materialia, 2023, 229, 115352.	2.6	6
1240	Prospects and future perspective of nanomaterials for energy storage applications. , 2023, , 569-578.		0
1241	Nonâ€Flammable Electrolyte with Lithium Nitrate as the Only Lithium Salt for Boosting Ultraâ€Stable Cycling and Fireâ€Safety Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
1242	A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	30
1243	High interfacial capacitance enabled stable lithium metal anode for practical lithium metal pouch cells. Energy Storage Materials, 2023, 58, 142-154.	9.5	10
1244	Suppressing Universal Cathode Crossover in Highâ€Energy Lithium Metal Batteries via a Versatile Interlayer Design**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1245	Suppressing Universal Cathode Crossover in Highâ€Energy Lithium Metal Batteries via a Versatile Interlayer Design**. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	CITATIONS
1246	Geometrical design of top-to-bottom magnesiophilicity-gradient host for reversible Mg-metal batteries. Energy Storage Materials, 2023, 59, 102762.	9.5	4
1247	Near-perfect suppression of Li dendrite growth by novel porous hollow carbon fibers embedded with ZnO nanoparticles as stable and efficient anode for Li metal batteries. Chemical Engineering Journal, 2023, 464, 142713.	6.6	7
1248	Functional porous carbons for zinc ion energy storage: Structure-Function relationship and future perspectives. Coordination Chemistry Reviews, 2023, 482, 215056.	9.5	5
1249	Recent research progress of alloy-containing lithium anodes in lithium-metal batteries. Current Opinion in Solid State and Materials Science, 2023, 27, 101079.	5.6	7
1250	Electrolyte strategy toward the low-temperature Li-metal secondary battery. Chemical Engineering Journal, 2023, 465, 142913.	6.6	5
1251	Ultrathin Li-rich Li-Cu alloy anode capped with lithiophilic LiC6 headspace enabling stable cyclic performance. Journal of Colloid and Interface Science, 2023, 643, 205-213.	5.0	3
1252	One step hot-pressing method for hybrid Li metal anode of solid-state lithium metal batteries. Journal of Materials Science and Technology, 2023, 153, 32-40.	5.6	8
1253	Ag nanoparticles incorporated interlayer enables ultrahigh critical current density for Li6PS5Cl-based all-solid-state lithium batteries. Journal of Power Sources, 2023, 563, 232836.	4.0	10
1254	Growing cuprite nanoparticles on copper current collector toward uniform Li deposition for anode-free lithium batteries. Applied Surface Science, 2023, 617, 156529.	3.1	6
1255	Stabilizing nucleation seeds in Li metal anode via ion-selective graphene oxide interfaces. Energy Storage Materials, 2023, 56, 572-581.	9.5	13
1256	Mesoporous Gold Film with Surface Sulfur Modification to Enable Dendriteâ€Free Lithium Plating/Stripping for Long‣ife Lithium Metal Anodes. Small Methods, 2023, 7, .	4.6	1
1257	Gradient design of imprinted anode for stable Zn-ion batteries. Nature Communications, 2023, 14, .	5.8	99
1258	Highly Lithiophilic Three-Dimension Framework of Vertical CuO Nanorod Arrays Decorated Carbon Cloth for Dendrite-Free Li Metal Anode. Batteries, 2023, 9, 127.	2.1	0
1259	Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nature Energy, 2023, 8, 340-350.	19.8	52
1260	Homogeneous Li ⁺ flux realized by an <i>in situ</i> -formed Li–B alloy layer enabling the dendrite-free lithium metal anode. Inorganic Chemistry Frontiers, 2023, 10, 1485-1492.	3.0	2
1261	Sustained-Compensated Interfacial Zincophilic Sites to Assist High-Capacity Aqueous Zn Metal Batteries. Nano Letters, 2023, 23, 1135-1143.	4.5	9
1262	Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy. Nature Communications, 2023, 14, .	5.8	12
1263	In situ crosslinked hybrid aluminum polymer film for high-performance solid electrolyte interphase of lithium metal battery. Journal of Power Sources, 2023, 563, 232808.	4.0	2

# 1264	ARTICLE Making the deposition surface lithiophobic. Nature Energy, 2023, 8, 321-322.	IF 19.8	CITATIONS
1265	Hydrated Eutectic Electrolytes Stabilizing Quasiâ€Underpotential Mg Plating/Stripping for Highâ€Voltage Mg Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1266	Hydrated Eutectic Electrolytes Stabilizing Quasiâ€Underpotential Mg Plating/Stripping for Highâ€Voltage Mg Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
1267	Current Status and Future Perspective on Lithium Metal Anode Production Methods. Advanced Energy Materials, 2023, 13, .	10.2	38
1268	A reactive wetting strategy improves lithium metal reversibility. Energy Storage Materials, 2023, 58, 176-183.	9.5	8
1269	Long-Lifespan Lithium Metal Batteries Enabled by a Hybrid Artificial Solid Electrolyte Interface Layer. ACS Applied Materials & Interfaces, 2023, 15, 10585-10592.	4.0	8
1270	Cu Current Collector with Binderâ€Free Lithiophilic Nanowire Coating for High Energy Density Lithium Metal Batteries. Small, 2023, 19, .	5.2	12
1271	Functionalized Halloysite Scaffold Controls Sodium Dendrite Growth. ACS Applied Materials & amp; Interfaces, 2023, 15, 11949-11960.	4.0	6
1272	Ultrathin Composite Li Electrode for Highâ€Performance Li Metal Batteries: A Review from Synthetic Chemistry. Advanced Functional Materials, 2023, 33, .	7.8	14
1273	Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Research, 2023, 16, 9240-9249.	5.8	19
1274	Fast capture and stabilization of Liâ€ions via physicochemical dual effects for an ultraâ€stable selfâ€supporting Li metal anode. , 2023, 5, .		3
1275	Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Materials, 2023, 57, 508-539.	9.5	39
1276	Thin, Flexible, and High-Performance Solid-State Polymer Electrolyte Membranes for Li–O ₂ Batteries. ACS Applied Energy Materials, 2023, 6, 2877-2885.	2.5	0
1277	Recent advances in porous carbons for electrochemical energy storage. New Carbon Materials, 2023, 38, 1-15.	2.9	5
1278	Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. Energy Storage Materials, 2023, 57, 471-496.	9.5	10
1279	Reversible, Dendrite-Free, High-Capacity Aluminum Metal Anode Enabled by Aluminophilic Interface Layer. Nano Letters, 2023, 23, 2295-2303.	4.5	14
1280	Superior metal storage behavior of Zn-containing porous carbon nanostructures for Na and Li metal batteries. Journal of Materials Chemistry A, 2023, 11, 7276-7285.	5.2	2
1281	Assessing Coulombic Efficiency in Lithium Metal Anodes. Chemistry of Materials, 2023, 35, 2381-2393.	3.2	12

#	Article	IF	CITATIONS
1282	Directing Highly Ordered and Dense Li Deposition to Achieve Stable Li Metal Batteries. Small, 2023, 19, .	5.2	2
1283	Electrochemical Atomic Force Microscopy Study on the Dynamic Evolution of Lithium Deposition. Materials, 2023, 16, 2278.	1.3	2
1284	Review of molecular layer deposition process and application to area selective deposition via graphitization. Japanese Journal of Applied Physics, 2023, 62, SG0810.	0.8	1
1285	High Li ⁺ coordinated solvation sheaths enable <scp>highâ€quality</scp> Li metal anode. InformaÄnĂ-Materiály, 2023, 5, .	8.5	2
1286	Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chemical Society Reviews, 2023, 52, 2553-2572.	18.7	36
1287	Ultra-thin and ultra-light self-lubricating layer with accelerated dynamics for anode-free lithium metal batteries. Energy Storage Materials, 2023, 58, 110-122.	9.5	7
1288	Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Research, 2023, 16, 8191-8218.	5.8	6
1289	Ultraâ€Thin Lithium Silicide Interlayer for Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	8
1290	Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Liâ€Metal Batteries. Energy and Environmental Materials, 0, , .	7.3	3
1291	Sequential and Dendriteâ€Free Li Plating on Cu Foil Enabled by an Ultrathin Yolk–Shell SiO <i>_x</i> /C@C Layer. Advanced Energy Materials, 2023, 13, .	10.2	11
1292	Interfaces in Sulfide Solid Electrolyte-Based All-Solid-State Lithium Batteries: Characterization, Mechanism and Strategy. Electrochemical Energy Reviews, 2023, 6, .	13.1	19
1293	Direct Observation of Nucleation and Growth Behaviors of Lithium by <i>In Situ</i> Electron Microscopy. ACS Energy Letters, 2023, 8, 1929-1935.	8.8	6
1294	Stable Lithium Plating in "Lithium Metal-Free―Solid-State Batteries Enabled by Seeded Lithium Nucleation. Journal of the Electrochemical Society, 2023, 170, 040524.	1.3	8
1295	Electrochemically prelithiated carbon anodes with regulated Na-ion intercalation behaviors for advanced sodium-ion energy storage devices. Journal of Materials Chemistry A, 0, , .	5.2	1
1296	Modified metallic current collectors for sodium metal anodes. Journal of Solid State Electrochemistry, 2023, 27, 1345-1362.	1.2	1
1297	Revealing the Dual-Layered Solid Electrolyte Interphase on Lithium Metal Anodes via Cryogenic Electron Microscopy. ACS Energy Letters, 2023, 8, 2193-2200.	8.8	16
1298	Carbide-mediated catalytic hydrogenolysis: defects in graphene on a carbonaceous lithium host for liquid and all-solid-state lithium metal batteries. Energy and Environmental Science, 2023, 16, 2505-2517.	15.6	10
1299	Selective Potassium Deposition Enables Dendriteâ€Resistant Anodes for Ultrastable Potassiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	47

#	Article	IF	CITATIONS
1300	ZnO/Carbon Shell/Carbon Cloth as a Stable Host for High Li-Content Anodes. ACS Applied Energy Materials, 2023, 6, 4825-4832.	2.5	3
1301	Lightweight and Flexible 3D ERGO@Cu/PA Mesh Current Collector of Li Metal Battery for Dendrite Suppression. ACS Applied Polymer Materials, 0, , .	2.0	0
1302	Constructing 3D Skeleton on Commercial Copper Foil via Electrophoretic Deposition of Lithiophilic Building Blocks for Stable Lithium Metal Anodes. Nanomaterials, 2023, 13, 1400.	1.9	2
1309	Embedding alloying sites in a lithiated polymer matrix as a stable interphase of lithium electrodes. Chemical Communications, 2023, 59, 6517-6520.	2.2	3
1312	Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Research, 2023, 16, 9158-9178.	5.8	14
1320	Decoupling of the Impedance of Solid-Electrolyte Interface and Plated Lithium: Implications for Anode-Free Lithium Metal Battery Technology. ACS Applied Energy Materials, 2023, 6, 6890-6895.	2.5	1
1331	Ion modulation engineering toward stable lithium metal anodes. Materials Horizons, 2023, 10, 3218-3236.	6.4	2
1337	Ag _{<i>x</i>} Zn _{<i>y</i>} Protective Coatings with Selective Zn ²⁺ /H ⁺ Binding Enable Reversible Zn Anodes. Nano Letters, 2023, 23, 6156-6163.	4.5	18
1340	Transition metals for stabilizing lithium metal anode: advances and perspectives. Tungsten, 2024, 6, 212-229.	2.0	2
1358	Two-dimensional MXenes for flexible energy storage devices. Energy and Environmental Science, 2023, 16, 4191-4250.	15.6	12
1371	Towards lithium-free solid-state batteries with nanoscale Ag/Cu sputtered bilayer electrodes. Chemical Communications, 2023, 59, 12346-12349.	2.2	0
1372	Li-S Batteries: Challenges, Achievements and Opportunities. Electrochemical Energy Reviews, 2023, 6, .	13.1	22
1409	Towards practical lithium metal batteries with composite scaffolded lithium metal: an overview. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	5
1417	From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. Nano-Micro Letters, 2024, 16, .	14.4	1
1419	Vanadate Nanomaterials for Electrochemical Energy Storage. , 2023, , 177-219.		0
1421	Design and application of copper/lithium composite anodes for advanced lithium metal batteries. Rare Metals, 2024, 43, 942-970.	3.6	Ο
1422	Interfacial engineering of lithium metal anodes: what is left to uncover?. Energy Advances, 0, , .	1.4	0
1424	3D-hosted lithium metal anodes. Chemical Society Reviews, 0, , .	18.7	1

#	Article	IF	CITATIONS
1429	Applications for Energy Storage. , 2024, , 153-220.		0
1463	Strategies to regulate the interface between Li metal anodes and all-solid-state electrolytes. Materials Chemistry Frontiers, 2024, 8, 1421-1450.	3.2	0
1499	Graphene-Based Lithium/Sodium Metal Anodes. Engineering Materials, 2024, , 371-390.	0.3	0