Structure and mechanics of interfaces in biological mat

Nature Reviews Materials

1,

DOI: 10.1038/natrevmats.2016.7

Citation Report

#	Article	IF	CITATIONS
1	Manufacture and Mechanics of Topologically Interlocked Material Assemblies. Applied Mechanics Reviews, 2016, 68, .	4.5	48
2	Robust bioinspired graphene-based nanocomposites via synergistic toughening of zinc ions and covalent bonding. Journal of Materials Chemistry A, 2016, 4, 17073-17079.	5.2	44
3	Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures. ACS Applied Materials & Interfaces, 2016, 8, 24962-24973.	4.0	81
4	Toughening of thin ceramic plates using bioinspired surface patterns. International Journal of Solids and Structures, 2016, 97-98, 389-399.	1.3	35
5	Carving 3D architectures within glass: Exploring new strategies to transform the mechanics and performance of materials. Extreme Mechanics Letters, 2016, 7, 104-113.	2.0	50
6	Advanced Structural Materials by Bioinspiration. Advanced Engineering Materials, 2017, 19, 1600787.	1.6	103
7	A General Bioinspired, Metals-Based Synergic Cross-Linking Strategy toward Mechanically Enhanced Materials. ACS Nano, 2017, 11, 2835-2845.	7.3	39
8	Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 73, 68-75.	1.5	19
9	Bio-inspired "jigsaw―like interlocking sutures: Modeling, optimization, 3D printing and testing. Journal of the Mechanics and Physics of Solids, 2017, 102, 224-238.	2.3	86
10	Lamellar Ceramic Semicrystallineâ€Polymer Composite Fabricated by Freeze Casting. Advanced Engineering Materials, 2017, 19, 1700214.	1.6	8
11	Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 2017, 88, 467-498.	16.0	554
12	Learning from nature: constructing high performance graphene-based nanocomposites. Materials Today, 2017, 20, 210-219.	8.3	104
13	Fatigue Resistant Bioinspired Composite from Synergistic Two-Dimensional Nanocomponents. ACS Nano, 2017, 11, 7074-7083.	7.3	49
14	Printing nature: Unraveling the role of nacre's mineral bridges. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 135-144.	1.5	119
15	Mechanical properties of crossed-lamellar structures in biological shells: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 54-71.	1.5	87
16	Magnetically actuated functional gradient nanocomposites for strong and ultra-durable biomimetic interfaces/surfaces. Materials Horizons, 2017, 4, 869-877.	6.4	28
17	Cymbiola nobilis shell: Toughening mechanisms in a crossed-lamellar structure. Scientific Reports, 2017, 7, 40043.	1.6	26
18	Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes. Bioinspiration and Biomimetics, 2017, 12, 016002.	1.5	1

~	~	
	ISED	ODT
CILAD	NLF	

#	Article	IF	CITATIONS
19	Granular Nanostructure: A Facile Biomimetic Strategy for the Design of Supertough Polymeric Materials with High Ductility and Strength. Advanced Materials, 2017, 29, 1704661.	11.1	135
20	Fatigueâ€Resistant Bioinspired Grapheneâ€Based Nanocomposites. Advanced Functional Materials, 2017, 27, 1703459.	7.8	37
21	Catastrophic failure of nacre under pure shear stresses of torsion. Scientific Reports, 2017, 7, 13123.	1.6	42
22	Highâ€Performance Nanocomposites Inspired by Nature. Advanced Materials, 2017, 29, 1702959.	11.1	138
23	Freeze Casting for Assembling Bioinspired Structural Materials. Advanced Materials, 2017, 29, 1703155.	11.1	160
24	Topological Design of Ultrastrong and Highly Conductive Graphene Films. Advanced Materials, 2017, 29, 1702831.	11.1	108
25	Aligning cellulose nanofibril dispersions for tougher fibers. Scientific Reports, 2017, 7, 11860.	1.6	79
26	Computational Framework to Predict Failure and Performance of Bone-Inspired Materials. ACS Biomaterials Science and Engineering, 2017, 3, 3236-3243.	2.6	22
27	Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport. ACS Nano, 2017, 11, 12008-12019.	7.3	107
28	2.10 Bone as a Material â [~] †. , 2017, , 202-227.		10
29	Bioinspired Multifunctional Ceramic Plateletâ€Reinforced Piezoelectric Polymer Composite. Advanced Engineering Materials, 2017, 19, 1600570.	1.6	11
30	Design, 3D printing and testing of architectured materials with bistable interlocks. Extreme Mechanics Letters, 2017, 11, 1-7.	2.0	45
31	Simulation of Magnetically-Actuated Functional Gradient Nanocomposites. Applied Sciences (Switzerland), 2017, 7, 1171.	1.3	2
32	Intermittent beading in fiber composites. Composites Science and Technology, 2018, 160, 21-31.	3.8	24
33	Multiple Synergistic Toughening Graphene Nanocomposites through Cadmium Ions and Cellulose Nanocrystals. Advanced Materials Interfaces, 2018, 5, 1800145.	1.9	23
34	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	11.1	493
35	Bone toughness at the molecular scale: A model for fracture toughness using crosslinked osteopontin on synthetic and biogenic mineral substrates. Bone, 2018, 110, 304-311.	1.4	23
36	Smart Nacreâ€inspired Nanocomposites. ChemPhysChem, 2018, 19, 1980-1986.	1.0	8

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
37	Nanofibrils in nature and materials engineering. Nature Reviews Materials, 2018, 3, .	23.3	455
38	Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications. NPG Asia Materials, 2018, 10, 1-22.	3.8	147
39	Precision compatibilizers for composites: in-between self-aggregation, surfaces recognition and interface stabilization. Soft Matter, 2018, 14, 1992-1995.	1.2	9
40	Bioinspired Nacre‣ike Ceramic with Nickel Inclusions Fabricated by Electroless Plating and Spark Plasma Sintering. Advanced Engineering Materials, 2018, 20, 1700782.	1.6	26
41	Bioinspired sutured materials for strength and toughness: Pullout mechanisms and geometric enrichments. International Journal of Solids and Structures, 2018, 138, 118-133.	1.3	30
42	Role of Interface Interactions in the Construction of GOâ€Based Artificial Nacres. Advanced Materials Interfaces, 2018, 5, 1800107.	1.9	25
43	Local and global measurements show that damage initiation in articular cartilage is inhibited by the surface layer and has significant rate dependence. Journal of Biomechanics, 2018, 72, 63-70.	0.9	15
44	2D and 3D Spectrum Graphics of the Chemical-Morphological Domains of Complex Biomass by Low Field Proton NMR Energy Relaxation Signal Analysis. Energy & Fuels, 2018, 32, 5090-5102.	2.5	19
45	Bioâ€Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Advanced Functional Materials, 2018, 28, 1705309.	7.8	117
46	A 3D Selfâ€5haping Strategy for Nanoresolution Multicomponent Architectures. Advanced Materials, 2018, 30, 1703963.	11.1	39
47	Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance. Journal of the Mechanics and Physics of Solids, 2018, 112, 385-402.	2.3	71
48	Design, Fabrication, and Function of Silkâ€Based Nanomaterials. Advanced Functional Materials, 2018, 28, 1805305.	7.8	120
49	Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12698-12703.	3.3	44
50	Hydration-induced nano- to micro-scale self-recovery of the tooth enamel of the giant panda. Acta Biomaterialia, 2018, 81, 267-277.	4.1	19
51	Bio-inspired and optimized interlocking features for strengthening metal/polymer interfaces in additively manufactured prostheses. Acta Biomaterialia, 2018, 80, 425-434.	4.1	18
52	Ultrastrong Translucent Glass Ceramic with Nanocrystalline, Biomimetic Structure. Nano Letters, 2018, 18, 7146-7154.	4.5	29
53	Mechanical behavior of 3D printed biomimetic Koch fractal contact and interlocking. Extreme Mechanics Letters, 2018, 24, 58-65.	2.0	27
54	Biological composites—complex structures for functional diversity. Science, 2018, 362, 543-547.	6.0	286

#	Article	IF	CITATIONS
55	The role of water in the initial sliding of nacreous tablets: Findings from the torsional fracture of dry and hydrated nacre. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 322-329.	1.5	34
56	Bioinspired Wearâ€Resistant and Ultradurable Functional Gradient Coatings. Small, 2018, 14, e1802717.	5.2	14
57	Optimizing mechanical properties of bio-inspired composites through functionally graded matrix and microstructure design. Composite Structures, 2018, 206, 621-627.	3.1	7
58	Bioinspired Design of Strong, Tough, and Thermally Stable Polymeric Materials <i>via</i> Nanoconfinement. ACS Nano, 2018, 12, 9266-9278.	7.3	157
59	Microstructure and mechanical properties of hard Acrocomia mexicana fruit shell. Scientific Reports, 2018, 8, 9668.	1.6	28
60	6.4 Bioinspired Composite Materials: Processing Strategies Across Length Scales. , 2018, , 73-96.		0
61	Experimental and numerical modeling of shear behavior of laminated Guadua bamboo for different fiber directions. Construction and Building Materials, 2018, 177, 23-32.	3.2	16
62	Bioinspired enhancement of chitosan nanocomposite films via Mg-ACC crystallization, their robust, hydrophobic and biocompatible. Applied Surface Science, 2018, 459, 129-137.	3.1	30
63	Biomimicking of Hierarchal Molluscan Shell Structure Via Layer by Layer 3D Printing. Industrial & Engineering Chemistry Research, 2018, 57, 10832-10840.	1.8	42
64	Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions. ACS Nano, 2018, 12, 8901-8908.	7.3	67
65	Deformation and fracture behavior of a natural shell ceramic: Coupled effects of shell shape and microstructure. Materials Science and Engineering C, 2018, 90, 557-567.	3.8	6
66	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5359-5364.	3.3	114
67	Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. ACS Nano, 2018, 12, 6378-6388.	7.3	359
68	The Rise of Hierarchical Nanostructured Materials from Renewable Sources: Learning from Nature. ACS Nano, 2018, 12, 7425-7433.	7.3	128
69	Simultaneous improvements of strength and toughness in topologically interlocked ceramics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9128-9133.	3.3	85
70	Bioinspired polymeric woods. Science Advances, 2018, 4, eaat7223.	4.7	219
71	Half-metallicity in two-dimensional Co ₂ Se ₃ monolayer with superior mechanical flexibility. 2D Materials, 2018, 5, 045026.	2.0	29
72	On the Materials Science of Nature's Arms Race. Advanced Materials, 2018, 30, e1705220.	11.1	63

#	Article	IF	CITATIONS
73	Tough and deformable glasses with bioinspired cross-ply architectures. Acta Biomaterialia, 2018, 75, 439-450.	4.1	33
74	Bioâ€Mimicked Silica Architectures Capture Geometry, Microstructure, and Mechanical Properties of Marine Diatoms. Advanced Engineering Materials, 2018, 20, 1800301.	1.6	12
75	Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. Journal of Experimental Biology, 2019, 222, .	0.8	98
76	Fracture energy characterisation of a structured interface by means of a novel J-Integral procedure. Journal of Strain Analysis for Engineering Design, 2019, 54, 364-378.	1.0	1
77	Self-Healing and Recyclable Hydrogels Reinforced with in Situ-Formed Organic Nanofibrils Exhibit Simultaneously Enhanced Mechanical Strength and Stretchability. ACS Applied Materials & Interfaces, 2019, 11, 32346-32353.	4.0	30
78	Superior Biomimetic Nacreous Bulk Nanocomposites by a Multiscale Soft-Rigid Dual-Network Interfacial Design Strategy. Matter, 2019, 1, 412-427.	5.0	81
79	Compromise between mechanical and chemical protection mechanisms in the system of the bivalve <i>Mytilus edulis</i> shell. Journal of Experimental Biology, 2019, 222, .	0.8	9
80	Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chemical Engineering Journal, 2019, 378, 122267.	6.6	191
81	Interface fracture of micro-architectured glass: Inverse identification of interface properties and a novel analytical model. Mechanics of Materials, 2019, 137, 103107.	1.7	3
82	Improved out-of-plane strength and weight reduction using hybrid interface composites. Composites Science and Technology, 2019, 182, 107730.	3.8	8
83	A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100, 103361.	1.5	16
84	Impact-resistant nacre-like transparent materials. Science, 2019, 364, 1260-1263.	6.0	259
85	Macroscopic and microscopic mechanical behaviors of climbing tendrils. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 702-710.	1.5	6
86	Bone Biomineral Properties Vary across Human Osteonal Bone. ACS Nano, 2019, 13, 12949-12956.	7.3	35
87	Biological design of materials. , 2019, , 27-97.		7
88	MXeneâ€Reinforced Cellulose Nanofibril Inks for 3Dâ€Printed Smart Fibres and Textiles. Advanced Functional Materials, 2019, 29, 1905898.	7.8	206
89	Co-precipitation of tapioca starch and hydroxyapatite. Effects of phosphorylation of starch on mechanical properties of the composites. Results in Materials, 2019, 3, 100035.	0.9	11
90	Fiber with Butterfly Wings: Creating Colored Carbon Fibers with Increased Strength, Adhesion, and Reversible Malleability. ACS Applied Materials & Interfaces, 2019, 11, 41617-41625.	4.0	43

ARTICLE IF CITATIONS Crystalline organization of nacre and crossed lamellar architecture of seashells and their 1.3 6 91 influences in mechanical properties. Materialia, 2019, 8, 100476. Hierarchical Collagenâ E Hydroxyapatite Nanostructures Designed through Layer-by-Layer Assembly of 2.6 Crystal-Decorated Fibrils. Biomacromolecules, 2019, 20, 4522-4534. Natureâ€Inspired Nacreâ€Like Composites Combining Human Toothâ€Matching Elasticity and Hardness with 93 11.1 73 Exceptional Damage Tolerance. Advanced Materials, 2019, 31, e1904603. Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan 94 Scaffolds for Biomedical Applications. Biomacromolecules, 2019, 20, 3733-3745. Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019, 133, 95 2.3 36 103706. Evaluating the hierarchical, hygroscopic deformation of the Daucus carota umbel through structural characterization and mechanical analysis. Acta Biomaterialia, 2019, 99, 457-468. 4.1 Deformation Mechanisms of "Two-Part―Natural Adhesive in Bone Interfibrillar Nano-Interfaces. ACS 97 2.6 6 Biomaterials Science and Engineering, 2019, 5, 5916-5924. Strong, Fracture-Resistant Biomimetic Silicon Carbide Composites with Laminated Interwoven Nanoarchitectures Inspired by the Crustacean Exoskeleton. ACS Applied Nano Materials, 2019, 2, 2.4 1111-1119. Bioinspired Design and Fabrication of Polymer Composite Films Consisting of a Strong and Stiff 99 7.3 25 Organic Matrix and Microsized Inorganic Platelets. ACS Nano, 2019, 13, 2773-2785. Ultrastrong nanocomposites with interphases: Nonlocal deformation and damage behavior. European 2.1 Journal of Mechanics, A/Solids, 2019, 75, 93-108. Bioinspired Nacreâ€Like Alumina with a Metallic Nickel Compliant Phase Fabricated by Sparkâ€Plasma 101 5.2 28 Sintering. Small, 2019, 15, 1900573. Targeting Topoisomerase I in the Era of Precision Medicine. Clinical Cancer Research, 2019, 25, 3.2 184 6581-6589. Modeling the effect of microstructure on elastic wave propagation in platelet-reinforced composites 103 3.1 6 and ceramics. Composite Structures, 2019, 224, 111105. Musselâ€Glue Inspired Adhesives: A Study on the Relevance of <scp>l</scp>â€Dopa and the Function of the 104 Sequence at Nanomaterialâ€Peptide Interfaces. Advanced Materials Interfaces, 2019, 6, 1900501. High-performance polyurethane nanocomposites based on UPy-modified cellulose nanocrystals. 105 37 5.1Carbohydrate Polymers, 2019, 219, 191-200. Ultrastrong Graphene Films via Long-Chain π-Bridging. Matter, 2019, 1, 389-401. 5.0 108 Strength and stability in architectured spine-like segmented structures. International Journal of 107 1.316 Solids and Structures, 2019, 171, 146-157. Discrete element models of tooth enamel, a complex three-dimensional biological composite. Acta 4.1 Biomaterialia, 2019, 94, 536-552.

#	Article	IF	CITATIONS
109	Fast Batch Quantification of the Cellulose-Cellulose Adhesion Using a Cantilevered Microgripper. IEEE Sensors Journal, 2019, 19, 4849-4856.	2.4	0
110	Spatial and temporal tunability of magnetically-actuated gradient nanocomposites. Soft Matter, 2019, 15, 3133-3148.	1.2	13
111	Advances in Biological Liquid Crystals. Small, 2019, 15, e1900019.	5.2	27
112	Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites. Scientific Reports, 2019, 9, 3142.	1.6	37
113	Designing tough isotropic structural composite using computation, 3D printing and testing. Composites Part B: Engineering, 2019, 167, 736-745.	5.9	26
114	Mechanical properties of Chamelea gallina shells at different latitudes. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 155-163.	1.5	3
115	Ternary Supramolecular Ensembles of Cellulose Nanocrystals Exhibiting Multiscale Deformation and Mechano/Chemoresponsive Selective Reflection of Circularly Polarized Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 6851-6858.	3.2	18
116	Selective Atomic-Level Etching on Short S-Glass Fibres to Control Interfacial Properties for Restorative Dental Composites. Scientific Reports, 2019, 9, 3851.	1.6	16
117	Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Science Advances, 2019, 5, eaau9490.	4.7	214
118	Locally addressable material properties in 3D micro-architectures. Extreme Mechanics Letters, 2019, 28, 31-36.	2.0	17
119	Tessellation of Chiralâ€Nematic Cellulose Nanocrystal Films by Microtemplating. Advanced Functional Materials, 2019, 29, 1808518.	7.8	37
120	Elasticity and fracture of brick and mortar materials using discrete element simulations. Journal of the Mechanics and Physics of Solids, 2019, 126, 101-116.	2.3	31
121	The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. Journal of Materials Chemistry B, 2019, 7, 6890-6913.	2.9	29
122	Nanofibril Organization in Silk Fiber as Inspiration for Ductile and Damage-Tolerant Fiber Design. Advanced Fiber Materials, 2019, 1, 231-240.	7.9	16
123	Recent advances in computational modeling of fibrin clot formation: A review. Computational Biology and Chemistry, 2019, 83, 107148.	1.1	33
124	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews, 2019, 119, 12279-12336.	23.0	121
125	Tubular Sensor with Multi-Axial Strain Sensibility and Heating Capability Based on Bio-Mimic Helical Networks. Industrial & Engineering Chemistry Research, 2019, 58, 22273-22282.	1.8	13
126	Recent progress in shape memory polymer composites: methods, properties, applications and prospects. Nanotechnology Reviews, 2019, 8, 327-351.	2.6	76

#	Article	IF	CITATIONS
127	Cryogenic toughness of natural silk and a proposed structure–function relationship. Materials Chemistry Frontiers, 2019, 3, 2507-2513.	3.2	21
128	Toughness by segmentation: Fabrication, testing and micromechanics of architectured ceramic panels for impact applications. International Journal of Solids and Structures, 2019, 158, 52-65.	1.3	55
129	Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horizons, 2019, 4, 52-76.	4.1	213
130	Beaded fiber composites—Stiffness and strength modeling. Journal of the Mechanics and Physics of Solids, 2019, 125, 384-400.	2.3	17
131	Vitrimer Chemistry Meets Cellulose Nanofibrils: Bioinspired Nanopapers with High Water Resistance and Strong Adhesion. Biomacromolecules, 2019, 20, 1045-1055.	2.6	77
132	Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale "Brick-and-Mortar―Architecture. ACS Nano, 2019, 13, 649-659.	7.3	320
133	Microstructure and Mechanical Properties of Bioâ€Inspired Ti/Al/Al _f Multilayered Composites. Advanced Engineering Materials, 2019, 21, 1800722.	1.6	2
134	Woodâ€Inspired 3Dâ€Printed Helical Composites with Tunable and Enhanced Mechanical Performance. Advanced Functional Materials, 2019, 29, 1805888.	7.8	54
135	Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials. Acta Biomaterialia, 2019, 86, 96-108.	4.1	31
136	Multiscale designs of the chitinous nanocomposite of beetle horn towards an enhanced biomechanical functionality. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 278-286.	1.5	6
137	Interplay of structure and mechanics in silk/carbon nanocomposites. MRS Bulletin, 2019, 44, 53-58.	1.7	18
138	The fracture mechanics of biological and bioinspired materials. MRS Bulletin, 2019, 44, 46-52.	1.7	31
139	Fracture mechanics of nacre-like materials using discrete-element models: Effects of microstructure, interfaces and randomness. Journal of the Mechanics and Physics of Solids, 2019, 124, 350-365.	2.3	51
140	Crack initiation and growth in a special quasi-sandwich crossed-lamellar structure in Cymbiola nobilis seashell. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 104-112.	1.5	10
141	A novel complex network-based modeling method for heterogeneous product design. Cluster Computing, 2019, 22, 7861-7872.	3.5	4
142	Inverse Nacre-like Epoxy-Graphene Layered Nanocomposites with Integration of High Toughness and Self-Monitoring. Matter, 2020, 2, 220-232.	5.0	87
143	Beyond density: Mesostructural features of impact resistant wood. Materials Today Communications, 2020, 22, 100697.	0.9	5
144	Bioinspired 2D Nanomaterials for Sustainable Applications. Advanced Materials, 2020, 32, e1902806.	11.1	84

#	Article	IF	CITATIONS
145	Multiâ€â€œColor―Delineation of Bone Microdamages Using Ligandâ€Directed Subâ€5 nm Hafnia Nanodots and Photon Counting CT Imaging. Advanced Functional Materials, 2020, 30, 1904936.	¹ 7.8	21
146	On the exceptional damage-tolerance of gradient metallic materials. Materials Today, 2020, 32, 94-107.	8.3	89
147	The geometrical structure of interfaces in dental enamel: A FIB-STEM investigation. Acta Biomaterialia, 2020, 104, 17-27.	4.1	14
148	Strength and toughness trade-off optimization of nacre-like ceramic composites. Composites Part B: Engineering, 2020, 183, 107699.	5.9	35
149	Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Advanced Functional Materials, 2020, 30, 1908121.	7.8	59
150	Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. Materials, 2020, 13, 188.	1.3	76
151	Polyethylene/TiO 2 Medical Tube with Comprehensive Mechanical Performances via Bioâ€Mimic Multiscale Helical Structures. Journal of Vinyl and Additive Technology, 2020, 26, 405-412.	1.8	5
152	Interfacial toughening effect of suture structures. Acta Biomaterialia, 2020, 102, 75-82.	4.1	28
153	Top-down peeling bacterial cellulose to high strength ultrathin films and multifunctional fibers. Chemical Engineering Journal, 2020, 391, 123527.	6.6	33
154	Strong, ductile and lightweight bionanocomposites constructed by bioinspired hierarchical assembly. Composites Communications, 2020, 17, 97-103.	3.3	7
155	Mussel-Inspired Design of a Carbon Fiber–Cellulosic Polymer Interface toward Engineered Biobased Carbon Fiber-Reinforced Composites. ACS Omega, 2020, 5, 27072-27082.	1.6	21
156	Cost-effective fabrication of bio-inspired nacre-like composite materials with high strength and toughness. Composites Part B: Engineering, 2020, 202, 108414.	5.9	32
157	Glass Transition Temperature Regulates Mechanical Performance in Nacreâ€Mimetic Nanocomposites. Macromolecular Rapid Communications, 2020, 41, e2000380.	2.0	11
158	Self-Assembled Bioinspired Nanocomposites. Accounts of Chemical Research, 2020, 53, 2622-2635.	7.6	41
159	Crack propagation and toughening mechanisms of bio-inspired artificial spicules fabricated by additive manufacturing technique. Theoretical and Applied Fracture Mechanics, 2020, 110, 102797.	2.1	11
160	A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae. Journal of Biomechanics, 2020, 112, 110041.	0.9	3
161	Understanding interfacial fracture behavior between microinterlocked soft layers using physics-based cohesive zone modeling. Physical Review E, 2020, 102, 012801.	0.8	7
162	Muscle-like Ultratough Hybrid Hydrogel Constructed by Heterogeneous Inorganic Polymerization on an Organic Network. ACS Applied Materials & amp; Interfaces, 2020, 12, 54212-54221.	4.0	25

#	Article	IF	CITATIONS
163	Modelling and Experimental Investigation of Hexagonal Nacre-Like Structure Stiffness. Journal of Composites Science, 2020, 4, 91.	1.4	2
164	Wood and the Activity of Dead Tissue. Advanced Materials, 2021, 33, e2001412.	11.1	29
165	A consistent finite displacement and rotation formulation of the Linear Elastic Brittle Interface Model for triggering interlaminar damage in fiber-reinforced composites. Theoretical and Applied Fracture Mechanics, 2020, 108, 102644.	2.1	2
166	A nature-inspired interface design strategy of carbon fiber composites by growing brick-and-mortar structure on carbon fiber. Composites Science and Technology, 2020, 200, 108382.	3.8	32
167	Theoretically optimized hybrid magnetic nanoparticle concentrations for functional gradient nanocomposites. AIP Advances, 2020, 10, 105209.	0.6	1
168	Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced Materials, 2021, 33, e2002890.	11.1	75
169	Hierarchical Disordered Colloidal Thin Films with Duplex Optical Elements for Advanced Anti ounterfeiting Coding. Advanced Optical Materials, 2020, 8, 2001378.	3.6	12
170	Anisotropic Dynamics and Mechanics of Macromolecular Crystals Containing Lattice-Patterned Polymer Networks. Journal of the American Chemical Society, 2020, 142, 19402-19410.	6.6	8
171	An electrochemical sensor based on green tea extract for detection of Cd(II) ions by differential pulse anodic stripping voltammetry. Surfaces and Interfaces, 2020, 21, 100726.	1.5	13
172	Tunable and Cooperative Thermomechanical Properties of Protein–Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17265-17270.	6.6	31
173	Green and Sustainable Layered Chitin–Vitrimer Composite with Enhanced Modulus, Reprocessability, and Smart Actuator Function. ACS Sustainable Chemistry and Engineering, 2020, 8, 15168-15178.	3.2	15
174	Ovine Bone Morphology and Deformation Analysis Using Synchrotron X-ray Imaging and Scattering. Quantum Beam Science, 2020, 4, 29.	0.6	7
175	Design Principles of High-Performance Graphene Films: Interfaces and Alignment. Matter, 2020, 3, 696-707.	5.0	35
176	Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength. ACS Nano, 2020, 14, 11150-11159.	7.3	45
177	Contributions of microscopy to the study of the Upper Paleolithic Homalopoma sanguineum shell beads. Quaternary International, 2020, 569-570, 23-38.	0.7	3
178	An all-natural bioinspired structural material for plastic replacement. Nature Communications, 2020, 11, 5401.	5.8	155
179	Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5, 642-666.	23.3	616
180	Emerging Bioinspired Artificial Woods. Advanced Materials, 2021, 33, e2001086.	11.1	54

#	Article	IF	CITATIONS
181	Cholla cactus frames as lightweight and torsionally tough biological materials. Acta Biomaterialia, 2020, 112, 213-224.	4.1	8
182	Computational Nanomechanics of Noncollagenous Interfibrillar Interface in Bone. ACS Applied Materials & Interfaces, 2020, 12, 25363-25373.	4.0	12
183	Bioinspired fiberboard-and-mortar structural nanocomposite based on ultralong hydroxyapatite nanowires with high mechanical performance. Chemical Engineering Journal, 2020, 399, 125666.	6.6	18
184	Formation of multifunctional ZrO2–MgO-hBN nanocomposite for enhanced bone regeneration and E coli bacteria filtration applications. Ceramics International, 2020, 46, 23006-23020.	2.3	10
185	Mechanical properties of calcite- and aragonite-based structures by nanoindentation tests. Bioinspired, Biomimetic and Nanobiomaterials, 2020, 9, 112-121.	0.7	5
186	Wood-Derived Hybrid Scaffold with Highly Anisotropic Features on Mechanics and Liquid Transport toward Cell Migration and Alignment. ACS Applied Materials & Interfaces, 2020, 12, 17957-17966.	4.0	18
187	Preparation of Silk Nanowhisker-Composited Amphoteric Cellulose/Chitin Nanofiber Membranes. Biomacromolecules, 2020, 21, 1625-1635.	2.6	26
188	Recent Progress in Cellulose Nanocrystal Alignment and Its Applications. ACS Applied Bio Materials, 2020, 3, 1828-1844.	2.3	36
189	Tough and Strong: Cross-Lamella Design Imparts Multifunctionality to Biomimetic Nacre. ACS Nano, 2020, 14, 9771-9779.	7.3	41
190	Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing. Composites Part B: Engineering, 2020, 198, 108216.	5.9	89
191	Fiber reorientation in hybrid helicoidal composites. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103914.	1.5	12
192	High strength brushite bioceramics obtained by selective regulation of crystal growth with chiral biomolecules. Acta Biomaterialia, 2020, 106, 351-359.	4.1	24
193	Contributions of intermolecular bonding and lubrication to the mechanical behavior of a natural armor. Acta Biomaterialia, 2020, 106, 242-255.	4.1	7
194	The Structural Origins of Wood Cell Wall Toughness. Advanced Materials, 2020, 32, e1907693.	11.1	35
195	Learning from Nature: Molecular Rearrangement in the Bismaleimide System Leading to Dramatic Increase in Impact Strength. ACS Applied Polymer Materials, 2020, 2, 758-767.	2.0	7
196	Ice-templated porous tungsten and tungsten carbide inspired by natural wood. Journal of Materials Science and Technology, 2020, 45, 187-197.	5.6	33
197	A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi‣cale Design to Versatile Functional Properties. Advanced Materials Technologies, 2020, 5, 1900981.	3.0	230
198	Tensile and shear behavior of microscale growth layers between nacre in red abalone. Journal of the Mechanics and Physics of Solids, 2020, 138, 103928.	2.3	20

#	Article	IF	CITATIONS
199	Engineering crack tortuosity in printed polymer–polymer composites through ordered pores. Materials Horizons, 2020, 7, 1854-1860.	6.4	7
200	PET Imaging of the EPR Effect in Tumor Xenografts Using Small 15 nm Diameter Polyethylene Glycols Labeled with Zirconium-89. Molecular Cancer Therapeutics, 2020, 19, 673-679.	1.9	25
201	Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 2021, 116, 100712.	16.0	35
202	Hydration-induced reversible deformation of biological materials. Nature Reviews Materials, 2021, 6, 264-283.	23.3	58
203	Controlled acetylation of kraft lignin for tailoring polyacrylonitrile-kraft lignin interactions towards the production of quality carbon nanofibers. Chemical Engineering Journal, 2021, 405, 126640.	6.6	13
204	Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Applied Bio Materials, 2021, 4, 85-121.	2.3	169
205	Enhanced wood-derived photothermal evaporation system by in-situ incorporated lignin carbon quantum dots. Chemical Engineering Journal, 2021, 405, 126703.	6.6	66
206	Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review. Acta Biomaterialia, 2021, 121, 41-67.	4.1	51
207	Nanostructured TiO2 layers on Ti for bone bonding. , 2021, , 25-76.		1
208	Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Acta Biomaterialia, 2021, 119, 419-431.	4.1	47
209	Interfacial indentations in biological composites. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104209.	1.5	11
210	Small molecule hydrogen-bonded toughen nacre-inspired montmorillonite-konjac glucomannan-glycerin film with superior mechanical, transparent and UV-blocking properties. Composites Part B: Engineering, 2021, 204, 108492.	5.9	26
211	Nonbrittle Nanocomposite Materials Prepared by Coprecipitation of TEMPO-Oxidized Cellulose Nanofibers and Hydroxyapatite. ACS Sustainable Chemistry and Engineering, 2021, 9, 158-167.	3.2	9
212	Materials design by synthetic biology. Nature Reviews Materials, 2021, 6, 332-350.	23.3	190
213	A novel graphene-based micro/nano architecture with high strength and conductivity inspired by multiple creatures. Scientific Reports, 2021, 11, 1387.	1.6	6
214	Nacreous aramid-mica bulk materials with excellent mechanical properties and environmental stability. IScience, 2021, 24, 101971.	1.9	15
215	A bioinspired interfacial design to toughen carbon nanotube fibers. Materials Chemistry Frontiers, 2021, 5, 5706-5717.	3.2	3
216	Synthesis and Assembly of Recombinant Collagen. Methods in Molecular Biology, 2021, 2347, 83-96.	0.4	1

#	Article	IF	CITATIONS
217	Ultratough and ultrastrong graphene oxide hybrid films <i>via</i> a polycationitrile approach. Nanoscale Horizons, 2021, 6, 341-347.	4.1	6
218	Fiber-reinforced monolithic supercapacitors with interdigitated interfaces. Journal of Materials Chemistry A, 2021, 9, 11033-11041.	5.2	6
219	Nanostructural deformation of high-stiffness spruce wood under tension. Scientific Reports, 2021, 11, 453.	1.6	14
220	Dynamics of topological defects and structural synchronization in a forming periodic tissue. Nature Physics, 2021, 17, 410-415.	6.5	16
221	Enhanced toughness of hydroxyapatite–poly(ethylene terephthalate) composites by immersion in water. Materials Advances, 2021, 2, 5691-5703.	2.6	4
222	Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nature Reviews Materials, 2021, 6, 421-436.	23.3	148
223	Toughening elastomers via microstructured thermoplastic fibers with sacrificial bonds and hidden lengths. Extreme Mechanics Letters, 2021, 43, 101208.	2.0	5
224	Stiff, strong and tough laminated glasses with bio-inspired designs. Bioinspiration and Biomimetics, 2021, 16, 026020.	1.5	5
225	Recyclable and Light-Adaptive Vitrimer-Based Nacre-Mimetic Nanocomposites. ACS Nano, 2021, 15, 5043-5055.	7.3	36
227	Growing phenotype-controlled phononic materials from plant cells scaffolds. Applied Materials Today, 2021, 22, 100934.	2.3	2
228	Reduced Graphene Oxide-Poly (Ionic Liquid) Composite Films of High Mechanical Performance. Frontiers in Materials, 2021, 8, .	1.2	2
229	Microstructural features influencing the mechanical performance of the Brazil nut (Bertholletia) Tj ETQq1 1 0.784	314 rgBT	Qverlock 10
230	Mechanical properties of graphene oxide–silk fibroin bionanofilms via nanoindentation experiments and finite element analysis. Friction, 2022, 10, 282-295.	3.4	8
231	Deep learning model to predict complex stress and strain fields in hierarchical composites. Science Advances, 2021, 7, .	4.7	127
232	Infiltration of Proteins in Cholesteric Cellulose Structures. Biomacromolecules, 2021, 22, 2067-2080.	2.6	19
234	Dry Processing and Recycling of Thick Nacre–Mimetic Nanocomposites. Advanced Functional Materials, 2021, 31, 2102677.	7.8	18
235	Molecular insights into the complex mechanics of plant epidermal cell walls. Science, 2021, 372, 706-711.	6.0	148
236	Bioinspired Energy Storage and Harvesting Devices. Advanced Materials Technologies, 2021, 6, 2001301.	3.0	11

#	ARTICLE Construction of chitin functional materials based on a "green―alkali/urea solvent and their	IF 2.3	Citations
238	applications in biomedicine: Recent advance. Applied Materials Today, 2021, 23, 101030. Assessing the Interfacial Dynamic Modulus of Biological Composites. Materials, 2021, 14, 3428.	1.3	5
240	Temperature-Dependent Creep Behavior and Quasi-Static Mechanical Properties of Heat-Treated Wood. Forests, 2021, 12, 968.	0.9	8
241	High Elongation and Transparent Nacreâ€Inspired PVA/MMT Nanocomposites. Macromolecular Rapid Communications, 2021, 42, e2100229.	2.0	5
242	Bioinspired fabrication of reconfigurable elastomeric cementitious structures using self-healing mechanical adhesives interfaces. Materials and Design, 2021, 205, 109691.	3.3	8
243	Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 2021, 7, .	4.7	32
244	Interfacial Crystallization and Supramolecular Self-Assembly of Spider Silk Inspired Protein at the Water-Air Interface. Materials, 2021, 14, 4239.	1.3	6
245	Numerical investigation on the enhanced damping behavior of bio-inspired nacreous composites by introducing interlocked structure. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104442.	1.5	13
246	Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science, 2021, 120, 100823.	16.0	117
247	Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens. Nature Communications, 2021, 12, 4539.	5.8	64
248	Polymer beads as interfacial obstacles in fibre composites. Composites Science and Technology, 2021, 210, 108793.	3.8	12
249	Surface modifications of nanocellulose: From synthesis to high-performance nanocomposites. Progress in Polymer Science, 2021, 119, 101418.	11.8	110
250	Twist and lock: nutshell structures for high strength and energy absorption. Royal Society Open Science, 2021, 8, 210399.	1.1	18
251	Super-anticorrosive inverse nacre-like graphene-epoxy composite coating. Carbon, 2021, 181, 204-211.	5.4	37
252	Architecturing materials at mesoscale: some current trends. Materials Research Letters, 2021, 9, 399-421.	4.1	51
253	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113
254	Towards damage resistant Al2O3–SiO2 glasses with structural and chemical heterogeneities through consolidation of glassy nanoparticles. Acta Materialia, 2021, 215, 117016.	3.8	8
255	Centrifugation and index matching yield a strong and transparent bioinspired nacreous composite. Science, 2021, 373, 1229-1234.	6.0	48

#	Article	IF	CITATIONS
256	Substrate Partitioning into Protein Macromolecular Frameworks for Enhanced Catalytic Turnover. ACS Nano, 2021, 15, 15687-15699.	7.3	19
257	Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration. Acta Biomaterialia, 2021, 131, 391-402.	4.1	9
258	Impact-resistant materials inspired by the mantis shrimp's dactyl club. Matter, 2021, 4, 2831-2849.	5.0	40
259	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	11.1	62
260	Ultralong Organic Phosphorescent Foams with High Mechanical Strength. Journal of the American Chemical Society, 2021, 143, 16256-16263.	6.6	84
261	Biomacromolecules in recent phosphate-shelled brachiopods: identification and characterization of chirin matrix. Journal of Materials Science, 2021, 56, 19884-19898.	1.7	3
262	End-to-end deep learning method to predict complete strain and stress tensors for complex hierarchical composite microstructures. Journal of the Mechanics and Physics of Solids, 2021, 154, 104506.	2.3	68
263	Advances in mechanics of hierarchical composite materials. Composites Science and Technology, 2021, 214, 108970.	3.8	72
264	Highly conductive and durable electrothermal electrode through the steric confinement effect of graphene on helically intersected carbon fiber network. Composites Science and Technology, 2021, 213, 108900.	3.8	4
265	Interlocking mechanism design based on deep-learning methods. Applications in Engineering Science, 2021, 7, 100056.	0.5	1
266	A high-strength and high-toughness nacreous structure in a deep-sea Nautilus shell: Critical role of platelet geometry and organic matrix. Journal of Materials Science and Technology, 2021, 88, 189-202.	5.6	21
267	Nacre-like ultra-robust supramolecular-functionalized graphene oxide membrane for bifunctional separation. Carbon, 2021, 184, 618-626.	5.4	13
268	Catechol-based all-wood hydrogels with anisotropic, tough, and flexible properties for highly sensitive pressure sensing. Chemical Engineering Journal, 2022, 427, 131896.	6.6	48
269	Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales. Journal of Materials Science and Technology, 2022, 96, 21-30.	5.6	16
270	Structure of Collagen. Methods in Molecular Biology, 2021, 2347, 17-25.	0.4	15
271	Chitin–amyloid synergism and their use as sustainable structural adhesives. Journal of Materials Chemistry A, 2021, 9, 19741-19753.	5.2	11
272	Strengthening and Toughening Hierarchical Nanocellulose <i>via</i> Humidity-Mediated Interface. ACS Nano, 2021, 15, 1310-1320.	7.3	85
274	Exploring the Fracture Toughness of Tessellated Materials With the Discrete-Element Method. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	5

#	Article	IF	CITATIONS
275	The fracture mechanism of softwood via hierarchical modelling analysis. Journal of Wood Science, 2019, 65, .	0.9	5
276	Material properties and osteoporosis. F1000Research, 2019, 8, 1481.	0.8	5
277	Thickness-dependent stiffness of wood: potential mechanisms and implications. Holzforschung, 2020, 74, 1079-1087.	0.9	10
278	Flexible Dry Hydrogel with Lamella-Like Structure Engineered via Dehydration in Poor Solvent. CCS Chemistry, 2020, 2, 533-543.	4.6	7
279	The mesoscale order of nacreous pearls. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
282	The effects of main toughening mechanisms and functionally interphase properties on fracture energy and fatigue characteristics of nanocomposites containing various fillers. Theoretical and Applied Fracture Mechanics, 2021, 116, 103141.	2.1	1
283	Cross-Scale Biological Models of Species for Future Biomimetic Composite Design: A Review. Coatings, 2021, 11, 1297.	1.2	6
284	Interfacial Fatigue and Discrete Interfacial Damage in a Finite Strain Thermomechanical Framework. International Journal of Structural Stability and Dynamics, 2020, 20, 2043013.	1.5	1
285	Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites. Carbohydrate Polymers, 2022, 276, 118783.	5.1	19
286	A universal mechanical framework for noncovalent interface in laminated nanocomposites. Journal of the Mechanics and Physics of Solids, 2022, 158, 104560.	2.3	18
287	Hierarchical Structure and Mechanical Properties of Fish Scales from Lutjanidae with Different Habitat Depths. Journal of Fish Biology, 2021, , .	0.7	4
288	Diabolical ironclad beetles inspire tougher joints for engineering applications. Nature, 2020, 586, 502-504.	13.7	6
289	Polymer Adhesion: Seeking New Solutions for an Old Problem. Macromolecules, 2021, 54, 10617-10644.	2.2	59
290	Hierarchical Interfaces as Fracture Propagation Traps in Natural Layered Composites. Materials, 2021, 14, 6855.	1.3	5
291	Deep Learning Unlocks Xâ€ r ay Microtomography Segmentation of Multiclass Microdamage in Heterogeneous Materials. Advanced Materials, 2022, 34, e2107817.	11.1	9
292	Multiscale mechanics of noncovalent interface in graphene oxide layered nanocomposites. Theoretical and Applied Mechanics Letters, 2021, , 100304.	1.3	6
293	Toughening mechanisms for the attachment of architectured materials: The mechanics of the tendon enthesis. Science Advances, 2021, 7, eabi5584.	4.7	20
294	Radial Line and Circuli Distributions: Keys to the Protecto-Flexibility of Scales in Fish Armors. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
295	Simple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin <i>via</i> hydrogelation and mineralization. Green Chemistry, 2022, 24, 1308-1317.	4.6	8
296	Nacre's brick–mortar structure suppresses the adverse effect of microstructural randomness. Journal of the Mechanics and Physics of Solids, 2022, 159, 104769.	2.3	24
297	Nanopillar Templating Augments the Stiffness and Strength in Biopolymer Films. ACS Nano, 2022, 16, 3311-3322.	7.3	5
298	Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. Advanced Materials, 2022, 34, e2106259.	11.1	24
299	Fragmentation of Beaded Fibres in a Composite. Materials, 2022, 15, 890.	1.3	3
300	Strong, tough and degradable cellulose nanofibers-based composite film by the dual crosslinking of polydopamine and iron ions. Composites Science and Technology, 2022, 220, 109299.	3.8	15
301	Printable, castable, nanocrystalline cellulose-epoxy composites exhibiting hierarchical nacre-like toughening. Cellulose, 2022, 29, 2387-2398.	2.4	4
302	Coordination Geometry in Metallo-Supramolecular Polymer Networks. SSRN Electronic Journal, 0, , .	0.4	1
303	Damage and Failure Mechanisms of Biological Materials. , 2022, , .		1
304	Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS Applied Materials & Interfaces, 2022, 14, 16809-16819.	4.0	5
305	Nanocellulose for Sustainable Water Purification. Chemical Reviews, 2022, 122, 8936-9031.	23.0	82
306	Tuning protectoâ€flexibility in nature: Case of the fish scale. Natural Sciences, 2022, 2, .	1.0	3
307	Silk-based bioinspired structural and functional materials. IScience, 2022, 25, 103940.	1.9	9
308	Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites. Matter, 2022, 5, 1563-1577.	5.0	27
309	Ion transport property, structural features, and applications of cellulose-based nanofluidic platforms — A review. Carbohydrate Polymers, 2022, 289, 119406.	5.1	3
310	Biomimic Heterostructured Graphene Oxide Membranes via Supramolecularâ€Mediated Intercalation Assembly for Efficient Water Transport. Small, 2022, 18, e2200461.	5.2	7
311	Intermittent carbon nanotube encapsulation of carbon fiber: A facile and efficient strategy to simultaneously strengthen and toughen interphase of composites. Composites Part B: Engineering, 2022, 235, 109785.	5.9	20
312	In Situ Crystallization of Hydroxyapatite on Carboxymethyl Cellulose as a Biomimetic Approach to Biomass-Derived Composite Materials. ACS Omega, 2022, 7, 12127-12137.	1.6	5

#	Article	IF	CITATIONS
313	Preparation and mechanical failure analysis of wood-epoxy polymer composites with excellent mechanical performances. Composites Part B: Engineering, 2022, 235, 109748.	5.9	14
314	Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane. Biomacromolecules, 2022, 23, 1693-1702.	2.6	2
315	Comparative study of the physicochemical properties of a vegan dressing-type mayonnaise and traditional commercial mayonnaise. Grasas Y Aceites, 2021, 72, e439.	0.3	3
316	Enthesis strength, toughness and stiffness: an image-based model comparing tendon insertions with varying bony attachment geometries. Journal of the Royal Society Interface, 2021, 18, 20210421.	1.5	8
317	Bambooâ€Based Biomaterials for Cell Transportation and Bone Integration. Advanced Healthcare Materials, 2022, 11, e2200287.	3.9	8
318	Composite design bioinspired by the mesocarp of Brazil nut (Bertholletia excelsa). Bioinspiration and Biomimetics, 2022, , .	1.5	0
319	Bioinspired Robust Mechanical Properties for Advanced Materials. Small Structures, 2022, 3, .	6.9	17
320	A sustainable single-component "Silk nacre― Science Advances, 2022, 8, eabo0946.	4.7	41
321	Analysing fracture properties of bio-inspired 3D printed suture structures. Thin-Walled Structures, 2022, 176, 109317.	2.7	7
322	Spinning from Nature: Engineered Preparation and Application of High-Performance Bio-Based Fibers. Engineering, 2022, 14, 100-112.	3.2	24
323	Silk Fibroin Nacre. Advanced Fiber Materials, 2022, 4, 1191-1208.	7.9	8
324	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	23.0	102
325	Elasto-damage mechanics of osteons: A bottom-up multiscale approach. Journal of the Mechanics and Physics of Solids, 2022, 167, 104962.	2.3	2
326	Phase-Sensitive Vibrational Sum and Difference Frequency-Generation Spectroscopy Enabling Nanometer-Depth Profiling at Interfaces. Journal of Physical Chemistry C, 2022, 126, 10818-10832.	1.5	4
327	Tough, Bioinspired Transparent Glass eramics. Advanced Engineering Materials, 2022, 24, .	1.6	5
328	Raman spectroscopy for nutritional stress detection in plant vascular tissue. Materialia, 2022, 24, 101474.	1.3	1
329	Molecular simulations of the interfacial properties in silk–hydroxyapatite composites. Nanoscale, 2022, 14, 10929-10939.	2.8	6
330	Rational Design of Wood‣tructured Thick Electrode for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	33

#	Article	IF	Citations
331	A Mechanical Model for Elastic Wave Propagation in Nacre-Like Materials With Brick-and-Mortar Microstructures. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	7
332	Modeling, design and tailoring of a tough, strong and stiff multilayered bone graft material. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 134, 105369.	1.5	3
333	An internal variable model for plastic remodeling in fibrous materials. European Journal of Mechanics, A/Solids, 2022, 96, 104718.	2.1	0
334	Bubble freeze casting artificial rattan. Chemical Engineering Journal, 2022, 449, 137870.	6.6	9
335	Robust Assembly of Cross-Linked Protein Nanofibrils into Hierarchically Structured Microfibers. ACS Nano, 2022, 16, 12471-12479.	7.3	5
336	Interfacial Mechanical Behavior in Nacre of Red Abalone and Other Shells: A Review. ACS Biomaterials Science and Engineering, 2023, 9, 3843-3859.	2.6	5
337	Grain‧lip Derived Network Topology to Remarkable Strength–Toughness Combination of Perovskite Film for Flexible Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	11
338	Importance of radial line and circulus distributions to the protectoflexibility of scales in fish armors. Cell Reports Physical Science, 2022, 3, 101022.	2.8	3
339	Raman imaging: An indispensable technique to comprehend the functionalization of lignocellulosic material. International Journal of Biological Macromolecules, 2022, 220, 159-174.	3.6	4
340	Deciphering structural biological materials: Viewing from the mechanics perspective and their prospects. Composites Part B: Engineering, 2022, 245, 110213.	5.9	16
341	Coordination geometry in metallo-supramolecular polymer networks. Coordination Chemistry Reviews, 2022, 471, 214733.	9.5	19
342	Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response. Carbohydrate Polymers, 2022, 296, 119920.	5.1	24
343	Bioinspired nanocomposite films with graphene and MXene. Giant, 2022, 12, 100117.	2.5	7
344	Preparation of gradient hydrogel for pressure sensing by combining freezing and directional diffusion processes. Chemical Engineering Journal, 2023, 451, 138335.	6.6	24
345	Interfacial Mechanics of Polymer Nanocomposites. , 2022, , .		1
346	Energy absorption of multilayer aluminum foam-filled structures under lateral compression loading. Mechanics of Advanced Materials and Structures, 2024, 31, 659-675.	1.5	8
347	A numerical study to assess the role of pre-stressed inclusions on enhancing fracture toughness and strength of periodic composites. International Journal of Fracture, 2023, 239, 69-85.	1.1	2
348	Mechanically robust bamboo node and its hierarchically fibrous structural design. National Science Review, 2023, 10, .	4.6	19

#	Article	IF	CITATIONS
349	The differences of viscoelastic properties between the secondary wall S2 layer and compound middle lamella of thermally treated wood. Wood Science and Technology, 2022, 56, 1509-1525.	1.4	2
350	Ice-Templated Fabrication of Porous Materials with Bioinspired Architecture and Functionality. Accounts of Materials Research, 2022, 3, 1173-1185.	5.9	18
351	Optimized structures for vibration attenuation and sound control in nature: A review. Matter, 2022, 5, 3311-3340.	5.0	19
352	Preparation of laminated Cr3C2/Cu composites by direct ink writing and pressureless infiltration. Additive Manufacturing, 2022, 59, 103189.	1.7	0
353	Polymeric multimaterials by photochemical patterning of crystallinity. Science, 2022, 378, 211-215.	6.0	21
354	The Mechanics of Bioinspired Stiff-to-Compliant Multi-Material 3D-Printed Interfaces. Biomimetics, 2022, 7, 170.	1.5	4
355	"Enzyme‣ike―Spatially Fixed Polyhydroxyl Microenvironmentâ€Activated Hydrochromic Molecular Switching for Naked Eye Detection of ppm Level Humidity. Advanced Materials, 2023, 35, .	11.1	5
356	Decoupling toughness and strength through architected plasticity. Extreme Mechanics Letters, 2022, 57, 101912.	2.0	3
357	Biologically inspired innovation: a review on structural materials and manufacturing. Bioinspired, Biomimetic and Nanobiomaterials, 2022, 11, 86-100.	0.7	2
358	Investigation on the Microstructures and Mechanical Properties of the Shells of <i>Tridacna crocea</i> . Crystal Growth and Design, 2022, 22, 6903-6916.	1.4	0
359	Bioâ€inspired functional coacervates. Aggregate, 2022, 3, .	5.2	10
360	All-natural bioinspired nanolignocellulose-derived bulk engineering materials with excellent mechanical properties and environmental stability. Cellulose, 2023, 30, 871-884.	2.4	3
362	Anisotropic Aerogels with Excellent Mechanical Resilience and Thermal Insulation from <i>Pleurotus eryngii</i> Fungus. Macromolecular Materials and Engineering, 2023, 308, .	1.7	2
363	Bioinspired Impactâ€Resistant and Selfâ€Monitoring Nanofibrous Composites. Small, 2023, 19, .	5.2	2
364	Creating tougher interfaces via suture morphology in 3D-printed multi-material polymer composites by fused filament fabrication. Additive Manufacturing, 2023, 61, 103359.	1.7	2
365	Toughening two-dimensional hybrid materials by integrating carbon nanotubes. Surfaces and Interfaces, 2023, 36, 102559.	1.5	2
366	Bioinspired Tough and Strong Fibers with Hierarchical Core–Shell Structure. Advanced Materials Interfaces, 0, , 2201962.	1.9	4
367	Ginkgo seed shell provides a unique model for bioinspired design. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9

ARTICLE IF CITATIONS # Bioinspiration: Pull-Out Mechanical Properties of the Jigsaw Connection of Diabolical Ironclad 368 1.0 3 Beetle's Elytra. Acta Mechanica Solida Sinica, 2023, 36, 86-94. From Nanoscopic to Macroscopic Materials by Stimuliâ€Responsive Nanoparticle Aggregation. Advanced 11.1 Materials, 2023, 35, . Peculiar Tensile and Fracture Behaviors of Natural Silk Fiber in the Presence of an Artificial Notch. 370 2.2 1 Macromolecules, 2022, 55, 11059-11067. Programming material properties by tuning intermolecular bonding. Journal of Applied Physics, 2022, 371 1.1 132, . Lightweight and Strong Ceramic Network with Exceptional Damage Tolerance. ACS Nano, 2023, 17, 372 7.3 10 1166-1173. Biologically enhanced 3D printed micro-nano hybrid scaffolds doped with abalone shell for bone regeneration. Advanced Composites and Hybrid Materials, 2023, 6, . Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chemical 374 23.0 11 Reviews, 2023, 123, 2155-2199. How weak hydration interfaces simultaneously strengthen and toughen nanocellulose materials. 2.0 Extreme Mechanics Letters, 2023, 58, 101947. 376 Interfacial Crack Growth Between Nacreous Tablets., 2023, , . 0 A high-performance, sustainable nacre-mimetic film with montmorillonite nanosheets crosslinked 2.5 natural wood powders. Industrial Crops and Products, 2023, 193, 116202. A Review on Fabrication and Application of Tunable Hybrid Micro–Nano Array Surfaces. Advanced 378 1.9 16 Materials Interfaces, 2023, 10, . Polyhedral oligomeric silsesquioxaneâ€based functional coatings: A review. Canadian Journal of 379 Chémical Engineering, 2023, 101, 4979-4991. Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramicâ€Polymer Composites. 380 11.1 19 Advanced Materials, 2023, 35, . A crack-bridging model of brick and mortar architecture considering the anisotropic property. Composite Structures, 2023, 312, 116868. 3.1 A facile method for cross-linking of methacrylated wood fibers for engineered wood composites. 382 2.51 Industrial Crops and Products, 2023, 193, 116296. Lightweight, highly tough and durable YBa2Cu3O7–x superconductor. National Science Review, 2023, 10, . Boosting the Piezoelectric Sensitivity of Amino Acid Crystals by Mechanical Annealing for the 384 5.6 14 Engineering of Fully Degradable Force Sensors. Advanced Science, 2023, 10, . Bioinspired composites: nature's guidance for advanced materials future. Functional Composites and Structures, 2023, 5, 012004.

	Сітатіс	n Report	
#	Article	IF	Citations
386	Brushite mineralised Scots pine (<i>Pinus sylvestris</i> L.) sapwood – revealing mineral crystallization within a wood matrix by <i>in situ</i> XRD. RSC Advances, 2023, 13, 5813-5825.	1.7	3
387	Mechanical Robustness of Patterned Structures and Failure Mechanisms. , 2023, , 157-189.		0
388	Assembly of Nanowires into Macroscopic One-Dimensional Fibers in Liquid State. Advanced Fiber Materials, 0, , .	7.9	0
389	Organized mineralized cellulose nanostructures for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 5321-5349.	2.9	2
390	Materials, design, and technology of body armor. , 2023, , 259-301.		0
391	Crack deflection in laminates with graded stiffness—lessons from biology. Bioinspiration and Biomimetics, 2023, 18, 036001.	1.5	3
392	Machine learning and experiments: A synergy for the development of functional materials. MRS Bulletin, 2023, 48, 142-152.	1.7	4
393	A Molecularâ€Scale Understanding of Misorientation Toughening in Corals and Seashells. Advanced Materials, 2023, 35, .	11.1	8
394	Fracture toughness analysis of interlocked brick and mortar structure considering the anisotropic behavior. Archive of Applied Mechanics, 2023, 93, 2389-2409.	1.2	1
395	Biomimetics for innovative and future-oriented space applications - A review. Frontiers in Space Technologies, 0, 3, .	0.8	3
396	Interfacial Click Chemistry Enabled Strong Adhesion toward Ultraâ€Durable Crackâ€Based Flexible Strain Sensors. Advanced Functional Materials, 2023, 33, .	7.8	9
397	Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose. NPG Asia Materials, 2023, 15, .	3.8	1
398	The Fracture Mechanics ofÂBiological Materials. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2023, , 255-282.	0.3	0
399	Bioinspired acoustic metamaterials: From natural designs to optimized structures. Frontiers in Materials, 0, 10, .	1.2	1
400	An information encrypted heterogeneous hydrogel with programmable mechanical properties enabled by 3D patterning. Materials Horizons, 2023, 10, 2667-2676.	6.4	5
401	Generative design of de novo proteins based on secondary-structure constraints using an attention-based diffusion model. CheM, 2023, 9, 1828-1849.	5.8	27
440	Challenges and opportunities for innovation in bioinformed sustainable materials. Communications Materials, 2023, 4, .	2.9	2
448	Multifunctional nacre-like materials. Materials Horizons, 2023, 10, 5371-5390.	6.4	2

		CITATION REPORT		
#	Article		IF	Citations
461	Mechanics and electrochemistry in nature-inspired functional batteries: fundamentals, configurations and devices. Energy and Environmental Science, 2024, 17, 974-1006.		15.6	0
470	Cells–biomaterials structure–function at different length scales. , 2024, , 463-516			0