CITATION REPORT List of articles citing

High-power all-solid-state batteries using sulfide superionic conductors

DOI: 10.1038/nenergy.2016.30 Nature Energy, 2016, 1, .

Source: https://exaly.com/paper-pdf/64773122/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
2037	Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries. 2016 , 4,		117
2036	Lithium Superionic Conductor Li9.42Si1.02P2.1S9.96O2.04 with Li10GeP2S12-Type Structure in the Li2SP2SSBiO2 Pseudoternary System: Synthesis, Electrochemical Properties, and Structure Composition Relationships. 2016 , 4,		34
2035	Graphene-Based Nanocomposites for Energy Storage. 2016 , 6, 1502159		233
2034	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. 2016 , 138, 15825-15828		329
2033	A Safe High-Performance All-Solid-State Lithium-Vanadium Battery with a Freestanding VO Nanowire Composite Paper Cathode. 2016 , 8, 34309-34316		68
2032	Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. 2016 , 138, 12258-62		424
2031	Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. 2016 , 28, 447-454		449
2030	Li10Si0.3Sn0.7P2S12 🖪 low-cost and low-grain-boundary-resistance lithium superionic conductor. 2016 , 329, 530-535		59
2029	All-solid-state lithium ulfur batteries with three-dimensional mesoporous electrode structures. 2016 , 330, 120-126		53
2028	Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. 2016 , 4, 17025-17032		51
2027	Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. 2016 , 4, 17251-17259		202
2026	Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. 2016 , 65, 1098-1117		74
2025	In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup. 2016 , 28, 6152-6165		113
2024	Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12. 2016 , 28, 5905-5915		136
2023	Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. 2016 , 4, 15266-15280		155
2022	Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. 2016 , 128, 10119-1	0122	22
2021	Analytical ABF-STEM imaging of Li ions in rechargeable batteries. 2017 , 66, 25-38		11

2020	Design of Li1+2xZn1₪PS4, a new lithium ion conductor. 2016 , 9, 3272-3278		81
2019	Phase Separation of Li2S/S at Nanoscale during Electrochemical Lithiation of the Solid-State LithiumBulfur Battery Using In Situ TEM. 2016 , 6, 1600806		51
2018	All solid-state polymer electrolytes for high-performance lithium ion batteries. 2016 , 5, 139-164		555
2017	Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. 2016 , 55, 9965-8		155
2016	Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li4P2S6. 2016 , 28, 8764-8773		74
2015	Sintering Mechanisms of High-Performance Garnet-type Solid Electrolyte Densified by Spark Plasma Sintering. 2016 , 222, 648-656		52
2014	Batteries: Getting solid. <i>Nature Energy</i> , 2016 , 1,	2.3	218
2013	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. 2016 , 16, 7148-7154		243
2012	A solid future for battery development. <i>Nature Energy</i> , 2016 , 1,	2.3	1454
2011	Preparation of Li3PS4 Solid Electrolyte by Liquid-Phase Shaking Using Organic Solvents with Carbonyl Group as Complex Forming Medium. 2016 , 63, 976-980		13
2010	Oxygen substitution effects in Li10GeP2S12 solid electrolyte. 2016 , 324, 798-803		85
2009	High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. 2016 , 16, 4521-7		258
2008	First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of Li7P2S8I as a Solid Electrolyte for High-Voltage Li Ion Batteries. 2016 , 7, 2671-5		32
2007	Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet LiLaZrO. 2017 , 7, 40769		43
2006	Al conductive hybrid solid polymer electrolyte. 2017 , 300, 165-168		19
2005	Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. 2017 , 9, 7050-7058		97
2004	Structural Stability Diagram of ALnPS Compounds (A = Na, K, Rb, Cs; Ln = Lanthanide). 2017 , 56, 1121-113	1	23
2003	The Room-Temperature Superionic Conductivity of Silver Iodide Nanoparticles under Pressure. 2017 , 139, 1392-1395		19

2002	Li4PS4I: A Li+ Superionic Conductor Synthesized by a Solvent-Based Soft Chemistry Approach. 2017 , 29, 1830-1835	76
2001	Recent advances in all-solid-state rechargeable lithium batteries. 2017 , 33, 363-386	962
2000	Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. 2017 , 5, 5273-5277	48
1999	Impedance spectroscopy modeling of lithium borate with silica: A dispersed ionic conductor system. 2017 , 43, 6796-6806	2
1998	Electrolytes for Li- and Na-Ion Batteries: Concepts, Candidates, and the Role of Nanotechnology. 2017 , 1-43	7
1997	Exceptionally High Ionic Conductivity in Na P As S with Improved Moisture Stability for Solid-State Sodium-Ion Batteries. 2017 , 29, 1605561	122
1996	Magnesiumbatterien lein Aufruf an Synthesechemiker: Elektrolyte und Kathoden dringend gesucht. 2017 , 129, 12232-12253	24
1995	Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists-Electrolytes and Cathodes Needed. 2017 , 56, 12064-12084	148
1994	Amorphous LiCoO 2 Li 2 SO 4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density. 2017 , 348, 1-8	21
1993	All-solid-state lithium ulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. 2017 , 5, 6310-6317	108
1992	Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. 2017 , 343, 207-215	68
1991	Synthesis and Ionic Conductivity Studies of In- and Y-Doped Li6Hf2O7as Solid-State Electrolyte for All-Solid State Li-Ion Batteries. 2017 , 164, A6395-A6400	6
1990	Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. 2017, 100, 2123-2135	62
1989	Reviving the lithium metal anode for high-energy batteries. 2017 , 12, 194-206	3302
1988	Lithium battery chemistries enabled by solid-state electrolytes. 2017 , 2,	2006
1987	Poly(ethylene oxide) (PEO) IPoly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. 2017 , 89, 249-262	72
1986	FePS3 electrodes in all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. 2017 , 241, 370-374	25
1985	Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. 2017 , 29, 1606042	378

1984	Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable All-Solid-State Sodium-Ion Battery. 2017 , 4, 1700072	120
1983	A novel dischargetharge mechanism of a SP2S5 composite electrode without electrolytes in all-solid-state Li/S batteries. 2017 , 5, 11224-11228	38
1982	Ex-situ and in-situ observations of the effects of gamma radiation on lithium ion battery performance. 2017 , 357, 19-25	1
1981	Study on (100-x)(70Li 2 S-30P 2 S 5)-xLi 2 ZrO 3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries. 2017 , 356, 163-171	30
1980	Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries. 2017 , 5, 10658-10668	43
1979	Coatable Li SnS Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries. 2017 , 10, 2605-2611	68
1978	Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate LiPS. 2017 , 56, 6681-6687	67
1977	Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. 2017 , 9, 17835-17845	232
1976	Transparent flexible lithium ion conducting solid polymer electrolyte. 2017 , 5, 11152-11162	57
1975	Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion[hsertion Processes. 2017 , 29, 4768-4774	111
1974	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. 2017 , 2, 1385-139	4259
1973	(Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. 2017 , 5, 9929-9936	161
1972	High-voltage positive electrode materials for lithium-ion batteries. 2017, 46, 3006-3059	700
1971	Compatibility issues between electrodes and electrolytes in solid-state batteries. 2017 , 10, 1150-1166	196
1970	Surface and morphological investigation of the electrode/electrolyte properties in an all-solid-state battery using a Li2S-P2S5 solid electrolyte. 2017 , 38, 207-214	31
1969	Origin of Outstanding Phase and Moisture Stability in a NaPAsS Superionic Conductor. 2017 , 9, 16261-16269	38
1968	Roles of Alkaline Earth Ions in Garnet-Type Superionic Conductors. 2017 , 4, 266-271	18
1967	Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles. 2017 , 360, 328-335	46

1966	Origin of fast ion diffusion in super-ionic conductors. 2017 , 8, 15893	365
1965	Preparation and characterization of glass solid electrolytes in the pseudoternary system Li 3 BO 3 -Li 2 SO 4 -Li 2 CO 3. 2017 , 308, 68-76	34
1964	A Lithium Amide-Borohydride Solid-State Electrolyte with Lithium-Ion Conductivities Comparable to Liquid Electrolytes. 2017 , 7, 1700294	72
1963	Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. 2017 , 29, 5574-5582	413
1962	Superionic conduction in Eucryptite: inelastic neutron scattering and computational studies. 2017 , 19, 15512-15520	10
1961	Chromium nitride as a stable cathode current collector for all-solid-state thin film Li-ion batteries. 2017 , 7, 26960-26967	8
1960	Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress. 2017 , 359, 157-165	6
1959	Review B ractical Challenges Hindering the Development of Solid State Li Ion Batteries. 2017 , 164, A1731-A17	44408
1958	A Toolbox for LithiumBulfur Battery Research: Methods and Protocols. 2017, 1, 1700134	160
1957	Mechanical synthesis and structural properties of the fast fluoride-ion conductor PbSnF4. 2017 , 253, 287-293	17
1956	Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries. 2017 , 17, 3013-3020	205
1955	Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. 2017 , 352, 127-134	77
1954	Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. 2017 , 9, 12461-12468	121
1953	Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. 2017 , 3, e1601659	482
1952	Solid-State Lithium-Sulfur Batteries Operated at 37 LC with Composites of Nanostructured LiLaZrO/Carbon Foam and Polymer. 2017 , 17, 2967-2972	297
1951	Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte. 2017 , 29, 3740-3753	90
1950	Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. 2017 , 29, 3029-3037	83
1949	Tailored Li2S B 2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. 2017 , 5, 2829-2834	127

1948	Are All-Solid-State Lithium-Ion Batteries Really Safe?-Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell. 2017 , 9, 1507-1515	104
1947	Gallium-Doped LiLaZrO Garnet-Type Electrolytes with High Lithium-Ion Conductivity. 2017 , 9, 1542-1552	166
1946	Synthesis, Structure, and Electrochemical Properties of a Sulfur-Carbon Replica Composite Electrode for All-Solid-State Li-Sulfur Batteries. 2017 , 164, A6178-A6183	13
1945	Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X-ray Phase Contrast Tomography. 2017 , 2, 94-104	71
1944	Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations. 2017 , 29, 2474-2484	68
1943	Li/Li7La3Zr2O12/LiFePO4 All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte. 2017 , 121, 1431-1435	79
1942	A Simple Ansatz to Predict the Structure of Li4Ti5O12. 2017 , 164, A221-A225	11
1941	Cation Mixing Properties toward Co Diffusion at the LiCoO Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. 2017 , 9, 286-292	77
1940	Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. 2017 , 17, 565-571	416
1939	Role of Point Defects in Spinel Mg Chalcogenide Conductors. 2017 , 29, 9657-9667	34
1938	A novel class of halogen-free, super-conductive lithium argyrodites: Synthesis and characterization. 2017 , 366, 151-160	16
1937	Cell Concepts of Metal-Sulfur Batteries (Metall Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications. 2017 , 375, 81	40
1936	Li-rich antiperovskite superionic conductors based on cluster ions. 2017 , 114, 11046-11051	76
1935	A Si-doped flexible self-supporting comb-like polyethylene glycol copolymer (Si-PEG) film as a polymer electrolyte for an all solid-state lithium-ion battery. 2017 , 5, 24444-24452	33
1934	Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. 2017 , 2, 2563-2575	347
1933	Redox-active cathode interphases in solid-state batteries. 2017 , 5, 22750-22760	152
1932	Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries. 2017 , 9, 36886-36896	78
1931	Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. 2017 , 41, 646-653	67

1930	Theoretical design of solid electrolytes with superb ionic conductivity: alloying effect on Li+transportation in cubic Li6PA5X chalcogenides. 2017 , 5, 21846-21857	55
1929	Recent progress on interface formation in all-solid-state batteries. 2017 , 6, 108-114	29
1928	Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. 2017 , 8, 1086	212
1927	Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. 2017 , 3, eaao0713	102
1926	Non-Faradaic Li Migration and Chemical Coordination across Solid-State Battery Interfaces. 2017 , 17, 6974-6982	45
1925	Recent progress in solid-state electrolytes for alkali-ion batteries. 2017 , 62, 1473-1490	51
1924	Preparation, characterization and ionic conductivity studies of composite sulfide solid electrolyte. 2017 , 727, 1136-1141	11
1923	All-Solid-State Battery Electrode Sheets Prepared by a Slurry Coating Process. 2017 , 164, A2474-A2478	83
1922	Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes. 2017 , 365, 43-52	54
1921	In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries. 2017 , 139, 14257-14264	117
1920	Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. 2017 , 5, 20771-20779	83
1919	Tailored perovskite Li0.33La0.56TiO3 via an adipic acid-assisted solution process: A promising solid electrolyte for lithium batteries. 2017 , 729, 338-343	11
1918	Phase-Field Based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous LiPS. 2017 , 9, 33341-33350	12
1917	Solid Electrolytes: Extremely Fast Charge Carriers in Garnet-Type Li6La3ZrTaO12 Single Crystals. 2017 , 529, 1700140	45
1916	Progress in the Development of Sodium-Ion Solid Electrolytes. 2017 , 1, 1700219	123
1915	The Detrimental Effects of Carbon Additives in LiGePS-Based Solid-State Batteries. 2017 , 9, 35888-35896	169
1914	Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li Si P S Cl Solid Electrolyte. 2017 , 23, 13950-13956	52
1913	Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries. 2017 , 23, 2521-2527	38

1912	A materials perspective on Li-ion batteries at extreme temperatures. <i>Nature Energy</i> , 2017 , 2,	62.3	322
1911	Process related effects upon formation of composite electrolyte interfaces: Nitridation and reduction of NASICON-type electrolytes by deposition of LiPON. 2017 , 362, 299-307		16
1910	Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials. 2017 , 7, 1602888		315
1909	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. 2017 , 117, 10403-10473		2918
1908	Pair distribution function analysis of sulfide glassy electrolytes for all-solid-state batteries: Understanding the improvement of ionic conductivity under annealing condition. 2017 , 7, 6972		39
1907	Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility. 2017 , 207, 438-464		110
1906	Fast synthesis of Li2SP2S5IiI solid electrolyte precursors. 2017 , 4, 1660-1664		25
1905	Lithium ion conductivity in Li2SP2S5 glasses building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. 2017 , 5, 18111-18119		159
1904	Solid state ionics: a Japan perspective. 2017 , 18, 504-527		19
1903	Steric effect on Li+ coordination and transport properties in polyoxetane-based polymer electrolytes bearing nitrile groups. 2017 , 7, 37975-37982		14
1902	The recent advances in constructing designed electrode in lithium metal batteries. 2017 , 28, 2171-2179	1	39
1901	OrderDisorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates. 2017 , 29, 10496-10509		39
1900	The First Quinary Rare Earth Thiophosphates: $Cs5Ln3X3(P2S6)2(PS4)$ (Ln = La, Ce, X = Br, Cl) and the Quasi-Quaternary $Cs10Y4Cl10(P2S6)3$. 2017 , 643, 1818-1823		10
1899	A solid state energy storage device with supercapacitor B attery hybrid design. 2017 , 5, 15266-15272		20
1898	Superionic Conductors: Li10+[SnySi1]]1+P2B12 with a Li10GeP2S12-type Structure in the Li3PS4[li4SnS4[li4SiS4 Quasi-ternary System. 2017 , 29, 5858-5864		94
1897	Chemically Evolved Composite Lithium-Ion Conductors with Lithium Thiophosphates and Nickel Sulfides. 2017 , 2, 1740-1745		20
1896	Relevance of solid electrolytes for lithium-based batteries: A realistic view. 2017 , 38, 128-141		71
1895	Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection. 2017 , 29, 5906-5914		42

1894	On the way to high-conductivity single lithium-ion conductors. 2017 , 21, 1879-1905	53
1893	Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. 2017 , 118, 195901	46
1892	Data-Driven First-Principles Methods for the Study and Design of Alkali Superionic Conductors. 2017 , 29, 281-288	120
1891	Visualization of Structures and Li-Ion Conduction Pathways in the Li2S-P2S5 System Using Neutron Scattering. 2017 , 59, 230-237	
1890	Cubic Rocksalt Li2SnS3 and a Solid Solution with Li3NbS4 Prepared by Mechanochemical Synthesis. 2017 , 85, 580-584	7
1889	Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments. 2017 , 1, 9	42
1888	Further Cost Reduction of Battery Manufacturing. 2017 , 3, 17	18
1887	Complex Hydride Electrolytes for All-solid-state Lithium Rechargeable Batteries. 2017, 56, 354-357	
1886	Recent Progress of Battery Materials. 2017 , 56, 135-139	
1885	Lithium distribution analysis in all-solid-state lithium battery using microbeam particle-induced X-ray emission and particle-induced gamma-ray emission techniques. 2017 , 27, 11-20	4
		105
	X-ray emission and particle-induced gamma-ray emission techniques. 2017 , 27, 11-20	
1884	X-ray emission and particle-induced gamma-ray emission techniques. 2017 , 27, 11-20 Tuning mobility and stability of lithium ion conductors based on lattice dynamics. 2018 , 11, 850-859 Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State	105
1884	X-ray emission and particle-induced gamma-ray emission techniques. 2017 , 27, 11-20 Tuning mobility and stability of lithium ion conductors based on lattice dynamics. 2018 , 11, 850-859 Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018 , 30, e1705702	105 506
1884 1883 1882	X-ray emission and particle-induced gamma-ray emission techniques. 2017, 27, 11-20 Tuning mobility and stability of lithium ion conductors based on lattice dynamics. 2018, 11, 850-859 Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018, 30, e1705702 Ionic conductivity and crystallization process in the Li2SP2S5 glass electrolyte. 2018, 317, 122-126	10550633
1884 1883 1882	X-ray emission and particle-induced gamma-ray emission techniques. 2017, 27, 11-20 Tuning mobility and stability of lithium ion conductors based on lattice dynamics. 2018, 11, 850-859 Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018, 30, e1705702 Ionic conductivity and crystallization process in the Li2SP2S5 glass electrolyte. 2018, 317, 122-126 Progress of the Interface Design in All-Solid-State LiB Batteries. 2018, 28, 1707533 The effect of SiO additives on solid hydroxide ion-conducting polymer electrolytes: a Raman	10550633140
1884 1883 1882 1881	X-ray emission and particle-induced gamma-ray emission techniques. 2017, 27, 11-20 Tuning mobility and stability of lithium ion conductors based on lattice dynamics. 2018, 11, 850-859 Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018, 30, e1705702 Ionic conductivity and crystallization process in the Li2SP2S5 glass electrolyte. 2018, 317, 122-126 Progress of the Interface Design in All-Solid-State LiB Batteries. 2018, 28, 1707533 The effect of SiO additives on solid hydroxide ion-conducting polymer electrolytes: a Raman microscopy study. 2018, 20, 7148-7155 Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal	105506331407

1876	Phase-field modeling of stress generation in polycrystalline LiCoO2. 2018 , 319, 209-217	16
1875	Synthesis and Electrochemical Properties of I4 -Type Li1+2xZn1⊠PS4 Solid Electrolyte. 2018 , 30, 2236-2244	24
1874	Mechanical Properties of Li2SP2S5 Glasses with Lithium Halides and Application in All-Solid-State Batteries. 2018 , 1, 1002-1007	89
1873	Highly Crystalline Layered VS Nanosheets for All-Solid-State Lithium Batteries with Enhanced Electrochemical Performances. 2018 , 10, 10053-10063	61
1872	Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. 2018 , 14, 58-74	228
1871	Interphase Engineering Enabled All-Ceramic Lithium Battery. 2018 , 2, 497-508	272
1870	Shear Thickening Electrolyte Built from Sterically Stabilized Colloidal Particles. 2018 , 10, 9424-9434	16
1869	Li metal batteries and solid state batteries benefiting from halogen-based strategies. 2018 , 14, 100-117	79
1868	Ab initio molecular dynamics study of 1-D superionic conduction and phase transition in Eucryptite. 2018 , 6, 5052-5064	13
1867	Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. 2018 , 8, 1800035	269
1866	New P2-Type Honeycomb-Layered Sodium-Ion Conductor: NaMgTeO. 2018 , 10, 15760-15766	30
1865	MgBO Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. 2018 , 18, 3104-3112	157
1864	Attainable Energy Density of Microbatteries. 2018, 3, 1172-1175	29
1863	Composite Sulfur Electrode for All-solid-state Lithium Bulfur Battery with Li2S LeS2 P2S5-based Thio-LISICON Solid Electrolyte. 2018 , 86, 1-5	17
1862	Enhanced electrochemical performance of Li4Ti5O12 through in-situ coating 70Li2S-30P2S5 solid electrolyte for all-solid-state lithium batteries. 2018 , 752, 8-13	17
1861	Lithium diffusion in LiFeO. 2018 , 8, 5832	28
1860	High ion conductive Sb2O5-doped ⊞i3PS4 with excellent stability against Li for all-solid-state lithium batteries. 2018 , 389, 140-147	62
1859	Crystallization behavior of the LiS-PS glass electrolyte in the LiNiMnCoO positive electrode layer. 2018 , 8, 6214	22

1858	Synthesis and Electrochemical Characterization of a Glass-Ceramic Li7P2S8I Solid Electrolyte for All-Solid-State Li-Ion Batteries. 2018 , 165, A957-A962	32
1857	Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries. 2018 , 30, e1705590	291
1856	Wood-Inspired High-Performance Ultrathick Bulk Battery Electrodes. 2018 , 30, e1706745	136
1855	The application of synchrotron X-ray techniques to the study of rechargeable batteries. 2018 , 27, 1566-1583	38
1854	Enhanced ionic conductivity in LAGP/LATP composite electrolyte. 2018 , 27, 038201	10
1853	Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. 2018 , 389, 120-134	236
1852	Review on solid electrolytes for all-solid-state lithium-ion batteries. 2018 , 389, 198-213	593
1851	Particle Morphology and Lithium Segregation to Surfaces of the Li7La3Zr2O12 Solid Electrolyte. 2018 , 30, 3019-3027	54
1850	A K2Fe4O7 superionic conductor for all-solid-state potassium metal batteries. 2018 , 6, 8413-8418	50
1849	Effect of lithium isotopes on the phase transition in NASICON-type lithium-ion conductor LiZr2(PO4)3. 2018 , 321, 29-33	4
1849 1848	LiZr2(PO4)3. 2018 , 321, 29-33	4 7 ⁸
	Bottleneck of Diffusion and Inductive Effects in Li10Ge1\subsection SnxP2S12. 2018 , 30, 1791-1798	
1848	LiZr2(PO4)3. 2018 , 321, 29-33 Bottleneck of Diffusion and Inductive Effects in Li10Ge1⊠SnxP2S12. 2018 , 30, 1791-1798 Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li	78
1848 1847 1846	Bottleneck of Diffusion and Inductive Effects in Li10Ge1\subsection SnxP2S12. 2018 , 30, 1791-1798 Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries. 2018 , 8, 1702374	78 146
1848 1847 1846	Bottleneck of Diffusion and Inductive Effects in Li10Ge1\subsection SnxP2S12. 2018, 30, 1791-1798 Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries. 2018, 8, 1702374 Solid-State Sodium Batteries. 2018, 8, 1703012	78 146 275
1848 1847 1846	Bottleneck of Diffusion and Inductive Effects in Li10Ge1\subsection SnxP2S12. 2018, 30, 1791-1798 Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries. 2018, 8, 1702374 Solid-State Sodium Batteries. 2018, 8, 1703012 A quaternary sodium superionic conductor - Na10.8Sn1.9PS11.8. 2018, 47, 325-330	78 146 275 45
1848 1847 1846 1845	Bottleneck of Diffusion and Inductive Effects in Li10Ge1\(\text{USnxP2S12}. \) 2018, 30, 1791-1798 Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries. 2018, 8, 1702374 Solid-State Sodium Batteries. 2018, 8, 1703012 A quaternary sodium superionic conductor - Na10.8Sn1.9PS11.8. 2018, 47, 325-330 Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. 2018, 8, 1702657 Configuring PSx tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte. 2018, 6, 047902	78 146 275 45 577

1840	All-Solid-State Batteries with Thick Electrode Configurations. 2018 , 9, 607-613	114
1839	Thin and Dense Solid-solid Heterojunction Formation Promoted by Crystal Growth in Flux on a Substrate. 2018 , 8, 96	3
1838	Polymer Electrolytes for Printed Batteries. 2018 , 80-111	5
1837	Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. 2018 , 8, 1212	61
1836	Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li1+2xZn1⊠PS4. 2018 , 30, 592-596	32
1835	Preparation of sulfide solid electrolytes in the Li2SP2S5 system by a liquid phase process. 2018 , 5, 501-508	32
1834	Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. <i>Nature Energy</i> , 2018 , 3, 16-21	836
1833	Selective Ionic Conduction in Choline Iodide/Triiodide Solid Electrolyte and Its Application to Thermocells. 2018 , 47, 261-264	6
1832	Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode. 2018 , 130, 1375-1379	14
1831	Vacancy-Controlled Na Superion Conduction in Na Sn PS. 2018 , 57, 1351-1355	103
1830	Fast Lithium-Ion Conduction in Atom-Deficient closo-Type Complex Hydride Solid Electrolytes. 2018 , 30, 386-391	44
1829	Do imaging techniques add real value to the development of better post-Li-ion batteries?. 2018 , 6, 3304-3327	29
1828	New Na-Ion Solid Electrolytes Na4⊠Sn1⊠SbxS4 (0.02 lk lD.33) for All-Solid-State Na-Ion Batteries. 2018 , 8, 1702716	64
1827	Vacancy-Controlled Na+ Superion Conduction in Na11Sn2PS12. 2018 , 130, 1365-1369	23
1826	Ionic conductive GeS2-Ga2S3-Li2S-LiI glass powders prepared by mechanical synthesis. 2018, 740, 61-67	9
1825	Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis. 2018 , 30, 990-997	90
1824	Noncovalent Approach to Liquid-Crystalline Ion Conductors: High-Rate Performances and Room-Temperature Operation for Li-Ion Batteries. 2018 , 3, 159-166	19
1823	Study on electrical and structural properties in SiO2 substituted Li2O-Al2O3-GeO2-P2O5 glass-ceramic systems. 2018 , 44, 13373-13380	6

1822	Progress and prospect on failure mechanisms of solid-state lithium batteries. 2018, 392, 94-115	96
1821	Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. 2018 , 18, 3829-3838	178
1820	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. 2018 , 3, 1212-1218	236
1819	Graphene Nanoplatelet-Polysulfone Composite Cathodes for High-Power Aluminum Rechargeable Batteries. 2018 , 86, 72-76	9
1818	XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. 2018 , 322, 1-4	72
1817	Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks. 2018 , 30, e1707476	146
1816	Li2MoO4 coated Ni-rich cathode for all-solid-state batteries. 2018 , 660, 625-630	22
1815	Monitoring the chemical and electronic properties of electrolyte-electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy. 2018 , 20, 11123-11129	33
1814	Li Distribution Heterogeneity in Solid Electrolyte LiGePS upon Electrochemical Cycling Probed by Li MRI. 2018 , 9, 1990-1998	64
1813	Fabrication of solid-state secondary battery using semiconductors and evaluation of its charge/discharge characteristics. 2018 , 57, 041201	3
1812	Progress and Perspective of Solid-State LithiumBulfur Batteries. 2018, 28, 1707570	138
1811	Z-MEM, Maximum Entropy Method software for electron/nuclear density distribution in Z-Code. 2018 , 551, 472-475	4
1810	Preparation and characterization of Na3PS4Na4GeS4 glass and glass-ceramic electrolytes. 2018 , 320, 193-198	10
1809	Designing solution chemistries for the low-temperature synthesis of sulfide-based solid electrolytes. 2018 , 6, 7370-7374	37
1808	Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries. 2018 , 3, 992-996	134
1807	Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. 2018 , 48, 35-43	92
1806	Suppressing Li Dendrite Formation in Li2S-P2S5 Solid Electrolyte by LiI Incorporation. 2018, 8, 1703644	190
1805	Preparation of Sodium Ion Conductive Na10GeP2S12 Glass-ceramic Electrolytes. 2018 , 47, 13-15	20

(2018-2018)

1804	Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes. 2018 , 24, 6007-6018	36
1803	Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries. 2018 , 8, 1701963	125
1802	Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. 2018 , 11, 321-330	102
1801	Rechargeable Solid-State LiAir and LiB Batteries: Materials, Construction, and Challenges. 2018 , 8, 1701602	165
1800	Mechanisms and properties of ion-transport in inorganic solid electrolytes. 2018 , 10, 139-159	155
1799	Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate. 2018 , 24, 1001-1006	21
1798	Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes. 2018 , 375, 93-101	160
1797	A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. 2018 , 24, 1545-1551	15
1796	A P2-Type Layered Superionic Conductor Ga-Doped Na Zn TeO for All-Solid-State Sodium-Ion Batteries. 2018 , 24, 1057-1061	32
1795	Probing SolidBolid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations. 2018 , 30, 163-173	104
1794	Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. 2018 , 6, 645-651	83
1793	Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode. 2018 , 57, 1361-1365	100
1792	High dimensional stability of LiCoMnO4 as positive electrodes operating at high voltage for lithium-ion batteries with a long cycle life. 2018 , 260, 498-503	22
1791	Pseudo zero-strain insertion materials for Li-ion batteries: cross-sectional observations of LiNi1/2Co1/2O2, LiNi1/3Co1/3Mn1/3O2, and LiNi0.8Co0.15Al0.05O2. 2018 , 24, 2181-2186	6
1790	Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. 2018 , 6, 840-844	50
1789	Positive and Negative Aspects of Interfaces in Solid-State Batteries. 2018 , 3, 98-103	63
1788	Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance. 2018 , 53, 3927-3938	38
1787	Na11Sn2PS12: a new solid state sodium superionic conductor. 2018 , 11, 87-93	160

1786	Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. 2018 , 12, 161-175	284
1785	Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site. 2018 , 38, 1673-1678	65
1784	Ab Initio Molecular Dynamics Studies of Fast Ion Conductors. 2018 , 147-168	4
1783	From anti-perovskite to double anti-perovskite: tuning lattice chemistry to achieve super-fast Li+transport in cubic solid lithium halogen@halcogenides. 2018 , 6, 73-83	49
1782	Rational coating of Li 7 P 3 S 11 solid electrolyte on MoS 2 electrode for all-solid-state lithium ion batteries. 2018 , 374, 107-112	55
1781	Crystal growth of La Li TiO by the TSFZ method. 2018 , 5, 181445	4
1780	Electrochemical behaviors of Li-argyrodite-based all-solid-state batteries under deep-freezing conditions. 2018 , 54, 14116-14119	15
1779	Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolytes for solid-state lithium-ion batteries 2018 , 8, 34232-34240	15
1778	An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries. 2018 , 6, 21280-21286	18
1777	Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites. 2018 , 6, 20896-20903	23
1776	Microwave-aided synthesis of lithium thiophosphate solid electrolyte. 2018 , 6, 21261-21265	15
1775	High-performance all-solid-state lithiumBulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. 2018 , 6, 23345-23356	30
1774	Preparation and Properties Nanomaterials via a Mechanochemical Route with Possible Application to All-solid-state Li-ion Battery. 2018 , 65, 739-745	
1773	Synthesis and Characterization of Three New Lithium-Scandium Hexathiohypodiphosphates: Li4 Bx ScxP2S6 (x = 0.358), m-LiScP2S6, and t-LiScP2S6. 2018 , 644, 1854-1862	1
1772	Effect of introducing interlayers into electrode/electrolyte interface in all-solid-state battery using sulfide electrolyte. 2018 , 327, 150-156	29
1771	Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries. 2018 , 10,	88
1770	Nanopackaging for Component Assembly and Embedded Power in Flexible Electronics: Heterogeneous Component Integration for Flexible Systems. 2018 , 12, 6-18	1
1769	Slurry-Based Processing of Solid Electrolytes: A Comparative Binder Study. 2018 , 165, A3993-A3999	29

(2018-2018)

1768	Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification. 2018 , 6, 21018-21028	41
1767	Addressing Interfacial Issues in Liquid-Based and Solid-State Batteries by Atomic and Molecular Layer Deposition. 2018 , 2, 2583-2604	138
1766	Insights into Grain Boundary in Lithium-Rich Anti-Perovskite as Solid Electrolytes. 2018 , 165, A3946-A3951	12
1765	Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives. 2018 , 6, 616	105
1764	Super-Ionic Conduction in Solid-State Li7P3S11-Type Sulfide Electrolytes. 2018 , 30, 8764-8770	20
1763	Understanding the Effect of Interlayers at the Thiophosphate Solid Electrolyte/Lithium Interface for All-Solid-State Li Batteries. 2018 , 30, 8747-8756	53
1762	Epitaxial Thin Films as a Model System for Li-Ion Conductivity in LiTiO. 2018 , 10, 44494-44500	14
1761	Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability. 2018 , 402, 506-512	32
1760	Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. 2018, 53, 958-966	133
1759	Gas Evolution in All-Solid-State Battery Cells. 2018 , 3, 2539-2543	65
1758	Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes. 2018 , 6, 19817-19827	61
1757	Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe. 2018 , 11, 1445	45
1756	Interfaces in Solid-State Lithium Batteries. 2018 , 2, 1991-2015	287
1755	Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries. 2018 , 2, 2016-2046	162
1754	Electrolyte and Interface Engineering for Solid-State Sodium Batteries. 2018, 2, 1747-1770	204
1753	Preparation and Properties Nanomaterials for All-Solid-State Li-ion Battery via a Mechanochemical Route. 2018 , 65, 13-20	
1752	Realizing the Ultimate Thermal Stability of a Lithium-Ion Battery Using Two Zero-Strain Insertion Materials. 2018 ,	2
1751	Advanced sulfide solid electrolyte by core-shell structural design. 2018 , 9, 4037	83

1750	Computational Modeling of Morphology Evolution in Metal-Based Battery Electrodes. 2018 , 1-27	2
1749	Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor NaPSSe. 2018 , 140, 14464-14473	86
1748	Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications. 2018 , 3, 2775-2795	45
1747	LiCrS and LiMnS Cathodes with Extraordinary Mixed Electron-Ion Conductivities and Favorable Interfacial Compatibilities with Sulfide Electrolyte. 2018 , 10, 36941-36953	14
1746	Architectural design and fabrication approaches for solid-state batteries. 2018, 43, 775-781	48
1745	Polymer and composite electrolytes. 2018 , 43, 759-767	42
1744	Predictive modeling and design rules for solid electrolytes. 2018 , 43, 746-751	31
1743	A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S P2S5 binary system. 2018 , 407, 31-43	77
1742	Competing Structural Influences in the Li Superionic Conducting Argyrodites LiPSSe Br (0 lk ll) upon Se Substitution. 2018 , 57, 13920-13928	61
1741	Nuclear Spin Relaxation in Nanocrystalline £13PS4 Reveals Low-Dimensional Li Diffusion in an Isotropic Matrix. 2018 , 30, 7575-7586	24
1740	Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites LiPGe SI for All-Solid-State Batteries. 2018 , 140, 16330-16339	205
1739	Favorable composite electrodes for all-solid-state batteries. 2018 , 126, 675-683	16
1738	Li3BO3IIi2CO3: Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries. 2018 , 30, 8190-8200	92
1737	Fundamental Limitations of Ionic Conductivity in Polymerized Ionic Liquids. 2018 , 51, 8637-8645	67
1736	Vacancy-Driven Na+ Superionic Conduction in New Ca-Doped Na3PS4 for All-Solid-State Na-Ion Batteries. 2018 , 3, 2504-2512	60
1735	A New Version of the Lithium Ion Conducting Plastic Crystal Solid Electrolyte. 2018 , 8, 1801324	15
1734	Reaction Mechanism of FePS3 Electrodes in All-Solid-State Lithium Secondary Batteries Using Sulfide-Based Solid Electrolytes. 2018 , 165, A2948-A2954	8
1733	Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. 2018 , 401, 126-134	10

1732	Ultrafast solid-state lithium ion conductor through alloying induced lattice softening of Li6PS5Cl. 2018 , 6, 19231-19240	28
1731	Mechanical properties of sulfide glasses in all-solid-state batteries. 2018 , 126, 719-727	46
1730	Synthesis of submicron-sized NiPS3 particles and electrochemical properties as active materials in all-solid-state lithium batteries. 2018 , 126, 568-572	5
1729	Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. 2018 , 30, e1803075	264
1728	Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. 2018, 3, 2259-2266	81
1727	Impact of Structural Polymorphism on Ionic Conductivity in Lithium Copper Pyroborate LiCuBO. 2018 , 57, 11646-11654	3
1726	New High Specific Power Motor Technology for All-Electric Class III UAVs. 2018,	1
1725	Characteristics of Li-ion micro batteries fully batch fabricated by micro-fluidic MEMS packaging. 2018 , 1	3
1724	Progress in solid electrolytes toward realizing solid-state lithium batteries. 2018 , 394, 74-85	132
1723	Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. 2018 , 1, 113-138	203
1722	Mechanochemically Prepared LiS-PS-LiBH Solid Electrolytes with an Argyrodite Structure. 2018 , 3, 5453-5458	24
1721	Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode. 2018 , 18, 3926-3933	108
1720	Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries. 2018 , 57, 8567-8571	70
1719	Appearance of Lithium-Ion Conduction in a Lallilloll Band Insulator: Possible Route to Oxide Electrolyte. 2018 , 1, 2546-2554	4
1718	Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes. 2018 , 37, 497-503	26
1717	Sr- and Nb-co-doped Li7La3Zr2O12 solid electrolyte with Al2O3 addition towards high ionic conductivity. 2018 , 124, 1	5
1716	All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. 2018 , 391, 73-79	109
1715	Development of the cold sintering process and its application in solid-state lithium batteries. 2018 , 393, 193-203	53

1714	Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries. 2018 , 130, 8703-8707	22
1713	High Ionic Conductor Member of Garnet-Type Oxide Li6.5La3Zr1.5Ta0.5O12. 2018 , 5, 2551-2557	16
1712	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. <i>Nature Energy</i> , 2018 , 3, 674-681	357
1711	Stable cycling of high-voltage lithium metal batteries in ether electrolytes. <i>Nature Energy</i> , 2018 , 3, 739-7 6 £3	466
1710	Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries. 2018 , 27, 066107	5
1709	Sodium thiophosphate electrolyte thin films prepared by pulsed laser deposition for bulk-type all-solid-state sodium rechargeable batteries. 2018 , 126, 475-481	5
1708	Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. 2018 , 47, 6505-6602	219
1707	Sodium superionic conduction in tetragonal Na3PS4. 2018 , 265, 353-358	30
1706	Lithium-ion conducting solid electrolytes of Li1.4Al0.4Ge0.2Ti1.4(PO4)3 and MOx (M = Al, Ti, and Zr) composites. 2018 , 324, 114-127	18
1705	Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. 2018 , 8, 9965	61
1704	Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells. 2018 , 6, 14867-14875	31
1703	Native Defects in Li10GeP2S12 and Their Effect on Lithium Diffusion. 2018 , 30, 4995-5004	26
1702	High-Temperature Performance of All-Solid-State Lithium-Metal Batteries Having Li/Li3PS4Interfaces Modified with Au Thin Films. 2018 , 165, A1950-A1954	28
1701	High-performance polycrystalline RuOx cathodes for thin film Li-ion batteries. 2018 , 283, 228-233	4
1700	Li4Ti5O12: A Visible-to-Infrared Broadband Electrochromic Material for Optical and Thermal Management. 2018 , 28, 1802180	74
1699	Sulfide Solid Electrolytes for Lithium Battery Applications. 2018 , 8, 1800933	252
1698	Ionic Gels and Their Applications in Stretchable Electronics. 2018 , 39, e1800246	63
1697	Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries. 2018 , 15, 407-414	28

1696	Multilayered, Bipolar, All-Solid-State Battery Enabled by a Perovskite-Based Biphasic Solid Electrolyte. 2018 , 11, 3184-3190	29
1695	Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode. 2018 , 30, 6259-6276	79
1694	Interfacial challenges and progress for inorganic all-solid-state lithium batteries. 2018, 284, 177-187	67
1693	Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. 2018 , 11, 2696-2767	865
1692	Preparation of Solid Electrolyte Particles and Solid-Solid Interfaces for All-Solid-State Batteries. 2018 , 579-584	
1691	Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. 2018 , 1, 3622-3629	69
1690	Conceptual Design of Operation Strategies for Hybrid Electric Aircraft. 2018 , 11, 217	54
1689	Na+ ion migration on the surface of reduced graphene oxide. 2018 , 51, 325301	1
1688	Quantitative Analysis of Microstructures and Reaction Interfaces on Composite Cathodes in All-Solid-State Batteries Using a Three-Dimensional Reconstruction Technique. 2018 , 10, 23740-23747	36
1687	Extremely Low Resistance of LiPO Electrolyte/Li(NiMn)O Electrode Interfaces. 2018, 10, 27498-27502	30
1686	Stabilizing LiSnPS/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer. 2018 , 10, 25473-25482	58
1685	Communication Demonstration and Electrochemistry of a Self-Forming Solid State Rechargeable Lil(HPN)2Based Li/I2Battery. 2018 , 165, A2115-A2118	6
1684	Spectroscopic characterization of lithium thiophosphates by XPS and XAS - a model to help monitor interfacial reactions in all-solid-state batteries. 2018 , 20, 20088-20095	51
1683	Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. 2018 , 2, 1674-1689	133
1682	High-performance all-solid-state LiBe batteries induced by sulfide electrolytes. 2018 , 11, 2828-2832	69
1681	In Situ Scanning Electron Microscope Observations of Li Plating/Stripping Reactions with Pt Current Collectors on LiPON Electrolyte. 2018 , 165, A1338-A1347	15
1680	All-Solid-State Supercapacitors Based on a Carbon-Filled Porous/Dense/Porous Layered Ceramic Electrolyte. 2018 , 165, A1269-A1274	15
1679	A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries. 2018 , 57, 8587-8591	76

1678	Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries. 2018 , 30, 4179-4192	95
1677	Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries. 2018 , 1,	60
1676	Hybrid electrolytes for lithium metal batteries. 2018 , 392, 206-225	125
1675	Developing intercalation based anode materials for fluoride-ion batteries: topochemical reduction of Sr2TiO3F2via a hydride based defluorination process. 2018 , 6, 22013-22026	19
1674	A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries. 2018 , 130, 8723-8727	5
1673	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. 2018 , 15, 458-464	73
1672	Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. 2018 , 4, 996-1006	92
1671	Perovskite Membranes with Vertically Aligned Microchannels for All-Solid-State Lithium Batteries. 2018 , 8, 1801433	136
1670	Fast Na ion transport triggered by rapid ion exchange on local length scales. 2018 , 8, 11970	16
1669	Lil-Doped Sulfide Solid Electrolyte: Enabling a High-Capacity Slurry-Cast Electrode by Low-Temperature Post-Sintering for Practical All-Solid-State Lithium Batteries. 2018 , 10, 31404-31412	54
1668	Strongly correlated perovskite lithium ion shuttles. 2018 , 115, 9672-9677	36
1667	Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li GeP S Solid Electrolyte Interface. 2018 , 57, 13608-13612	97
1666	Exotic solid state ion conductor from fluorinated titanium oxide and molten metallic lithium. 2018 , 400, 16-22	9
1665	Refinement of the crystal structure of LiPS using NMR crystallography. 2018 , 47, 11691-11695	13
1664	High Li-Ion Conductivity in a Hydride-type Solid-State Electrolyte: The Ammonia Effect. 2018 , 4, 1770-1772	2
1663	Mechanochemical Synthesis and Characterization of Metastable Hexagonal LiSnS Solid Electrolyte. 2018 , 57, 9925-9930	40
1662	Solution-derived glass-ceramic NaIINa3SbS4 superionic conductors for all-solid-state Na-ion batteries. 2018 , 6, 17192-17200	24
1661	Bibliography. 2018 , 145-166	

1660	Salt-Based OrganicIhorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface. 2018 , 130, 13796-13800	5
1659	Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. 2018 , 53, 168-174	84
1658	Lithium Phosphidogermanates ∃and Li8GeP4A Novel Compound Class with Mixed Li+ Ionic and Electronic Conductivity. 2018 , 30, 6440-6448	23
1657	Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. 2018 , 18, 5892-5898	40
1656	Scalable Synthesis of Alkali Sulfide Nanocrystals Using a Bubble Column Reactor. 2018 , 57, 8436-8442	7
1655	Degradation Mechanisms at the LiGePS/LiCoO Cathode Interface in an All-Solid-State Lithium-Ion Battery. 2018 , 10, 22226-22236	158
1654	NaSbSeS as Sodium Superionic Conductors. 2018 , 8, 9146	23
1653	Ion transport limitations in all-solid-state lithium battery electrodes containing a sulfide-based electrolyte. 2018 , 396, 175-181	37
1652	The influence of void space on ion transport in a composite cathode for all-solid-state batteries. 2018 , 396, 363-370	43
1651	High capacity and stable all-solid-state Li ion battery using SnO-embedded nanoporous carbon. 2018 , 8, 8747	19
1650	New horizons for inorganic solid state ion conductors. 2018 , 11, 1945-1976	601
1649	High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling. 2018 , 10, 22329-22339	55
1648	A highly plastic Li+ ion conductor based on the KI-KBH4 solid solvent system. 2018 , 22, 2855-2861	2
1647	Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility. 2018 , 10, 22264-22277	49
1646	4.22 Electrochemical Energy Conversion. 2018 , 856-894	1
1645	Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte. 2018 , 396, 824-830	32
1644	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. 2019 , 17, 266-274	61
1643	Fundamentals of inorganic solid-state electrolytes for batteries. 2019 , 18, 1278-1291	671

1642	Mechanochemical synthesis of fast sodium ion conductor Na11Sn2PSe12 enables first sodiumBelenium all-solid-state battery. 2019 , 7, 20790-20798	17
1641	Optimization of glass properties by substituting AgI with Ag2S in chalcogenide system. 2019 , 45, 22694-22698	36
1640	Annealing-induced vacancy formation enables extraordinarily high Li+ ion conductivity in the amorphous electrolyte 0.33 LiI + 0.67 Li3PS4. 2019 , 341, 115040	16
1639	Mechanochemical synthesis and characterization of amorphous Li2CN2 as a lithium ion conductor. 2019 , 127, 518-520	9
1638	Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions. 2019 , 4, 2117-2123	24
1637	Practical evaluation of energy densities for sulfide solid-state batteries. 2019 , 1, 100010	47
1636	Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. 2019 , 2, 574-605	113
1635	Two-Dimensional Hybrid Halide Perovskite as Electrode Materials for All-Solid-State Lithium Secondary Batteries Based on Sulfide Solid Electrolytes. 2019 , 2, 6569-6576	13
1634	Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate LiSiP. 2019 , 141, 14200-14209	32
1633	Enhancing Fast Lithium Ion Conduction in Li4GeO4[li3PO4 Solid Electrolytes. 2019 , 2, 6608-6615	19
1632	Motif-Based Design of an Oxysulfide Class of Lithium Superionic Conductors: Toward Improved Stability and Record-High Li-Ion Conductivity. 2019 , 31, 7265-7276	14
1631	Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. 2019 , 4, 2418-2427	113
1630	A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte. 2019 , 7, 24173-24179	37
1629	Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries. 2019 , 8, 100048	25
1628	Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors. 2019 , 1, 327-335	36
1627	Interfacial Incompatibility and Internal Stresses in All-Solid-State Lithium Ion Batteries. 2019 , 9, 1901810	46
1626	Could future electric vehicle energy storage be used for hydropeaking mitigation? An eight-country viability analysis. 2019 , 149, 760-777	2
1625	Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. 2019 , 18, 1105-1111	325

1624	Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells. 2019 , 31, e1902785	78
1623	Improvement of Inter-particle Contact in Positive Electrodes Using the Composite Deformable Solid Electrolyte in an Oxide-type All-solid-state Lithium Ion Battery. 2019 , 48, 891-893	4
1622	Synthesis and characterizations of highly conductive and stable electrolyte Li10P3S12I. 2019 , 22, 397-401	14
1621	Investigations of the structure of Na2S + P2S5 glassy electrolytes and its impact on Na+ ionic conductivity through ab initio molecular dynamics. 2019 , 338, 177-184	4
1620	Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. 2019 , 7, 20540-20557	66
1619	Lithium-ion conductivity and crystal structure of garnet-type solid electrolyte Li7🛮 La3Zr2🔻 TaxO12 using single-crystal. 2019 , 127, 521-526	11
1618	Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries. 2019 , 31, e1901131	179
1617	An Air-Stable and Dendrite-Free Li Anode for Highly Stable All-Solid-State Sulfide-Based Li Batteries. 2019 , 9, 1902125	72
1616	Free-standing transition metal oxide electrode architectures for electrochemical energy storage. 2019 , 54, 13045-13069	13
1615	Thermal behavior and microstructure of the Li3PS4InO composite electrolyte. 2019, 436, 226865	8
	Thermal behavior and microstructure of the Li3PS4\(\mathbb{D}\)nO composite electrolyte. 2019 , 436, 226865 Superionic Diffusion through Frustrated Energy Landscape. 2019 , 5, 2450-2460	59
1614		
1614 1613	Superionic Diffusion through Frustrated Energy Landscape. 2019 , 5, 2450-2460	
1614 1613	Superionic Diffusion through Frustrated Energy Landscape. 2019 , 5, 2450-2460 Ion-exchange Synthesis of Li2NaPS4 from Na3PS4. 2019 , 48, 863-865	59
1614 1613 1612	Superionic Diffusion through Frustrated Energy Landscape. 2019 , 5, 2450-2460 Ion-exchange Synthesis of Li2NaPS4 from Na3PS4. 2019 , 48, 863-865 Towards dense single-atom catalysts for future automotive applications. 2019 , 2, 590-602 Novel Research Approach Combined with Dielectric Spectrum Testing for Dual-Doped LiPS	59 145
1614 1613 1612	Superionic Diffusion through Frustrated Energy Landscape. 2019, 5, 2450-2460 Ion-exchange Synthesis of Li2NaPS4 from Na3PS4. 2019, 48, 863-865 Towards dense single-atom catalysts for future automotive applications. 2019, 2, 590-602 Novel Research Approach Combined with Dielectric Spectrum Testing for Dual-Doped LiPS Glass-Ceramic Electrolytes. 2019, 11, 27897-27905 A New Lithium-Ion Conductor LiTaSiO5: Theoretical Prediction, Materials Synthesis, and Ionic	59 145 10
1614 1613 1612 1611	Superionic Diffusion through Frustrated Energy Landscape. 2019, 5, 2450-2460 Ion-exchange Synthesis of Li2NaPS4 from Na3PS4. 2019, 48, 863-865 Towards dense single-atom catalysts for future automotive applications. 2019, 2, 590-602 Novel Research Approach Combined with Dielectric Spectrum Testing for Dual-Doped LiPS Glass-Ceramic Electrolytes. 2019, 11, 27897-27905 A New Lithium-Ion Conductor LiTaSiO5: Theoretical Prediction, Materials Synthesis, and Ionic Conductivity. 2019, 29, 1904232 A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide	59 145 10

1606	Lithium Ion Conductivity in Double Antiperovskite Li6.5OS1.5I1.5: Alloying and Boundary Effects. 2019 , 2, 6288-6294	25
1605	Influence of NaI Additions on the Electrical, Dielectric, and Transport Properties in the GeS2 L a2S3NaI Glass System. 2019 , 55, 501-509	1
1604	Organic electrode materials with solid-state battery technology. 2019 , 7, 18735-18758	57
1603	Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. 2019 , 31, 6033-6065	90
1602	Operando Visualization of Morphological Dynamics in All-Solid-State Batteries. 2019 , 9, 1901547	37
1601	Toward Understanding the Different Influences of Grain Boundaries on Ion Transport in Sulfide and Oxide Solid Electrolytes. 2019 , 31, 5296-5304	52
1600	Influence of MOF ligands on the electrochemical and interfacial properties of PEO-based electrolytes for all-solid- state lithium batteries. 2019 , 319, 189-200	40
1599	New lithium-conducting nitride glass Li3BN2. 2019 , 339, 114985	7
1598	Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective. 2019 , 7, 17735-17753	52
1597	Strain-Stabilized Ceramic-Sulfide Electrolytes. 2019 , 15, e1901470	28
1596	New Insight for Solid Sulfide Electrolytes LSiPSI by Using Si/P/S as the Raw Materials and I Doping. 2019 , 7, 12930-12937	7
1595	Computationally Guided Discovery of the Sulfide LiAlS in the Li-Al-S Phase Field: Structure and Lithium Conductivity. 2019 , 31, 9699-9714	8
1594	Stable Lithium Ion Conducting Thiophosphate Solid Electrolytes Lix(PS4)yXz (X = Cl, Br, I). 2019 , 31, 8649-8662	2 14
1593	Crystal Structural Framework of Lithium Super-Ionic Conductors. 2019 , 9, 1902078	58
1592	Polymer-in-Quasi-Ionic LiquidŒlectrolytes for High-Voltage Lithium Metal Batteries. 2019 , 9, 1902108	39
1591	Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. 2019 , 131, 16579-16584	40
1590	Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. 2019 , 58, 16427-16432	113
1589	Anisotropically Electrochemical-Mechanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. 2019 , 58, 18647-18653	29

1588	Architected materials for advanced electrochemical systems. 2019 , 44, 789-795	6
1587	New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. 2019 , 141, 19002-19013	115
1586	Novel Inorganic Composite Materials for Lithium-Ion Batteries. 2019 , 1-16	
1585	Digital Printing of Solid-State Lithium-Ion Batteries. 2019 , 21, 1900737	21
1584	Anisotropically Electrochemical Mechanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. 2019 , 131, 18820-18826	4
1583	Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries. 2019 , 31, 9664-9672	94
1582	Coupled Cation-Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes. 2019 , 141, 19360-19372	56
1581	Rapid and Tunable Assisted-Microwave Preparation of Glass and Glass-Ceramic Thiophosphate "LiPS" Li-Ion Conductors. 2019 , 11, 42280-42287	15
1580	Construction of 3D Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries. 2019 , 15, e1905849	26
1579	Influence of precipitate/supernatant ratio during liquid-phase synthesis of solid electrolyte Li7P3S11. 2019 , 343, 115073	7
1578	First Principle Material Genome Approach for All Solid-State Batteries. 2019 , 2, 234-250	36
1577	Electrochemical and Structural Analysis in All-Solid-State Lithium Batteries by Analytical Electron Microscopy: Progress and Perspectives. 2020 , 32, e1903747	14
1576	All-Solid-State Printed Bipolar Liß Batteries. 2019 , 9, 1901841	33
1575	Correlated Migration Invokes Higher Na+-Ion Conductivity in NaSICON-Type Solid Electrolytes. 2019 , 9, 1902373	86
1574	Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. 2019 , 12, 2665-267	1 158
1573	Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials. 2019 , 65, 104040	26
1572	An Entropically Stabilized Fast-Ion Conductor: Li3.25[Si0.25P0.75]S4. 2019 , 31, 7801-7811	38
1571	A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. 2019 , 3, 3279-3309	60

1570	Room-temperature-operating Na solid-state battery with complex hydride as electrolyte. 2019 , 106, 106534	20
1569	Li-free Cathode Materials for High Energy Density Lithium Batteries. 2019 , 3, 2086-2102	123
1568	Direct Observation of Ion Concentration Distribution in All-Solid-State Rechargeable Battery Using operando X-ray Radiography and Silver-Ion Conductor. 2019 , 87, 182-187	5
1567	Composite Electrode Ink Formulation for All Solid-State Batteries. 2019 , 166, A3182-A3188	8
1566	Fast preparation of Li3PS4 solid electrolyte using methyl propionate as synthesis medium. 2019 , 16, 216-219	2
1565	Handling Cell Components in the Production of Multi-Layered Large Format All-Solid-State Batteries with Lithium Anode. 2019 , 81, 1236-1241	7
1564	Potential-based Technology Planning for Production Companies. 2019 , 81, 1400-1405	12
1563	The effects of mechanical constriction on the operation of sulfide based solid-state batteries. 2019 , 7, 23604-23627	32
1562	Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions. 2019 , 21, 22740-22755	7
1561	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. 2019 , 4, 2480-2488	85
1560	Theoretical formulation of Na3AO4X (A = S/Se , X = F/Cl) as high-performance solid electrolytes for all-solid-state sodium batteries. 2019 , 7, 21985-21996	14
1559	Thermodynamic Assessment of Coating Materials for Solid-State Li, Na, and K Batteries. 2019 , 11, 36607-3661	5 15
1558	Nanowires for Electrochemical Energy Storage. 2019 , 119, 11042-11109	167
1557	Deformation and stresses in solid-state composite battery cathodes. 2019 , 440, 227116	13
1556	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. 2019 , 8, 100057	23
1555	Ionic Conductivity and Its Dependence on Structural Disorder in Halogenated Argyrodites Li6PS5X (X = Br, Cl, I). 2019 , 31, 8673-8678	23
1554	Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces. 2019 , 11, 39940-39950	12
1553	Research Progress of the Solid State Lithium-Sulfur Batteries. 2019 , 7,	24

1552	Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries. 2019 , 31, e1807243	150
1551	Interface-Enabled Ion Conduction in Li10GeP2S12Poly(ethylene Oxide) Hybrid Electrolytes. 2019 , 2, 1452-1459	49
1550	A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides. 2019 , 7, 5239-5247	21
1549	An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. 2019 , 7, 558-566	79
1548	Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. 2019 , 7, 3216-3227	38
1547	Sulfur Redox Reactions at Working Interfaces in LithiumBulfur Batteries: A Perspective. 2019 , 6, 1802046	95
1546	Electronic and mechanistic origins of the superionic conductivity of sulfide-based solid electrolytes. 2019 , 415, 189-196	7
1545	Lesson Learned from NMR: Characterization and Ionic Conductivity of LGPS-like Li7SiPS8. 2019 , 31, 1280-1288	40
1544	Effect of Microstructure on the Ionic Conductivity of an All Solid-State Battery Electrode. 2019 , 166, A318-A328	34
1543	Ionic Conductivity of the NASICON-Related Thiophosphate Na Ti Ga (PS). 2019 , 25, 4143-4148	6
1542	Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode. 2019 , 363, 270-277	31
1541	Morphological Effect on Reaction Distribution Influenced by Binder Materials in Composite Electrodes for Sheet-type All-Solid-State Lithium-Ion Batteries with the Sulfide-based Solid Electrolyte. 2019 , 123, 3292-3298	35
1540	Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. 2019 , 333, 45-49	35
1539	Nanoscale layers in polymers to promote ion transport. 2019 , 4, 252-262	11
1538	Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. 2019 , 7, 1917-1935	70
1537	Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries. 2019 , 7, 3882-3894	48
1536	Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. 2019 , 21, 390-398	56
1535	Synthesis and Properties of NaSICON-type LATP and LAGP Solid Electrolytes. 2019 , 12, 3713-3725	72

1534	Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. 2019 , 14, 705-711	442
1533	High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors. 2019 , 16, 270-282	86
1532	Theoretical picture of positive electrodeBolid electrolyte interface in all-solid-state battery from electrochemistry and semiconductor physics viewpoints. 2019 , 17, 149-157	25
1531	Exothermal mechanisms in the charged LiNi1/3Mn1/3Co1/3O2 electrode layers for sulfide-based all-solid-state lithium batteries. 2019 , 434, 226714	22
1530	Exploring Li-ion conductivity in cubic, tetragonal and mixed-phase Al-substituted Li7La3Zr2O12 using atomistic simulations and effective medium theory. 2019 , 175, 426-435	8
1529	High lithium-ion conducting solid electrolyte thin film of Li1.4Al0.4Ge0.2Ti1.4(PO4)3-TiO2 for aqueous lithium secondary batteries. 2019 , 338, 127-133	9
1528	Improvement of the ionic conductivity on new substituted borohydride argyrodites. 2019, 339, 114987	10
1527	Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu6Sn5 Layer. 2019 , 4, 1725-1731	52
1526	Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. 2019 , 21, 308-334	117
1525	Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries. 2019 , 435, 226736	26
1524	In-situ scanning electron microscope observation of electrode reactions related to battery material. 2019 , 319, 158-163	11
1523	Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries. 2019 , 10, 2482	66
1522	A polyoxometalate-based polymer electrolyte with an improved electrode interface and ion conductivity for high-safety all-solid-state batteries. 2019 , 7, 15924-15932	19
1521	The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries. 2019 , 4, 2627-2634	14
1520	Further Evidence for Energy Landscape Flattening in the Superionic Argyrodites Li6+xP1\(MxS5I \) (M = Si, Ge, Sn). 2019 , 31, 4936-4944	63
1519	Electrolyte for lithium protection: From liquid to solid. 2019 , 4, 360-374	67
1518	Advances and Prospects of Sulfide All-Solid-State Lithium Batteries via One-to-One Comparison with Conventional Liquid Lithium Ion Batteries. 2019 , 31, e1900376	70
1517	Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. 2019 , 11, 22029-22050	127

1516	Cooperative transport enabling fast Li-ion diffusion in Thio-LISICON Li10SiP2S12 solid electrolyte. 2019 , 62, 844-852	20
1515	Cathode coating using LiInO-LiI composite for stable sulfide-based all-solid-state batteries. 2019 , 9, 8099	20
1514	Challenges and opportunities towards fast-charging battery materials. <i>Nature Energy</i> , 2019 , 4, 540-550 62.3	566
1513	Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte. 2019 , 4, 1475-1483	124
1512	Lithium diffusion in Li2X (X=O, S, and Se): Ab initio simulations and inelastic neutron scattering measurements. 2019 , 99,	6
1511	Interfacial Stability of Phosphate-NASICON Solid Electrolytes in Ni-Rich NCM Cathode-Based Solid-State Batteries. 2019 , 11, 23244-23253	38
1510	Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries. 2019 , 5, 1250-1260	72
1509	Nanostructures and Nanomaterials for Solid-State Batteries. 2019 , 215-263	
1508	Covalent interfacial coupling for hybrid solid-state Li ion conductor. 2019 , 23, 277-283	11
1507	On the Functionality of Coatings for Cathode Active Materials in Thiophosphate-Based All-Solid-State Batteries. 2019 , 9, 1900626	125
1506	A painted layer for high-rate and high-capacity solid-state lithium-metal batteries. 2019 , 55, 6704-6707	9
1505	Quantitative analysis of crystallinity in an argyrodite sulfide-based solid electrolyte synthesized solution processing 2019 , 9, 14465-14471	12
1504	Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation. 2019 , 11, 19968-19976	52
1503	A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. <i>Nature Energy</i> , 2019 , 4, 475-483	94
1502	Dense, Melt Cast Sulfide Glass Electrolyte Separators for Li Metal Batteries. 2019 , 166, A1535-A1542	8
1501	Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell. 2019 , 2, 4943-4953	4
1500	Multiphase Na3SbS4 with high ionic conductivity. 2019 , 13, 45-49	6
1499	Li+ ion conductor based on NaBr doped with LiBH4. 2019 , 9, 304-309	1

1498	A High-Throughput Search for Functionally Stable Interfaces in Sulfide Solid-State Lithium Ion Conductors. 2019 , 9, 1900807	39
1497	Exfoliated MoS2 as Electrode for All-Solid-State Rechargeable Lithium-Ion Batteries. 2019 , 123, 12126-12134	35
1496	Peeking across Grain Boundaries in a Solid-State Ionic Conductor. 2019 , 4, 1092-1097	32
1495	Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. 2019 , 109, 367-385	94
1494	Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries. 2019 , 4, 850-871	21
1493	Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries. 2019 , 29, 1900392	92
1492	Lithium-stable NASICON-type lithium-ion conducting solid electrolyte film coated with a polymer electrolyte. 2019 , 337, 101-106	5
1491	Solid Garnet Batteries. 2019 , 3, 1190-1199	230
1490	Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/LiGePS Solid Electrolyte Interface Stability. 2019 , 11, 18436-18447	44
1489	Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry. 2019 , 31, 3745-3755	138
1488	Weak Anisotropic Lithium-Ion Conductivity in Single Crystals of Li10GeP2S12. 2019 , 31, 3694-3699	29
1487	An effective LiBO2 coating to ameliorate the cathode/electrolyte interfacial issues of LiNi0.6Co0.2Mn0.2O2 in solid-state Li batteries. 2019 , 426, 242-249	36
1486	Conduction Mechanism of Li10GeP2S12-type Lithium Superionic Conductors in a Li8n8iP8 System. 2019 , 31, 3485-3490	13
1485	Manipulating Interfacial Nanostructure to Achieve High-Performance All-Solid-State Lithium-Ion Batteries. 2019 , 3, 1900261	60
1484	Influence of the Lithium Substructure on the Diffusion Pathways and Transport Properties of the Thio-LISICON Li4Ge1⊠SnxS4. 2019 , 31, 3794-3802	25
1483	Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. 2019 , 12, 1780-1804	163
1482	Acid induced conversion towards a robust and lithiophilic interface for Lilli7La3Zr2O12 solid-state batteries. 2019 , 7, 14565-14574	79
1481	Siloxane-based polymer electrolytes for solid-state lithium batteries. 2019 , 23, 466-490	74

1480	Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks. 2019 , 141, 5880-5885	164
1479	Nanohybrid electrolytes for high-energy lithium-ion batteries: recent advances and future challenges. 2019 , 30, 302002	16
1478	Slurry-Coated Sheet-Style Sn-PAN Anodes for All-Solid-State Li-Ion Batteries. 2019 , 166, A915-A922	10
1477	Rational Design of a Composite Electrode to Realize a High-Performance All-Solid-State Battery. 2019 , 12, 2637-2643	15
1476	Tuning the interface by a soldering method for high performance garnet-type solid-state Li metal battery. 2019 , 45, 11955-11962	8
1475	Synthesis and characterization of magnesium ion conductivity in PVDF based nanocomposite polymer electrolytes disperse with MgO. 2019 , 789, 6-14	25
1474	A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. 2019 , 10, 1081	174
1473	Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. 2019 , 19, 80-87	24
1472	Space-Charge Effects at the LiLaZrO/Poly(ethylene oxide) Interface. 2019 , 11, 11999-12007	43
1471	Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm and its primary applications in symmetric battery cells. 2019 , 7, 7766-7776	57
1470	Slurry-Fabricable Li+-Conductive Polymeric Binders for Practical All-Solid-State Lithium-Ion Batteries Enabled by Solvate Ionic Liquids. 2019 , 9, 1802927	79
1469	Computational Screening of Cathode Coatings for Solid-State Batteries. 2019 , 3, 1252-1275	162
1468	Amorphous Ni-Rich Li(Ni1MnxCoy)O2@i2SO4 Positive Electrode Materials for Bulk-Type All-Oxide Solid-State Batteries. 2019 , 6, 1802016	8
1467	Fast Charging Lithium Batteries: Recent Progress and Future Prospects. 2019 , 15, e1805389	151
1466	High-Performance Li-SeS All-Solid-State Lithium Batteries. 2019 , 31, e1808100	79
1465	Solid-State Electrolyte. 2019 , 1-9	1
1464	Revealing the Short-Circuiting Mechanism of Garnet-Based Solid-State Electrolyte. 2019 , 9, 1900671	108
1463	Graphitic Hollow Nanocarbon as a Promising Conducting Agent for Solid-State Lithium Batteries. 2019 , 15, e1900235	24

1462	New frontiers for the materials genome initiative. 2019 , 5,	171
1461	Ionic Conduction Mechanism in the Na2(B12H12)0.5(B10H10)0.5closo-Borate Solid-State Electrolyte: Interplay of Disorder and IonIbn Interactions. 2019 , 31, 3449-3460	38
1460	Cathode-Supported All-Solid-State LithiumBulfur Batteries with High Cell-Level Energy Density. 2019 , 4, 1073-1079	86
1459	Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. 2019 , 7, 12214-12224	31
1458	Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. 2019 , 426, 143-150	38
1457	Editors' ChoiceUnderstanding Chemical Stability Issues between Different Solid Electrolytes in All-Solid-State Batteries. 2019 , 166, A975-A983	43
1456	Development of a compact all-solid-state lithium secondary battery using single-crystal electrolyte. 2019 , 12, 28-38	3
1455	Lightweight complex metal hydrides for Li-, Na-, and Mg-based batteries. 2019 , 34, 877-904	12
1454	Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. 2019 , 12, 1818-1833	63
1453	Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State LiB Batteries. 2019 , 31, 2930-2940	69
1452	Preparation of Li7P2S8I Solid Electrolyte and Its Application in All-Solid-State Lithium-Ion Batteries with Graphite Anode. 2019 , 15, 409-414	23
1451	Correlation of Mechanical and Electrical Behavior of Polyethylene Oxide-Based Solid Electrolytes for All-Solid State Lithium-Ion Batteries. 2019 , 5, 26	4
1450	Formation of interfacial contact with ductile Li3BO3-based electrolytes for improving cyclability in all-solid-state batteries. 2019 , 424, 215-219	15
1449	Insights into Sodium Ion Transfer at the Na/NASICON Interface Improved by Uniaxial Compression. 2019 , 2, 2913-2920	24
1448	Aqueous Lithium Rechargeable Battery with a Tin(II) Chloride Aqueous Cathode and a Water-Stable Lithium-Ion Conducting Solid Electrolyte. 2019 , 166, A539-A545	5
1447	Recent Progress in All-Solid-State LithiumBulfur Batteries Using High Li-Ion Conductive Solid Electrolytes. 2019 , 2, 199-230	118
1446	Chemical Solution Deposition (CSD). 2019 , 1-34	2
1445	Bulk-type all-solid-state batteries with mechanically prepared LiCoPO4 composite cathodes. 2019 , 23, 1297-1302	6

1444	Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer. 2019 , 419, 91-98	68
1443	Evaluation of Mg Compounds as Coating Materials in Mg Batteries. 2019 , 7, 24	27
1442	Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. 2019 , 21, 5097-5105	20
1441	Scalable Synthesis of Size-Controlled Li2S Nanocrystals for Next-Generation Battery Technologies. 2019 , 2, 2246-2254	12
1440	Polynitroxide-grafted-graphene: a superior cathode for lithium ion batteries with enhanced charge hopping transportation. 2019 , 7, 4438-4445	14
1439	Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal. 2019 , 9, 1803440	135
1438	Nanostructured Materials for Li-Ion Battery Applications. 2019 , 105-172	1
1437	Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. 2019 , 367, 230-238	66
1436	Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. 2019 , 3, 1094-1105	219
1435	Automated Multiscale Approach To Predict Self-Diffusion from a Potential Energy Field. 2019 , 15, 2127-2141	16
1435 1434	Automated Multiscale Approach To Predict Self-Diffusion from a Potential Energy Field. 2019 , 15, 2127-2141 Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. 2019 , 6, 871-910	16 49
	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic	
1434	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. 2019 , 6, 871-910 All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration	49
1434	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. 2019 , 6, 871-910 All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. 2019 , 417, 125-131	49
1434 1433 1432	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. 2019 , 6, 871-910 All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. 2019 , 417, 125-131 Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. 2019 , 3, 189-198	49 22 138
1434 1433 1432 1431	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. 2019, 6, 871-910 All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. 2019, 417, 125-131 Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. 2019, 3, 189-198 A quasi-solid-state LiB battery with high energy density, superior stability and safety. 2019, 7, 6533-6542 Tomographical analysis of electrochemical lithiation and delithiation of LiNi0.6Co0.2Mn0.2O2	49 22 138 24
1434 1433 1432 1431 1430	Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. 2019, 6, 871-910 All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. 2019, 417, 125-131 Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. 2019, 3, 189-198 A quasi-solid-state LiB battery with high energy density, superior stability and safety. 2019, 7, 6533-6542 Tomographical analysis of electrochemical lithiation and delithiation of LiNi0.6Co0.2Mn0.2O2 cathodes in all-solid-state batteries. 2019, 165, 10-14	49 22 138 24

In situ observations of interfacial evolutions in solid-state lithium battery with sulfide-based solid electrolyte. **2019**,

1425 Ve h	icle Combined Power Plant by type "Fuel Cell-Battery". 2019 ,	2
	id Crystallization and Kinetic Freezing of Site-Disorder in the Lithium Superionic Argyrodite PS5Br. 2019 , 31, 10178-10185	38
	odium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. 2019 , 5266	108
1422 Pro	bing the interfacial chemistry of solid-state lithium batteries. 2019 , 343, 115068	19
1/21	pression of Polysulfide Dissolution and Shuttling with Glutamate Electrolyte for Lithium Sulfur teries. 2019 , 13, 14172-14181	28
	derstanding the effects of chemical reactions at the cathodeBlectrolyte interface in sulfide ed all-solid-state batteries. 2019 , 7, 22967-22976	30
	hly Adhesive Li-BN Nanosheet Composite Anode with Excellent Interfacial Compatibility for d-State Li Metal Batteries. 2019 , 13, 14549-14556	74
	eased Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion teries and Hybrid Pseudocapacitors. 2019 , 15, e1904740	69
	yoxyethylene (PEO) PEO-Perovskite PEO Composite Electrolyte for All-Solid-State Lithium tal Batteries. 2019 , 11, 46930-46937	53
1416 Bui	ding Better Batteries in the Solid State: A Review. 2019 , 12,	95
1415 lon	c Current in Superionic Conductor Na+ Beta-Alumina Induced by Terahertz Electric Fields. 2019 ,	
	cured gel polymer electrolytes with improved stability for advanced aqueous Li-ion batteries. 9 , 55, 13085-13088	21
1413 Adv	rances in sodium secondary batteries utilizing ionic liquid electrolytes. 2019 , 12, 3247-3287	88
	rostrain and electrochemical performance of garnet solid electrolyte integrated in a hybrid tery cell 2019 , 9, 31102-31114	3
1411 Noi	nflammable quasi-solid-state electrolyte for stable lithium-metal batteries 2019 , 9, 42183-42193	3
1410 Enh	anced sodium ion conductivity in NaVS by P-doping 2019 , 9, 39180-39186	3
	rafast fabrication of thermally stable protein-coated silver iodide nanoparticles for solid-state erionic conductors. 2019 , 176, 47-54	4

1408	Atomistic Assessments of Lithium-Ion Conduction Behavior in Glass-Ceramic Lithium Thiophosphates. 2019 , 11, 13-18	11
1407	Li3SbO4 lithium-ion battery material: Defects, lithium ion diffusion and tetravalent dopants. 2019 , 225, 34-41	20
1406	Insights into interfacial stability of Li6PS5Cl solid electrolytes with buffer layers. 2019, 19, 149-154	7
1405	Ingestible electronics for diagnostics and therapy. 2019 , 4, 83-98	85
1404	Automotive Li-Ion Batteries: Current Status and Future Perspectives. 2019 , 2, 1-28	396
1403	Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. 2019 , 5, 753-785	305
1402	Effects of Fluorine Doping on Structural and Electrochemical Properties of LiGaLaZrO as Electrolytes for Solid-State Lithium Batteries. 2019 , 11, 2042-2049	49
1401	Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries. 2019 , 409, 31-37	49
1400	Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance. 2019 , 409, 86-93	27
1399	Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery. 2019 , 17, 70-77	26
1398	Electrochemical performance of bulk-type all-solid-state batteries using small-sized Li7P3S11 solid electrolyte prepared by liquid phase as the ionic conductor in the composite cathode. 2019 , 296, 473-480	25
1397	Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. 2019 , 17, 220-225	57
1396	All-in-one improvement toward Li6PS5Br-Based solid electrolytes triggered by compositional tune. 2019 , 410-411, 162-170	76
1395	Composite solid electrolytes for all-solid-state lithium batteries. 2019 , 136, 27-46	148
1394	Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. 2019 , 17, 204-210	81
1393	An updated review of energy storage systems: Classification and applications in distributed generation power systems incorporating renewable energy resources. 2019 , 43, 6171-6210	80
1392	Solid and Solid-Like Composite Electrolyte for Lithium Ion Batteries: Engineering the Ion Conductivity at Interfaces. 2019 , 6, 1800899	56
1391	Solvent-Engineered Design of Argyrodite Li6PS5X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. 2019 , 4, 265-270	118

1390	Electrochemical Properties of Composite Cathode Using Bimodal Sized Electrolyte for All-Solid-State Batteries. 2019 , 166, A5318-A5322	20
1389	Structural analysis of Al and Si substituted lithium germanium phosphate glass-ceramics using neutron and X-ray diffraction. 2019 , 271, 74-80	9
1388	Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries. 2019 , 123, 1626-1634	81
1387	Thin Film All-solid-state Battery Using Li2MnO3 Epitaxial Film Electrode. 2019 , 48, 192-195	11
1386	Highly Safe 100-Wh-class Lithium-ion Battery Using Lithium Bis(trifluoromethanesulfonyl)amide-Tetraethylene Glycol Dimethyl Ether Equimolar Complex-based Quasi-solid-state Electrolyte. 2019 , 87, 100-106	7
1385	Studies of Functional Defects for Fast Na-Ion Conduction in Na3IPS4IIClx with a Combined Experimental and Computational Approach. 2019 , 29, 1807951	30
1384	High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 2019 , 4, 187-196	653
1383	Recent advances in Li1+xAlxTi2⊠(PO4)3 solid-state electrolyte for safe lithium batteries. 2019 , 19, 379-400	121
1382	Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. 2019 , 55, 93-114	285
1381	Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes. 2019 , 31, e1803533	57
1380	Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery. 2019 , 45, 1770-1776	30
1379	Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries. 2019 , 294, 217-225	25
1378	Solvent-assisted ball milling for synthesizing solid electrolyte Li7P3S11. 2019 , 102, 3402-3410	12
1377	Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. 2019 , 11, 784-791	125
1376	Understanding of Anion Transport in Polymer Electrolytes for Supercapacitors. 2019 , 2, 1800140	2
1375	Solid-state energy storage devices based on two-dimensional nano-materials. 2019 , 20, 269-290	36
1374	A lithium argyrodite Li6PS5Cl0.5Br0.5 electrolyte with improved bulk and interfacial conductivity. 2019 , 412, 29-36	37
1373	Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB. 2019 , 18, 100-106	23

(2020-2019)

1372	Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2. 2019 , 15, 73-78	48
1371	LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. 2020 , 40, 39-45	78
1370	Li4-xSbxSn1-xS4 solid solutions for air-stable solid electrolytes. 2020 , 41, 171-176	36
1369	Stable Thiophosphate-Based All-Solid-State Lithium Batteries through Conformally Interfacial Nanocoating. 2020 , 20, 1483-1490	53
1368	Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. 2020 , 26, 313-324	48
1367	Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. 2020 , 25, 644-678	111
1366	Ion dynamics in Al-Stabilized Li7La3Zr2O12 single crystals [Macroscopic transport and the elementary steps of ion hopping. 2020 , 24, 220-228	21
1365	Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithiumBulfur batteries. 2020 , 25, 436-442	42
1364	Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification. 2020 , 43, 47-51	21
1363	Changing the Static and Dynamic Lattice Effects for the Improvement of the Ionic Transport Properties within the Argyrodite Li6PS5\(\mathbb{B}\)SexI. 2020 , 3, 9-18	35
1362	Composition Modulation and Structure Design of Inorganic-in-Polymer Composite Solid Electrolytes for Advanced Lithium Batteries. 2020 , 16, e1902813	44
1361	Inkjet Printing of Li-Rich Cathode Material for Thin-Film Lithium-Ion Microbatteries. 2020 , 8, 1901086	17
1360	Tin oxide electrodes in Li and Na-ion batteries. 2020 , 411-439	2
1359	Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. 2020 , 25, 145-153	46
1358	How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries. 2020 , 167, 050502	31
1357	Status and prospects of hydroborate electrolytes for all-solid-state batteries. 2020 , 25, 782-794	59
1356	Oxysulfide Li2BeSO: A potential new material for solid electrolyte predicted from first principles. 2020 , 818, 152844	1
1355	Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. 2020 , 46, 187-190	17

1354	Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries. 2020 , 67, 104252	27
1353	Revisiting the Electroplating Process for Lithium-Metal Anodes for Lithium-Metal Batteries. 2020 , 132, 6730-6739	13
1352	Revisiting the Electroplating Process for Lithium-Metal Anodes for Lithium-Metal Batteries. 2020 , 59, 6665-6674	62
1351	Wet-Chemical Tuning of Li PS (0№0.3) Enabled by Dual Solvents for All-Solid-State Lithium-Ion Batteries. 2020 , 13, 146-151	9
1350	Li+ conduction in air-stable Sb-Substituted Li4SnS4 for all-solid-state Li-Ion batteries. 2020 , 446, 227338	45
1349	Tunable electric properties of bilayer MX2 (M = Ge, Sn; $X = S$, Se) with different strain and external electric field. 2020 , 581, 411673	2
1348	High-Voltage Superionic Halide Solid Electrolytes for All-Solid-State Li-Ion Batteries. 2020 , 5, 533-539	113
1347	Fast Li Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte. 2020 , 142, 2497-2505	91
1346	Robust solid-state interface with a deformable glass interlayer in sulfide-based all-solid-state batteries. 2020 , 346, 115217	8
1345	FSI-inspired solvent and f ull fluorosulfonyll e lectrolyte for 4 V class lithium-metal batteries. 2020 , 13, 212-220	97
1344	Anodic engineering towards high-performance direct methanol fuel cells with non-precious-metal cathode catalysts. 2020 , 8, 1113-1119	16
1343	High-throughput computational screening for solid-state Li-ion conductors. 2020 , 13, 928-948	42
1342	Influence of electronically conductive additives on the cycling performance of argyrodite-based all-solid-state batteries 2020 , 10, 1114-1119	28
1341	Single-ion conducting gel polymer electrolytes: design, preparation and application. 2020 , 8, 1557-1577	77
1340	Lithium-rich layered titanium sulfides: Cobalt- and Nickel-free high capacity cathode materials for lithium-ion batteries. 2020 , 26, 213-222	22
1339	X-ray Photoelectron Spectroscopy Probing of the Interphase between Solid-State Sulfide Electrolytes and a Lithium Anode. 2020 , 124, 300-308	14
1338	Thermally and Oxidatively Stable Polymer Electrolyte for Lithium Batteries Enabled by Phthalate Plasticization. 2020 , 2, 80-90	8
1337	Mechanochemical Synthesis: A Tool to Tune Cation Site Disorder and Ionic Transport Properties of Li3MCl6 (M = Y, Er) Superionic Conductors. 2020 , 10, 1903719	88

1336	Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping. 2020 , 69, 104396	40
1335	Structural and electrochemical features of (Li2S) (SiS2)100Buperionic glasses. 2020 , 344, 115141	2
1334	The mechanical, vibrational and thermodynamic properties of glass-ceramic lithium thiophosphates Li4P2S6. 2020 , 819, 152950	3
1333	Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. 2020 , 59, 10732-10745	56
1332	Aqueous solution synthesis of Na3SbS4Na2WS4 superionic conductors. 2020 , 8, 1947-1954	19
1331	3D lithiophilic[]thiophobic[]thiophilic dual-gradient porous skeleton for highly stable lithium metal anode. 2020 , 8, 313-322	43
1330	Fast lithium ionic conductivity observed in LiI-MoS2 composite. 2020 , 112, 107761	1
1329	Oxide single crystals with high lithium-ion conductivity as solid electrolytes for all-solid-state lithium secondary battery applications. 2020 , 128, 7-18	4
1328	Hydrothermal Synthesis of Nanoflake-Assembled (Ni0.5Co0.5)0.85Se Microspheres as the Cathode and Reduced Graphene Oxide/Porous Fe2O3 Nanospheres Composite as the Anode for Novel Alkaline Aqueous Batteries. 2020 , 8, 561-572	21
1327	Unraveling the Intra and Intercycle Interfacial Evolution of Li6PS5Cl-Based All-Solid-State Lithium Batteries. 2020 , 10, 1903311	69
1326	In situ generated Li2S-LPS composite for all-solid-state lithium-sulfur battery. 2020 , 26, 2335-2342	6
1325	Mechanism of lithium electrodeposition in a magnetic field. 2020 , 345, 115171	12
1324	Defect-Mediated Conductivity Enhancements in Na3NPn1NWxS4 (Pn = P, Sb) Using Aliovalent Substitutions. 2020 , 5, 146-151	52
1323	Understanding interface stability in solid-state batteries. 2020 , 5, 105-126	318
1322	Ni-Rich Layered Cathode Materials with Electrochemo-Mechanically Compliant Microstructures for All-Solid-State Li Batteries. 2020 , 10, 1903360	80
1321	Selective doping to relax glassified grain boundaries substantially enhances the ionic conductivity of LiTi2(PO4)3 glass-ceramic electrolytes. 2020 , 449, 227574	9
1320	Fe PS electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. 2020 , 449, 227576	5
1319	Fast Lithium Ion Conduction in Lithium Phosphidoaluminates. 2020 , 59, 5665-5674	16

1318	Fast Lithium Ion Conduction in Lithium Phosphidoaluminates. 2020 , 132, 5714-5723	5
1317	Dry coating of active material particles with sulfide solid electrolytes for an all-solid-state lithium battery. 2020 , 448, 227579	27
1316	High Uptake and Fast Transportation of LiPF6 in a Porous Aromatic Framework for Solid-State Li-Ion Batteries. 2020 , 132, 779-784	6
1315	Polyanionic Frameworks in the Lithium Phosphidogermanates Li2GeP2 and LiGe3P3	10
1314	Electrolyte Regulation towards Stable Lithium-Metal Anodes in LithiumBulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. 2020 , 132, 10821-10834	17
1313	Ceramics for electrochemical storage. 2020, 549-709	10
1312	Dimension-controlled solid oxide electrolytes for all-solid-state electrodes: Percolation pathways, specific contact area, and effective ionic conductivity. 2020 , 391, 123528	10
1311	Performance analysis and modeling of three energy storage devices for electric vehicle applications over a wide temperature range. 2020 , 331, 135317	7
1310	High Uptake and Fast Transportation of LiPF in a Porous Aromatic Framework for Solid-State Li-Ion Batteries. 2020 , 59, 769-774	16
1309	Electrical and mechanical properties of water-stable NASICON-type Li1+xAlxGe0.2Ti1.8-x(PO4)3. 2020 , 345, 115151	4
1308	Li+ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an All-Solid-State Battery via the First-Principles Structure Prediction Scheme. 2020 , 32, 85-96	27
1307	Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. 2020 , 120, 6820-6877	373
1306	High Active Material Loading in All-Solid-State Battery Electrode via Particle Size Optimization. 2020 , 10, 1902881	88
1305	Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. 2020 , 31, 132003	72
1305 1304	2020, 31, 132003 Enhancing the cycling stability of all-solid-state lithium-ion batteries assembled with	7 ²
	2020, 31, 132003 Enhancing the cycling stability of all-solid-state lithium-ion batteries assembled with Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes prepared from precursor solutions with appropriate pH	
1304	2020, 31, 132003 Enhancing the cycling stability of all-solid-state lithium-ion batteries assembled with Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes prepared from precursor solutions with appropriate pH values. 2020, 46, 9629-9636	48

1300	2020 , 477, 228744	3
1299	A Review of Functional Separators for Lithium Metal Battery Applications. 2020 , 13,	27
1298	Li10GeP2S12-Type Superionic Conductors: Synthesis, Structure, and Ionic Transportation. 2020 , 10, 2002153	31
1297	Tailoring the Cation Lattice for Chloride Lithium-Ion Conductors. 2020 , 10, 2002356	24
1296	The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. 2020 , 33, 360-381	17
1295	Application-oriented modeling and optimization of tailored Li-ion batteries using the concept of Diffusion Limited C-rate. 2020 , 479, 228704	11
1294	Current status and future perspectives of lithium metal batteries. 2020 , 480, 228803	37
1293	Anion and cation co-doping of Na4SnS4 as sodium superionic conductors. 2020 , 15, 100281	2
1292	Energy-dense Li metal anodes enabled by thin film electrolytes. 2020 , 38, 060801	2
1291	Macroscopic Displacement Reaction of Copper Sulfide in Lithium Solid-State Batteries. 2020 , 10, 2002394	13
1290	Oxygen Substitution for LiBiPBC Solid Electrolytes toward Purified Li10GeP2S12-Type Phase with Enhanced Electrochemical Stabilities for All-Solid-State Batteries. 2020 , 32, 8860-8867	3
1289	Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li D rganic Batteries. 2020 , 5, 3498-3506	51
1288	Promising All-Solid-State Batteries for Future Electric Vehicles. 2020 , 5, 3221-3223	49
1287	Rechargeable Battery Electrolytes Capable of Operating over Wide Temperature Windows and Delivering High Safety. 2020 , 10, 2001235	37
1286	Exothermal behavior and microstructure of a LiNi1/3Mn1/3Co1/3O2 electrode layer using a Li4SnS4 solid electrolyte. 2020 , 479, 228827	7
1285	Challenges, mitigation strategies and perspectives in development of Li metal anode. 2020 , 1, 622-638	O
1284	First-Principles Calculation Study of Na+ Superionic Conduction Mechanism in W- and Mo-Doped Na3SbS4 Solid Electrolytes. 2020 , 32, 8373-8381	11
1283	Functionalized Sulfide Solid Electrolyte with Air-Stable and Chemical-Resistant Oxysulfide Nanolayer for All-Solid-State Batteries. 2020 , 5, 26015-26022	19

1282	Solid state chemistry for developing better metal-ion batteries. 2020 , 11, 4976	47
1281	All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries. 2020 , 13, 4930-4945	32
1280	Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. 2020 , 11, 8686-8707	36
1279	High-Temperature Shock Enabled Nanomanufacturing for Energy-Related Applications. 2020 , 10, 2001331	41
1278	Boosting the Performance of Solid-State Lithium Battery Based on Hybridizing Micron-Sized LATP in a PEO/PVDF-HFP Heterogeneous Polymer Matrix. 2020 , 8, 2000444	6
1277	Advances in Materials Design for All-Solid-state Batteries: From Bulk to Thin Films. 2020 , 10, 4727	7
1276	Understanding the Ionic Diffusivity in the (Meta)Stable (Un)doped Solid-State Electrolyte from First-Principles: A Case Study of LISICON. 2020 , 124, 17485-17493	4
1275	Coating of LiPS Electrolyte on CuCoS/Graphene Nanocomposite as a High-Performance Cathode for All-Solid-State Lithium Batteries. 2020 , 12, 33810-33816	6
1274	Operando hard X-ray photoelectron spectroscopy of LiCoO2 thin film in an all-solid-state lithium ion battery. 2020 , 118, 106790	9
1273	Recent progress and design principles of nanocomposite solid electrolytes. 2020 , 22, 195-202	6
1272	Ionic conductivity and relaxation dynamics in plastic crystals with nearly globular molecules. 2020 , 153, 014502	4
1271	Accelerated Modeling of Lithium Diffusion in Solid State Electrolytes using Artificial Neural Networks. 2020 , 3, 2000097	7
1270	Chemical and Structural Variety in Sodium Thioarsenate Glasses Studied by Neutron Diffraction and Supported by First-Principles Simulations. 2020 , 59, 16410-16420	6
1269	Composite Solid Electrolyte for Solid-State Lithium Batteries Workable at Room Temperature. 2020 , 3, 12127-12133	5
1268	In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. 2020 , 11, 5889	41
1267	Research progress in Li-argyrodite-based solid-state electrolytes. 2020 , 8, 25663-25686	32
1266	The Dr Jekyll and Mr Hyde of lithium sulfur batteries. 2020 , 13, 4808-4833	42
1265	Adhesive Sulfide Solid Electrolyte Interface for Lithium Metal Batteries. 2020 , 12, 54876-54883	12

1264	Cathode-Supported-Electrolyte Configuration for High-Performance All-Solid-State LithiumBulfur Batteries. 2020 , 3, 11540-11547	3
1263	A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. 2020 , 18, 100520	8
1262	Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface?. 2020 , 12, 52845-52856	4
1261	Toward design of cation transport in solid-state battery electrolytes: Structure-dynamics relationships. 2020 , 24, 100875	9
1260	In Situ Deprotection of Polymeric Binders for Solution-Processible Sulfide-Based All-Solid-State Batteries. 2020 , 32, e2001702	18
1259	A polycarboxylic/ether composite polymer electrolyte via UV-curing for all-solid-state lithium battery. 2020 , 7, 200598	
1258	Enabling High-Energy Solid-State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes. 2020 , 10, 2001320	34
1257	LiSn2(PO4)3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries. 2020 , 24, 2407-2417	5
1256	Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries. 2020 , 473, 228595	14
1255	Materials Design Principles for Air-Stable Lithium/Sodium Solid Electrolytes. 2020 , 132, 17625-17629	4
1254	Synthesis of Li10GeP2S12-type lithium superionic conductors under Ar gas flow. 2020 , 473, 228524	3
1253	Towards a high-performance garnet-based solid-state Li metal battery: A perspective on recent advances. 2020 , 472, 228571	6
1252	Unraveling the Origin of Moisture Stability of Halide Solid-State Electrolytes by In Situ and Operando Synchrotron X-ray Analytical Techniques. 2020 , 32, 7019-7027	27
1251	Physics Animation Videos Learning Media Integrated with Quranic Verses with YouTube Output. 2020 , 1467, 012018	Ο
1250	In situ X-ray computational tomography measurement of single particle behavior of sulfide solid electrolyte under high-pressure compression. 2020 , 4, 100019	3
1249	Toward Higher Voltage Solid-State Batteries by Metastability and Kinetic Stability Design. 2020 , 10, 2001569	16
1248	Comprehensive Investigation into Garnet Electrolytes Toward Application-Oriented Solid Lithium Batteries. 2020 , 3, 656-689	50
1247	Stable Electrochemical Li Plating/Stripping Behavior by Anchoring MXene Layers on Three-Dimensional Conductive Skeletons. 2020 , 12, 37967-37976	14

1246	Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. 2020 , 33, 26-54	51
1245	A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. 2020 , 8, 18043-18054	38
1244	Borophene-like boron subunits-inserted molybdenum framework of MoB2 enables stable and quick-acting Li2S6-based lithium-sulfur batteries. 2020 , 32, 216-224	21
1243	Enhancement of electrical properties of NASICON-type solid electrolytes (LiSn2P3O12) via aluminium substitution. 2020 , 5, 368-377	2
1242	Digital Twin-Driven All-Solid-State Battery: Unraveling the Physical and Electrochemical Behaviors. 2020 , 10, 2001563	19
1241	Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries. 2020 , 77, 105097	26
1240	Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. 2020 , 120, 7745-7794	196
1239	Lithium, sodium and magnesium ion conduction in solid state mixed polymer electrolytes. 2020 , 22, 19108-19	149
1238	High lithium ionic conductivity of £i3PO4-type solid electrolytes in Li4GeO4[ii4SiO4[ii3VO4 quasi-ternary system. 2020 , 292, 121651	8
1237	Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. 2020 , 33, 139-146	17
1236	Comparative Study on Sulfide and Oxide Electrolyte Interfaces with Cathodes in All-Solid-State Battery via First-Principles Calculations. 2020 , 3, 11061-11072	6
1235	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. 2020 , 49, 8790-8839	153
1234	High Li-Ion Conductivity in Li{N(SOF)}(NCCHCHCN) Molecular Crystal. 2020, 20, 8200-8204	10
1233	Highly concentrated nitrile functionalized disiloxane - LiFSI based non-flammable electrolyte for high energy density Li metal battery. 2020 , 879, 114794	6
1232	Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature. 2020 , 34, 13456-13472	15
1231	Excellent performance single-crystal NCM cathode under high mass loading for all-solid-state lithium batteries. 2020 , 363, 137185	28
1230	High-throughput production of force-fields for solid-state electrolyte materials. 2020, 8, 081111	9
1229	Na3NEr1NZrxCl6A Halide-Based Fast Sodium-Ion Conductor with Vacancy-Driven Ionic Transport. 2020 , 3, 10164-10173	19

1228 A Review of Solid-State Lithium Bulfur Battery: Ion Transport and Polysulfide Chemistry. 2020, 34, 11942-1196126

1227	Water-Stable High Lithium-Ion Conducting Solid Electrolyte of Li1.4Al0.4Ge0.2Ti1.4(PO4)3IiCl for Aqueous Lithium-Air Batteries. 2020 , 8,	4
1226	Li1.5Al0.5Ge1.5(PO4)3 Ceramic Based Lithium-Sulfur Batteries with High Cycling Stability Enabled by a Dual Confinement Effect for Polysulfides. 2020 , 7, 4093-4100	3
1225	Interface stability of LiCl-rich argyrodite Li6PS5Cl with propylene carbonate boosts high-performance lithium batteries. 2020 , 363, 137128	8
1224	High Formability and Fast Lithium Diffusivity in Metastable Spinel Chloride for Rechargeable All-Solid-State Lithium-Ion Batteries. 2020 , 1, 2000025	3
1223	Structure Design of Cathode Electrodes for Solid-State Batteries: Challenges and Progress. 2020 , 1, 2000042	36
1222	2H-MoS2 as an Artificial Solid Electrolyte Interface in All-Solid-State LithiumBulfur Batteries. 2020 , 7, 2001020	11
1221	Non-nuclear based Thermoelectric + Battery System Concepts for Space Power Systems. 2020 ,	O
1220	Precipitation of the Lithium Superionic Conductor Li10GeP2S12 by a Liquid-phase Process. 2020 , 49, 1379-1381	2
1219	Diffusion-Dependent Graphite Electrode for All-Solid-State Batteries with Extremely High Energy Density. 2020 , 5, 2995-3004	21
1218	Ionic Conductivity of Low-Crystalline Li4P2S6 and Li4P2S6IliX (X=Cl, Br, and I) Systems and Their Role in Improved Positive Electrode Performance in All-Solid-State LiS Battery. 2020 , 5, 9926-9931	1
1217	Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries. 2020 , 12, 42653-42659	17
1216	Phase Behavior in Rhombohedral NaSiCON Electrolytes and Electrodes. 2020 , 32, 7908-7920	21
1215	SnO-Embedded Nanoporous Carbon Electrode with a Reaction-Buffer Space for Stable All-Solid-State Li Ion Batteries. 2020 , 12, 43042-43048	4
1214	Fast Charging All Solid-State Lithium Batteries Enabled by Rational Design of Dual Vertically-Aligned Electrodes. 2020 , 30, 2005357	13
1213	Effects of a solid electrolyte coating on the discharge kinetics of a LiCoO2 electrode: mechanism and potential applications. 2020 , 8, 20979-20986	3
1212	Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. 2020 , 13, 3780-3822	38
1211	Solid-State Li-Ion Batteries Operating at Room Temperature Using New Borohydride Argyrodite Electrolytes. 2020 , 13,	8

121 0	Fast Lithium Ion Conductivity in Layered (Li-Ag)CrS. 2020 , 142, 18645-18651	12
1209	Computational Discovery of Stable Heteroanionic Oxychalcogenides ABXO (A, B = Metals; X = S, Se, and Te) and Their Potential Applications. 2020 , 32, 8229-8242	6
1208	Low Ca concentration doping enhances the mechanical properties and ionic conductivity of NaPS superionic conductors based on first-principles. 2020 , 22, 19816-19822	2
1207	Characterization of mechanical degradation in an all-solid-state battery cathode. 2020 , 8, 17399-17404	37
1206	Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. 2020 , 10,	72
1205	Silicon-Doped Argyrodite Solid Electrolyte LiPSI with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries. 2020 , 12, 41538-41545	36
1204	Structural and Electrochemical Properties of Tysonite Ce0.95A0.05F2.95 (A = Mg, Ca, Sr, and Ba): Fast-Fluoride-Ion-Conducting Solid Electrolytes. 2020 , 124, 18452-18461	3
1203	Ammine Magnesium Borohydride Nanocomposites for All-Solid-State Magnesium Batteries. 2020 , 3, 9264-9270	19
1202	7Li NMR Studies of Short-Range and Long-Range Lithium Ion Dynamics in a Heat-Treated Lithium Iodide-Doped Lithium Thiophosphate Glass Featuring High Ion Conductivity. 2020 , 124, 28614-28622	1
1201	A new high-Li+-conductivity Mg-doped Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries. 2020 , 8, 26055-26065	12
1200	Laser-induced modification and external pressureless joining Na2FeP2O7 on solid electrolyte. 2020 , 2, 332-341	2
1199	Evidence for a Solid-Electrolyte Inductive Effect in the Superionic Conductor LiGeSnPS. 2020 , 142, 21210-212	1923
1198	LiZrO-Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance. 2020 , 12, 57146-57154	37
1197	Formation Mechanism of Thiophosphate Anions in the Liquid-Phase Synthesis of Sulfide Solid Electrolytes Using Polar Aprotic Solvents. 2020 , 32, 9627-9632	12
1196	Ultrathin Aramid/COF Heterolayered Membrane for Solid-State Li-Metal Batteries. 2020 , 20, 8120-8126	31
1195	4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface. 2020 , 13, 5048-5058	30
1195 1194	solid electrolyte interface. 2020 , 13, 5048-5058	30

Tuning the Ar 2020 , 32, e20	node-Electrolyte Interface Chemistry for Garnet-Based Solid-State Li Metal Batteries. 00030	81
	of Li4Ti5O12-based reference electrode for the electrochemical analysis of lithium-ion batteries. 2020 , 116, 106743	5
	Mechanism in 70LiS-30PS Glass by Ab Initio Molecular Dynamics Simulations: with LiPS Crystal. 2020 , 12, 25736-25747	10
7700	proaches of Improving the Performance of Chalcogenide Solid Electrolytes for e Sodium-Ion Batteries. 2020 , 8,	5
1188 Understandin 2020 , 32, 475	ng the Origin of Enhanced Li-Ion Transport in Nanocrystalline Argyrodite-Type LiPSI. 4-4766	22
	Design of Current Collectors for Improving the Battery Performance in Lithium-Ion ium-Ion Batteries. 2020 , 1, 124-159	22
1186 Improvement Years. 2020 , 1	s to the Overpotential of All-Solid-State Lithium-Ion Batteries during the Past Ten 10, 2000904	15
	ution-Processable Li Argyrodites LiPMSI (M = Ge, Sn) and Their Microstructural vealed by Cryo-TEM for All-Solid-State Batteries. 2020 , 20, 4337-4345	33
	ng hydride complexes with high hydrogen coordination: A class of rotatable solid matter. 2020 , 116, 173901	11
1183 Toward Pract	ical All-solid-state Batteries with Sulfide Electrolyte: A Review. 2020 , 36, 377-385	11
1182 Enabling Solid	d-State Li Metal Batteries by In Situ Forming Ionogel Interlayers. 2020 , 3, 5712-5721	12
1181 Fundamental	s, impedance, and performance of solid-state Li-metal microbatteries. 2020 , 38, 033212	2
	rformance Solid-State Lithium Batteries with Silica-Gel Solid Nanocomposite using Bis(fluorosulfonyl)imide-Based Ionic Liquid. 2020 , 167, 070549	5
The solid-stat ¹¹⁷⁹ 347, 115226	e Li-ion conductor Li7TaO6: A combined computational and experimental study. 2020 ,	3
Evaluation of 2020 , 49, 103	the effect of site substitution of Pr doping in the lithium garnet system LiLaNbO. 49-10359	7
1177 A review on e	nergy chemistry of fast-charging anodes. 2020 , 49, 3806-3833	131
1176 First-principle	es study of superionic Na9+xSnxM3⊠S12 (M = P, Sb). 2020 , 1, 184-196	11
	f Capacity Degradation for Graphite in Sulfide-Based All-Solid-State Lithium Batteries: tion Mechanism. 2020 , 3, 5472-5478	3

1174	Strategies to Improve the Performance of Li Metal Anode for Rechargeable Batteries. 2020 , 8, 409	6
1173	A well-designed CoTiO3 coating for uncovering and manipulating interfacial compatibility between LiCoO2 and Li1.3Al0.3Ti1.7(PO4)3 in high temperature zone. 2020 , 526, 146601	10
1172	High ionic conductivity of Li3᠒M PS4 (MŒCa or Mg) at high temperature. 2020 , 351, 115324	2
1171	Lithium-ionic conductivity of LixLa(1៧)/3NbO3 single crystals grown by the TSFZ method. 2020 , 350, 115330	3
1170	Anion Charge and Lattice Volume Maps for Searching Lithium Superionic Conductors. 2020 , 32, 4618-4626	7
1169	Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li-S battery. 2020 , 396, 125334	17
1168	Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6NPS5NCl1+x. 2020 , 30, 67-73	43
1167	Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: Opportunities and challenges. 2020 , 30, 296-328	30
1166	Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries. 2020 , 30, 98-103	57
1165	High Energy Density Hybrid Solid-State Li-Ion Batteries Enabled by a Gel/Ceramic/Gel Sandwich Electrolyte. 2020 , 3, 5113-5119	8
1164	Enhanced electrochemical performances of LiCoO2 cathode for all-solid-state lithium batteries by regulating crystallinity and composition of coating layer. 2020 , 468, 228372	15
1163	Electronic state of sulfide-based alkali-ion conducting solid-state electrolytes applied to all-solid-state secondary batteries. 2020 , 835, 012041	
1162	A Computational Study of Fast Proton Diffusion in Brownmillerite Sr2Co2O5. 2020 , 32, 5028-5035	6
1161	Solid-State Electrolyte Materials for Sodium Batteries: Towards Practical Applications. 2020 , 7, 2693-2713	27
1160	Chemomechanical Failure Mechanism Study in NASICON-Type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries. 2020 , 32, 4998-5008	48
1159	New LiGePS Structure Ordering and Li-Ion Dynamics Unveiled in LiGeS-LiPS Superionic Conductors: A Solid-State Nuclear Magnetic Resonance Study. 2020 , 12, 27029-27036	5
1158	Influence of NCM Particle Cracking on Kinetics of Lithium-Ion Batteries with Liquid or Solid Electrolyte. 2020 , 167, 100532	61
1157	Improving the ionic conductivity of Li1+xAlxGe2-x(PO4)3 solid electrolyte for all-solid-state batteries using microstructural modifiers. 2020 , 46, 23200-23207	5

1156	Enhanced rate capabilities in a glass-ceramic-derived sodium all-solid-state battery. 2020 , 10, 9453	12
1155	High ionic conductivity of multivalent cation doped LiPSCl solid electrolytes synthesized by mechanical milling 2020 , 10, 22304-22310	6
1154	Establishing Ultralow Activation Energies for Lithium Transport in Garnet Electrolytes. 2020 , 12, 32806-32816	5 17
1153	Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries. 2020 , 31, 267-273	24
1152	Pristine MOF and COF materials for advanced batteries. 2020 , 31, 115-134	65
1151	Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. 2020 , 76, 105015	36
1150	Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. 2020 , 3, 7427-7437	31
1149	Operando Differential Electrochemical Pressiometry for Probing Electrochemo-Mechanics in All-Solid-State Batteries. 2020 , 30, 2002535	19
1148	Direct Visualization of the Interfacial Degradation of Cathode Coatings in Solid State Batteries: A Combined Experimental and Computational Study. 2020 , 10, 1903778	36
1147	Fast material search of lithium ion conducting oxides using a recommender system. 2020 , 8, 11582-11588	11
1146	Accommodation of a Large Amount of Lithium Ions in Silsesquioxane-pillared Carbon: A Potential Anode of an All-solid-state Lithium Ion Battery. 2020 , 49, 757-759	O
1145	Oxidization of fluid-like Li metal with inherent Li Li2O interface from simulation insights. 2020 , 6, 692-701	2
1144	Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethylene Glycol-Based Lithium Electrolytes. 2020 , 6, 1115-1128	8
1143	A reversible oxygen redox reaction in bulk-type all-solid-state batteries. 2020 , 6, eaax7236	16
1142	Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium-Sulfur Batteries. 2020 , 20, 5496-5503	15
1141	A new halospinel superionic conductor for high-voltage all solid state lithium batteries. 2020 , 13, 2056-2063	66
1140	Enhanced Ion Conduction in Li2.5Zn0.25PS4 via Anion Doping. 2020 , 32, 3036-3042	5
1139	Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries. 2020 , 8, 7828-7835	24

1138	From Liquid- to Solid-State Batteries: Ion Transfer Kinetics of Heteroionic Interfaces. 2020 , 3, 221-238		55
1137	Totally compatible P4S10+n cathodes with self-generated Li+ pathways for sulfide-based all-solid-state batteries. 2020 , 28, 325-333		9
1136	Mitigating Thermal Runaway of Lithium-Ion Batteries. 2020 , 4, 743-770		216
1135	Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte. 2020 , 456, 227997		29
1134	Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth. 2020 , 20, 2303-2309		36
1133	From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. 2020 , 15, 170-180		187
1132	Lattice Dynamical Approach for Finding the Lithium Superionic Conductor Li3ErI6. 2020 , 3, 3684-3691		34
1131	A Chitosan/Poly(ethylene oxide)-Based Hybrid Polymer Composite Electrolyte Suitable for Solid-State Lithium Metal Batteries. 2020 , 5, 2878-2885		6
1130	Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. 2020 , 72, 104686		27
1129	Fast diffusion mechanism in LiPS a concerted process of interstitial Li ions 2020 , 10, 10715-10722		5
1128	Solid polymer electrolyte supported by porous polymer membrane for all-solid-state lithium batteries. 2020 , 603, 117995		25
1127	Benchmarking the performance of all-solid-state lithium batteries. <i>Nature Energy</i> , 2020 , 5, 259-270	62.3	342
1126	High-energy long-cycling all-solid-state lithium metal batteries enabled by silverdarbon composite anodes. <i>Nature Energy</i> , 2020 , 5, 299-308	62.3	439
1125	Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces: operando analysis and ALD interlayer effects. 2020 , 8, 6291-6302		36
1124	Low-temperature paddlewheel effect in glassy solid electrolytes. 2020 , 11, 1483		51
1123	Highly selective phonon diffusive scattering in superionic layered AgCrSe2. 2020 , 6,		12
1122	ReviewInterfaces: Key Issue to Be Solved for All Solid-State Lithium Battery Technologies. 2020 , 167, 070541		49
1121	Crystal structure refinement, microstructure and ionic conductivity of ATi2(PO4)3 (A=Li, Na, K) solid electrolytes. 2020 , 46, 15613-15620		7

	extended Distribution of Relaxation Times analysis. 2020 , 344, 136060	16
1119	Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. 2020 , 120, 6490-655	7232
1118	Site-Occupation-Tuned Superionic LiScClHalide Solid Electrolytes for All-Solid-State Batteries. 2020 , 142, 7012-7022	97
1117	Surface-Dependent Stability of the Interface between Garnet LiLaZrO and the Li Metal in the All-Solid-State Battery from First-Principles Calculations. 2020 , 12, 16350-16358	26
1116	Slurry-Coated Sulfur/Sulfide Cathode with Li Metal Anode for All-Solid-State Lithium-Sulfur Pouch Cells. 2020 , 3, 596-603	26
1115	Interface equilibrium modeling of all-solid-state lithium-ion thin film batteries. 2020 , 454, 227892	9
1114	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. 2020 , 5, 1035-1043	73
1113	Materials Design Principles for Air-Stable Lithium/Sodium Solid Electrolytes. 2020 , 59, 17472-17476	48
1112	Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates. 2020 , 22, 15214-15221	27
1111	Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. 2020 , 120, 6878-6933	
1111	incerraces and incerphases in Accessive state bacteries with morganic solid electrolytes. 2020, 120, 0076-0933	252
1110	Structure and Sodium Ion Transport in Na11+xSn2+x(Sb1\(\bar{\pi}\Py\)1\(\mathbb{\	7
1110		
1110	Structure and Sodium Ion Transport in Na11+xSn2+x(Sb1 Py)1 S12. 2020 , 32, 6566-6576	7
1110	Structure and Sodium Ion Transport in Na11+xSn2+x(Sb1 \(\text{PPy} \))1\(\text{NS}12.2020, 32, 6566-6576 \) Recent advances in the mitigation of dendrites in lithium-metal batteries. 2020, 128, 010903 Precursor-based surface modification of cathodes using Ta and W for sulfide-based all-solid-state	7
1110 1109 1108	Structure and Sodium Ion Transport in Na11+xSn2+x(Sb1 Py)1 S12. 2020, 32, 6566-6576 Recent advances in the mitigation of dendrites in lithium-metal batteries. 2020, 128, 010903 Precursor-based surface modification of cathodes using Ta and W for sulfide-based all-solid-state batteries. 2020, 10, 10501 A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of	7 6 5
1110 1109 1108 1107	Structure and Sodium Ion Transport in Na11+xSn2+x(Sb1\(\textstyle{\textstyle	7 6 5 27
1110 1109 1108 1107 1106	Structure and Sodium Ion Transport in Na11+xSn2+x(Sb1ŪPy)1ŪS12. 2020, 32, 6566-6576 Recent advances in the mitigation of dendrites in lithium-metal batteries. 2020, 128, 010903 Precursor-based surface modification of cathodes using Ta and W for sulfide-based all-solid-state batteries. 2020, 10, 10501 A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells. 2020, 6, 35 A Na-rich fluorinated sulfate anti-perovskite with dual doping as solid electrolyte for Na metal solid state batteries. 2020, 31, 87-94 Study of a composite solid electrolyte made from a new pyrrolidone-containing polymer and	7 6 5 27

1102	Revisiting the strategies for stabilizing lithium metal anodes. 2020 , 8, 13874-13895	24
1101	Plasma-polymerized C60-coated CNT interlayer with physical and chemical functions for lithiumBulfur batteries. 2020 , 401, 126075	27
1100	Charge-Transfer Complexes for Solid-State Li+ Conduction. 2020 , 2, 2211-2217	4
1099	Electrochemical stability and ionic conductivity of solid electrolytes based on Li10GeP2S12-x A x (A=O, Se. $x=0$, 0.2, 0.4, 0.6, 0.8, 1). 2020 , 461, 012074	O
1098	Conductivity and structural properties of fast Ag-ion-conducting GaGeSbSAgI glassy electrolytes. 2020 , 46, 24882-24886	2
1097	Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. 2020 , 31, 401-433	53
1096	Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors. 2020 , 59, 18457-18462	4
1095	Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. 2020 , 31, 344-351	22
1094	Ionic Conductive Thermoplastic Polymer Welding Layer for Low Electrode/Solid Electrolyte Interface Resistance. 2020 , 3, 7011-7019	3
1093	Sulfur doped LiAlTi(PO) solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier. 2020 , 22, 17221-17228	18
1092	Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors. 2020 , 132, 18615-18620	
1091	Materials design of ionic conductors for solid state batteries. 2020 , 2, 022001	82
1090	Enhancement of the rate capabilities for all-solid-state batteries through the surface oxidation of sulfide solid electrolytes. 2020 , 347, 115249	2
1089	Asymmetry in the Solvation-Desolvation Resistance for Li Metal Batteries. 2020 , 92, 3499-3502	8
1088	Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries. 2020 , 5, 718-727	62
1087	Quantitative Analyses of the Interfacial Properties of Current Collectors at the Mesoscopic Level in Lithium Ion Batteries by Using Hierarchical Graphene. 2020 , 20, 2175-2182	12
1086	Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. 2020 , 5, 808-831	28
1085	Experimental Visualization of Interstitialcy Diffusion Pathways in Fast-Fluoride-Ion-Conducting Solid Electrolyte Ba0.6La0.4F2.4. 2020 , 3, 2873-2880	13

1084	NaAlS-NaSiS. 2020 , 8, 90	8
1083	A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic P olymer Composite Electrolyte. 2020 , 3, 2916-2924	41
1082	Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries. 2020 , 12, 12821-12833	65
1081	Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. 2020 , 16, e2000279	41
1080	Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. 2020 , 49, 2140-2195	175
1079	Solar-driven all-solid-state lithiumBir batteries operating at extreme low temperatures. 2020 , 13, 1205-1211	19
1078	Recent advances in anodic interface engineering for solid-state lithium-metal batteries. 2020 , 7, 1667-1696	34
1077	Synthesis and purification of SiS2 and Li2S for Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte in Lithium-ion batteries. 2020 , 266, 127508	7
1076	A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery. 2020 , 71, 104600	37
1075	Scalable Synthesis of Li2S Nanocrystals for Solid-State Electrolyte Applications. 2020 , 167, 070520	5
1074	Multi-Physics Simulation of Solid-State Batteries with Active Material Coating. 2020, 167, 020521	
1073	Enhancing the Lithium Ion Conductivity of an All Solid-State Electrolyte via Dry and Solvent-Free Scalable Series Production Processes. 2020 , 167, 020558	11
1072	A high rate performance positive composite electrode using a high P/S ratio and LiI composite solid electrolyte for an all-solid-state LiB battery. 2020 , 453, 227905	9
1071	Thin Solid Electrolyte Layers Enabled by Nanoscopic Polymer Binding. 2020 , 5, 955-961	22
1070	How Certain Are the Reported Ionic Conductivities of Thiophosphate-Based Solid Electrolytes? An Interlaboratory Study. 2020 , 5, 910-915	60
1069	Ionic conductivity and thermal stability of Li2OIi2SB2S5 oxysulfide glass. 2020 , 347, 115267	8
1068	First-Principles Design of Highly Functional Sulfide Electrolyte of Li10\(\mathbb{U}\)SnP2S12\(\mathbb{U}\)Clx for All Solid-State Li-Ion Battery Applications. 2020 , 8, 3321-3327	11
1067	AI-Assisted Exploration of Superionic Glass-Type Li Conductors with Aromatic Structures. 2020 , 142, 3301-3305	31

1066 Clarifying the relationship between redox activity and electrochemical stability in solid 2020 , 19, 428-435	electrolytes. 138	
Achieving Both High Ionic Conductivity and High Interfacial Stability with the LiCBO Sol Electrolyte: Design from Theoretical Calculations. 2020 , 12, 6007-6014	id-State 10	
Recent advances in the interface design of solid-state electrolytes for solid-state energy devices. 2020 , 7, 1246-1278	y storage 30	
Ex-situ Analysis of Lithium Distribution in a Sulfide-based All-solid-state Lithium Batter Particle-induced X-ray and Gamma-ray Emission Measurements. 2020 , 88, 45-49	y by 5	
Li/Garnet Interface Stabilization by Thermal-Decomposition Vapor Deposition of an Am Carbon Layer. 2020 , 59, 5346-5349	norphous 22	
Structural and electronic descriptors for atmospheric instability of Li-thiophosphate us functional theory. 2020 , 346, 115225	ing density 4	
1060 SulfurCarbon Nano Fiber Composite Solid Electrolyte for All-Solid-State LiB Batteries. 2	.020 , 3, 1569-1573 14	
Solid versus Liquid Bottom-Up Calculation Model to Analyze the Manufacturing Cost of High-Energy Batteries. 2020 , 8, 1901237	of Future 36	
Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1 electrolyte sheets. 2020 , 40, 1975-1982	.5P3O12 7	
Confocal Microscopy for Dynamic Changes of Li Ion Conduction Path in Graphite Electron of All-Solid-State Batteries. 2020 , 11, 900-904	ode Layers 22	
In/ex-situ Raman spectra combined with EIS for observing interface reactions between layered oxide cathode and sulfide electrolyte. 2020 , 48, 195-202	Ni-rich 19	
A Versatile Sn-Substituted Argyrodite Sulfide Electrolyte for All-Solid-State Li Metal Ba 1055, 10, 1903422	tteries. 2020 81	
1054 Defect chemistry of disordered solid-state electrolyte Li10GeP2S12. 2020 , 8, 3851-385	8 10	
$_{ m 1053}$ Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility.	2020 , 10, 1903698 6 ₇	
1052 A more stable lithium anode by mechanical constriction for solid state batteries. 2020 ,	13, 908-916 51	
Li/Garnet Interface Stabilization by Thermal-Decomposition Vapor Deposition of an Am Carbon Layer. 2020 , 132, 5384-5387	norphous o	
1050 Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate. 2020	23, 30, 1909140	
1049 Li10Ge(P1⊠Sbx)2S12 Lithium-Ion Conductors with Enhanced Atmospheric Stability. 202	0 , 32, 2664-2672 50	

1048	Anharmonic lattice dynamics and superionic transition in AgCrSe. 2020 , 117, 3930-3937	36
1047	Mechanical vs. chemical stability of sulphide-based solid-state batteries. Which one is the biggest challenge to tackle? Overview of solid-state batteries and hybrid solid state batteries. 2020 , 8, 10150-10167	16
1046	Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors. 2020 , 120, 5954-6008	66
1045	PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. 2020 , 868, 114195	9
1044	Macroscopic Ionic Flow in a Superionic Conductor Na^{+} EAlumina Driven by Single-Cycle Terahertz Pulses. 2020 , 124, 147401	1
1043	Block-oriented system identification for nonlinear modeling of all-solid-state Li-ion battery technology. 2020 , 28, 101184	2
1042	Sodium-Storage Behavior of Exfoliated MoS2 as an Electrode Material for Solid-State Batteries with Na3PS4 as the Solid Electrolyte. 2020 , 124, 10298-10305	9
1041	Fracture behavior in battery materials. 2020 , 2, 022002	20
1040	Beyond Typical Electrolytes for Energy Dense Batteries. 2020 , 25,	14
1039	Complex Hydride Solid Electrolytes of the Li(CB9H10)IIi(CB11H12) Quasi-Binary System: Relationship between the Solid Solution and Phase Transition, and the Electrochemical Properties. 2020 , 3, 4831-4839	14
1038	Multiradical-stabilized hollow carbon spheres as a pressure-resistant cathode for fast lithium/sodium storage with excellent performance. 2020 , 8, 8875-8882	3
1037	High-Safety All-Solid-State Lithium-Ion Battery Working at Ambient Temperature with In Situ UV-Curing Polymer Electrolyte on the Electrode. 2020 , 7, 2599-2607	7
1036	Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity. 2020 , 53, 4141-4157	91
1035	Effect of Halogen Doping in Sodium Solid Electrolytes Based on the NaßnßiBß Quinary System. 2020 , 32, 4065-4071	5
1034	Influence of cold sintering process on the structure and properties of garnet-type solid electrolytes. 2020 , 46, 18544-18550	6
1033	Recent Progress in Solid Electrolytes for Energy Storage Devices. 2020 , 30, 2000077	44
1032	High-pressure in situ X-ray computed tomography and numerical simulation of sulfide solid electrolyte. 2020 , 462, 228160	17
1031	Lithium Ion Conduction in Cathode Coating Materials from On-the-Fly Machine Learning. 2020 , 32, 3741-3752	30

1030	3D Imaging and Quantification of Inhomogeneous Electrochemical Reactions in Composite Battery Electrodes. 2020 , 11, 3629-3636	19
1029	Enhanced Air Stability and High Li-Ion Conductivity of LiPNbSO Glass-Ceramic Electrolyte for All-Solid-State Lithium-Sulfur Batteries. 2020 , 12, 21548-21558	37
1028	Material and Interfacial Modification toward a Stable Room-Temperature Solid-State Na-S Battery. 2020 , 12, 20563-20569	21
1027	Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO2-Supported Gel Polymer Electrolyte. 2020 , 5, 1681-1688	38
1026	UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries. 2020 , 8, 8485-8495	26
1025	Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. 2021 , 52, 210-217	35
1024	Manipulating interfacial stability of LiNi0.5Co0.3Mn0.2O2 cathode with sulfide electrolyte by nanosized LLTO coating to achieve high-performance all-solid-state lithium batterie. 2021 , 52, 202-209	19
1023	Garnet Solid Electrolyte for Advanced All-Solid-State Li Batteries. 2021 , 11, 2000648	74
1022	Stable all-solid-state battery enabled with Li6.25PS5.25Cl0.75 as fast ion-conducting electrolyte. 2021 , 53, 147-154	16
1021	Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries. 2021 , 52, 163-169	17
1020	Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery. 2021 , 52, 67-74	17
1019	Electrospinning-Based Strategies for Battery Materials. 2021 , 11, 2000845	78
1018	Interfacial Effects in Lithium and Sodium Batteries. 2021 , 11, 2001455	26
1017	Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. 2021 , 58, 17-24	6
1016	Solid-State LiMetal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. 2021 , 11, 2002689	105
1015	Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond. 2021 , 33, e2000721	84
1014	Rapid leakage responsive and self-healing Li-metal batteries. 2021 , 404, 126470	7
1013	Designing Ceramic/Polymer Composite as Highly Ionic Conductive Solid-State Electrolytes. 2021 , 4, 39-59	22

1012	Interfacial Reactions in Inorganic All-Solid-State Lithium Batteries. 2021 , 4, 8-38	12
1011	A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. 2021 , 407, 127149	20
1010	High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries. 2021 , 482, 228929	17
1009	Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. 2021 , 7, 209-218	30
1008	Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries. 2021 , 482, 228949	23
1007	Hierarchical Composite-Solid-Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultra-Stable Lithium Batteries. 2021 , 31, 2006381	24
1006	Tuning a compatible interface with LLZTO integrated on cathode material for improving NCM811/LLZTO solid-state battery. 2021 , 405, 127031	14
1005	Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition. 2021 , 408, 127254	12
1004	Insight into Prolonged Cycling Life of 4 V All-Solid-State Polymer Batteries by a High-Voltage Stable Binder. 2021 , 11, 2002455	18
1003	Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. 2021 , 122, 106881	25
1002	Improvement of Graphite Interfacial Stability in All-Solid-State Cells Adopting Sulfide Glassy Electrolytes. 2021 , 8, 689-696	2
1001	Kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. 2021 , 421, 127832	2
1000	A flexible three-dimensional composite nanofiber enhanced quasi-solid electrolyte for high-performance lithium metal batteries. 2021 , 8, 361-367	20
999	Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. 2021 , 3, 100048	25
998	Insight into cathode surface to boost the performance of solid-state batteries. 2021 , 35, 661-668	16
997	A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film. 2021 , 485, 229325	15
996	Scalable Processing Routes for the Production of All-Solid-State Batteries Modeling Interdependencies of Product and Process. 2021 , 9, 2000665	8
995	Effect of Young's modulus of active materials on ion transport through solid electrolyte in all-solid-state lithium-ion battery. 2021 , 483, 229212	5

994	A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries. 2021 , 33, 102157	14
993	Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li2S6-based lithium-sulfur batteries. 2021 , 59, 599-607	14
992	Synthesis of sulfide solid electrolytes from Li2S and P2S5 in anisole. 2021 , 9, 400-405	11
991	Operando EDXRD Study of All-Solid-State Lithium Batteries Coupling Thioantimonate Superionic Conductors with Metal Sulfide. 2021 , 11, 2002861	15
990	Enhanced Electrochemical Stability of Sulfide-Based LiNi0.8Mn0.1Co0.1O2 All-Solid-State Batteries by Ti Surface Doping. 2021 , 4, 529-535	4
989	Annealing-induced evolution at the LiCoO2/LiNbO3 interface and its functions in all-solid-state batteries with a Li10GeP2S12 electrolyte. 2021 , 9, 4117-4125	5
988	Inorganic Solid Electrolytes for All-Solid-State Sodium Batteries: Fundamentals and Strategies for Battery Optimization. 2021 , 31, 2008165	10
987	All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. 2021 , 4, 101-135	65
986	Synthesis and Electrochemical Properties of Li3CuS2 as a Positive Electrode Material for All-Solid-State Batteries. 2021 , 4, 20-24	5
985	Analysis of an all-solid state nanobattery using molecular dynamics simulations under an external electric field. 2021 , 23, 597-606	8
984	Toward the Scale-Up of Solid-State Lithium Metal Batteries: The Gaps between Lab-Level Cells and Practical Large-Format Batteries. 2021 , 11, 2002360	37
983	Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. 2021 , 121, 1623-1669	189
982	Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. 2021 , 33, e2000751	105
981	Analysis of Charge Carrier Transport Toward Optimized Cathode Composites for All-Solid-State Liß Batteries. 2021 , 4, 183-194	22
980	Sulfide-Compatible Conductive and Adhesive Glue-Like Interphase Engineering for Sheet-Type All-Solid-State Battery. 2021 , 17, e1902138	11
979	Design of a unique anion framework in halospinels for outstanding performance of all solid-state Li-ion batteries: first-principles approach. 2021 , 9, 15605-15612	5
978	TEM Analyses. 2021 , 143-154	
977	Self-limiting lithiation of vanadium diboride nanosheets as ultra-stable mediators towards high-sulfur loading and long-cycle lithium sulfur batteries. 2021 , 5, 3134-3142	4

976	Electron cloud migration effect-induced lithiophobicity/lithiophilicity transformation for dendrite-free lithium metal anodes. 2021 , 13, 3027-3035	3
975	Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. 2021 , 12, 13248-13272	9
974	Long-Term Activity of Thermoplastic Gel Electrolyte in a Photo-Electrochemical Assembly Involving Poly Bithiophene (PBTh) as Photoactive Working Electrode. 2021 , 09, 1-11	
973	Recent advancements of functional gel polymer electrolytes for rechargeable lithium thetal batteries. 2021 , 5, 5211-5232	4
972	Critical role of zeolites as H2S scavengers in argyrodite Li6PS5Cl solid electrolytes for all-solid-state batteries. 2021 , 9, 17311-17316	6
971	New Cost-Effective Halide Solid Electrolytes for All-Solid-State Batteries: Mechanochemically Prepared Fe3+-Substituted Li2ZrCl6. 2021 , 11, 2003190	45
970	Application of in-situ characterization technology in all-solid-state lithium batteries. 2021 , 70, 198102-198102	3
969	Amorphous Dual-Layer Coating: Enabling High Li-Ion Conductivity of Non-Sintered Garnet-Type Solid Electrolyte. 2021 , 31, 2009692	11
968	Visualizing Local Electrical Properties of Composite Electrodes in Sulfide All-Solid-State Batteries by Scanning Probe Microscopy. 2021 , 125, 2841-2849	5
967	Investigating the Factors Affecting the Ionic Conduction in Nanoconfined NaBH4. 2021 , 9, 2	3
966	Competition between activation energy and migration entropy in lithium ion conduction in superionic NASICON-type Li1BxGaxZr2(PO4)3. 2021 , 9, 7817-7825	2
965	Powder-Process-Based Fabrication of Oxide-Based Bulk-Type All-Solid-State Batteries. 2021 , 221-230	
964	Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. 2021 , 14, 643-671	71
963	Electrolytes for Lithium-Ion and Lithium Metal Batteries. 2021 ,	
962	Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. <i>Nature Energy</i> , 2021 , 6, 123-134	153
961	In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. 2021 , 9, 13531-13539	15
960	Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. 2021 , 9, 15140-15178	10
959	The role of metal substitutions in the development of Li batteries, part II: solid electrolytes. 2021 , 2, 2846-2875	9

958	A review on infiltration techniques for energy conversion and storage devices: from fundamentals to applications.	4
957	Questions and Answers Relating to Lithium-Ion Battery Safety Issues. 2021 , 2, 100285	16
956	Sustainable Solvent-Free Production and Resulting Performance of Polymer Electrolyte-Based All-Solid-State Battery Electrodes. 2021 , 9, 2000923	4
955	Impact of hydration on ion transport in Li2Sn2S5IkH2O. 2021 , 9, 16532-16544	4
954	Solid-State Batteries with Oxide-Based Electrolytes. 2021 , 181-186	
953	Effect of Sintering Temperature and Holding Time on Ionic Conductivity for Li6.4La3Zr1.4Ta0.6O12 Electrolyte. 2021 , 435-441	
952	Surface Engineered Li Metal Anode for All-Solid-State Lithium Metal Batteries with High Capacity. 2021 , 8, 386-389	5
951	Constrictions Induced Metastability and Kinetic Stability for Advanced Solid-State Battery Design. 2021 ,	1
950	All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. 2021 , 14, 5044-5056	9
949	Two-Dimensional Substitution: Toward a Better Understanding of the Structure Transport Correlations in the Li-Superionic Thio-LISICONs. 2021 , 33, 727-740	8
948	Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. 2021, 9, 6487-6498	11
947	Toward high-performance anodeless batteries based on controlled lithium metal deposition: a review. 2021 , 9, 14656-14681	7
946	Structures and conductivities of stable and metastable LiGaS solid electrolytes 2021, 11, 25211-25216	2
945	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. 2021 , 14, 2577-2619	49
944	Electrochemo-Mechanical Effects on Structural Integrity of Ni-Rich Cathodes with Different Microstructures in All Solid-State Batteries. 2021 , 11, 2003583	51
943	Glass Electrolyte. 2021 , 61-66	
942	Cost-Effective Nanomaterials Fabricated by Recycling Spent Batteries. 2021 , 147-174	3
941	A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. 2021 , 5, 6294-6314	8

(2021-2021)

940	Discharge voltage profile changes via physicochemical phenomena in cycled all-solid-state cells based on Li10GeP2S12 and LiNbO3-coated LiCoO2. 2021 , 9, 17905-17912	0
939	Direct Ink Writing of Li Al Ti (PO) -Based Solid-State Electrolytes with Customized Shapes and Remarkable Electrochemical Behaviors. 2021 , 17, e2002866	10
938	Emergent electrochemical functions and future opportunities of hierarchically constructed metal-organic frameworks and covalent organic frameworks. 2021 , 13, 6341-6356	13
937	MetalBrganic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. 2021 , 2, 3790-3805	6
936	An ultrafast process for the fabrication of a Li metallhorganic solid electrolyte interface.	6
935	Anti-perovskites for solid-state batteries: recent developments, current challenges and future prospects. 2021 , 9, 18746-18772	12
934	Research and Development of Thermally Durable Electrolyte for Lithium Ion Battery. 2021, 89,	0
933	A composite solid electrolyte with an asymmetric ceramic framework for dendrite-free all-solid-state Li metal batteries. 2021 , 9, 9665-9674	6
932	Stoichiometric tuning of lattice flexibility and Na diffusion in NaAlSiO4: quasielastic neutron scattering experiment and ab initio molecular dynamics simulations. 2021 , 9, 16129-16136	0
931	High-Performance All-Solid-State LithiumBulfur Batteries Enabled by Slurry-Coated Li6PS5Cl/S/C Composite Electrodes. 2021 , 8,	3
930	Ionic liquid additive stabilized cathode/electrolyte interface in LiCoO2 based solid-state lithium metal batteries. 2021 , 368, 137593	6
929	Rethinking the Design of Ionic Conductors Using Meyer Neldel Conductivity Plot. 2021 , 11, 2100325	8
928	A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. 2021 , 12, 1256	31
927	Tactical hybrids of Li+-conductive dry polymer electrolytes with sulfide solid electrolytes: Toward practical all-solid-state batteries with wider temperature operability. 2021 , 53, 7-7	10
926	The effect of grain boundary on Na ion transport in polycrystalline solid-state electrolyte cubic Na3PS4. 2021 , 8, 025508	
925	Recent developments in materials design for all-solid-state LiB batteries. 1-26	3
924	Preparation and electrochemical properties of ionic-liquid-modified Na3SbS4 membrane composite electrolytes. 2021 , 56, 10565-10574	3
923	Lithium-based vertically aligned nanocomposites for three-dimensional solid-state batteries. 2021 , 46, 152-158	3

922	Semiconductor TiO2 ceramic filler for safety-improved composite ionic liquid gel polymer electrolytes. 2021 , 27, 2045-2051	1
921	Effect of TiO2 Nano-Filler on Electrical Properties of Na+ Ion Conducting PEO/PVDF Based Blended Polymer Electrolyte. 2021 , 31, 3430-3440	3
920	Tunable Lithium-Ion Transport in Mixed-Halide Argyrodites Li6NPS5NClBrx: An Unusual Compositional Space. 2021 , 33, 1435-1443	26
919	Understanding the Electrolytes of LithiumBulfur Batteries. 2021 , 4, 1064-1095	7
918	On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries. 2021 , 33, 1380-1393	12
917	Linking Solid Electrolyte Degradation to Charge Carrier Transport in the Thiophosphate-Based Composite Cathode toward Solid-State Lithium-Sulfur Batteries. 2021 , 31, 2010620	24
916	Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations. 2021 , 11, 291	13
915	Ultrathin and Non-Flammable Dual-Salt Polymer Electrolyte for High-Energy-Density Lithium-Metal Battery. 2021 , 31, 2010261	34
914	Lithium Thiostannate Spinels: Air-Stable Cubic Semiconductors. 2021 , 33, 2080-2089	4
913	Dendrites in Solid-State Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation. 2021 , 11, 2003250	22
912	Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number. 1315-1323	15
911	High Li-ion conductivity in tetragonal LGPO: A comparative first-principles study against known LISICON and LGPS phases. 2021 , 5,	2
910	Garnet Electrolytes with Ultralow Interfacial Resistance by SnS2 Coating for Dendrite-Free all-Solid-State Batteries. 2021 , 4, 2873-2880	3
909	Deep potential generation scheme and simulation protocol for the LiGePS-type superionic conductors. 2021 , 154, 094703	19
908	Porous Mixed Ionic Electronic Conductor Interlayers for Solid-State Batteries. 2021 , 2021, 1-15	5
907	Determination of Solid-State Li Diffusion Coefficient of Lithium Insertion Materials from Rate Capability Tests on Diluted Electrode. 2021 , 89, 157-161	5
906	Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries. 2021 , 37, 210-231	4
905	Synthesis and Postprocessing of Single-Crystalline LiNi0.8Co0.15Al0.05O2 for Solid-State Lithium-Ion Batteries with High Capacity and Long Cycling Stability. 2021 , 33, 2624-2634	15

(2021-2021)

904	Current Trends in Nanoscale Interfacial Electrode Engineering for Sulfide-Based All-Solid-State Li-Ion Batteries. 2021 , 9, 2001096	8
903	Functionalized gel polymer electrolyte membrane for high performance Li metal batteries. 2021 , 361, 115572	2
902	Working Principle of an Ionic Liquid Interlayer During Pressureless Lithium Stripping on Li6.25Al0.25La3Zr2O12 (LLZO) Garnet-Type Solid Electrolyte. 2021 , 4, 1145-1155	4
901	Effect of surface carbonates on the cyclability of LiNbO-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. 2021 , 11, 5367	7
900	NiCoS Bi-metal Sulfide Coating on LiNiCoMnO Cathode for High-Performance All-Solid-State Lithium Batteries. 2021 , 6, 6824-6835	1
899	Formation of the multi-component Lillallr D nanoparticles by co-condensation during plasma flash evaporation. 2021 , 60, 036004	
898	A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes. 2021 , 7, 18	9
897	Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. 2021 ,	11
896	Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. 2021 , 20, 984-990	38
895	Stabilization of Superionic-Conducting High-Temperature Phase of Li(CB9H10) via Solid Solution Formation with Li2(B12H12). 2021 , 11, 330	5
894	Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. 2021 , 64, 879-898	10
893	Chemical stability of Li4PS4I solid electrolyte against hydrolysis. 2021 , 22, 100918	11
892	Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes. 2021 , 33, 2187-2197	3
891	Molecular dynamics simulations of lithium superionic conductor Li10GeP2S12 using a machine learning potential. 2021 , 361, 115567	6
890	A High-Voltage Hybrid Solid Electrolyte Based on Polycaprolactone for High-Performance all-Solid-State Flexible Lithium Batteries. 2021 , 4, 2318-2326	9
889	Electrochemical Performance of LixSiON Polymer Electrolytes Derived from an Agriculture Waste Product, Rice Hull Ash. 2021 , 3, 2144-2152	1
888	First-Principles Study of Microscopic Electrochemistry at the LiCoO Cathode/LiNbO Coating/LiPS Solid Electrolyte Interfaces in an All-Solid-State Battery. 2021 , 13, 11765-11773	9
887	Tailoring Slurries Using Cosolvents and Li Salt Targeting Practical All-Solid-State Batteries Employing Sulfide Solid Electrolytes. 2021 , 11, 2003766	13

886	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. 2021 , 48, 176-176		17
885	Interfacial Chemistry Enables Stable Cycling of All-Solid-State Li Metal Batteries at High Current Densities. 2021 , 143, 6542-6550		52
884	A Decade of Progress on Solid-State Electrolytes for Secondary Batteries: Advances and Contributions. 2021 , 31, 2100891		25
883	Solid-State Rechargeable Lithium Metal Battery with Li4B4Al3O12Cl-based Water-Resistant Lithium-Ion-Conducting Oxychloride Glass-Ceramic Electrolyte. 2021 , 168, 040524		2
882	Promising Electrode and Electrolyte Materials for High-Energy-Density Thin-Film Lithium Batteries.		3
881	Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. 2021 , 491, 229565	5	14
880	Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine. 1		5
879	All-oxide solid-state lithium-ion battery employing 50Li2SO4B0Li2CO3 glass electrolyte. 2021 , 491, 229620		5
878	Editors Choice Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries. 2021 , 168, 040537		31
877	Composite Electrolytes Based on Poly(Ethylene Oxide) and Lithium Borohydrides for All-Solid-State LithiumBulfur Batteries. 2021 , 9, 5396-5404		13
876	Facile Design of Sulfide-Based all Solid-State Lithium Metal Battery: In Situ Polymerization within Self-Supported Porous Argyrodite Skeleton. 2021 , 31, 2101523		22
875	Use of Solid-State NMR Spectroscopy for the Characterization of Molecular Structure and Dynamics in Solid Polymer and Hybrid Electrolytes. 2021 , 13,		4
874	Stabilizing electrode/electrolyte interface in Li-S batteries using liquid/solid Li2S-P2S5 hybrid electrolyte. 2021 , 546, 149034		6
873	Formation Mechanism of LiPS through Decomposition of Complexes. 2021 , 60, 6964-6970		5
872	Excess Li2O Additives to Promote Grain Boundary Growth and Improve Ionic Conductivity of LiTa2PO8 Solid Electrolytes. 2021 , 8,		1
871	Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries. 2021 ,		12
870	Designing inorganic electrolytes for solid-state Li-ion batteries: A perspective of LGPS and garnet. 2021 , 50, 418-418		15
869	Ampere-hour-scale zinc∃ir pouch cells. <i>Nature Energy</i> , 2021 , 6, 592-604	62.3	41

(2021-2021)

868	Ultrathin Layered Double Hydroxide Nanosheets Enabling Composite Polymer Electrolyte for All-Solid-State Lithium Batteries at Room Temperature. 2021 , 31, 2101168	20
867	Fast Lithium-Ion Conduction in Phosphide Li9GaP4. 2021 , 33, 2957-2966	4
866	Single- or Poly-Crystalline Ni-Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for All-Solid-State Batteries?. 2021 , 11, 2100126	58
865	Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review. 2021 , 4, 169-193	26
864	Insights into the Electrochemical Stability and Lithium Conductivity of LiMS (M = Si, Ge, and Sn). 2021 , 13, 22438-22447	3
863	Optimization of lithium ion conductivity of Li2S-P2S5 glass ceramics by microstructural control of crystallization kinetics. 2021 , 362, 115583	3
862	First-Principles DFT Study on Inverse Ruddlesden P opper Tetragonal Compounds as Solid Electrolytes for All-Solid-State Li+-Ion Batteries. 2021 , 33, 5859-5871	3
861	Interfacial barrier free organic-inorganic hybrid electrolytes for solid state batteries. 2021 , 37, 306-314	12
860	Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries. 2021 , 13, 23743-23750	4
859	Uniform lithium plating within 3D Cu foam enabled by Ag nanoparticles. 2021 , 379, 138152	7
858	From ionic to superionic conductivity: The influence of cation order on sodium diffusion in Na3Zr2Si2PO12. 2021 , 363, 115604	1
857	Critical Assembly and Test Procedures Driven by Mechanical Constriction Principle for Advanced Performances of Solid-State Batteries. 2021 , 2, 2100003	4
856	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfide-Based All-Solid-State Batteries. 2021 , 11, 2100210	20
855	Polyethylene Oxide-Based Solid-State Composite Polymer Electrolytes for Rechargeable Lithium Batteries. 2021 , 4, 4581-4601	13
854	A dynamic stability design strategy for lithium metal solid state batteries. 2021 , 593, 218-222	108
853	Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. 2021 , 83, 105858	48
852	The Effect of Ammonium Bromide on Methylcellulose Biopolymer Electrolytes for Electrical Studies. 317, 426-433	
851	Solid ion channels gel battery driven by triboelectric effect and its integrated self-powered foreign matter intrusion detecting system. 2021 , 83, 105791	2

850	Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. 2021 , 8, 1930-1947	36
849	Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid-State Batteries. 2021 , 11, 2100654	25
848	Charge storage in metal-chalcogenide bilayer junctions. 2021 , 54, 295105	О
847	Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries. 2021 , 37, 47-54	12
846	Tailoring inorganicpolymer composites for the mass production of solid-state batteries.	82
845	Material Design Strategy for Halide Solid Electrolytes Li3MX6 (X = Cl, Br, and I) for All-Solid-State High-Voltage Li-Ion Batteries. 2021 , 33, 3669-3677	16
844	Development of cathode-electrolyte-interphase for safer lithium batteries. 2021, 37, 77-86	25
843	Relaxation of the Interface Resistance between Solid Electrolyte and 5 V-Class Positive Electrode. 2021 , 21, 5572-5577	3
842	Atomistic Mechanisms Underlying Non-Arrhenius Ion Transport in Superionic Conductor AgCrSe2. 2021 , 4, 7157-7167	5
841	Robust LiPSI Interlayer to Stabilize the Tailored Electrolyte LiSnPSF/Li Metal Interface. 2021 , 13, 30739-3074	5 3
840	Robust LiPSI Interlayer to Stabilize the Tailored Electrolyte LiSnPSF/Li Metal Interface. 2021 , 13, 30739-30745. Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries 2021 , 5, e2100508	8
	Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance	
840	Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries 2021 , 5, e2100508 Toward High Performance All-Solid-State Lithium Batteries with High-Voltage Cathode Materials:	8
8 ₄ 0 8 ₃ 9	Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries 2021, 5, e2100508 Toward High Performance All-Solid-State Lithium Batteries with High-Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. 2021, 11, 2003154 Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45ITC for all-solid-state Li	8
840 839 838	Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries 2021, 5, e2100508 Toward High Performance All-Solid-State Lithium Batteries with High-Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. 2021, 11, 2003154 Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45IIC for all-solid-state Li metal batteries. 2021, 496, 229843 Greatly enhanced energy density of all-solid-state rechargeable battery operating in high humidity	8 12 5
840 839 838 837	Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries 2021, 5, e2100508 Toward High Performance All-Solid-State Lithium Batteries with High-Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. 2021, 11, 2003154 Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45ITC for all-solid-state Li metal batteries. 2021, 496, 229843 Greatly enhanced energy density of all-solid-state rechargeable battery operating in high humidity environments. 2021, 45, 16794-16805	8 12 5
8 ₄₀ 8 ₃₉ 8 ₃₈ 8 ₃₇ 8 ₃₆	Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries 2021, 5, e2100508 Toward High Performance All-Solid-State Lithium Batteries with High-Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. 2021, 11, 2003154 Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45ITC for all-solid-state Li metal batteries. 2021, 496, 229843 Greatly enhanced energy density of all-solid-state rechargeable battery operating in high humidity environments. 2021, 45, 16794-16805 Direct View on the Origin of High Li+ Transfer Impedance in All-Solid-State Battery. 2021, 31, 2103971 Effects of Substituting S with Cl on the Structural and Electrochemical Characteristics of Na3SbS4	8 12 5 2

832	Investigating the Calcination and Sintering of Li7La3Zr2O12 (LLZO) Solid Electrolytes Using Operando Synchrotron X-ray Characterization and Mesoscale Modeling. 2021 , 33, 4337-4352	2
831	Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte. 2021 ,	5
830	Review on Computational-Assisted to Experimental Synthesis, Interfacial Perspectives of Garnet-Solid Electrolytes for All-Solid-State Lithium Batteries. 2021 , 168, 060529	7
829	A Self-Limited Free-Standing Sulfide Electrolyte Thin Film for All-Solid-State Lithium Metal Batteries. 2021 , 31, 2101985	22
828	Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. 2100748	26
827	Progress in thermal stability of all-solid-state-Li-ion-batteries. 2021 , 3, 827-853	22
826	Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. 2021 , 84, 105906	13
825	Transport Properties of Flexible Composite Electrolytes Composed of LiAlTi(PO) and a Poly(vinylidene fluoridehexafluoropropylene) Gel Containing a Highly Concentrated Li[N(SOCF)]/Sulfolane Electrolyte. 2021 , 6, 16187-16193	О
824	Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithium-ion batteries. 2021 , 20, 100694	12
823	In situ observation of the deterioration process of sulfide-based solid electrolytes using airtight and air-flow TEM systems. 2021 , 70, 519-525	2
822	Investigating Parasitic Reactions in Anode-Free Li Metal Cells with Isothermal Microcalorimetry. 2021 , 168, 060527	3
821	Absolute Local Quantification of Li as Function of State-of-Charge in All-Solid-State Li Batteries via 2D MeV Ion-Beam Analysis. 2021 , 7, 41	3
820	In Situ Transmission Electron Microscopy of All-solid-state Lithium-ion Batteries Using Non-negative Matrix Factorization. 2021 , 141, 335-339	
819	Enhanced Air and Electrochemical Stability of Li7P3S11 B ased Solid Electrolytes Enabled by Aliovalent Substitution of SnO2. 2021 , 8, 2100368	12
818	Fundamentals, status and promise of sodium-based batteries.	116
817	Li9.54Si1.74(P1-xSbx)1.44S11.7Cl0.3: A functionally stable sulfide solid electrolyte in air for solid-state batteries. 2021 , 128, 107058	8
816	Experimental Evaluation of Influence of Stress on Li Chemical Potential and Phase Equilibrium in Two-phase Battery Electrode Materials. 2021 , 89, 355-362	3
815	Theoretical and Experimental Studies of KLiTaO as a Li-Ion Solid Electrolyte. 2021 , 60, 10371-10379	2

814	Synthesis and Na Ion Conductivity of Stoichiometric NaZrSiPO by Liquid-Phase Sintering with NaPO Glass. 2021 , 14,	2
813	Amorphous-Carbon-Coated 3D Solid Electrolyte for an Electro-Chemomechanically Stable Lithium Metal Anode in Solid-State Batteries. 2021 , 21, 6163-6170	3
812	Enhanced Electrochemical Stability and Moisture Reactivity of Al2S3 Doped Argyrodite Solid Electrolyte. 2021 , 168, 070511	1
811	Boosting the Electrochemical Performance of All-Solid-State Batteries with Sulfide Li6PS5Cl Solid Electrolyte Using Li2WO4-Coated LiCoO2 Cathode. 2021 , 8, 2100624	4
810	Unprecedented Self-Healing Effect of Li PS Cl-Based All-Solid-State Lithium Battery. 2021 , 17, e2101326	11
809	Excellent Deformable Oxide Glass Electrolytes and Oxide-Type All-Solid-State LiS-Si Batteries Employing These Electrolytes. 2021 , 13, 35785-35794	7
808	Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries.	9
807	Glassy oxide electrolytes in the system Li4SiO4IIi2SO4 with excellent formability. 2021 , 129, 458-463	1
806	Intermetallic interphases in lithium metal and lithium ion batteries. 2021 , 3, 1083	15
805	Atomistic Origin of Li-Ion Conductivity Reduction at (LiLa)TiO Grain Boundary. 2021 , 21, 6282-6288	Ο
804	On the Lithium Distribution in Halide Superionic Argyrodites by Halide Incorporation in Li7NPS6NClx. 2021 , 4, 7309-7315	5
803	Fast Lithium Ionic Conductivity in Complex Hydride-Sulfide Electrolytes by Double Anions Substitution 2021 , 5, e2100609	6
802	Highly Cyclable All-Solid-State Battery with Deposition-Type Lithium Metal Anode Based on Thin Carbon Black Layer. 2100066	4
801	Liquid-Assisted Mechanochemical Synthesis of LiI-Doped Sulfide Glass Electrolyte. 2021 , 9, 2100385	2
800	Microstructure engineering of solid-state composite cathode via solvent-assisted processing. 2021 , 5, 1845-1859	12
799	Analysis of the conductive properties and structural surroundings of sodium ions in GeGaSbS sulfur glass system. 2021 , 154, 110001	
798	Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects. 2021 , 11, 2101126	65
797	In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. 2021 ,	16

796	Congener Substitution Reinforced LiPSbSO Glass-Ceramic Electrolytes for All-Solid-State Lithium-Sulfur Batteries. 2021 , 13, 34477-34485	4
795	Advanced High-Voltage All-Solid-State Li-Ion Batteries Enabled by a Dual-Halogen Solid Electrolyte. 2021 , 11, 2100836	17
794	Investigation of Delamination-Induced Performance Decay at the Cathode/LLZO Interface. 2021 , 33, 5527-5541	4
793	Size control of sulfide-based solid electrolyte particles through liquid-phase synthesis. 2021 , 387, 415-420	2
792	Concentrated Electrolytes Widen the Operating Temperature Range of Lithium-Ion Batteries. 2021 , 8, e2101646	14
791	Interfacial Conductivity Enhancement and Pore Confinement Conductivity-Lowering Behavior inside the Nanopores of Solid Silica-gel Nanocomposite Electrolytes. 2021 , 13, 40543-40551	3
790	Ionic conductivity and interfacial stability of Li6PS5Cl[li6.5La3Zr1.5Ta0.5O12 composite electrolyte. 2021 , 25, 2513	O
789	Development of sodium hybrid quasi-solid electrolytes based on porous NASICON and ionic liquids. 2021 ,	2
788	Comparison of LiTaO and LiNbO Surface Layers Prepared by Post- and Precursor-Based Coating Methods for Ni-Rich Cathodes of All-Solid-State Batteries. 2021 , 13, 38333-38345	9
787	Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives. 2021 , 1, 2100058	31
786	Roles of Polymerized Anionic Clusters Stimulating for Hydrolysis Deterioration in Li7P3S11. 2021 , 125, 19509-19516	O
7 ⁸ 5	How to Measure a Reliable Ionic Conductivity? The Stack Pressure Dilemma of Microcrystalline Sulfide-Based Solid Electrolytes. 2021 , 6, 3072-3077	10
784	Effect of Li concentration on the ionic conductivity of LixLa(1☑)/3Nb0.80Ta0.20O3 solid solutions. 2021 , 129, 535-539	
783	Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Li-Metal in All-Solid-State Li Batteries. 2021 , 11, 2101915	10
782	Control of the data-retention characteristics of ionic-liquid conducting-bridge memory by designing device structures based on corrosion mechanisms. 2021 , 14, 084005	
781	Improved ionic conductivity and battery function in a lithium iodide solid electrolyte via particle size modification. 2021 , 388, 138569	1
780	A Versatile Li6.5In0.25P0.75S5I Sulfide Electrolyte Triggered by Ultimate-Energy Mechanical Alloying for All-Solid-State Lithium Metal Batteries. 2021 , 11, 2101521	8
779	High-Voltage-Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solid-State Lithium Metal Batteries with Nickel-Rich Cathodes.	3

778	ReviewIhorganic Solid State Electrolytes: Insights on Current and Future Scope. 2021, 168, 080536	2
777	Moderately Concentrated Acetonitrile-containing Electrolytes with High Ionic Conductivity for Durability-oriented Lithium-Ion Batteries. 2021 , 8, 3095-3104	1
776	High-Voltage-Tolerant Covalent Organic Framework Electrolyte with Holistically Oriented Channels for Solid-State Lithium Metal Batteries with Nickel-Rich Cathodes. 2021 , 60, 24915-24923	20
775	Polymorph of LiAlPO: Combined Computational, Synthetic, Crystallographic, and Ionic Conductivity Study. 2021 , 60, 14083-14095	O
774	Stabilizing the Cathode/Electrolyte Interface Using a Dry-Processed Lithium Titanate Coating for All-Solid-State Batteries. 2021 , 33, 6713-6723	4
773	Computational Design and Experimental Synthesis of Air-Stable Solid-State Ionic Conductors with High Conductivity. 2021 , 33, 6909-6917	2
772	Advanced Electrolytes Enabling Safe and Stable Rechargeable Li-Metal Batteries: Progress and Prospects. 2105253	16
771	First-Principles Prediction of the Electrochemical Stability and Reaction Mechanisms of Solid-State Electrolytes. 2021 , 1, 1488-1496	4
770	Review on Interface and Interphase Issues in Sulfide Solid-State Electrolytes for All-Solid-State Li-Metal Batteries. 2021 , 2, 452-471	7
769	Issues and Advances in Scaling up Sulfide-Based All-Solid-State Batteries. 2021 , 54, 3390-3402	19
768	Chemical Stability and Ionic Conductivity of LGPS-Type Solid Electrolyte Tetra-Li7SiPS8 after Solvent Treatment. 2021 , 4, 9932-9943	5
767	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. 2021 , 502, 229919	24
766	The Electrolyte Diffusion Limitation Impact on the Performance of Polymer Composite Electrodes for Solid-State Lithium-Ion Batteries. 2021 , 168, 090553	
765	Enabling Argyrodite Sulfides as Superb Solid-State Electrolyte with Remarkable Interfacial Stability against Electrodes.	4
764	Halide Electrolyte Li3InCl6-Based All-Solid-State Lithium Batteries With Slurry-Coated LiNi0.8Co0.1Mn0.1O2 Composite Cathode: Effect of Binders. 2021 , 8,	0
763	Ion-Conducting Channel Implanted Anode Matrix for All-Solid-State Batteries with High Rate Capability and Stable Anode/Solid Electrolyte Interface. 2021 , 11, 2102045	6
762	Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. 2021 , 87, 106081	12
761	Scalable production of high-performing woven lithium-ion fibre batteries. 2021 , 597, 57-63	69

(2021-2021)

760	High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries. 2021 , 391, 138917	2
759	Research Progress and Application of PEO-Based Solid State Polymer Composite Electrolytes. 2021 , 9,	2
758	Functional Cathode Coatings of LiH2PO4 and LiTi2(PO4)3 for Solid-state Batteries. 1-9	
757	Characterizations of dynamic interfaces in all-solid lithium batteries. 2021 , 506, 229871	4
756	High Energy Density Solid State Lithium Metal Batteries Enabled by Sub-5 µm Solid Polymer Electrolytes. 2021 , 33, e2105329	26
755	Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. 2021 , 3, 100058	10
754	A Novel Strategy to Overcome the Hurdle for Commercial All-Solid-State Batteries via Low-Cost Synthesis of Sulfide Solid Electrolytes 2021 , 5, e2100793	1
753	Development of All-solid-state Batteries. 2021 , 141, 579-582	O
752	Lithium Oxide Superionic Conductors Inspired by Garnet and NASICON Structures. 2021, 11, 2101437	7
751	All-solid lithium-sulfur batteries: present situation and future progress. 2021 , 27, 4937	3
750	Heterovalent Cation Substitution to Enhance the Ionic Conductivity of Halide Electrolytes. 2021 , 13, 47610-47618	4
749	Organic fast ion-conductor with ordered Li-ion conductive nano-pathways and high ionic conductivity for electrochemical energy storage. 2021 , 66, 647-647	1
748	Devil is in the Defects: Electronic Conductivity in Solid Electrolytes. 2021 , 33, 7484-7498	8
747	Li metal stability enhancement of Sn-doped Li2S-P2S5 glass-ceramics electrolyte. 2021 , 390, 138808	1
746	Polar Phase PVdF-HFP-Based Freestanding and Flexible Gel Polymer Electrolyte for Better Cycling Stability in a Na Battery. 2021 , 35, 15153-15165	2
745	Heavily Tungsten Doped Sodium Thioantimonate Solid State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion.	
744	progress in solid-state high voltage lithium-ion battery electrolytes. 2021 , 100070	5
743	Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors. 2021 , 148, 111288	6

742	Effective Ru/CNT Cathode for Rechargeable Solid-State Li-CO Batteries. 2021, 13, 44266-44273	О
741	Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. 2021 , 389, 138735	4
740	Reactivity and Potential Profile across the Electrochemical LiCoO-LiPS Interface Probed by X-ray Photoelectron Spectroscopy. 2021 , 13, 42670-42681	1
739	From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges. 2106608	19
738	Heavily Tungsten-Doped Sodium Thioantimonate Solid-State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. 2021 , 60, 26158-26166	7
737	High safety and cycling stability of ultrahigh energy lithium ion batteries. 2021, 2, 100584	2
736	Engineered Three-Electrode Cells for Improving Solid State Batteries. 2021 , 168, 090508	2
735	Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. 2021 , 60, 32-60	18
734	Effective One-Step Preparation of High Performance Positive and Negative Composite Electrodes for All-Solid-State Li2S-Si Batteries. 2021 , 168, 090557	2
733	Challenges and Opportunities for Fast Charging of Solid-State Lithium Metal Batteries. 3734-3749	22
732	Be waterIstrategy of liquid lithium sulfide enables 0.2 V potential barrier for high-performance lithiumBulfur batteries. 2021, 21, 100793	4
731	Methodology for enhancing the ionic conductivity of superionic halogen-rich argyrodites for all-solid-state lithium batteries. 2021 , 28, 102727	1
730	Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries.	9
729	A solid[Iquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture. 2021 , 54, 475501	1
728	High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. 2021 , 13, 47163-47173	11
727	Revisiting TiS2 as a diffusion-dependent cathode with promising energy density for all-solid-state lithium secondary batteries. 2021 , 41, 289-296	6
726	A systematic study on structure, ionic conductivity, and air-stability of xLi4SnS4[[1½])Li3PS4 solid electrolytes. 2021 , 47, 28377-28383	4
725	Effect of defects and defect distribution on Li-diffusion and elastic properties of anti-perovskite Li3OCl solid electrolyte. 2021 , 41, 614-622	2

724	Well-dispersed single-crystalline nickel-rich cathode for long-life high-voltage all-solid-state batteries. 2021 , 508, 230335	6
723	Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries. 2021 , 41, 571-580	7
722	New synthesis route for glasses and glass-ceramics in the Ga2S3Na2S binary system. 2021 , 142, 111423	О
721	Si nanoparticles embedded in carbon nanofiber sheathed with Li6PS5Cl as an anode material for all-solid-state batteries. 2021 , 510, 230425	5
720	Electrochemical and material analyses for sulfide-based solid electrolytellathode interface under high voltage. 2021 , 509, 230376	3
719	Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. 2021 , 3, 807-818	10
718	Harnessing artificial intelligence to holistic design and identification for solid electrolytes. 2021 , 89, 106337	2
717	Concerted influence of microstructure and adsorbed water on lithium-ion conduction of Li1.3Al0.3Ti1.7(PO4)3. 2021 , 511, 230422	1
716	Crystallization behaviors in superionic conductor Na3PS4. 2021 , 511, 230444	2
715	Bridging the gap between simulated and experimental ionic conductivities in lithium superionic conductors. 2021 , 21, 100463	11
714	High ionic conductivity and stable phase Na11.5Sn2Sb0.5Ti0.5S12 for all-solid-state sodium batteries. 2021 , 512, 230485	2
713	LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. 2021 , 43, 53-61	32
712	Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries. 2021 , 425, 130535	12
711	Progress and perspectives on typical inorganic solid-state electrolytes. 2021 , 885, 161013	5
710	Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3-xYb1-xMxCl6 (M = Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries. 2021 , 425, 130630	19
709	Designing composite polymer electrolytes for all-solid-state lithium batteries. 2021 , 30, 100828	4
708	Inhomogeneous lithium-storage reaction triggering the inefficiency of all-solid-state batteries. 2022 , 66, 226-236	6
707	Preparation of highly conductive metal doped/substituted Li7P2S8Br(1-x)Ix type lithium superionic conductor for all-solid-state lithium battery applications. 2022 , 428, 132155	3

706	Crystalline	Flectroly	2021	49-60
700	Crystattine	י בופכנו טועו	Le. 202 I,	49-00

705	Syntheses and Characterization of Novel Perovskite-Type LaScO-Based Lithium Ionic Conductors. 2021 , 26,	2
704	Development, Structure, and Mechanical Properties of Sulfide Solid Electrolytes. 2021 , 38-48	
703	CHAPTER 11:Sulfide-based Electrolytes in Solid State Batteries. 2021 , 364-390	
702	History and recent developments in divergent electrolytes towards high-efficiency lithium ulfur batteries he review. 2021 , 2, 4115-4139	7
701	Clean Solid-Electrolyte/Electrode Interfaces Double the Capacity of Solid-State Lithium Batteries. 2021 , 13, 5861-5865	4
700	Effect of Organic Electrolyte on the Performance of Solid Electrolyte for Solid-Liquid Hybrid Lithium Batteries. 2021 , 13, 2685-2693	7
699	Ion-conductive metal-organic frameworks. 2021 , 50, 5385-5397	6
698	Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries.	9
697	Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries.	10
696	History of ECSJ Awards and Introduction of Award Winners in 2021. 2021 , 89,	1
695	An evaluation of solid-state electrolyte based on pectin and lithium bis (trifluoromethanesulphonyl)imide for lithium-ion batteries. 2021 , 47, 819-824	1
694	Self-diffusion in garnet-type LiLaZrO solid electrolytes. 2021 , 11, 451	8
693	On the underestimated influence of synthetic conditions in solid ionic conductors. 2021 , 12, 6238-6263	12
692	Correlated Li-ion migration in the superionic conductor Li10GeP2S12.	5
691	Solid Ion Channel Battery Driven by Triboelectric Effect for Mechanic Energy Harvesting. 2021 ,	
690	XAFS Analysis. 2021 , 155-166	
689	A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries. 2021 , 9, 15012-15018	11

(2021-2021)

688	Preliminary study of electrochemical properties of polyethylene oxide (PEO) and polyvinyl alcohol (PVA) composites as material for solid polymer electrolyte. 2021 , 44, 3375-3377	Ο
687	Preparation of Li2-3xAlxS for All-Solid-State Li-S Battery. 2021 , 8,	O
686	SolidBlectrolyte-interphase design in constrained ensemble for solid-state batteries.	8
685	Origin of the Outstanding Performance of Dual Halide Doped Li7P2S8X (X = I, Br) Solid Electrolytes for All-Solid-State Lithium Batteries. 2021 , 4, 1-8	12
684	PhononIbn Interactions: Designing Ion Mobility Based on Lattice Dynamics. 2021 , 11, 2002787	16
683	Engineering the Site-Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li6PS5Br. 2021 , 11, 2003369	21
682	Computational Modeling of Morphology Evolution in Metal-Based Battery Electrodes. 2020 , 1193-1219	1
681	Glasses and Glass-Ceramics for Solid-State Battery Applications. 2019 , 1697-1754	2
680	Recent advances in nanostructured composite solid electrolyte. 2020 , 22, 51-57	9
679	Rapid, high-temperature microwave soldering toward a high-performance cathode/electrolyte interface. 2020 , 30, 385-391	24
678	Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites. 2020 , 33, 309-328	23
677	Exploration of LiPBD composition for solid-state electrolyte materials discovery. 2020, 467, 228250	7
676	Ionic liquid based Fluoropolymer solid electrolytes for Lithium-ion batteries. 2020 , 25, e00176	11
675	Influence of Aliovalent Cation Substitution and Mechanical Compression on Li-Ion Conductivity and Diffusivity in Argyrodite Solid Electrolytes. 2021 , 33, 146-157	23
674	New Concepts in Electrolytes. 2020 , 120, 6783-6819	267
673	Rechargeable Alkali-Ion Battery Materials: Theory and Computation. 2020 , 120, 6977-7019	68
672	A Fireproof, Lightweight, Polymer-Polymer Solid-State Electrolyte for Safe Lithium Batteries. 2020 , 20, 1686-1692	77
671	High Ionic Conductivity Achieved in Li3Y(Br3Cl3) Mixed Halide Solid Electrolyte via Promoted Diffusion Pathways and Enhanced Grain Boundary. 2021 , 6, 298-304	22

670	Superionic Si-Substituted Lithium Argyrodite Sulfide Electrolyte Li6+xSb1\(\mathbb{B}\)SixS5I for All-Solid-State Batteries. 2021 , 9, 120-128	12
669	Superionic Conductors Bulk Interfacial Conduction. 2020 , 142, 18035-18041	35
668	Micromechanism in All-Solid-State Alloy-Metal Batteries: Regulating Homogeneous Lithium Precipitation and Flexible Solid Electrolyte Interphase Evolution. 2021 , 143, 839-848	28
667	Designing solid-state electrolytes for safe, energy-dense batteries. 2020 , 5, 229-252	484
666	Defects and dopant properties of LiV(PO). 2019 , 9, 333	29
665	Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. 2020 , 13, 1429-1461	153
664	Preparation, characterization and impedance spectroscopic studies of Na+ ion conducting PEO + PVDF-blended polymer electrolytes. 2021 , 26, 130-144	4
663	2020 roadmap on solid-state batteries. 2020 , 2, 032008	31
662	Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces. 2017 , 1,	20
661	Modeling lithium-ion solid-state electrolytes with a pinball model. 2018 , 2,	23
660	Mechanical instability of electrode-electrolyte interfaces in solid-state batteries. 2018, 2,	48
659	Diffusion of sodium ions in amorphous Na2Si2O5: Quasielastic neutron scattering and ab initio molecular dynamics simulations. 2020 , 4,	3
658	The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes. 2020 , 167, 100537	21
657	Review P olymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite Solid Electrolytes for Li-Ion Batteries. 2020 , 167, 160514	13
656	Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries. 2019 , 14, 366	9
655	Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries. 2020 , 13, 253	5
654	Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries. 2018 , 9, 176-183	15
653	Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review. 2019 , 56, 111-129	24

652	???????????. 2020 , 88, 54-64	1
651	Mechanical failures in solid-state lithium batteries and their solution. 2020 , 69, 226201	4
650	Advance in interface and characterizations of sulfide solid electrolyte materials. 2020 , 69, 228803-228803	18
649	Wet-Milling Synthesis of Superionic Lithium Argyrodite Electrolytes with Different Concentrations of Lithium Vacancy. 2021 , 13, 46644-46649	1
648	Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery. 2021 , 100140	10
647	Progress of Solid-State Electrolytes Used in Organic Secondary Batteries.	O
646	Single-Crystal-Layered Ni-Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li SnP S -Based All-Solid-State Li Batteries. 2021 , 17, e2103830	4
645	Theoretical analysis of reversible phase evolution in Li-ion conductive halides. 2022 , 574, 151621	O
644	All-Solid-State Lithium Metal Batteries with Sulfide Electrolytes: Understanding Interfacial Ion and Electron Transport.	8
643	Control of chemical structure and lithium-ion conductivity of amorphous lithium phosphate thin film deposited by pulsed laser deposition.	1
642	Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements. 2021 , 12, 5943	6
641	An Antipulverization and High-Continuity Lithium Metal Anode for High-Energy Lithium Batteries. 2021 , e2105029	2
640	Linking the Defects to the Formation and Growth of Li Dendrite in All-Solid-State Batteries. 2021 , 11, 2102148	16
639	5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. 2021 , 90, 106589	12
638	3.??????????. 2017 , 85, 597-600	
637	Development of High Temperature Durable All-solid-state Lithium Ion Secondary Battery Employing Complex Hydride. 2017 , 56, 76-78	
636	Structure Studies of Lithium Ion Conducting Glasses Using Neutron Diffraction. 2017, 56, 443-447	
635	2.????????? []?,????,???,???. 2017 , 85, 591-596	

634	Fast Na Ion Transport Triggered By Rapid Ion Exchange on Local Length Scales.	1
633	Development of Solid Electrolytes for All-Solid-State Batteries. 2019 , 92, 430-434	
632	Interfacial Engineering for Lithium Metal Batteries Based on Garnet Structured Solid Fast Lithium-Ion Conductors. 2019 , 241-273	
631	CHAPTER 3:Electrolyte Development for Solid-state Lithium Batteries. 2019 , 100-135	
630	High-Energy All-Solid-State Lithium-Metal Batteries by Nanomaterial Designs. 2019 , 205-262	
629	Research Development of All Solid-state Battery by Using Thin Film Technology. 2019 , 58, 311-319	
628	Solid-State Battery Technologies for Advanced IoT Sensor Device Applications. 2019 , 31, 334-337	
627	Quasi-Solid Electrolytes Comprising Sulfide Electrolyte and Carboxylate Esters: Investigation of the Influence of the Carboxylate Ester Structure. 2020 , 167, 120521	O
626	Crystal growth and characterization of LixLa(1☑)/3NbO3 using Czochralski method. 2020 , 128, 481-485	O
625	Recent Advancements in High-Performance Solid Electrolytes for Li-ion Batteries: Towards a Solid Future. 2020 , 16, 507-533	
624	Cold Sintering for Li1.5Al0.5Ge1.5(PO4)3 using LiNO3-LiOH as a transient solvent.	O
623	A compliant and low-expansion 2-phase micro-architectured material, with potential application to solid-state Li-ion batteries. 2021 , 104683	1
622	Solvent-Free Solid-State Lithium Battery Based on LiFePO and MWCNT/PEO/PVDF-HFP for High-Temperature Applications. 2021 , 6, 29060-29070	1
621	Synthesis and Ionic Conductivity of Lithium Titanium Phosphate-Based Solid Electrolytes. 2021 , 57, 1035-10-	42 ₂
620	Solid Electrolyte with Oxidation Tolerance Provides a High-Capacity Li2S-Based Positive Electrode for All-Solid-State Li/S Batteries. 2106174	4
619	In situ construction of a flexible interlayer for durable solid-state lithium metal batteries. 2021 , 187, 13-13	4
618	Graphite/Li7P3S11 composite prepared by Beed[process for all-solid-state batteries. 2021 , 372, 115789	2
617	Reduction of Grain Boundary Resistance of LaLiTiO by the Addition of Organic Polymers. 2020 , 11,	O

616	Review of Multivalent Metal Ion Transport in Inorganic and Solid Polymer Electrolytes. 2021, 7, 3	3
615	Large-Format Bipolar and Parallel Solid-State Lithium-Metal Cell Stacks: A Thermally Coupled Model-Based Comparative Study. 2020 , 167, 160555	1
614	Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries. 2022 , 430, 132991	8
613	Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. 2022 , 430, 132896	16
612	Electronic Structure and Reactivity of ElectrodeBolid Electrolyte Interfaces. 2020, 55-71	
611	Three-dimensional porous ceramic framework reinforcing composite electrolyte. 2020 , 69, 228203-228203	2
610	A brief analysis of the microscopic physical image of ions transport in electrolyte. 2020 , 0-0	10
609	Introduction. 2020 , 1-9	
608	Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. 2020 , 69, 228201-228201	1
607	Aggregate ceramic films produced at room temperature by press forming. 2020 , 103, 3479-3492	
606	Aggregate ceramic films produced at room temperature by press forming. 2020 , 103, 3479-3492 1.???????????????????????????????????	
,		4
606	1.????????????????????????????????????	4
606	1.????????????????????????????????????	
606 605 604	1.????????????????????????????????????	15
606 605 604	1.????????????????????????????????????	15 4
606 605 604 603	1.????????????????????????????????????	15 4 7

598	Synthesis and ionic conductivity of LixLa(111)/3Nb111TayO3 solid solutions. 2020, 128, 761-765	1
597	Room-temperature Operation of Lithium Sulfide Positive and Silicon Negative Composite Electrodes Employing Oxide Solid Electrolytes for All-solid-state Battery. 2021 ,	3
596	Synthesis and Lithium-ion Conductivity of Sr(La1\(\text{Li3x}\)ScO4 with a K2NiF4 Structure. 2021 ,	
595	The ionic interphases of the lithium anode in solid state batteries. 2022 , 26, 100973	1
594	A roadmap of battery separator development: Past and future. 2022 , 31, 100858	2
593	Pushing the boundaries of lithium battery research with atomistic modelling on diarent scales.	2
592	An overview of the key challenges and strategies for lithium metal anodes. 2021 , 47, 103641	2
591	Cross-Linked Polypropylene Oxide Solid Electrolyte Film with Enhanced Mechanical, Thermal, and Electrochemical Properties via Additive Modification.	1
590	Printed solid-state electrolytes for form factor-free Li-metal batteries. 2021, 100889	
589	LiAlSCl: A Sulfide-Chloride Lithium Ion Conductor with Highly Disordered Structure and Increased Conductivity. 2021 , 33, 8733-8744	1
588	Free-Standing, Robust, and Stable Li+ Conductive Li(Sr,Zr)2(PO4)3/PEO Composite Electrolytes for Solid-State Batteries.	2
587	Thermal and Electrochemical Interface Compatibility of a Hydroborate Solid Electrolyte with 3 V-Class Cathodes for All-Solid-State Sodium Batteries. 2021 , 13, 55319-55328	1
586	A Dry-Processed Al2O3/LiAlO2 Coating for Stabilizing the Cathode/Electrolyte Interface in High-Ni NCM-Based All-Solid-State Batteries. 2101428	3
585	Li-Rich Antiperovskite/Nitrile Butadiene Rubber Composite Electrolyte for Sheet-Type Solid-State Lithium Metal Battery. 2021 , 9, 744417	2
584	Insights on the Properties of the O-Doped Argyrodite Sulfide Solid Electrolytes (LiPSClO =0-1). 2021 , 13, 54924-54935	2
583	Designing Lithium Argyrodite Solid-State Electrolytes for High-Performance All-Solid-State Lithium Batteries.	O
582	Effect of roll press on consolidation and electric/ionic-path formation of electrodes for all-solid-state battery. 2021 , 12, 100078	2
581	An effective solid-electrolyte interphase for stable solid-state batteries. 2021,	4

580	Technological Advancements for Reduced Charging Time of Electric Vehicle Batteries: A Review. 2022 , 99-112	1
579	Mechanochemical synthesis of air-stable hexagonal LiSnS-based solid electrolytes containing LiI and LiPS 2021 , 11, 38880-38888	2
578	Single-step ball milling synthesis of highly Li+ conductive Li5.3PS4.3ClBr0.7 glass ceramic electrolyte enables low-impedance all-solid-state batteries. 2021 , 2, 7842-7845	1
577	Impact of Surface Coating on the Low Temperature Performance of a Sulfide-Based All-Solid-State Battery Cathode. 2021 , 90,	4
576	Mechanical behaviour of inorganic solid-state batteries: can we model the ionic mobility in the electrolyte with Nernst-Einstein's relation?. 2021 ,	0
575	Controllable Li3PS4IIi4SnS4 solid electrolytes with affordable conductor and high conductivity for solid-state battery.	1
574	High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. <i>Nature Energy</i> ,	39
573	Li-based MOF-derived multifunctional PEO polymer solid-state electrolyte for lithium energy storage.	1
57 ²	Mechanism of Lithium Dendrites Formation and Suppression Strategies in Li Metal Batteries. 2022 , 2152, 012026	
571	A Gradient Topology Host for a Dendrite-free Lithium Metal Anode. 2022 , 94, 106937	7
57°	Unraveling the crystallinity on battery performances of chlorine-rich argyrodite electrolytes. 2022 , 520, 230890	5
569	Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. 2022 , 26, 100977	8
568	Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries. 2022 , 11, 100152	7
567	Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability. 2022 , 45, 969-1001	8
566	A high-performance organic cathode customized for sulfide-based all-solid-state batteries. 2022 , 45, 680-686	3
565	Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries. 2022 , 45, 484-493	8
564	Gold-incorporated porous hollow carbon nanofiber for reversible magnesium-metal batteries. 2022 , 431, 133968	3
563	Solvation chemistry of rare earth nitrates in carbonate electrolyte for advanced lithium metal batteries. 2022 , 433, 134468	3

Surface Coating Modification of Cathode Material for Long-Term Stable All-Solid-State Batteries. 1-15

561	Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery.	6
560	Poly (vinylidene fluoride) binder reinforced poly (propylene carbonate)/3D garnet nanofiber composite polymer electrolyte toward dendrite-free lithium metal batteries. 2022 , 24, 100952	О
559	Optimizing Na Metal/Solid Electrolyte Interface through a Grain Boundary Design.	1
558	Failure mechanism of solid-state electrolyte Li10GeP2S12 in moist atmosphere: A first-principles study.	1
557	High-Entropy Polyanionic Lithium Superionic Conductors. 2022 , 4, 418-423	5
556	Application of ionic liquids in green energy-storage materials. 2022, 155-166	2
555	Atomic Layer Deposition for Thin Film Solid-State Battery and Capacitor. 1	
554	SolidPAC is an interactive battery-on-demand energy density estimator for solid-state batteries. 2022 , 100756	6
553	The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12. 2022 ,	2
552	Role of Critical Oxygen Concentration in the Li3PS4NOx Solid Electrolyte. 2022 , 5, 35-41	1
551	Density Functional Theory Studies on Li Metal Electrode/Garnet-Type Li 7 La 3 Zr 2 O 12 Solid Electrolyte Interfaces for Application in All-Solid-State Batteries. 2100546	1
550	Antiperovskite Electrolytes for Solid-State Batteries 2022,	18
549	Exploiting the paddle-wheel mechanism for the design of fast ion conductors.	23
548	Sodium diffusion and dynamics in Na2Ti3O7: neutron scattering and ab initio simulations.	0
547	Chemical Stability of Sulfide Solid-state Electrolytes: Stability Toward Humid Air and Compatibility with Solvents and Binders.	12
546	Multi-variable Bayesian optimization for a new composition with high Na+ conductivity in the Na3PS4 family. 2022 , 10, 1831-1839	1
545	Exploring the Synthesis of Alkali Metal Anti-perovskites. 2022 , 34, 947-958	2

544	Multivalent Ion Conduction in Inorganic Solids. 2022, 34, 881-898	1
543	High-Power Bipolar Solid-State Batteries Enabled by In-Situ-Formed Ionogels for Vehicle Applications 2022 ,	3
542	Reversible Charge/Discharge Reaction of a Ternary Metal Fluoride, Pb2CuF6: A Highly Conductive Cathode Material for Fluoride-Ion Batteries. 2022 , 5, 1002-1009	2
541	Structural manipulation for solid electrolyte Na3OBr by sulfur ions doping.	
540	Li5SnP3 - a member of the series Li10+4xSn2-xP6 for $x = 0$ comprising the fast lithium-ion conductors Li8SnP4 ($x = 0.5$) and Li14SnP6 ($x = 1$) 2021 , e202104219	
539	Interfacial challenges in all-solid-state lithium batteries. 2022 , 33, 100933	4
538	Solid Polymer Electrolyte Reinforced with a LiAlTi(PO)-Coated Separator for All-Solid-State Lithium Batteries 2022 ,	3
537	Anion Substitution at Apical Sites of Ruddlesden P opper-type Cathodes toward High Power Density for All-Solid-State Fluoride-Ion Batteries. 2022 , 34, 609-616	2
536	Solvent Degradation and Polymerization in the Li-Metal Battery: Organic-Phase Formation in Solid-Electrolyte Interphases 2022 , 14, 2817-2824	7
535	Suppressing lithium dendrites within inorganic solid-state electrolytes. 2022 , 3, 100706	2
534	Doping Strategy and Mechanism for Oxide and Sulfide Solid Electrolytes with High Ionic Conductivity.	6
533	A Nanoscale Design Approach for Enhancing the Li-Ion Conductivity of the LiGePS Solid Electrolyte 2022 , 4, 424-431	1
532	Preparation of LiCoO2 by Molten Salts on Li0.29La0.57TiO3 Solid Electrolyte and Electrochemical Performances of the All-solid-state Li Secondary Battery. 2022 ,	0
531	Air Stability and Interfacial Compatibility of Sulfide Solid Electrolytes for Solid-State Lithium Batteries: Advances and Perspectives. 2022 , 9,	3
530	Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State Batteries.	3
529	Multiscale and hierarchical reaction mechanism in a lithium-ion battery. 2022 , 3, 011305	4
528	Deterioration process of argyrodite solid electrolytes during exposure to humidity-controlled air. 2022 , 524, 231085	4
527	Studies on the inhibition of lithium dendrite formation in sulfide solid electrolytes doped with LiX (XI=IBr, I). 2022 , 377, 115869	3

526	Solid state ionics (Selected topics and new directions. 2022, 126, 100921	2
525	Nominally stoichiometric Na3(WxSixSb1-2x)S4 as a superionic solid electrolyte.	О
524	Fast-Charging Solid-State Lithium Metal Batteries: A Review. 2100203	1
523	A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. 2022 , 47, 262-262	8
522	New Insights into the Effects of Zr Substitution and Carbon Additive on LiErZrCl Halide Solid Electrolytes 2022 ,	5
521	Reducing the crystallinity of PEO-based composite electrolyte for high performance lithium batteries. 2022 , 234, 109729	1
520	Anomalously High Ionic Conductivity of LiSiS-Type Conductors 2022,	4
519	Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries.	9
518	Systematic evaluation of materials and recipe for scalable processing of sulfide-based solid-state batteries. 2022 , 30, 103189	О
517	Characterization of solid-electrolyte/active-material composite particles with different surface morphologies for all-solid-state batteries. 2022 , 33, 103470	O
516	Mechanism understanding for stripping electrochemistry of Li metal anode. 2021 , 1, 506-536	13
515	Cycle Degradation Analysis by High Precision Coulometry for Sulfide-Based All-Solid-State Battery Cathode under Various Potentials. 2022 ,	2
514	Atomistic insight into the dopant impacts at the garnet Li7La3Zr2O12 solid electrolyte grain boundaries.	1
513	The fabrication of a highly conductive ceria-embedded gadolinium-stabilized bismuth oxide nanocomposite solid electrolyte for low-temperature solid oxide fuel cells. 2022 , 3, 3316-3325	O
512	Temperature-dependent Li vacancy diffusion in LiTiO by means of first principles molecular dynamic simulations 2022 ,	
511	Developing a high-voltage electrolyte based on conjuncto-hydroborates for solid-state sodium batteries. 2022 , 10, 7186-7194	O
510	MOF-supported crystalline ionic liquid: new type of solid electrolyte for enhanced and high ionic conductivity 2022 ,	2
509	Solid-State and Gel Electrolytes for Sodium-Ion Batteries. 2022 , 401-448	

508	Scalable, Ultrathin, and High-Temperature-Resistant Solid Polymer Electrolytes for Energy-Dense Lithium Metal Batteries. 2103720	14
507	Block copolymer binders with hard and soft segments for scalable fabrication of sulfide-based all-solid-state batteries.	Ο
506	Revealing the Design Principles of Ni-Rich Cathodes for All-Solid-State Batteries. 2022, 12, 2103473	3
505	Two-Dimensional Substitution Series Na3P1\(\mathbb{Q}\)SbxS4\(\mathbb{Q}\)Sey: Beyond Static Description of Structural Bottlenecks for Na+ Transport. 2022 , 34, 2410-2421	2
504	All-Solid-State Lithium Batteries: Li+-Conducting Ionomer Binder for Dry-Processed Composite Cathodes. 2022 , 7, 1092-1100	14
503	Optimized Lithium-Indium Chloride Solid Electrolyte for High Energy All-Solid-State Batteries. 34, 3-8	
502	Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries. 2022 , 7, 1374-1382	5
501	Ionic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+Diffusion. 2022 , 10, 45	O
500	AC Impedance Analysis of the Degeneration and Recovery of Argyrodite Sulfide-Based Solid Electrolytes under Dry-Room-Simulated Condition. 2022 , 90, 037012-037012	2
499	Fast-Charging Halide-Based All-Solid-State Batteries by Manipulation of Current Collector Interface. 2200767	6
498	Recent Advances in Interface Engineering for All-Solid-State Batteries. 2022, 25, 104-121	
497	Sb, O cosubstituted Li10SnP2S12 with high electrochemical stability and air stability for all-solid-state lithium batteries.	
496	Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery. 1	0
495	Application of Carbon Nanomaterials on the Performance of Li-Ion Batteries. 2022, 361-414	
494	Solid-state lithium batteries: Safety and prospects. 2022,	29
493	Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes 2022 ,	4
492	Improving Cycling Stability of the Lithium Anode by a Spin-Coated High-Purity LiPS Artificial SEI Layer 2022 ,	2
491	A Quasi-Multinary Composite Coating on a Nickel-Rich NCM Cathode Material for All-Solid-State Batteries.	1

490	First-principles design of Na-ion superionic conductors: Interstitial-based Na diffusion in NaCuZrS3 2022 ,	
489	Synthesis and Modification of Tetrahedron LiSiPS Elemental Doping for All-Solid-State Lithium Batteries 2022 , 10, 851264	O
488	Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. 2022 , 6, 543-587	8
487	Search for Lithium Ion Conducting Oxides Using the Predicted Ionic Conductivity by Machine Learning. 2022 , 69, 108-116	
486	Preparation and Electrochemical Properties of LiCoO ₂ Electrode Layer by Molten Salts on Mechanical Machined Li _{0.29} La _{0.57} TiO ₃ Solid	
485	Electrolyte. 2022, 69, 104-107 Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages 2022, 13, 1341	8
484	Metal Halide Double Perovskite Fast Lithium Ion Conductors with a Unique Octahedral B-Site Vacancy Migration Mechanism.	
483	Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries. 2022 , 100073	2
482	Transport and Mechanical Aspects of All-Solid-State Lithium Batteries. 2022, 100679	2
481	Practically Accessible All-Solid-State Batteries Enabled by Organosulfide Cathodes and Sulfide Electrolytes. 2202919	1
480	Investigating finite-size effects in molecular dynamics simulations of ion diffusion, heat transport, and thermal motion in superionic materials 2022 , 156, 134705	1
479	Stress Prediction of the Particle Structure of All-Solid-State Batteries by Numerical Simulation and Machine Learning. 2022 , 4,	O
478	Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks. 2022 , 52,	О
477	Probing the Lithium Substructure and Ionic Conductivity of the Solid Electrolyte LiPSI 2022,	1
476	Amorphous Titanium Polysulfide Composites with Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries 2022 ,	O
475	Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes 2022 , 13, 1909	6
474	Enhanced Cathode/Electrolyte Interface in Solid-state Li-metal Battery based on Garnet-type Electrolyte. 2022 , 37, 149-154	O
473	Solid state ionics for the development of artificial intelligence components.	1

472 Interfaces in Oxide-Based Li Metal Batteries*. 2022, 213-256

471	Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm.	4
470	Porous oxygen-deficient TiNb2O7 spheres wrapped by MXene as high-rate and durable anodes for liquid and all-solid-state lithium-ion batteries. 2022 , 438, 135328	5
469	Li+ conduction in aliovalent-substituted monoclinic Li2ZrCl6 for all-solid-state batteries: Li2+xZr1-xMxCl6 (Ml⊋In, Sc). 2022 , 437, 135413	4
468	Hydrides for solid-state batteries: A review. 2022 , 18, 100194	2
467	Effect of selected dopants on conductivity and moisture stability of Li3PS4 sulfide solid electrolyte: a first-principles study. 2022 , 24, 100837	1
466	Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. 2022 , 96, 107104	3
465	Polyimide as a durable cathode for all-solid-state Li(Na)Brganic batteries with boosted cell-level energy density. 2022 , 96, 107130	1
464	Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries. 2022 , 49, 19-57	1
463	Stabilizing Interface between LiS-PS Glass-Ceramic Electrolyte and Ether Electrolyte by Tuning Solvation Reaction 2021 ,	O
462	Selective Blockage of Li-Ion Diffusion Pathways in Li10SnP2S12: Insights from Nuclear Magnetic Resonance. 2021 , 125, 27884-27890	1
461	LiGePS-Type Structured Solid Solution Phases in the LiPSO System: Controlling Crystallinity by Synthesis to Improve the Air Stability 2021 ,	3
460	Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries. 2021 , 1, 194-202	6
459	High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium-Sulfur Batteries 2021 ,	3
458	Interface Modification and Halide Substitution To Achieve High Ionic Conductivity in LiBH-Based Electrolytes for all-Solid-State Batteries 2021 ,	1
457	Water-Stable Sulfide Solid Electrolyte Membranes Directly Applicable in All-Solid-State Batteries Enabled by Superhydrophobic Li + -Conducting Protection Layer. 2022 , 12, 2102348	10
456	Controlling the Ionic and Electronic Transport at the All-solid-state Battery Interfaces. 2021 , 64, 542-547	
455	Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries. 2021 ,	2

454	Solvent-Free Approach for Interweaving Freestanding and Ultrathin Inorganic Solid Electrolyte Membranes. 2022 , 7, 410-416	15
453	Polymerization-induced microphase separation of polymer-polyoxometalate nanocomposites for anhydrous solid state electrolytes. 2021 ,	2
452	Lithium Transport Pathways Guided by Grain Architectures in Ni-Rich Layered Cathodes. 2021,	2
451	Mesoscale Interrogation Reveals Mechanistic Origins of Lithium Filaments along Grain Boundaries in Inorganic Solid Electrolytes. 2022 , 12, 2102825	8
450	Bimetallic Hexagonal Layered Ni C o Sulfides with High Electrochemical Performance for All-Solid-State Lithium Batteries. 2021 , 9, 17061-17067	1
449	High Performance Single-Crystal Ni-Rich Cathode Modification via Crystalline LLTO Nanocoating for All-Solid-State Lithium Batteries 2021 ,	4
448	GraphiteBilicon Diffusion-Dependent Electrode with Short Effective Diffusion Length for High-Performance All-Solid-State Batteries. 2022 , 12, 2103108	5
447	Numerical Investigation on Diffusion-Induced Cracking in Solid Electrolyte of Composite Electrode and Its Impact on the Li-Ion Conductivity. 2021 , 168, 120506	O
446	A review of the rational interfacial designs and characterizations for solid-state lithium/sulfur cells.	
445	Revealing Atomic-Scale Ionic Stability and Transport around Grain Boundaries of Garnet Li 7 La 3 Zr 2 O 12 Solid Electrolyte. 2022 , 12, 2102151	4
444	Lithium Argyrodite Sulfide Electrolytes with High Ionic Conductivity and Air Stability for All-Solid-State Li-Ion Batteries. 2022 , 7, 171-179	8
443	Hard Carbon Anode with a Sodium Carborane Electrolyte for Fast-Charging All-Solid-State Sodium-Ion Batteries. 2022 , 7, 145-149	10
442	The quest for the holy grail of solid-state lithium batteries.	10
441	Interface engineering on a Li metal anode for an electro-chemo-mechanically stable anodic interface in all-solid-state batteries.	O
440	Insights into interfacial chemistry of Ni-rich cathodes and sulphide-based electrolytes in all-solid-state lithium batteries 2022 ,	2
439	Development of High Energy A node s for All-Solid-State L ithium Batteries Based on Sulfide Electrolytes.	O
438	Vertically Heterostructured Solid Electrolytes for Lithium Metal Batteries. 2201465	2
437	Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor 2022 , 13, 2031	3

436	Tuning of Bayesian optimization for materials synthesis: simulation of the one-dimensional case. 0-0	1
435	Thermal stability and thermal conductivity of solid electrolytes. 2022 , 10, 040902	2
434	Metallic and complex hydride-based electrochemical storage of energy.	3
433	PI-LATP-PEO Electrolyte with High Safety Performance in Solid-State Lithium Metal Batteries.	1
432	Assessing the Long-Term Reactivity to Achieve Compatible Electrolyte E lectrode Interfaces for Solid-State Rechargeable Lithium Batteries Using First-Principles Calculations.	O
431	Crack Healing Mechanism by Application of Stack Pressure to the Carbon-Based Composite Anode of an All-Solid-State Battery.	1
430	Development of High Energy A node s for All-Solid-State L ithium Batteries Based on Sulfide Electrolytes 2022 ,	2
429	Operando analysis of electronic band structure in an all-solid-state thin-film battery. 2022 , 5,	2
428	Scalable Fabrication of Sheet-Type Electrodes for Practical All-Solid-State Batteries Employing Sulfide Solid Electrolytes. 2022 , 101026	0
427	Synthesis and ionic conductivity of Li boracites, Li4B7O12Cl and Li4B4Al3O12Cl1-Br. 2022 , 380, 115921	1
426	Three-dimensional networking binders prepared in situ during wet-slurry process for all-solid-state batteries operating under low external pressure. 2022 , 49, 219-226	6
425	Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries 2022 , 621, 41-66	1
424	Data_Sheet_1.zip. 2020 ,	
423	Data_Sheet_2.PDF. 2020 ,	
422	Data_Sheet_1.PDF. 2019 ,	
421	Hydrolysis of Argyrodite Sulfide-Based Separator Sheets for Industrial All-Solid-State Battery Production 2022 ,	4
420	Fast Sodium-Ionic Conduction in a Novel Conjuncto-Hydroborate of Na4b20h18.	
419	Comminution and Classification as Important Process Steps for the Circular Production of Lithium Batteries. 2022 ,	

418	Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical Applications. 2022 , 7, 1776-1805	16
417	Inventions, Innovations and New Technologies. 2022 , 100012	
416	Extending the Frontiers of Lithium-Ion Conducting Oxides: Development of Multicomponent Materials with £Li3PO4-Type Structures. 2022 , 34, 3948-3959	7
415	Constructing the high-areal-capacity, solid-state Li polymer battery via the multiscale ion transport pathway design. 2022 ,	O
414	Understanding electro-mechanical-thermal coupling in solid-state lithium metal batteries via phase-field modeling. 1	1
413	Cl-Doped LiSnPS with Enhanced Ionic Conductivity and Lower Li-Ion Migration Barrier 2022,	O
412	High Ionic Conductivity with Improved Lithium Stability of CaS- and CaI2-Doped Li7P3S11 Solid Electrolytes Synthesized by Liquid-Phase Synthesis.	0
411	Super Long-Cycling All-Solid-State Battery with Thin Li 6 PS 5 Cl-Based Electrolyte. 2200660	15
410	Perspectives on Improving the Safety and Sustainability of High Voltage Lithium-Ion Batteries Through the Electrolyte and Separator Region. 2200147	5
409	Chemomechanics: Friend or foe of the AND problemlof solid-state batteries?. 2022 , 26, 101002	O
408	Editorial: Special issue on solid-state battery materials, phenomena, and systems. 2022 , 26, 101006	
407	Exceptionally high sodium ion conductivity and enhanced air stability in Na3SbS4 via germanium doping. 2022 , 913, 165229	O
406	Crystalline precursor derived from Li3PS4 and ethylenediamine for ionic conductors. 1	
405	Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. 1	2
404	Progress, challenges and perspectives of computational studies on glassy superionic conductors for solid-state batteries.	3
403	Progress in lithium thioborate superionic conductors.	
402	Lithium Bromide-Induced Organic-Rich Cathode/Electrolyte Interphase for High-Voltage and Flame-Retardant All-Solid-State Lithium Batteries 2022 ,	3
401	Review on the lithium transport mechanism in solid-state battery materials.	O

400	Ionic Conductivity of Nanocrystalline and Amorphous Li10GeP2S12: The Detrimental Impact of Local Disorder on Ion Transport.	4
399	Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications. 2022 , 446, 137041	O
398	Cation-Assisted Lithium Ion Diffusion in a Lithium Oxythioborate Halide Glass Solid Electrolyte.	
397	Li Alloy Anodes for High-Rate and High-Areal-Capacity Solid-State Batteries.	5
396	Understanding the effect of lattice polarisability on the electrochemical properties of lithium tetrahaloaluminates, LiAlX4 ($X = Cl$, Br, I).	
395	Poly(ethylene glycol)-functionalized 3D covalent organic frameworks as solid-state polyelectrolytes. 2022 , 12, 16354-16357	O
394	Hydrogen storage in complex hydrides: past activities and new trends.	3
393	Anode-Free Solid-State Lithium Batteries: A Review. 2201044	9
392	Revealing the Ion Dynamics in Li10GeP2S12 by Quasi-Elastic Neutron Scattering Measurements.	1
391	High Air Stability and Excellent Li Metal Compatibility of Argyrodite-Based Electrolyte Enabling Superior All-Solid-State Li Metal Batteries. 2203858	5
390	Solid electrolyte/graphite composite particle for an all-solid-state lithium-ion battery. 2022 , 33, 103633	O
389	Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. 2022 , 50, 543-553	4
388	Review of various sulfide electrolyte types for solid-state lithium-ion batteries. 2022 , 12, 409-423	O
387	Preparation and Electrochemical Properties of LiCoO ₂ Electrode Layer by Molten Salts on Mechanical Machined Li _{0.29} La _{0.57} TiO ₃ Solid	
386	First-Principles Assessment of Chemical Lithiation of Sulfide Electrolytes and its Impact on Their Transport, Electronic and Mechanical Properties.	
385	Practical Application of Data Science in Material Search of Lithium Ion Conductors. 2022 , 59, 220-225	
384	Cathode modification by Li2OB2O3BiO2 glass addition for all-solid-state battery creation.	
383	Implications of Local Cathode Structure in Solid-State Batteries. 113-132	

382	A review on recent advancements in solid state lithium-sulphur batteries: Fundamentals, challenges, and perspectives.	1
381	Computational Elucidation of Mechanical Degradation in NMC Cathodes: Impact on Cell Performance. 1-44	
380	Kinetics or Transport: Whither Goes the Solid-State Battery Cathode?.	4
379	Toward High Rate Performance Solid-State Batteries. 2200948	3
378	Revealing the dominant factor of domain boundary resistance on bulk conductivity in lanthanum lithium titanates. 2022 ,	
377	Toward Emerging Sodium-Based Energy Storage Technologies: From Performance to Sustainability. 2201692	4
376	Solid-State Lithium-Air Batteries. 249-265	
375	A Novel Ethanol-Mediated Synthesis of Superionic Halide Electrolytes for High-Voltage All-Solid-State LithiumMetal Batteries.	O
374	Ultralong-life lithium metal batteries enabled by decorating robust hybrid interphases on 3D layered framworks. 2022 ,	
373	Room-Temperature Preparation of All-Solid-State Lithium Batteries Using TiO2 Anodes and Oxide Electrolytes.	1
372	Composite Cathodes for Solid-State Lithium Batteries: [Catholytes] the Underrated Giants. 2200032	О
371	Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for All-Solid-State Batteries.	2
370	An All-Solid-State Battery Based on Sulfide and PEO Composite Electrolyte. 2202069	2
369	In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries.	O
368	Identifying soft breakdown in all-solid-state lithium battery. 2022,	9
367	Computational Investigation of Lithium-Ion Transport Mechanisms in Perfluoropolyether Polymers.	O
366	Stable Ni-rich layered oxide cathode for sulfide all-solid-state lithium battery. 2022,	8
365	Lithium Lanthanum Titanate Single Crystals: Dependence of Lithium-Ion Conductivity on Crystal Domain Orientation.	

364	Li6PS5Cl-based composite electrolyte reinforced with high-strength polyester fibers for all-solid-state lithium batteries. 2022 , 542, 231777	0
363	Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes. 2022 , 100, 107528	5
362	Degradation rate at the SolidBolid interface of sulfide-based solid ElectrolyteLathode active material. 2022 , 541, 231672	4
361	Constructing rapid ionic transfer layer to boost the performance of LiCoO2 cathode with high mass loading for all-solid-state lithium battery. 2022 , 541, 231703	Ο
360	Synthesis and characterization of low-temperature lithium-ion conductive phase of LiX (X=Cl, Br)-Li3PS4 solid electrolytes. 2022 , 383, 115970	
359	Intimate triple phase interfaces confined in two-dimensional ordered mesoporous carbon towards high-performance all-solid-state lithium-sulfur batteries. 2022 , 448, 137712	1
358	A solid-state approach to a lithium-sulfur battery. 2022 , 441-488	
357	Constructing a Pvdf-Based Composite Solid-State Electrolyte with High Ionic Conductivity Li6.5la3zr1.5ta0.1n0.4o12 for Lithium Metal Battery Operating at Room Temperature.	
356	Regulating Na/Nascion Electrolyte Interface Chemistry for Stable Solid-State Na Metal Batteries at Room Temperature.	
355	Recent advances of non-lithium metal anode materials for solid-state lithium-ion batteries.	1
354	Recent progress in fundamental understanding of selenium-doped sulfur cathodes during charging and discharging with various electrolytes. 2022 , 235-260	
353	Future prospects for lithium-sulfur batteries: The criticality of solid electrolytes. 2022 , 327-351	
352	Polymorphism, ionic conductivity and electrochemical properties of lithium closo-deca- and dodeca borates and composites, Li2B10H10 - Li2B12H12.	Ο
351	Fast magnesium ion conducting isopropylamine magnesium borohydride enhanced by hydrophobic interactions.	1
350	Liquid-phase synthesis of the Li10GeP2S12-type phase in the LiBiPBIII system. 2022 , 10, 14392-14398	Ο
349	Liquid-phase Synthesis of Li2S and Li3PS4 with Lithium-based Organic Solutions.	1
348	Application of sol-gel processes to materials and interfaces in oxide-based all-solid-state batteries. 2022 , 103, 680-689	
347	Thio-/LISICON and LGPS-Type Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. 2203551	2

346	Effect of Relaxations on the Conductivity of La1/2+1/2xLi1/2d/2xTi1\(\text{AlxO3}\) Fast Ion Conductors. 2022 , 34, 5484-5499	О
345	The Contact Interface Engineering of AllBulfideBased Solid State Batteries via Infiltrating Dissoluble Sulfide Electrolyte.	O
344	Battery energy storage in electric vehicles by 2030.	
343	Research progress on space charge layer effect in lithium-ion solid-state battery.	O
342	Lithium Phosphosulfide Electrolytes for Solid-State Batteries: Part I.	2
341	Recent Advances and Perspectives of Air Stable Sulfide-Based Solid Electrolytes for All-Solid-State Lithium Batteries.	O
340	One-pot aprotic solvent-enabled synthesis of superionic Li-argyrodite solid electrolyte.	1
339	Enhancing Moisture Stability of Sulfide Solid-State Electrolytes by Reversible Amphipathic Molecular Coating.	O
338	NaSICON: A promising solid electrolyteIfor solid-state sodium batteries.	1
337	Enhanced ionic conductivity of composite solid electrolyte by directionally ordered structures of linear Li1.3Al0.3Ti1.7(PO4)3. 2022 ,	
336	Dry mixing of cathode composite powder for all-solid-state batteries using a high-shear mixer. 2022 , 33, 103705	0
335	Cation-assisted lithium ion diffusion in a lithium oxythioborate halide glass solid electrolyte. 2022 , 426, 140806	
334	Key issues and emerging trends in sulfide all solid state lithium battery. 2022, 51, 527-549	1
333	High-rate and durable sulfide-based all-solid-state lithium battery with in situ Li2O buffering. 2022 , 51, 306-316	2
332	All-solid-state lithium batteries featuring hybrid electrolytes based on Li+ ion-conductive Li7La3Zr2O12 framework and full-concentration gradient Ni-rich NCM cathode. 2022 , 450, 138043	О
331	Development Trend of Solid-state Batteries. 2022 , 57, 495-500	
330	Deterioration Mechanisms during Exposure to Humidity-Controlled Air of Argyrodite Solid Electrolytes for All-solid-state Batteries. 2022 , 28, 338-339	1
329	Heuristic Design of Cathode Hybrid Coating for Power-Limited Sulfide-Based All-Solid-State Lithium Batteries. 2201555	4

328	Superionic Bifunctional Polymer Electrolytes for Solid-State Energy Storage and Conversion. 2203413	1
327	Immense Reduction in Interfacial Resistance between Sulfide Electrolyte and Positive Electrode.	3
326	Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich.	
325	Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: A review.	O
324	Could Capacitive Behavior be Triggered in Inorganic Electrolyte-Based All-Solid-State Batteries?. 2205667	
323	Air Stability of Solid-State Sulfide Batteries and Electrolytes. 2022 , 5,	6
322	Bulk/Interfacial Synergetic Approaches Enable the Stable Anode for High Energy Density All-Solid-State LithiumBulfur Batteries. 2022 , 7, 2761-2770	2
321	Superionic Conduction in One-Dimensional Nanostructures. 2022 , 16, 12445-12451	O
320	Composite Polymer Electrolytes for Lithium Batteries. 2022 , 7,	О
319	Self-densified ultrathin solid electrolyte membrane fabricated from monodispersed sulfide electrolyte nanoparticles.	
318	Recent advances and challenges in the design of LiBir batteries oriented solid-state electrolytes. 20220014	
317	Functional Fiber Materials to Smart Fiber Devices.	2
316	Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries. 2022, 101118	О
315	Recent Advances and Future Perspectives of Fiber-Shaped Batteries.	O
314	Room-Temperature Anode-less All-Solid-State Batteries via the Conversion Reaction of Metal Fluorides. 2203580	3
313	Long-Life Sulfide All-Solid-State Battery Enabled by Substrate-Modulated Dry-Process Binder. 2201732	3
312	Fast Ion Transport Mechanism and Electrochemical Stability of Trivalent Metal Iodide-based Na Superionic Conductors Na3XI6 (X = Sc, Y, La, and In). 2022 , 14, 36864-36874	О
311	Grain-Boundary-Free Glassy Solid Electrolytes based on Sulfide Materials: Effects of Oxygen and Nitrogen Doping on Electrochemical Performance.	

310	Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database. 2022 , 8,	
309	Heat Treatment-Induced Conductivity Enhancement in Sulfide-Based Solid Electrolytes: What is the Role of the Thio-LISICON II Phase and of Other Nanoscale Phases?.	
308	Nanostructure of the Interphase Layer between a Single Li Dendrite and Sulfide Electrolyte in All-Solid-State Li Batteries. 3064-3071	3
307	Interface Design Considering Intrinsic Properties of Dielectric Materials to Minimize Space-Charge Layer Effect between Oxide Cathode and Sulfide Solid Electrolyte in All-Solid-State Batteries. 2201208	1
306	Ionic conduction of glasses and their potential applications. 2022 , 130, 552-557	Ο
305	An amorphous superionic conductor Li 3 PS 4 - x LiBr with high conductivity and good air stability by halogen incorporation.	
304	Material science as a cornerstone driving battery research.	2
303	Effects of Halogen and Sulfur Mixing on Lithium-Ion Conductivity in Li7MJ(PS4)(S2MJClxBry) Argyrodite and the Mechanism for Enhanced Lithium Conduction. 2022 , 126, 14067-14074	
302	Which Exchange Current Densities Can Be Achieved in Composite Cathodes of Bulk-Type All-Solid-State Batteries? A Comparative Case Study. 2022 , 14, 38246-38254	2
301	Direct Observation of Li-Ion Transport Heterogeneity Induced by Nanoscale Phase Separation in Li-rich Cathodes of Solid-State Batteries.	Ο
300	Direct Observation of Li-Ion Transport Heterogeneity Induced by Nanoscale Phase Separation in Li-rich Cathodes of Solid-State Batteries.	
299	Effects of I and W co-doping on the structural and electrochemical characteristics of Na3SbS4 glass-ceramic electrolytes. 2022 ,	
298	Atomic-Scale Observations of Oxygen Release Degradation in Sulfide-Based All-Solid-State Batteries with Layered Oxide Cathodes.	4
297	Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes. 2022 , 13,	Ο
296	Defective Boron Nitride Inducing the Lithium-ion Migration on the Sub-Surface of LiBH 4. 2205677	
295	Doping Effect and Li-Ion Conduction Mechanism of ALi6XO6 (A = K or Rb and X = Pentavalent): A First-Principles Study. 2022 , 126, 13548-13559	
294	Detrimental effect of high-temperature storage on sulfide-based all-solid-state batteries. 2022 , 9, 031403	1
293	In situ characterization of the electrolyte electrode interface evolution in solid-state lithium batteries. 2022 , 37, 100658	Ο

292	A facile path from fast synthesis of Li-argyrodite conductor to dry forming ultrathin electrolyte membrane for high-energy-density all-solid-state lithium batteries. 2022 , 74, 309-316	1
291	Research progress and prospect in typical sulfide solid-state electrolytes. 2022 , 55, 105382	O
290	Prospects of halide-based all-solid-state batteries: From material design to practical application. 2022 , 8,	6
289	Recent progress of solid-state lithium batteries in China. 2022 , 121, 120502	1
288	Polyimide-reinforced solid polymer electrolyte with outstanding lithium transferability for durable Li metal batteries. 2022 , 548, 232034	О
287	Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries. 2022 , 326, 119991	O
286	Coupling novel Li7TaO6 surface buffering with bulk Ta-doping to achieve long-life sulfide-based all-solid-state lithium batteries.	O
285	Evaluation of Elastic Properties in Solid Ionics Materials for All-Solid-State Electrochemical Devices Based on Ultrasonic Method. 2022 ,	O
284	Design of densified nickel-rich layered composite cathode via the dry-film process for sulfide-based solid-state batteries.	0
283	In situ characterization of lithium-metal anodes. 2022 , 10, 17917-17947	2
282	Mechanical Properties of Solid State Li-Ion Batteries. 2022,	0
281	Mechanically-based design of lithium-ion batteries: a perspective.	O
280	Promoting the conversion of S and Li2S using a Co3O4@NC additive in all-solid-state Liß batteries. 2022 , 10, 18907-18915	О
280		0
	2022 , 10, 18907-18915	
279	2022, 10, 18907-18915 Battery Applications. 2022, 159-173 Interdigitated cathode Blectrolyte architectural design for fast-charging lithium metal battery with	O
²⁷⁹	Battery Applications. 2022, 159-173 Interdigitated cathode electrolyte architectural design for fast-charging lithium metal battery with lithium oxyhalide solid-state electrolyte. Ion-Selective Fibers in Constructing Solid Polymer Electrolyte for High-Rate and Long-Cycling	0

274	Forced Disorder in the Solid Solution Li3Pli2S: A New Class of Fully Reduced Solid Electrolytes for Lithium Metal Anodes. 2022 , 144, 16350-16365	O
273	Ion Conductivity in a Magnesium Borohydride Ammonia Borane Solid-State Electrolyte. 2022 , 126, 15118-1	51275
272	Enhancing Ionic Conductivity by in Situ Formation of Li7SiPS8/Argyrodite Hybrid Solid Electrolytes. 2022 , 34, 7666-7677	0
271	Super-Ionic Conductivity in □Li 9 Tr P 4 (Tr 및 Al, Ga, In) and Lithium Diffusion Pathways in Li 9 AlP 4 Polymorphs. 2112377	O
270	High ceramic content composite solid-state electrolyte films prepared via a scalable solvent-free process.	O
269	Stabilized cathode/sulfide solid electrolyte interface via Li2ZrO3 coating for all-solid-state batteries. 2022 , 41, 3639-3645	1
268	Effects of different glass formers on Li 2 S₱ 2 S 5 ₱MS 2 (MŒ\$i, Ge, Sn) chalcogenide solid-state electrolytes.	О
267	Current Status of Formulations and Scalable Processes for Producing Sulfidic Solid-State Batteries.	1
266	Computational Screening of Na3MBr6 Compounds as Sodium Solid Electrolytes. 2022 , 34, 8356-8365	1
265	In-Operando Lithium-Ion Transport Tracking in an All-Solid-State Battery. 2204455	O
264	High-Throughput Data-Driven Prediction of Stable High-Performance Na-Ion Sulfide Solid Electrolytes. 2206036	0
263	Ion slippage through Li + -centered G-quadruplex. 2022 , 8,	O
262	CO2 Laser Sintering of Garnet-Type Solid-State Electrolytes. 3392-3400	1
261	Thermally Durable Electrolyte for Lithium-Ion Battery. 2022 , 141132	О
260	Te doping effect on the structure and ionic conductivity of LiTa2PO8 solid electrolyte. 2022,	О
259	Material Search for a Li10GeP2S12-Type Solid Electrolyte in the LiBBX (X = Br, I) System via Clarification of the CompositionBtructureBroperty Relationships. 2022, 34, 8237-8247	O
258	Rotation of complex ions with ninefold hydrogen coordination studied by quasielastic neutron scattering and first-principles molecular dynamics calculations. 2022 , 4,	О
257	Revealing the Impact of Cl Substitution on the Crystallization Behavior and Interfacial Stability of Superionic Lithium Argyrodites. 2207978	3

256	Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries. 2208629	1
255	Multifunctional 1D Nanostructures toward Future Batteries: A Comprehensive Review. 2208374	1
254	Enabling Conversion-Type Iron Fluoride Cathode by Halide-Based Solid Electrolyte. 2206845	2
253	Role of Interfaces in Solid-State Batteries. 2206402	2
252	Microstructure control and its observation of rapid solidification Culla alloy for the development of fluoride-ion batteries. 2022 , 167447	О
251	Cryo-EM Revealing the Origin of Excessive Capacity of the Se Cathode in Sulfide-Based All-Solid-State Liße Batteries.	О
250	Microwave-Assisted Synthesis of Sulfide Solid Electrolytes for All-Solid-State Sodium Batteries.	О
249	Development of Energy Conversion/storage Materials Based on Crystal Defect Cores. 2022 , 61, 666-670	О
248	Effect of Solvents on a Li10GeP2S12-Based Composite Electrolyte via Solution Method for Solid-State Battery Applications.	1
247	Interfacial Stability of Layered LiNixMnyCo1ᢂIO2 Cathodes with Sulfide Solid Electrolytes in All-Solid-State Rechargeable Lithium-Ion Batteries from First-Principles Calculations.	О
246	A High-Entropy Multicationic Substituted Lithium Argyrodite Superionic Solid Electrolyte. 2187-2194	2
245	Process optimisation for NASICON-type solid electrolyte synthesis using a combination of experiments and bayesian optimisation.	О
244	Revealing Impacts of Anion Defect Species on Fluoride-Ion Conduction of Ruddlesden-Popper Oxyfluoride Ba₂ScO₃F. 2022 ,	О
243	Interfaces in Solid-State Batteries: Challenges and Design Strategies. 2022 , 193-218	О
242	Future Challenges to Address the Market Demands of All-Solid-State Batteries. 2022 , 275-295	О
241	Prospective Electrolytes for Solid-State Battery. 2022 , 127-155	О
240	Novel Design Aspects of All-Solid-State Batteries. 2022 , 157-191	0
239	How to commercialize solid-state batteries: A perspective from solid electrolytes. 2022 ,	O

238	Cold Sintering of Li6.4La3Zr1.4Ta0.6O12/PEO Composite Solid Electrolytes. 2022 , 27, 6756	O
237	Recent Progress in Rechargeable Sodium Metal Batteries: A Review.	O
236	Thermal-Stable Separators: Design Principles and Strategies towards Safe Lithium-Ion Battery Operations.	2
235	Stabilizing High-Voltage Cathodes via Ball-Mill Coating with Flame-Made Nanopowder Electrolytes.	O
234	Li-Rich and Halide-Deficient Argyrodite Fast Ion Conductors.	О
233	Thermal Stability between Sulfide Solid Electrolytes and Oxide Cathode. 2022 , 16, 16158-16176	2
232	A Review on the Molecular Modeling of Argyrodite Electrolytes for All-Solid-State Lithium Batteries. 2022 , 15, 7288	0
231	Electron transfer of extremophiles in bioelectrochemical systems. 2022, 26,	O
230	Constructing Low-Impedance Li 7 La 3 Zr 2 O 12 -Based Composite Cathode Interface for All-Solid-State Lithium Batteries. 2200200	1
229	Directed and Continuous Interfacial Channels for Optimized Ion Transport in Solid-State Electrolytes. 2206976	1
228	Li2S№2S3ŪiI Bifunctional Material as the Positive Electrode in the All-Solid-State Li/S Battery.	О
227	Fast Ionic Migration from Bulk to Interface in the Li(NH3)xBH4@SiO2 Composite.	O
226	Portraying the ionic transport and stability window of solid electrolytes by incorporating bond valence-Ewald with dynamically determined decomposition methods. 2022 , 121, 173904	О
225	Bilayer Halide Electrolytes for All-Inorganic Solid-State Lithium-Metal Batteries with Excellent Interfacial Compatibility. 2022 , 14, 48619-48626	O
224	A comparative study of proton conduction between two new Cd(II) and Co(II) complexes and in vitro antibacterial study of the Cd(II) complex.	1
223	Anisotropic magnetoelectric transport in AgCrSe2 single crystals. 2022 , 121, 182405	O
222	Superhalogen-based Li-rich double antiperovskite Li6OS(BH4)2 as solid electrolyte.	О
221	Decoupling Parasitic Reactions at the Positive Electrode Interfaces in Argyrodite-Based Systems. 2022 , 14, 49284-49294	0

220	First-principles study on selenium-doped Li10GeP2S12 solid electrolyte: Effects of doping on moisture stability and Li-ion transport properties. 2022 , 26, 101223	О
219	A poly(ether block amide) based solid polymer electrolyte for solid-state lithium metal batteries. 2023 , 630, 595-603	Ο
218	Operando X-ray diffraction in transmission geometry \mathbb{Q} at home \mathbb{Q} from tape casted electrodes to all-solid-state battery. 2023 , 553, 232270	Ο
217	Regulating Na/NASCION electrolyte interface chemistry for stable solid-state Na metal batteries at room temperature. 2023 , 54, 403-409	О
216	Vacancy-controlled quaternary sulfide Na3-xZn1-xGa1+xS4 with improved ionic conductivity and aqueous stability.	0
215	First-principles simulation insights of electronic and optical properties: Li6PS5Cl system. 2022 , 12, 32674-326	58 <u>3</u>
214	Lithium-Ion Conduction in a Class of Aluminoborates Li MAlB12O24 ($M = Ba$, Sr, Ca, or La; $n = 7$ or 6). 2023 , 159, 112087	Ο
213	Oxygen doped argyrodite electrolyte for all-solid-state lithium batteries. 2022 , 121, 203904	O
212	Lithium Phosphosulfide Electrolytes for Solid State Batteries: Part II.	1
211	X-ray absorption spectromicroscopy gives access to Li1+xAlxGe2⊠(PO4)3 (LAGP) local degradation at the anode-electrolyte interface. 2022 , 17-18, 100106	Ο
210	A review on design of cathode, anode and solid electrolyte for true All-Solid-State Lithium Sulfur Batteries. 2022 , 101201	1
209	Lower Interfacial Resistance between a Ta-Doped Li7La3Zr2O12 (LLZTO) Solid Electrolyte and NiCl2 Cathode by a Simple Heat Treatment for a High-Specific Energy Thermal Battery.	Ο
208	Progress of Atomic Layer Deposition and Molecular Layer Deposition in the development of All-Solid-State Lithium Batteries.	Ο
207	Disentangling Cation and Anion Dynamics in Li3PS4 Solid Electrolytes.	1
206	Segmental molecular dynamics boosts Li-ion conduction in metal-organic solid electrolytes for Li-metal batteries. 2022 ,	0
205	The path toward practical Li-air batteries. 2022 , 6, 2458-2473	1
204	Recent progress of nanotechnology in the research framework of all-solid-state batteries. 2022, 107994	0
203	The Application of Deep Learning on Room Temperature Conductivity of Li10GeP2S12 Type Solid State Electrolyte. 2022 , 2366, 012047	1

202	Insights on Lithium Plating Behavior in Graphite-based All-solid-state Lithium-ion Batteries. 2022,	О
201	A ?Reinforced Concrete? Structure of Silicon Embedded into an In Situ Grown Carbon Nanotube Scaffold as a High-Performance Anode for Sulfide-Based All-Solid-State Batteries.	2
200	Enable high reversibility of Fe/Cu based fluoride conversion batteries via interfacial gas release and detergency of garnet electrolytes. 2022 ,	1
199	Surface-modified and sulfide electrolyte-infiltrated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries. 2022 ,	O
198	Vacancy-Stabilized Superionic State in Na3⊠Sb1⊠WxS4.	1
197	From Contaminated to Highly Lithiated Interfaces: A Versatile Modification Strategy for Garnet Solid Electrolytes. 2209120	O
196	Properties of Na-beta-alumina solid electrolyte with sodium bromide as the additive. 2022,	O
195	Role of Bicontinuous Structure in Elastomeric Electrolytes for High-Energy Solid-State Lithium-Metal Batteries. 2205194	O
194	An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries. 2022 , 56, 105955	O
193	Progress and Prospects of Inorganic Solid-State Electrolyte-Based All-Solid-State Pouch Cells. 2209074	2
192	Electrolytes for Lithium Batteries: The Quest for Improving Lithium Battery Performance and Safety. 2023 , 187-229	0
191	Design of cation doped Li7P2S8Br I sulfide electrolyte with improved conductivity and stable interfacial properties for all-solid-state lithium batteries. 2022 , 29, 101692	1
190	Revealing the surface-to-bulk degradation mechanism of nickel-rich cathode in sulfide all-solid-state batteries. 2023 , 54, 713-723	0
189	Design of active-material/solid-electrolyte composite particles with conductive additives for all-solid-state lithium-ion batteries. 2023 , 555, 232379	O
188	Fast divalent conduction in MB12H12 \square 12H2O (M = Zn, Mg) complex hydrides: effects of rapid crystal water exchange and application for solid-state electrolytes.	О
187	Broadband Wide-Angle VElocity Selector (BWAVES) neutron spectrometer designed for the SNS Second Target Station. 2022 , 272, 02003	O
186	Sulfide solid electrolyte thin film with high ionic conductive from slurry-casting strategy for all-solid-state lithium batteries. 2023 , 928, 117032	0
185	Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries. 2023 , 55, 193-204	O

184	Oxide ceramic electrolytes for all-solid-state lithium batteries Leost-cutting cell design and environmental impact.	Ο
183	Enabling a compatible Li/garnet interface via a multifunctional additive of sulfur. 2022 , 11, 251-258	Ο
182	Hybrid solid electrolyte-liquid electrolyte systems for (almost) solid-state batteries: Why, how, and where to?.	О
181	Metastable properties of a garnet type Li5La3Bi2O12 solid electrolyte towards low temperature pressure driven densification. 2022 , 11, 364-373	O
180	Search for Lithium Ion Conducting Oxides Using the Predicted Ionic Conductivity by Machine Learning. 2023 , 64, 287-295	О
179	Heterogeneities affect solid-state battery cathode dynamics. 2023 , 55, 312-321	1
178	Understanding the impedance spectra of all-solid-state lithium battery cells with sulfide superionic conductors. 2023 , 556, 232450	O
177	Synthesis of amorphous Li3BO3 nanoparticles as solid electrolyte for all-solid-state battery by induction thermal plasma. 2023 , 318, 123775	O
176	First-principles study on interfacial performance of Cl, Br and O-doped Li3PS4 against lithium for all-solid-state batteries. 2023 , 318, 123771	0
175	Modeling assisted synthesis of Zr-doped Li3-xIn1-xZrxCl6 with ultrahigh ionic conductivity for lithium-ion batteries. 2023 , 556, 232465	O
174	Solvent-free design of argyrodite sulfide composite solid electrolyte with superb interface and moisture stability in anode-free lithium metal batteries. 2023 , 556, 232462	O
173	Ionic conductivity prediction model for composite electrodes and quantification of ionic conductivity reduction factors in sulfide-based all-solid-state batteries. 2023 , 58, 106279	O
172	Solid Electrolytes for Lithium-Metal Batteries. 2022,	0
171	Recent Developments of Solid-State Electrolytes for All-Solid-State Lithium Metal Batteries. 2022 ,	O
170	Empirical decay relationship between ionic conductivity and porosity of garnet type inorganic solid-state electrolytes. 2022 , 32, 3362-3373	0
169	Bi2O3-Assisted Sintering of Na3Zr2Si2PO12 Electrolyte for Solid-State Sodium Metal Batteries. 2022 , 12, 1774	O
168	Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid-State Batteries.	0
167	Atomic Layer Deposition for Electrochemical Energy: from Design to Industrialization. 2022, 5,	Ο

166	Halide Solid-State Electrolytes: Stability and Application for High Voltage All-Solid-State Li Batteries. 2202854	O
165	Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid-State Batteries.	O
164	Effect of current density on the solid electrolyte interphase formation at the lithium Li6PS5Cl interface. 2022 , 13,	1
163	Advances and Developments in Batteries and Charging Technologies. 2022, 27-46	O
162	Lithium-Rich Li 2 TiS 3 Cathode Enables High-Energy Sulfide All-Solid-State Lithium Batteries. 2202756	О
161	Stable Anode-Free All-Solid-State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector. 2206762	1
160	Manipulating Charge-Transfer Kinetics of Lithium-Rich Layered Oxide Cathodes in Halide All-Solid-State Batteries. 2207234	О
159	A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries.	O
158	Solvent Reorganization and Additives Synergistically Enable High-Performance Na-Ion Batteries. 477-485	О
157	Electrolyte Engineering for Safer Lithium-ion Batteries: A Review.	1
157 156	Electrolyte Engineering for Safer Lithium-ion Batteries: A Review. Doping engineering of scandium-based solid-state electrolytes toward superior ionic conductivity.	0
156	Doping engineering of scandium-based solid-state electrolytes toward superior ionic conductivity. Visualizing the Chemical Incompatibility of Halide and Sulfide-Based Electrolytes in Solid-State	0
156 155	Doping engineering of scandium-based solid-state electrolytes toward superior ionic conductivity. Visualizing the Chemical Incompatibility of Halide and Sulfide-Based Electrolytes in Solid-State Batteries. 2203673 The Effect of Single versus Polycrystalline Cathode Particles on All-Solid-State Battery	0
156 155 154	Doping engineering of scandium-based solid-state electrolytes toward superior ionic conductivity. Visualizing the Chemical Incompatibility of Halide and Sulfide-Based Electrolytes in Solid-State Batteries. 2203673 The Effect of Single versus Polycrystalline Cathode Particles on All-Solid-State Battery Performance. 2201806 Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for	O O
156 155 154 153	Doping engineering of scandium-based solid-state electrolytes toward superior ionic conductivity. Visualizing the Chemical Incompatibility of Halide and Sulfide-Based Electrolytes in Solid-State Batteries. 2203673 The Effect of Single versus Polycrystalline Cathode Particles on All-Solid-State Battery Performance. 2201806 Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for Li 1+ x Al x Ti 2lk (PO 4) 3 Solid Electrolyte for All-Solid-State Lithium Batteries. 2203440 Atomic Layer Deposition Derived Zirconia Coatings on Ni-Rich Cathodes in Solid-State Batteries:	0 0
156 155 154 153	Doping engineering of scandium-based solid-state electrolytes toward superior ionic conductivity. Visualizing the Chemical Incompatibility of Halide and Sulfide-Based Electrolytes in Solid-State Batteries. 2203673 The Effect of Single versus Polycrystalline Cathode Particles on All-Solid-State Battery Performance. 2201806 Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for Li 1+ x Al x Ti 2lk (PO 4) 3 Solid Electrolyte for All-Solid-State Lithium Batteries. 2203440 Atomic Layer Deposition Derived Zirconia Coatings on Ni-Rich Cathodes in Solid-State Batteries: Correlation Between Surface Constitution and Cycling Performance. 2200073	0 0 0

148	Annealing-Free Thioantimonate Argyrodites with High Li-Ion Conductivity and Low Elastic Modulus. 2211185	O
147	Structure of the Solid-State Electrolyte Li3+2xP1NAlxS4: Lithium-Ion Transport Properties in Crystalline vs Glassy Phases.	O
146	Geometrical Effect of Active Material on Electrode Tortuosity in All-Solid-State Lithium Battery. 2022 , 12, 12692	0
145	Tailoring lithium concentration in alloy anodes for long cycling and high areal capacity in sulfide-based all solid-state batteries. 2022 , 100087	1
144	Blocking Directional Lithium Diffusion in Solid-State Electrolytes at the Interface: First-Principles Insights into the Impact of the Space Charge Layer. 2022 , 14, 55471-55479	0
143	Toluene Tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 Solid Electrolyte toward Ultrathin Membranes for All-Solid-State Lithium Batteries.	1
142	Toward Understanding of the Li-Ion Migration Pathways in the Lithium Aluminum Sulfides Li3AlS3 and Li4.3AlS3.3Cl0.7 via 6,7Li Solid-State Nuclear Magnetic Resonance Spectroscopy.	0
141	A near dimensionally invariable high-capacity positive electrode material.	2
140	Sn-O Dual-Substituted Chlorine-Rich Argyrodite Electrolyte with Enhanced Moisture and Electrochemical Stability. 2211805	0
139	Cl- and Al-Doped Argyrodite Solid Electrolyte Li6PS5Cl for All-Solid-State Lithium Batteries with Improved Ionic Conductivity. 2022 , 12, 4355	Ο
138	Triggering Fast Lithium Ion Conduction in LiPS4I. 144-154	O
137	Challenges and Developments of High Energy Density Anode Materials in Sulfide-Based Solid-State Batteries. 2022 , 9,	О
136	Enhancing the Moisture Stability and Electrochemical Performances of Li6PS5Cl Solid Electrolytes through Ga Substitution. 2022 , 141757	O
135	Surficial Sulfur Loss of Jet-Milled Li6PS5Cl Powder under Mild-Temperature Heat Treatment. 2022 , 5, 15442-15451	O
134	Preparation and characterization of 2Na 3 SbS 4 INa 2 WS 4 and 2Na 3 SbS 4 INa 4 XS 4 (XI=ISi, Ge, Sn) glassIderamic electrolytes.	0
133	Metastable Decomposition Realizing Dendrite-Free Solid-State Li Metal Batteries. 2203631	0
132	Mechanochemical Synthesis and Electrochemical Properties of Li \times VS y Positive Electrodes for All-Solid-State Batteries.	0
131	Design of Solid Electrolytes with Fast Ion Transport: Computation-driven and Practical Approaches.	Ο

130	Enhancing the interfacial stability between argyrodite sulfide-based solid electrolytes and lithium electrodes through CO2 adsorption.	O
129	Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes. 2023 , 141329	O
128	High-Performance All-Solid-State Batteries Enabled by Intimate Interfacial Contact Between the Cathode and Sulfide-Based Solid Electrolytes. 2211355	0
127	Degradation Analysis by X-ray Absorption Spectroscopy for LiNbO3 Coating of Sulfide-Based All-Solid-State Battery Cathode. 2023 , 15, 2979-2984	1
126	Hydration and Dehydration Behavior of Li4SnS4 for Applications as a Moisture-Resistant All-Solid-State Battery Electrolyte.	0
125	Evaluation and Improvement of the Stability of Poly(ethylene oxide)-based Solid-state Batteries with High-Voltage Cathodes.	O
124	Evaluation and Improvement of the Stability of Poly(ethylene oxide)-based Solid-state Batteries with High-Voltage Cathodes.	0
123	Influence of the Halogen in Argyrodite Electrolytes on the Electrochemical Performance of All-Solid-State Lithium Batteries. 2201116	O
122	Degradation mechanism of all-solid-state lithium-ion batteries with argyrodite Li 7 $\!$ R PS 6 $\!$ K Cl x sulfide through high-temperature cycling test. 20220052	1
121	Enhanced ionic conductivity of sulfide solid electrolyte with high lithium content based on cryomilling. 2023 , 107438	O
120	A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. 2023 , 14,	0
119	Optimization on transport of charge carriers in cathode of sulfide electrolyte-based solid-state lithium-sulfur batteries.	O
118	Crystallization kinetics and structural studies of Li1.25Al0.5Ge1.5P2.75Mo0.25O12 (LAGPM) glass/glass-ceramics based solid state electrolyte. 2023 , 296, 127291	0
117	Gram-scale carbothermic control of LLZO garnet solid electrolyte particle size. 2023 , 457, 141349	O
116	Effects of polishing treatments on the interface between garnet solid electrolyte and lithium metal. 2023 , 441, 141789	0
115	Flexible solvent-free polymer electrolytes for solid-state Na batteries. 2023 , 559, 232644	O
114	Highly electrochemically stable Li2B12H12-Al2O3 nanocomposite electrolyte enabling A 3.8 v room-temperature all-solid-state Li-ion battery. 2023 , 938, 168689	0
113	Mechanochemical reactions between polyanionic borate and residue Li2CO3 on LiCoO2 to stabilize cathode/electrolyte interface in sulfide-based all-solid-state batteries. 2023 , 108, 108192	O

112	Liquid-Phase Synthesis of Highly Deformable and Air-Stable Sn-Substituted Li 3 PS 4 for All-Solid-State Batteries Fabricated and Operated under Low Pressures. 2203292	0
111	Enhancing the Interfacial Stability of the Li2SBiS2B2S5 Solid Electrolyte toward Metallic Lithium Anode by LiI Incorporation. 2023 , 15, 1392-1400	О
110	Origin of the High Conductivity of the LiI-Doped Li3PS4 Electrolytes for All-Solid-State LithiumBulfur Batteries Working in Wide Temperature Ranges. 2023 , 62, 96-104	0
109	High conductivity enabled by concerted Li ion diffusion in Li3Y(Br3Cl3) solid electrolytes for all-solid-state batteries.	О
108	Next-generation battery technology based on solid-state electrolytes. 2023, 1-46	О
107	Engineering green and sustainable solvents for scalable wet synthesis of sulfide electrolytes in high-energy-density all-solid-state batteries.	О
106	Fundamentals of the cathodeBlectrolyte interface in allBolidBtate lithium batteries.	О
105	A fabrication of stable lithium metal anodes using HF scavenging films.	O
104	Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices.	О
103	The Interface Engineering of AllBolidBtate Batteries Based on Inorganic Solid Electrolytes.	О
102	High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites.	О
101	Weak Correlation between the Polyanion Environment and Ionic Conductivity in Amorphous Li PS Superionic Conductors.	O
100	Recent developments in the field of sulfide ceramic solid-state electrolytes.	О
99	Silicon disulfide for high-performance Li-ion batteries and solid-state electrolytes.	О
98	Solvent-engineered synthesis of sulfide solid electrolytes for high performance all-solid-state batteries. 2023 ,	О
97	Zn substituted Li4P2S6 as a solid lithium-ion electrolyte for all-solid-state lithium batteries. 2023 , 320, 123861	О
96	Sustainable synthesis of SiS2 for solid-state electrolytes by cascaded metathesis. 2023 , 35, 105574	O
95	Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics. 2023, 14,	O

94	Current Status and Future Directions in Environmental Stability of Sulfide Solid-State Electrolytes for All-Solid-State Batteries. 2023 , 4,	0
93	An Ultra-Stable Electrode-Solid Electrolyte Composite for High-Performance All-Solid-State Li-Ion Batteries. 2207210	O
92	Electronic Conductivity of Lithium Solid Electrolytes. 2204098	O
91	The Batteries[New Clothes: Li and H Dynamics in Poorly Conducting Li2OHCl Directly Probed by Nuclear Spin Relaxation.	О
90	Stabilization strategies for high-capacity NCM materials targeting for safety and durability improvements. 2023 , 16, 100233	0
89	Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries. 2023 , 462, 142183	О
88	Ferroelastic toughening: Can it solve the mechanics challenges of solid electrolytes?. 2023, 27, 101056	0
87	An integrated study on the ionic migration across the nano lithium lanthanum titanate (LLTO) and lithium iron phosphate-carbon (LFP-C) interface in all-solid-state Li-ion batteries. 2023 , 565, 232907	O
86	In situ construction of PVA/LiF composite artificial protective layer to assist dendrite-free Li metal anode. 2023 , 620, 156809	O
85	Investigation of active heating systems for polymer-solid-state cells in an automotive battery module. 2023 , 567, 232968	O
84	Synthesis of glassBeramic Li7½xZnxP2S8¼OxI oxysulfide solid electrolyte with high chemical stability for all-solid-state lithium batteries. 2023 , 121, 434-444	О
83	Effective mechanochemical synthesis of sulfide solid electrolyte Li3PS4 in a high energy ball mill by process investigation. 2023 , 34, 104004	О
82	Nano sulfurized polyacrylonitrile cathode for high performance solid-state lithiumBulfur batteries. 2023 , 570, 233045	0
81	Enabling high ionic conductivity in yttrium-based lithium halide electrolytes by composition modulation for all-solid-state batteries. 2023 , 30, 101510	O
80	Exploring the use of butadiene rubbers as a binder in composite cathodes for all-solid-state lithium batteries. 2023 , 122, 341-348	О
79	Coating materials and processes for cathodes in sulfide-based all solid-state batteries. 2023 , 39, 101251	O
78	Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy.	0
77	Formation of sodium ion conductive NaZr2(PO4)3 composite via liquid phase sintering method with sodium disilicate glass. 2023 , 395, 116213	О

76	Interface problems, modification strategies and prospects of Nifich layered oxide cathode materials in allBolidBtate lithium batteries with sulfide electrolytes. 2023 , 571, 233079	0
75	First-principles assessment of chemical lithiation of sulfide solid electrolytes and its impact on their transport, electronic and mechanical properties. 2023 , 560, 232689	O
74	Strategies for fitting accurate machine-learned inter-atomic potentials for solid electrolytes. 2023 , 2, 015101	0
73	NFCapsule. 2022,	1
72	Balancing Partial Ionic and Electronic Transport for Optimized Cathode Utilization of High-Voltage LiMn 2 O 4 /Li 3 InCl 6 Solid-State Batteries. 2023 , 6,	0
71	Encapsulating and Operating a Stable Li 3 ErBr 6 -Based Solid LiBeS 2 Battery at Room Temperature. 2023 , 33,	O
70	Electrolytes in Organic Batteries. 2023 , 123, 1712-1773	0
69	Degradation of an argyrodite-type sulfide solid electrolyte by a trace of water: A spectroscopic analysis. 2023 , 392, 116162	1
68	TaCl5-glassified Ultrafast Lithium Ion-conductive Halide Electrolytes for High-performance All-solid-state Lithium Batteries. 2023 , 52, 237-241	0
67	A Durable Solid-State Natio 2 Battery with Solid Composite Electrolyte Na 3.2 Zr 1.9 Ca 0.1 Si 2 PO 12 B VDF-HFP. 2023 , 11,	O
66	Investigation of the structure and ionic conductivity of a Li3InCl6 modified by dry room annealing for solid-state Li-ion battery applications. 2023 , 227, 111690	О
65	Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)Bulfur Batteries. 2023, 9, 110	O
64	New Oxyhalide Solid Electrolytes with High Lithium Ionic Conductivity >10 mS cm 1 for All-Solid-State Batteries. 2023 , 62,	О
63	Halogen-Rich Lithium Argyrodite Solid-State Electrolytes: A Review.	O
62	New Oxyhalide Solid Electrolytes with High Lithium Ionic Conductivity >10 mS cm 1 for All-Solid-State Batteries. 2023 , 135,	0
61	Reaction Current Heterogeneity at the Interface between a Lithium Electrode and Polymer/Ceramic Composite Electrolytes. 2023 , 6, 2160-2177	O
60	Theoretical Evaluation of the Persistence of Transverse Phonons across a Liquid-like Transition in Superionic Conductor KAg3Se2. 2023 , 35, 1780-1787	0
59	Effect of Fluorine Substitution in Li₃YCl₆ Chloride Solid Electrolytes for All-solid-state Battery. 2023 , 91, 037002-037002	О

58	Beneficial Role of Inherently Formed Residual Lithium Compounds on the Surface of Ni-Rich Cathode Materials for All-Solid-State Batteries. 2023 , 15, 10744-10751	O
57	Powering internet-of-things from ambient energy: a review. 2023 , 5, 022001	O
56	Advanced Characterization Techniques for Sulfide-Based Solid-State Lithium Batteries. 2023, 13,	0
55	Controlling Electrolyte Properties and Redox Reactions Using Solvation and Implications in Battery Functions: A Mini-Review. 2023 , 13,	1
54	Germanium-Free Dense Lithium Superionic Conductor and Interface Re-Engineering for All-Solid-State Lithium Batteries against High-Voltage Cathode. 2023 , 15, 10629-10641	O
53	Charge fluctuation drives anion rotation to enhance the conductivity of Na11M2PS12 (M = Si, Ge, Sn) superionic conductors. 2023 , 25, 7634-7641	O
52	Constructing a PVDF-based composite solid-state electrolyte with high ionic conductivity Li6.5La3Zr1.5Ta0.1Nb0.4O12 for lithium metal battery. 2023 , 564, 232849	0
51	Interfacial challenges and strategies towards practical sulfide-based solid-state lithium batteries.	O
50	Challenges in speeding up solid-state battery development. 2023 , 8, 230-240	0
49	Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges.	1
48	Electrochemical Impedance Spectroscopy for Electrode Process Evaluation: Lithium Titanium Phosphate in Concentrated Aqueous Electrolyte.	0
47	Local Structural Analysis of Sulfide Polymer Electrolytes Prepared via I2-Induced Polymerization of Li3PS4. 2023 , 127, 4792-4798	O
46	Incommensurately Modulated Structure in AgCuSe-Based Thermoelectric Materials for Intriguing Electrical, Thermal, and Mechanical Properties. 2300699	0
45	Positive Electrode Performance of All-Solid-State Battery with Sulfide Solid Electrolyte Exposed to Low-Moisture Air. 2023 , 91, 037005-037005	O
44	Microstructure analysis of Si/graphite composite anode during charge-discharge cycle for lithium-ion battery with tetraglyme- and sulfolane-based less volatile electrolyte. 2023 , 447, 142115	O
43	Thin, Flexible, and High-Performance Solid-State Polymer Electrolyte Membranes for Li D 2 Batteries. 2023 , 6, 2877-2885	O
42	Towards safe lithium-sulfur batteries from liquid-state electrolyte to solid-state electrolyte. 2023 , 17,	O
41	High-energy composite cathode for solid-state lithium-oxygen battery boosted by ultrafine carbon nanotube catalysts and amorphous lithium peroxide. 2023 , 29, 101430	O

40	Challenges of Stable Ion Pathways in Cathode Electrode for All-Solid-State Lithium Batteries: A Review. 2023 , 13,	1
39	Lithium Ion Transport Environment by Molecular Vibrations in Ion-Conducting Glasses.	O
38	AC impedance analysis of NCM523 composite electrodes in all-solid-state three electrode cells and their degradation behavior. 2023 , 564, 232864	0
37	Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries. 2023 , 52, 2904-2912	O
36	Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: Reasons, progress, and perspectives. 2023 , 58, 48-73	O
35	Suppressing Unfavorable Interfacial Reactions Using Polyanionic Oxides as Efficient Buffer Layers: Low-Cost Li3PO4 Coatings for Sulfide-Electrolyte-Based All-Solid-State Batteries. 2023 , 15, 12998-13011	O
34	Plantar pressure-measuring device powered by flexible all-solid-state battery. 2023, 62, SG1038	0
33	Solid state battery, what I next?. 2023 , 1, 100007	O
32	Organic-Additive-Derived Cathode Electrolyte Interphase Layer Mitigating Intertwined Chemical and Mechanical Degradation for Sulfide-Based Solid-State Batteries. 2203861	0
31	Toward the Practical and Scalable Fabrication of Sulfide-Based All-Solid-State Batteries: Exploration of Slurry Process and Performance Enhancement Via the Addition of LiClO 4. 2214274	O
30	A smart polymer electrolyte coordinates the trade-off between thermal safety and energy density of lithium batteries. 2023 , 58, 123-131	0
29	Solid-State Electrolytes in LithiumBulfur Batteries: Latest Progresses and Prospects. 2208164	O
28	Improved synthesis enables assessment of the electrochemical window of monocarborate solid state electrolytes. 2023 , 59, 4746-4749	0
27	Achieving high-energy and high-safety lithium metal batteries with high-voltage-stable solid electrolytes. 2023 , 6, 1096-1124	O
26	All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs. 2023, 9, 186	Ο
25	Optimization Strategies for Lithium-Ion Batteries in Practical Electric Vehicles. 37, 18-26	O
24	Vacancies Introduced during the Crystallization Process of the Glass-Ceramics Superionic Conductor, Na3PS4, Investigated by Neutron Total Scattering and Reverse Monte Carlo Method. 2023 , 127, 6199-6206	O
23	Sulfide-Based All-Solid-State LithiumBulfur Batteries: Challenges and Perspectives. 2023, 15,	O

22	Electron Redistribution Enables Redox-Resistible Li 6 PS 5 Cl towards High-Performance All-Solid-State Lithium Batteries.	0
21	Electron Redistribution Enables Redox-Resistible Li 6 PS 5 Cl towards High-Performance All-Solid-State Lithium Batteries.	O
20	Continuous Compositing Process of Sulfur/Conductive-Additive Composite Particles for All-Solid-State Lithium Sulfur Batteries.	0
19	Advance of lithium-rich cathode materials in all-solid-state lithium batteries. 2023, 0	O
18	Sn-Substituted Argyrodite Li6PS5Cl Solid Electrolyte for Improving Interfacial and Atmospheric Stability. 2023 , 16, 2751	O
17	Physio-Electrochemically Durable Dry-Processed Solid-State Electrolyte Films for All-Solid-State Batteries.	O
16	Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries. 2023 , 6,	0
15	A LaCl3-based lithium superionic conductor compatible with lithium metal. 2023, 616, 77-83	O
14	An amorphous niobium polysulfide based nanocomposite enables ultrastable all-solid-state lithium batteries.	0
13	Electrochemical-mechanical coupling measurements. 2023 , 7, 652-674	O
12	Effects of Molecular Structure of Cross-Linked Solid Polymer Electrolytes on Ionic Conduction Behavior. 2023 , 170, 040510	O
11	Li-ion transport at the LiFePO4/Li3PO4 interface and its enhancement through surface nitrogen doping. 2023 , 133, 145001	O
10	Recent Progress in and Perspectives on Emerging Halide Superionic Conductors for All-Solid-State Batteries. 2023 , 6,	O
9		0
	Batteries. 2023, 6, Anisotropic Phonon Scattering and Thermal Transport Property Induced by the Liquid-like Behavior	
9	Batteries. 2023, 6, Anisotropic Phonon Scattering and Thermal Transport Property Induced by the Liquid-like Behavior of AgCrSe2. Stabilizing the oxide cathode/sulfide solid electrolyte interface via a novel polyaniline coating	O
9	Batteries. 2023, 6, Anisotropic Phonon Scattering and Thermal Transport Property Induced by the Liquid-like Behavior of AgCrSe2. Stabilizing the oxide cathode/sulfide solid electrolyte interface via a novel polyaniline coating prepared by ball milling. Mixed ion-electron conducting Li 3 P for efficient cathode prelithiation of all-solid-state Li-ion	0

CITATION REPORT

4	Tailoring Conversion-Reaction-Induced Alloy Interlayer for Dendrite-Free Sulfide-Based All-Solid-State Lithium-Metal Battery.	O
3	Solid-state inorganic electrolytes (oxides, sulfides, and halides). 2023 , 77-117	O
2	Design of composite cathodes for sulfide-based all-solid-state batteries. 2023 , 17, 100246	О
1	Perspective on powder technology for all-solid-state batteries: How to pair sulfide electrolyte with high-voltage cathode. 2024 , 86, 55-66	O