Advances in lithium–sulfur batteries based on multif

Nature Energy

1,

DOI: 10.1038/nenergy.2016.132

Citation Report

#	Article	IF	CITATIONS
1	Life cycle assessment of lithium sulfur battery for electric vehicles. Journal of Power Sources, 2017, 343, 284-295.	4.0	164
2	Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochimica Acta, 2017, 232, 106-113.	2.6	103
3	Honeycombâ€like Nitrogen and Sulfur Dualâ€Doped Hierarchical Porous Biomassâ€Derived Carbon for Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 1803-1812.	3.6	143
4	Magnesiumbatterien – ein Aufruf an Synthesechemiker: Elektrolyte und Kathoden dringend gesucht. Angewandte Chemie, 2017, 129, 12232-12253.	1.6	29
5	Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists—Electrolytes and Cathodes Needed. Angewandte Chemie - International Edition, 2017, 56, 12064-12084.	7.2	212
6	Enabling effective polysulfide trapping and high sulfur loading via a pyrrole modified graphene foam host for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 7309-7315.	5.2	52
7	Easily Accessible, Textile Fiber-Based Sulfurized Poly(acrylonitrile) as Li/S Cathode Material: Correlating Electrochemical Performance with Morphology and Structure. ACS Energy Letters, 2017, 2, 595-604.	8.8	116
8	Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. Journal of Power Sources, 2017, 348, 175-182.	4.0	95
9	A Novel Ultrafast Rechargeable Multiâ€ions Battery. Advanced Materials, 2017, 29, 1606349.	11.1	97
10	A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 11788-11793.	5.2	23
11	A high performance lithium–selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte. Journal of Materials Chemistry A, 2017, 5, 9350-9357.	5.2	94
12	Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li–S Cell. Journal of Physical Chemistry Letters, 2017, 8, 1956-1960.	2.1	166
13	Toward Practical Highâ€Energy Batteries: A Modularâ€Assembled Ovalâ€Like Carbon Microstructure for Thick Sulfur Electrodes. Advanced Materials, 2017, 29, 1700598.	11.1	110
14	Electrochemical energy storage by aluminum as a lightweight and cheap anode/charge carrier. Sustainable Energy and Fuels, 2017, 1, 1246-1264.	2.5	63
15	A Quinonoidâ€Imineâ€Enriched Nanostructured Polymer Mediator for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1606802.	11.1	127
16	Understanding Heterogeneous Electrocatalysis of Lithium Polysulfide Redox on Pt and WS ₂ Surfaces. Journal of Physical Chemistry C, 2017, 121, 12718-12725.	1.5	42
17	Tuning the Adsorption of Polysulfides in Lithium–Sulfur Batteries with Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 4932-4939.	3.2	98
18	Review on Highâ€Loading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307

#	Article	IF	CITATIONS
19	High-performance nitrogen-doped titania nanowire decorated carbon cloth electrode for lithium-polysulfide batteries. Electrochimica Acta, 2017, 242, 137-145.	2.6	22
20	Two-dimensional MXenes for energy storage and conversion applications. Materials Today Energy, 2017, 5, 22-36.	2.5	128
21	Pyrolyzed bacterial cellulose/graphene oxide sandwich interlayer for lithium–sulfur batteries. Rare Metals, 2017, 36, 418-424.	3.6	30
22	Inhibiting Polysulfide Shuttle in Lithium–Sulfur Batteries through Lowâ€Ionâ€Pairing Salts and a Triflamide Solvent. Angewandte Chemie - International Edition, 2017, 56, 6192-6197.	7.2	109
23	Synergistically Assembled Li ₂ S/FWNTs@Reduced Graphene Oxide Nanobundle Forest for Freeâ€Standing Highâ€Performance Li ₂ S Cathodes. Advanced Functional Materials, 2017, 27, 1700987.	7.8	67
24	Multifunctional Co 3 S 4 @sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy, 2017, 37, 7-14.	8.2	335
25	Inhibiting Polysulfide Shuttle in Lithium–Sulfur Batteries through Lowâ€Ionâ€Pairing Salts and a Triflamide Solvent. Angewandte Chemie, 2017, 129, 6288-6293.	1.6	82
26	An Improved Li–SeS ₂ Battery with High Energy Density and Long Cycle Life. Advanced Energy Materials, 2017, 7, 1700281.	10.2	111
27	A nitrogen-doped 3D hierarchical carbon/sulfur composite for advanced lithium sulfur batteries. Journal of Power Sources, 2017, 355, 211-218.	4.0	52
28	Double-oxide sulfur host for advanced lithium-sulfur batteries. Nano Energy, 2017, 38, 12-18.	8.2	93
29	Balancing the chemisorption and charge transport properties of the interlayer in lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 12506-12512.	5.2	62
30	How to make inert boron nitride nanosheets active for the immobilization of polysulfides for lithium–sulfur batteries: a computational study. Physical Chemistry Chemical Physics, 2017, 19, 18208-18216.	1.3	35
31	Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High apacity Cathodes for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1700587.	11.1	170
32	A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 13674-13682.	5.2	30
33	A rGO–CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 14775-14782.	5.2	71
34	Electrocatalysis of polysulfide conversion by sulfur-deficient MoS ₂ nanoflakes for lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 1476-1486.	15.6	805
35	Li–S batteries: Firing for compactness. Nature Energy, 2017, 2, .	19.8	30
36	A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols. Small Methods, 2017, 1, 1700134.	4.6	230

#	Article	IF	CITATIONS
37	Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium–sulfur batteries. RSC Advances, 2017, 7, 19231-19236.	1.7	34
38	Inorganic–organic layer by layer hybrid membranes for lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 905-911.	15.6	43
39	Rational design of graphene @ nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium–sulfur batteries. Journal of Materials Science, 2017, 52, 7719-7732.	1.7	49
40	Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries. ACS Energy Letters, 2017, 2, 924-929.	8.8	95
41	Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control. Journal of the American Chemical Society, 2017, 139, 8458-8466.	6.6	198
42	Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11626-11633.	4.0	29
43	Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3578-3583.	3.3	90
44	Hierarchical Porous Yolk–Shell Carbon Nanosphere for Highâ€Performance Lithium–Sulfur Batteries. Particle and Particle Systems Characterization, 2017, 34, 1600281.	1.2	34
45	Inspired by the "tip effect― a novel structural design strategy for the cathode in advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 3140-3144.	5.2	23
46	Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS ₂ Host for Advanced Li–SeS ₂ Batteries. Angewandte Chemie - International Edition, 2017, 56, 16003-16007.	7.2	111
47	Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS ₂ Host for Advanced Li–SeS ₂ Batteries. Angewandte Chemie, 2017, 129, 16219-16223.	1.6	19
48	Dual-Confined and Hierarchical-Porous Graphene/C/SiO2 Hollow Microspheres through Spray Drying Approach for Lithium-Sulfur Batteries. Electrochimica Acta, 2017, 255, 179-186.	2.6	34
49	A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. Joule, 2017, 1, 576-587.	11.7	255
50	Precipitation–Microstructure Interactions in the Li-Sulfur Battery Electrode. Journal of Physical Chemistry C, 2017, 121, 26256-26264.	1.5	40
51	Lithium Azide as an Electrolyte Additive for All‣olid‣tate Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 15368-15372.	7.2	213
52	Recent advances in printable secondary batteries. Journal of Materials Chemistry A, 2017, 5, 22442-22458.	5.2	50
53	Lithium Azide as an Electrolyte Additive for All‧olid‧tate Lithium–Sulfur Batteries. Angewandte Chemie, 2017, 129, 15570-15574.	1.6	12
54	An Extremely High Surface Area Mesoporous-Microporous-Networked Pillared Carbon for High Stability Li-S and Intermediate Temperature Na-S Batteries. ChemistrySelect, 2017, 2, 9249-9255.	0.7	11

#	Article	IF	CITATIONS
55	Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage. Joule, 2017, 1, 306-327.	11.7	151
56	Enabling Pyrochlore-Type Oxides as Highly Efficient Electrocatalysts for High-Capacity and Stable Na–O ₂ Batteries: The Synergy of Electronic Structure and Morphology. ACS Catalysis, 2017, 7, 7688-7694.	5.5	18
57	Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nature Energy, 2017, 2, 813-820.	19.8	326
58	Ambientâ€Temperature Energy Storage with Polyvalent Metal–Sulfur Chemistry. Small Methods, 2017, 1, 1700217.	4.6	38
59	Heteroatoms-Doped Porous Carbon Derived from Tuna Bone for High Performance Li-S Batteries. Electrochimica Acta, 2017, 258, 80-89.	2.6	41
60	Three-Dimensionally Hierarchical Ni/Ni ₃ S ₂ /S Cathode for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 38477-38485.	4.0	60
61	Interwoven NiCo ₂ O ₄ Nanosheet/Carbon Nanotube Composites as Highly Efficient Lithiumâ^'Sulfur Cathode Hosts. ChemElectroChem, 2017, 4, 2959-2965.	1.7	18
62	Ammoniaâ€Treated Ordered Mesoporous Carbons with Hierarchical Porosity and Nitrogenâ€Doping for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2017, 2, 7160-7168.	0.7	8
63	In situ transmission electron microscopy study of individual nanostructures during lithiation and delithiation processes. Journal of Materials Chemistry A, 2017, 5, 20072-20094.	5.2	27
64	CuFeS ₂ Quantum Dots Anchored in Carbon Frame: Superior Lithium Storage Performance and the Study of Electrochemical Mechanism. ACS Applied Materials & Interfaces, 2017, 9, 31752-31762.	4.0	49
65	Integration of Graphene, Nano Sulfur, and Conducting Polymer into Compact, Flexible Lithium–Sulfur Battery Cathodes with Ultrahigh Volumetric Capacity and Superior Cycling Stability for Foldable Devices. Advanced Materials, 2017, 29, 1703324.	11.1	167
66	Rational Design of High-Loading Sulfur Cathodes with a Poached-Egg-Shaped Architecture for Long-Cycle Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 2205-2211.	8.8	67
67	Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries. Chemistry - A European Journal, 2017, 23, 16941-16947.	1.7	56
68	Graphene-Coated Activated Carbon Fiber Cloth Positive Electrodes for Aluminum Rechargeable Batteries with a Chloroaluminate Room-Temperature Ionic Liquid. Journal of the Electrochemical Society, 2017, 164, A2468-A2473.	1.3	16
69	Synergistic Effect of Core-Shell Heterogeneous V2O5@MV6O15 (M = Na, K) Nanoparticles for Enhanced Lithium Storage Performance. Electrochimica Acta, 2017, 254, 262-268.	2.6	12
70	Efficient sulfur host based on NiCo 2 O 4 hollow microtubes for advanced Li-S batteries. Journal of Solid State Chemistry, 2017, 256, 189-195.	1.4	21
71	Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, 1, 394-406.	11.7	202
72	Stabilizing the Carnet Solid-Electrolyte/Polysulfide Interface in Li–S Batteries. Chemistry of Materials, 2017, 29, 8037-8041.	3.2	73

#	Article	IF	CITATIONS
73	Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer. ACS Energy Letters, 2017, 2, 2454-2462.	8.8	23
74	First-Principles Investigation of Lithium Polysulfide Structure and Behavior in Solution. Journal of Physical Chemistry C, 2017, 121, 21105-21117.	1.5	53
75	Probing Impedance and Microstructure Evolution in Lithium–Sulfur Battery Electrodes. Journal of Physical Chemistry C, 2017, 121, 21206-21216.	1.5	34
76	Bio-inspired Self-Healing Electrolytes for Li-S Batteries. CheM, 2017, 3, 388-389.	5.8	13
77	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie, 2017, 129, 14295-14300.	1.6	21
78	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie - International Edition, 2017, 56, 14107-14112.	7.2	113
79	Perovskite La0.6Sr0.4CoO3-δas a new polysulfide immobilizer for high-energy lithium-sulfur batteries. Nano Energy, 2017, 40, 360-368.	8.2	69
80	Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nature Communications, 2017, 8, 482.	5.8	300
81	Revealing the Electrochemical Charging Mechanism of Nanosized Li ₂ S by in Situ and Operando X-ray Absorption Spectroscopy. Nano Letters, 2017, 17, 5084-5091.	4.5	89
82	Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18634-18642.	5.2	64
83	Active Platinum Nanoparticles as a Bifunctional Promoter for Lithiumâ^'Sulfur Batteries. ChemElectroChem, 2017, 4, 2577-2582.	1.7	23
84	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 2017, 117, 10403-10473.	23.0	4,365
85	A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2, .	19.8	864
86	Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions. Chemical Reviews, 2017, 117, 11125-11238.	23.0	382
87	Large‣cale Syntheses of Zinc Sulfideâ‹(Diethylenetriamine) _{0.5} Hybrids as Precursors for Sulfur Nanocomposite Cathodes. Angewandte Chemie, 2017, 129, 11998-12002.	1.6	2
88	Large cale Syntheses of Zinc Sulfideâ<(Diethylenetriamine) _{0.5} Hybrids as Precursors for Sulfur Nanocomposite Cathodes. Angewandte Chemie - International Edition, 2017, 56, 11836-11840.	7.2	24
89	S-Doped Porous Graphene Microspheres with Individual Robust Red-Blood-Cell-Like Microarchitecture for Capacitive Energy Storage. Industrial & Engineering Chemistry Research, 2017, 56, 9524-9532.	1.8	27
90	A Flexible 3D Multifunctional MgOâ€Decorated Carbon Foam@CNTs Hybrid as Selfâ€Supported Cathode for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1702573.	7.8	169

#	Article	IF	CITATIONS
91	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
92	Boundary Conditions for Electrochemical Interfaces. Journal of the Electrochemical Society, 2017, 164, E3671-E3685.	1.3	3
93	An InÂVivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal. Joule, 2017, 1, 871-886.	11.7	271
94	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	4.8	176
95	Advanced Sulfur-Silicon Full Cell Architecture for Lithium Ion Batteries. Scientific Reports, 2017, 7, 17264.	1.6	20
96	Sulfurâ€Immobilized Nitrogen and Oxygen Co–Doped Hierarchically Porous Biomass Carbon for Lithiumâ€Sulfur Batteries: Influence of Sulfur Content and Distribution on Its Performance. ChemistrySelect, 2017, 2, 10484-10495.	0.7	45
97	Improved performance through tight coupling of redox cycles of sulfur and 2,6-polyanthraquinone in lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 24103-24109.	5.2	6
98	A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 16223-16227.	7.2	85
99	Electrode–Electrolyte Interfaces in Lithium–Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Accounts of Chemical Research, 2017, 50, 2653-2660.	7.6	158
100	The unique chemistry of thiuram polysulfides enables energy dense lithium batteries. Journal of Materials Chemistry A, 2017, 5, 25005-25013.	5.2	71
101	A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithiumâ€ S ulfur Batteries. Angewandte Chemie, 2017, 129, 16441-16445.	1.6	19
102	A sulfur host based on cobalt–graphitic carbon nanocages for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 24901-24908.	5.2	75
103	Twinborn TiO ₂ –TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 1694-1703.	15.6	884
104	Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. Nano Letters, 2017, 17, 5064-5070.	4.5	112
105	Unveiling the synergistic effect of polysulfide additive and MnO2 hollow spheres in evolving a stable cyclic performance in Li–S batteries. Chemical Communications, 2017, 53, 8782-8785.	2.2	26
106	Polymer-Rich Composite Electrolytes for All-Solid-State Li–S Cells. Journal of Physical Chemistry Letters, 2017, 8, 3473-3477.	2.1	106
107	Review of nanostructured current collectors in lithium–sulfur batteries. Nano Research, 2017, 10, 4027-4054.	5.8	91
108	True performance metrics in beyond-intercalation batteries. Nature Energy, 2017, 2, .	19.8	73

#	Article	IF	CITATIONS
109	<i>In Situ</i> Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS ₂ Flakes. Journal of the American Chemical Society, 2017, 139, 10133-10141.	6.6	126
110	Better performing composite cathode encompassing graphene and magnesium aluminate for Li–S batteries. Nano Structures Nano Objects, 2017, 11, 46-55.	1.9	18
111	Efficient Activation of Li ₂ S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 1711-1719.	8.8	252
112	Disordered mesoporous polyacenes/sulfur nanocomposites: Superior cathode materials for lithium-sulfur batteries. Journal of Alloys and Compounds, 2017, 693, 1045-1051.	2.8	6
113	Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nature Communications, 2017, 8, 2277.	5.8	117
114	Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie - International Edition, 2018, 57, 5301-5305.	7.2	601
115	Metal–Organic Frameworks (MOFs)â€Derived Nitrogenâ€Doped Porous Carbon Anchored on Graphene with Multifunctional Effects for Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707592.	7.8	246
116	Layered sulfur/PEDOT:PSS nano composite electrodes for lithium sulfur cell applications. Applied Surface Science, 2018, 442, 556-564.	3.1	15
117	Functionalized Carbon as Polysulfide Traps for Advanced Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2018, 122, 5948-5955.	1.5	18
118	Progress of the Interface Design in Allâ€Solidâ€State Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707533.	7.8	182
119	Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 2018, 19, 84-107.	6.2	365
120	Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54, 4132-4135.	2.2	68
121	A separator-based lithium polysulfide recirculator for high-loading and high-performance Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 5862-5869.	5.2	68
122	Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition. Advanced Functional Materials, 2018, 28, 1707234.	7.8	143
123	Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie, 2018, 130, 5399-5403.	1.6	116
124	The evolution of selenium cathodes: from infusion melts to particle synthesis. Sustainable Energy and Fuels, 2018, 2, 759-762.	2.5	3
125	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. Journal of Physical Chemistry Letters, 2018, 9, 1398-1414.	2.1	50
126	Layered LiTiO ₂ for the protection of Li ₂ S cathodes against dissolution: mechanisms of the remarkable performance boost. Energy and Environmental Science, 2018, 11, 807-817.	15.6	103

#	Article	IF	CITATIONS
127	Sulfur film sandwiched between few-layered MoS ₂ electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 5899-5909.	5.2	95
128	Enhanced electrochemical kinetics in lithium-sulfur batteries by using carbon nanofibers/manganese dioxide composite as a bifunctional coating on sulfur cathode. Electrochimica Acta, 2018, 269, 180-187.	2.6	62
129	Nitrogen doped yolk-shell carbon spheres as cathode host for lithium-sulfur battery. Journal of Alloys and Compounds, 2018, 747, 283-292.	2.8	23
130	Cabbage-like nitrogen-doped graphene/sulfur composite for lithium-sulfur batteries with enhanced rate performance. Journal of Alloys and Compounds, 2018, 753, 622-629.	2.8	32
131	Suppressing the Polysulfide Shuttle Effect by Heteroatom-Doping for High-Performance Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7545-7557.	3.2	70
132	Novel Conductive Metal–Organic Framework for a High-Performance Lithium–Sulfur Battery Host: 2D Cu-Benzenehexathial (BHT). ACS Applied Materials & Interfaces, 2018, 10, 15012-15020.	4.0	105
133	Porphyrinâ€Derived Grapheneâ€Based Nanosheets Enabling Strong Polysulfide Chemisorption and Rapid Kinetics in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800849.	10.2	211
134	A three-dimensional self-assembled SnS ₂ -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7659-7667.	5.2	95
135	Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives. Advanced Functional Materials, 2018, 28, 1800154.	7.8	107
136	Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1705590.	11.1	456
137	Novel Sulfur Host Composed of Cobalt and Porous Graphitic Carbon Derived from MOFs for the High-Performance Li–S Battery. ACS Applied Materials & Interfaces, 2018, 10, 13499-13508.	4.0	54
138	Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery. Electrochimica Acta, 2018, 273, 127-135.	2.6	74
139	Revealing reaction mechanisms of nanoconfined Li2S: implications for lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2018, 20, 11713-11721.	1.3	18
140	Both Cationic and Anionic Co-(de)intercalation into a Metal-Oxide Material. Joule, 2018, 2, 1134-1145.	11.7	107
141	Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chemical Reviews, 2018, 118, 4731-4816.	23.0	357
142	A general dissolution–recrystallization strategy to achieve sulfur-encapsulated carbon for an advanced lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 11664-11669.	5.2	38
143	Asphaltâ€Derived Hierarchically Porous Carbon with Superior Electrode Properties for Capacitive Storage Devices. ChemElectroChem, 2018, 5, 1474-1483.	1.7	20
144	A LiFePO ₄ /Li ₂ S _n hybrid system with enhanced Li-ion storage performance. New Journal of Chemistry, 2018, 42, 6626-6630.	1.4	9

#	Article	IF	CITATIONS
145	Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nature Communications, 2018, 9, 705.	5.8	207
146	Designing Lithium-Sulfur Cells with Practically Necessary Parameters. Joule, 2018, 2, 710-724.	11.7	148
147	Polythiophene lamella wrapped sulfur as cathode for rechargeable lithium sulfur batteries. Materials Letters, 2018, 218, 142-145.	1.3	14
148	SiC2 siligraphene as a promising anchoring material for lithium-sulfur batteries: a computational study. Applied Surface Science, 2018, 440, 889-896.	3.1	32
149	Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte. CheM, 2018, 4, 586-598.	5.8	127
150	Elektrolytadditive für Lithiummetallanoden und wiederaufladbare Lithiummetallbatterien: Fortschritte und Perspektiven. Angewandte Chemie, 2018, 130, 15220-15246.	1.6	54
151	Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries. Applied Surface Science, 2018, 441, 914-922.	3.1	46
152	An Aqueous Inorganic Polymer Binder for High Performance Lithium–Sulfur Batteries with Flame-Retardant Properties. ACS Central Science, 2018, 4, 260-267.	5.3	147
153	Recent Progress of the Solidâ€State Electrolytes for Highâ€Energy Metalâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1702657.	10.2	851
154	Honeycombâ€Like Spherical Cathode Host Constructed from Hollow Metallic and Polar Co ₉ S ₈ Tubules for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1704443.	7.8	236
155	Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 2018, 47, 2020-2064.	18.7	452
156	Exfoliated 2D Lepidocrocite Titanium Oxide Nanosheets for High Sulfur Content Cathodes with Highly Stable Li–S Battery Performance. ACS Energy Letters, 2018, 3, 412-419.	8.8	90
157	Effect of Electrolyte on High Sulfur Loading Li-S Batteries. Journal of the Electrochemical Society, 2018, 165, A416-A423.	1.3	28
158	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	11.1	300
159	Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie - International Edition, 2018, 57, 15002-15027.	7.2	551
160	<i>In situ</i> sulfur loading in graphene-like nano-cell by template-free method for Li–S batteries. Nanoscale, 2018, 10, 3877-3883.	2.8	17
161	A sustainable aqueous Zn-12 battery. Nano Research, 2018, 11, 3548-3554.	5.8	122
162	Design Principles of Functional Polymer Separators for Highâ€Energy, Metalâ€Based Batteries. Small, 2018, 14, e1703001.	5.2	155

#	Article	IF	CITATIONS
163	Sulfur Immobilization by "Chemical Anchor―to Suppress the Diffusion of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1701274.	1.9	87
164	A Two-Dimensional Porous Carbon-Modified Separator for High-Energy-Density Li-S Batteries. Joule, 2018, 2, 323-336.	11.7	344
165	Multifunctional Sandwich‣tructured Electrolyte for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1700503.	5.6	99
166	Adiabatic and Nonadiabatic Charge Transport in Li–S Batteries. Chemistry of Materials, 2018, 30, 915-928.	3.2	30
167	MOF-derived porous N–Co ₃ O ₄ @N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 2797-2807.	5.2	266
168	Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano Today, 2018, 18, 35-64.	6.2	110
169	Controlling the polysulfide diffusion in lithium-sulfur batteries with a polymer membrane with intrinsic nanoporosity. Materials Today Energy, 2018, 7, 98-104.	2.5	31
170	New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO ₂ onto Ferroelectricâ€Encapsulated Cathode: Toward Ultrastable Freeâ€Standing Room Temperature Sodium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1705537.	7.8	167
171	Updated Metal Compounds (MOFs, S, OH, N, C) Used as Cathode Materials for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702607.	10.2	202
172	A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for Highâ€Performance Sulfur Electrodes in Lithiumâ€Sulfur Battery. Advanced Energy Materials, 2018, 8, 1702889.	10.2	270
173	Hierarchical Nâ€Rich Carbon Sponge with Excellent Cycling Performance for Lithiumâ€Sulfur Battery at High Rates. Chemistry - A European Journal, 2018, 24, 5860-5867.	1.7	20
174	High-Purity Lithium Metal Films from Aqueous Mineral Solutions. ACS Omega, 2018, 3, 181-187.	1.6	24
175	Surface Chemistry in Cobalt Phosphide-Stabilized Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2018, 140, 1455-1459.	6.6	393
176	Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1706391.	7.8	350
177	Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for Highâ€Performance Sodium–Selenium Batteries. Advanced Functional Materials, 2018, 28, 1706609.	7.8	69
178	Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups. Journal of Membrane Science, 2018, 550, 399-406.	4.1	65
179	Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702485.	10.2	488
180	Porous Organic Polymers for Polysulfide Trapping in Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707597	7.8	154

#	Article	IF	CITATIONS
181	Graphene Nanoplatelet-Polysulfone Composite Cathodes for High-Power Aluminum Rechargeable Batteries. Electrochemistry, 2018, 86, 72-76.	0.6	11
182	A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Chemical Communications, 2018, 54, 5478-5481.	2.2	44
183	Progress and Perspective of Solid‣tate Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707570.	7.8	194
184	Double-Confined Sulfur Inside Compressed Nickel Foam and Pencil-Plating Graphite for Lithium–Sulfur Battery. Industrial & Engineering Chemistry Research, 2018, 57, 4880-4886.	1.8	2
185	Fluorinated Aryl Sulfonimide Tagged (FAST) salts: modular synthesis and structure–property relationships for battery applications. Energy and Environmental Science, 2018, 11, 1326-1334.	15.6	26
186	Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Materials, 2018, 15, 53-64.	9.5	131
187	Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy, 2018, 47, 331-339.	8.2	106
188	CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 216-222.	9.5	92
189	Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits. Nano Research, 2018, 11, 89-100.	5.8	88
190	Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium-sulfur batteries. Journal of Alloys and Compounds, 2018, 731, 964-970.	2.8	38
191	Perspective—Commercializing Lithium Sulfur Batteries: Are We Doing the Right Research?. Journal of the Electrochemical Society, 2018, 165, A6029-A6033.	1.3	124
192	Quaternary ammonium cationic polymer as a superior bifunctional binder for lithium–sulfur batteries and effects of counter anion. Electrochimica Acta, 2018, 259, 626-636.	2.6	49
193	Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System. Chemistry - A European Journal, 2018, 24, 4757-4773.	1.7	52
194	Perspective—Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6005-A6007.	1.3	41
195	Review—Solid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges. Journal of the Electrochemical Society, 2018, 165, A6008-A6016.	1.3	146
196	Popcorn Inspired Porous Macrocellular Carbon: Rapid Puffing Fabrication from Rice and Its Applications in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1701110.	10.2	361
197	Highly Reversible Lithium Polysulfide Semiliquid Battery with Nitrogenâ€Rich Carbon Fiber Electrodes. Energy Technology, 2018, 6, 251-256.	1.8	11
198	Nanoconfined Oxidation Synthesis of Nâ€Doped Carbon Hollow Spheres and MnO ₂ Encapsulated Sulfur Cathode for Superior Li‧ Batteries. Chemistry - A European Journal, 2018, 24, 4573-4582.	1.7	34

#	Αρτιςι ε	IF	CITATIONS
199	3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium–sulfur batteries. Nanoscale, 2018, 10, 816-824.	2.8	150
200	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
201	Ion Speciation and Transport Properties of LiTFSI in 1,3-Dioxolane Solutions: A Case Study for Li–S Battery Applications. Journal of Physical Chemistry B, 2018, 122, 267-274.	1.2	31
202	S nano-layer deposited on the surface of 3D carbon for high cycle-stability Li–S batteries. Journal of Alloys and Compounds, 2018, 737, 1-7.	2.8	13
203	Facile fabrication of polyether sulfone (PES) protecting layer on Cu foil for stable Li metal anode. Electrochimica Acta, 2018, 260, 407-412.	2.6	19
204	A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li–S batteries. Journal of Membrane Science, 2018, 548, 247-253.	4.1	78
205	Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation. Applied Surface Science, 2018, 435, 210-215.	3.1	51
206	Pristine Metal–Organic Frameworks and their Composites for Energy Storage and Conversion. Advanced Materials, 2018, 30, e1702891.	11.1	525
207	Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells. Electrochimica Acta, 2018, 259, 1021-1029.	2.6	44
208	Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis (fluorosulfonyl)imide. Solid State Ionics, 2018, 318, 95-101.	1.3	44
209	Interface Engineering of Carbonâ€Based Nanocomposites for Advanced Electrochemical Energy Storage. Advanced Materials Interfaces, 2018, 5, 1800430.	1.9	95
210	Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li–S batteries. Nanoscale, 2018, 10, 21335-21352.	2.8	69
211	Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na–Se batteries. Journal of Materials Chemistry A, 2018, 6, 22790-22797.	5.2	62
212	Coherent TiO ₂ /BaTiO ₃ heterostructure as a functional reservoir and promoter for polysulfide intermediates. Chemical Communications, 2018, 54, 12250-12253.	2.2	53
213	An <i>in situ</i> chemically and physically confined sulfur–polymer composite for lithium–sulfur batteries with carbonate-based electrolytes. Chemical Communications, 2018, 54, 14093-14096.	2.2	20
214	Self-supporting Ti ₃ C ₂ T _x foam/S cathodes with high sulfur loading for high-energy-density lithium–sulfur batteries. Nanoscale, 2018, 10, 22954-22962.	2.8	41
215	Designing solvate ionogel electrolytes with very high room-temperature conductivity and lithium transference number. Journal of Materials Chemistry A, 2018, 6, 24100-24106.	5.2	12
216	High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. Journal of Materials Chemistry A, 2018, 6, 23345-23356.	5.2	48

#	Article	IF	CITATIONS
217	Large-Scale Production of MOF-Derived Coatings for Functional Interlayers in High-Performance Li–S Batteries. ACS Applied Energy Materials, 2018, 1, 6986-6991.	2.5	19
218	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	1.6	23
219	Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12389-12394.	3.3	49
220	High-Conductivity Argyrodite Li ₆ PS ₅ Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42279-42285.	4.0	170
221	Simultaneously Porous Structure and Chemical Anchor: A Multifunctional Composite by One-Step Mechanochemical Strategy toward High-Performance and Safe Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2018, 10, 41359-41369.	4.0	12
222	Recent Progress in Liquid Electrolyte-Based Li–S Batteries: Shuttle Problem and Solutions. Electrochemical Energy Reviews, 2018, 1, 599-624.	13.1	56
223	Revisiting Scientific Issues for Industrial Applications of Lithium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 196-208.	7.3	158
224	Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano, 2018, 4, 1-16.	2.3	201
225	Synthesis of oxidized acetylene black/sulfur@Nd2O3 composite as cathode materials for lithium-sulfur batteries. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	7
226	Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions. Angewandte Chemie, 2018, 130, 15775-15778.	1.6	63
227	An Integrated Strategy towards Enhanced Performance of the Lithium–Sulfur Battery and its Fading Mechanism. Chemistry - A European Journal, 2018, 24, 18544-18550.	1.7	14
228	Deciphering the Modulation Essence of p Bands in Co-Based Compounds on Li-S Chemistry. Joule, 2018, 2, 2681-2693.	11.7	406
229	Activate metallic copper as high-capacity cathode for lithium-ion batteries via nanocomposite technology. Nano Energy, 2018, 54, 59-65.	8.2	22
230	Fiber network composed of interconnected yolk-shell carbon nanospheres for high-performance lithium-sulfur batteries. Nano Energy, 2018, 54, 50-58.	8.2	87
231	A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107.	10.2	324
232	Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions. Angewandte Chemie - International Edition, 2018, 57, 15549-15552.	7.2	166
233	Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nature Communications, 2018, 9, 4164.	5.8	304
234	Biomimetic Root-like TiN/C@S Nanofiber as a Freestanding Cathode with High Sulfur Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37955-37962.	4.0	66

#	Article	IF	CITATIONS
235	Metal-Organic Frameworks for Batteries. Joule, 2018, 2, 2235-2259.	11.7	462
236	Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	32
237	Synergistic stabilizing lithium sulfur battery via nanocoating polypyrrole on cobalt sulfide nanobox. Journal of Power Sources, 2018, 405, 51-60.	4.0	45
238	TiO Phase Stabilized into Freestanding Nanofibers as Strong Polysulfide Immobilizer in Li–S Batteries: Evidence for Lewis Acid–Base Interactions. ACS Applied Materials & Interfaces, 2018, 10, 37937-37947.	4.0	53
239	Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahighâ€Rate and Ultralong‣ife Li–S Batteries. Advanced Energy Materials, 2018, 8, 1802431.	10.2	76
240	Synthesis and physical properties of new fluoroether sulfones. Journal of Fluorine Chemistry, 2018, 216, 118-123.	0.9	4
241	Mixed Lithium Oxynitride/Oxysulfide as an Interphase Protective Layer To Stabilize Lithium Anodes for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39695-39704.	4.0	35
242	Elucidating the Catalytic Activity of Oxygen Deficiency in the Polysulfide Conversion Reactions of Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1801868.	10.2	164
243	The improvement of pitch activation by graphene for long-cycle Li–S batteries. Green Chemistry, 2018, 20, 4675-4683.	4.6	14
244	3D Selenium Sulfide@Carbon Nanotube Array as Longâ€Life and Highâ€Rate Cathode Material for Lithium Storage. Advanced Functional Materials, 2018, 28, 1805018.	7.8	34
245	Multi-functional CoS2-N-C porous carbon composite derived from metal-organic frameworks for high performance lithium-sulfur batteries. Electrochimica Acta, 2018, 289, 94-103.	2.6	63
246	Ion Pairing Limits Crystal Growth in Metal–Oxygen Batteries. ACS Energy Letters, 2018, 3, 2342-2348.	8.8	15
247	Double‣helled Phosphorus and Nitrogen Codoped Carbon Nanospheres as Efficient Polysulfide Mediator for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1800621.	5.6	83
248	Nontrivial Effects of "Trivial―Parameters on the Performance of Lithium–Sulfur Batteries. Batteries, 2018, 4, 22.	2.1	14
249	Largeâ€Area Preparation of Crackâ€Free Crystalline Microporous Conductive Membrane to Upgrade High Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802052.	10.2	159
250	Unexpected Effect of Electrode Architecture on High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 33269-33275.	4.0	9
251	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	5.2	125
252	Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron, 2018, 155, 464-484.	1.0	74

		CITATION RE	IPORT	
#	Article		IF	Citations
253	Chinese knot-like electrode design for advanced Li-S batteries. Nano Energy, 2018, 53,	354-361.	8.2	72
254	Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-perform lithium-sulfur batteries. Journal of Power Sources, 2018, 395, 77-84.	ance	4.0	78
255	A Flexible, Binderâ€Free Graphene Oxide/Copper Sulfides Film for Highâ€Performance S ChemistrySelect, 2018, 3, 5608-5613.	Sodium Ion Batteries.	0.7	7
256	Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Vial Functional Materials, 2018, 28, 1801188.	ble. Advanced	7.8	368
257	Asymmetric self-supporting hybrid fluorinated carbon nanotubes/carbon nanotubes sp for high-performance lithium-polysulfide battery. Chemical Engineering Journal, 2018, 3	onge electrode 349, 756-765.	6.6	31
258	Solventâ€Engineered Scalable Production of Polysulfideâ€Blocking Shields to Enhance Lithium–Sulfur Batteries. Small Methods, 2018, 2, 1800100.	Practical	4.6	23
259	Hierarchical and Highly Stable Conductive Network Cathode for Ultraflexible Li–S Ba Applied Energy Materials, 2018, 1, 2689-2697.	tteries. ACS	2.5	10
260	Role of asymmetry in the physiochemical and electrochemical behaviors of perfluorinat sulfonimide anions for lithium batteries: A DFT study. Electrochimica Acta, 2018, 280, 2	ed 290-299.	2.6	26
261	A Functional Separator Coated with Sulfonated Poly(Styrene-ethylene-butylene-styrene Synergistically Enhance the Electrochemical Performance and Anti-Self-Discharge Beha Batteries. ACS Applied Energy Materials, 2018, 1, 2555-2564.	₂) to vior of Li–S	2.5	21
262	A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium–sulfur batteries. RSC Advances, 2018, 8, 18604-18612.	7 5	1.7	49
263	Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Curr A New Approach to Enabling Stable Roomâ€Temperature Li‣ and Na‣ Batteries. A Materials, 2018, 8, 1800624.	ent Collector: dvanced Energy	10.2	64
264	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendri Energy Storage Materials, 2018, 15, 299-307.	te-free anode.	9.5	92
265	Low-temperature solid-state growth of three-dimensional bicontinuous nanoporous gra tunable porosity for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018,	aphene with 6, 11405-11415.	5.2	8
266	Rechargeable Magnesium Batteries using Conversionâ€∓ype Cathodes: A Perspective a Small Methods, 2018, 2, 1800020.	ind Minireview.	4.6	135
267	Stringed "tube on cube―nanohybrids as compact cathode matrix for high-loading lithium–sulfur batteries. Energy and Environmental Science, 2018, 11, 2372-2381.	and lean-electrolyte	15.6	255
268	From synthesis to applications: Metal–organic frameworks for an environmentally su future. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 47-56.	stainable	3.2	33
269	Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practic Electrochemical Energy Reviews, 2018, 1, 239-293.	al Application.	13.1	298
270	Graphene and its derivatives in lithium–sulfur batteries. Materials Today Energy, 201	8, 9, 319-335.	2.5	138

#	Article	IF	CITATIONS
271	A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 13593-13598.	5.2	65
272	NiS2/rGO/S capable of lithium polysulfide trapping as an enhanced cathode material for lithium sulfur batteries. Journal of Alloys and Compounds, 2018, 766, 804-812.	2.8	46
273	Carboxyl grafted sulfur-expanded graphite composites as cathodes for lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2018, 823, 422-428.	1.9	12
274	Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23122-23130.	4.0	39
275	Cation-Directed Selective Polysulfide Stabilization in Alkali Metal–Sulfur Batteries. Journal of the American Chemical Society, 2018, 140, 10740-10748.	6.6	68
276	In Situ Techniques for Developing Robust Li–S Batteries. Small Methods, 2018, 2, 1800133.	4.6	41
277	Toward Better Lithium–Sulfur Batteries: Functional Non-aqueous Liquid Electrolytes. Electrochemical Energy Reviews, 2018, 1, 388-402.	13.1	46
278	Simultaneous Suppression of the Dendrite Formation and Shuttle Effect in a Lithium–Sulfur Battery by Bilateral Solid Electrolyte Interface. Advanced Science, 2018, 5, 1700934.	5.6	70
279	Electrolyte Transport Evolution Dynamics in Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2018, 122, 18329-18335.	1.5	27
280	Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells. Electrochimica Acta, 2018, 283, 1291-1299.	2.6	60
281	Separator Modification and Functionalization for Inhibiting the Shuttle Effect in Lithiumâ€Sulfur Batteries. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800249.	1.2	32
282	Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. Journal of the American Chemical Society, 2018, 140, 9921-9933.	6.6	249
283	One-Pot Synthesis of Graphene-Sulfur Composites for Li-S Batteries: Influence of Sulfur Precursors. Journal of Carbon Research, 2018, 4, 2.	1.4	7
284	Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. Journal of Power Sources, 2018, 397, 102-112.	4.0	37
285	Nano potassium phosphotungstate spheres/sulfur composites as cathode for Li-S batteries. Materials Letters, 2018, 229, 198-201.	1.3	14
286	MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2018, 352, 695-703.	6.6	100
287	Padding molybdenum net with Graphite/MoO3 composite as a multi-functional interlayer enabling high-performance lithium-sulfur batteries. Journal of Power Sources, 2018, 397, 150-156.	4.0	41
288	A surfactant-assisted strategy to tailor Li-ion charge transfer interfacial resistance for scalable all-solid-state Li batteries. Sustainable Energy and Fuels, 2018, 2, 2165-2170.	2.5	51

#	Article	IF	CITATIONS
289	Bifunctional Separator Coated with Hexachlorocyclotriphosphazene/Reduced Graphene Oxide for Enhanced Performance of Lithium–Sulfur Batteries. Chemistry - A European Journal, 2018, 24, 13582-13588.	1.7	12
290	Development and Challenges of Functional Electrolytes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1800919.	7.8	129
291	Promotion of Niobium Oxide Sulfidation by Copper and Its Effects on Hydrodesulfurization Catalysis. ACS Catalysis, 2018, 8, 7621-7632.	5.5	23
292	Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. Nano Research, 2018, 11, 6155-6166.	5.8	33
293	Hierarchical electrode architectures for high energy lithium-chalcogen rechargeable batteries. Nano Energy, 2018, 51, 668-679.	8.2	13
294	SnS ₂ /TiO ₂ nanohybrids chemically bonded on nitrogen-doped graphene for lithium–sulfur batteries: synergy of vacancy defects and heterostructures. Nanoscale, 2018, 10, 15505-15512.	2.8	116
295	Heterogeneous/Homogeneous Mediators for Highâ€Energyâ€Density Lithium–Sulfur Batteries: Progress and Prospects. Advanced Functional Materials, 2018, 28, 1707536.	7.8	251
296	Rational Design of Hierarchical TiO ₂ /Epitaxially Aligned MoS ₂ –Carbon Coupled Interface Nanosheets Core/Shell Architecture for Ultrastable Sodiumâ€ion and Lithium–Sulfur Batteries. Small Methods, 2018, 2, 1800119.	4.6	49
297	Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications. Journal of Materials Chemistry A, 2018, 6, 21676-21695.	5.2	78
298	Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 6013-6022.	7.3	100
299	Tailored Reaction Route by Micropore Confinement for Li–S Batteries Operating under Lean Electrolyte Conditions. Advanced Energy Materials, 2018, 8, 1800590.	10.2	55
300	Recent progress on confinement of polysulfides through physical and chemical methods. Journal of Energy Chemistry, 2018, 27, 1555-1565.	7.1	101
301	Dynamic Hosts for High-Performance Li–S Batteries Studied by Cryogenic Transmission Electron Microscopy and in Situ X-ray Diffraction. ACS Energy Letters, 2018, 3, 1325-1330.	8.8	47
302	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Materials, 2018, 15, 458-464.	9.5	108
303	Longâ€Life Lithium–Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires. Advanced Materials, 2018, 30, e1804149.	11.1	120
304	Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 2018, 3, 783-791.	19.8	421
305	Atomic Interlamellar Ion Path in High Sulfur Content Lithiumâ€Montmorillonite Host Enables Highâ€Rate and Stable Lithium–Sulfur Battery. Advanced Materials, 2018, 30, e1804084.	11.1	201
306	Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries. Journal of Materials Science: Materials in Electronics, 2018,	1.1	64

#	Article	IF	CITATIONS
307	Effects of Polymer Coatings on Electrodeposited Lithium Metal. Journal of the American Chemical Society, 2018, 140, 11735-11744.	6.6	307
308	Trapping and Redistribution of Hydrophobic Sulfur Sols in Graphene–Polyethyleneimine Networks for Stable Li–S Cathodes. Advanced Energy Materials, 2018, 8, 1801979.	10.2	30
309	Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochimica Acta, 2018, 285, 355-364.	2.6	118
310	Controlled Synthesis of Sulfur-Rich Polymeric Selenium Sulfides as Promising Electrode Materials for Long-Life, High-Rate Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29565-29573.	4.0	51
311	Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17186-17191.	5.2	122
312	Porous Molybdenum Carbide Nanorods as Novel "Bifunctional―Cathode Material for Liâ€S Batteries. Chemistry - A European Journal, 2018, 24, 14154-14161.	1.7	35
313	A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery. Electrochimica Acta, 2018, 282, 555-562.	2.6	37
314	Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy, 2018, 51, 73-82.	8.2	350
315	Creating Effective Nanoreactors on Carbon Nanotubes with Mechanochemical Treatments for Highâ€Areal apacity Sulfur Cathodes and Lithium Anodes. Advanced Functional Materials, 2018, 28, 1800595.	7.8	52
316	Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nature Energy, 2018, 3, 936-943.	19.8	531
317	Rational design of a multidimensional N-doped porous carbon/MoS ₂ /CNT nano-architecture hybrid for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 13835-13847.	5.2	93
318	Electrochemical calcium extraction from 1D-Ca ₃ Co ₂ O ₆ . Dalton Transactions, 2018, 47, 11298-11302.	1.6	30
319	A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Materials, 2019, 16, 344-353.	9.5	150
320	Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. Science China Materials, 2019, 62, 74-86.	3.5	86
321	LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 111-117.	9.5	54
322	Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives. Materials Today, 2019, 22, 142-158.	8.3	301
323	Modeling and theoretical design of next-generation lithium metal batteries. Energy Storage Materials, 2019, 16, 169-193.	9.5	67
324	Carbon@titanium nitrideÂdual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Materials, 2019, 16, 228-235.	9.5	276

#	Article	IF	CITATIONS
325	Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. Journal of Energy Chemistry, 2019, 32, 15-44.	7.1	61
326	Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy and Environmental Science, 2019, 12, 177-186.	15.6	138
327	Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy and Environmental Science, 2019, 12, 825-840.	15.6	205
328	A New Conjugated Porous Polymer with Covalently Linked Polysulfide as Cathode Material for High-Rate Capacity and High Coulombic Efficiency Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2019, 123, 21327-21335.	1.5	21
329	Polar Benzimidazole-Containing (Sulfonated) Poly(arylene ether ketone)s as Bifunctional Binders for Lithium–Sulfur Battery Cathodes with High Sulfur Loadings. ACS Applied Energy Materials, 2019, 2, 6732-6740.	2.5	20
330	Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceramics International, 2019, 45, 23600-23610.	2.3	37
331	Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives. Journal of Power Sources, 2019, 438, 226985.	4.0	73
332	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	4.0	38
333	Bromomethylation of high-surface area carbons as a versatile synthon: adjusting the electrode–electrolyte interface in lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 20013-20025.	5.2	10
334	A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Research, 2019, 12, 2614-2622.	5.8	59
335	Chelation-assisted formation of multi-yolk–shell Co ₄ N@carbon nanoboxes for self-discharge-suppressed high-performance Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 20302-20309.	5.2	29
336	Single Nickel Atoms on Nitrogenâ€Doped Graphene Enabling Enhanced Kinetics of Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1903955.	11.1	447
337	Sulfur encapsulation by MOF-derived CoS ₂ embedded in carbon hosts for high-performance Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 21128-21139.	5.2	79
338	Revisiting the use of electrolyte additives in Li–S batteries: the role of porosity of sulfur host materials. Sustainable Energy and Fuels, 2019, 3, 2788-2797.	2.5	13
339	Carbon nanomaterials for rechargeable lithium–sulfur batteries. , 2019, , 279-309.		2
340	Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium–sulfur batteries. Nano Energy, 2019, 64, 103965.	8.2	153
341	Polycrystalline 1-D TiN-based free-standing composite electrode for high performance of Li-polysulfide cells. Applied Surface Science, 2019, 495, 143544.	3.1	6
342	Electrodeposited Cu/MWCNT composite-film: a potential current collector of silicon-based negative-electrodes for Li-Ion batteries. RSC Advances, 2019, 9, 21939-21945.	1.7	12

#	Article	IF	CITATIONS
343	Demonstrating a Metalâ€Metal Battery System in Aprotic Electrolyte with Silver and Lithium. ChemElectroChem, 2019, 6, 3627-3632.	1.7	0
344	Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. Journal of Alloys and Compounds, 2019, 805, 873-879.	2.8	18
345	Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries. Nature Communications, 2019, 10, 3249.	5.8	99
346	Sâ^'ZnO/CNTs Microspheres Prepared by Spray Drying for Improved Cathodes in Lithium‣ulfur Batteries. ChemElectroChem, 2019, 6, 3454-3459.	1.7	12
347	Sandwichâ€Like Ultrathin TiS ₂ Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901872.	10.2	186
348	Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8337-8346.	7.3	152
349	Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale, 2019, 11, 15418-15439.	2.8	125
350	Lipophilic Additives for Highly Concentrated Electrolytes in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A2570-A2573.	1.3	4
351	3D interconnected crumpled porous carbon sheets modified with high-level nitrogen doping for high performance lithium sulfur batteries. Carbon, 2019, 154, 58-66.	5.4	40
352	Boosting Lithium–Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator. ACS Applied Energy Materials, 2019, 2, 5793-5798.	2.5	57
353	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8986-8996.	7.3	215
354	Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion. Advanced Energy Materials, 2019, 9, 1901667.	10.2	59
355	One-Step In Situ Preparation of Polymeric Selenium Sulfide Composite as a Cathode Material for Enhanced Sodium/Potassium Storage. ACS Applied Materials & Interfaces, 2019, 11, 29807-29813.	4.0	36
356	Three-dimensional hollow reduced graphene oxide spheres with a hierarchically porous structure for high-performance lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2019, 6, 2528-2538.	3.0	7
357	Interfacial design for lithium–sulfur batteries: From liquid to solid. EnergyChem, 2019, 1, 100002.	10.1	113
358	Polydopamine-coated hierarchical tower-shaped carbon for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 319, 359-365.	2.6	31
359	Propelling the polysulfide phase transformation of lithium–sulfur battery by VO2-rGO. Journal of Alloys and Compounds, 2019, 804, 549-553.	2.8	15
360	Excellent Lithium Metal Anode Performance via In Situ Interfacial Layer Induced by Li6.75La3Zr1.75Ta0.25O12@Amorphous Li3OCl Composite Solid Electrolyte. International Journal of Electrochemical Science, 2019, 14, 4781-4798.	0.5	4

#	ARTICLE	IF	CITATIONS
" 361	Sulfur-anchored azulene as a cathode material for Li–S batteries. Chemical Communications, 2019, 55, 9047-9050.	2.2	31
362	A Zn(ClO ₄) ₂ Electrolyte Enabling Long-Life Zinc Metal Electrodes for Rechargeable Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42000-42005.	4.0	111
363	Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Research, 2019, 12, 2908-2917.	5.8	36
364	Alkali-Metal Anodes: From Lab to Market. Joule, 2019, 3, 2334-2363.	11.7	247
365	An Efficient Separator with Low Liâ€lon Diffusion Energy Barrier Resolving Feeble Conductivity for Practical Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901800.	10.2	61
366	Separated Tellurium Nanoparticles Confined in Hollow Polypyrrole for High Performance Liâ€Te Cathode. ChemistrySelect, 2019, 4, 9737-9742.	0.7	11
367	Jackfruit-like electrode design for advanced Na-Se batteries. Journal of Power Sources, 2019, 443, 227245.	4.0	32
368	Elevated polysulfide regulation by an ultralight all-CVD-built ReS2@N-Doped graphene heterostructure interlayer for lithium–sulfur batteries. Nano Energy, 2019, 66, 104190.	8.2	77
369	MXene Materials as Electrodes for Lithium-Sulfur Batteries. , 2019, , 381-398.		4
370	MOF-Derived Co3O4 Polyhedrons as Efficient Polysulfides Barrier on Polyimide Separators for High Temperature Lithium–sulfur Batteries. Nanomaterials, 2019, 9, 1574.	1.9	30
371	Advanced Li ₂ S/Si Full Battery Enabled by TiN Polysulfide Immobilizer. Small, 2019, 15, e1902377.	5.2	29
372	Fe-functionalized mesoporous carbonaceous microsphere with high sulfur loading as cathode for lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2019, 850, 113408.	1.9	10
373	Less pore equals more. Nature Energy, 2019, 4, 908-909.	19.8	9
374	How Far Away Are Lithium-Sulfur Batteries From Commercialization?. Frontiers in Energy Research, 2019, 7, .	1.2	124
375	Bacterium, Fungus, and Virus Microorganisms for Energy Storage and Conversion. Small Methods, 2019, 3, 1900596.	4.6	91
376	Semimetal or Semiconductor: The Nature of High Intrinsic Electrical Conductivity in TiS ₂ . Journal of Physical Chemistry Letters, 2019, 10, 6996-7001.	2.1	27
377	Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Science Bulletin, 2019, 64, 1875-1880.	4.3	54
378	Spatiotemporal Quantification of Lithium both in Electrode and in Electrolyte with Atomic Precision via Operando Neutron Absorption. Journal of the American Chemical Society, 2019, 141, 14280-14287.	6.6	11

		CITATION REPORT		
#	Article		IF	CITATIONS
379	Manipulating Sulfur Mobility Enables Advanced Li-S Batteries. Matter, 2019, 1, 1047-10	060.	5.0	63
380	Hollow Carbon Nanoballs Coupled with Ultrafine TiO ₂ Nanoparticles as Ef Hosts for Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research 18197-18204.	ficient Sulfur , 2019, 58,	1.8	13
381	A review on strategies addressing interface incompatibilities in inorganic all-solid-state batteries. Sustainable Energy and Fuels, 2019, 3, 3279-3309.	lithium	2.5	83
382	Visualization of regulated nucleation and growth of lithium sulfides for high energy lith batteries. Energy and Environmental Science, 2019, 12, 3144-3155.	ium sulfur	15.6	104
383	Titanium silicalite as a radical-redox mediator for high-energy-density lithium–sulfur b Nanoscale, 2019, 11, 16968-16977.	patteries.	2.8	8
384	Electrolyte-Solvent-Modified Alternating Copolymer as a Single-Ion Solid Polymer Elect High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 20	rolyte for 19, 11, 35683-35692.	4.0	47
385	Encapsulation of Few-Layer MoS2 in the Pores of Mesoporous Carbon Hollow Spheres Lithium-Sulfur Batteries. Nanomaterials, 2019, 9, 1247.	for	1.9	17
386	A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur Chemical Communications, 2019, 55, 12056-12059.	batteries.	2.2	35
387	Dynamic Lithium Distribution upon Dendrite Growth and Shorting Revealed by Operan Imaging. ACS Energy Letters, 2019, 4, 2402-2408.	do Neutron	8.8	65
388	A new high-capacity and safe energy storage system: lithium-ion sulfur batteries. Nano 19140-19157.	scale, 2019, 11,	2.8	28
389	Coordinating gallium hexacyanocobaltate: Prussian blue-based nanomaterial for Li-ion Advances, 2019, 9, 26668-26675.	storage. RSC	1.7	28
390	Tracing the technological development trajectory in post-lithium-ion battery technolog patent-based approach. Journal of Cleaner Production, 2019, 241, 118343.	ies: A	4.6	56
391	MXene-Based Co, N-Codoped Porous Carbon Nanosheets Regulating Polysulfides for H Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38654-3	igh-Performance 38662.	4.0	55
392	Controlled synthesis of transition metal disulfides (MoS2 and WS2) on carbon fibers: E phase and morphology toward lithium–sulfur battery performance. Applied Materials 529-537.	iffects of Today, 2019, 16,	2.3	42
393	One-pot sulfur-containing ion assisted microwave synthesis of reduced graphene oxide fibrous hybrids for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019	@nano-sulfur 9, 325, 134920.	2.6	24
394	Research Progress of the Solid State Lithium-Sulfur Batteries. Frontiers in Energy Resea	rch, 2019, 7, .	1.2	39
395	TiO ₂ and Co Nanoparticleâ€Decorated Carbon Polyhedra as Efficient Sulf Highâ€Performance Lithium–Sulfur Batteries. Small, 2019, 15, e1804533.	ur Host for	5.2	67
396	F-doped LiFePO4@N/B/F-doped carbon as high performance cathode materials for Li-io Applied Surface Science, 2019, 476, 761-768.	n batteries.	3.1	51

#	Article	IF	CITATIONS
397	Stable lithium–sulfur full cells enabled by dual functional and interconnected mesocarbon arrays. Journal of Materials Chemistry A, 2019, 7, 3289-3297.	5.2	29
398	Outstanding cycle stability and rate capabilities of the all-solid-state Li–S battery with a Li ₇ P ₃ S ₁₁ glass-ceramic electrolyte and a core–shell S@BP2000 nanocomposite. Journal of Materials Chemistry A, 2019, 7, 3895-3902.	5.2	60
399	Two Dimensional WS ₂ /C Nanosheets as a Polysulfides Immobilizer for High Performance Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A5386-A5395.	1.3	29
400	Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Research, 2019, 12, 829-836.	5.8	54
401	Strategic Design of Clayâ€Based Multifunctional Materials: From Natural Minerals to Nanostructured Membranes. Advanced Functional Materials, 2019, 29, 1807611.	7.8	65
402	Sulfur Redox Reactions at Working Interfaces in Lithium–Sulfur Batteries: A Perspective. Advanced Materials Interfaces, 2019, 6, 1802046.	1.9	128
403	Magnesium-Ion Storage Capability of MXenes. ACS Applied Energy Materials, 2019, 2, 1572-1578.	2.5	89
404	Cobaltâ€Ðoped SnS ₂ with Dual Active Centers of Synergistic Absorption atalysis Effect for Highâ€S Loading Liâ€S Batteries. Advanced Functional Materials, 2019, 29, 1806724.	7.8	186
405	Polyethylenimine Expanded Graphite Oxide Enables High Sulfur Loading and Longâ€Term Stability of Lithium–Sulfur Batteries. Small, 2019, 15, e1804578.	5.2	30
406	Electrospun β-Mo2C/CNFs as an efficient sulfur host for rechargeable lithium sulfur battery. Journal of Materials Science: Materials in Electronics, 2019, 30, 4626-4633.	1.1	29
407	Volumetric Discharge Capacity 1 A h cm ^{–3} Realized by Sulfur in Carbon Nanotube Sponge Cathodes. Journal of Physical Chemistry C, 2019, 123, 3951-3958.	1.5	13
408	The combination of intercalation and conversion reactions to improve the volumetric capacity of the cathode in Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 3618-3623.	5.2	25
409	Fluorineâ€Free Noble Salt Anion for Highâ€Performance Allâ€Solidâ€State Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900763.	10.2	66
410	Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect. Journal of Physics and Chemistry of Solids, 2019, 134, 255-261.	1.9	18
411	Oxygen Vacancies on Layered Niobic Acid That Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 11491-11496.	7.2	104
412	Sulfonic Acid Based Complex Framework Materials (CFM): Nanostructured Polysulfide Immobilization Systems for Rechargeable Lithium–Sulfur Battery. Journal of the Electrochemical Society, 2019, 166, A1827-A1835.	1.3	54
413	Oxygen Vacancies on Layered Niobic Acid That Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 11615-11620.	1.6	13
414	Facile, Solventâ€Free Preparation of High Density, High Mass Loading Sulfur Cathodes Enabled by Dryâ€Pressable Holey Graphene Scaffolds. Batteries and Supercaps, 2019, 2, 774-783.	2.4	25

#	Article	IF	CITATIONS
415	Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium-sulfur batteries. Communications Chemistry, 2019, 2, .	2.0	29
416	Selfâ€Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1902228.	11.1	216
417	A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium–sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 1807-1815.	3.2	19
418	Operando X-ray absorption spectroscopy applied to battery materials at ICGM: The challenging case of BiSb's sodiation. Energy Storage Materials, 2019, 21, 1-13.	9.5	12
419	Reliable and valid pyrite electrocatalysts supported on nitrogen-doped porous carbon sheets for advanced lithium sulfur batteries. Journal of Power Sources, 2019, 435, 226778.	4.0	21
420	Twoâ€Dimensional Arrays of Transition Metal Nitride Nanocrystals. Advanced Materials, 2019, 31, e1902393.	11.1	93
421	Covalent Organic Framework Derived Boron/Oxygen Codoped Porous Carbon on CNTs as an Efficient Sulfur Host for Lithium–Sulfur Batteries. Small Methods, 2019, 3, 1900338.	4.6	109
422	Transition metal embedded C2N with efficient polysulfide immobilization and catalytic oxidation for advanced lithium-sulfur batteries: A first principles study. Ceramics International, 2019, 45, 17996-18002.	2.3	58
423	Effects of Sulfur Loading, Cathode Porosity, and Electrolyte Amount on Li-S Battery Performance with Solvate Ionic Liquid Electrolyte. Electrochemistry, 2019, 87, 254-259.	0.6	11
424	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	10.2	865
425	The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries. MRS Advances, 2019, 4, 2627-2634.	0.5	18
426	Graphene/carbon aerogel for high areal capacity sulfur cathode of Li-S batteries. Ionics, 2019, 25, 4615-4624.	1.2	10
427	Titanium(III) Sulfide Nanoparticles Coated with Multicomponent Oxide (Ti–S–O) as a Conductive Polysulfide Scavenger for Lithium–Sulfur Batteries. Electronic Materials Letters, 2019, 15, 613-622.	1.0	4
428	Bacteria-Derived Biological Carbon Building Robust Li–S Batteries. Nano Letters, 2019, 19, 4384-4390.	4.5	95
429	Impact of the Mechanical Properties of a Functionalized Cross-Linked Binder on the Longevity of Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22481-22491.	4.0	22
430	Electrocatalysis of polysulfide conversion via sulfur–cobalt CoS2 on a carbon nanotube surface as a cathode for high-performance lithium–sulfur batteries. Journal of Solid State Electrochemistry, 2019, 23, 2097-2105.	1.2	16
431	Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries. Nano Research, 2019, 12, 1836-1844.	5.8	35
432	A Cathode-Integrated Sulfur-Deficient Co ₉ S ₈ Catalytic Interlayer for the Reutilization of "Lost―Polysulfides in Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 7073-7082.	7.3	226

#	Article	IF	CITATIONS
433	Poly(ethylene oxide)–Li ₁₀ SnP ₂ S ₁₂ Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 22745-22753.	4.0	108
434	A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials, 2019, 29, 1901730.	7.8	267
435	Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25147-25154.	4.0	152
436	Hollow Multiâ€Shelled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 9078-9082.	7.2	149
437	Bio-inspired poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate)-sulfur@polyacrylonitrile electrospun nanofibers for lithium-sulfur batteries. Journal of Power Sources, 2019, 431, 250-258.	4.0	32
438	Hollow Multiâ€Shelled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 9176-9180.	1.6	45
439	A multi-functional interface derived from thiol-modified mesoporous carbon in lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13372-13381.	5.2	17
440	A Comprehensive Review of Materials with Catalytic Effects in Li–S Batteries: Enhanced Redox Kinetics. Angewandte Chemie, 2019, 131, 18920-18931.	1.6	90
441	A Comprehensive Review of Materials with Catalytic Effects in Li–S Batteries: Enhanced Redox Kinetics. Angewandte Chemie - International Edition, 2019, 58, 18746-18757.	7.2	379
442	Enhancing Catalytic Activity of Titanium Oxide in Lithium–Sulfur Batteries by Band Engineering. Advanced Energy Materials, 2019, 9, 1900953.	10.2	326
443	Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium–sulfur batteries. Journal of Power Sources, 2019, 431, 93-104.	4.0	61
444	In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chemical Engineering Journal, 2019, 373, 1309-1318.	6.6	226
445	Nitrogen, sulfur-codoped micro–mesoporous carbon derived from boat-fruited sterculia seed for robust lithium–sulfur batteries. RSC Advances, 2019, 9, 15715-15726.	1.7	24
446	A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Freeâ€Energy Relationship in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 10701-10705.	1.6	12
447	A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Freeâ€Energy Relationship in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 10591-10595.	7.2	36
448	Sulfur-deficient MoS2-x promoted lithium polysulfides conversion in lithium-sulfur battery: A first-principles study. Applied Surface Science, 2019, 487, 452-463.	3.1	58
449	Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Materials, 2019, 23, 261-268.	9.5	149
450	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters, 2019, 4, 1717-1724.	8.8	151

#	Article	IF	CITATIONS
451	Current Status and Future Prospects of Metal–Sulfur Batteries. Advanced Materials, 2019, 31, e1901125.	11.1	422
452	High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nature Energy, 2019, 4, 551-559.	19.8	492
453	Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium–sulfur batteries: a degradation mechanism study. Energy and Environmental Science, 2019, 12, 2496-2506.	15.6	140
454	Effect of Synthesis Method Using Varying Types of Micropore Level Sulfur Infiltration on Electrochemical Performance in Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900194.	1.8	4
455	Nanopore separator of cross-linked poly(propylene glycol)- <i>co</i> -pentaerythritol triacrylate for effectively suppressing polysulfide shuttling in Li–S batteries. Polymer Chemistry, 2019, 10, 2697-2705.	1.9	8
456	The use of two-dimensional materials in high-temperature rechargeable batteries: current issues and preventative measures. Materials Research Express, 2019, 6, 092003.	0.8	2
457	Active Anchoring Polysulfides of ZnSâ€Decorated Porous Carbon Aerogel for a Highâ€Performance Lithiumâ€Sulfur Battery. ChemElectroChem, 2019, 6, 2570-2577.	1.7	20
458	Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 128-136.	2.3	55
459	Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science, 2019, 12, 1751-1779.	15.6	481
460	Bi-structural fibers of carbon nanotube coated with nitrogen/oxygen dual-doped porous carbon layer as superior sulfur host for lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 797, 1205-1215.	2.8	47
461	Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS ₂ nanosheet core–shell architecture for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13103-13112.	5.2	102
462	Double-walled N-doped carbon@NiCo ₂ S ₄ hollow capsules as SeS ₂ hosts for advanced Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 12276-12282.	5.2	40
463	Hierarchical Highâ€Porosity Graphene Oxideâ€Porous Carbon/Sulfur Composite with Sodium Chloride as Temporary Space Holders for Highâ€Performance Lithiumâ€5ulfur Batteries. ChemElectroChem, 2019, 6, 2667-2674.	1.7	3
464	New insights into the phase evolution in CuS during lithiation and delithiation processes. Journal of Materials Chemistry A, 2019, 7, 11699-11708.	5.2	16
465	Electrocatalysis of S-doped carbon with weak polysulfide adsorption enhances lithium–sulfur battery performance. Chemical Communications, 2019, 55, 6365-6368.	2.2	45
466	Electrolyte Evolution Propelling the Development of Nonlithium Metal–Sulfur Batteries. Energy Technology, 2019, 7, 1900164.	1.8	19
467	CNFs/S1-xSex Composites as Promising Cathode Materials for High-Energy Lithium-Sulfur Batteries. MRS Advances, 2019, 4, 821-828.	0.5	1
468	Understanding the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando X-ray Absorption Spectroscopy. Arabian Journal for Science and Engineering, 2019, 44, 6217-6229.	1.7	6

#	Article	IF	CITATIONS
469	Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function. Nano Energy, 2019, 60, 332-339.	8.2	156
470	The recent research status quo and the prospect of electrolytes for lithium sulfur batteries. Chemical Engineering Journal, 2019, 369, 874-897.	6.6	71
471	Synergistic Regulation of Polysulfides Conversion and Deposition by MOFâ€Derived Hierarchically Ordered Carbonaceous Composite for Highâ€Energy Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1900875.	7.8	104
472	Mesoscale Elucidation of Self-Discharge-Induced Performance Decay in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 13326-13333.	4.0	9
473	Ionic Liquids and their Polymers in Lithium‣ulfur Batteries. Israel Journal of Chemistry, 2019, 59, 832-842.	1.0	15
474	Synergy between partially exfoliated carbon nanotubes-sulfur cathode and nitrogen rich dual function interlayer for high performance lithium sulfur battery. Carbon, 2019, 147, 364-376.	5.4	27
475	Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy, 2019, 59, 636-643.	8.2	83
476	Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping. Nature Communications, 2019, 10, 1021.	5.8	211
477	Pyrrolicâ€Type Nitrogenâ€Doped Hierarchical Macro/Mesoporous Carbon as a Bifunctional Host for Highâ€Performance Thick Cathodes for Lithiumâ€Sulfur Batteries. Small, 2019, 15, e1900690.	5.2	37
478	Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nature Energy, 2019, 4, 374-382.	19.8	449
479	Arranged redistribution of sulfur species and synergistic mediation of polysulfide conversion in lithium–sulfur batteries by a cactus structure MnO ₂ /carbon nanofiber interlayer. Materials Chemistry Frontiers, 2019, 3, 948-954.	3.2	4
480	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	2.4	45
481	Role and Potential of Metal Sulfide Catalysts in Lithium‣ulfur Battery Applications. ChemCatChem, 2019, 11, 2373-2387.	1.8	54
482	Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries. Journal of Materials Chemistry A, 2019, 7, 11613-11650.	5.2	60
483	Introduction to Lithium-Sulfur Batteries. , 2019, , 5-13.		6
484	Engineering Rice Husk into a High-Performance Electrode Material through an Ecofriendly Process and Assessing Its Application for Lithium-Ion Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 7851-7861.	3.2	34
485	Defect engineering of black phosphorene towards an enhanced polysulfide host and catalyst for lithium-sulfur batteries: A first principles study. Journal of Applied Physics, 2019, 125, .	1.1	39
486	Glyme-based electrolytes for lithium metal batteries using insertion electrodes: An electrochemical study. Electrochimica Acta, 2019, 306, 85-95.	2.6	14

ARTICLE IF CITATIONS # Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and 487 10.2 177 Réliable Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900228. An integrated cathode with bi-functional catalytic effect for excellent-performance lithium-sulfur 488 5.8 batteries. Nano Research, 2019, 12, 1017-1024. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia 489 3.8 215 Materials, 2019, 11, . A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium–sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 1317-1322. Deciphering the Reaction Mechanism of Lithiumâ€"Sulfur Batteries by In Situ/Operando 491 10.2 96 Synchrotronâ€Based Characterization Techniques. Advanced Energy Materials, 2019, 9, 1900148. Na+/K+ Hybrid Battery Based on a Sulfurized Polyacrylonitrile Cathode. Materials, 2019, 12, 969. 1.3 Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement 493 5.2 147 strategies. Journal of Materials Chemistry A, 2019, 7, 12381-12413. Co–Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an 404 7.3 Efficient Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 4731-4741. An optimal carbon fiber interlayer integrated with bio-based gel polymer electrolyte enabling 495 trapping-diffusion-conversion of polysulfides in lithium-sulfur batteries. Chemical Engineering 6.6 60 Journal, 2019, 370, 1068-1076. Electrocatalysis driven high energy density Li-ion polysulfide battery. Electrochimica Acta, 2019, 307, 2.6 253-259. Dual synergistic immobilization effect on lithium polysulfides for lithium–sulfur batteries. Journal 497 1.9 6 of Electroanalytical Chemistry, 2019, 840, 125-133. Biomassâ€Derived Materials for Electrochemical Energy Storage and Conversion: Overview and 498 101 Perspectives. Energy and Environmental Materials, 2019, 2, 55-67. Mechanism of Lithium Cation Hopping between Tetragonal Thiophene Cages. Batteries and Supercaps, 499 2.4 2 2019, 2, 695-700. Designing polymers for advanced battery chemistries. Nature Reviews Materials, 2019, 4, 312-330. 579 23.3 Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. Journal of 501 5.2109 Materials Chemistry A, 2019, 7, 10346-10353. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nature 5.8 297 Communications, 2019, 10, 900. Recent Progress in All-Solid-State Lithiumâ[^]Sulfur Batteries Using High Li-Ion Conductive Solid 503 13.1179 Electrolytes. Electrochemical Energy Reviews, 2019, 2, 199-230. Recent Advances in Hollow Porous Carbon Materials for Lithium–Sulfur Batteries. Small, 2019, 15, 504 5.2 314 e1804786.

#	Article	IF	CITATIONS
505	Selfâ€Formed Protection Layer on a 3D Lithium Metal Anode for Ultrastable Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 2263-2270.	3.6	22
506	Dual functional effect of the ferroelectricity embedded interlayer in lithium sulfur battery. Journal of Power Sources, 2019, 419, 35-41.	4.0	23
507	A homemade self-healing material utilized as multi-functional binder for long-lifespan lithium–sulfur batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 5536-5543.	1.1	11
508	Squalene-derived sulfur-rich copolymer@ 3D graphene-carbon nanotube network cathode for high-performance lithium-sulfur batteries. Polyhedron, 2019, 162, 147-154.	1.0	23
509	Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 6596-6615.	5.2	173
510	Modified carbon nanotubes for water-based cathode slurries for lithium–sulfur batteries. Journal of Materials Research, 2019, 34, 634-641.	1.2	4
511	Enhanced Sulfur Transformation by Multifunctional FeS ₂ /FeS/S Composites for Highâ€Volumetric Capacity Cathodes in Lithium–Sulfur Batteries. Advanced Science, 2019, 6, 1800815.	5.6	178
512	Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S Batteries. Joule, 2019, 3, 872-884.	11.7	188
513	Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Materials, 2019, 23, 707-732.	9.5	249
514	Rational design of sulfur-containing composites for high-performance lithium–sulfur batteries. APL Materials, 2019, 7, .	2.2	30
515	A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 6859-6868.	5.2	70
516	Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy, 2019, 59, 390-398.	8.2	96
517	Suppression of Polysulfide Dissolution and Shuttling with Glutamate Electrolyte for Lithium Sulfur Batteries. ACS Nano, 2019, 13, 14172-14181.	7.3	64
518	A new cathode material synthesized by a thiol-modified metal–organic framework (MOF) covalently connecting sulfur for superior long-cycling stability in lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 24515-24523.	5.2	49
519	Communication—Trace Montmorillonite Electrolyte Additive Producing Stable Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A3886-A3888.	1.3	10
520	Designing Effective Solvent–Catalyst Interface for Catalytic Sulfur Conversion in Lithium–Sulfur Batteries. Chemistry of Materials, 2019, 31, 10186-10196.	3.2	45
521	Conducting and Lithiophilic MXene/Graphene Framework for High-Capacity, Dendrite-Free Lithium–Metal Anodes. ACS Nano, 2019, 13, 14308-14318.	7.3	155
522	Thermo-Electrochemical Stability Analytics of Electrode Materials. Journal of Physical Chemistry C, 2019, 123, 30106-30120.	1.5	11

#	Article	IF	CITATIONS
523	Design and facile synthesis of defect-rich C-MoS ₂ /rGO nanosheets for enhanced lithium–sulfur battery performance. Beilstein Journal of Nanotechnology, 2019, 10, 2251-2260.	1.5	11
524	Multifunctional Effects of Sulfonyl-Anchored, Dual-Doped Multilayered Graphene for High Areal Capacity Lithium Sulfur Batteries. ACS Central Science, 2019, 5, 1946-1958.	5.3	29
525	Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li–S Batteries. ACS Nano, 2019, 13, 14208-14216.	7.3	171
526	Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox. Nature Chemistry, 2019, 11, 1133-1138.	6.6	31
527	Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating. Journal of Materials Chemistry A, 2019, 7, 25369-25376.	5.2	35
528	<i>In situ</i> grown α-Cos/Co heterostructures on nitrogen doped carbon polyhedra enabling the trapping and reaction-intensification of polysulfides towards high performance lithium sulfur batteries. Nanoscale, 2019, 11, 20579-20588.	2.8	16
529	Construction of three-dimensional ordered porous carbon bulk networks for high performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2019, 533, 445-451.	5.0	25
530	Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon, 2019, 141, 16-24.	5.4	54
531	Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Materials, 2019, 18, 222-228.	9.5	84
532	Constructing flexible coaxial-cable structured sulfur cathode with carbon nanomaterials on textile. Carbon, 2019, 144, 525-531.	5.4	5
533	Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Materials, 2019, 21, 14-21.	9.5	182
534	2D hybrid interlayer of electrochemically exfoliated graphene and Co(OH) ₂ nanosheet as a bi-functionalized polysulfide barrier for high-performance lithium–sulfur batteries. JPhys Energy, 2019, 1, 015002.	2.3	15
535	Singleâ€Phase Cu ₃ SnS ₄ Nanoparticles for Robust High Capacity Lithiumâ€lon Battery Anodes. ChemElectroChem, 2019, 6, 1371-1375.	1.7	16
536	Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials. Advanced Materials, 2019, 31, e1804826.	11.1	181
537	Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery. Energy Storage Materials, 2019, 21, 287-296.	9.5	93
538	Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Materials, 2019, 18, 289-310.	9.5	231
539	The Role of Cellulose Based Separator in Lithium Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A5237-A5243.	1.3	27
540	Self-Assembled 3D MnO ₂ Nanosheets@Delaminated-Ti ₃ C ₂ Aerogel as Sulfur Host for Lithium–Sulfur Battery Cathodes. ACS Applied Energy Materials, 2019, 2, 705-714.	2.5	65

#	Article	IF	CITATIONS
541	Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802955.	10.2	102
542	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
543	Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 317-324.	9.5	63
544	Solventâ€Mediated Li ₂ S Electrodeposition: A Critical Manipulator in Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802207.	10.2	237
545	Scalable TiO2 embedded sulfur bulks@MnO2 nanosheets composite cathode for long-cyclic lithium-sulfur batteries. Journal of Solid State Chemistry, 2019, 270, 304-310.	1.4	13
546	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 791-795.	7.2	152
547	Enhanced Interfacial Stability of Hybridâ€Electrolyte Lithiumâ€Sulfur Batteries with a Layer of Multifunctional Polymer with Intrinsic Nanoporosity. Advanced Functional Materials, 2019, 29, 1805996.	7.8	47
548	Rationally Designed High-Sulfur-Content Polymeric Cathode Material for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 6136-6142.	4.0	57
549	Fe3O4/RGO modified separators to suppress the shuttle effect for advanced lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 784, 149-156.	2.8	61
550	B4C nanoskeleton enabled, flexible lithium-sulfur batteries. Nano Energy, 2019, 58, 30-39.	8.2	82
551	Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities. Energy Technology, 2019, 7, 1801001.	1.8	138
553	Few-layer phosphorene: An emerging electrode material for electrochemical energy storage. Applied Materials Today, 2019, 15, 18-33.	2.3	53
554	Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	7.1	104
555	Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy-Density Lithium-Sulfur Batteries. Joule, 2019, 3, 136-148.	11.7	256
556	Blackberry-like hollow graphene spheres synthesized by spray drying for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 295, 822-828.	2.6	33
557	Urchin-like NiCo2S4 infused sulfur as cathode for lithium–sulfur battery. Journal of Materials Science: Materials in Electronics, 2019, 30, 189-199.	1.1	18
558	Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion. Nano Energy, 2019, 55, 234-259.	8.2	71
559	Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries. Chemical Engineering Journal, 2019, 358, 962-968.	6.6	91

#	Article	IF	CITATIONS
560	A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2019, 358, 1047-1053.	6.6	116
561	Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. Nano Energy, 2019, 57, 34-40.	8.2	104
562	Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy, 2019, 57, 230-240.	8.2	190
563	Triboelectric Nanogenerator-Enabled Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 802-810.	4.0	12
564	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie - International Edition, 2019, 58, 3779-3783.	7.2	296
565	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie, 2019, 131, 3819-3823.	1.6	41
566	Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. Carbon, 2019, 143, 878-889.	5.4	70
567	Solid-state energy storage devices based on two-dimensional nano-materials. Energy Storage Materials, 2019, 20, 269-290.	9.5	50
568	Predicted semiconducting beryllium sulfides in 3D and 2D configurations: Insights from first-principles calculations. Journal of Alloys and Compounds, 2019, 781, 371-377.	2.8	8
569	High capacity semi-liquid lithium sulfur cells with enhanced reversibility for application in new-generation energy storage systems. Journal of Power Sources, 2019, 412, 575-585.	4.0	23
570	Functionalized titanium nitride-based MXenes as promising host materials for lithium-sulfur batteries: A first principles study. Ceramics International, 2019, 45, 1588-1594.	2.3	63
571	Polymers for high performance Li-S batteries: Material selection and structure design. Progress in Polymer Science, 2019, 89, 19-60.	11.8	103
572	Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Research, 2019, 12, 205-210.	5.8	39
573	Improve the electrodeposition of sulfur and lithium sulfide in lithium-sulfur batteries with a comb-like ion-conductive organo-polysulfide polymer binder. Energy Storage Materials, 2019, 18, 190-198.	9.5	35
574	The role of functional materials to produce high areal capacity lithium sulfur battery. Journal of Energy Chemistry, 2020, 42, 195-209.	7.1	67
575	Dictating Highâ€Capacity Lithium–Sulfur Batteries through Redoxâ€Mediated Lithium Sulfide Growth. Small Methods, 2020, 4, 1900344.	4.6	99
576	In-situ polymerized cross-linked binder for cathode in lithium-sulfur batteries. Chinese Chemical Letters, 2020, 31, 570-574.	4.8	36
577	A gel polymer electrolyte based on PVDF-HFP modified double polymer matrices via ultraviolet polymerization for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 558,	5.0	52

#		IF	CITATIONS
T 578	Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for	66	61
070	lithium-sulfur battery cathode. Chemical Engineering Journal, 2020, 382, 122946.	0.0	01
579	Self-assembled N-doped carbon with a tube-in-tube nanostructure for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 559, 244-253.	5.0	20
580	Lithium‧chwefelâ€Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. Angewandte Chemie, 2020, 132, 12736-12753.	1.6	33
581	3D ultraviolet polymerized electrolyte based on PEO modified PVDF-HFP electrospun membrane for high-performance lithium-sulfur batteries. Electrochimica Acta, 2020, 329, 135108.	2.6	40
582	Understanding Rechargeable Battery Function Using In Operando Neutron Powder Diffraction. Advanced Materials, 2020, 32, e1904528.	11.1	52
583	Carbon-free sulfur-based composite cathode for advanced Lithium-Sulfur batteries: A case study of hierarchical structured CoMn2O4 hollow microspheres as sulfur immobilizer. Electrochimica Acta, 2020, 329, 135128.	2.6	25
584	Reduced graphene oxide modified with naphthoquinone for effective immobilization of polysulfides in high-performance Li-S batteries. Chemical Engineering Journal, 2020, 383, 123111.	6.6	20
585	Single lithium-ion channel polymer binder for stabilizing sulfur cathodes. National Science Review, 2020, 7, 315-323.	4.6	43
586	Converting a thick electrode into vertically aligned "Thin electrodes―by 3D-Printing for designing thickness independent Li-S cathode. Energy Storage Materials, 2020, 24, 682-688.	9.5	59
587	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
588	Graphene-based composites for electrochemical energy storage. Energy Storage Materials, 2020, 24, 22-51.	9.5	364
589	2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 1447-1479.	3.6	49
590	Formulierung von Elektrolyten mit gemischten Lithiumsalzen für Lithiumâ€Batterien. Angewandte Chemie, 2020, 132, 3426-3442.	1.6	16
591	Formulation of Blendedâ€Lithiumâ€Salt Electrolytes for Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3400-3415.	7.2	129
592	An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 382, 122714.	6.6	40
593	LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries. Energy Storage Materials, 2020, 24, 198-207	9.5	139
594	Paraffin wax protecting 3D non-dendritic lithium for backside-plated lithium metal anode. Energy Storage Materials, 2020, 24, 153-159.	9.5	20
595	Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 44, 51-60.	7.1	47

#	Article	IF	Citations
596	Hollow nitrogen-doped carbon/sulfur@MnO2 nanocomposite with structural and chemical dual-encapsulation for lithium-sulfur battery. Chemical Engineering Journal, 2020, 381, 122746.	6.6	66
597	ReS2 nanosheets anchored on rGO as an efficient polysulfides immobilizer and electrocatalyst for Li-S batteries. Applied Surface Science, 2020, 505, 144586.	3.1	23
598	Lowâ€Bandgap Seâ€Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e1904876.	11.1	206
599	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	13.1	98
600	Cobalt phthalocyanine is a suitable scaffold for lithium polysulfide (Li2Sn n = 2–8). Chemical Physics Letters, 2020, 739, 136942.	1.2	20
601	In situ transformation of LDH into hollow cobalt-embedded and N-doped carbonaceous microflowers as polysulfide mediator for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 385, 123457.	6.6	31
602	Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 12636-12652.	7.2	425
603	A high-performance energy storage system from sphagnum uptake waste LIBs with negative greenhouse-gas emission. Nano Energy, 2020, 67, 104216.	8.2	10
604	Tailoring three-dimensional interconnected nanoporous graphene micro/nano-foams for lithium-sulfur batteries. Carbon, 2020, 157, 437-447.	5.4	30
605	Uniform Polypyrrole Layer-Coated Sulfur/Graphene Aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5958-5967.	4.0	29
606	Rational design of a mesoporous silica-based cathode for efficient trapping of polysulfides in Li–S batteries. Chemical Communications, 2020, 56, 786-789.	2.2	16
607	Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 48, 109-115.	7.1	59
608	Anodized Aluminum Oxide Separators with Aligned Channels for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5831-5837.	4.0	29
609	Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li–S batteries. Journal of Energy Chemistry, 2020, 48, 128-135.	7.1	61
610	Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy and Environmental Science, 2020, 13, 1049-1075.	15.6	285
611	Anchoring MOF-derived CoS ₂ on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 1298-1306.	5.2	112
612	Shuttle confinement of lithium polysulfides in borocarbonitride nanotubes with enhanced performance for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 296-304.	5.2	40
613	Na4Mn9O18 nanowires wrapped by reduced graphene oxide as efficient sulfur host material for lithium/sulfur batteries. Journal of Solid State Electrochemistry, 2020, 24, 111-119.	1.2	15

#	Article	IF	CITATIONS
614	Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium–sulfur batteries. Energy Storage Materials, 2020, 26, 40-45.	9.5	43
615	Hermetically encapsulating sulfur by FePS ₃ flakes for high-performance lithium sulfur batteries. Chemical Communications, 2020, 56, 810-813.	2.2	13
616	Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries. Nano Letters, 2020, 20, 1252-1261.	4.5	394
617	Adsorptionâ€Catalysis Design in the Lithiumâ€Sulfur Battery. Advanced Energy Materials, 2020, 10, 1903008.	10.2	275
618	Porous MXenes: Synthesis, structures, and applications. Nano Today, 2020, 30, 100803.	6.2	218
619	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	7.8	176
620	Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1902872.	10.2	72
621	Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy, 2020, 68, 104307.	8.2	51
622	Holey graphene modified LiFePO4 hollow microsphere as an efficient binary sulfur host for high-performance lithium-sulfur batteries. Energy Storage Materials, 2020, 26, 433-442.	9.5	49
623	Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries. Electrochimica Acta, 2020, 334, 135658.	2.6	21
624	Self-assembly of MoO ₃ -decorated carbon nanofiber interlayers for high-performance lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2020, 22, 2157-2163.	1.3	24
625	Molybdenum carbide nanostructures for electrocatalytic polysulfide conversion in lithium–polysulfide batteries. Nanoscale Horizons, 2020, 5, 501-506.	4.1	19
626	Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 1154-1163.	5.2	32
627	Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. Journal of Materials Science and Technology, 2020, 55, 56-72.	5.6	53
628	Highâ€Performance Li–Se Battery Enabled via a Oneâ€Piece Cathode Design. Advanced Energy Materials, 2020, 10, 1903477.	10.2	29
629	Designing Highly Conductive Functional Groups Improving Guest–Host Interactions in Li/S Batteries. Small, 2020, 16, e1905585.	5.2	28
630	Trapping of Polysulfides with Sulfurâ€Rich Poly Ionic Liquid Cathode Materials for Ultralongâ€Life Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 715-723.	3.6	41
631	A Dualâ€Functional Conductive Framework Embedded with TiNâ€VN Heterostructures for Highly Efficient Polysulfide and Lithium Regulation toward Stable Li–S Full Batteries. Advanced Materials, 2020, 32, e1905658.	11.1	276
щ	Apticie	IF	CITATIONS
-----	---	------	-----------
#	ARTICLE	IF	CHATIONS
632	oxygen-containing groups for lithium-sulfur batteries. Carbon, 2020, 158, 244-255.	5.4	39
633	Catalytic Interfacesâ€Enriched Hybrid Hollow Spheres Sulfur Host for Advanced Li–S Batteries. Advanced Materials Interfaces, 2020, 7, 1901420.	1.9	15
634	The surface modification of the separator for electrocatalyst in lithium-sulfur batteries. Ionics, 2020, 26, 1129-1138.	1.2	9
635	A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li–S batteries. Journal of Materials Science and Technology, 2020, 55, 152-158.	5.6	29
636	Suppressed Shuttle via Inhibiting the Formation of Longâ€Chain Lithium Polysulfides and Functional Separator for Greatly Improved Lithium–Organosulfur Batteries Performance. Advanced Energy Materials, 2020, 10, 1902695.	10.2	30
637	Twoâ€Dimensional Materialâ€Functionalized Separators for Highâ€Energyâ€Density Metal–Sulfur and Metalâ€Based Batteries. ChemSusChem, 2020, 13, 1366-1378.	3.6	20
638	In-situ topochemical nitridation derivative MoO2–Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. Nano Energy, 2020, 68, 104356.	8.2	116
639	Ni ₃ S ₂ anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 3834-3844.	5.2	56
640	Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Science Advances, 2020, 6, eaay2757.	4.7	152
641	A multifunctional polyimide nanofiber separator with a self-closing polyamide–polyvinyl alcohol top layer with a Turing structure for high-performance lithium–sulfur batteries. Materials Advances, 2020, 1, 3449-3459.	2.6	8
642	Redox Comediation with Organopolysulfides in Working Lithium-Sulfur Batteries. CheM, 2020, 6, 3297-3311.	5.8	177
643	Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion. Materials Today Energy, 2020, 18, 100519.	2.5	39
644	Engineering the Conductive Network of Metal Oxideâ€Based Sulfur Cathode toward Efficient and Longevous Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002076.	10.2	126
645	The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials, 2020, 33, 360-381.	9.5	47
646	Optimizing Redox Reactions in Aprotic Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002180.	10.2	112
647	Precise Synthesis of Fe-N ₂ Sites with High Activity and Stability for Long-Life Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 16105-16113.	7.3	120
648	Superior Anchoring of Sodium Polysulfides to the Polar C ₂ N 2D Material: A Potential Electrode Enhancer in Sodium–Sulfur Batteries. Langmuir, 2020, 36, 13104-13111.	1.6	27
649	Polyaniline-Derived Carbon Heterostructure as Redox Mediator of Li ₂ S Oxidation and Polysulfide Immobilizer for High-Performance Lithium–Sulfur Cathode. ACS Sustainable Chemistry and Engineering, 2020, 8, 16659-16670.	3.2	11

.

#	Article	IF	CITATIONS
650	Advances in the chemistry and applications of alkali-metal–gas batteries. Nature Reviews Chemistry, 2020, 4, 566-583.	13.8	70
651	Accelerating Redox Kinetics of Lithium-Sulfur Batteries. Trends in Chemistry, 2020, 2, 1020-1033.	4.4	46
652	Spatial Effects between Two 3D Self‣upported Carbonâ€Nanotubeâ€Based Skeleton as Binderâ€Free Cathodes for Lithium‣ulfur Batteries. ChemistrySelect, 2020, 5, 11383-11390.	° 0.7	4
653	A Multifunctional Inorganic Composite Separator for Stable High-Safety Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 10139-10146.	2.5	10
654	A facile synthetic strategy of free-standing holey graphene paper as sulfur host for high-performance flexible lithium sulfur batteries. Journal of Electroanalytical Chemistry, 2020, 876, 114728.	1.9	9
655	"Soft on rigid―nanohybrid as the self-supporting multifunctional cathode electrocatalyst for high-performance lithium-polysulfide batteries. Nano Energy, 2020, 78, 105293.	8.2	36
656	Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges. , 2020, 2, 1450-1463.		108
657	Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26053-26060.	3.3	82
658	The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery. Journal of Power Sources, 2020, 472, 228424.	4.0	26
659	Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chemical Science, 2020, 11, 8686-8707.	3.7	82
660	Status and prospects of porous graphene networks for lithium–sulfur batteries. Materials Horizons, 2020, 7, 2487-2518.	6.4	63
661	Applications of transition-metal sulfides in the cathodes of lithium–sulfur batteries. Tungsten, 2020, 2, 134-146.	2.0	75
662	A High-Performance Aqueous Zinc-Bromine Static Battery. IScience, 2020, 23, 101348.	1.9	71
663	A Covalent Organic Framework with Extended π-Conjugated Building Units as a Highly Efficient Recipient for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34990-34998.	4.0	50
664	Unique structural advances of graphdiyne for energy applications. EnergyChem, 2020, 2, 100041.	10.1	48
665	On-Site Fluorination for Enhancing Utilization of Lithium in a Lithium–Sulfur Full Battery. ACS Applied Materials & Interfaces, 2020, 12, 53860-53868.	4.0	12
666	Electrospinning MoS2-Decorated Porous Carbon Nanofibers for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11893-11899.	2.5	20
667	Ti ₃ C ₂ T _x nanosheet wrapped core–shell MnO ₂ nanorods @ hollow porous carbon as a multifunctional polysulfide mediator for improved Li–S batteries. Nanoscale, 2020, 12, 24196-24205.	2.8	17

#	Article	IF	CITATIONS
668	The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy and Environmental Science, 2020, 13, 4808-4833.	15.6	91
669	Conductive Porous Laminated Vanadium Nitride as Carbon-Free Hosts for High-Loading Sulfur Cathodes in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 17308-17320.	7.3	86
670	Superior anchoring effect of a Cu-benzenehexathial MOF as an aluminium–sulfur battery cathode host. Materials Advances, 2020, 1, 3572-3581.	2.6	19
671	Immobilizing Polysulfide by In Situ Topochemical Oxidation Derivative TiC@Carbonâ€Included TiO ₂ Core–Shell Sulfur Hosts for Advanced Lithium–Sulfur Batteries. Small, 2020, 16, e2005998.	5.2	24
672	Cathode-Supported-Electrolyte Configuration for High-Performance All-Solid-State Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11540-11547.	2.5	15
673	New High Donor Electrolyte for Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2005022.	11.1	95
674	Shielding Polysulfide Intermediates by an Organosulfurâ€Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003012.	11.1	108
675	MOF-derived LDH wrapped with rGO as an efficient sulfur host for lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2020, 876, 114545.	1.9	19
676	Stable Lithium Sulfur Battery Based on In Situ Electrocatalytically Formed Li ₂ S on Metallic MoS ₂ –Carbon Cloth Support. Small Methods, 2020, 4, 2000353.	4.6	49
677	Effect of phosphorous-doped graphitic carbon nitride on electrochemical properties of lithium-sulfur battery. Ionics, 2020, 26, 5491-5501.	1.2	17
678	Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects. Journal of Materials Chemistry A, 2020, 8, 17848-17882.	5.2	85
679	Harnessing the unique features of MXenes for sulfur cathodes. Tungsten, 2020, 2, 162-175.	2.0	25
680	Sulfur-based redox chemistry for electrochemical energy storage. Coordination Chemistry Reviews, 2020, 422, 213445.	9.5	28
681	Exploring and Understanding the Roles of Li2Sn and the Strategies to beyond Present Li-S Batteries. CheM, 2020, 6, 2533-2557.	5.8	148
682	Introduce Tortuosity to Retain Polysulfides and Suppress Li Dendrites. Matter, 2020, 2, 1363-1365.	5.0	3
683	Ultrafast Absorption of Polysulfides through Electrostatic Confinement by Protonated Molecules for Highly Efficient Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 36220-36227.	4.0	4
684	Towards high energy density Li–S batteries with high sulfur loading: From key issues to advanced strategies. Energy Storage Materials, 2020, 32, 320-355.	9.5	64
685	Boosting the anchoring and catalytic capability of MoS ₂ for high-loading lithium sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 17646-17656.	5.2	33

CITATION REPORT IF CITATIONS To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide 8.2 75 microspheres for lithiumâ[^] sulfur battery. Nano Energy, 2020, 77, 105173. Defective VSe₂â€"Graphene Heterostructures Enabling <i>In Situ</i> Electrocatalyst 142 Evolution for Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 11929-11938. Designer Self-Assembled Polyelectrolyte Complex Nanoparticle Membrane for a Stable Lithium–Sulfur 2.5 15 Battery at Lean Electrolyte Conditions. ACS Applied Energy Materials, 2020, 3, 7908-7919. In Situ Conversion of Metal–Organic Frameworks into VO₂–V₃S₄ Heterocatalyst Embedded Layered Porous Carbon as an "Allâ€inâ€One―Host for Lithium–Sulfur Batteries. 5.2 Small, 2020, 16, e2004806. Graphene nanosheet@spherical ordered mesoporous carbon/sulfur nanocomposites as cathode material for high-performance lithium-sulfur batteries. International Journal of Hydrogen Energy, 3.8 8 2020, 45, 32654-32663. MoS₂ nanosheets grown on hollow carbon spheres as a strong polysulfide anchor for high performance lithium sulfur batteries. Nanoscale, 2020, 12, 23636-23644. 2.8 Dual-Constrained Sulfur in FeS₂@C Nanostructured Lithium-Sulfide Batteries. ACS 2.5 21 Applied Energy Materials, 2020, 3, 10950-10960. Solid-state lithium–sulfur batteries: Advances, challenges and perspectives. Materials Today, 2020, 40, 8.3 100 Enhanced Catalytic Conversion of Polysulfides Using Bimetallic Co₇Fe₃ for 7.3 158 High-Performance Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 11558-11569. Bifunctional 3D Hierarchical Hairy Foam toward Ultrastable Lithium/Sulfur Electrochemistry. Advanced Functional Materials, 2020, 30, 2004650. Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 Ceramic Based Lithiumâ€Sulfur Batteries with High Cycling Stability Enabled by 1.7 9 a Dual Confinement Effect for Polysulfides. ChemElectroChem, 2020, 7, 4093-4100. A Trifunctional Separator Based on a Blockage-Adsorption-Catalysis Synergistic Effect for Li-S 4.0 Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 47599-47611. Persistent and reversible solid iodine electrodeposition in nanoporous carbons. Nature 5.8 52 Communications, 2020, 11, 4838.

Biomimetic anchoring of Fe3O4 onto Ti3C2 MXene for highly efficient removal of organic dyes by Fenton reaction. Journal of Environmental Chemical Engineering, 2020, 8, 104369. 699 3.3 36 Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 700 5.263 23772-23783. Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 22334-22339. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews, 2020, 702 23.0 319 120, 10336-10453. Alkaliâ€Metal Sulfide as Cathodes toward Safe and Highâ€Capacity Metal (M = Li, Na, K) Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001764.

ARTICLE

686

688

690

692

694

696

698

114-131.

~		_	
	ON		DT
CHAH		ILEPU	ואי

#	Article	IF	CITATIONS
704	Dualâ€Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002271.	10.2	137
705	Environmentally Friendly Binders for Lithiumâ€Sulfur Batteries. ChemElectroChem, 2020, 7, 4158-4176.	1.7	23
706	Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Science China Chemistry, 2020, 63, 1402-1415.	4.2	48
707	A fundamental look at electrocatalytic sulfur reduction reaction. Nature Catalysis, 2020, 3, 762-770.	16.1	455
708	Cobalt and Molybdenum Carbide Nanoparticles Grafted on Nitrogenâ€Doped Carbon Nanotubes as Efficient Chemical Anchors and Polysulfide Conversion Catalysts for Lithiumâ€Sulfur Batteries. ChemElectroChem, 2020, 7, 3767-3775.	1.7	13
709	A review of cathode materials in lithium-sulfur batteries. Ionics, 2020, 26, 5299-5318.	1.2	65
710	Tungsten Oxide/Zirconia as a Functional Polysulfide Mediator for High-Performance Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 3168-3175.	8.8	38
711	Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 13784-13793.	7.3	62
712	Recent Advances of Emerging 2D MXene for Stable and Dendriteâ€Free Metal Anodes. Advanced Functional Materials, 2020, 30, 2004613.	7.8	140
713	Lewis Acid–Base Interactions between Polysulfides and Boehmite Enables Stable Roomâ€Temperature Sodium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2005669.	7.8	40
714	The Toxicity of Secondary Lithium-Sulfur Batteries Components. Batteries, 2020, 6, 45.	2.1	4
715	A Progress Report on Metal–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2004084.	7.8	78
716	Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Applied Physics Reviews, 2020, 7, .	5.5	58
717	Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery. Science China Materials, 2020, 63, 2443-2455.	3.5	69
718	Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 22150-22155.	7.2	55
719	Boosting Li-S battery performance by an efficient polysulfide double-blocking strategy. FlatChem, 2020, 24, 100209.	2.8	2
720	Metalâ€Tellurium Batteries: A Rising Energy Storage System. Small Structures, 2020, 1, 2000005.	6.9	46
721	An overview of the characteristics of advanced binders for high-performance Li–S batteries. Nano Materials Science, 2020, , .	3.9	28

#	Article	IF	CITATIONS
722	Atomic Layer Deposition of Single Atomic Cobalt as a Catalytic Interlayer for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11206-11212.	2.5	25
723	Universal <i>in Situ</i> Crafted MO <i>_{<i>x</i>}</i> MXene Heterostructures as Heavy and Multifunctional Hosts for 3D-Printed Li–S Batteries. ACS Nano, 2020, 14, 16073-16084.	7.3	82
724	A Rational Reconfiguration of Electrolyte for Highâ€Energy and Longâ€Life Lithium–Chalcogen Batteries. Advanced Materials, 2020, 32, e2000302.	11.1	88
725	Interlayer design based on carbon materials for lithium–sulfur batteries: a review. Journal of Materials Chemistry A, 2020, 8, 10709-10735.	5.2	128
726	Boosting Polysulfide Conversion in Lithium–Sulfur Batteries by Cobalt-Doped Vanadium Nitride Microflowers. ACS Applied Energy Materials, 2020, 3, 4523-4530.	2.5	36
727	Dual Functional Ni ₃ S ₂ @Ni Core–Shell Nanoparticles Decorating Nanoporous Carbon as Cathode Scaffolds for Lithium–Sulfur Battery with Lean Electrolytes. ACS Applied Energy Materials, 2020, 3, 4173-4179.	2.5	19
728	Synergistic Effect of Salinized Quinone for Entrapment of Polysulfides for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 23867-23873.	4.0	11
729	Sulfur/Iodine/Graphene Composites as a Cathode Material for Lithium–Sulfur Battery. Journal of the Electrochemical Society, 2020, 167, 080521.	1.3	2
730	Electrocatalytic Interlayer with Fast Lithium–Polysulfides Diffusion for Lithium–Sulfur Batteries to Enhance Electrochemical Kinetics under Lean Electrolyte Conditions. Advanced Functional Materials, 2020, 30, 2000742.	7.8	87
731	Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets. Nano-Micro Letters, 2020, 12, 112.	14.4	59
732	Atomically Engineered Transition Metal Dichalcogenides for Liquid Polysulfide Adsorption and Their Effective Conversion in Li-S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 27112-27121.	4.0	35
733	1T′â€ReS ₂ Nanosheets In Situ Grown on Carbon Nanotubes as a Highly Efficient Polysulfide Electrocatalyst for Stable Li–S Batteries. Advanced Energy Materials, 2020, 10, 2001017.	10.2	145
734	Electrode Design with Integration of High Tortuosity and Sulfur-Philicity for High-Performance Lithium-Sulfur Battery. Matter, 2020, 2, 1605-1620.	5.0	83
735	Impact of Micropores and Dopants to Mitigate Lithium Polysulfides Shuttle over High Surface Area of ZIF-8 Derived Nanoporous Carbons. ACS Applied Energy Materials, 2020, 3, 5523-5532.	2.5	21
736	Insight into sulfur-rich selenium sulfide/pyrolyzed polyacrylonitrile cathodes for Li–S batteries. Sustainable Energy and Fuels, 2020, 4, 3588-3596.	2.5	12
737	Flexible Electrocatalytic Nanofiber Membrane Reactor for Lithium/Sulfur Conversion Chemistry. Advanced Functional Materials, 2020, 30, 1910533.	7.8	41
738	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.	7.8	276
739	In Situ Grown MWCNTs/MXenes Nanocomposites on Carbon Cloth for Highâ€Performance Flexible Supercapacitors. Advanced Functional Materials, 2020, 30, 2002739.	7.8	92

#	Article	IF	CITATIONS
740	Regulating the Hidden Solvationâ€Ionâ€Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 2000901.	10.2	65
741	Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design. Nano Research, 2020, 13, 2299-2307.	5.8	36
742	Facile synthesis of Co _{3â^'x} Mn _x O ₄ /C nanocages as an efficient sulfur host for lithium–sulfur batteries with enhanced rate performance. Dalton Transactions, 2020, 49, 8591-8600.	1.6	9
743	Ultrathin Lithium Aluminate Nanoflake-Inlaid Sulfur as a Cathode Material for Lithium–Sulfur Batteries with High Areal Capacity. ACS Applied Energy Materials, 2020, 3, 5637-5645.	2.5	10
744	Toward Commercially Viable Li-S Batteries: Overall Performance Improvements Enabled by a Multipurpose Interlayer of Hyperbranched Polymer-Grafted Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 25767-25774.	4.0	23
745	Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Microporous and Mesoporous Materials, 2020, 305, 110325.	2.2	59
746	Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy, 2020, 75, 105009.	8.2	33
747	Dynamic Visualization of Cathode/Electrolyte Evolution in Quasiâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000465.	10.2	23
748	Recent Progress in High Donor Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001456.	10.2	112
749	Mesoporous Nitrogenâ€Doped Carbon Nanospheres as Sulfur Matrix and a Novel Chelateâ€Modified Separator for Highâ€Performance Roomâ€Temperature Naâ€5 Batteries. Small, 2020, 16, e1907464.	5.2	57
750	Enhanced Polysulfide Regulation <i>via</i> Porous Catalytic V ₂ O ₃ /V ₈ 7 Heterostructures Derived from Metal–Organic Frameworks toward High-Performance Li–S Batteries. ACS Nano, 2020, 14, 8495-8507.	7.3	192
751	Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium-sulfur batteries. Frontiers of Materials Science, 2020, 14, 266-274.	1.1	12
752	Revealing the multilevel thermal safety of lithium batteries. Energy Storage Materials, 2020, 31, 72-86.	9.5	94
753	An ester electrolyte for lithium–sulfur batteries capable of ultra-low temperature cycling. Chemical Communications, 2020, 56, 9114-9117.	2.2	44
754	A Metal Organic Framework Derived Solid Electrolyte for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001285.	10.2	77
755	Polyhedral TiO2 particle-based cathode for Li-S batteries with high volumetric capacity and high performance in lean electrolyte. Chemical Engineering Journal, 2020, 399, 125670.	6.6	21
756	A three-dimensional interconnected nitrogen-doped graphene-like porous carbon-modified separator for high-performance Li–S batteries. Sustainable Energy and Fuels, 2020, 4, 4264-4272.	2.5	4
757	Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters, 2020, 20, 5496-5503.	4.5	30

#	Article	IF	CITATIONS
758	Crepe Cake Structured Layered Double Hydroxide/Sulfur/Graphene as a Positive Electrode Material for Li–S Batteries. ACS Nano, 2020, 14, 8220-8231.	7.3	73
759	Investigating high-performance sulfur–metal nanocomposites for lithium batteries. Sustainable Energy and Fuels, 2020, 4, 2907-2923.	2.5	22
760	Effects of Polysulfide Solubility and Li Ion Transport on Performance of Li–S Batteries Using Sparingly Solvating Electrolytes. Journal of the Electrochemical Society, 2020, 167, 070531.	1.3	52
761	Strategies toward High‣oading Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 2000082.	10.2	272
762	Three-dimensional carbon framework as high-proportion sulfur host for high-performance lithium-sulfur batteries. Journal of Materials Science and Technology, 2020, 48, 84-91.	5.6	26
763	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
764	Pitchâ€Derived Soft Carbon as Stable Anode Material for Potassium Ion Batteries. Advanced Materials, 2020, 32, e2000505.	11.1	216
765	Amine―and Amideâ€Functionalized Mesoporous Carbons: A Strategy for Improving Sulfur/Host Interactions in Li–S Batteries. Batteries and Supercaps, 2020, 3, 757-765.	2.4	10
766	A MoO ₃ /MoO ₂ -CP self-supporting heterostructure for modification of lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 15816-15821.	5.2	45
767	Constructing multi-functional Janus separator toward highly stable lithium batteries. Energy Storage Materials, 2020, 28, 153-159.	9.5	60
768	FeCo alloy catalysts promoting polysulfide conversion for advanced lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 49, 339-347.	7.1	38
769	Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and Theoretically. Matter, 2020, 2, 323-344.	5.0	115
770	Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie - International Edition, 2020, 59, 9011-9017.	7.2	164
771	Research Progress of Sulfur/Carbon Composite Cathode Materials and the Corresponding Safe Electrolytes for Advanced Li-S Batteries. Nano, 2020, 15, 2030002.	0.5	22
772	Carbon Nanotube-Templated Covalent Organic Framework Nanosheets as an Efficient Sulfur Host for Room-Temperature Metal–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 5946-5953.	3.2	44
773	Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie, 2020, 132, 9096-9102.	1.6	42
774	Nature-inspired electrocatalysts and devices for energy conversion. Chemical Society Reviews, 2020, 49, 3107-3141.	18.7	84
775	Improving the capacity and cycling-stability of Lithium–sulfur batteries using self-healing binders containing dynamic disulfide bonds. Sustainable Energy and Fuels, 2020, 4, 2760-2767.	2.5	27

#	Article	IF	CITATIONS
776	Confined Polysulfide Shuttle by Nickel Disulfide Nanoparticles Encapsulated in Graphene Nanoshells Synthesized by Cooking Oil. ACS Applied Energy Materials, 2020, 3, 3541-3552.	2.5	14
777	A multifunctional separator based on scandium oxide nanocrystal decorated carbon nanotubes for high performance lithium–sulfur batteries. Nanoscale, 2020, 12, 6832-6843.	2.8	34
778	TMDs beyond MoS ₂ for Electrochemical Energy Storage. Chemistry - A European Journal, 2020, 26, 6320-6341.	1.7	52
779	A Highâ€Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li–S Batteries. Advanced Materials, 2020, 32, e2002168.	11.1	281
780	One‣tep Synthesis of N/S Codoped "Porous Carbon Cloth―as a Sulfur Carrier for Lithium–Sulfur Batteries. Energy Technology, 2020, 8, 2000188.	1.8	11
781	Potassiumâ \in sulfur batteries: Status and perspectives. EcoMat, 2020, 2, e12038.	6.8	41
782	Multifunctional hosts of Zinc sulfide coated carbon nanotubes for lithium sulfur batteries. SN Applied Sciences, 2020, 2, 1.	1.5	3
783	A Perspective toward Practical Lithium–Sulfur Batteries. ACS Central Science, 2020, 6, 1095-1104.	5.3	442
784	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie - International Edition, 2020, 59, 17670-17675.	7.2	54
785	Grafting polysulfides into a functional N-halo compound for high-performance lithium—sulfur battery. Science China Materials, 2020, 63, 2002-2012.	3.5	7
786	Cobalt nitride nanoparticle coated hollow carbon spheres with nitrogen vacancies as an electrocatalyst for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 14498-14505.	5.2	66
787	Dense MoS 2 Microâ€Flowers Planting on Biomassâ€Derived Carbon Fiber Network for Multifunctional Sulfur Cathodes. ChemistrySelect, 2020, 5, 7563-7570.	0.7	5
788	Dense and high loading sulfurized pyrolyzed poly (acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries. Energy Storage Materials, 2020, 31, 187-194.	9.5	28
789	High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33702-33709.	4.0	34
790	Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li–S Batteries. Nano-Micro Letters, 2020, 12, 141.	14.4	18
791	Plasma-polymerized C60-coated CNT interlayer with physical and chemical functions for lithium–sulfur batteries. Chemical Engineering Journal, 2020, 401, 126075.	6.6	43
792	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie, 2020, 132, 17823-17828.	1.6	5
793	Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium–Sulfur Batteries. Electrochemical Energy Reviews, 2020, 3, 613-642.	13.1	75

#	Article	IF	CITATIONS
794	Lithium Sulfonate Functionalization of Carbon Cathodes as a Substitute for Lithium Nitrate in the Electrolyte of Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2002485.	7.8	16
795	Bidirectional Catalysts for Liquid–Solid Redox Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2000315.	11.1	274
796	In Situ Electrochemical Dilatometry Study of (De)lithiation and Polysulfide Dissolution-Induced Dimensional Changes in Lithium-Sulfur Cathodes during Charging and Discharging. Journal of the Electrochemical Society, 2020, 167, 050505.	1.3	7
797	Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium–sulfur batteries. Nanoscale Horizons, 2020, 5, 720-729.	4.1	30
798	Tuning of interactions between cathode and lithium polysulfide in Li-S battery by rational halogenation. Journal of Energy Chemistry, 2020, 49, 147-152.	7.1	19
799	Cathode materials for lithium–sulfur batteries based on sulfur covalently bound to a polymeric backbone. Journal of Materials Chemistry A, 2020, 8, 5379-5394.	5.2	39
800	A new graphitic carbon nitride-coated dual Core–Shell sulfur cathode for highly stable lithium–sulfur cells. Materials Chemistry and Physics, 2020, 246, 122842.	2.0	14
801	Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chemical Society Reviews, 2020, 49, 2140-2195.	18.7	337
802	Versatile, Aqueous Soluble C ₂ N Quantum Dots with Enriched Active Edges and Oxygenated Groups. Journal of the American Chemical Society, 2020, 142, 4621-4630.	6.6	38
803	A Mixed Ether Electrolyte for Lithium Metal Anode Protection in Working Lithium–Sulfur Batteries. Energy and Environmental Materials, 2020, 3, 160-165.	7.3	85
804	Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Materials, 2020, 27, 307-315.	9.5	80
805	MoSe2 nanosheets as a functional host for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 47, 241-247.	7.1	54
806	Multi-ion Modulated Single-Step Synthesis of a Nanocarbon Embedded with a Defect-Rich Nanoparticle Catalyst for a High Loading Sulfur Cathode. ACS Applied Materials & Interfaces, 2020, 12, 12727-12735.	4.0	27
807	Nanosized FeS ₂ Particles Caged in the Hollow Carbon Shell as a Robust Polysulfide Adsorbent and Redox Mediator. ACS Sustainable Chemistry and Engineering, 2020, 8, 3261-3272.	3.2	26
808	Three-Dimensional Porous Nitrogen-Doped Carbon Nanosheet with Embedded Ni _{<i>x</i>} Co _{3–<i>x</i>} S ₄ Nanocrystals for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 9181-9189.	4.0	36
809	Electronâ€ S tate Confinement of Polysulfides for Highly Stable Sodium–Sulfur Batteries. Advanced Materials, 2020, 32, e1907557.	11.1	150
810	An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 2020, 5, 807-816.	8.8	97
811	Grapheneâ€Modified Mesoporous Iron Phosphate as Superior Binary Sulfur Host for Lithium–Sulfur Batteries. Energy Technology, 2020, 8, 1901462.	1.8	4

#	Article	IF	Citations
812	An ultra-durable gel electrolyte stabilizing ion deposition and trapping polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2020, 27, 25-34.	9.5	27
813	MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 3027-3034.	5.2	105
814	B,N Codoped Graphitic Nanotubes Loaded with Co Nanoparticles as Superior Sulfur Host for Advanced Li–S Batteries. Small, 2020, 16, e1906634.	5.2	50
815	Monitoring Polysulfide Solubility and Diffusion in Fluorinated Etherâ€Based Electrolytes by Operando Raman Spectroscopy. Batteries and Supercaps, 2020, 3, 397-401.	2.4	12
816	Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon, 2020, 161, 162-168.	5.4	76
817	High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries. Science Bulletin, 2020, 65, 803-811.	4.3	35
818	Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis. Energy and Environmental Science, 2020, 13, 1711-1716.	15.6	103
819	Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. Chemical Engineering Journal, 2020, 388, 124241.	6.6	80
820	Molecularly designed N, S co-doped carbon nanowalls decorated on graphene as a highly efficient sulfur reservoir for Li–S batteries: a supramolecular strategy. Journal of Materials Chemistry A, 2020, 8, 5449-5457.	5.2	41
821	Efficient polysulfide trapping enabled by a polymer adsorbent in lithium-sulfur batteries. Electrochimica Acta, 2020, 336, 135693.	2.6	16
822	Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26, 1797-1804.	1.2	25
823	Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. Journal of Materials Chemistry A, 2020, 8, 3692-3700.	5.2	71
824	Hollow CuS Nanoboxes as Liâ€Free Cathode for Highâ€Rate and Longâ€Life Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903401.	10.2	56
825	Multifunctional cross-linked polymer-Laponite nanocomposite binder for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 388, 124316.	6.6	41
826	Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy, 2020, 70, 104555.	8.2	194
827	Solid 3D Li–S Battery Design via Stacking 2D Conductive Microporous Coordination Polymers and Amorphous Li–S Layers. Chemistry of Materials, 2020, 32, 1974-1982.	3.2	11
828	Electrochemical Properties of Tin Sulfide Nano-Sheets as Cathode Material for Lithium-Sulfur Batteries. Frontiers in Chemistry, 2020, 8, 254.	1.8	6
829	Enhanced Multiple Anchoring and Catalytic Conversion of Polysulfides by Amorphous MoS ₃ Nanoboxes for Highâ€Performance Liâ€S Batteries. Angewandte Chemie - International Edition, 2020, 59, 13071-13078.	7.2	186

#	Article	IF	CITATIONS
830	Mechanistic Insights into the Role of Covalent Triazine Frameworks as Cathodes in Lithiumâ€&ulfur Batteries. Batteries and Supercaps, 2020, 3, 1069-1079.	2.4	14
831	Intrinsic Defect-Rich Hierarchically Porous Carbon Architectures Enabling Enhanced Capture and Catalytic Conversion of Polysulfides. ACS Nano, 2020, 14, 6222-6231.	7.3	89
832	Enhanced Multiple Anchoring and Catalytic Conversion of Polysulfides by Amorphous MoS 3 Nanoboxes for Highâ€Performance Liâ€S Batteries. Angewandte Chemie, 2020, 132, 13171-13178.	1.6	7
833	Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Research, 2020, 13, 1856-1866.	5.8	257
834	Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29, 310-331.	9.5	63
835	PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. Journal of Electroanalytical Chemistry, 2020, 868, 114195.	1.9	20
836	Theoretical Insights into the Charge and Discharge Processes in Aluminum–Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 11317-11324.	1.5	19
837	Brief Overview of Next-Generation Batteries. SpringerBriefs in Materials, 2020, , 35-51.	0.1	0
838	Rational design and fabrication of frameâ€structured doped bismuth vanadate nanoarchitectures as a polysulfide shield to boost the performance of lithiumâ€sulfur batteries. International Journal of Energy Research, 2020, 44, 6685-6696.	2.2	4
839	Review of Emerging Potassium–Sulfur Batteries. Advanced Materials, 2020, 32, e1908007.	11.1	91
840	MOF-derived NiCo2S4@C as a separator modification material for high-performance lithium-sulfur batteries. Electrochimica Acta, 2020, 344, 135811.	2.6	28
841	Cost-Effective Water-Soluble Poly(vinyl alcohol) as a Functional Binder for High-Sulfur-Loading Cathodes in Lithium–Sulfur Batteries. ACS Omega, 2020, 5, 8272-8282.	1.6	33
842	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	18.7	327
843	A New Strategy of Constructing a Highly Fluorinated Solidâ€Electrolyte Interface towards Highâ€Performance Lithium Anode. Advanced Materials Interfaces, 2020, 7, 2000154.	1.9	18
844	Vanadium carbide nanoparticles incorporation in carbon nanofibers for room-temperature sodium sulfur batteries: Confining, trapping, and catalyzing. Chemical Engineering Journal, 2020, 395, 124978.	6.6	37
845	First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy, 2020, 74, 104851.	8.2	101
846	Mn3(PO4)2/rGO as dual-function polysulfide inhibitor through oxygen deficiencies and polar sites for lithium sulfur batteries. Applied Surface Science, 2020, 521, 146425.	3.1	5
847	Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy, 2020, 201, 117718.	4.5	43

#	Article	IF	CITATIONS
848	High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator. Chemical Engineering Journal, 2020, 390, 124653.	6.6	76
849	Graphene-Templated Growth of WS ₂ Nanoclusters for Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 4923-4930.	2.5	27
850	Long-lifespan lithium–metal batteries obtained using a perovskite intercalation layer to stabilize the lithium electrode. Journal of Materials Chemistry A, 2020, 8, 9137-9145.	5.2	4
851	Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 51, 154-160.	7.1	53
852	Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. Journal of Colloid and Interface Science, 2021, 582, 60-69.	5.0	34
853	Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2000791.	10.2	75
854	A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 52, 310-317.	7.1	41
855	Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. Journal of Energy Chemistry, 2021, 55, 80-91.	7.1	57
856	Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2001304.	10.2	254
857	Interfacial Effects in Lithium and Sodium Batteries. Advanced Energy Materials, 2021, 11, 2001455.	10.2	57
858	Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136.	8.3	125
859	Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Materials Today, 2021, 42, 137-161.	8.3	64
860	Regulation of carbon distribution to construct high-sulfur-content cathode in lithium–sulfur batteries. Journal of Energy Chemistry, 2021, 56, 203-208.	7.1	89
861	Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics. Journal of Energy Chemistry, 2021, 56, 132-140.	7.1	25
862	Organic liquid electrolytes in Li-S batteries: actualities and perspectives. Energy Storage Materials, 2021, 34, 128-147.	9.5	63
863	Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium-sulfur batteries. Nano Energy, 2021, 79, 105393.	8.2	37
864	Polyimide separators for rechargeable batteries. Journal of Energy Chemistry, 2021, 58, 170-197.	7.1	82
865	Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. Journal of Materiomics, 2021, 7, 209-218.	2.8	82

	Сіта	CITATION REPORT	
#	ARTICLE Battery materials for low-cost electric transportation. Materials Today, 2021, 42, 57-72	١F	CITATIONS
800		0.0	98
867	Ferroelectric polarization accelerates lithium-ion diffusion for dendrite-free and highly-practical lithium-metal batteries. Nano Energy, 2021, 79, 105481.	8.2	32
868	Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy, 2021, 80, 105510.	8.2	51
869	Identifying the active sites and multifunctional effects in nitrogen-doped carbon microtube interlayer for confining-trapping-catalyzing polysulfides. Nano Energy, 2021, 79, 105466.	8.2	28
870	Revealing the Origin of Highly Efficient Polysulfide Anchoring and Transformation on Anion‧ubstituted Vanadium Nitride Host. Advanced Functional Materials, 2021, 31, 2008034.	7.8	39
871	Rational design of Lithium-Sulfur battery cathodes based on differential Atom Electronegativity. Energy Storage Materials, 2021, 35, 577-585.	9.5	25
872	A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nature Nanotechnology, 2021, 16, 166-173.	15.6	392
873	A High Capacity All Solidâ€State Liâ€Sulfur Battery Enabled by Conversionâ€Intercalation Hybrid Cathod Architecture. Advanced Functional Materials, 2021, 31, 2004239.	le 7.8	45
874	Enhanced performance of <scp>Liâ€S</scp> battery by constructing inner conductive network and outer adsorption layer <scp>sulfurâ€carbon</scp> composite. International Journal of Energy Research, 2021, 45, 6002-6014.	2.2	33
875	Cellulose-based material in lithium-sulfur batteries: A review. Carbohydrate Polymers, 2021, 255, 117469.	5.1	57
876	Theoretical understanding for anchoring effect of MOFs for lithium-sulfur batteries. Computational and Theoretical Chemistry, 2021, 1196, 113110.	1.1	4
877	Trapping and catalytic conversion of polysulfides by kirkendall effect built hollow NiCo2S4 nano-prisms for advanced sulfur cathodes in Li–S battery. Journal of Materials Science, 2021, 56, 4328-4340.	1.7	13
878	Altering polythiophene derivative substrates to explore the mechanism of heterogeneous lithium nucleation for dendrite-free lithium metal anodes. Journal of Energy Chemistry, 2021, 59, 63-68.	7.1	13
879	The host hollow carbon nanospheres as cathode material for nonaqueous room-temperature Al–S batteries. International Journal of Hydrogen Energy, 2021, 46, 4936-4946.	3.8	20
880	Polymerâ€Based Solid Electrolytes: Material Selection, Design, and Application. Advanced Functional Materials, 2021, 31, 2007598.	7.8	164
881	Polymer electrolytes for Li-S batteries: Polymeric fundamentals and performance optimization. Journal of Energy Chemistry, 2021, 58, 300-317.	7.1	37
882	Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 585, 328-336.	5.0	29
883	Dissolving Vanadium into Titanium Nitride Lattice Framework for Rational Polysulfide Regulation in Li–S Batteries. Advanced Energy Materials, 2021, 11, 2003020.	10.2	52

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
884	Atomically dispersed Fe in a C ₂ N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003507.		10.2	91
885	Comparison of Sulfur Cathode Reactions between a Concentrated Liquid Electrolyte System and Solid-State Electrolyte System by Soft X-Ray Absorption Spectroscopy. ACS Applied Energy Mate 2021, 4, 186-193.	a rrials,	2.5	10
886	Electrochemical deposition mechanism of sodium and potassium. Energy Storage Materials, 202 91-98.	1, 36,	9.5	30
887	Nanoscale modelling of polymer electrolytes for rechargeable batteries. Energy Storage Material 2021, 36, 77-90.	β,	9.5	14
888	Promises and Challenges of Next-Generation "Beyond Li-ion―Batteries for Electric Vehicles a Decarbonization. Chemical Reviews, 2021, 121, 1623-1669.	and Grid	23.0	769
889	Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium–sulfur batteries wit gravimetric energy densities. Energy and Environmental Science, 2021, 14, 975-985.	h high	15.6	69
890	A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li ₂ S in gel electrolyte. Energy and Environmental Science, 2021, 14, 2	‹ 278-2290.	15.6	40
891	Confining Sulfur in Nâ€Doped Hollow Porous Carbon Spheres for Improved Lithiumâ€Sulfur Batt Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 629-634.	eries.	0.6	5
892	The catalysis of acidic-atom Ti for Li2S5 and Li2S7 on a TiN (001) surface investigated by first pri calculations. Materials Today Communications, 2021, 26, 101860.	nciples	0.9	0
893	Biomass-derived biochar materials as sustainable energy sources for electrochemical energy stor devices. Renewable and Sustainable Energy Reviews, 2021, 137, 110464.	age	8.2	134
894	Rational design of titanium oxide-coated dual Core–Shell sulfur nanocomposite cathode for hi stable lithium–sulfur batteries. Journal of Physics and Chemistry of Solids, 2021, 149, 109791.	ghly	1.9	16
895	Analysis of Charge Carrier Transport Toward Optimized Cathode Composites for All‧olid‧ta Batteries. Batteries and Supercaps, 2021, 4, 183-194.	te Liâ [~] 'S	2.4	53
896	Advances in Electrolytes for High Capacity Rechargeable Lithium-Sulphur Batteries. Current Sma Materials, 2021, 5, 3-37.	ť	0.5	7
897	NiCo ₂ O ₄ /CNF Separator Modifiers for Trapping and Catalyzing Polysu for High-Performance Lithium–Sulfur Batteries with High Sulfur Loadings and Lean Electrolytes Sustainable Chemistry and Engineering, 2021, 9, 1804-1813.	lfides 5. ACS	3.2	31
898	Transition metal phosphides: new generation cathode host/separator modifier for Li–S batterie Journal of Materials Chemistry A, 2021, 9, 7458-7480.	?S.	5.2	69
899	Inhibition of the shuttle effect of lithium–sulfur batteries via a tannic acid-metal one-step in sit chemical film-forming modified separator. Nanoscale, 2021, 13, 5058-5068.	u	2.8	15
900	Constructing compatible interface between Li ₇ La ₃ Zr ₂ O ₁₂ solid electrolyte and LiCoO ₂ cathode for stable cycling performances at 4.5 V. Nanoscale, 2021, 13, 782	22-7830.	2.8	9
901	A cobalt-based metal–organic framework and its derived material as sulfur hosts for aluminum–sulfur batteries with the chemical anchoring effect. Physical Chemistry Chemical Ph 2021, 23, 10326-10334.	iysics,	1.3	20

#	Article	IF	CITATIONS
902	ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium–sulfur batteries. Nanoscale, 2021, 13, 11086-11092.	2.8	16
903	The Fundamental Understanding of Lithium Polysulfides in Ether-Based Electrolyte for Lithium–Sulfur Batteries. ACS Energy Letters, 2021, 6, 537-546.	8.8	88
904	Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6, 123-134.	19.8	612
905	Multicore closely packed ultrathin-MnO ₂ @N-doped carbon-gear yolk–shell micro-nanostructures as highly efficient sulfur hosts for Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 2276-2283.	5.2	20
906	Fast conversion of lithium (poly)sulfides in lithium–sulfur batteries using three-dimensional porous carbon. RSC Advances, 2021, 11, 25266-25273.	1.7	0
907	All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy and Environmental Science, 2021, 14, 2577-2619.	15.6	201
908	Boosting Energy Storage via Confining Soluble Redox Species onto Solid–Liquid Interface. Advanced Energy Materials, 2021, 11, 2003599.	10.2	35
909	Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications. Materials Chemistry Frontiers, 2021, 5, 3298-3321.	3.2	66
910	Lithium-Ion Batteries for Automotive Applications: Life Cycle Analysis. , 2021, , 395-405.		2
911	Research Progress of Magnesium Sulfur Batteries. , 2022, , 158-170.		0
912	Flexible pore structure modulation enables durable sulfur carrier for advanced lithium–sulfur batteries. New Journal of Chemistry, 2021, 45, 9221-9229.	1.4	1
913	Manganese dioxide nanosheet coated carbon cloth as a multifunctional interlayer for advanced lithium–sulfur batteries. Materials Advances, 2021, 2, 688-691.	2.6	5
914	A solid electrolyte interphase to protect the sulfurized polyacrylonitrile (SPAN) composite for Li–S batteries: computational approach addressing the electrolyte/SPAN interfacial reactivity. Journal of Materials Chemistry A, 2021, 9, 7888-7902.	5.2	9
915	Commentary toward the 20th Anniversary of the Society ofComputer Chemistry, Japan. Journal of Computer Chemistry Japan, 2021, 20, A26-A40.	0.0	0
916	Poly(2â€ethylâ€2â€oxazoline) as a Gel Additive to Improve the Performance of Sulfur Cathodes in Lithiumâ€6ulfur Batteries. ChemElectroChem, 2021, 8, 411-417.	1.7	4
917	Insight into Chemical Reduction and Charge Storage Mechanism of 2,2′-Dipyridyl Disulfide toward Stable Lithium–Organic Battery. Journal of Physical Chemistry Letters, 2021, 12, 900-906.	2.1	12
918	Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 9771-9779.	5.2	21
919	An organodiselenide containing electrolyte enables sulfurized polyacrylonitrile cathodes with fast redox kinetics in Li–S batteries. Chemical Communications, 2021, 57, 9688-9691.	2.2	8

#	Article	IF	CITATIONS
920	Templateâ€Free Selfâ€Caging Nanochemistry for Largeâ€Scale Synthesis of Sulfonatedâ€Graphene@Sulfur Nanocage for Longâ€Life Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2008652.	7.8	37
921	Metal–organic frameworks as separators and electrolytes for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 7301-7316.	5.2	45
922	A topochemically constructed flexible heterogeneous vanadium-based electrocatalyst for boosted conversion kinetics of polysulfides in Li–S batteries. Materials Chemistry Frontiers, 2021, 5, 3830-3840.	3.2	17
923	A four-electron Zn-12 aqueous battery enabled by reversible Iâ°'/I2/I+ conversion. Nature Communications, 2021, 12, 170.	5.8	144
924	High-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Slurry-Coated Li6PS5Cl/S/C Composite Electrodes. Frontiers in Energy Research, 2021, 8, .	1.2	15
925	A Poly(ethylene oxide)/Lithium bis(trifluoromethanesulfonyl)imide-Coated Polypropylene Membrane for a High-Loading Lithium–Sulfur Battery. Polymers, 2021, 13, 535.	2.0	25
926	Performance Study of MXene/Carbon Nanotube Composites for Current Collector―and Binderâ€Free Mg–S Batteries. ChemSusChem, 2021, 14, 1864-1873.	3.6	20
927	Understanding the Strength of the Selenium–Graphene Interfaces for Energy Storage Systems. Langmuir, 2021, 37, 2029-2039.	1.6	11
928	Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions. Nano Research, 2021, 14, 3942-3951.	5.8	15
929	Multifunctional MOFâ€Based Separator Materials for Advanced Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2001941.	1.9	27
930	A new insight into capacity fading of sulfurized polyacrylonitrile composite in carbonate electrolyte. Journal of Electroanalytical Chemistry, 2021, 882, 114964.	1.9	13
931	Hierarchically porous nitrogen-doped carbon foams decorated with zinc nanodots as high-performance sulfur hosts for lithium-sulfur battery. Chinese Chemical Letters, 2021, 32, 2919-2922.	4.8	10
932	An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2007298.	11.1	171
933	Strong adsorption, catalysis and lithiophilic modulation of carbon nitride for lithium/sulfur battery. Nanotechnology, 2021, 32, 192002.	1.3	7
934	Bifunctional Interphase-Enabled Li ₁₀ GeP ₂ S ₁₂ Electrolytes for Lithium–Sulfur Battery. ACS Energy Letters, 2021, 6, 862-868.	8.8	115
935	Surface/Interface Structure and Chemistry of Lithium–Sulfur Batteries: From Density Functional Theory Calculations' Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100007.	2.8	27
936	The Electrostatic Attraction and Catalytic Effect Enabled by Ionic–Covalent Organic Nanosheets on MXene for Separator Modification of Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2007803.	11.1	133
937	Metal–Organic Frameworkâ€Based Sulfur‣oaded Materials. Energy and Environmental Materials, 2022, 5, 215-230.	7.3	24

#	Article	IF	Citations
938	Modulating Nanoinhomogeneity at Electrode–Solid Electrolyte Interfaces for Dendriteâ€Proof Solid‣tate Batteries and Longâ€Life Memristors. Advanced Energy Materials, 2021, 11, 2003811.	10.2	37
939	Monolayer Fe ₃ GeX ₂ (X = S, Se, and Te) as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 11845-11851.	4.0	45
940	In situ small-angle X-ray scattering reveals solution phase discharge of Li–O ₂ batteries with weakly solvating electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
941	The promises, challenges and pathways to room-temperature sodium-sulfur batteries. National Science Review, 2022, 9, nwab050.	4.6	68
942	Double role of CoO Co4N hetero-nanocages as sulfur host for lithium-sulfur batteries. Journal of Materiomics, 2021, 7, 1301-1308.	2.8	3
943	Ion Selective Covalent Organic Framework Enabling Enhanced Electrochemical Performance of Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 2997-3006.	4.5	102
944	High-Capacity, Sustainable Lithium–Sulfur Batteries Based on Multifunctional Polymer Binders. ACS Applied Energy Materials, 2021, 4, 2696-2706.	2.5	15
945	2021 roadmap on lithium sulfur batteries. JPhys Energy, 2021, 3, 031501.	2.3	74
946	TiN nanocrystal anchored on N-doped graphene as effective sulfur hosts for high-performance lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 54, 16-22.	7.1	35
947	Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li‣ Batteries. Small, 2021, 17, e2007242.	5.2	23
948	Feâ€cation Doping in NiSe ₂ as an Effective Method of Electronic Structure Modulation towards Highâ€Performance Lithiumâ€Sulfur Batteries. ChemSusChem, 2021, 14, 1710-1719.	3.6	20
949	Lithiumâ€lon Desolvation Induced by Nitrate Additives Reveals New Insights into High Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2101593.	7.8	100
950	Realizing superior energy in a full-cell LIB employing a Li-metal anode via the rational design of a Cu-scaffold host structure with an extremely high porosity. Energy Storage Materials, 2021, 36, 326-332.	9.5	5
951	Enhancing Reaction Kinetics of Sulfur-Containing Species in Li-S Batteries by Quantum Dot-Level Tin Oxide Hydroxide Catalysts. ACS Applied Energy Materials, 2021, 4, 4935-4944.	2.5	6
952	Cyclopropenium Cationic-Based Covalent Organic Polymer-Enhanced Poly(ethylene oxide) Composite Polymer Electrolyte for All-Solid-State Li–S Battery. ACS Applied Materials & Interfaces, 2021, 13, 16469-16477.	4.0	26
953	Enhanced polysulfide conversion catalysis in lithium-sulfur batteries with surface cleaning electrolyte additives. Chemical Engineering Journal, 2021, 410, 128284.	6.6	37
954	Ultrathin Nanosheet-Assembled Flowerlike NiSe ₂ Catalyst Boosts Sulfur Redox Reaction Kinetics for Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 3431-3438.	2.5	14
955	Nitrogen-Doped Graphene Quantum Dots: Sulfiphilic Additives for the High-Performance Li–S Cells. ACS Applied Energy Materials, 2021, 4, 3518-3525.	2.5	21

#	Article	IF	CITATIONS
956	Carbonaceous Hosts for Sulfur Cathode in Alkaliâ€Metal/S (Alkali Metal = Lithium, Sodium, Potassium) Batteries. Small, 2021, 17, e2006504.	5.2	17
957	Tunable Interaction between Metalâ€Organic Frameworks and Electroactive Components in Lithium–Sulfur Batteries: Status and Perspectives. Advanced Energy Materials, 2021, 11, 2100387.	10.2	84
958	Cobalt-doped oxygen-deficient titanium dioxide coated by carbon layer as high-performance sulfur host for Li/S batteries. Journal of Alloys and Compounds, 2021, 861, 157969.	2.8	18
959	Lithium–Sulfur Battery Cathode Design: Tailoring Metalâ€Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion. Advanced Materials, 2021, 33, e2008654.	11.1	217
960	N-doped hollow carbon nanoparticles encapsulated fibers derived from ZIF-8 self-sacrificed template for advanced lithium–sulfur batteries. Microporous and Mesoporous Materials, 2021, 317, 111000.	2.2	13
961	Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. National Science Review, 2021, 8, nwab055.	4.6	58
962	Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter, 2021, 4, 1142-1188.	5.0	116
963	MXeneâ€Derived Ti <i>_n</i> O ₂ <i>_{nâ^'}</i> ₁ Quantum Dots Distributed on Porous Carbon Nanosheets for Stable and Longâ€Life Li–S Batteries: Enhanced Polysulfide Mediation via Defect Engineering. Advanced Materials, 2021, 33, e2008447.	11.1	115
964	Graphene-Based Nanomaterials as the Cathode for Lithium-Sulfur Batteries. Molecules, 2021, 26, 2507.	1.7	18
965	Effect of Polysulfide Species on Lithium Anode Cycle Life and Reversibility in Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 4711-4718.	2.5	13
966	In Situ Electrochemical Intercalationâ€Induced Phase Transition to Enhance Catalytic Performance for Lithium–Sulfur Battery. Small, 2021, 17, e2100065.	5.2	30
967	Dual-enhancement on electrochemical performance with thioacetamide as an electrolyte additive for lithium-sulfur batteries. Electrochimica Acta, 2021, 376, 138041.	2.6	21
968	Edge Engineering in 2D Molybdenum Disulfide: Simultaneous Regulation of Lithium and Polysulfides for Stable Lithium–Sulfur Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100053.	2.8	6
969	Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nature Communications, 2021, 12, 3102.	5.8	103
970	Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Materials Today, 2021, 45, 62-76.	8.3	152
971	Enhanced anchoring and catalytic conversion of polysulfides by iron phthalocyanine for graphene-based Li–S batteries. Ionics, 2021, 27, 3007-3016.	1.2	4
972	Supervised Machine Learningâ€Based Classification of Liâ^'S Battery Electrolytes. Batteries and Supercaps, 2021, 4, 1156-1162.	2.4	7
973	Architecturing aligned orthorhombic Nb2O5 nanowires toward sodium-ion hybrid capacitor and Lithium–Sulfur battery applications. FlatChem, 2021, 27, 100236.	2.8	12

#	Article	IF	CITATIONS
974	An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries. Energy Storage Materials, 2021, 37, 224-232.	9.5	55
975	Influence of the Drying Temperature on the Performance and Binder Distribution of Sulfurized Poly(acrylonitrile) Cathodes. Journal of the Electrochemical Society, 2021, 168, 050510.	1.3	8
976	Core–Shell Structure S@PPy/CB with High Electroconductibility to Effective Confinement Polysulfide Shuttle Effect for Advanced Lithium–Sulfur Batteries. Energy & Fuels, 2021, 35, 10181-10189.	2.5	5
977	Liquid electrolyte design for metalâ€sulfur batteries: Mechanistic understanding and perspective. EcoMat, 2021, 3, e12115.	6.8	29
978	Rational cooperativity of nanospace confinement and rapid catalysis via hollow carbon nanospheres@Nb-based inorganics for high-rate Li-S batteries. Chemical Engineering Journal, 2021, 411, 128504.	6.6	26
979	Tuning functional two-dimensional MXene nanosheets to enable efficient sulfur utilization in lithium-sulfur batteries. Cell Reports Physical Science, 2021, 2, 100480.	2.8	10
980	Effect of Washing on the Electrochemical Performance of a Three-Dimensional Current Collector for Energy Storage Applications. Nanomaterials, 2021, 11, 1596.	1.9	25
981	Architecting Freestanding Sulfur Cathodes for Superior Roomâ€Temperature Na–S Batteries. Advanced Functional Materials, 2021, 31, 2102280.	7.8	46
982	Sandwiched Cathodes Assembled from CoS ₂ â€Modified Carbon Clothes for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Science, 2021, 8, e2101019.	5.6	64
983	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
984	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	9.5	29
985	Mediator–Assisted Catalysis of Polysulfide Conversion for High–Loading Lithium–Sulfur Batteries Operating Under the Lean Electrolyte Condition. Energy Storage Materials, 2021, 38, 338-343.	9.5	51
986	Nonpolar Solventâ€based Electrolytes with a Quasiâ€Solidâ€State Redox Reaction for Lithiumâ€Sulfur Batteries. ChemElectroChem, 2021, 8, 2321-2328.	1.7	0
987	New insights into the relationship between capacity fading and sulfur loading and electrolyte/sulfur ratio obtained from Li–S pouch cell. Ionics, 2021, 27, 3347.	1.2	5
988	A robust polymeric binder based on complementary multiple hydrogen bonds in lithium-sulfur batteries. Chemical Engineering Journal, 2022, 427, 130844.	6.6	29
989	Electrolyte Structure of Lithium Polysulfides with Antiâ€Reductive Solvent Shells for Practical Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 15503-15509.	7.2	108
990	Electrolyte Structure of Lithium Polysulfides with Antiâ€Reductive Solvent Shells for Practical Lithium–Sulfur Batteries. Angewandte Chemie, 2021, 133, 15631-15637.	1.6	8
991	Achieving Efficient Magnesium–Sulfur Battery Chemistry via Polysulfide Mediation. Advanced Energy Materials, 2021, 11, 2101552.	10.2	36

#	Article	IF	CITATIONS
992	Metal–Organic Frameworks Reinforce the Carbon Nanotube Sponge-Derived Robust Three-Dimensional Sulfur Host for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28036-28048.	4.0	23
993	Self-Assembled Polyoxometalate Nanodots as Bidirectional Cluster Catalysts for Polysulfide/Sulfide Redox Conversion in Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 12222-12236.	7.3	77
994	Engineering Fe–N Coordination Structures for Fast Redox Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2100171.	11.1	167
995	Realizing Solidâ€Phase Reaction in Li–S Batteries via Localized Highâ€Concentration Carbonate Electrolyte. Advanced Energy Materials, 2021, 11, 2101004.	10.2	46
996	Plastic waste residue-derived boron and nitrogen co-doped porous hybrid carbon for a modified separator of a lithium sulfur battery. Electrochimica Acta, 2021, 380, 138243.	2.6	21
997	Rich Heterointerfaces Enabling Rapid Polysulfides Conversion and Regulated Li ₂ S Deposition for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 11491-11500.	7.3	99
998	Recent progress of functional separators with catalytic effects for high-performance lithium-sulfur batteries. Nano Energy, 2021, 84, 105928.	8.2	115
999	Capture and catalytic conversion of lithium polysulfides by metal-doped MoS2 monolayers for lithium–sulfur batteries: A computational study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114715.	1.3	9
1000	Vanadium Monoxide-Based Free-Standing Nanofiber Hosts for High-Loading Lithium-Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 5649-5660.	2.5	10
1001	Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries. , 2021, 3, 1221-1237.		34
1002	Probing Sulfur Deposition onto Carbon Nanomaterials from Aqueous, Elemental Sulfur Sols for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 31569-31582.	4.0	2
1003	Promoting polysulfide redox kinetics by Co9S8 nanoparticle-embedded in N-doped carbon nanotube hollow polyhedron for lithium sulfur batteries. Journal of Alloys and Compounds, 2021, 869, 159306.	2.8	19
1004	Electrochemical investigation of Li-ion diffusion and absorbing polysulfide of hierarchically structured carbon for the quasi-solid lithium-sulfur batteries. Ionics, 2021, 27, 3895-3902.	1.2	5
1005	Enhanced electrochemical performance of lithium-sulfur batteries using a V2O5/graphene interlayer. Journal of Alloys and Compounds, 2021, 868, 159131.	2.8	21
1006	Nanocellulose and Its Derivatives toward Advanced Lithium Sulfur Batteries. , 2021, 3, 1130-1142.		13
1007	Functional-selected LiF-intercalated-graphene enabling ultra-stable lithium sulfur battery. Journal of Energy Chemistry, 2021, 58, 78-84.	7.1	17
1008	Nanoconfined Topochemical Conversion from MXene to Ultrathin Nonâ€Layered TiN Nanomesh toward Superior Electrocatalysts for Lithiumâ€Sulfur Batteries. Small, 2021, 17, e2101360.	5.2	25
1009	Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application. Advanced Science, 2021, 8, e2101051.	5.6	95

#	Article	IF	CITATIONS
1010	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie, 2021, 133, 17867-17875.	1.6	11
1011	Selfâ€Assembly of 0D–2D Heterostructure Electrocatalyst from MOF and MXene for Boosted Lithium Polysulfide Conversion Reaction. Advanced Materials, 2021, 33, e2101204.	11.1	183
1012	Highâ€Entropy Spinel Oxide Nanofibers as Catalytic Sulfur Hosts Promise the High Gravimetric and Volumetric Capacities for Lithium–Sulfur Batteries. Energy and Environmental Materials, 2022, 5, 645-654.	7.3	69
1013	Constructing monolithic sulfur cathodes with multifunctional N,P dual-doped carbon nanocages to achieve high-areal-capacity lithium-sulfur batteries. FlatChem, 2021, 28, 100253.	2.8	1
1014	Carbon fiber supported two-dimensional ZIF-7 interlayer for durable lithium-sulfur battery. Journal of Alloys and Compounds, 2021, 870, 159412.	2.8	19
1015	Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nature Communications, 2021, 12, 4184.	5.8	57
1016	Low-Cost Li SPAN Batteries Enabled by Sustained Additive Release. ACS Applied Energy Materials, 2021, 4, 6422-6429.	2.5	2
1017	Future Material Developments for Electric Vehicle Battery Cells Answering Growing Demands from an End-User Perspective. Energies, 2021, 14, 4223.	1.6	21
1018	Heterogeneous Mediator Enabling Threeâ€Dimensional Growth of Lithium Sulfide for Highâ€Performance Lithium–Sulfur Batteries. Energy and Environmental Materials, 2022, 5, 1214-1221.	7.3	16
1019	Recent advance on Coâ€based materials for polysulfide catalysis toward promoted lithiumâ€sulfur batteries. Nano Select, 2022, 3, 298-319.	1.9	9
1020	Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy, 2021, 85, 105958.	8.2	110
1021	Rapid preparation and performances of garnet electrolyte with sintering aids for solid-state Li–S battery. Ceramics International, 2021, 47, 18196-18204.	2.3	25
1022	Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. Journal of Industrial and Engineering Chemistry, 2021, 99, 309-316.	2.9	15
1023	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie - International Edition, 2021, 60, 17726-17734.	7.2	50
1024	Ion–solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes. Fundamental Research, 2021, 1, 393-398.	1.6	50
1025	Synergistic regulation of polysulfides immobilization and conversion by MOF-derived CoP-HNC nanocages for high-performance lithium-sulfur batteries. Nano Energy, 2021, 85, 106011.	8.2	68
1026	Isomeric Organodithiol Additives for Improving Interfacial Chemistry in Rechargeable Li–S Batteries. Journal of the American Chemical Society, 2021, 143, 11063-11071.	6.6	101
1027	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"> < mml:mrow> < mml:mo stretchy="false"> (< mml:mn> 1 < mml:mo> ≤/mml:mo> < mml:mi) Tj ETQq1 1 0.784314 r	gBT /Over	lock 10 Tf 50
	Theoretical Chemistry, 2021, 1202, 113323.		

#	Article	IF	CITATIONS
1028	The free-standing cathode fabricated with nano-CoSe2 embedded in mesoporous carbon nanosheets towards high performance Li/SeS2 batteries. Chemical Engineering Journal, 2021, 418, 129475.	6.6	11
1029	Universal interface and defect engineering dual-strategy for graphene-oxide heterostructures toward promoted Li–S chemistry. Chemical Engineering Journal, 2021, 418, 129407.	6.6	24
1030	Selective Catalysis Remedies Polysulfide Shuttling in Lithiumâ€Sulfur Batteries. Advanced Materials, 2021, 33, e2101006.	11.1	229
1031	A Dual-Functional Fibrous Skeleton Implanted with Single-Atomic Co–N _{<i>x</i>} Dispersions for Longevous Li–S Full Batteries. ACS Nano, 2021, 15, 14105-14115.	7.3	72
1032	High-Performance Self-Healing Polyurethane Binder Based on Aromatic Disulfide Bonds and Hydrogen Bonds for the Sulfur Cathode of Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2021, 60, 12011-12020.	1.8	10
1033	Incorporating Cobalt Nanoparticles in Nitrogen-Doped Mesoporous Carbon Spheres through Composite Micelle Assembly for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38604-38612.	4.0	17
1034	Recent Advances and Applications Toward Emerging Lithium–Sulfur Batteries: Working Principles and Opportunities. Energy and Environmental Materials, 2022, 5, 777-799.	7.3	106
1035	Laser-based three-dimensional manufacturing technologies for rechargeable batteries. Nano Convergence, 2021, 8, 23.	6.3	13
1036	The role of carbon pore structure in tellurium/carbon cathodes for lithium-tellurium batteries. Electrochimica Acta, 2021, 388, 138621.	2.6	12
1037	Facet-Engineered Tungsten Disulfide for Promoting Polysulfide Electrocatalysis in Lithium–Sulfur Batteries. Inorganic Chemistry, 2021, 60, 12883-12892.	1.9	7
1038	Lowâ€Đensity Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034.	11.1	39
1039	Investigation on Cycling and Calendar Aging Processes of 3.4 Ah Lithium-Sulfur Pouch Cells. Sustainability, 2021, 13, 9473.	1.6	8
1040	A Nickelâ€Decorated Carbon Flower/Sulfur Cathode for Leanâ€Electrolyte Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2101449.	10.2	67
1041	3D CoS2/rGO aerogel as trapping-catalyst sulfur host to promote polysulfide conversion for stable Li-S batteries. Journal of Alloys and Compounds, 2021, 873, 159780.	2.8	32
1042	Steaming inspired 3D porous architecture for improving the capability and stability of sulfurized polyacrylonitrile cathode. Materials Letters, 2021, 296, 129933.	1.3	2
1043	Hierarchical <i>n</i> MOF-867/MXene Nanocomposite for Chemical Adsorption of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 8231-8241.	2.5	20
1044	<i>In Situ</i> Synthesis of Vacancy-Rich Titanium Sulfide Confined in a Hollow Carbon Nanocage as an Efficient Sulfur Host for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 10104-10113.	2.5	15
1045	Achieving reversible Cu–Al batteries by reducing self-discharge and side reactions. Electrochimica Acta, 2021, 388, 138595.	2.6	7

#	Article	IF	Citations
1046	Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium‧ulfur Batteries. Chemistry - A European Journal, 2021, 27, 13494-13512.	1.7	15
1047	Defects Engineering of Lightweight Metal–Organic Frameworks-Based Electrocatalytic Membrane for High-Loading Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 13803-13813.	7.3	62
1048	Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for lithium sulfur batteries in carbonate electrolyte. Chemical Engineering Journal, 2021, 418, 129410.	6.6	31
1049	Nitrogen-Doped Buckybowls as Potential Scaffold Material for Lithium-Sulfur Battery: A DFT Study. Electrocatalysis, 2021, 12, 678-690.	1.5	8
1050	A versatile and modular modeling framework for diverse storage unit simulations. Journal of Energy Storage, 2021, 40, 102758.	3.9	2
1051	Enhanced Charge―Discharge Behaviour of MnFe 2 O 4 laden Composite Cathode for Lithium‧ulfur Batteries. ChemistrySelect, 2021, 6, 7628-7635.	0.7	1
1052	Grafting and Depositing Lithium Polysulfides on Cathodes for Cycling Stability of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40685-40694.	4.0	8
1053	Properties of S-Functionalized Nitrogen-Based MXene (Ti2NS2) as a Hosting Material for Lithium-Sulfur Batteries. Nanomaterials, 2021, 11, 2478.	1.9	12
1054	Employing synergetic effect of ZnSe quantum dots and layered Ni(OH) ₂ to boost the performance of lithium–sulfur cathodes. Nanotechnology, 2021, 32, 505406.	1.3	10
1055	Understanding the Oxidation and Reduction Reactions of Sulfur in Rechargeable Aluminumâ€Sulfur Batteries with Deep Eutectic Solvent and Ionic Liquid Electrolytes. ChemSusChem, 2022, 15, .	3.6	7
1056	Monodisperse Molybdenum Nanoparticles as Highly Efficient Electrocatalysts for Li-S Batteries. ACS Nano, 2021, 15, 15047-15056.	7.3	60
1057	Mo ₂ C Electrocatalysts for Kinetically Boosting Polysulfide Conversion in Quasi-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45651-45660.	4.0	7
1058	Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 16515-16524.	7.3	46
1059	Rational design and superfast production of biomimetic, calendering-compatible, catalytic, sulfur-rich secondary particles for advanced lithium-sulfur batteries. Energy Storage Materials, 2021, 40, 415-425.	9.5	27
1060	The Interfacial Electronic Engineering in Binary Sulfiphilic Cobalt Boride Heterostructure Nanosheets for Upgrading Energy Density and Longevity of Lithium‣ulfur Batteries. Advanced Materials, 2021, 33, e2102338.	11.1	83
1061	A 3D Graphene/WO3 nanowire composite with enhanced capture and polysulfides conversion catalysis for high-performance Li–S batteries. Carbon, 2021, 182, 335-347.	5.4	34
1062	A long-life and safe lithiated graphite-selenium cell with competitive gravimetric and volumetric energy densities. Journal of Energy Chemistry, 2021, 60, 556-563.	7.1	4
1063	Graphene-based hybrid aerogels for energy and environmental applications. Chemical Engineering Journal, 2021, 420, 129700.	6.6	49

ARTICLE IF CITATIONS Materials design and fundamental understanding of tellurium-based electrochemistry for 1064 9.5 39 rechargeable batteries. Energy Storage Materials, 2021, 40, 166-188. Sizeâ€Dependent Cobalt Catalyst for Lithium Sulfur Batteries: From Single Atoms to Nanoclusters and 1065 4.6 39 Nanoparticles. Small Methods, 2021, 5, e2100571. Efficient Polysulfide Trapping and Conversion on Nâ€Doped CoTe₂ via Enhanced 1066 5.219 Dualâ€Anchoring Effect. Small, 2021, 17, e2102962. Wide Working Temperature Range Rechargeable Lithiumâ€"Sulfur Batteries: A Critical Review. Advanced 1067 Functional Materials, 2021, 31, 2107136. Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Science China 1068 4.2 17 Chemistry, 2021, 64, 1888-1907. Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Alâ^{-^}S batteries. Nature 1069 5.8 Communications, 2021, 12, 5714. Polymer Interface-Dependent Morphological Transition toward Two-Dimensional Porous Inorganic 1070 Nanocoins as an Ultrathin Multifunctional Layer for Stable Lithium–Sulfur Batteries. Journal of the 6.6 22 American Chemical Society, 2021, 143, 15644-15652. Hierarchical Porous Carbon Nanofibers with Tunable Geometries and Porous Structures Fabricated 4.0 16 by a Scalable Electrospinning Technique. ACS Applied Materials & amp; Interfaces, 2021, 13, 44768-44776. Sulfur-Rich Polymers Based Cathode with Epoxy/Ally Dual-Sulfur-Fixing Mechanism for High Stability 1072 7.3 38 Lithium–Sulfur Battery. ACS Nano, 2021, 15, 15027-15038. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries. 3.6 Rare Metals, 2022, 41, 311-318. Cationic Cyclopropenium-Based Hyper-Crosslinked Polymer Enhanced Polyethylene Oxide Composite 1074 1.9 5 Electrolyte for All-Solid-State Li-S Battery. Nanomaterials, 2021, 11, 2562. V2CTx MXene and its derivatives: synthesis and recent progress in electrochemical energy storage 3.6 64 applications. Rare Metals, 2022, 41, 775-797. Engineering <i>dâ€p</i> Orbital Hybridization in Singleâ€Atom Metalâ€Embedded Threeâ€Dimensional 1076 11.1 209 Electrodes for Liâ€"S Batteries. Advanced Materials, 2021, 33, e2105947. Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 11.1 104 33, e2103266. Polymer Electrolytes $\hat{a} \in \mathbb{C}$ New Opportunities for the Development of Multivalent Ion Batteries. 1078 10 1.7 Chemistry - an Asian Journal, 2021, 16, 3272-3280. Enhanced polysulfide conversion through metal oxide-support interaction in MnOx/MXene. Chemical 1079 Engineering Journal, 2021, 420, 130452. High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid 1080 Polymer Electrolytes with Modulated Ion Transport. ACS Applied Materials & amp; Interfaces, 2021, 13, 4.0 42 47163-47173. Cobalt(II)â€Centered Fluorinated Phthalocyanineâ€Sulfur S_NAr Chemistry for Robust Lithiumâ€"Sulfur Batteries with Superior Conversion Kinetics. Advanced Functional Materials, 2021, 31,

CITATION REPORT

2106679.

		Citation Report		
#	Article		IF	CITATIONS
1082	Catalyzing polysulfide redox conversion for promoting the electrochemical performanc lithium-sulfur batteries by CoFe alloy. Chemical Engineering Journal, 2021, 421, 129997	e of 7.	6.6	40
1083	CoSe2@C-N/CNT-modified separator for highly efficient lithium-sulphur battery. Journal Compounds, 2021, 879, 160368.	of Alloys and	2.8	20
1084	Cobalt coordination with pyridines in sulfurized polyacrylonitrile cathodes to form conc pathways and catalytic M-N4S sites for accelerated Li-S kinetics. Journal of Energy Cher 170-178.	luctive nistry, 2021, 61,	7.1	28
1085	A (110) Facet-Dominated Vanadium Dioxide Enabling Bidirectional Electrocatalysis for I Batteries. ACS Nano, 2021, 15, 16878-16886.	.ithium–Sulfur	7.3	29
1086	Potassium iodide as a low-cost cathode material for efficient potassium-ion storage. En Materials, 2021, 41, 798-804.	ergy Storage	9.5	3
1087	Porous Heteroatom-Doped Ti ₃ C ₂ T _{<i>x</i>} MXe Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodi Batteries. ACS Nano, 2021, 15, 16207-16217.	ne Microspheres um–Sulfur	7.3	46
1088	Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Pot High-Performance Electrodes. Electrochemical Energy Reviews, 2022, 5, 112-144.	ential	13.1	99
1089	Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances. Journal of I Chemistry, 2021, 61, 104-134.	Energy	7.1	80
1090	Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed framework toward advanced Li–S full batteries. Energy Storage Materials, 2021, 41,	N-Ti3C2 MXene 141-151.	9.5	72
1091	Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lith batteries. Nano Today, 2021, 40, 101246.	iumâ^'sulfur	6.2	34
1092	Improving poisoning resistance of electrocatalysts via alloying strategy for high-perform lithium-sulfur batteries. Energy Storage Materials, 2021, 41, 248-254.	nance	9.5	51
1093	Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo nitride. Journal of Energy Chemistry, 2021, 61, 336-346.	bimetallic	7.1	57
1094	Archimedean polyhedron LiCoO2 for ultrafast rechargeable Li-ion batteries. Chemical Er Journal, 2021, 423, 130122.	ngineering	6.6	4
1095	Enhanced chemical trapping and catalytic conversion of polysulfides by diatomite/MXe interlayer for stable Li-S batteries. Journal of Energy Chemistry, 2021, 62, 590-598.	ne hybrid	7.1	46
1096	Shuttle-effect-free sodium–sulfur batteries derived from a Tröger's base polymer of microporosity. Journal of Power Sources, 2021, 513, 230539.	intrinsic	4.0	6
1097	Hollow nickel-cobalt bimetal phosphides as a confined polysulfide reactor for high-perfo lithium-sulfur batteries. Electrochimica Acta, 2021, 397, 139303.	ormance	2.6	9
1098	A highly stable cathode for lithium-sulfur battery built of Ni-doped carbon framework lir Journal of Alloys and Compounds, 2021, 881, 160496.	iked to CNT.	2.8	16
1099	Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies electrolytes engineering. Energy Storage Materials, 2021, 42, 645-678.	by	9.5	36

#	Article	IF	CITATIONS
1100	Metallic phase MoS2 nanosheet decorated biomass carbon as sulfur hosts for advanced lithium–sulfur batteries. Applied Surface Science, 2021, 566, 150651.	3.1	21
1101	In-situ crosslinked binder for high-stability S cathodes with greatly enhanced conduction and polysulfides anchoring. Chemical Engineering Journal, 2021, 426, 128705.	6.6	8
1102	Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Materials, 2021, 43, 212-220.	9.5	65
1103	Immobilizing Polysulfide via Multiple Active Sites in W18O49 for Li-S batteries by Oxygen Vacancy Engineering. Energy Storage Materials, 2021, 43, 422-429.	9.5	55
1104	Crosslinked polyacrylonitrile precursor for S@pPAN composite cathode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 65, 186-193.	7.1	15
1105	Creating anion defects on hollow CoxNi1-xO concave with dual binding sites as high-efficiency sulfur reduction reaction catalyst. Chemical Engineering Journal, 2022, 427, 132024.	6.6	13
1106	A model cathode for mechanistic study of organosulfide electrochemistry in Li-organosulfide batteries. Journal of Energy Chemistry, 2022, 66, 440-447.	7.1	15
1107	A flame retardant separator modified by MOFs-derived hybrid for safe and efficient Li-S batteries. Journal of Energy Chemistry, 2022, 64, 372-384.	7.1	35
1108	The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium–sulfur batteries. Journal of Energy Chemistry, 2022, 64, 568-573.	7.1	56
1109	Dual redox catalysis of VN/nitrogen-doped graphene nanocomposites for high-performance lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 64, 574-582.	7.1	68
1110	Characteristics of a gold-doped electrode for application in high-performance lithium-sulfur battery. Journal of Energy Chemistry, 2022, 64, 116-128.	7.1	21
1111	Interfacial lithium-nitrogen bond catalyzes sulfide oxidation reactions in high-loading Li2S cathode. Chemical Engineering Journal, 2022, 429, 132352.	6.6	18
1112	Two-dimensional conjugated aromatic polymer as a promising anchoring material for lithium-sulfur batteries. Applied Surface Science, 2022, 571, 151226.	3.1	6
1113	Quasi-solid-state lithium-tellurium batteries based on flexible gel polymer electrolytes. Journal of Colloid and Interface Science, 2022, 605, 547-555.	5.0	9
1114	Reversible lithium storage in sp2 hydrocarbon frameworks. Journal of Energy Chemistry, 2022, 66, 161-167.	7.1	1
1115	Nanoboxes with a porous MnO core and amorphous TiO ₂ shell as a mediator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 4952-4961.	5.2	26
1116	History and recent developments in divergent electrolytes towards high-efficiency lithium–sulfur batteries – a review. Materials Advances, 2021, 2, 4115-4139.	2.6	12
1117	Enhanced polysulfide regulation <i>via</i> honeycomb-like carbon with catalytic MoC for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 21760-21770.	5.2	15

#	Article	IF	CITATIONS
1118	Catalytic separators with Co–N–C nanoreactors for high-performance lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2021, 8, 3066-3076.	3.0	29
1119	Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy and Environmental Science, 2021, 14, 4712-4739.	15.6	189
1120	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	18.7	580
1121	Research Progress of Organic Sulfur Polymer Cathode Materials for Lithium-Sulfur Batteries. Journal of Advances in Physical Chemistry, 2021, 10, 41-50.	0.1	0
1122	A MOF-derived carbon host associated with Fe and Co single atoms for Li–Se batteries. Journal of Materials Chemistry A, 2021, 9, 16196-16207.	5.2	34
1123	Understanding Structural and Transport Properties of Dissolved Li ₂ S ₈ in Ionic Liquid Electrolytes through Molecular Dynamics Simulations. ChemPhysChem, 2021, 22, 419-429.	1.0	16
1124	Boosting the rate performance of Li–S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. Journal of Materials Chemistry A, 2021, 9, 11151-11159.	5.2	26
1125	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
1126	Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano, 2021, 15, 210-239.	7.3	199
1127	Strategy of Enhancing the Volumetric Energy Density for Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2003955.	11.1	185
1128	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	11.1	23
1129	The Role of Carbon Electrodes Pore Size Distribution on the Formation of the Cathode–Electrolyte Interphase in Lithium–Sulfur Batteries. Batteries and Supercaps, 2021, 4, 612-622.	2.4	18
1130	High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Research, 2017, 10, 3698-3705.	5.8	116
1131	The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries. Applied Surface Science, 2020, 525, 146625.	3.1	8
1132	Hierarchical, nitrogenous hollow carbon spheres filled with porous carbon nanosheets for use as efficient sulfur hosts for lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 836, 155295.	2.8	14
1133	Tailored multifunctional hybrid cathode substrate configured with carbon nanotube-modified polar Co(PO3)2/CoP nanoparticles embedded nitrogen-doped porous-shell carbon polyhedron for high-performance lithium–sulfur batteries. Journal of Colloid and Interface Science, 2020, 575, 220-230	5.0	28
1134	A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries. Journal of Energy Chemistry, 2018, 27, 813-819.	7.1	45
1135	Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 20979-21000.	1.8	13

#	Article	IF	CITATIONS
1136	Recent advances of hollow-structured sulfur cathodes for lithium–sulfur batteries. Materials Chemistry Frontiers, 2020, 4, 2517-2547.	3.2	19
1137	Metal-organic frameworks (MOFs) derived carbon-coated NiS nanoparticles anchored on graphene layers for high-performance Li-S cathode material. Nanotechnology, 2020, 31, 485404.	1.3	10
1138	Harnessing the unique properties of MXenes for advanced rechargeable batteries. JPhys Energy, 2021, 3, 012005.	2.3	14
1139	Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2020, 2, .	1.3	73
1140	Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries. Science Advances, 2020, 6, eaay5098.	4.7	95
1141	Solvent-Dictated Sodium Sulfur Redox Reactions: Investigation of Carbonate and Ether Electrolytes. Energies, 2020, 13, 836.	1.6	19
1142	The Application of Indium Oxide@CPM-5-C-600 Composite Material Derived from MOF in Cathode Material of Lithium Sulfur Batteries. Nanomaterials, 2020, 10, 177.	1.9	11
1143	<i>In Situ</i> / <i>Operando</i> Advances of Electrode Processes in Solid-state Lithium Batteries. Acta Chimica Sinica, 2021, 79, 1197.	0.5	2
1144	A dual-role electrolyte additive for simultaneous polysulfide shuttle inhibition and redox mediation in sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 26976-26988.	5.2	9
1145	Revamping Lithium–Sulfur Batteries for High Cell‣evel Energy Density by Synergistic Utilization of Polysulfide Additives and Artificial Solidâ€Electrolyte Interphase Layers. Advanced Materials, 2021, 33, e2104246.	11.1	8
1146	Collectively Exhaustive MXene and Graphene Oxide Multilayer for Suppressing Shuttling Effect in Flexible Lithium Sulfur Battery. Advanced Materials Technologies, 2022, 7, 2101025.	3.0	14
1147	Endoplasmic-reticulum-like catalyst coating on separator to enhance polysulfides conversion for lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 67, 423-431.	7.1	14
1148	Closed-Loop Modeling to Evaluate the Performance of a Scaled-Up Lithium–Sulfur Battery in Electric Vehicle Applications. Applied Sciences (Switzerland), 2021, 11, 9593.	1.3	0
1149	High-energy silicon-sulfurized poly(acrylonitrile) battery based on a nitrogen evolution reaction. Science Bulletin, 2022, 67, 256-262.	4.3	3
1150	High-performance three-dimensional flower-like CoS/MWCNT composite host for Li–S batteries. Journal of Solid State Electrochemistry, 2022, 26, 389-400.	1.2	9
1151	Towards High Performance Li–S Batteries via Sulfonateâ€Rich COFâ€Modified Separator. Advanced Materials, 2021, 33, e2105178.	11.1	180
1152	Electron and Ion Coâ€Conductive Catalyst Achieving Instant Transformation of Lithium Polysulfide towards Li ₂ S. Advanced Materials, 2021, 33, e2105362.	11.1	36
1153	Regulating the Deposition of Insoluble Sulfur Species for Room Temperature Sodium-Sulfur Batteries. Chemical Research in Chinese Universities, 2022, 38, 128-135.	1.3	3

#	Article	IF	CITATIONS
1154	Packing Sulfur Species by Phosphoreneâ€Derived Catalytic Interface for Electrolyteâ€Lean Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, 2106966.	7.8	27
1155	Universalâ€Descriptorsâ€Guided Design of Single Atom Catalysts toward Oxidation of Li ₂ S in Lithium–Sulfur Batteries. Advanced Science, 2021, 8, e2102809.	5.6	46
1156	Utilizing the Builtâ€in Electric Field of p–n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2105067.	11.1	125
1157	Recent Advances and Perspectives in Lithiumâ [~] Sulfur Pouch Cells. Molecules, 2021, 26, 6341.	1.7	12
1158	Multisize CoS ₂ Particles Intercalated/Coatedâ€Montmorillonite as Efficient Sulfur Host for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemSusChem, 2022, 15, .	3.6	16
1159	Lithium-Ion Batteries for Automotive Applications: Life Cycle Analysis. , 2019, , 1-12.		0
1160	Materials in Emerging Water Pollutants Detection. Advanced Functional Materials and Sensors, 2020, , 255-275.	1.2	0
1161	High Energy Density "Bezel-less―Lithium-ion Battery Using Solvate Ionic Liquid-based Quasi-solid-state Electrolyte. Electrochemistry, 2020, 88, 321-324.	0.6	5
1162	Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Liâ^'S Batteries. Angewandte Chemie, 2022, 134, .	1.6	12
1163	Fluorinated Graphite (FG)-Modified Li–S Batteries with Superhigh Primary Specific Capacity and Improved Cycle Stability. ACS Applied Materials & Interfaces, 2021, 13, 52717-52726.	4.0	4
1164	Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Liâ^'S Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	52
1165	Revisiting Classical Rocking Chair Lithium-Ion Battery. Macromolecular Research, 2020, 28, 1175-1191.	1.0	14
1166	Boosting polysulfides immobilization and conversion through CoS2 catalytic sites loaded carbon fiber for robust lithium sulfur batteries. Journal of Colloid and Interface Science, 2022, 608, 963-972.	5.0	20
1167	Self-supported VN arrays coupled with N-doped carbon nanotubes embedded with Co nanoparticles as a multifunctional sulfur host for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 430, 132931.	6.6	27
1168	<i>Operando</i> soft X-ray absorption spectroscopic study on microporous carbon-supported sulfur cathodes. RSC Advances, 2020, 10, 39875-39880.	1.7	8
1169	Nickel-based metal–organic framework-derived Ni/NC/KB as a separator coating for high capacity lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 6372-6380.	2.5	6
1170	Scalable Synthesis of Ultrathin Polyimide Covalent Organic Framework Nanosheets for High-Performance Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2021, 143, 19446-19453.	6.6	104
1171	Manganese oxide as an effective electrode material for energy storage: a review. Environmental Chemistry Letters, 2022, 20, 283-309.	8.3	44

		CITATION REPORT		
#	Article		IF	CITATIONS
1172	Progress of nanotechnology for lithium-sulfur batteries. Frontiers of Nanoscience, 202	1, 19, 137-164.	0.3	3
1173	Ultrahighly nitrogen-doped hollow carbon spheres with hierarchical pores for highly rev lithium–sulfur batteries. Sustainable Energy and Fuels, 2022, 6, 320-328.	versible	2.5	7
1174	Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemica storage and conversion. Nanoscale, 2021, 13, 19740-19770.	l energy	2.8	41
1175	Ultrafine NbN nanoparticle decorated nitrogen-doped carbon nanosheets with efficien catalytic conversion for superior Li–S batteries. Journal of Power Sources, 2022, 520	t polysulfide , 230764.	4.0	13
1176	An integrated approach to improve the performance of lean–electrolyte lithium–s Journal of Energy Chemistry, 2022, 67, 585-592.	ulfur batteries.	7.1	12
1177	A Lamellar Yolk–Shell Lithiumâ€Sulfur Battery Cathode Displaying Ultralong Cycling Performance, and Temperature Tolerance. Advanced Science, 2022, 9, e2103517.	Life, High Rate	5.6	20
1178	Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lith batteries. Chemical Engineering Journal, 2022, 433, 133683.	nium-sulfur	6.6	34
1179	Interface engineering of metal phosphide on hollow carbons by Dual-template method High-performance Lithium-sulfur batteries. Chemical Engineering Journal, 2022, 433, 1	for 33549.	6.6	15
1180	Polysulfide Catalytic Materials for Fastâ€Kinetic Metal–Sulfur Batteries: Principles ar Advanced Science, 2022, 9, e2102217.	Id Active Centers.	5.6	56
1181	Accelerating Sulfur Redox Reactions by Topological Insulator Bi ₂ Te _{ Highâ€Performance Liâ€S Batteries. Advanced Functional Materials, 2022, 32, .}	3 for	7.8	27
1182	Exploration of the Unique Structural Chemistry of Sulfur Cathode for Highâ€Energy Re Beyondâ€Li Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100157	chargeable 7.	2.8	15
1183	Two Birds with One Stone: Interfacial Engineering of Multifunctional Janus Separator fo Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2107638.	or	11.1	91
1184	An optimized combination inspired by the wooden-barrel effect for Li-S pouch cells. Ce Physical Science, 2021, 2, 100659.	ll Reports	2.8	3
1185	Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Paramo Gravimetric and Volume Energy Density. Advanced Science, 2022, 9, e2103879.	eters for High	5.6	98
1186	A Review of Performance Attenuation and Mitigation Strategies of Lithiumâ€Ion Batte Functional Materials, 2022, 32, 2107769.	ries. Advanced	7.8	43
1187	Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulf Chemical Engineering Journal, 2022, 431, 133923.	ur batteries.	6.6	36
1188	Well-dispersed Li2CoTi3O8 nanoparticles as a multifunctional material for lithium-ion b lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 896, 162926.	patteries and	2.8	18
1189	Novel melamine-based porous organic polymers: synthesis, characterizations, morphol modifications, and their applications in lithium–sulfur batteries. Nanotechnology, 20	ogy 22, 33, 085704.	1.3	0

#	Article	IF	CITATIONS
1190	Revealing the Sulfur Redox Paths in a Li–S Battery by an In Situ Hyphenated Technique of Electrochemistry and Mass Spectrometry. Advanced Materials, 2022, 34, e2106618.	11.1	31
1191	Manipulating the Conversion Kinetics of Polysulfides by Engineering Oxygen pâ€Band of Halloysite for Improved Liâ€ S Batteries. Small, 2021, , 2105661.	5.2	11
1192	An <i>in situ</i> generated polymer electrolyte <i>via</i> anionic ring-opening polymerization for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 25927-25933.	5.2	11
1193	Combined first-principles statistical mechanics approach to sulfur structure in organic cathode hosts for polymer based lithium–sulfur (Li–S) batteries. Physical Chemistry Chemical Physics, 2021, 23, 26709-26720.	1.3	8
1194	Dual-role magnesium aluminate ceramic film as an advanced separator and polysulfide trapper in a Li–S battery: experimental and DFT investigations. New Journal of Chemistry, 2022, 46, 3185-3198.	1.4	6
1195	Progress and Perspectives of Organosulfur for Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, 2103483.	10.2	69
1196	P-block tin single atom catalyst for improved electrochemistry in a lithium–sulfur battery: a theoretical and experimental study. Journal of Materials Chemistry A, 2022, 10, 3667-3677.	5.2	28
1197	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie, 2022, 134, e202116214.	1.6	9
1198	Designing hierarchical MnO/polypyrrole heterostructures to couple polysulfides adsorption and electrocatalysis in lithium-sulfur batteries. Journal of Power Sources, 2022, 520, 230885.	4.0	16
1199	Electrochemical impedance characteristics at various conditions for commercial solid–liquid electrolyte lithium-ion batteries: Part 1. experiment investigation and regression analysis. Energy, 2022, 242, 122880.	4.5	25
1200	Fully-active crosslinking network derived from ionic liquid and MXene to efficiently immobilize polysulfides and promote redox reactions. Chemical Engineering Journal, 2022, 431, 134179.	6.6	3
1201	Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coordination Chemistry Reviews, 2022, 454, 214339.	9.5	71
1202	An Ant-Nest Like Hierarchical Nanoreactor for Highly Efficient Sulfur Species Redox Reactions. SSRN Electronic Journal, 0, , .	0.4	0
1203	Fabrication of a Covalent Triazine Framework Functional Interlayer for High-Performance Lithium–Sulfur Batteries. Nanomaterials, 2022, 12, 255.	1.9	7
1204	Synthesis and application of single-atom catalysts in sulfur cathode for high-performance lithium–sulfur batteries. Chinese Chemical Letters, 2023, 34, 107121.	4.8	18
1205	A Janus Separator for Inhibiting Shuttle Effect and Lithium Dendrite in Lithiumâ^'Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	17
1206	A New Graphitic Nitride and Reduced Graphene Oxide-Based Sulfur Cathode for High-Capacity Lithium-Sulfur Cells. Energies, 2022, 15, 702.	1.6	0
1207	Recent advances on graphene-based materials as cathode materials in lithium-sulfur batteries. International Journal of Hydrogen Energy, 2022, 47, 8630-8657.	3.8	21

#	Article	IF	CITATIONS
1208	Designing principles of advanced sulfur cathodes toward practical lithiumâ€sulfur batteries. SusMat, 2022, 2, 34-64.	7.8	77
1209	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202116214.	7.2	38
1210	Cotton-Derived Fe/Fe ₃ C-Encapsulated Carbon Nanotubes for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2022, 22, 1217-1224.	4.5	51
1211	Suppressing the shuttle effect in lithiumâ€sulphur batteries by defective singleâ€walled <scp>ZnO</scp> nanotube: A <scp>DFT</scp> study. Canadian Journal of Chemical Engineering, 2023, 101, 347-353.	0.9	0
1212	Oxygen and nitrogen tailoring carbon fiber aerogel with platinum electrocatalysis interfaced lithium/sulfur (Li/S) batteries. Chinese Chemical Letters, 2023, 34, 107123.	4.8	8
1213	Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes. Journal of the Electrochemical Society, 2022, 169, 010511.	1.3	2
1215	Application and research of current collector for lithium-sulfur battery. Ionics, 2022, 28, 1713-1738.	1.2	6
1216	Atomic Structure Modification of Fe‒N‒C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	45
1217	Hydrogen bonds to balance mechanical and adhesive properties of pectin/polyacrylic acid blends as efficient binders for cathode in lithium-sulfur battery. Materials Today Communications, 2022, 31, 103211.	0.9	5
1218	Single-atom catalysts for lithium sulfur batteries via atomic layer deposition process. Electrochemistry Communications, 2022, 135, 107215.	2.3	7
1219	Integrating a 3D porous carbon fiber network containing cobalt with artificial solid electrolyte interphase to consummate advanced electrodes for lithium–sulfur batteries. Materials Today Energy, 2022, 24, 100930.	2.5	6
1220	Defects on Li2S@graphene cathode improves the performance of lithium-sulfur battery, A theoretical study. Acta Materialia, 2022, 226, 117632.	3.8	10
1221	Porous carbon textile decorated with VC/V2O3-X hybrid nanoparticles: Dual-functional host for flexible Li-S full batteries. Energy Storage Materials, 2022, 46, 542-552.	9.5	34
1222	Coordinatively Deficient Single-atom Fe-N-C Electrocatalyst with Optimized Electronic Structure for High-performance Lithium-sulfur Batteries. Energy Storage Materials, 2022, 46, 269-277.	9.5	95
1223	In situ conversion to construct fast ion transport and high catalytic cathode for high-sulfur loading with lean electrolyte lithium–sulfur battery. Nano Energy, 2022, 95, 106979.	8.2	53
1224	Nitrogen and Sulfur Co-doped Two-Dimensional Highly Porous Carbon Nanosheets for High-Performance Lithium–Sulfur Batteries. Energy & Fuels, 2022, 36, 2220-2227.	2.5	15
1225	Synergistic Capture and Conversion of Soluble Polysulfides in Li–S Batteries with Composite Freestanding Carbonaceous Interlayers. ACS Applied Materials & Interfaces, 2022, 14, 9231-9241.	4.0	11
1226	A Squaraine-Linked Zwitterionic Covalent Organic Framework Nanosheets Enhanced Poly(ethylene) Tj ETQq1 1 (Materials, 2022, 5, 2495-2504.).784314 2.5	rgBT /Overloc 19

#	Article	IF	CITATIONS
1227	Energy-Saving Synthesis of Functional CoS2/rGO Interlayer With Enhanced Conversion Kinetics for High-Performance Lithium-Sulfur Batteries. Frontiers in Chemistry, 2021, 9, 830485.	1.8	9
1228	MnCo ₂ O ₄ Spiny Microspheres as Polysulfide Anchors and Conversion Catalysts for High-Performance Li–S Batteries. Energy & Fuels, 2022, 36, 2202-2211.	2.5	8
1229	Insights into the efficient roles of solid electrolyte interphase derived from vinylene carbonate additive in rechargeable batteries. Journal of Electroanalytical Chemistry, 2022, 909, 116126.	1.9	14
1230	Lignin-Based Materials for Sustainable Rechargeable Batteries. Polymers, 2022, 14, 673.	2.0	16
1231	Inâ€Situ Synthesis of Carbonâ€Encapsulated Atomic Cobalt as Highly Efficient Polysulfide Electrocatalysts for Highly Stable Lithium–Sulfur Batteries. Small, 2022, 18, e2106640.	5.2	33
1232	Unlocking Failure Mechanisms and Improvement of Practical Li–S Pouch Cells through In Operando Pressure Study. Advanced Energy Materials, 2022, 12, .	10.2	12
1233	Multi-Functional ZnS Quantum Dots/Graphene Aerogel Modified Separator for High Performance Lithium-Sulfur Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1234	Evaluating the effectiveness of <i>in situ</i> characterization techniques in overcoming mechanistic limitations in lithium–sulfur batteries. Energy and Environmental Science, 2022, 15, 1423-1460.	15.6	37
1235	The Investigation of Cus/Cnts with Synergistic Effect of Physical and Chemical Immobilization to Lithium Polysulfides for High-Performance Li–S Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1236	Lithiated Carboxylated Nitrile Butadiene Rubber with Strong Polysulfide Immobilization Ability as a Binder for Improving Lithium-Sulfur Battery Performance. SSRN Electronic Journal, 0, , .	0.4	0
1237	The presolvation strategy of Li ₂ S cathodes for lithium–sulfur batteries: a review. Journal of Materials Chemistry A, 2022, 10, 10326-10341.	5.2	17
1238	Computational screening of functionalized MXenes to catalyze the solid and non-solid conversion reactions in cathodes of lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2022, 24, 8913-8922.	1.3	4
1239	Challenges and advances in wide-temperature rechargeable lithium batteries. Energy and Environmental Science, 2022, 15, 1711-1759.	15.6	138
1240	Enhanced Electrochemical Kinetics on Ni ₂ P Polar Mediators Integrated with Graphene for Lithium–Sulfur Batteries. Advanced Materials Interfaces, 0, , 2102142.	1.9	2
1241	Macro/Mesoporous Carbon/Defective TiO ₂ Composite as a Functional Host for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 2573-2579.	2.5	24
1242	Nano onductive Additive with Low Interfacial Energy Confining the Movement of Lithium Polysulfide Solution Enables Stable Reaction of Sulfur Electrode in Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	0
1243	Dualâ€Functional Organotelluride Additive for Highly Efficient Sulfur Redox Kinetics and Lithium Regulation in Lithium–Sulfur Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	20
1244	Manipulating Electrocatalytic Polysulfide Redox Kinetics by 1D Core–Shell Like Composite for Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	47

#	Article	IF	CITATIONS
1245	"One Stone Two Birds―Design for Dualâ€Functional TiO ₂ â€TiN Heterostructures Enabled Dendriteâ€Free and Kineticsâ€Enhanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	80
1246	Advances in the Development of Singleâ€Atom Catalysts for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2200102.	11.1	202
1247	Defect Engineering in a Multiple Confined Geometry for Robust Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	58
1248	Synergistic Effect between Monodisperse Fe ₃ O ₄ Nanoparticles and Nitrogen-Doped Carbon Nanosheets to Promote Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16310-16319.	4.0	13
1249	Thiometallate-mediated polysulfide chemistry and lithium stabilization for stable anode-free lithium-sulfur batteries. Cell Reports Physical Science, 2022, 3, 100808.	2.8	8
1250	Hysteresis in electrochemical systems. , 2022, 1, .		25
1251	A novel modified sulfur cathode to facilitate the adsorption and conversion of polysulfides in lithium–sulfur batteries. Journal of Solid State Electrochemistry, 0, , 1.	1.2	0
1252	Synthetic Methodologies and Energy Storage/Conversion Applications of Porous Carbon Nanosheets: A Systematic Review. Energy & Fuels, 2022, 36, 3420-3442.	2.5	12
1253	Harnessing Heteropolar Lithium Polysulfides by Amphoteric Polymer Binder for Facile Manufacturing of Practical Liâ€ S Batteries. Small, 2022, 18, e2107109.	5.2	13
1254	TiN porous ceramics with excellent electrochemical properties prepared by freeze-drying and in-situ nitridation reaction. Ceramics International, 2022, 48, 19017-19025.	2.3	9
1255	Encapsulating sulphur inside Magnéli phase <scp>Ti₄O₇</scp> nanotube array for high performance lithium sulphur battery cathode. Canadian Journal of Chemical Engineering, 2022, 100, 2417-2431.	0.9	3
1256	A Sustainable Multipurpose Separator Directed Against the Shuttle Effect of Polysulfides for Highâ€Performance Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	53
1257	A novel fire safety separator decorated by Co2P/Co/C multifunctional layer for Li-S batteries. Journal of Alloys and Compounds, 2022, 910, 164919.	2.8	4
1258	Precisely visit the performance modulation of functionalized separator in Li-S batteries via consecutive multiscale analysis. Energy Storage Materials, 2022, 49, 85-92.	9.5	7
1259	Role of Ferroelectric In ₂ Se ₃ in Polysulfide Shuttling and Charging/Discharging Kinetics in Lithium/Sodium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16178-16184.	4.0	17
1260	In Situ Constructing a Stable Solid Electrolyte Interface by Multifunctional Electrolyte Additive to Stabilize Lithium Metal Anodes for Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17959-17967.	4.0	14
1261	Visualized redox reaction guides polysulfide synthesis with electrochemical approach for long-cycle lithium-sulfur batteries. Electrochimica Acta, 2022, 413, 140178.	2.6	2
1262	Selective ion transport of catalytic hybrid aerofilm interlayer for long-stable Li-S batteries. Energy Storage Materials, 2022, 47, 472-481.	9.5	20

#	Article	IF	CITATIONS
1263	Upcycling of electroplating sludge into Fe3C-decorated N,P dual-doped porous carbon via microalgae as efficient sulfur host for lithium–sulfur batteries. Surfaces and Interfaces, 2022, 30, 101869.	1.5	6
1264	Tungsten nitride nanotubes as sulfur host material for high performance Li-S batteries. Inorganic Chemistry Communication, 2022, 140, 109458.	1.8	4
1265	VC@NCNTs: Bidirectional catalyst for fast charging Lithium-sulfur batteries. Chemical Engineering Journal, 2022, 442, 135940.	6.6	13
1266	Mixed Ionically/Electronically Conductive Double-Phase Interface Enhanced Solid-State Charge Transfer for a High-Performance All-Solid-State Li–S Battery. Nano Letters, 2022, 22, 433-440.	4.5	12
1267	A Highly Efficient Ion and Electron Conductive Interlayer To Achieve Low Self-Discharge of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1783-1790.	4.0	13
1268	High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1212-1221.	4.0	15
1269	A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries. Nature Communications, 2021, 12, 7195.	5.8	80
1270	Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano, 2021, 15, 18608-18623.	7.3	76
1271	Chargeâ€Compensation in a Displacement Mg ²⁺ Storage Cathode through Polyselenideâ€Mediated Anion Redox. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
1272	Built-in electric field accelerated polysulfide conversion for advanced lithium-sulfur batteries. Materials Letters, 2022, , 132265.	1.3	3
1273	Hybridization of 2D Nanomaterials with 3D Graphene Architectures for Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2022, 32, .	7.8	26
1274	Chargeâ€Compensation in a Displacement Mg ²⁺ Storage Cathode through Polyselenideâ€Mediated Anion Redox. Angewandte Chemie, 2022, 134, .	1.6	1
1276	Constructing Highâ€Performance Quasiâ€Solidâ€State Sulfur Cathodes via the Cooperation of Solid Electrolyte Interface and Selenium Doping. ChemElectroChem, 2022, 9, .	1.7	1
1277	Li ₂ S ₄ Anchoring Governs the Catalytic Sulfur Reduction on Defective SmMn ₂ O ₅ in Lithium–Sulfur Battery. Advanced Energy Materials, 2022, 12, .	10.2	29
1278	Improving the electrochemical performance of lithium-sulfur batteries by interface modification with a bifunctional electrolyte additive. Chemical Engineering Journal, 2022, 443, 136489.	6.6	13
1279	Highâ€Density Oxygen Doping ofÂConductive Metal Sulfides forÂBetterÂPolysulfide Trapping and Li ₂ Sâ€S ₈ ÂRedox Kinetics in High Areal Capacity Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2200840.	5.6	36
1280	Recent progress of quantum dots for energy storage applications. , 2022, 1, 1.		80
1281	The unique interconnected structure of hollow carbon skeleton doped by F and N facilitating rapid Li ions diffusion in lithium-sulfur batteries. Carbon, 2022, 195, 207-218.	5.4	21
#	Article	IF	CITATIONS
------	--	------	-----------
1282	Conductive inks composed of multicomponent carbon nanomaterials and hydrophilic polymer binders for high-energy-density lithium-sulfur batteries. Energy Storage Materials, 2022, 49, 236-245.	9.5	21
1283	Graphene–sulfur nanocomposites as cathode materials and separators for lithium–sulfur batteries. , 2022, , 289-314.		2
1284	Progress on separators for high-performance lithium–sulfur batteries. , 2022, , 157-177.		0
1285	Redox catalysis-promoted fast iodine kinetics for polyiodide-free Na–I ₂ electrochemistry. Journal of Materials Chemistry A, 2022, 10, 11325-11331.	5.2	6
1286	Design of nanostructured sulfur cathodes for high-performance lithium–sulfur batteries. , 2022, , 425-452.		0
1287	Holey amorphous FeCoO-coated black phosphorus for robust polysulfide adsorption and catalytic conversion in lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 11676-11683.	5.2	13
1288	Electrostatic Self-Assembly Mxene@Biomass Porous Carbon with Superior Cycle Stability for Lithium-Sulfur Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1289	Catalysis research in rechargeable lithium-sulfur batteries. Chinese Science Bulletin, 2022, 67, 2906-2920.	0.4	2
1290	Formulating energy density for designing practical lithium–sulfur batteries. Nature Energy, 2022, 7, 312-319.	19.8	342
1291	Lithium-Rich Rock Salt Type Sulfides-Selenides (Li2TiSexS3â^'x): High Energy Cathode Materials for Lithium-Ion Batteries. Materials, 2022, 15, 3037.	1.3	2
1292	Expediting Sulfur Reduction/Evolution Reactions with Integrated Electrocatalytic Network: A Comprehensive Kinetic Map. Nano Letters, 2022, 22, 3728-3736.	4.5	30
1293	Atomic surface modification strategy of <scp>MXene</scp> materials for <scp>highâ€performance</scp> metal sulfur batteries. International Journal of Energy Research, 2022, 46, 11659-11675.	2.2	21
1294	Toward Practical Highâ€Energyâ€Density Lithium–Sulfur Pouch Cells: A Review. Advanced Materials, 2022, 34, e2201555.	11.1	112
1295	Perspectives on <scp>Liâ€ion</scp> battery categories for electric vehicle applications: A review of state of the art. International Journal of Energy Research, 2022, 46, 19258-19268.	2.2	50
1296	An ant-nest like hierarchical nanoreactor for highly efficient sulfur species redox reactions. Journal of Alloys and Compounds, 2022, , 165211.	2.8	1
1297	lonic Liquid Electrolytes for Next-generation Electrochemical Energy Devices. EnergyChem, 2022, 4, 100075.	10.1	25
1298	Multi-functional ZnS quantum Dots/Graphene aerogel modified separator for high performance lithium-sulfur batteries. Electrochimica Acta, 2022, 422, 140496.	2.6	9
1299	Drastic Effect of Salt Concentration in Ionic Liquid on Performance of Lithium Sulfur Battery. Journal of the Electrochemical Society, 2022, 169, 050515.	1.3	8

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1300	Strategies towards High Performance Lithiumâ€Sulfur Batteries. Batteries and Supercap	os, 2022, 5, .	2.4	30
1301	Stepped Porous Carbonâ€Multilayer Graphene@Fe ₃ C/Fe ₃ N N the Polysulfides Shuttle for Highâ€Performance Lithium–Sulfur Batteries. Advanced S Systems, 2022, 6, .	Membrane to Inhibit ustainable	2.7	1
1302	Electrocatalysis in Room Temperature Sodiumâ€Sulfur Batteries: Tunable Pathway of Su Small Methods, 2022, 6, e2200335.	ılfur Speciation.	4.6	9
1303	Highly sulfur-rich polymeric cathode materials via inverse vulcanization of sulfur for lithium–sulfur batteries. Materials Chemistry and Physics, 2022, 285, 126168.		2.0	5
1304	Implanting heterogeneous Ni2P/CoP catalysts in MOF–derived carbon arrays with mu catalytic sites for Li–SeS2 batteries. Journal of Alloys and Compounds, 2022, 913, 16	ltifunctional 5253.	2.8	6
1305	Sulfur/Nitrogen Co-Doped Mesoporous Carbon for High-Performance Lithium-Ion Batter Journal of Electronic Materials, 0, , .	y Anodes.	1.0	1
1306	Enhanced immobilization and accelerated conversion of polysulfides by functionalized s advanced lithium sulfur batteries. Journal of Power Sources, 2022, 539, 231490.	eparator for	4.0	6
1307	Confining ZnS/SnS ₂ Ultrathin Heterostructured Nanosheets in Hollow Nâ€ Nanocubes as Novel Sulfur Host for Advanced Li Batteries. Small, 2022, 18, e21077	Doped Carbon 27.	5.2	39
1308	Unveiling the Electrocatalytic Activity of 1T′-MoSe ₂ on Lithium-Polysulf Reactions. ACS Applied Materials & Interfaces, 2022, 14, 24486-24496.	ide Conversion	4.0	11
1309	MXene supported transition metal nanoparticles accelerate sulfur reduction reaction ki Journal of Materials Chemistry A, 2022, 10, 13758-13768.	netics.	5.2	11
1310	CoS ₂ @montmorillonite as an efficient separator coating for high-performa lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2022, 9, 3335-3347.	ance	3.0	10
1311	Nanostructured Materials from Biobased Precursors for Renewable Energy Storage App Symposium Series, 0, , 307-366.	ications. ACS	0.5	1
1312	Preparation of Porous Yolk–Shell S@Poly(vinyl alcohol) (PVA) Particles for a Lithiumâ Cathode with High Cycling and Rate Performances via a Self-Emulsification Process. AC Energy Materials, 2022, 5, 7432-7442.	ି"Sulfur Battery S Applied	2.5	2
1313	Nanoscale Visualization of Reversible Redox Pathways in Lithium-Sulfur Battery Using In AFM-SECM. Journal of the Electrochemical Society, 2022, 169, 060501.	Situ	1.3	8
1314	An Extraordinary Na-S Battery Enabled by a Carbon Nanosheet Host Loaded with Fe-Acc Tio2-Inhibitor. SSRN Electronic Journal, 0, , .	elerator and	0.4	0
1315	Novel Sulfur-Containing Polymeric Cathode Material Prepared via an Inverse Vulcanizati for Advanced Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 7617-	on Method 7626.	2.5	7
1316	Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or spari solvating electrolytes?. , 2022, 1, e9120012.	ngly		83
1317	Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for enhancement of lithium-sulfur battery. Nano Research, 2022, 15, 8048-8055.	synergistic	5.8	24

#	Article	IF	CITATIONS
1318	Atomicallyâ€dispersed Feâ€N4 on 3D hierarchical porous carbon for highâ€performance lithiumâ€sulfur battery. Batteries and Supercaps, 0, , .	2.4	2
1319	Effective polysulfide adsorption and catalysis by polyoxometalate contributing to high-performance Li–S batteries. Materials Today Nano, 2022, 19, 100231.	2.3	10
1320	Enhancing anchoring and catalytic conversion of polysulfides by nitrogen deficient cobalt nitride for advanced lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 73, 407-415.	7.1	30
1321	Discovery of Dualâ€Functional Amorphous Titanium Suboxide to Promote Polysulfide Adsorption and Regulate Sulfide Growth in Li–S Batteries. Advanced Science, 2022, 9, .	5.6	9
1322	Hierarchical sparse Co nanowire/carbon nanofiber arrays as 3D Li+ gateways for high rate, long-life lithium-sulfur batteries. Solid State Ionics, 2022, 382, 115958.	1.3	2
1323	Kinetics of polysulfide on metal-sulfur batteries. , 2022, , 679-713.		0
1324	A N-Rich porous carbon nanocube anchored with Co/Fe dual atoms: an efficient bifunctional catalytic host for Li–S batteries. Materials Chemistry Frontiers, 2022, 6, 2095-2102.	3.2	11
1325	Function-directed design of battery separators based on microporous polyolefin membranes. Journal of Materials Chemistry A, 2022, 10, 14137-14170.	5.2	38
1326	Capturing Polysulfides with a Functional Anhydride Compound for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 7719-7727.	2.5	10
1327	Hierarchically Constructed ZnO/Co ₃ O ₄ Nanoheterostructures Synergizing Dendrite Inhibition and Polysulfide Conversion in Lithium–Sulfur Battery. , 2022, 4, 1358-1367.		14
1328	Zn–N Codoped Carbon Nanofiber Interlayer for Anchor and Catalysis of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 0, , .	2.5	7
1329	Synergistic Cation–Anion Regulation of Polysulfides by Zwitterionic Polymer Binder for Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	27
1330	Atomic-Scale Insights into Comparative Mechanisms and Kinetics of Na–S and Li–S Batteries. ACS Catalysis, 2022, 12, 7664-7676.	5.5	23
1331	Two-dimensional host materials for lithium-sulfur batteries: A review and perspective. Energy Storage Materials, 2022, 50, 696-717.	9.5	26
1332	A bifunctional interlayer fabricated by FeS2-embedded N-doped carbon nanocages with efficient polysulfide trapping-catalyzing capability for robust Li-S batteries. Chemical Engineering Journal, 2022, 447, 137433.	6.6	13
1333	Construction of composite separator with 3D hierarchical spinel structure in Lithium-Sulfur batteries. Chemical Engineering Journal, 2022, 448, 137766.	6.6	13
1334	Intimate triple phase interfaces confined in two-dimensional ordered mesoporous carbon towards high-performance all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2022, 448, 137712.	6.6	26
1335	Phosphorus modulated porous CeO2 nanocrystallines for accelerated polysulfide catalysis in advanced Li-S batteries. Journal of Materials Science and Technology, 2022, 131, 212-220.	5.6	11

#	Article	IF	CITATIONS
1336	Study on Fundamental Properties of Solvate Electrolytes and Their Application in Batteries. Electrochemistry, 2022, , .	0.6	2
1337	Realizing fast polysulfides conversion within yolk-shelled NiO@HCSs nanoreactor as cathode host for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 16309-16318.	5.2	23
1338	Applications of metal-organic frameworks for lithium-sulfur batteries. , 2022, , 49-119.		0
1339	Construction of a fast Li-ion path in a MOF-derived Fe ₃ O ₄ @NC sulfur host enables high-rate lithium–sulfur batteries. Dalton Transactions, 0, , .	1.6	2
1340	Future prospects for lithium-sulfur batteries: The criticality of solid electrolytes. , 2022, , 327-351.		0
1341	Cationic Covalent Organic Framework as Separator Coating for High-Performance Lithium Selenium Disulfide Batteries. Coatings, 2022, 12, 931.	1.2	3
1342	Solvent selection criteria for temperature-resilient lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
1343	Overview of the Latest Developments and Perspectives about Noncarbon Sulfur Host Materials for High Performance Lithium–Sulfur Batteries. Energy & Fuels, 2022, 36, 7284-7320.	2.5	5
1344	Recent progress of sulfur cathodes and other components for flexible lithium–sulfur batteries. Materials Today Sustainability, 2022, 19, 100181.	1.9	8
1345	Poly(ionic liquid) Nanovesicle-Templated Carbon Nanocapsules Functionalized with Uniform Iron Nitride Nanoparticles as Catalytic Sulfur Host for Li–S Batteries. ACS Nano, 2022, 16, 10554-10565.	7.3	18
1346	Protecting Li Metal Anode While Suppressing "Shuttle Effect―of Li-S Battery Through Localized High-Concentration Electrolyte. Journal of Electronic Materials, 2022, 51, 4772-4779.	1.0	7
1347	Multichalcogen-Integrated Cathodes for Novel Lithium-Chalcogenide Batteries in Ether and Ester Electrolytes. ACS Applied Materials & amp; Interfaces, 2022, 14, 32112-32123.	4.0	3
1348	Effective Ways to Stabilize Polysulfide Ions for High apacity Liâ^'S Batteries Based on Organic Chalcogenide Catholytes. ChemElectroChem, 2022, 9, .	1.7	2
1349	One-Pot Synthesis of LiFePO4/N-Doped C Composite Cathodes for Li-ion Batteries. Materials, 2022, 15, 4738.	1.3	6
1350	Metalâ€Organic Frameworks Functionalized Separators for Lithiumâ€Sulfur Batteries. Chemical Record, 2022, 22, .	2.9	6
1351	Enhancing Moisture Stability of Sulfide Solid-State Electrolytes by Reversible Amphipathic Molecular Coating. ACS Applied Materials & Interfaces, 2022, 14, 32035-32042.	4.0	5
1352	The Critical Role of Carbon Nanotubes in Bridging Academic Research to Commercialization of Lithium Batteries. Chemical Record, 2022, 22, .	2.9	7
1353	MoP@NC/S cathode with multiple synergistic effect contributes to Li-S battery. Separation and Purification Technology, 2022, 300, 121684.	3.9	5

#	Article	IF	CITATIONS
1354	Dual Functional High Donor Electrolytes for Lithium–Sulfur Batteries under Lithium Nitrate Free and Lean Electrolyte Conditions. ACS Energy Letters, 2022, 7, 2459-2468.	8.8	23
1355	Lithiated carboxylated nitrile butadiene rubber with strong polysulfide immobilization ability as a binder for improving lithium-sulfur battery performance. Journal of Power Sources, 2022, 542, 231771.	4.0	2
1356	Extraordinary electrochemical performance of lithium–sulfur battery with 2D ultrathin BiOBr/rGO sheet as an efficient sulfur host. Journal of Colloid and Interface Science, 2022, 626, 374-383.	5.0	13
1357	The synergistic adsorption-electrocatalysis research of Mn2P interlayer for durable large-capacity and high-energy-efficiency Li-S batteries. Chemical Engineering Journal, 2022, 450, 137925.	6.6	11
1358	Homogeneous Organometallic Catalysts for Improved Electrochemical Kinetics of Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 9782-9790.	2.5	10
1359	Ultrahigh Sulfur Loading Tolerant Cathode Architecture with Extended Cycle Life for High Energy Density Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	23
1360	Design of CoP-CoO heterostructure to enhance the polysulfide redox conversion for lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2022, 920, 116644.	1.9	5
1361	Lean-electrolyte lithium-sulfur batteries: Recent advances in the design of cell components. Chemical Engineering Journal, 2022, 450, 138209.	6.6	19
1362	A bidirectional electrocatalyst for enhancing Li ₂ S nucleation and decomposition kinetics in lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 17532-17543.	5.2	12
1363	Quasi-Solid-State Lithium-Sulfur Batteries Assembled by Composite Polymer Electrolyte and Nitrogen Doped Porous Carbon Fiber Composite Cathode. Nanomaterials, 2022, 12, 2614.	1.9	4
1364	Insight into the Catalytic Role of Defect-Enriched Vanadium Sulfide for Regulating the Adsorption–Catalytic Conversion Behavior of Polysulfides in Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 35833-35843.	4.0	13
1365	High Performance Solidâ€State Lithiumâ€Sulfur Battery Enabled by Multiâ€Functional Cathode and Flexible Hybrid Solid Electrolyte. Small, 2022, 18, .	5.2	10
1366	Holistic Design Consideration of Metal–Organic Framework-Based Composite Membranes for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 34742-34749.	4.0	4
1367	A Universal Spinningâ€Coordinating Strategy to Construct Continuous Metal–Nitrogen–Carbon Heterointerface with Boosted Lithium Polysulfides Immobilization for 3Dâ€Printed Lïi£¿S Batteries. Advanced Science, 2022, 9, .	5.6	16
1368	Oxygen-Plasma-Treated Fe–N–C Catalysts with Dual Binding Sites for Enhanced Electrocatalytic Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Energy Letters, 2022, 7, 2646-2653.	8.8	28
1369	Designing Cathodes and Cathode Active Materials for Solidâ€6tate Batteries. Advanced Energy Materials, 2022, 12, .	10.2	72
1370	Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy. Nature Communications, 2022, 13, .	5.8	36
1371	The role of graphene in rechargeable lithium batteries: Synthesis, functionalisation, and perspectives. Nano Materials Science, 2022, , .	3.9	20

			_
#	ARTICLE	IF	CITATIONS
1372	Nickel-cobalt Cyclo-tetraphosphate decorated hollow carbon nanocages as effective polysulfide promoters for stable Lithium-Sulfur batteries. Chemical Engineering Journal, 2023, 451, 138677.	6.6	8
1373	Built-In Electric Field on the Mott–Schottky Heterointerface-Enabled Fast Kinetics Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 38651-38659.	4.0	10
1374	"Dual Mediator System―Enables Efficient and Persistent Regulation toward Sulfur Redox Conversion in Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 14262-14273.	7.3	13
1375	Low Concentration Electrolyte Enabling Cryogenic Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	37
1376	Macroscopic Architecture Design of Lithium Metal Electrodes: Impacts of Millimeter-Size Hollows on Economization, Cyclability, and Utilization. Journal of Electrochemical Energy Conversion and Storage, 2023, 20, .	1.1	3
1377	Ultrathin <scp>NiO</scp> / <scp>Ni₃S₂</scp> Heterostructure as Electrocatalyst for Accelerated Polysulfide Conversion in Lithium–Sulfur Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	6
1378	Modulating Bond Interactions and Interface Microenvironments between Polysulfide and Catalysts toward Advanced Metal–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	22
1379	Theoretical and Experimental Understanding of Metal Single-Atom Electrocatalysts for Accelerating the Electrochemical Reaction of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 38750-38757.	4.0	13
1380	Polyglycerol-functionalized microporous carbon/sulfur cathode for Li-S battery. Electrochimica Acta, 2022, 429, 141000.	2.6	6
1381	Oxygen heteroatom enhanced sulfur-rich polymers synthesized by inverse vulcanization for high-performance lithium-sulfur batteries. Journal of Power Sources, 2022, 545, 231921.	4.0	4
1382	An extraordinary Na-S battery enabled by a carbon nanosheet host loaded with Fe-accelerator and TiO2-inhibitor. Applied Surface Science, 2022, 604, 154496.	3.1	4
1383	Chlorine-rich lithium argyrodites enables superior performances for solid-state Li–Se batteries at wide temperature range. Rare Metals, 2022, 41, 4065-4074.	3.6	11
1384	Oxidation States Regulation of Cobalt Active Sites through Crystal Surface Engineering for Enhanced Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Science, 2022, 9, .	5.6	19
1385	Two-Dimensional metal-free compounds of BC4N and BC6N2 with boron atoms as highly efficient catalytic centers toward sulfur redox in lithium-sulfur batteries. Applied Surface Science, 2022, 606, 154773.	3.1	3
1386	Tandem Co–O dual sites on halloysite with promoted reaction kinetics for sulfur reduction. Journal of Energy Chemistry, 2022, 75, 486-493.	7.1	8
1387	Tailored ZnO-ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li-S batteries. Energy Storage Materials, 2022, 53, 404-414.	9.5	40
1388	CO2-derived free-standing carbon interlayer embedded with molecular catalysts for improving redox performance in Li-S batteries. Chemical Engineering Journal, 2023, 451, 138909.	6.6	14
1389	Research Progress on Producing Air/Water Stabilized Lithium Metal Anode. Hans Journal of Nanotechnology, 2022, 12, 176-184.	0.1	0

	C	ITATION REPORT	
#	Article	IF	CITATIONS
1390	A Perspective on Sulfur-Equivalent Cathode Materials for Lithium-Sulfur Batteries. , 0, 1, .		1
1391	Low-tortuous and dense single-particle-layer electrode for high-energy lithium-sulfur batteries. Energy and Environmental Science, 2022, 15, 3842-3853.	15.6	24
1392	Homonuclear Transition-Metal Dimers Embedded Monolayer C2n as Promising Anchoring and Electrocatalytic Materials for Lithium-Sulfur Battery: First-Principles Calculations. SSRN Electronic Journal, 0, , .	0.4	0
1393	Unveiling the Enhancement Essence on Li2s Deposition by the Polarized Topological Î'-Polyvinylidene Fluoride: More than Built-In Electric Field Effect. SSRN Electronic Journal, 0, , .	0.4	0
1394	A high-throughput screening permeability separator with high catalytic conversion kinetics for Li–S batteries. Journal of Materials Chemistry A, 2022, 10, 22080-22092.	5.2	20
1395	Taming polysulfides in sulfur-based batteries <i>via</i> electrolyte-soluble thiomolybdate additives. Journal of Materials Chemistry A, 2022, 10, 17572-17585.	5.2	3
1396	Scalable Areal Capacity of Sbsxcy+Z Micro-Thin-Film Cathodes for Lithium-Metal Polysulfide Batteries SSRN Electronic Journal, 0, , .	0.4	0
1397	A hierarchical VN/Co ₃ ZnC@NCNT composite as a multifunctional integrated host for lithium–sulfur batteries with enriched adsorption sites and accelerated conversion kinetics. Journal of Materials Chemistry A, 2022, 10, 20525-20534.	5.2	10
1398	Carbon-Based Nanomaterials for Metal-Sulfur/Selenium Batteries. Springer Series in Materials Science, 2022, , 227-247.	0.4	0
1399	Status and prospects of electrocatalysts for lithium-sulfur battery under lean electrolyte and high sulfur loading conditions. Chemical Engineering Journal, 2023, 452, 139344.	6.6	6
1400	Oxygen vacancies in open-hollow microcapsule enable accelerated kinetics for stable Li-S battery. Journal of Colloid and Interface Science, 2023, 629, 805-813.	5.0	2
1401	Inhibition of polysulfide shuttling in high-polarity electrolytes via liquid/quasi-solid interface in lithium-sulfur batteries. Science China Materials, 2023, 66, 505-512.	3.5	5
1402	Wide-Temperature-Range Li–S Batteries Enabled by Thiodimolybdate [Mo ₂ S ₁₂] ^{2–} as a Dual-Function Molecular Catalyst for Polysulfide Redox and Lithium Intercalation. ACS Nano, 2022, 16, 14569-14581.	7.3	18
1403	Effective dualâ€layer fabrication solution for the lateral axial failure of the electrode in lithiumâ€ion batteries. International Journal of Energy Research, 0, , .	2.2	2
1404	Metalâ€organic framework derived porous structures towards lithium rechargeable batteries. EcoMa 2023, 5, .	t, 6.8	33
1405	Sacrificial Template Method to Synthesize Atomically Dispersed Mn Atoms on S, N-Codoped Carbon Separator Modifier for Advanced Li–S Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 42123-42133.	as a , 4.0	8
1406	Carbonaceous-Material-Induced Gelation of Concentrated Electrolyte Solutions for Application in Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 45403-45413	3. 4.0	6
1407	Thermodynamics and Kinetics of the Cathode–Electrolyte Interface in All-Solid-State Li–S Batteri Journal of the American Chemical Society, 2022, 144, 18009-18022.	es. 6.6	24

#	Article	IF	CITATIONS
1408	Tuning the electrochemical activity of Li–Se batteries by redox mediator additives. Applied Physics Letters, 2022, 121, 133904.	1.5	4
1409	Sulfur Reduction Reaction in Lithium–Sulfur Batteries: Mechanisms, Catalysts, and Characterization. Advanced Energy Materials, 2022, 12, .	10.2	69
1410	Unraveling the Atomicâ€Level Manipulation Mechanism of Li ₂ S Redox Kinetics via Electronâ€Donor Doping for Designing Highâ€Volumetricâ€Energyâ€Density, Leanâ€Electrolyte Lithium–Sulfur Batteries. Advanced Science, 2022, 9, .	5.6	24
1411	Electrostatic self-assembly Mxene@biomass porous carbon with superior cycle stability for lithium-sulfur batteries. Materials Chemistry and Physics, 2023, 293, 126874.	2.0	1
1412	Rational design of three-dimensional MXene-based aerogel for high-performance lithium–sulfur batteries. Journal of Materials Science, 2022, 57, 18549-18560.	1.7	3
1413	High utilization lithium metal anode constructed by allocatable MXene foam container. Journal of Power Sources, 2022, 551, 232089.	4.0	2
1414	The Multiâ€Functional Effects of CuS as Modifier to Fabricate Efficient Interlayer for Liâ€S Batteries. Advanced Science, 2022, 9, .	5.6	29
1415	Unraveling the Catalystâ€Solvent Interactions in Leanâ€Electrolyte Sulfur Reduction Electrocatalysis for Liâ^'S Batteries. Angewandte Chemie, 0, , .	1.6	0
1416	Untangling Degradation Chemistries of Lithiumâ€Sulfur Batteries Through Interpretable Hybrid Machine Learning. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
1417	Untangling Degradation Chemistries of Lithiumâ€5ulfur Batteries Through Interpretable Hybrid Machine Learning. Angewandte Chemie, 2022, 134, .	1.6	9
1418	Improving Li Anode Reversibility in Li–S Batteries by ZnO Coated Separators Using Atomic Layer Deposition. Journal of the Electrochemical Society, 2022, 169, 110512.	1.3	2
1419	Binary Metal Single Atom Electrocatalysts with Synergistic Catalytic Activity toward Highâ€Rate and High Arealâ€Capacity Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	44
1420	Regulating <i>f</i> orbital of Tb electronic reservoir to activate stepwise and dualâ€directional sulfur conversion reaction. InformaÄnÃ-Materiály, 2023, 5, .	8.5	8
1421	Exploring the Superior Anchoring Performance of the Two-Dimensional Nanosheets B ₂ C ₄ P ₂ and B ₃ C ₂ P ₃ for Lithium–Sulfur Batteries. ACS Omega, 2022, 7, 38543-38549.	1.6	7
1422	Single-Atom Yttrium Engineering Janus Electrode for Rechargeable Na–S Batteries. Journal of the American Chemical Society, 2022, 144, 18995-19007.	6.6	68
1423	Unraveling the lithium iodide-mediated interfacial process in lithium-sulfur batteries: An in situ AFM study. , 2022, 1, 100036.		0
1424	Boosting Adsorption and Catalysis of Polysulfides by Multifunctional Separator for Lithium–Sulfur Batteries. ACS Energy Letters, 2022, 7, 4190-4197.	8.8	41
1425	Unraveling the Catalystâ€Solvent Interactions in Leanâ€Electrolyte Sulfur Reduction Electrocatalysis for Liâ~'S Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14

#	Article	IF	CITATIONS
1426	On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering. Nature Communications, 2022, 13, .	5.8	25
1427	CeO2-C nanorods obtained by high-temperature carbonization of Ce-MOF as separator coating for Li-S battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130443.	2.3	3
1428	Engineering vacancy-defect atomic Ni sites via biowaste valorisation for high-power kinetics in lithium-sulfur batteries. Energy Storage Materials, 2023, 54, 553-562.	9.5	12
1429	Fluoro-organosulfur catholytes to boost lithium primary battery energy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
1430	Homonuclear transition-metal dimers embedded monolayer C2N as promising anchoring and electrocatalytic materials for lithium-sulfur battery: First-principles calculations. Applied Surface Science, 2023, 610, 155507.	3.1	2
1431	Nitrogen-vacancy-regulated Mo2N quantum dots electrocatalyst enables fast polysulfides redox for high-energy-density lithium-sulfur batteries. Nano Energy, 2022, 104, 107922.	8.2	11
1432	Scalable areal capacity of SbSxCy+z micro-thin-film cathodes for lithium-metal polysulfide batteries. Electrochimica Acta, 2022, 435, 141410.	2.6	1
1433	Encapsulate lithium sulfide cathodes with carbon-doped MoS2 for fast kinetics in lithium-sulfur batteries, a theoretical study. Acta Materialia, 2023, 242, 118441.	3.8	7
1434	A hierarchical porous carbon aerogel embedded with small-sized TiO2 nanoparticles for high-performance Li–S batteries. Carbon, 2023, 202, 59-65.	5.4	17
1435	Controlling coordination environment and pore structure of Co/N-doped C host to enhance electrochemical performance of S cathode. Journal of Alloys and Compounds, 2023, 933, 167630.	2.8	1
1436	Unveiling the enhancement essence on Li2S deposition by the polarized topological β-polyvinylidene fluoride: Beyond built-in electric field effect. Chemical Engineering Journal, 2023, 453, 139752.	6.6	2
1437	Enhancing the reversibility of Li deposition/dissolution in sulfur batteries using high-concentration electrolytes to develop anode-less batteries with lithium sulfide cathode. Journal of Power Sources, 2023, 554, 232323.	4.0	5
1438	Highly-ordered arrangement of Co(OH)F filaments: Planting flower-like Co(OH)F in conductive membrane substrate accelerating Li+ transfer and redox reaction in Li–S batteries. Chemical Engineering Journal, 2023, 454, 140178.	6.6	5
1439	Pinned Electrode/Electrolyte Interphase and Its Formation Origin for Sulfurized Polyacrylonitrile Cathode in Stable Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 52046-52057.	4.0	4
1440	Ultrathin Fe–ReS ₂ Nanosheets as Electrocatalysts for Accelerating Sulfur Reduction in Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 50870-50879.	4.0	6
1441	Progress and perspectives of space charge limited current models in all-solid-state batteries. Journal of Materials Research, 2022, 37, 4017-4034.	1.2	7
1442	Phase Evolution of VCâ€VO Heterogeneous Particles to Facilitate Sulfur Species Conversion in Liâ^'S Batteries. Advanced Functional Materials, 2023, 33, .	7.8	30
1443	Core-shell hollow nanostructures as highly efficient polysulfide conversion and adsorption cathode for shuttle-free lithium-sulfur batteries. Chemical Engineering Journal, 2023, 454, 140338.	6.6	14

#	Article	IF	CITATIONS
1444	Hierarchically porous carbon derived from delignified biomass for high sulfur-loading room-temperature sodium-sulfur batteries. Renewable Energy, 2022, 201, 832-840.	4.3	9
1446	Rational design and low-cost fabrication of multifunctional separators enabling high sulfur utilization in long-life lithium-sulfur batteries. International Journal of Extreme Manufacturing, 2023, 5, 015501.	6.3	5
1447	Co-doped g-C ₃ N ₄ nanotube decorated separators mediate polysulfide redox for high performance lithium sulfur batteries. Nanoscale Advances, 2023, 5, 471-478.	2.2	2
1448	Molecular polysulfide-scavenging sulfurized–triazine polymer enable high energy density Li-S battery under lean electrolyte. Energy Storage Materials, 2023, 55, 225-235.	9.5	6
1449	Cation-doped V2O5 microsphere as a bidirectional catalyst to activate sulfur redox reactions for lithium-sulfur batteries. Chemical Engineering Journal, 2023, 456, 140948.	6.6	15
1450	A rational design of titanium-based heterostructures as electrocatalyst for boosted conversion kinetics of polysulfides in Li-S batteries. Journal of Colloid and Interface Science, 2023, 633, 432-440.	5.0	4
1451	Restraining Shuttle Effect in Rechargeable Batteries by Multifunctional Zeolite Coated Separator. Advanced Functional Materials, 2023, 33, .	7.8	10
1452	Flexible and Conductive Membrane with Ultrahigh Porosity and Polysulfide-Conversion Catalytic Activity for Large-Scale Preparation of Li–S Batteries. ACS Applied Energy Materials, 2023, 6, 342-352.	2.5	5
1453	A high-performance tellurium-sulfur cathode in carbonate-based electrolytes. Nano Energy, 2023, 107, 108141.	8.2	4
1454	Molybdenumâ€Based Catalytic Materials for Li–S Batteries: Strategies, Mechanisms, and Prospects. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	5
1455	Free-Standing Sulfur Cathodes Enabled by a Cationic Polymer for Lean Electrolyte Lithium–Sulfur Batteries. ACS Energy Letters, 2023, 8, 619-627.	8.8	8
1456	Progress and perspective on rechargeable magnesium-ion batteries. Science China Chemistry, 2024, 67, 214-246.	4.2	5
1457	High Loading Sulfur Cathodes by Reactiveâ€Type Polymer Tubes for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2023, 33, .	7.8	7
1458	Nonâ€ŧrivial Contribution of Carbon Hybridization in Carbonâ€based Substrates to Electrocatalytic Activities in Liâ€5 Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
1459	Customizing Component Regulated Dense Heterointerfaces for Crafting Robust Lithiumâ€ 5 ulfur Batteries. Advanced Functional Materials, 2023, 33, .	7.8	16
1460	Recent Advances in MXeneâ€Based Aerogels: Fabrication, Performance and Application. Advanced Functional Materials, 2023, 33, .	7.8	22
1461	High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. , 2023, 2, e9120049.		37
1462	Synergistic Construction of Efficient Heterostructure Electrocatalysis for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 15392-15400.	2.5	3

#	Article	IF	CITATIONS
1463	Unraveling Polysulfide's Adsorption and Electrocatalytic Conversion on Metal Oxides for Liâ \in S Batteries. Advanced Science, 2023, 10, .	5.6	29
1464	Nonâ€ŧrivial Contribution of Carbon Hybridization in Carbonâ€based Substrates to Electrocatalytic Activities in Liâ€5 Batteries. Angewandte Chemie, 0, , .	1.6	0
1465	Mesoporous Co ₃ O ₄ -Modified Gel Polymer Electrolyte Applied in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 15548-15558.	2.5	3
1466	Aqueous Zinc–Chalcogen Batteries: Emerging Conversion-Type Energy Storage Systems. Batteries, 2023, 9, 62.	2.1	5
1467	Longâ€lasting, reinforced electrical networking in a highâ€loading Li ₂ S cathode for highâ€performance lithium–sulfur batteries. , 2023, 5, .		5
1468	A Review of Transition Metal Compounds as Functional Separators for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2023, 8, .	0.7	5
1469	Electrocatalysts in lithium-sulfur batteries. Nano Research, 2023, 16, 4438-4467.	5.8	26
1470	High-performance all-solid-state Li ₂ S batteries using an interfacial redox mediator. Energy and Environmental Science, 2023, 16, 610-618.	15.6	24
1471	MOFs-derived advanced heterostructure electrodes for energy storage. Coordination Chemistry Reviews, 2023, 479, 214985.	9.5	19
1472	Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nature Energy, 2023, 8, 84-93.	19.8	131
1473	Bifunctional Edgeâ€Rich Nitrogen Doped Porous Carbon for Activating Oxygen and Sulfur. Advanced Functional Materials, 2023, 33, .	7.8	10
1474	Biâ€Metallic Couplingâ€Induced Electronicâ€State Modulation of Metal Phosphides for Kineticsâ€Enhanced and Dendriteâ€Free Li–S Batteries. Advanced Functional Materials, 2023, 33, .	7.8	17
1475	Revealing the Selective Bifunctional Electrocatalytic Sites via In Situ Irradiated Xâ€Ray Photoelectron Spectroscopy for Lithium–Sulfur Battery. Advanced Science, 2023, 10, .	5.6	19
1476	A Novel Layered WO ₃ Derived from An Ion Etching Engineering for Ultrafast Proton Storage in Frozen Electrolyte. Advanced Functional Materials, 2023, 33, .	7.8	9
1477	Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Materials, 2023, 56, 141-154.	9.5	11
1478	A carbon mixed selenium sulfide separator coating for lithiumâ€sulfur battery life enhancement. ChemElectroChem, 2023, 10, .	1.7	1
1479	Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nature Communications, 2023, 14, .	5.8	75
1480	MOFs Containing Solid tate Electrolytes for Batteries. Advanced Science, 2023, 10, .	5.6	22

#	Article	IF	CITATIONS
1481	Sulfurized Polyacrylonitrile Impregnated Delignified Wood-Based 3D Carbon Framework for High-Performance Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 2314-2323.	3.2	8
1482	Atomic cation-vacancy engineering of two-dimensional nanosheets for energy-related applications. Materials Chemistry Frontiers, 2023, 7, 1004-1024.	3.2	13
1483	Elucidating Concentration-Dependent Energy Limitations in Li Primary Battery Fluoro-organosulfur Catholytes. Journal of Physical Chemistry C, 2023, 127, 1722-1732.	1.5	1
1484	Covalent Organic Framework Based Lithium–Sulfur Batteries: Materials, Interfaces, and Solid tate Electrolytes. Advanced Energy Materials, 2023, 13, .	10.2	71
1485	Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chemical Society Reviews, 2023, 52, 1723-1772.	18.7	66
1486	Recent advances in modified commercial separators for lithium–sulfur batteries. Journal of Materials Chemistry A, 2023, 11, 7833-7866.	5.2	23
1487	Designing a Stable Solid Electrolyte Interphase on Lithium Metal Anodes by Tailoring a Mg Atom Center and the Inner Helmholtz Plane for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2023, 15, 17893-17903.	4.0	5
1488	Rational design of the cathode catalysts for high performance lithium–sulfur batteries. Chemical Physics Reviews, 2023, 4, .	2.6	1
1489	Tuning of electrolyte solvation structure for low-temperature operation of lithium–sulfur batteries. Energy Storage Materials, 2023, 59, 102763.	9.5	5
1490	Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries. Journal of Energy Chemistry, 2023, 80, 501-534.	7.1	17
1491	CoO embedded porous biomass-derived carbon as dual-functional host material for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2023, 640, 415-422.	5.0	9
1492	Ion diffusion, and hysteresis of magnesium hydride conversion electrode materials. Journal of Materials Science and Technology, 2023, 155, 47-53.	5.6	2
1493	Enhanced rate capability of S@Co3O4 microsphere wrapped by rGO for cathodes of lithium-sulfur batteries. Materials Letters, 2023, 336, 133902.	1.3	4
1494	Reinforced Hydrophobic Molecular Layer Promoting Waterproof Lithium for High-Performance Lithium-Metal Batteries. Key Engineering Materials, 0, 939, 117-122.	0.4	0
1495	Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis. Nature Catalysis, 2023, 6, 174-184.	16.1	47
1496	Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. Energy Storage Materials, 2023, 56, 642-663.	9.5	21
1497	Interface Engineering Toward Expedited Li ₂ S Deposition in Lithium–Sulfur Batteries: A Critical Review. Advanced Materials, 2023, 35, .	11.1	29
1498	Evaluation of Cathode Electrodes in Lithiumâ€lon Battery: Pitfalls and the Befitting Counter Electrode. Small, 2023, 19, .	5.2	3

#	Article	IF	CITATIONS
1499	Advanced twoâ€dimensional materials toward polysulfides regulation of metal–sulfur batteries. SmartMat, 2023, 4, .	6.4	6
1500	Rough Endoplasmic Reticulum Inspired Polystyreneâ€Brushâ€Based Superhigh Sulfur Content Cathodes Enable Lithium–Sulfur Cells with High Mass and Capacity Loading. Advanced Materials, 2023, 35, .	11.1	10
1501	Multifunctional Mesoporous Carbonaceous Materials Enable the High Performance of Lithium–Sulfur Batteries. Langmuir, 2023, 39, 3173-3178.	1.6	2
1502	Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Materials, 2023, 57, 429-459.	9.5	11
1503	Fluorinated Multi-Walled Carbon Nanotubes Coated Separator Mitigates Polysulfide Shuttle in Lithium-Sulfur Batteries. Materials, 2023, 16, 1804.	1.3	1
1504	Nitrogen doped hollow porous carbon fibers derived from polyacrylonitrile for Li-S batteries. New Carbon Materials, 2023, 38, 143-151.	2.9	0
1505	Bottom-up synthesis of 2D heterostructures enables effective polysulfides inhibition and conversion. Nano Research, 2023, 16, 8488-8496.	5.8	2
1506	Surfaceâ€Dependent Electrocatalytic Activity of CoSe ₂ for Lithium Sulfur Battery. Advanced Materials Interfaces, 2023, 10, .	1.9	2
1507	In Situ Transformation of LDH into NiCo ₂ S ₄ -NiS ₂ Nano-heterostructures on Hollow Carbon Boxes to Promote Sulfur Electrochemistry for High-Performance Lithium–Sulfur Batteries. Energy & Fuels, 2023, 37, 4711-4719.	2.5	1
1508	A critical review on the properties and energy storage applications of graphene oxide/layered double hydroxides and graphene oxide/MXenes. Journal of Power Sources, 2023, 564, 232870.	4.0	16
1509	Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries. Nano Research, 2023, 16, 9335-9343.	5.8	11
1510	Understanding Electrochemical Reaction Mechanisms of Sulfur in All olid‣tate Batteries through Operando and Theoretical Studies**. Angewandte Chemie, 0, , .	1.6	1
1511	Understanding Electrochemical Reaction Mechanisms of Sulfur in Allâ€Solidâ€State Batteries through Operando and Theoretical Studies **. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
1512	A theoretical study of the NbS ₂ monolayer as a promising anchoring material for lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2023, 25, 10097-10102.	1.3	4
1513	Manipulating Li ₂ S Redox Kinetics and Lithium Dendrites by Core–Shell Catalysts under High Sulfur Loading and Leanâ€Electrolyte Conditions. Advanced Science, 2023, 10, .	5.6	7
1514	Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Research, 2023, 16, 8191-8218.	5.8	6
1515	Dualâ€Functional V ₂ C MXene Assembly in Facilitating Sulfur Evolution Kinetics and Liâ€lon Sieving toward Practical Lithium–Sulfur Batteries. Advanced Materials, 2023, 35, .	11.1	37
1516	Defect-Rich W/Mo-Doped V ₂ O ₅ Microspheres as a Catalytic Host To Boost Sulfur Redox Kinetics for Lithium–Sulfur Batteries. Inorganic Chemistry, 2023, 62, 5219-5228	1.9	9

#	Article	IF	CITATIONS
1517	Electrospun Cellulose Nanofiber Membranes as Multifunctional Separators for High Energy and Stable Lithium-Sulfur Batteries. International Journal of Energy Research, 2023, 2023, 1-17.	2.2	0
1518	Identification and Catalysis of the Potential-Limiting Step in Lithium-Sulfur Batteries. Journal of the American Chemical Society, 2023, 145, 7390-7396.	6.6	28
1519	Selfâ€Assembled Macrocyclic Copper Complex Enables Homogeneous Catalysis for High‣oading Lithium–Sulfur Batteries. Advanced Materials, 2023, 35, .	11.1	7
1520	Porous Hybrid Electrode Materials for High Energy Density Li-Ion and Li-S Batteries. , 2023, , 193-214.		0
1521	Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium-sulfur batteries with enhanced kinetics and cyclability. Journal of Colloid and Interface Science, 2023, 644, 546-555.	5.0	9
1522	Evaluation of Glyoxal-Based Electrolytes for Lithium-Sulfur Batteries. Batteries, 2023, 9, 210.	2.1	2
1523	Developing highly solvating electrolyte solutions for lithium–sulfur batteries. Current Opinion in Electrochemistry, 2023, 39, 101285.	2.5	1
1525	The Rise and Development of MOFâ€Based Materials for Metalâ€Chalcogen Batteries: Current Status, Challenges, and Prospects. Advanced Energy Materials, 2023, 13, .	10.2	6
1526	Watermelon Fleshâ€Like Ni ₃ S ₂ @C Composite Separator with Polysulfide Shuttle Inhibition for Highâ€Performance Lithiumâ€Sulfur Batteries. Small, 2023, 19, .	5.2	3
1527	High-Performance Quasi-Solid-State Lithium-Sulfur Battery with a Controllably Solidified Cathode–Electrolyte Interface. ACS Applied Materials & Interfaces, 2023, 15, 19066-19074.	4.0	5
1528	Tubular NiCo2S4 hierarchical architectures as sulfur hosts for advanced rechargeable lithium sulfur batteries. International Journal of Electrochemical Science, 2023, 18, 100159.	0.5	6
1529	Structural Transformation in a Sulfurized Polymer Cathode to Enable Long-Life Rechargeable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2023, 145, 9624-9633.	6.6	25
1532	Atomically Dispersed Fe–N ₄ and Ni–N ₄ Independent Sites Enable Bidirectional Sulfur Redox Electrocatalysis. Nano Letters, 2023, 23, 4000-4007.	4.5	18
1539	Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Research, 2023, 16, 9158-9178.	5.8	14
1543	Advances in modification methods and the future prospects of high-voltage spinel LiNi _{0.5} Mn _{1.5} O ₄ — a review. Journal of Materials Chemistry A, 2023, 11, 13889-13915.	5.2	6
1566	An outlook on Lithium sulfur batteries and role of doped Lithium sulfur batteries in oxygen reduction reaction. AIP Conference Proceedings, 2023, , .	0.3	0
1576	Bidirectional catalysis of CoO.4Ni1.6P for Li2S1–2 deposition/decomposition reactions in Li-S batteries. Science China Chemistry, 2023, 66, 2267-2273.	4.2	3
1600	A dual-mediator for a sulfur cathode approaching theoretical capacity with low overpotential in aqueous Zn–S batteries. Energy and Environmental Science, 2023, 16, 4326-4333.	15.6	6

	Сітат	ION REPORT	Report		
#	Article	IF	CITATIONS		
1603	Single-atom site catalysis in Li–S batteries. Physical Chemistry Chemical Physics, 2023, 25, 25942-2596	0. 1.3	1		
1617	Metal–iodine batteries: achievements, challenges, and future. Energy and Environmental Science, 2023 16, 4872-4925.	° 15.6	7		
1620	Review and perspectives on carbon-based electrocatalysts for the production of H ₂ O ₂ <i>via</i> two-electron oxygen reduction. Green Chemistry, 2023, 25, 9501-9542.	4.6	3		
1631	Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries. Nano-Micro Letters, 2024, 16, .	14.4	7		
1663	A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries. Nano-Micro Letters, 2024, 16, .	14.4	1		
1683	Recent advances in electrolyte molecular design for alkali metal batteries. Chemical Science, 2024, 15, 4238-4274.	3.7	0		
1685	Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review. Nano Research, 2024, 17, 2592-2618.	5.8	0		
1691	Overview of Highly Solvating Electrolytes for Lean Electrolyte Conditions in Lithium–Sulfur Batteries. Korean Journal of Chemical Engineering, 2024, 41, 375-383.	1.2	0		