A high-capacity and long-life aqueous rechargeable zind intercalation cathode

Nature Energy

1,

DOI: 10.1038/nenergy.2016.119

Citation Report

#	Article	IF	CITATIONS
1	Nanostructured positive electrode materials for post-lithium ion batteries. Energy and Environmental Science, 2016, 9, 3570-3611.	15.6	241
2	Nano on reflection. Nature Nanotechnology, 2016, 11, 828-834.	15.6	30
3	Layered VS ₂ Nanosheetâ€Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 2017, 7, 1601920.	10.2	961
4	Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochimica Acta, 2017, 229, 422-428.	2.6	329
5	Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chemical Reviews, 2017, 117, 4287-4341.	23.0	914
6	Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chemistry of Materials, 2017, 29, 1684-1694.	3.2	479
7	Bio-degradable zinc-ion battery based on a prussian blue analogue cathode and a bio-ionic liquid-based electrolyte. Journal of Solid State Electrochemistry, 2017, 21, 2021-2027.	1.2	105
8	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie - International Edition, 2017, 56, 7871-7875.	7.2	141
9	Peapodâ€like Li ₃ VO ₄ /Nâ€Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for Highâ€Energy Lithiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1700142.	11.1	298
10	Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage. Chemistry of Materials, 2017, 29, 4819-4832.	3.2	120
11	One-step synthesis of porous copper oxide for electrochemical sensing of acetylsalicylic acid in the real sample. Journal of Colloid and Interface Science, 2017, 501, 350-356.	5.0	17
12	Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nature Materials, 2017, 16, 841-848.	13.3	615
13	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie, 2017, 129, 7979-7983.	1.6	59
14	High-performance flexible quasi-solid-state Zn–MnO ₂ battery based on MnO ₂ nanorod arrays coated 3D porous nitrogen-doped carbon cloth. Journal of Materials Chemistry A, 2017, 5, 14838-14846.	5.2	273
15	An Exceptionally Facile Synthesis of Highly Efficient Oxygen Evolution Electrodes for Zincâ€Oxygen Batteries. ChemElectroChem, 2017, 4, 2190-2195.	1.7	15
16	Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chemical Communications, 2017, 53, 6872-6874.	2.2	147
17	Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides. RSC Advances, 2017, 7, 18643-18649.	1.7	66
18	Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc ion batteries. Journal of Materials Chemistry A, 2017, 5, 23628-23633	5.2	199

#	Article	IF	CITATIONS
19	Kinetic enhancement via passive deposition of carbon-based nanomaterials in vanadium redox flow batteries. Journal of Power Sources, 2017, 366, 241-248.	4.0	36
20	High-Voltage Aqueous Magnesium Ion Batteries. ACS Central Science, 2017, 3, 1121-1128.	5.3	256
21	Controlling Solid–Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc–lodine Battery. ACS Energy Letters, 2017, 2, 2674-2680.	8.8	207
22	Advances in Structure and Property Optimizations of Battery Electrode Materials. Joule, 2017, 1, 522-547.	11.7	219
23	2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage. Joule, 2017, 1, 443-452.	11.7	104
24	ZnAl _{<i>x</i>} Co _{2–<i>x</i>} O ₄ Spinels as Cathode Materials for Non-Aqueous Zn Batteries with an Open Circuit Voltage of ≪ V. Chemistry of Materials, 2017, 29, 9351-9359.	3.2	83
25	Rational Development of Neutral Aqueous Electrolytes for Zinc–Air Batteries. ChemSusChem, 2017, 10, 4735-4747.	3.6	77
26	Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature Communications, 2017, 8, 405.	5.8	1,224
27	Alkaline earth metal vanadates as sodium-ion battery anodes. Nature Communications, 2017, 8, 460.	5.8	136
28	Chevrel Phase Mo ₆ T ₈ (T = S, Se) as Electrodes for Advanced Energy Storage. Small, 2017, 13, 1701441.	5.2	61
29	Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn ₂ O ₄ as the cathode material. Journal of Materials Chemistry A, 2017, 5, 17990-17997.	5.2	263
30	Nanocrystalâ€Assembled Porous Na ₃ MgTi(PO ₄) ₃ Aggregates as Highly Stable Anode for Aqueous Sodiumâ€ion Batteries. Chemistry - A European Journal, 2017, 23, 12944-12948.	1.7	55
31	Ab initio study of Li, Mg and Al insertion into rutile VO ₂ : fast diffusion and enhanced voltages for multivalent batteries. Physical Chemistry Chemical Physics, 2017, 19, 22538-22545.	1.3	38
32	Highâ€Performance Aqueous Zinc–lon Battery Based on Layered H ₂ V ₃ O ₈ Nanowire Cathode. Small, 2017, 13, 1702551.	5.2	455
33	Zn/V ₂ O ₅ Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. ACS Applied Materials & Interfaces, 2017, 9, 42717-42722.	4.0	401
34	Magnetic Field Improving Interfacial Behavior of the Two-Electrode System. Journal of the Electrochemical Society, 2017, 164, A3440-A3444.	1.3	22
35	Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale, 2017, 9, 18216-18222.	2.8	150
36	Rapid electrochemical synthesis of δ-MnO2 from γ-MnO2 and unleashing its performance as an energy dense electrode. Materials Today Energy, 2017, 6, 198-210.	2.5	30

#	Article	IF	CITATIONS
37	Dual-ions electrochemical deionization: a desalination generator. Energy and Environmental Science, 2017, 10, 2081-2089.	15.6	259
38	Zn/MnO ₂ Battery Chemistry With H ⁺ and Zn ²⁺ Coinsertion. Journal of the American Chemical Society, 2017, 139, 9775-9778.	6.6	1,375
39	High magnesium mobility in ternary spinel chalcogenides. Nature Communications, 2017, 8, 1759.	5.8	212
40	Superlattice Formation of Crystal Water in Layered Double Hydroxides for Longâ€Term and Fast Operation of Aqueous Rechargeable Batteries. Advanced Energy Materials, 2018, 8, 1703572.	10.2	17
41	Fast Li ⁺ diffusion in interlayer-expanded vanadium disulfide nanosheets for Li ⁺ /Mg ²⁺ hybrid-ion batteries. Journal of Materials Chemistry A, 2018, 6, 5782-5788.	5.2	40
42	High-capacity aqueous zinc batteries using sustainable quinone electrodes. Science Advances, 2018, 4, eaao1761.	4.7	716
43	Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nature Communications, 2018, 9, 1656.	5.8	1,162
44	Binder-free stainless steel@Mn ₃ O ₄ nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. Journal of Materials Chemistry A, 2018, 6, 9677-9683.	5.2	269
45	Highly reversible zinc metal anode for aqueous batteries. Nature Materials, 2018, 17, 543-549.	13.3	2,080
46	Investigation of V ₂ O ₅ as a low-cost rechargeable aqueous zinc ion battery cathode. Chemical Communications, 2018, 54, 4457-4460.	2.2	330
47	In Situ Activation of 3D Porous Bi/Carbon Architectures: Toward Highâ€Energy and Stable Nickel–Bismuth Batteries. Advanced Materials, 2018, 30, e1707290.	11.1	139
48	Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries. Electrochimica Acta, 2018, 272, 154-160.	2.6	113
49	An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. Journal of Materials Chemistry A, 2018, 6, 8006-8012.	5.2	202
50	A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. Journal of Materials Chemistry A, 2018, 6, 8549-8557.	5.2	138
51	Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries. Advanced Materials, 2018, 30, e1705851.	11.1	64
52	Highly Stable Aqueous Zincâ€ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Angewandte Chemie, 2018, 130, 4007-4012.	1.6	108
53	Aqueous <i>vs.</i> nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy and Environmental Science, 2018, 11, 881-892.	15.6	604
54	Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Materials, 2018, 13, 168-174.	9.5	271

CITATION	REDODT
CHAILON	REPORT

#	Article	IF	CITATIONS
55	Highly Durable Na ₂ V ₆ 0 ₁₆ ·1.63H ₂ O Nanowire Cathode for Aqueous Zinc-Ion Battery. Nano Letters, 2018, 18, 1758-1763.	4.5	568
56	Chemically Preintercalated Bilayered K _{<i>x</i>/i>} V ₂ O ₅ · <i>n</i> H ₂ O Nanobelts as a High-Performing Cathode Material for K-Ion Batteries. ACS Energy Letters, 2018, 3, 562-567.	8.8	104
57	Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn ₂ V ₂ O ₇ nanowire cathode through intercalation regulation. Journal of Materials Chemistry A, 2018, 6, 3850-3856.	5.2	293
58	Strategic combination of Grignard reagents and allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2018, 6, 3126-3133.	5.2	18
59	Graphene Scrollâ€Coated αâ€MnO ₂ Nanowires as Highâ€Performance Cathode Materials for Aqueous Znâ€Ion Battery. Small, 2018, 14, e1703850.	5.2	563
60	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
61	Highly Stable Aqueous Zincâ€ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Angewandte Chemie - International Edition, 2018, 57, 3943-3948.	7.2	742
62	High performance, environmentally benign and integratable Zn//MnO ₂ microbatteries. Journal of Materials Chemistry A, 2018, 6, 3933-3940.	5.2	53
63	A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Materials, 2018, 13, 1-7.	9.5	421
64	Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for Highâ€Performance Zincâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702463.	10.2	650
65	Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy and Environmental Science, 2018, 11, 2414-2422.	15.6	97
66	Rechargeable aqueous zinc–iodine batteries: pore confining mechanism and flexible device application. Chemical Communications, 2018, 54, 6792-6795.	2.2	116
67	Synthesis of manganese-based complex as cathode material for aqueous rechargeable batteries. RSC Advances, 2018, 8, 15703-15708.	1.7	14
68	High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. Inorganic Chemistry Frontiers, 2018, 5, 1391-1396.	3.0	173
69	H ₂ V ₃ O ₈ Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity. Advanced Energy Materials, 2018, 8, 1800144.	10.2	427
70	Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chemical Communications, 2018, 54, 4041-4044.	2.2	167
71	Na ₂ V ₆ O ₁₆ ·3H ₂ O Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-Ion Batteries as Cathodes. Nano Letters, 2018, 18, 2402-2410.	4.5	461
72	A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Materials, 2018, 15, 14-21.	9.5	402

	CHATION R	LPORT	
#	Article	IF	CITATIONS
73	Progress in aqueous rechargeable batteries. Green Energy and Environment, 2018, 3, 20-41.	4.7	255
74	Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Materials, 2018, 11, 205-259.	9.5	221
75	Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochimica Acta, 2018, 259, 170-178.	2.6	269
76	Rechargeable Aqueous Zincâ€lon Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Advanced Materials, 2018, 30, 1705580.	11.1	738
77	Nickelâ€Substituted Copper Hexacyanoferrate as a Superior Cathode for Aqueous Sodiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 350-354.	1.7	32
78	Bifunctional electrocatalysts for Zn–air batteries. Sustainable Energy and Fuels, 2018, 2, 39-67.	2.5	179
79	Water‣ubricated Intercalation in V ₂ O ₅ ·nH ₂ O for Highâ€Capacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	11.1	1,084
80	A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite. Journal of Solid State Electrochemistry, 2018, 22, 91-101.	1.2	75
81	Reducing the Cost of Zinc–Oxygen Batteries by Oxygen Recycling. Energy Technology, 2018, 6, 246-250.	1.8	3
82	A high-capacity and long-life aqueous rechargeable zinc battery using a porous metal–organic coordination polymer nanosheet cathode. Inorganic Chemistry Frontiers, 2018, 5, 3067-3073.	3.0	27
83	A ZnCl ₂ water-in-salt electrolyte for a reversible Zn metal anode. Chemical Communications, 2018, 54, 14097-14099.	2.2	491
84	Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH ₄) ₂ V ₁₀ 25·8H ₂ O nanobelts. Journal of Materials Chemistry A, 2018, 6, 20402-20410.	5.2	201
85	A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries. Journal of Materials Chemistry A, 2018, 6, 21933-21940.	5.2	61
86	A high-rate aqueous rechargeable zinc ion battery based on the VS ₄ @rGO nanocomposite. Journal of Materials Chemistry A, 2018, 6, 23757-23765.	5.2	196
87	Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. Journal of Materials Chemistry A, 2018, 6, 23046-23054.	5.2	127
88	A rechargeable aqueous Zn ²⁺ -battery with high power density and a long cycle-life. Energy and Environmental Science, 2018, 11, 3168-3175.	15.6	258
89	Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn–MnO ₂ Battery and a Flexible Battery–Sensor System. ACS Applied Materials & Interfaces, 2018, 10, 44527-44534.	4.0	105
90	Layered Mg <i>_{<i>x</i>}</i> V ₂ O ₅ · <i>n</i> H ₂ O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries. ACS Energy Letters, 2018, 3, 2602-2609.	8.8	581

#	Article	IF	CITATIONS
91	Solid‣tate Rechargeable Zn//NiCo and Zn–Air Batteries with Ultralong Lifetime and High Capacity: The Role of a Sodium Polyacrylate Hydrogel Electrolyte. Advanced Energy Materials, 2018, 8, 1802288.	10.2	253
92	Inhibition of Zinc Dendrite Growth in Zincâ€Based Batteries. ChemSusChem, 2018, 11, 3996-4006.	3.6	291
93	Direct catalytic co-conversion of cellulose and methane to renewable petrochemicals. Catalysis Science and Technology, 2018, 8, 5632-5645.	2.1	16
94	Self-Healing Lamellar Structure Boosts Highly Stable Zinc-Storage Property of Bilayered Vanadium Oxides. ACS Applied Materials & Interfaces, 2018, 10, 35079-35089.	4.0	169
95	Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2620-2640.	8.8	676
96	Investigating the Impact of Particle Size on the Performance and Internal Resistance of Aqueous Zinc Ion Batteries with a Manganese Sesquioxide Cathode. Batteries, 2018, 4, 44.	2.1	8
97	Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. Advanced Functional Materials, 2018, 28, 1804560.	7.8	433
98	A Longâ€Cycleâ€Life Selfâ€Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2018, 57, 16359-16363.	7.2	346
99	Fast Naâ€lon Intercalation in Zinc Vanadate for Highâ€Performance Naâ€lon Hybrid Capacitor. Advanced Energy Materials, 2018, 8, 1802800.	10.2	72
100	Dendrite Suppression Membranes for Rechargeable Zinc Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38928-38935.	4.0	189
101	A Longâ€Cycleâ€Life Selfâ€Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2018, 130, 16597-16601.	1.6	107
102	Green Synthesis of Vanadate Nanobelts at Room Temperature for Superior Aqueous Rechargeable Zinc-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6401-6408.	2.5	67
103	Transformed Akhtenskite MnO ₂ from Mn ₃ O ₄ as Cathode for a Rechargeable Aqueous Zinc Ion Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 16055-16063.	3.2	106
104	Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Science Advances, 2018, 4, eaau6261.	4.7	164
105	Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy, 2018, 53, 666-674.	8.2	112
106	Water-Activated VOPO ₄ for Magnesium Ion Batteries. Nano Letters, 2018, 18, 6441-6448.	4.5	127
107	Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2480-2501.	8.8	1,553
108	An Aqueous Rechargeable Zincâ€Organic Battery with Hybrid Mechanism. Advanced Functional Materials, 2018, 28, 1804975.	7.8	462

	CITATION RE	PORT	
#	Article	IF	CITATIONS
109	Open-Structured Vanadium Dioxide as an Intercalation Host for Zn Ions: Investigation by First-Principles Calculation and Experiments. Chemistry of Materials, 2018, 30, 6777-6787.	3.2	111
110	Li ⁺ intercalated V ₂ O ₅ · <i>n</i> H ₂ O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy and Environmental Science, 2018, 11, 3157-3162.	15.6	785
111	Carbon oated Na _{2.2} V _{1.2} Ti _{0.8} (PO ₄) ₃ Cathode with Excellent Cycling Performance for Aqueous Sodiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 2482-2487.	1.7	33
112	ZnNi <i>_{x}</i> Mn <i>_{x}</i> Co _{2–2} <i>_{x}Spinel as a Highâ€Voltage and High apacity Cathode Material for Nonaqueous Znâ€fon Batteries. Advanced Energy Materials, 2018, 8, 1800589.</i>	ıb>O< 10.2	sub>4105
113	Rechargeable Aqueous Zn–V ₂ O ₅ Battery with High Energy Density and Long Cycle Life. ACS Energy Letters, 2018, 3, 1366-1372.	8.8	766
114	Aqueous intercalation-type electrode materials for grid-level energy storage: Beyond the limits of lithium and sodium. Nano Energy, 2018, 50, 229-244.	8.2	108
115	Rejuvenating zinc batteries. Nature Materials, 2018, 17, 480-481.	13.3	88
116	Amide-based molten electrolyte with hybrid active ions for rechargeable Zn batteries. Electrochimica Acta, 2018, 280, 108-113.	2.6	36
117	Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 12259-12266.	5.2	26
118	Ultrafast Zn ²⁺ Intercalation and Deintercalation in Vanadium Dioxide. Advanced Materials, 2018, 30, e1800762.	11.1	485
119	<i>Operando</i> Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition. ACS Nano, 2018, 12, 6032-6039.	7.3	50
120	A Highâ€Rate and Stable Quasiâ€Solidâ€State Zincâ€Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018, 30, e1803181.	11.1	571
121	High-Performance Cable-Type Flexible Rechargeable Zn Battery Based on MnO ₂ @CNT Fiber Microelectrode. ACS Applied Materials & Interfaces, 2018, 10, 24573-24582.	4.0	174
122	How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface. Angewandte Chemie - International Edition, 2018, 57, 11978-11981.	7.2	123
123	Zinc ferrum energy storage chemistries with high efficiency and long cycling life. Journal of Materials Chemistry A, 2018, 6, 15821-15827.	5.2	7
124	Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 2018, 9, 2906.	5.8	1,036
125	How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface. Angewandte Chemie, 2018, 130, 12154-12157.	1.6	17
126	Highâ€Performance Reversible Aqueous Znâ€ŀon Battery Based on Porous MnO <i>_x</i> Nanorods Coated by MOFâ€Derived Nâ€Doped Carbon. Advanced Energy Materials, 2018, 8, 1801445.	10.2	430

#	Δρτιςι ε	IF	CITATIONS
π	Potassium vanadates with stable structure and fast ion diffusion channel as cathode for		495
127	rechargeable aqueous zinc-ion batteries. Nano Energy, 2018, 51, 579-587.	8.2	425
128	Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 25446-25453.	4.0	269
129	A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO2 Batteries. Nanomaterials, 2018, 8, 301.	1.9	53
130	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie, 2018, 130, 11911-11915.	1.6	151
131	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie - International Edition, 2018, 57, 11737-11741.	7.2	425
132	Aqueous Magnesium Zinc Hybrid Battery: An Advanced High-Voltage and High-Energy MgMn ₂ O ₄ Cathode. ACS Energy Letters, 2018, 3, 1998-2004.	8.8	159
133	K ₂ V ₆ O ₁₆ ·2.7H ₂ O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2018, 6, 15530-15539.	5.2	201
134	Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling. Chemistry of Materials, 2018, 30, 3874-3881.	3.2	373
135	<i>In situ</i> growth of (NH ₄) ₂ V ₁₀ O ₂₅ ·8H ₂ O urchin-like hierarchical arrays as superior electrodes for all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 16308-16315.	5.2	38
136	High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochimica Acta, 2018, 287, 60-67.	2.6	128
137	Recent Advances in Znâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1802564.	7.8	1,595
138	Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced Materials Interfaces, 2018, 5, 1800848.	1.9	476
139	Mechanistic Insights of Zn ²⁺ Storage in Sodium Vanadates. Advanced Energy Materials, 2018, 8, 1801819.	10.2	225
140	Inâ€Situ Growth of a Featherâ€like MnO ₂ Nanostructure on Carbon Paper for Highâ€Performance Rechargeable Sodiumâ€lon Batteries. ChemElectroChem, 2018, 5, 3266-3272.	1.7	16
141	An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12237-12243.	5.2	169
142	Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities. Electrochemical Energy Reviews, 2018, 1, 169-199.	13.1	142
143	A Novel Graphite–Graphite Dual Ion Battery Using an AlCl ₃ –[EMIm]Cl Liquid Electrolyte. Small, 2018, 14, e1800745.	5.2	73
144	Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 22059-22066.	4.0	226

#	Article	IF	CITATIONS
145	Emerging Nonaqueous Aluminumâ€ion Batteries: Challenges, Status, and Perspectives. Advanced Materials, 2018, 30, e1706310.	11.1	301
146	Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale, 2018, 10, 13083-13091.	2.8	101
147	Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Materials, 2019, 17, 143-150.	9.5	380
148	Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Materials, 2019, 18, 10-14.	9.5	165
149	A rechargeable Zn/graphite dual-ion battery with an ionic liquid-based electrolyte. Ionics, 2019, 25, 1303-1313.	1.2	48
150	Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6490-6496.	2.5	247
151	K ⁺ intercalated V ₂ O ₅ nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20335-20347.	5.2	116
152	On the unsuspected role of multivalent metal ions on the charge storage of a metal oxide electrode in mild aqueous electrolytes. Chemical Science, 2019, 10, 8752-8763.	3.7	42
153	Recent Progress in the Electrolytes of Aqueous Zincâ€lon Batteries. Chemistry - A European Journal, 2019, 25, 14480-14494.	1.7	312
154	Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nanowetting Effect. ACS Applied Materials & Interfaces, 2019, 11, 32046-32051.	4.0	223
155	Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry. Journal of Materials Chemistry A, 2019, 7, 20519-20539.	5.2	155
156	A Superior Î-MnO ₂ Cathode and a Self-Healing Zn-Î-MnO ₂ Battery. ACS Nano, 2019, 13, 10643-10652.	7.3	535
157	MXeneâ€Reduced Graphene Oxide Aerogel for Aqueous Zincâ€ion Hybrid Supercapacitor with Ultralong Cycle Life. Advanced Electronic Materials, 2019, 5, 1900537.	2.6	259
158	Ultrafast Rechargeable Zinc Battery Based on High-Voltage Graphite Cathode and Stable Nonaqueous Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 32978-32986.	4.0	75
159	Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chemical Science, 2019, 10, 8889-8894.	3.7	220
160	Structure Rearrangement and V(IV) Doping for V ₂ O ₅ as Ultralong-Life and Ultrahigh-Rate Cathode in Aqueous Zinc-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2805-A2813.	1.3	15
161	K ⁺ pre-intercalated manganese dioxide with enhanced Zn ²⁺ diffusion for high rate and durable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20806-20812.	5.2	145
162	A Universal Principle to Design Reversible Aqueous Batteries Based on Deposition–Dissolution Mechanism. Advanced Energy Materials, 2019, 9, 1901838.	10.2	151

#	Article	IF	CITATIONS
163	Water Contributes to Higher Energy Density and Cycling Stability of Prussian Blue Analogue Cathodes for Aqueous Sodium-Ion Batteries. Chemistry of Materials, 2019, 31, 5933-5942.	3.2	66
164	Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochimica Acta, 2019, 320, 134565.	2.6	143
165	Intercalation chemistry of graphite: alkali metal ions and beyond. Chemical Society Reviews, 2019, 48, 4655-4687.	18.7	534
166	A Flexible Quasiâ€Solidâ€State Bifunctional Device with Zincâ€Ion Microbattery and Photodetector. ChemElectroChem, 2019, 6, 3933-3939.	1.7	32
167	A Fourâ€Electron Sulfur Electrode Hosting a Cu ²⁺ /Cu ⁺ Redox Charge Carrier. Angewandte Chemie, 2019, 131, 12770-12775.	1.6	18
168	A Fourâ€Electron Sulfur Electrode Hosting a Cu ²⁺ /Cu ⁺ Redox Charge Carrier. Angewandte Chemie - International Edition, 2019, 58, 12640-12645.	7.2	77
169	Chemo-mechanical degradation in V ₂ O ₅ thin film cathodes of Li-ion batteries during electrochemical cycling. Journal of Materials Chemistry A, 2019, 7, 23922-23930.	5.2	24
170	Silver vanadium oxide@water-pillared vanadium oxide coaxial nanocables for superior zinc ion storage properties. Inorganic Chemistry Frontiers, 2019, 6, 2339-2348.	3.0	18
171	An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Materials Today Energy, 2019, 13, 323-330.	2.5	73
172	V-MOF derived porous V2O5 nanoplates for high performance aqueous zinc ion battery. Applied Surface Science, 2019, 493, 368-374.	3.1	94
173	A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long ycleâ€Life Batteries. Advanced Materials, 2019, 31, e1900668.	11.1	259
174	A Low-Cost Zn-Based Aqueous Supercapacitor with High Energy Density. ACS Applied Energy Materials, 2019, 2, 5835-5842.	2.5	80
175	Self-sacrificed synthesis of conductive vanadium-based Metal–Organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-Ion batteries. Nano Energy, 2019, 64, 103935.	8.2	107
176	Layered (NH ₄) ₂ V ₆ O ₁₆ ·1.5H ₂ O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19130-19139.	5.2	121
177	Pseudoâ€Zn–Air and Znâ€ion Intercalation Dual Mechanisms to Realize Highâ€Areal Capacitance and Longâ€Li Energy Storage in Aqueous Zn Battery. Advanced Energy Materials, 2019, 9, 1901480.	fe 10.2	127
178	Conjugated System of PEDOT:PSS-Induced Self-Doped PANI for Flexible Zinc-Ion Batteries with Enhanced Capacity and Cyclability. ACS Applied Materials & amp; Interfaces, 2019, 11, 30943-30952.	4.0	89
179	Layered metal vanadates with different interlayer cations for high-rate Na-ion storage. Journal of Materials Chemistry A, 2019, 7, 16109-16116.	5.2	26
180	A high-performance, highly bendable quasi-solid-state zinc–organic battery enabled by intelligent proton-self-buffering copolymer cathodes. Journal of Materials Chemistry A, 2019, 7, 17292-17298.	5.2	40

#	Article	IF	CITATIONS
181	Synthesis and electrochemical performance of NaV ₃ O ₈ nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries. RSC Advances, 2019, 9, 20549-20556.	1.7	29
182	Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zincâ€lon Batteries. Advanced Materials Interfaces, 2019, 6, 1900387.	1.9	169
183	A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. Journal of Materials Chemistry A, 2019, 7, 17420-17425.	5.2	111
184	A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18209-18236.	5.2	387
185	A Zn(ClO ₄) ₂ Electrolyte Enabling Long-Life Zinc Metal Electrodes for Rechargeable Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42000-42005.	4.0	111
186	Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries. ACS Energy Letters, 2019, 4, 2776-2781.	8.8	155
187	Ammonium Vanadium Oxide [(NH ₄) ₂ V ₄ O ₉] Sheets for High Capacity Electrodes in Aqueous Zinc Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7861-7869.	2.5	107
188	Achieving Both High Voltage and High Capacity in Aqueous Zincâ€lon Battery for Record High Energy Density. Advanced Functional Materials, 2019, 29, 1906142.	7.8	285
189	Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In‧ervice Batteries. Advanced Materials, 2019, 31, e1903778.	11.1	494
190	Unlocking the Potential of Disordered Rocksalts for Aqueous Zincâ€lon Batteries. Advanced Materials, 2019, 31, e1904369.	11.1	171
191	Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zincâ€ion Batteries. ChemSusChem, 2019, 12, 4889-4900.	3.6	120
192	3D CNTs Networks Enable MnO ₂ Cathodes with High Capacity and Superior Rate Capability for Flexible Rechargeable Zn–MnO ₂ Batteries. Small Methods, 2019, 3, 1900525.	4.6	99
193	Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Research, 2019, 12, 2835-2841.	5.8	144
194	Recent Progress on Zinc-Ion Rechargeable Batteries. Nano-Micro Letters, 2019, 11, 90.	14.4	191
195	Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. Journal of Power Sources, 2019, 441, 227192.	4.0	112
196	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie, 2019, 131, 16203-16207.	1.6	6
197	Flexible free-standing paper electrodes based on reduced graphene oxide/δ-NaxV2O5·nH2O nanocomposite for high-performance aqueous zinc-ion batteries. Electrochimica Acta, 2019, 328, 135137.	2.6	54
198	High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage. Nano-Micro Letters, 2019, 11, 94.	14.4	108

#	Article	IF	CITATIONS
199	In Situ Ag Nanoparticles Reinforced Pseudoâ€Zn–Air Reaction Boosting Ag ₂ V ₄ O ₁₁ as Highâ€Performance Cathode Material for Aqueous Zincâ€Ion Batteries. Small Methods, 2019, 3, 1900637.	4.6	52
200	Going beyond Intercalation Capacity of Aqueous Batteries by Exploiting Conversion Reactions of Mn and Zn electrodes for Energyâ€Dense Applications. Advanced Energy Materials, 2019, 9, 1902270.	10.2	59
201	Cathode Interfacial Layer Formation <i>via in Situ</i> Electrochemically Charging in Aqueous Zinc-Ion Battery. ACS Nano, 2019, 13, 13456-13464.	7.3	184
202	Reversible epitaxial electrodeposition of metals in battery anodes. Science, 2019, 366, 645-648.	6.0	1,097
203	Layered VOPO ₄ as a Cathode Material for Rechargeable Zinc-Ion Battery: Effect of Polypyrrole Intercalation in the Host and Water Concentration in the Electrolyte. ACS Applied Energy Materials, 2019, 2, 8667-8674.	2.5	90
204	Building better zinc-ion batteries: A materials perspective. EnergyChem, 2019, 1, 100022.	10.1	153
205	Identification of Zinc-Ion Battery via Equivalent Circuit Model. , 2019, , .		1
206	Artificial solid electrolyte interphase for thermally stable rechargeable aqueous zinc batteries. Journal of Power Sources, 2019, 441, 227171.	4.0	15
207	An Aqueous Znâ€lon Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles. Advanced Energy Materials, 2019, 9, 1902915.	10.2	244
208	Robust Aqueous Zn-Ion Fiber Battery Based on High-Strength Cellulose Yarns. ACS Sustainable Chemistry and Engineering, 2019, 7, 18894-18900.	3.2	26
209	Realizing a Rechargeable Highâ€Performance Cu–Zn Battery by Adjusting the Solubility of Cu ²⁺ . Advanced Functional Materials, 2019, 29, 1905979.	7.8	54
210	NaCa _{0.6} V ₆ O ₁₆ ·3H ₂ O as an Ultra‣table Cathode for Znâ€Ion Batteries: The Roles of Preâ€Inserted Dual ations and Structural Water in V ₃ O ₈ Layer. Advanced Energy Materials, 2019, 9, 1901968.	10.2	196
211	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie - International Edition, 2019, 58, 16057-16061.	2 7.2	125
212	Vanadium Pentoxide Nanosheets in-Situ Spaced with Acetylene Black as Cathodes for High-Performance Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 41297-41303.	4.0	62
213	Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nature Communications, 2019, 10, 4948.	5.8	398
214	Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling Highâ€Rate Longâ€Life Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1905267.	7.8	140
215	Superior-Performance Aqueous Zinc Ion Battery Based on Structural Transformation of MnO ₂ by Rare Earth Doping. Journal of Physical Chemistry C, 2019, 123, 22735-22741.	1.5	70
216	Design Strategies for Vanadiumâ€based Aqueous Zincâ€ŀon Batteries. Angewandte Chemie, 2019, 131, 16508-16517.	1.6	103

#	Article	IF	CITATIONS
217	Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Nano-Micro Letters, 2019, 11, 69.	14.4	122
218	Flexible all-in-one zinc-ion batteries. Nanoscale, 2019, 11, 17630-17636.	2.8	45
219	A Semisolid Electrolyte for Flexible Zn-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6904-6910.	2.5	77
220	A conjugated polyaniline and water co-intercalation strategy boosting zinc-ion storage performances for rose-like vanadium oxide architectures. Journal of Materials Chemistry A, 2019, 7, 21079-21084.	5.2	58
221	A paradigm of storage batteries. Energy and Environmental Science, 2019, 12, 3203-3224.	15.6	154
222	Fabrication of an Inexpensive Hydrophilic Bridge on a Carbon Substrate and Loading Vanadium Sulfides for Flexible Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36676-36684.	4.0	49
223	Hybridizing δ-type NaxV2O5•nH2O with graphene towards high-performance aqueous zinc-ion batteries. Electrochimica Acta, 2019, 321, 134689.	2.6	45
224	Graphene Oxide Wrapped CuV ₂ O ₆ Nanobelts as High-Capacity and Long-Life Cathode Materials of Aqueous Zinc-Ion Batteries. ACS Nano, 2019, 13, 12081-12089.	7.3	254
225	Flexible and Free-Standing Ti ₃ C ₂ T _{<i>x</i>} MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries. ACS Nano, 2019, 13, 11676-11685.	7.3	420
226	Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustainable Chemistry and Engineering, 2019, 7, 17737-17746.	3.2	151
227	Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Science Advances, 2019, 5, eaax4279.	4.7	410
228	Self-Healable Hydrogel Electrolyte toward High-Performance and Reliable Quasi-Solid-State Zn–MnO ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38762-38770.	4.0	62
229	Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nature Communications, 2019, 10, 4292.	5.8	66
230	Progress and perspective of aqueous zinc-ion battery. Functional Materials Letters, 2019, 12, 1930003.	0.7	28
231	Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. Journal of Materials Chemistry A, 2019, 7, 940-945.	5.2	291
232	Hydrated Layered Vanadium Oxide as a Highly Reversible Cathode for Rechargeable Aqueous Zinc Batteries. Advanced Functional Materials, 2019, 29, 1807331.	7.8	359
233	Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nature Energy, 2019, 4, 123-130.	19.8	446
234	Recent Progress in Stretchable Batteries for Wearable Electronics. Batteries and Supercaps, 2019, 2, 181-199.	2.4	98

ARTICLE IF CITATIONS # Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ 235 8.2 161 intercalation/de-intercalation. Nano Energy, 2019, 58, 492-498. An Organic Cathode Based Dual-Ion Aqueous Zinc Battery Enabled by a Cellulose Membrane. ACS 2.5 118 Applied Energy Materials, 2019, 2, 1288-1294. 237 Flexible Znâ€lon Batteries: Recent Progresses and Challenges. Small, 2019, 15, e1804760. 5.2412 Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chemical 238 Communications, 2019, 55, 1647-1650. Highly Reversible Phase Transition Endows V₆O₁₃ with Enhanced 239 108 1.8 Performance as Aqueous Zincâ€Ion Battery Cathode. Energy Technology, 2019, 7, 1900022. Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells. MRS Communications, 2019, 9, 99-106. 0.8 Prototype System of Rocking-Chair Zn-Ion Battery Adopting Zinc Chevrel Phase Anode and 241 2.1 56 Rhombohedral Zinc Hexacyanoferrate Cathode. Batteries, 2019, 5, 3. Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion 2.5 38 batteries. Matérials Today Energy, 2019, 11, 218-227. Interlayer-Expanded V₆O₁₃·<i>n</i>H₂O Architecture 243 Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery. ACS Applied Energy Materials, 2.5 143 2019, 2, 1988-1996. Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion 244 2.2 batteries. Chemical Communications, 2019, 55, 2265-2268. ZnCl₂ "Waterâ€inâ€Salt―Electrolyte Transforms the Performance of Vanadium Oxide as a Zn 245 7.8 213 Battery Cathode. Advanced Functional Materials, 2019, 29, 1902653. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy, 8.2 246 2019, 62, 550-587. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy and 247 15.6 512 Environmental Science, 2019, 12, 2273-2285. Dendrite Growth Suppression by Zn²⁺â€Integrated Nafion Ionomer Membranes: Beyond Porous Separators toward Aqueous Zn/V₂O₅ Batteries with Extended Cycle Life. Energy Technology, 2019, 7, 1900442. 248 1.8 76 Monoclinic VO₂(D) hollow nanospheres with super-long cycle life for aqueous zinc ion 249 2.8 111 batteries. Nanoscale, 2019, 11, 13032-13039. Construction of V2O5/NaV6O15 biphase composites as aqueous zinc-ion battery cathode. Journal of 1.9 Electroanalytical Chemistry, 2019, 847, 113246. Effects of Particle Size on Mg²⁺ Ion Intercalation into λ-MnO₂ Cathode 251 4.5 41 Materials. Nano Letters, 2019, 19, 4712-4720. Langmuir–Blodgett Nanowire Devices for In Situ Probing of Zincâ€Ion Batteries. Small, 2019, 15, e1902141. 5.2

#	Article	IF	CITATIONS
253	Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+. Nano-Micro Letters, 2019, 11, 49.	14.4	166
254	Probing local electronic and geometric changes of hydrated calcium vanadium oxide (Ca _x V ₂ O ₅ 2O) upon Zn ion intercalation. Journal of Coordination Chemistry, 2019, 72, 1253-1266.	0.8	9
255	Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V ₁₀ O ₂₄ ·12H ₂ O Cathode Materials. ACS Applied Materials & Interfaces, 2019, 11, 20888-20894.	4.0	106
256	Joint Charge Storage for Highâ€Rate Aqueous Zinc–Manganese Dioxide Batteries. Advanced Materials, 2019, 31, e1900567.	11.1	299
257	An Ultrastable Presodiated Titanium Disulfide Anode for Aqueous "Rocking hair―Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1900993.	10.2	178
258	Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Performance Zinc-Ion Batteries. ACS Nano, 2019, 13, 7270-7280.	7.3	81
259	Porous MXenes enable high performance potassium ion capacitors. Nano Energy, 2019, 62, 853-860.	8.2	190
260	Binder-free hierarchical VS ₂ electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. Journal of Materials Chemistry A, 2019, 7, 16330-16338.	5.2	152
261	Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2019, 801, 82-89.	2.8	56
262	Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 395-427.	13.1	122
263	Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-dimensional MXenes as Multifunctional Energy Materials. Journal of the American Chemical Society, 2019, 141, 9610-9616.	6.6	452
264	Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and Highâ€Power Zinc Ion Battery. Advanced Functional Materials, 2019, 29, 1901336.	7.8	145
265	Tailoring Three-Dimensional Composite Architecture for Advanced Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 19191-19199.	4.0	83
266	Anchoring V ₂ O ₅ nanosheets on hierarchical titanium nitride nanowire arrays to form core–shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12997-13006.	5.2	89
267	Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahighâ€Capacity Cathode for Rechargeable Zinc Ion Battery. Advanced Science, 2019, 6, 1900151.	5.6	165
268	Bilayered Mg _{0.25} V ₂ O ₅ ·H ₂ O as a Stable Cathode for Rechargeable Ca-lon Batteries. ACS Energy Letters, 2019, 4, 1328-1335.	8.8	121
269	High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy, 2019, 62, 94-102.	8.2	209
270	Zinc ion stabilized MnO ₂ nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 13727-13735.	5.2	333

#	Article	IF	CITATIONS
271	Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 2019, 19, 4035-4042.	4.5	202
272	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. ACS Applied Materials & Interfaces, 2019, 11, 20796-20803.	4.0	75
273	Mechanistic Insight into the Electrochemical Performance of Zn/VO ₂ Batteries with an Aqueous ZnSO ₄ Electrolyte. Advanced Energy Materials, 2019, 9, 1900237.	10.2	195
274	Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20, 410-437.	9.5	525
275	Built-in oriented electric field facilitating durable Zn MnO2 battery. Nano Energy, 2019, 62, 79-84.	8.2	150
276	Borophene as an anode material for Zn-ion batteries: a first-principles investigation. Materials Research Express, 2019, 6, 085504.	0.8	15
277	Low-Cost Rapid Template-Free Synthesis of Nanoscale Zinc Spinels for Energy Storage and Electrocatalytic Applications. ACS Applied Energy Materials, 2019, 2, 3211-3219.	2.5	17
278	Design Strategies for Vanadiumâ€based Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 16358-16367.	7.2	538
279	Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy, 2019, 61, 617-625.	8.2	340
280	Reversible Zn-quinone battery with harvesting electrochemical neutralization energy. Journal of Power Sources, 2019, 428, 37-43.	4.0	17
281	Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nature Communications, 2019, 10, 1965.	5.8	77
282	Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy and Environmental Science, 2019, 12, 1999-2009.	15.6	269
283	Improving the cycling performance of silver-zinc battery by introducing PEG-200 as electrolyte additive. Chemical Physics Letters, 2019, 723, 102-110.	1.2	25
284	Aqueous Zinc-Ion Storage in MoS ₂ by Tuning the Intercalation Energy. Nano Letters, 2019, 19, 3199-3206.	4.5	362
285	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	5.2	312
286	Highly compressible zinc-ion batteries with stable performance. Journal of Materials Chemistry A, 2019, 7, 11734-11741.	5.2	53
287	A Roomâ€Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2019, 9, 1900196.	10.2	128
288	Metal–organic framework derived 3D graphene decorated NaTi ₂ (PO ₄) ₃ for fast Na-ion storage. Nanoscale, 2019, 11, 7347-7357.	2.8	23

#	Article	IF	CITATIONS
289	V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode. Nano-Micro Letters, 2019, 11, 25.	14.4	274
290	Improving the cycle life of cryptomelane type manganese dioxides in aqueous rechargeable zinc ion batteries: The effect of electrolyte concentration. Electrochimica Acta, 2019, 305, 423-432.	2.6	56
291	Reversible Oxygen Redox Chemistry in Aqueous Zincâ€ l on Batteries. Angewandte Chemie - International Edition, 2019, 58, 7062-7067.	7.2	321
292	Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy, 2019, 60, 171-178.	8.2	149
293	Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. Journal of Materials Chemistry A, 2019, 7, 7355-7359.	5.2	84
294	A Usage Scenario Independent "Air Chargeable―Flexible Zinc Ion Energy Storage Device. Advanced Energy Materials, 2019, 9, 1900509.	10.2	80
295	Reverse Dual-Ion Battery via a ZnCl ₂ Water-in-Salt Electrolyte. Journal of the American Chemical Society, 2019, 141, 6338-6344.	6.6	338
296	Reversible Oxygen Redox Chemistry in Aqueous Zinc″on Batteries. Angewandte Chemie, 2019, 131, 7136-7141.	1.6	33
297	Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Research, 2019, 12, 1347-1353.	5.8	95
298	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€Storage Performance. Angewandte Chemie, 2019, 131, 7316-7321.	1.6	12
299	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodium‣torage Performance. Angewandte Chemie - International Edition, 2019, 58, 7238-7243.	7.2	80
300	V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochimica Acta, 2019, 306, 307-316.	2.6	167
301	A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Materials, 2019, 23, 636-645.	9.5	159
302	Synthesis, characterization and structure of (NH ₄) ₄ [Zn ₅ VIV4VV16O ₅₆ H ₂ (H ₂ with a novel V ₅ O ₁₄ layer. Dalton Transactions, 2019, 48, 4906-4911.	0) r.s ub>4	<b sub>]
303	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie, 2019, 131, 7905-7910.	1.6	114
304	Thickening and Homogenizing Aqueous Electrolyte towards Highly Efficient and Stable Zn Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A1211-A1216.	1.3	58
305	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 7823-7828.	7.2	787
306	Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. Journal of Materials Chemistry A, 2019, 7, 10644-10650.	5.2	62

#	Article	IF	CITATIONS
307	Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Materials Today Nano, 2019, 6, 100032.	2.3	125
308	Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries. CheM, 2019, 5, 1194-1209.	5.8	180
309	Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode. Journal of Energy Chemistry, 2019, 37, 172-175.	7.1	29
310	A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. Joule, 2019, 3, 1289-1300.	11.7	672
311	Using and recycling V2O5 as high performance anode materials for sustainable lithium ion battery. Journal of Power Sources, 2019, 424, 158-164.	4.0	42
312	Rechargeable Zinc-Ion Battery Based on Choline Chloride-Urea Deep Eutectic Solvent. Journal of the Electrochemical Society, 2019, 166, A1063-A1069.	1.3	83
313	Na2V6O16·2.14H2O nanobelts as a stable cathode for aqueous zinc-ion batteries with long-term cycling performance. Journal of Energy Chemistry, 2019, 38, 185-191.	7.1	66
314	V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy, 2019, 60, 752-759.	8.2	272
315	Reaction Mechanisms for Long-Life Rechargeable Zn/MnO ₂ Batteries. Chemistry of Materials, 2019, 31, 2036-2047.	3.2	195
316	Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Storage Materials, 2019, 19, 56-61.	9.5	93
317	Development of Hierarchically Porous Ionomer Membranes for Versatile and Fast Metal Ion Conduction. ACS Omega, 2019, 4, 2684-2692.	1.6	6
318	Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability. Journal of Materials Science: Materials in Electronics, 2019, 30, 5478-5486.	1.1	41
319	Unraveling the role of structural water in bilayer V ₂ O ₅ during Zn ²⁺ -intercalation: insights from DFT calculations. Journal of Materials Chemistry A, 2019, 7, 5612-5620.	5.2	132
320	Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries. Science China Chemistry, 2019, 62, 609-615.	4.2	51
321	A new rechargeable battery based on a zinc anode and a NaV ₆ O ₁₅ nanorod cathode. Chemical Communications, 2019, 55, 3793-3796.	2.2	51
322	Rational Design of Preintercalated Electrodes for Rechargeable Batteries. ACS Energy Letters, 2019, 4, 771-778.	8.8	77
323	Hydrated Intercalation for Highâ€Performance Aqueous Zinc Ion Batteries. Advanced Energy Materials, 2019, 9, 1900083.	10.2	243
324	Defect Engineering of Oxygenâ€Deficient Manganese Oxide to Achieve Highâ€Performing Aqueous Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1803815.	10.2	504

"		15	Circuration
#	ARTICLE	IF	CHATIONS
325	Zinc-ion Batteries. International Journal of Electrochemical Science, 2019, , 11560-11570.	0.5	4
326	Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery. Materials Today Energy, 2019, 14, 100361.	2.5	67
327	Issues and opportunities facing aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 3288-3304.	15.6	1,313
328	Binder-free V ₂ O ₅ /CNT paper electrode for high rate performance zinc ion battery. Nanoscale, 2019, 11, 19723-19728.	2.8	68
329	First principles calculations study of α-MnO ₂ as a potential cathode for Al-ion battery application. Journal of Materials Chemistry A, 2019, 7, 26966-26974.	5.2	52
330	High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials Chemistry A, 2019, 7, 26524-26532.	5.2	183
331	A one-dimensional channel self-standing MOF cathode for ultrahigh-energy-density flexible Ni–Zn batteries. Journal of Materials Chemistry A, 2019, 7, 27217-27224.	5.2	73
332	Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. Journal of Solid State Electrochemistry, 2019, 23, 3373-3382.	1.2	35
333	A High Capacity Bilayer Cathode for Aqueous Zn-Ion Batteries. ACS Nano, 2019, 13, 14447-14458.	7.3	148
334	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
335	A long-lifespan, flexible zinc-ion secondary battery using a paper-like cathode from single-atomic layer MnO ₂ nanosheets. Nanoscale Advances, 2019, 1, 4365-4372.	2.2	33
336	Rod-like anhydrous V ₂ O ₅ assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries. RSC Advances, 2019, 9, 30556-30564.	1.7	46
337	A hydrated NH ₄ V ₃ O ₈ nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries. Journal of Materials Chemistry A, 2019, 7, 23140-23148.	5.2	70
338	An advanced cathode material for high-power Li-ion storage full cells with a long lifespan. Journal of Materials Chemistry A, 2019, 7, 22444-22452.	5.2	1
339	An <i>in situ</i> electrochemical oxidation strategy for formation of nanogrid-shaped V ₃ O ₇ A·H ₂ O with enhanced zinc storage properties. Journal of Materials Chemistry A, 2019, 7, 25262-25267.	5.2	61
340	Fabrication of Zinc Anodes for Aqueous Lithiumâ€lon Batteries by Supersonic Cold Spraying. ChemElectroChem, 2019, 6, 1333-1337.	1.7	7
341	Scalable porous zinc anode to improve the cycling performance of aqueous lithium energy storage systems. Journal of Energy Storage, 2019, 21, 481-488.	3.9	15
342	Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Materials, 2019, 21, 154-161.	9.5	221

#	Article	IF	CITATIONS
343	"Water-in-deep eutectic solvent―electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57, 625-634.	8.2	467
344	Resist-Dyed Textile Alkaline Zn Microbatteries with Significantly Suppressed Zn Dendrite Growth. ACS Applied Materials & Interfaces, 2019, 11, 5095-5106.	4.0	43
345	Water in Rechargeable Multivalentâ€lon Batteries: An Electrochemical Pandora's Box. ChemSusChem, 2019, 12, 379-396.	3.6	62
346	A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy, 2019, 56, 92-99.	8.2	227
347	Conformal Conducting Polymer Shells on V ₂ O ₅ Nanosheet Arrays as a Highâ€Rate and Stable Zincâ€Ion Battery Cathode. Advanced Materials Interfaces, 2019, 6, 1801506.	1.9	170
348	Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochimica Acta, 2019, 296, 755-761.	2.6	102
349	Biomimetic Solid-State Zn ²⁺ Electrolyte for Corrugated Structural Batteries. ACS Nano, 2019, 13, 1107-1115.	7.3	66
350	3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 3364-3371.	3.2	387
351	Fully Solarâ€Powered Uninterrupted Overall Waterâ€Splitting Systems. Advanced Functional Materials, 2019, 29, 1808889.	7.8	24
352	Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. Journal of Energy Chemistry, 2019, 38, 20-25.	7.1	225
353	Ultrastable and High-Performance Zn/VO ₂ Battery Based on a Reversible Single-Phase Reaction. Chemistry of Materials, 2019, 31, 699-706.	3.2	227
354	Progress in Rechargeable Aqueous Zinc―and Aluminumâ€Ion Battery Electrodes: Challenges and Outlook. Advanced Sustainable Systems, 2019, 3, 1800111.	2.7	147
355	Mollusc shell derived 3D porous carbon skeleton for high-performance hybrid electrodes. Electrochimica Acta, 2019, 294, 268-275.	2.6	9
356	Zinc-ion batteries: Materials, mechanisms, and applications. Materials Science and Engineering Reports, 2019, 135, 58-84.	14.8	604
357	Recent Progress in Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2019, 31, e1805230.	11.1	398
358	Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Interfaces, 2019, 11, 674-682.	4.0	199
359	In-situ tracking of NaFePO4 formation in aqueous electrolytes and its electrochemical performances in Na-ion/polysulfide batteries. Journal of Power Sources, 2019, 412, 55-62.	4.0	30
360	Selective colorimetric sensing of Zn(II) ions using green-synthesized silver nanoparticles: Ficus benjamina extract as reducing and stabilizing agent. Materials Research Bulletin, 2019, 112, 1-8.	2.7	24

#	Article	IF	CITATIONS
361	An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials, 2019, 18, 68-91.	9.5	113
363	Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods, 2019, 3, 1800272.	4.6	387
364	Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chemical Engineering Journal, 2020, 382, 122844.	6.6	164
365	Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Materials, 2020, 25, 903-911.	9.5	131
366	Constructing a disorder/order structure for enhanced magnesium storage. Chemical Engineering Journal, 2020, 382, 123049.	6.6	18
367	3D Oxygenâ€Defective Potassium Vanadate/Carbon Nanoribbon Networks as Highâ€Performance Cathodes for Aqueous Zincâ€ion Batteries. Small Methods, 2020, 4, 1900670.	4.6	124
368	Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Materials, 2020, 25, 342-375.	9.5	112
369	Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery. Nano Energy, 2020, 67, 104211.	8.2	75
370	A review on mechanistic understanding of MnO ₂ in aqueous electrolyte for electrical energy storage systems. International Materials Reviews, 2020, 65, 356-387.	9.4	121
371	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
372	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced Materials, 2020, 32, e1901958.	11.1	427
373	Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Materials, 2020, 24, 394-401.	9.5	270
374	Realizing high-performance Zn-ion batteries by a reduced graphene oxide block layer at room and low temperatures. Journal of Energy Chemistry, 2020, 43, 1-7.	7.1	29
375	Anodic behavior of zinc in aqueous borate electrolytes. Materials Chemistry and Physics, 2020, 239, 122081.	2.0	3
376	NH ₄ V ₄ O ₁₀ /rGO Composite as a high-performance electrode material for hybrid capacitive deionization. Environmental Science: Water Research and Technology, 2020, 6, 303-311.	1.2	19
377	Enhancing Znâ€lon Storage Capability of Hydrated Vanadium Pentoxide by the Strategic Introduction of La ³⁺ . ChemSusChem, 2020, 13, 1568-1574.	3.6	37
378	Interlayer-expanded and binder-free VS2 nanosheets assemblies for enhanced Mg2+ and Li+/Mg2+ hybrid ion storage. Electrochimica Acta, 2020, 330, 135263.	2.6	29
379	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie - International Edition, 2020, 59, 3048-3052.	7.2	122

#	Article	IF	CITATIONS
380	Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chemical Engineering Journal, 2020, 384, 123355.	6.6	188
381	Freeâ€Standing Hydrated Sodium Vanadate Papers for Highâ€Stability Zincâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 254-260.	2.4	26
382	Commencing mild Ag–Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Materials, 2020, 25, 86-92.	9.5	68
383	Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations. Advanced Functional Materials, 2020, 30, 1907218.	7.8	209
384	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie, 2020, 132, 3072-3076.	1.6	13
385	Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Applied Surface Science, 2020, 502, 144207.	3.1	66
386	Vanadiumâ€Based Nanomaterials: A Promising Family for Emerging Metalâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1904398.	7.8	262
387	Biomass-derived mesoporous carbons materials coated by α-Mn3O4 with ultrafast zinc-ion diffusion ability as cathode for aqueous zinc ion batteries. Electrochimica Acta, 2020, 335, 135642.	2.6	56
388	A high energy efficiency and long life aqueous Zn–I ₂ battery. Journal of Materials Chemistry A, 2020, 8, 3785-3794.	5.2	82
389	Electrodeposited Manganese Oxide on Carbon Paper for Zincâ€lon Battery Cathodes. Batteries and Supercaps, 2020, 3, 293-305.	2.4	32
390	High-performance solid-state Zn batteries based on a free-standing organic cathode and metal Zn anode with an ordered nano-architecture. Nanoscale Advances, 2020, 2, 296-303.	2.2	21
391	Electrochemical detection of 2-nitrophenol using a heterostructure ZnO/RuO ₂ nanoparticle modified glassy carbon electrode. RSC Advances, 2020, 10, 122-132.	1.7	43
392	Phase Transition Induced Unusual Electrochemical Performance of V ₂ CT _X MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551.	7.3	179
393	H ⁺ â€Insertion Boosted αâ€MnO ₂ for an Aqueous Znâ€Ion Battery. Small, 2020, 16, e1905842.	5.2	260
394	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	18.7	522
395	Exploring new hydrated delta type vanadium oxides for lithium intercalation. Dalton Transactions, 2020, 49, 3856-3868.	1.6	4
396	A durable VO ₂ (M)/Zn battery with ultrahigh rate capability enabled by pseudocapacitive proton insertion. Journal of Materials Chemistry A, 2020, 8, 1731-1740.	5.2	90
397	A Longâ€Life Batteryâ€Type Electrochromic Window with Remarkable Energy Storage Ability. Solar Rrl, 2020, 4, 1900425.	3.1	37

#	Article	IF	CITATIONS
398	Stitching of Zn ₃ (OH) ₂ V ₂ O ₇ ·2H ₂ O 2D Nanosheets by 1D Carbon Nanotubes Boosts Ultrahigh Rate for Wearable Quasi-Solid-State Zinc-Ion Batteries. ACS Nano, 2020, 14, 842-853.	7.3	183
399	Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2020, 12, 3522-3530.	4.0	123
400	Bi2S3 for Aqueous Zn Ion Battery with Enhanced Cycle Stability. Nano-Micro Letters, 2020, 12, 8.	14.4	58
401	A Deepâ€Cycle Aqueous Zincâ€lon Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 2273-2278.	7.2	257
402	Lamellar V ₅ O ₁₂ ·6H ₂ O Nanobelts Coupled with Inert Zn(OH) ₂ ·0.5H ₂ O as Cathode for Aqueous Zn ²⁺ /Nonaqueous Na ⁺ Storage Applications. Energy Technology, 2020, 8, 1901105.	1.8	12
403	Nickel and cobalt Co-substituted spinel ZnMn2O4@N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochimica Acta, 2020, 331, 135296.	2.6	77
404	Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2020, 2, 248-263.	3.9	110
405	Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior Highâ€Rate and Lowâ€Temperature Zincâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907684.	7.8	259
406	K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. Journal of Alloys and Compounds, 2020, 819, 152971.	2.8	83
407	Mechanistic investigation of silver vanadate as superior cathode for high rate and durable zinc-ion batteries. Journal of Colloid and Interface Science, 2020, 560, 659-666.	5.0	30
408	Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries. Journal of the American Chemical Society, 2020, 142, 2541-2548.	6.6	245
409	The displacement reaction mechanism of the CuV ₂ O ₆ nanowire cathode for rechargeable aqueous zinc ion batteries. Dalton Transactions, 2020, 49, 1048-1055.	1.6	35
410	A zinc bromine "supercapattery―system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Materials Horizons, 2020, 7, 495-503.	6.4	54
411	A self-driven approach for local ion intercalation in vdW crystals. Nanoscale, 2020, 12, 1448-1454.	2.8	11
412	Manipulating nickel oxides in naturally derived cellulose nanofiber networks as robust cathodes for high-performance Ni–Zn batteries. Journal of Materials Chemistry A, 2020, 8, 565-572.	5.2	53
413	Oxygen Defects in β-MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. IScience, 2020, 23, 100797.	1.9	184
414	The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Materials, 2020, 28, 407-417.	9.5	175
415	Batteries with high theoretical energy densities. Energy Storage Materials, 2020, 26, 46-55.	9.5	152

#	Article	IF	CITATIONS
416	Dendriteâ€Free Zinc Deposition Induced by Tinâ€Modified Multifunctional 3D Host for Stable Zincâ€Based Flow Battery. Advanced Materials, 2020, 32, e1906803.	11.1	263
417	Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications. Progress in Materials Science, 2020, 109, 100631.	16.0	66
418	Challenges and perspectives for manganeseâ€based oxides for advanced aqueous zincâ€ion batteries. InformaÁnÃ-Materiály, 2020, 2, 237-260.	8.5	264
419	Facile hydrothermal synthesis and electrochemical properties of (NH4)2V10O25·8H2O nanobelts for high-performance aqueous zinc ion batteries. Electrochimica Acta, 2020, 332, 135506.	2.6	67
420	FeVO4â‹nH2O@rGO nanocomposite as high performance cathode materials for aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2020, 818, 153372.	2.8	46
421	Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications. Journal of Power Sources, 2020, 449, 227596.	4.0	114
422	A Flexible Potassium-Ion Hybrid Capacitor with Superior Rate Performance and Long Cycling Life. ACS Applied Materials & Interfaces, 2020, 12, 2424-2431.	4.0	59
423	Freestanding, Hierarchical, and Porous Bilayered Na _{<i>x</i>} V ₂ O ₅ · <i>n</i> H ₂ O/rGO/CNT Composites as High-Performance Cathode Materials for Nonaqueous K-Ion Batteries and Aqueous Zinc-Ion Batteries. ACS Applied Materials & Amp: Interfaces, 2020, 12, 706-716.	4.0	82
424	Prolonging the cycle life of zinc-ion battery by introduction of [Fe(CN)6]4â^ to PANI via a simple and scalable synthetic method. Chemical Engineering Journal, 2020, 392, 123653.	6.6	36
425	Annealing-Assisted Enhancement of Electrochemical Stability of Na-Preintercalated Bilayered Vanadium Oxide Electrodes in Na-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 1063-1075.	2.5	20
426	Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 2020, 817, 153261.	2.8	144
427	A Deepâ€Cycle Aqueous Zincâ€lon Battery Containing an Oxygenâ€Deficient Vanadium Oxide Cathode. Angewandte Chemie, 2020, 132, 2293-2298.	1.6	71
428	Energy storage performance and mechanism of the novel copper pyrovanadate Cu3V2O7(OH)2·2H2O cathode for aqueous zinc ion batteries. Electrochimica Acta, 2020, 330, 135347.	2.6	70
429	NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy, 2020, 68, 104293.	8.2	193
430	A Highâ€Voltage, Dendriteâ€Free, and Durable Zn–Graphite Battery. Advanced Materials, 2020, 32, e1905681.	11.1	96
431	Ternary nanostructured MZnCo oxides (M=Al, Mg, Cu, Fe, Ni) prepared by hydrothermal method as excellent charge storage devices. Ionics, 2020, 26, 1491-1505.	1.2	4
432	Mechanistic Investigation of a Hybrid Zn/V ₂ O ₅ Rechargeable Battery with a Binary Li ⁺ /Zn ²⁺ Aqueous Electrolyte. ChemSusChem, 2020, 13, 724-731.	3.6	21
433	Chemically Deposited Amorphous Zn-Doped NiFeO <i>_{<i>x</i>}</i> H <i>_{<i>y</i>}</i> for Enhanced Water Oxidation. ACS Catalysis. 2020. 10. 235-244.	5.5	86

#	Article	IF	CITATIONS
434	Reversible (De)Intercalation of Hydrated Zn ²⁺ in Mg ²⁺ ‣tabilized V ₂ O ₅ Nanobelts with High Areal Capacity. Advanced Energy Materials, 2020, 10, 2002293.	10.2	84
435	Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Materials, 2020, 33, 390-398.	9.5	178
436	An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Materials, 2020, 33, 283-289.	9.5	103
437	VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries. Journal of Power Sources, 2020, 477, 228652.	4.0	74
438	Mn ²⁺ lons Confined by Electrode Microskin for Aqueous Battery beyond Intercalation Capacity. Advanced Energy Materials, 2020, 10, 2002578.	10.2	35
439	Hydrated Mg <i>_x</i> V ₅ O ₁₂ Cathode with Improved Mg ²⁺ Storage Performance. Advanced Energy Materials, 2020, 10, 2002128.	10.2	31
440	Effect of Binding Affinity of Crystal Water on the Electrochemical Performance of Layered Double Hydroxides. ChemSusChem, 2020, 13, 6546-6551.	3.6	7
441	Organic pillars pre-intercalated V4+-V2O5·3H2O nanocomposites with enlarged interlayer and mixed valence for aqueous Zn-ion storage. Applied Surface Science, 2020, 534, 147608.	3.1	23
442	MXene-Derived Bilayered Vanadium Oxides with Enhanced Stability in Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10892-10901.	2.5	21
443	Deformation during Electrosorption and Insertion-Type Charge Storage: Origins, Characterization, and Design of Materials for High Power. ACS Energy Letters, 2020, 5, 3548-3559.	8.8	8
444	Energy Storage Chemistry in Aqueous Zinc Metal Batteries. ACS Energy Letters, 2020, 5, 3569-3590.	8.8	163
445	Intercalation-Type V ₂ O ₃ with Fast Mg ²⁺ Diffusion Kinetics for High-Capacity and Long-Life Mg-Ion Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 16164-16171.	3.2	13
446	Reaction mechanism and electrochemical performance of manganese (II) oxide in zinc ion batteries. Solid State Ionics, 2020, 356, 115439.	1.3	10
447	Layered electrides as fluoride intercalation anodes. Journal of Materials Chemistry A, 2020, 8, 24469-24476.	5.2	16
448	A Zinc–Dualâ€Halogen Battery with a Molten Hydrate Electrolyte. Advanced Materials, 2020, 32, e2004553.	11.1	47
449	Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities. Energy and Environmental Science, 2020, 13, 4536-4563.	15.6	209
450	Understanding the Design Principles of Advanced Aqueous Zincâ€lon Battery Cathodes: From Transport Kinetics to Structural Engineering, and Future Perspectives. Advanced Energy Materials, 2020, 10, 2002354.	10.2	193
451	Massâ€Producible, Quasiâ€Zeroâ€&train, Latticeâ€Waterâ€Rich Inorganic Openâ€Frameworks for Ultrafastâ€Charging and Longâ€Cycling Zincâ€Ion Batteries. Advanced Materials, 2020, 32, e2003592.	11.1	66

#	Article	IF	CITATIONS
452	Rechargeable Mild Aqueous Zinc Batteries for Grid Storage. Advanced Energy and Sustainability Research, 2020, 1, 2000026.	2.8	10
453	Water cointercalation for high-energy-density aqueous zinc-ion battery based potassium manganite cathode. Journal of Power Sources, 2020, 478, 228758.	4.0	36
454	Flexible quasi-solid-state aqueous Zn-based batteries: rational electrode designs for high-performance and mechanical flexibility. Materials Today Energy, 2020, 18, 100523.	2.5	42
455	Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Materials Today Energy, 2020, 18, 100548.	2.5	56
456	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	15.6	497
457	A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries. Chemical Science, 2020, 11, 11692-11698.	3.7	51
458	Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities. Journal of Power Sources, 2020, 472, 228334.	4.0	27
459	A High-Performance Aqueous Zinc-Bromine Static Battery. IScience, 2020, 23, 101348.	1.9	71
460	Microstructural Changes of Prussian Blue Derivatives during Cycling in Zinc ontaining Electrolytes. ChemElectroChem, 2020, 7, 3301-3310.	1.7	17
461	A pHâ€Neutral, Aqueous Redox Flow Battery with a 3600â€Cycle Lifetime: Micellizationâ€Enabled High Stability and Crossover Suppression. ChemSusChem, 2020, 13, 4069-4077.	3.6	25
462	High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Letters, 2020, 12, 152.	14.4	141
463	Superfine MnO ₂ Nanowires with Rich Defects Toward Boosted Zinc Ion Storage Performance. ACS Applied Materials & Interfaces, 2020, 12, 34949-34958.	4.0	156
464	On the challenge of large energy storage by electrochemical devices. Electrochimica Acta, 2020, 354, 136771.	2.6	62
465	Binder-free CaV3O7 nanobelts with rich oxygen defects as high energy cathode for aqueous Zn-ion battery. Journal of Power Sources, 2020, 472, 228507.	4.0	47
466	Anisotropic Elastic Properties of Battery Anodes. Journal of the Electrochemical Society, 2020, 167, 110550.	1.3	8
467	Double–shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high–performance aqueous zinc–ion batteries. Journal of Colloid and Interface Science, 2020, 580, 528-539.	5.0	18
468	Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 26013-26022.	5.2	21
469	Layered hydrotalcite derived holey porous cobalt oxide nanosheets coated with nitrogen-doped carbon for high-mass-loading Li-ion storage. Journal of Materials Chemistry A, 2020, 8, 26150-26157.	5.2	16

#	Article	IF	CITATIONS
470	Cu-MOF-derived and porous Cu0.26V2O5@C composite cathode for aqueous zinc-ion batteries. Sustainable Materials and Technologies, 2020, 26, e00236.	1.7	13
471	Long-Life Zinc/Vanadium Pentoxide Battery Enabled by a Concentrated Aqueous ZnSO ₄ Electrolyte with Proton and Zinc Ion Co-Intercalation. ACS Applied Energy Materials, 2020, 3, 11183-11192.	2.5	82
472	Electron Delocalization and Dissolutionâ€Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zincâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2001852.	10.2	125
473	Effects of Small Molecule Interlayer Engineering in Vanadium Oxide for Zinc Ion Battery. ChemistrySelect, 2020, 5, 8951-8958.	0.7	10
474	Zeolitic Imidazolate Frameworks as Zn ²⁺ Modulation Layers to Enable Dendriteâ€Free Zn Anodes. Advanced Science, 2020, 7, 2002173.	5.6	199
475	In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. Advanced Energy Materials, 2020, 10, 2001791.	10.2	128
476	Ultrathin VSe ₂ Nanosheets with Fast Ion Diffusion and Robust Structural Stability for Rechargeable Zincâ€lon Battery Cathode. Small, 2020, 16, e2000698.	5.2	154
477	Pathways towards high energy aqueous rechargeable batteries. Coordination Chemistry Reviews, 2020, 424, 213521.	9.5	50
478	A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg _{0.23} V ₂ 0 ₅ ·1.0H ₂ O cathode. Journal of Materials Chemistry A, 2020, 8, 18327-18337.	5.2	66
479	Issues and solutions toward zinc anode in aqueous zincâ€ion batteries: A mini review. , 2020, 2, 540-560.		225
480	Vanadium-Based Materials: Next Generation Electrodes Powering the Battery Revolution?. Accounts of Chemical Research, 2020, 53, 1660-1671.	7.6	89
481	Proton Insertion Promoted a Polyfurfural/MnO ₂ Nanocomposite Cathode for a Rechargeable Aqueous Zn–MnO ₂ Battery. ACS Applied Materials & Interfaces, 2020, 12, 36072-36081.	4.0	89
482	Recent progress and challenges of carbon materials for Znâ€ion hybrid supercapacitors. , 2020, 2, 521-539.		144
483	Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy, 2020, 77, 105165.	8.2	65
484	Vertically Aligned Sn ⁴⁺ Preintercalated Ti ₂ CT _X MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan. Advanced Energy Materials, 2020, 10, 2001394.	10.2	127
485	Synergistic effects in V3O7/V2O5 composite material for high capacity and long cycling life aqueous rechargeable zinc ion batteries. Journal of Power Sources, 2020, 474, 228569.	4.0	79
486	Uniformizing the electric field distribution and ion migration during zinc plating/stripping <i>via</i> a binary polymer blend artificial interphase. Journal of Materials Chemistry A, 2020, 8, 17725-17731.	5.2	71
487	Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage <i>via</i> a cascading effect. Energy and Environmental Science, 2020, 13, 3149-3163.	15.6	57

#	Article	IF	CITATIONS
488	Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes. Advanced Energy Materials, 2020, 10, 2001705.	10.2	189
489	A High Performing Znâ€lon Battery Cathode Enabled by In Situ Transformation of V ₂ O ₅ Atomic Layers. Angewandte Chemie, 2020, 132, 17152-17159.	1.6	33
490	Conjugated molecule functionalized graphene films for energy storage devices with high energy density. Electrochimica Acta, 2020, 340, 135804.	2.6	15
491	Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 2020, 120, 7795-7866.	23.0	950
492	A Metal–Organic Framework as a Multifunctional Ionic Sieve Membrane for Long‣ife Aqueous Zinc–Iodide Batteries. Advanced Materials, 2020, 32, e2004240.	11.1	222
493	Valence Engineering via In Situ Carbon Reduction on Octahedron Sites Mn ₃ O ₄ for Ultraâ€Long Cycle Life Aqueous Znâ€Ion Battery. Advanced Energy Materials, 2020, 10, 2001050.	10.2	196
494	Solutionâ€Processed Allâ€V ₂ O ₅ Battery. Small, 2020, 16, e2003816.	5.2	4
495	Realizing high zinc reversibility in rechargeable batteries. Nature Energy, 2020, 5, 743-749.	19.8	658
496	Two-dimensional organic–inorganic superlattice-like heterostructures for energy storage applications. Energy and Environmental Science, 2020, 13, 4834-4853.	15.6	64
497	Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Science China Chemistry, 2020, 63, 1767-1776.	4.2	61
498	Dendrites in Znâ€Based Batteries. Advanced Materials, 2020, 32, e2001854.	11.1	601
499	Weaker Interactions in Zn ²⁺ and Organic Ionâ€preâ€intercalated Vanadium Oxide toward Highly Reversible Zincâ€ion Batteries. Energy and Environmental Materials, 2021, 4, 620-630.	7.3	55
500	KV3O8 with a large interlayer as a viable cathode material for zinc-ion batteries. Journal of Power Sources, 2020, 478, 229072.	4.0	15
501	<i>Operando</i> pH Measurements Decipher H ⁺ /Zn ²⁺ Intercalation Chemistry in High-Performance Aqueous Zn/Ĩ-V ₂ O ₅ Batteries. ACS Energy Letters, 2020, 5, 2979-2986.	8.8	126
502	New Insight on Openâ€Structured Sodium Vanadium Oxide as Highâ€Capacity and Long Life Cathode for Zn–Ion Storage: Structure, Electrochemistry, and Firstâ€Principles Calculation. Advanced Energy Materials, 2020, 10, 2001595.	10.2	54
503	2020 Roadmap on Zinc Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3696-3708.	1.7	26
504	Layered TiS ₂ as a Promising Host Material for Aqueous Rechargeable Zn Ion Battery. Energy & Fuels, 2020, 34, 11590-11596.	2.5	26
505	Advanced Filter Membrane Separator for Aqueous Zincâ€lon Batteries. Small, 2020, 16, e2003106.	5.2	118

#	Article	IF	CITATIONS
506	Advanced Materials Prepared via Metallic Reduction Reactions for Electrochemical Energy Storage. Small Methods, 2020, 4, 2000613.	4.6	15
507	<i>In Operando</i> Synchrotron Studies of NH ₄ ⁺ Preintercalated V ₂ O ₅ · <i>n</i> H ₂ O Nanobelts as the Cathode Material for Aqueous Rechargeable Zinc Batteries. ACS Nano, 2020, 14, 11809-11820.	7.3	87
508	Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review. Chemical Record, 2020, 20, 1198-1219.	2.9	40
509	Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy and Environmental Science, 2020, 13, 3917-3949.	15.6	480
510	An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22637-22644.	5.2	41
511	Three-Dimensional Nitrogen-Doped Graphitic Carbon-Encapsulated MnO-Co Heterostructure: A Bifunctional Energy Storage Material for Zn-Ion and Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 10108-10118.	2.5	26
512	Vanadiumâ€Based Materials as Positive Electrode for Aqueous Zincâ€lon Batteries. Advanced Sustainable Systems, 2020, 4, 2000178.	2.7	36
513	Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Materials Today Energy, 2020, 18, 100509.	2.5	77
514	A dendrite-free zinc anode for rechargeable aqueous batteries. Journal of Materials Chemistry A, 2020, 8, 20175-20184.	5.2	79
515	An organic cathode with tailored working potential for aqueous Zn-ion batteries. Chemical Communications, 2020, 56, 11859-11862.	2.2	54
516	Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 2004187.	7.8	80
517	Hierarchical Aluminum Vanadate Microspheres with Structural Water: Highâ€Performance Cathode Materials for Aqueous Rechargeable Zinc Batteries. ChemPlusChem, 2020, 85, 2129-2135.	1.3	12
518	Understanding Charge Storage in Hydrated Layered Solids MOPO ₄ (M = V, Nb) with Tunable Interlayer Chemistry. ACS Nano, 2020, 14, 13824-13833.	7.3	6
519	Ultrahigh Areal Capacity Hydrogenâ€ l on Batteries with MoO ₃ Loading Over 90 mg cm ^{â^'2} . Advanced Functional Materials, 2020, 30, 2005477.	7.8	57
520	Anisotropic Growth of Alâ€Intercalated Vanadate by Tuning Surface Hydrophilicity for Highâ€Rate Znâ€Ion Storage. Small Structures, 2020, 1, 2000040.	6.9	35
521	Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for Highâ€Performance Aqueous Zincâ€ion Battery. Advanced Functional Materials, 2020, 30, 2003890.	7.8	190
522	Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes. Advanced Functional Materials, 2020, 30, 2003932.	7.8	210
523	Intercalation Pseudocapacitive Zn ²⁺ Storage with Hydrated Vanadium Dioxide toward Ultrahigh Rate Performance. Advanced Materials, 2020, 32, e1908420.	11.1	168

#	Article	IF	CITATIONS
524	Aqueous Zinc–Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. Advanced Materials, 2020, 32, e2001469.	11.1	104
525	Hybridizing δ-Type MnO2 With Lignin-Derived Porous Carbon as a Stable Cathode Material for Aqueous Zn–MnO2 Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	13
526	Thermodynamically Metal Atom Trapping in Van der Waals Layers Enabling Multifunctional 3D Carbon Network. Advanced Functional Materials, 2020, 30, 2002626.	7.8	15
527	Graphdiyne Oxideâ€Based Highâ€Performance Rechargeable Aqueous Zn–MnO ₂ Battery. Advanced Functional Materials, 2020, 30, 2004115.	7.8	56
528	Multiplex measurement of diffusion in zinc battery electrolytes from microfluidics using Raman microspectroscopy. Applied Energy, 2020, 279, 115687.	5.1	3
529	Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects. Advanced Materials, 2020, 32, e2002450.	11.1	127
530	Unraveling the Dissolutionâ€Mediated Reaction Mechanism of αâ€MnO ₂ Cathodes for Aqueous Znâ€lon Batteries. Small, 2020, 16, e2005406.	5.2	58
531	A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices. Journal of the American Chemical Society, 2020, 142, 19570-19578.	6.6	232
532	Potentiodynamics of the Zinc and Proton Storage in Disordered Sodium Vanadate for Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54627-54636.	4.0	46
533	High-Capacity Layered Magnesium Vanadate with Concentrated Gel Electrolyte toward High-Performance and Wide-Temperature Zinc-Ion Battery. ACS Nano, 2020, 14, 15776-15785.	7.3	131
534	Platinumâ€Induced Pseudoâ€Znâ€Air Reaction Massively Increases the Electrochemical Capacity of Aqueous Zn/V ₅ O ₁₂ ·6H ₂ O Batteries. Energy and Environmental Materials, 2021, 4, 596-602.	7.3	6
535	Side by Side Battery Technologies with Lithiumâ€lon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
536	A chemically self-charging aqueous zinc-ion battery. Nature Communications, 2020, 11, 2199.	5.8	221
537	Aqueous Calciumâ€ion Battery Based on a Mesoporous Organic Anode and a Manganite Cathode with Long Cycling Performance. ChemSusChem, 2020, 13, 3911-3918.	3.6	30
538	Constructing the Efficient Ion Diffusion Pathway by Introducing Oxygen Defects in Mn ₂ O ₃ for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 28199-28205.	4.0	111
539	Tuning the Kinetics of Zincâ€lon Insertion/Extraction in V ₂ O ₅ by In Situ Polyaniline Intercalation Enables Improved Aqueous Zincâ€lon Storage Performance. Advanced Materials, 2020, 32, e2001113.	11.1	357
540	Hollowâ€Structured Electrode Materials: Selfâ€Templated Synthesis and Their Potential in Secondary Batteries. ChemNanoMat, 2020, 6, 1298-1314.	1.5	6
541	Freestanding Potassium Vanadate/Carbon Nanotube Films for Ultralong-Life Aqueous Zinc-Ion Batteries. ACS Nano, 2020, 14, 6752-6760.	7.3	145

#	ARTICLE	IF	CITATIONS
542	5581-5589.	7.3	267
543	Electrochemically Induced Structural and Morphological Evolutions in Nickel Vanadium Oxide Hydrate Nanobelts Enabling Fast Transport Kinetics for High-Performance Zinc Storage. ACS Applied Materials & Interfaces, 2020, 12, 24726-24736.	4.0	47
544	VS ₄ with a chain crystal structure used as an intercalation cathode for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2020, 8, 10761-10766.	5.2	77
545	Ultrathin δ-MnO ₂ nanoflakes with Na ⁺ intercalation as a high-capacity cathode for aqueous zinc-ion batteries. RSC Advances, 2020, 10, 17702-17712.	1.7	43
546	An Overview and Future Perspectives of Rechargeable Zinc Batteries. Small, 2020, 16, e2000730.	5.2	216
547	Rechargeable Aqueous Zincâ€Ion Batteries with Mild Electrolytes: A Comprehensive Review. Batteries and Supercaps, 2020, 3, 966-1005.	2.4	68
548	Materials chemistry for rechargeable zinc-ion batteries. Chemical Society Reviews, 2020, 49, 4203-4219.	18.7	787
549	Intercalated water in aqueous batteries. , 2020, 2, 251-264.		42
551	Layer-by-Layer Stacked (NH ₄) ₂ V ₄ O ₉ ·0.5H ₂ O Nanosheet Assemblies with Intercalation Pseudocapacitance for High Rate Aqueous Zinc Ion Storage. ACS Applied Energy Materials, 2020, 3, 5343-5352.	2.5	28
552	Recent Advances in Vanadiumâ€Based Aqueous Rechargeable Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000477.	10.2	265
553	Aluminum vanadate hollow spheres as zero-strain cathode material for highly reversible and durable aqueous zinc-ion batteries. Energy Storage Materials, 2020, 30, 130-137.	9.5	77
554	Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Materials, 2020, 30, 104-112.	9.5	235
555	Nanostructure Design Strategies for Aqueous Zincâ€lon Batteries. ChemElectroChem, 2020, 7, 2957-2978.	1.7	44
556	Electrochemical characterization of hollow urchin-like MnO2 as high-performance cathode for aqueous zinc ion batteries. Journal of Electroanalytical Chemistry, 2020, 871, 114242.	1.9	19
557	A Dendrite-Resistant Zinc-Air Battery. IScience, 2020, 23, 101169.	1.9	17
558	Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS ₂ -Coated Zn Anode. ACS Applied Materials & Interfaces, 2020, 12, 27249-27257.	4.0	110
559	Tunable Layered (Na,Mn)V ₈ O ₂₀ · <i>n</i> H ₂ O Cathode Material for Highâ€Performance Aqueous Zinc Ion Batteries. Advanced Science, 2020, 7, 2000083.	5.6	113
560	Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage. Chinese Journal of Chemical Engineering, 2020, 28, 2214-2220.	1.7	9

#	Article	IF	CITATIONS
561	Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. Journal of Colloid and Interface Science, 2020, 577, 256-264.	5.0	103
562	Phenazine-based organic cathode for aqueous zinc secondary batteries. Journal of Power Sources, 2020, 468, 228401.	4.0	103
563	Anodic Oxidation Strategy toward Structure-Optimized V ₂ O ₃ Cathode <i>via</i> Electrolyte Regulation for Zn-Ion Storage. ACS Nano, 2020, 14, 7328-7337.	7.3	229
564	Mechanistic Insights in Quinone-Based Zinc Batteries with Nonaqueous Electrolytes. Journal of the Electrochemical Society, 2020, 167, 100536.	1.3	7
566	Thermalâ€Gated Polymer Electrolytes for Smart Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 16480-16484.	7.2	80
567	Employing "one for two―strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries. Chemical Engineering Journal, 2020, 399, 125842.	6.6	132
568	A High Performing Znâ€lon Battery Cathode Enabled by In Situ Transformation of V ₂ O ₅ Atomic Layers. Angewandte Chemie - International Edition, 2020, 59, 17004-17011.	7.2	158
569	Waterâ€Pillared Sodium Vanadium Bronze Nanowires for Enhanced Rechargeable Magnesium Ion Storage. Small, 2020, 16, e2000741.	5.2	34
570	Layer-by-layer stacked amorphous V2O5/Graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Materials, 2020, 31, 156-163.	9.5	99
571	Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries. Materials Today Advances, 2020, 7, 100078.	2.5	54
572	Zinc–Organic Battery with a Wide Operationâ€ī emperature Window from â^'70 to 150 °C. Angewandte Chemie - International Edition, 2020, 59, 14577-14583.	7.2	158
573	Opportunities and Reality of Aqueous Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2001386.	10.2	92
574	Zinc–Organic Battery with a Wide Operationâ€īemperature Window from â^'70 to 150 °C. Angewandte Chemie, 2020, 132, 14685-14691.	1.6	49
575	Graphene-like Vanadium Oxygen Hydrate (VOH) Nanosheets Intercalated and Exfoliated by Polyaniline (PANI) for Aqueous Zinc-Ion Batteries (ZIBs). ACS Applied Materials & Interfaces, 2020, 12, 31564-31574.	4.0	126
576	The rise of aqueous rechargeable batteries with organic electrode materials. Journal of Materials Chemistry A, 2020, 8, 15479-15512.	5.2	90
577	Effect of cation size on alkali acetate-based â€~water-in-bisalt' electrolyte and its application in aqueous rechargeable lithium battery. Applied Materials Today, 2020, 20, 100728.	2.3	10
578	A Highâ€Energy and Longâ€Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn ²⁺ Coinsertion. Small, 2020, 16, e2001228.	5.2	75
579	Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery. ACS Energy Letters, 2020, 5, 2256-2264.	8.8	175

#	Article	IF	CITATIONS
580	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	8.8	303
581	Design of Highly Reversible Zinc Anodes for Aqueous Batteries Using Preferentially Oriented Electrolytic Zinc. Batteries and Supercaps, 2020, 3, 1220-1232.	2.4	7
582	To the synthesis and characterization of layered metal phosphorus triselenides proposed for electrochemical sensing and energy applications. Chemical Physics Letters, 2020, 754, 137627.	1.2	12
583	Thermalâ€Gated Polymer Electrolytes for Smart Zincâ€lon Batteries. Angewandte Chemie, 2020, 132, 16622-16626.	1.6	13
584	A Corrosionâ€Resistant and Dendriteâ€Free Zinc Metal Anode in Aqueous Systems. Small, 2020, 16, e2001736.	5.2	354
585	Pillaring Effect of K Ion Anchoring for Stable V ₂ O ₅ â€Based Zincâ€lon Battery Cathodes. ChemNanoMat, 2020, 6, 797-805.	1.5	47
586	Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Materials, 2020, 28, 205-215.	9.5	136
587	Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate. Nano Letters, 2020, 20, 2899-2906.	4.5	208
588	Interlayer Engineering of Layered Cathode Materials for Advanced Zn Storage. CheM, 2020, 6, 817-819.	5.8	7
589	A Longâ€Life Batteryâ€Type Electrochromic Window with Remarkable Energy Storage Ability. Solar Rrl, 2020, 4, 2070036.	3.1	27
590	Metalâ€Organic Framework Integrated Anodes for Aqueous Zincâ€ion Batteries. Advanced Energy Materials, 2020, 10, 1904215.	10.2	348
591	Bioâ€Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zincâ€Ion Batteries. Chemistry - an Asian Journal, 2020, 15, 1290-1295.	1.7	31
592	A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery. Nano-Micro Letters, 2020, 12, 67.	14.4	85
593	Synergetic ternary metal oxide nanodots-graphene cathode for high performance zinc energy storage. Chinese Chemical Letters, 2020, 31, 2358-2364.	4.8	21
594	Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nature Communications, 2020, 11, 1348.	5.8	100
595	Anti-freezing flexible aqueous Zn–MnO ₂ batteries working at â^35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 6828-6841.	5.2	196
596	A high-power aqueous rechargeable Fe-I2 battery. Energy Storage Materials, 2020, 28, 247-254.	9.5	63
597	NASICON Na ₃ V ₂ (PO ₄) ₃ Enables Quasi-Two-Stage Na ⁺ and Zn ²⁺ Intercalation for Multivalent Zinc Batteries. Chemistry of Materials 2020, 32, 3028-3035	3.2	75

#	Article	IF	CITATIONS
598	High-Voltage Operation of a V ₂ O ₅ Cathode in a Concentrated Gel Polymer Electrolyte for High-Energy Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2020, 12, 15305-15312.	4.0	45
599	Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7713-7723.	5.2	84
600	Constructing a Superâ€Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 9377-9381.	7.2	551
601	Fast anion intercalation into graphite cathode enabling high-rate rechargeable zinc batteries. Journal of Power Sources, 2020, 457, 227994.	4.0	42
602	Highly stable Zn metal anodes enabled by atomic layer deposited Al ₂ O ₃ coating for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7836-7846.	5.2	323
603	Constructing a Super‣aturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2020, 132, 9463-9467.	1.6	327
604	Catalyzing the Intercalation Storage Capacity of Aqueous Zinc-Ion Battery Constructed with Zn(II) Preinserted Organo-Vanadyl Hybrid Cathode. ACS Applied Energy Materials, 2020, 3, 3425-3434.	2.5	27
605	Preparation and electrochemical performance of binder-free sodium vanadium bronze thin film electrodes based on a low temperature liquid phase deposition method. Materials Chemistry and Physics, 2020, 249, 122935.	2.0	11
606	The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 8084-8095.	5.2	109
607	2D Amorphous V ₂ O ₅ /Graphene Heterostructures for Highâ€6afety Aqueous Znâ€lon Batteries with Unprecedented Capacity and Ultrahigh Rate Capability. Advanced Energy Materials, 2020, 10, 2000081.	10.2	256
608	Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nature Communications, 2020, 11, 1634.	5.8	426
609	Doubleâ€5heet Vanadium Oxide as a Cathode Material for Calciumâ€Ion Batteries. ChemNanoMat, 2020, 6, 1049-1053.	1.5	29
610	The adsorption and migration behavior of divalent metals (Mg, Ca, and Zn) on pristine and defective graphene. Carbon, 2020, 163, 276-287.	5.4	36
611	In-situ pillared MXene as a viable zinc-ion hybrid capacitor. Electrochimica Acta, 2020, 341, 136061.	2.6	76
612	Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Znâ€MnO ₂ Batteries with Superior Rate Capabilities. Advanced Energy Materials, 2020, 10, 2000035.	10.2	287
613	Facile hydrothermal synthesis and electrochemical properties of (NH4)2V6O16 nanobelts for aqueous rechargeable zinc ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124621.	2.3	37
614	Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Longâ€Life Aqueous Zinc–Organic Batteries. Advanced Materials, 2020, 32, e2000338.	11.1	215
615	Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Film― Advanced Materials, 2020, 32, e2003070.	11.1	88

#	Δρτιςι ε	IF	CITATIONS
π	A strategy associated with conductive binder and 3D current collector for aqueous zinc-ion batteries		CHAHONS
616	with high mass loading. Journal of Electroanalytical Chemistry, 2020, 873, 114395.	1.9	13
617	Strategies for Dendriteâ€Free Anode in Aqueous Rechargeable Zinc Ion Batteries. Advanced Energy Materials, 2020, 10, 2001599.	10.2	376
618	Boosting the Cycling Stability of Aqueous Flexible Zn Batteries via F Doping in Nickel–Cobalt Carbonate Hydroxide Cathode. Small, 2020, 16, e2001935.	5.2	54
619	Recent advances in architecture design of nanoarrays for flexible solid-state aqueous batteries. Nano Futures, 2020, 4, 032002.	1.0	15
620	Electrodeposition of MnO2 nanoflakes onto carbon nanotube film towards high-performance flexible quasi-solid-state Zn-MnO2 batteries. Journal of Electroanalytical Chemistry, 2020, 873, 114392.	1.9	37
621	Aromatic organic molecular crystal with enhanced ï€â€"ï€ stacking interaction for ultrafast Zn-ion storage. Energy and Environmental Science, 2020, 13, 2515-2523.	15.6	166
622	Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2020, 32, e2002038.	11.1	148
623	Hierarchical NiSe ₂ Nanosheet Arrays as a Robust Cathode toward Superdurable and Ultrafast Ni–Zn Aqueous Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34931-34940.	4.0	47
624	Building High Rate Capability and Ultrastable Dendriteâ€Free Organic Anode for Rechargeable Aqueous Zinc Batteries. Advanced Science, 2020, 7, 2000146.	5.6	117
625	Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale, 2020, 12, 20638-20648.	2.8	61
626	A Na ₃ V ₂ (PO ₄) ₂ O _{1.6} F _{1.4} Cathode of Znâ€Ion Battery Enabled by a Waterâ€inâ€Bisalt Electrolyte. Advanced Functional Materials, 2020, 30, 2003511.	7.8	103
627	Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. Advanced Materials, 2020, 32, e2003425.	11.1	278
628	Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries. Joule, 2020, 4, 1557-1574.	11.7	429
629	<i>In situ</i> grown 2D hydrated ammonium vanadate nanosheets on carbon cloth as a free-standing cathode for high-performance rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2020, 8, 15130-15139.	5.2	91
630	Interfacial chemical binding and improved kinetics assisting stable aqueous Zn–MnO2 batteries. Materials Today Energy, 2020, 17, 100475.	2.5	53
631	A high-power and long-life aqueous rechargeable Zn-ion battery based on hierarchically porous sodium vanadate. Chemical Communications, 2020, 56, 9174-9177.	2.2	19
632	Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Current Opinion in Electrochemistry, 2020, 21, 84-92.	2.5	177
633	Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery. ACS Applied Materials & amp; Interfaces, 2020, 12, 10420-10427.	4.0	43
#	Article	IF	CITATIONS
-----	---	--------	-----------
634	Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. ChemSusChem, 2020, 13, 2160-2185.	3.6	121
635	The Development of Vanadyl Phosphate Cathode Materials for Energy Storage Systems: A Review. Chemistry - A European Journal, 2020, 26, 8190-8204.	1.7	21
636	Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes. Nano-Micro Letters, 2020, 12, 60.	14.4	60
637	Fast-response/stable Ni–Bi cells achieved using hollowed-out Bi@carbon nanospheres: a preferred electricity storage choice to couple with clean energy harvesting. Materials Chemistry Frontiers, 2020, 4, 1249-1255.	3.2	15
638	NH ₄ V ₃ O ₈ ·0.5H ₂ O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode. Materials Chemistry Frontiers, 2020, 4, 1434-1443.	3.2	81
639	Porous hydrated ammonium vanadate as a novel cathode for aqueous rechargeable Zn-ion batteries. Chemical Communications, 2020, 56, 3785-3788.	2.2	27
640	Multi‣cale Investigations of Î′â€Ni _{0.25} V ₂ O ₅ ·nH ₂ O Cathode Materials in Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2000058.	10.2	173
641	Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries. Nano-Micro Letters, 2020, 12, 56.	14.4	107
642	Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. IScience, 2020, 23, 100943.	1.9	83
643	Achieving a stable zinc electrode with ultralong cycle life by implementing a flowing electrolyte. Journal of Power Sources, 2020, 453, 227856.	4.0	31
644	Perchlorate Based "Oversaturated Gel Electrolyte―for an Aqueous Rechargeable Hybrid Zn–Li Battery. ACS Applied Energy Materials, 2020, 3, 2526-2536.	2.5	31
645	Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2020, 827, 154273.	2.8	51
646	An organic/inorganic electrode-based hydronium-ion battery. Nature Communications, 2020, 11, 959.	5.8	157
647	Preparation of organic poly material as anode in aqueous aluminum-ion battery. Journal of Electroanalytical Chemistry, 2020, 861, 113967.	1.9	25
648	Hydrogenâ€Free and Dendriteâ€Free Allâ€Solidâ€State Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1908	1211.1	381
649	An aqueous manganese–lead battery for large-scale energy storage. Journal of Materials Chemistry A, 2020, 8, 5959-5967.	5.2	29
650	Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Materials Today Energy, 2020, 16, 100396.	2.5	245
651	High-performance Na1.25V3O8 nanosheets for aqueous zinc-ion battery by electrochemical induced de-sodium at high voltage. Chinese Chemical Letters, 2020, 31, 2268-2274.	4.8	39

#	Article	IF	CITATIONS
652	Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. CheM, 2020, 6, 968-984.	5.8	274
653	Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode. Energy Storage Materials, 2020, 28, 64-72.	9.5	105
654	A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy, 2020, 71, 104583.	8.2	75
655	Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chemical Engineering Journal, 2020, 389, 124405.	6.6	122
656	New Insights into the Reaction Mechanism of Sodium Vanadate for an Aqueous Zn Ion Battery. Chemistry of Materials, 2020, 32, 2053-2060.	3.2	37
657	VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries. Chemical Engineering Journal, 2020, 390, 124118.	6.6	154
658	Rechargeable Aqueous Zinc–Manganese Dioxide/Graphene Batteries with High Rate Capability and Large Capacity. ACS Applied Energy Materials, 2020, 3, 1742-1748.	2.5	46
659	Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chemical Engineering Journal, 2020, 387, 124161.	6.6	170
660	Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Materials, 2020, 27, 109-116.	9.5	262
661	Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy, 2020, 70, 104519.	8.2	188
662	Suppression of zinc dendrite formation on anode of Zn/LiFePO4 aqueous rechargeable batteries using electrodeposition. Materials Today: Proceedings, 2020, 25, 93-96.	0.9	2
663	Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries. Ceramics International, 2020, 46, 11237-11245.	2.3	33
664	Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. Journal of Power Sources, 2020, 449, 227594.	4.0	52
665	Understanding the Role of Graphene in Hydrated Layered V-Oxide Based Cathodes for Rechargeable Aqueous Zn-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070515.	1.3	5
666	Designing Aqueous Organic Electrolytes for Zinc–Air Batteries: Method, Simulation, and Validation. Advanced Energy Materials, 2020, 10, 1903470.	10.2	45
667	An Aqueous Hybrid Zincâ€Bromine Battery with High Voltage and Energy Density. ChemElectroChem, 2020, 7, 1531-1536	1.7	33
668	Fast Zn2+ kinetics of vanadium oxide nanotubes in high-performance rechargeable zinc-ion batteries. Journal of Power Sources, 2020, 451, 227767.	4.0	20
669	Membraneâ€Free Zn/MnO ₂ Flow Battery for Largeâ€Scale Energy Storage. Advanced Energy Materials, 2020, 10, 1902085.	10.2	111

#	Article	IF	CITATIONS
670	Rational-design of polyaniline cathode using proton doping strategy by graphene oxide for enhanced aqueous zinc-ion batteries. Journal of Power Sources, 2020, 450, 227716.	4.0	71
671	Porous V ₂ O ₅ yolk–shell microspheres for zinc ion battery cathodes: activation responsible for enhanced capacity and rate performance. Journal of Materials Chemistry A, 2020, 8, 5186-5193.	5.2	119
672	Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries. Journal of Materials Chemistry A, 2020, 8, 3252-3261.	5.2	89
673	Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature, 2020, 577, 492-496.	13.7	145
674	A Perspective: the Technical Barriers of Zn Metal Batteries. Chemical Research in Chinese Universities, 2020, 36, 55-60.	1.3	16
675	Lithiophilicity conversion of carbon paper with uniform Cu2+1O coating: Boosting stable Li-Cu2+1O-CP composite anode through melting infusion. Chemical Engineering Journal, 2020, 388, 124238.	6.6	5
676	A Simple Halogen-Free Magnesium Electrolyte for Reversible Magnesium Deposition through Cosolvent Assistance. ACS Applied Materials & Interfaces, 2020, 12, 10252-10260.	4.0	31
677	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	9.5	182
678	Aqueous zinc ion batteries: focus on zinc metal anodes. Chemical Science, 2020, 11, 2028-2044.	3.7	440
679	2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy, 2020, 70, 104573.	8.2	237
680	Localized Ostwald Ripening Guided Dissolution/Regrowth to Ancient Chinese Coinâ€ s haped VO ₂ Nanoplates with Enhanced Mass Transfer for Zinc Ion Storage. Advanced Functional Materials, 2020, 30, 2000472.	7.8	76
681	High-voltage non-aqueous Zn/K1.6Mn1.2Fe(CN)6 batteries with zero capacity loss in extremely long working duration. Energy Storage Materials, 2020, 29, 246-253.	9.5	51
682	Ultrathin hybrid nanobelts of single-crystalline VO2 and Poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability. Journal of Power Sources, 2020, 463, 228223.	4.0	65
683	Water-in-salt electrolyte Zn/LiFePO4 batteries. Journal of Electroanalytical Chemistry, 2020, 867, 114193.	1.9	38
684	Layered Ca _{0.28} MnO ₂ ·0.5H ₂ O as a High Performance Cathode for Aqueous Zincâ€lon Battery. Small, 2020, 16, e2000597.	5.2	155
685	Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Materials, 2020, 29, 60-70.	9.5	157
686	Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule, 2020, 4, 771-799.	11.7	1,164
687	High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Applied Energy Materials, 2020, 3, 4499-4508.	2.5	95

#	Article	IF	CITATIONS
688	An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 8397-8409.	5.2	98
689	Electrode Materials for Practical Rechargeable Aqueous Znâ€lon Batteries: Challenges and Opportunities. ChemElectroChem, 2020, 7, 2714-2734.	1.7	54
690	Charge Storage Mechanism of a Quinone Polymer Electrode for Zinc-ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070558.	1.3	24
691	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie - International Edition, 2020, 59, 18322-18333.	7.2	86
692	Cobalt-Doped Layered MnO ₂ Thin Film Electrochemically Grown on Nitrogen-Doped Carbon Cloth for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4720-4726.	2.5	62
693	First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy, 2020, 74, 104851.	8.2	101
694	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie, 2020, 132, 18478-18489.	1.6	36
695	In-situ XRD study of the structure and electrochemical performance of V2O5 nanosheets in aqueous zinc ion batteries. Inorganic Chemistry Communication, 2020, 117, 107953.	1.8	24
696	Unveiling the Charge Storage Mechanism in Nonaqueous and Aqueous Zn/Na ₃ V ₂ (PO ₄) ₂ F ₃ Batteries. ACS Applied Energy Materials, 2020, 3, 5015-5023.	2.5	32
697	The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters, 2020, 5, 1665-1675.	8.8	271
698	Understanding the mechanism of byproduct formation with <i>in operando</i> synchrotron techniques and its effects on the electrochemical performance of VO ₂ (B) nanoflakes in aqueous rechargeable zinc batteries. Journal of Materials Chemistry A, 2020, 8, 9567-9578.	5.2	40
699	Ni-Doped magnesium manganese oxide as a cathode and its application in aqueous magnesium-ion batteries with high rate performance. Inorganic Chemistry Frontiers, 2020, 7, 2168-2177.	3.0	23
700	Layered VSe ₂ : a promising host for fast zinc storage and its working mechanism. Journal of Materials Chemistry A, 2020, 8, 9313-9321.	5.2	72
701	Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage. Energy Storage Materials, 2020, 29, 113-120.	9.5	85
702	Vanadium-Based Oxide on Two-Dimensional Vanadium Carbide MXene (V ₂ O _{<i>x</i>} @V ₂ CT _{<i>x</i>}) as Cathode for Rechargeable Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4677-4689.	2.5	138
703	A Layered Zn _{0.4} VOPO ₄ ·0.8H ₂ O Cathode for Robust and Stable Zn Ion Storage. ACS Applied Energy Materials, 2020, 3, 3919-3927.	2.5	60
704	A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. Journal of Materials Chemistry A, 2020, 8, 9331-9344.	5.2	147
705	Challenges and Strategies for Highâ€Energy Aqueous Electrolyte Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 598-616.	7.2	272

#	Article	IF	CITATIONS
706	WÃ s srige Hochleistungsbatterien: Herausforderungen und Strategien. Angewandte Chemie, 2021, 133, 608-626.	1.6	14
707	Stabilization Perspective on Metal Anodes for Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2000962.	10.2	106
708	Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 52, 277-283.	7.1	97
709	Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. Journal of Energy Chemistry, 2021, 52, 377-384.	7.1	53
710	From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. Journal of Energy Chemistry, 2021, 54, 194-201.	7.1	171
711	Flexible and tailorable quasiâ€solidâ€state rechargeable Ag/Zn microbatteries with high performance. , 2021, 3, 167-175.		29
712	Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 655-667.	7.1	122
713	Recent advances in energy storage mechanism of aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 712-726.	7.1	211
714	Molten salt synthesis of α-MnO2/Mn2O3 nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 475-481.	7.1	56
715	An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density. Chinese Chemical Letters, 2021, 32, 926-931.	4.8	57
716	Interlayer Chemistry of Layered Electrode Materials in Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2007358.	7.8	28
717	Binder-free Cu-supported Ag nanowires for aqueous rechargeable silver-zinc batteries with ultrahigh areal capacity. Journal of Colloid and Interface Science, 2021, 586, 47-55.	5.0	10
718	"Double guarantee mechanism―of Ca ²⁺ -intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 79-89.	3.0	59
719	Recent advances of organometallic complexes for rechargeable batteries. Coordination Chemistry Reviews, 2021, 429, 213650.	9.5	41
720	Hyper oxidized V6O13+·nH2O layered cathode for aqueous rechargeable Zn battery: Effect on dual carriers transportation and parasitic reactions. Energy Storage Materials, 2021, 35, 47-61.	9.5	38
721	Facile synthesis of ultra-large V2O5 xerogel flakes and its application as a cathode material for aqueous Zn-ion batteries. Materials Today Communications, 2021, 26, 101849.	0.9	8
722	A Highly Flexible and Lightweight MnO ₂ /Graphene Membrane for Superior Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2007397.	7.8	153
723	Dual defects boosting zinc ion storage of hierarchical vanadium oxide fibers. Chemical Engineering Journal, 2021, 404, 126536.	6.6	47

#	Article	IF	CITATIONS
724	Understanding the Gap between Academic Research and Industrial Requirements in Rechargeable Zincâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 60-71.	2.4	32
725	Insights into the Structure Stability of Prussian Blue for Aqueous Zinc Ion Batteries. Energy and Environmental Materials, 2021, 4, 111-116.	7.3	94
726	β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. Journal of Energy Chemistry, 2021, 56, 365-373.	7.1	114
727	Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. Journal of Energy Chemistry, 2021, 55, 549-556.	7.1	132
728	Highly stable aqueous rechargeable Zn-ion battery: The synergistic effect between NaV6O15 and V2O5 in skin-core heterostructured nanowires cathode. Journal of Energy Chemistry, 2021, 55, 25-33.	7.1	44
729	Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges. Journal of Energy Chemistry, 2021, 57, 516-542.	7.1	48
730	Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. Journal of Power Sources, 2021, 482, 228904.	4.0	24
731	Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Materials Chemistry Frontiers, 2021, 5, 744-762.	3.2	49
732	Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Research, 2021, 14, 754-761.	5.8	96
733	Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell. Chemical Engineering Journal, 2021, 405, 126969.	6.6	74
734	Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chemical Engineering Journal, 2021, 405, 126737.	6.6	76
735	Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries. Journal of Energy Chemistry, 2021, 56, 223-237.	7.1	155
736	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 896-903.	7.2	108
737	Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries. Applied Surface Science, 2021, 538, 148043.	3.1	63
738	Effects of waterâ€based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries. , 2021, 3, 473-481.		44
739	Edge-rich vertical graphene nanosheets templating V2O5 for highly durable zinc ion battery. Carbon, 2021, 172, 207-213.	5.4	60
740	Pencil Drawing Stable Interface for Reversible and Durable Aqueous Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2006495.	7.8	153
741	Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy, 2021, 80, 105478.	8.2	318

#	Article	IF	CITATIONS
742	Structural engineering of cathodes for improved Zn-ion batteries. Journal of Energy Chemistry, 2021, 58, 147-155.	7.1	52
743	Strategies for the Stabilization of Zn Metal Anodes for Znâ€lon Batteries. Advanced Energy Materials, 2021, 11, .	10.2	431
744	Covalent organic framework-based materials for energy applications. Energy and Environmental Science, 2021, 14, 688-728.	15.6	209
745	High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life. Journal of Energy Chemistry, 2021, 58, 602-609.	7.1	44
746	Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Metals, 2021, 40, 309-328.	3.6	115
747	Highâ€Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrierâ€Hosting Potential Compensation. Angewandte Chemie, 2021, 133, 5503-5512.	1.6	13
748	The strategies to improve the layered-structure cathodes for aqueous multivalent metal-ionÂbatteries. Materials Today Energy, 2021, 19, 100595.	2.5	16
749	Hydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V2O5â‹nH2O/rGO-PVA) film as a binder-free electrode for solid-state Zn-ion batteries. Journal of Colloid and Interface Science, 2021, 587, 845-854.	5.0	56
750	Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. Journal of Energy Chemistry, 2021, 59, 134-159.	7.1	142
751	Vanadium hexacyanoferrate with two redox active sites as cathode material for aqueous Zn-ion batteries. Journal of Power Sources, 2021, 484, 229263.	4.0	39
752	Inâ€Situ Electrochemically Activated Surface Vanadium Valence in V ₂ C MXene to Achieve High Capacity and Superior Rate Performance for Znâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2008033.	7.8	156
753	Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: Cationic conversion reaction works. Energy Storage Materials, 2021, 35, 679-686.	9.5	63
754	Free-standing composite of NaxV2O5•nH2O nanobelts and carbon nanotubes with interwoven architecture for large areal capacity and high-rate capability aqueous zinc ion batteries. Electrochimica Acta, 2021, 368, 137600.	2.6	25
755	Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. Journal of Power Sources, 2021, 484, 229284.	4.0	57
756	Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy, 2021, 81, 105601.	8.2	113
757	Sn stabilized pyrovanadate structure rearrangement for zinc ion battery. Nano Energy, 2021, 81, 105584.	8.2	41
758	Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective. Energy Storage Materials, 2021, 35, 443-469.	9.5	42
759	Vanadate-based electrodes for rechargeable batteries. Materials Chemistry Frontiers, 2021, 5, 1585-1609.	3.2	12

#	ARTICLE	IF	CITATIONS
760	Highâ€Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrierâ€Hosting Potential Compensation. Angewandte Chemie - International Edition, 2021, 60, 5443-5452.	7.2	37
761	The Current Developments and Perspectives of V ₂ O ₅ as Cathode for Rechargeable Aqueous Zincâ€ion Batteries. Energy Technology, 2021, 9, 2000789.	1.8	55
762	Interfacial polarization triggered by glutamate accelerates dehydration of hydrated zinc ions for zinc-ion batteries. Chemical Engineering Journal, 2021, 416, 127704.	6.6	29
763	Recent Developments of Preintercalated Cathodes for Rechargeable Aqueous Znâ€lon Batteries. Energy Technology, 2021, 9, 2000829.	1.8	12
764	Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries and Supercaps, 2021, 4, 389-406.	2.4	23
765	Recent Advances in Aqueous Zincâ€ion Hybrid Capacitors: A Minireview. ChemElectroChem, 2021, 8, 484-491.	1.7	21
766	Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Materials, 2021, 35, 731-738.	9.5	106
767	Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. Journal of Power Sources, 2021, 485, 229329.	4.0	37
768	Innovative zinc-based batteries. Journal of Power Sources, 2021, 484, 229309.	4.0	70
769	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc″odine Battery with Improved Power and Energy Densities. Angewandte Chemie, 2021, 133, 3835-3842.	1.6	32
770	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zincâ€lodine Battery with Improved Power and Energy Densities. Angewandte Chemie - International Edition, 2021, 60, 3791-3798.	7.2	111
771	Zn electrode/electrolyte interfaces of Zn batteries: A mini review. Electrochemistry Communications, 2021, 122, 106898.	2.3	57
772	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	18.7	255
773	Mo-doped NH4V4O10 with enhanced electrochemical performance in aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2021, 858, 158380.	2.8	28
774	Shape-Controlled and Well-Arrayed Heterogeneous Nanostructures via Melting Point Modulation at the Nanoscale. ACS Applied Materials & amp; Interfaces, 2021, 13, 3358-3368.	4.0	15
775	The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Materials and Design, 2021, 199, 109403.	3.3	42
776	Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries. Small, 2021, 17, e2004108.	5.2	62
777	Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance. Chemical Engineering Journal, 2021, 409, 127943.	6.6	38

#	Article	IF	CITATIONS
778	Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 34, 545-562.	9.5	330
779	Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Materials Today, 2021, 42, 73-98.	8.3	159
780	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie, 2021, 133, 909-916.	1.6	9
781	Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Materials, 2021, 35, 19-46.	9.5	212
782	Transition metal vanadates electrodes in lithium-ion batteries: A holistic review. Energy Storage Materials, 2021, 35, 169-191.	9.5	56
783	On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Science Bulletin, 2021, 66, 545-552.	4.3	39
784	The electrolyte comprising more robust water and superhalides transforms Znâ€metal anode reversiblyÂand dendriteâ€free. , 2021, 3, 339-348.		100
785	Cathodes for Aqueous Znâ€lon Batteries: Materials, Mechanisms, and Kinetics. Chemistry - A European Journal, 2021, 27, 830-860.	1.7	84
786	<i>Operando</i> constructing vanadium tetrasulfide-based heterostructures enabled by extrinsic adsorbed oxygen for enhanced zinc ion storage. Journal of Materials Chemistry A, 2021, 9, 11433-11441.	5.2	22
787	Ultrastable Zinc Anodes Enabled by Anti-Dehydration Ionic Liquid Polymer Electrolyte for Aqueous Zn Batteries. ACS Applied Materials & Interfaces, 2021, 13, 4008-4016.	4.0	58
788	Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy and Environmental Science, 2021, 14, 3796-3839.	15.6	257
789	Electrochemical performance and reaction mechanism investigation of V ₂ O ₅ positive electrode material for aqueous rechargeable zinc batteries. Journal of Materials Chemistry A, 2021, 9, 16776-16786.	5.2	19
790	A theoretical study on the role of ammonium ions in the double-layered V ₂ O ₅ electrode. Physical Chemistry Chemical Physics, 2021, 23, 4187-4194.	1.3	3
791	A new tunnel-type V ₄ O ₉ cathode for high power density aqueous zinc ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 4497-4506.	3.0	24
792	Suppressing cathode dissolution <i>via</i> guest engineering for durable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 7631-7639.	5.2	47
793	Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale, 2021, 13, 2399-2407.	2.8	86
794	An Anode-Free Zn–MnO ₂ Battery. Nano Letters, 2021, 21, 1446-1453.	4.5	131
795	Realizing an Allâ€Round Hydrogel Electrolyte toward Environmentally Adaptive Dendriteâ€Free Aqueous Zn–MnO ₂ Batteries. Advanced Materials, 2021, 33, e2007559.	11.1	250

#	Article	IF	CITATIONS
796	A unique morphology and interface dual-engineering strategy enables the holey C@VO ₂ cathode with enhanced storage kinetics for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 8792-8804.	5.2	37
797	Recent Developments of Zinc-Ion Batteries. , 2021, , 27-57.		1
798	Ultrathin nanoplatelets of six-line ferrihydrite enhances the magnetic properties of hexaferrite. Materials Chemistry Frontiers, 2021, 5, 3699-3709.	3.2	9
799	Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15404-15414.	5.2	62
800	Unravelling V ₆ O ₁₃ Diffusion Pathways <i>via</i> CO ₂ Modification for High-Performance Zinc Ion Battery Cathode. ACS Nano, 2021, 15, 1273-1281.	7.3	67
801	A nano interlayer spacing and rich defect 1T-MoS ₂ as cathode for superior performance aqueous zinc-ion batteries. Nanoscale Advances, 2021, 3, 3780-3787.	2.2	25
802	Extended Ï€-Conjugated System in Organic Cathode with Active Câ•N Bonds for Driving Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 655-661.	2.5	39
803	Electrochemically-induced structural reconstruction in promoting the Zn storage performance of a CaMn ₃ O ₆ cathode for superior long-life aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 16868-16877.	5.2	3
804	Optimizing the sulfonic groups of a polymer to coat the zinc anode for dendrite suppression. Chemical Communications, 2021, 57, 5326-5329.	2.2	30
805	lmpact of hydration on ion transport in Li ₂ Sn ₂ S ₅ · <i>x</i> H ₂ O. Journal of Materials Chemistry A, 2021, 9, 16532-16544.	5.2	13
806	Structurally reconstituted calcium manganate nanoparticles as a high-performance cathode for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5053-5059.	5.2	5
807	Capacity and phase stability of metal-substituted α-Ni(OH) ₂ nanosheets in aqueous Ni–Zn batteries. Materials Advances, 2021, 2, 3060-3074.	2.6	13
808	Anion deficiency motivated Na ₂ V ₆ O ₁₆ nanobelts for superior sustainable zinc ion storage. Journal of Materials Chemistry A, 2021, 9, 21209-21218.	5.2	19
809	Zn ²⁺ -Intercalated V ₂ O ₅ · <i>n</i> H ₂ O derived from V ₂ CT _{<i>x</i>} MXene for hyper-stable zinc-ion storage. Journal of Materials Chemistry A, 2021, 9, 17994-18005.	5.2	34
810	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.	15.6	314
811	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. Nano-Micro Letters, 2021, 13, 59.	14.4	78
812	Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy and Environmental Science, 2021, 14, 4463-4473.	15.6	203
813	Electrode and Conductive Additive Compatibility Yielding Excellent Rate Capability and Long Cycle Life for Sustainable Organic Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 1218-1227.	2.5	21

#	Article	IF	CITATIONS
814	A mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 22392-22398.	5.2	30
815	Electrochemical activation induced multi-valence variation of (NH ₄) ₂ V ₄ 9 as a high-performance cathode material for zinc-ion batteries. Chemical Communications, 2021, 57, 3615-3618.	2.2	16
816	Vanadium oxide bronzes as cathode active materials for non-lithium-based batteries. CrystEngComm, 2021, 23, 5267-5283.	1.3	6
817	The energy storage behavior of a phosphate-based cathode material in rechargeable zinc batteries. Chemical Communications, 2021, 57, 6253-6256.	2.2	10
818	Manganese buffer induced high-performance disordered MnVO cathodes in zinc batteries. Energy and Environmental Science, 2021, 14, 3954-3964.	15.6	57
819	Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. Journal of Materials Chemistry A, 2021, 9, 16565-16574.	5.2	67
820	Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms. Journal of Materials Chemistry A, 2021, 9, 5258-5275.	5.2	103
821	Generating H ⁺ in Catholyte and OH [–] in Anolyte: An Approach to Improve the Stability of Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 684-686.	8.8	49
822	V ₂ O ₃ @Amorphous Carbon as a Cathode of Zinc Ion Batteries with High Stability and Long Cycling Life. Industrial & Engineering Chemistry Research, 2021, 60, 1517-1525.	1.8	42
823	Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy and Environmental Science, 2021, 14, 5801-5815.	15.6	59
824	Construction of molybdenum vanadium oxide/nitride hybrid nanoplate arrays for aqueous zinc-ion batteries and reliable insights into the reaction mechanism. Journal of Materials Chemistry A, 2021, 9, 21313-21322.	5.2	8
825	Defect engineering <i>via</i> the F-doping of β-MnO ₂ cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries. Journal of Materials Chemistry A, 2021, 9, 17211-17222.	5.2	58
826	Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries. Nano-Micro Letters, 2021, 13, 34.	14.4	51
827	A four-electron Zn-12 aqueous battery enabled by reversible lâ^'/l2/l+ conversion. Nature Communications, 2021, 12, 170.	5.8	144
828	A rechargeable zinc-air battery based on zinc peroxide chemistry. Science, 2021, 371, 46-51.	6.0	551
829	Challenges and Strategies toward Cathode Materials for Rechargeable Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2004689	11.1	188
830	Sample dependent performance of aqueous copper hexacyanoferrate/zinc batteries. Materials Advances, 2021, 2, 2036-2044.	2.6	9
831	From solid electrolyte to zinc cathode: vanadium substitution in ZnPS3. JPhys Materials, 2021, 4, 024005.	1.8	1

#	Article	IF	CITATIONS
832	Maximizing Energy Storage of Flexible Aqueous Batteries through Decoupling Charge Carriers. Advanced Energy Materials, 2021, 11, 2003982.	10.2	53
833	<i>In Situ</i> Probing of Mass Exchange at the Solid Electrolyte Interphase in Aqueous and Nonaqueous Zn Electrolytes with EQCM-D. ACS Applied Materials & Interfaces, 2021, 13, 10131-10140.	4.0	16
834	Toward Practical Highâ€Arealâ€Capacity Aqueous Zincâ€Metal Batteries: Quantifying Hydrogen Evolution and a Solidâ€ion Conductor for Stable Zinc Anodes. Advanced Materials, 2021, 33, e2007406.	11.1	382
835	Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 1015-1033.	8.8	376
836	3D Porous Sponge-Inspired Electrode for High-Energy and High-Power Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 1833-1839.	2.5	17
837	Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes. Nano-Micro Letters, 2021, 13, 73.	14.4	106
838	Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO ₄ F Cathode. ACS Sustainable Chemistry and Engineering, 2021, 9, 3223-3231.	3.2	26
839	The Renaissance of Proton Batteries. Small Structures, 2021, 2, 2000113.	6.9	77
840	Observation of Structural Decomposition of Na ₃ V ₂ (PO ₄) ₃ and Na ₃ V ₂ (PO ₄) ₂ F ₃ as Cathodes for Aqueous Zn-Ion Batteries, ACS Applied Energy Materials, 2021, 4, 2797-2807.	2.5	32
841	Electrolyte Design for In Situ Construction of Highly Zn ²⁺ â€Conductive Solid Electrolyte Interphase to Enable Highâ€Performance Aqueous Znâ€lon Batteries under Practical Conditions. Advanced Materials, 2021, 33, e2007416.	11.1	484
842	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	1.3	158
843	Highâ€Performance Aqueous Na–Zn Hybrid Ion Battery Boosted by "Waterâ€Inâ€Gel―Electrolyte. Advance Functional Materials, 2021, 31, 2008783.	ed 7.8	45
844	A 1D–3D interconnected δ-MnO2 nanowires network as high-performance and high energy efficiency cathode material for aqueous zinc-ion batteries. Electrochimica Acta, 2021, 370, 137740.	2.6	43
845	A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm ^{–2} and 20 mAh cm ^{–2} . Journal of the American Chemical Society, 2021, 143, 3143-3152.	6.6	132
846	Sandwich‣ike Heterostructures of MoS ₂ /Graphene with Enlarged Interlayer Spacing and Enhanced Hydrophilicity as Highâ€Performance Cathodes for Aqueous Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2007480.	11.1	241
847	A Dendriteâ€Free Tin Anode for Highâ€Energy Aqueous Redox Flow Batteries. Advanced Materials, 2021, 33, e2008095.	11.1	31
848	Recent Progress and Challenges in Multivalent Metalâ€ion Hybrid Capacitors. Batteries and Supercaps, 2021, 4, 1201-1220.	2.4	14
849	Novel Energy Storage Center for High-Performance Rechargeable Aqueous Hybrid Zinc Energy Storage. Energy & Fuels, 2021, 35, 5352-5359.	2.5	5

#	Article	IF	CITATIONS
850	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 9610-9617.	7.2	90
851	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie, 2021, 133, 9696-9703.	1.6	5
852	Influence of Polyvinyl Pyrrolidone (PVP) on Vanadium-based Compound Composite Performances for Aqueous Zinc-Ion Batteries. International Journal of Electrochemical Science, 0, , 210349.	0.5	0
853	Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry. ACS Applied Materials & Interfaces, 2021, 13, 14112-14121.	4.0	18
854	Carbon Quantum Dots Promote Coupled Valence Engineering of V ₂ O ₅ Nanobelts for Highâ€Performance Aqueous Zincâ€Ion Batteries. ChemSusChem, 2021, 14, 2076-2083.	3.6	29
855	Toward a High-Performance Aqueous Zinc Ion Battery: Potassium Vanadate Nanobelts and Carbon Enhanced Zinc Foil. Nano Letters, 2021, 21, 2738-2744.	4.5	77
856	Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries. Advanced Energy Materials, 2021, 11, 2003054.	10.2	61
857	Recent progress and challenges of coâ€based compound for aqueous Zn battery. Nano Select, 2021, 2, 1642-1660.	1.9	9
858	Oxygen-deficient ammonium vanadate for flexible aqueous zinc batteries with high energy density and rate capability at â^'30 °C. Materials Today, 2021, 43, 53-61.	8.3	65
859	CaV6O16·3H2O nanorods as cathode for high-performance aqueous zinc-ion battery. Materials Letters, 2021, 287, 129285.	1.3	15
860	In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range. Journal of Power Sources, 2021, 487, 229369.	4.0	61
861	Constructing a High-Performance Aqueous Rechargeable Zinc-Ion Battery Cathode with Self-Assembled Mat-like Packing of Intertwined Ag(I) Pre-Inserted V ₃ O ₇ ·H ₂ O Microbelts with Reduced Graphene Oxide Core. ACS Sustainable Chemistry and Engineering, 2021, 9, 3985-3995	3.2	40
862	Synthesis and electrochemical properties of V2O5nH2O compound with reduced graphene oxide/polyvinyl alcohol film as the free-standing cathode for coin-typed aqueous Zn-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126087.	2.3	10
863	Spontaneous Growth of Alkali Metal Ion-Preintercalated Vanadium Pentoxide for High-Performance Aqueous Zinc-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5095-5104.	3.2	19
864	Synergistic Effect between S and Se Enhancing the Electrochemical Behavior of Se <i>_x</i> S <i>_y</i> in Aqueous Zn Metal Batteries. Advanced Functional Materials, 2021, 31, 2101237.	7.8	44
865	Controlling Vanadate Nanofiber Interlayer via Intercalation with Conducting Polymers: Cathode Material Design for Rechargeable Aqueous Zinc Ion Batteries. Advanced Functional Materials, 2021, 31, 2100005.	7.8	60
866	A Review on Electrolytes for Aqueous Zinc-Ion Batteries. Ceramist, 2021, 24, 35-53.	0.0	1
867	Advanced Aqueous Zincâ€ion Batteries Enabled by 3D Ternary MnO/Reduced Graphene Oxide/Multiwall Carbon Nanotube Hybrids. Energy Technology, 2021, 9, 2100022.	1.8	11

#	Article	IF	CITATIONS
868	Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem, 2021, 8, 1393-1429.	1.7	43
869	Dendritic Zn Deposition in Zincâ€Metal Batteries and Mitigation Strategies. Advanced Energy and Sustainability Research, 2021, 2, 2000082.	2.8	23
870	A Systematic Electrochemical Investigation of a Dimethylamine Cosolvent-Assisted Nonaqueous Zinc(II) Bis(trifluoromethylsulfonyl)imide Electrolyte. Journal of the Electrochemical Society, 2021, 168, 030516.	1.3	5
871	Uniform Zn Deposition Achieved by Ag Coating for Improved Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16869-16875.	4.0	129
872	Electrochemical Generation of Hydrated Zinc Vanadium Oxide with Boosted Intercalation Pseudocapacitive Storage for a High-Rate Flexible Zinc-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 16576-16584.	4.0	49
873	Engineering Vanadium Pentoxide Cathode for the Zeroâ€Strain Cation Storage via a Scalable Intercalationâ€Polymerization Approach. Advanced Functional Materials, 2021, 31, 2100164.	7.8	33
874	The effect of zinc shape on its corrosion mitigation as an anode in aqueous Zn/MnO2 battery. Journal of Electroanalytical Chemistry, 2021, 886, 115140.	1.9	3
875	Optimizing engineering of rechargeable aqueous zinc ion batteries to enhance the zinc ions storage properties of cathode material. Journal of Power Sources, 2021, 490, 229528.	4.0	26
876	Recent advances of vanadium-based cathode materials for zinc-ion batteries. Chinese Chemical Letters, 2021, 32, 3753-3761.	4.8	27
877	Recent Progress in Layered Manganese and Vanadium Oxide Cathodes for Znâ€lon Batteries. Energy Technology, 2021, 9, 2100011.	1.8	22
878	Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy, 2021, 82, 105739.	8.2	115
879	N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2021, 861, 158560.	2.8	40
880	Polypyrrole-Coated Manganese Dioxide Nanowires and Multi-Walled Carbon Nanotubes as High-Performance Electrodes for Zinc-Ion Batteries. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 522-527.	0.1	4
881	Maximized crystal water content and charge-shielding effect in layered vanadate render superior aqueous zinc-ion battery. Materials Today Energy, 2021, 21, 100757.	2.5	18
882	Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries. Nanomaterials, 2021, 11, 1054.	1.9	26
883	Sulfonic-Group-Grafted Ti ₃ C ₂ T _{<i>x</i>} MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS Nano, 2021, 15, 9065-9075.	7.3	78
884	Insights on Flexible Zincâ€ion Batteries from Lab Research to Commercialization. Advanced Materials, 2021, 33, e2007548.	11.1	191
885	Heterometallic Seedâ€Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heatâ€Resistant Zinc Batteries. Advanced Functional Materials, 2021, 31, 2101 <u>607.</u>	7.8	109

#	ARTICLE	IF	CITATIONS
886	Self-initiated coating of polypyrrole on MnO2/Mn2O3 nanocomposite for high-performance aqueous zinc-ion batteries. Applied Surface Science, 2021, 545, 149041.	3.1	28
887	Electrokineticâ€Driven Fast Ion Delivery for Reversible Aqueous Zinc Metal Batteries with High Capacity. Small, 2021, 17, e2008059.	5.2	11
888	A Highâ€Rate and Ultrastable Aqueous Zincâ€lon Battery with a Novel MgV ₂ O ₆ ·1.7H ₂ O Nanobelt Cathode. Small, 2021, 17, e2100318.	5.2	58
889	Facile and Scalable Synthesis of 3D Structures of V ₁₀ O ₂₄ ·12H ₂ O Nanosheets Coated with Carbon toward Ultrafast and Ultrastable Zinc Storage. ACS Applied Materials & Interfaces, 2021, 13, 18704-18712.	4.0	29
890	Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Research, 2021, 14, 3174-3187.	5.8	40
891	Unlocking the Optimal Aqueous δ-Bi2O3 Anode via Unifying Octahedrally Liberated Bi-Atoms and Spilled Nano-Bi Exsolution. Energy Storage Materials, 2021, 36, 376-386.	9.5	37
892	Sandwich Structure of 3D Porous Carbon and Waterâ€Pillared V ₂ O ₅ Nanosheets for Superior Zincâ€lon Storage Properties. ChemElectroChem, 2021, 8, 1784-1791.	1.7	7
893	Electrochemical Zinc Ion Capacitors: Fundamentals, Materials, and Systems. Advanced Energy Materials, 2021, 11, 2100201.	10.2	156
894	Rechargeable Zinc-Electrolytic Manganese Dioxide (EMD) Battery with a Flexible Chitosan-Alkaline Electrolyte. ACS Applied Energy Materials, 2021, 4, 4248-4258.	2.5	15
895	Constructing Phase-Transitional NiS _{<i>x</i>} @Nitrogen-Doped Carbon Cathode Material with High Rate Capability and Cycling Stability for Alkaline Zinc-Based Batteries. ACS Applied Materials & Interfaces, 2021, 13, 19008-19015.	4.0	4
896	Aqueous Rechargeable Znâ€ion Batteries: Strategies for Improving the Energy Storage Performance. ChemSusChem, 2021, 14, 1987-2022.	3.6	59
897	High-performance (NH4)2V6O16·0.9H2O nanobelts modified with reduced graphene oxide for aqueous zinc ion batteries. Chinese Chemical Letters, 2021, 32, 3793-3798.	4.8	13
898	In Situ/Operando (Soft) Xâ€ray Spectroscopy Study of Beyond Lithiumâ€ion Batteries. Energy and Environmental Materials, 2021, 4, 139-157.	7.3	26
899	Amine-Functionalized Carbon Cloth Host for Dendrite-Free Zn Metal Anodes. ACS Applied Energy Materials, 2021, 4, 4482-4488.	2.5	22
900	In-situ tuning the NH4+ extraction in (NH4)2V4O9 nanosheets towards high performance aqueous zinc ion batteries. Journal of Power Sources, 2021, 492, 229629.	4.0	29
901	Constructing Three-Dimensional Structured V ₂ O ₅ /Conductive Polymer Composite with Fast Ion/Electron Transfer Kinetics for Aqueous Zinc-Ion Battery. ACS Applied Energy Materials, 2021, 4, 4208-4216.	2.5	45
902	Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries. Green Energy and Environment, 2023, 8, 318-330.	4.7	12
903	Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. Energy Storage Materials, 2021, 37, 87-93.	9.5	31

#	Article	IF	CITATIONS
904	Quicker and More Zn ²⁺ Storage Predominantly from the Interface. Advanced Materials, 2021, 33, e2100359.	11.1	111
905	High-mass loading V3O7·H2O nanoarray for Zn-ion battery: New synthesis and two-stage ion intercalation chemistry. Nano Energy, 2021, 83, 105835.	8.2	100
906	Understanding the Dissolution and Phase Transformation Mechanisms in Aqueous Zn/α-V ₂ O ₅ Batteries. Chemistry of Materials, 2021, 33, 4089-4098.	3.2	74
907	Multidimensional Nonstoichiometric Electrode Materials for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100640.	10.2	25
908	High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Materials, 2021, 37, 378-386.	9.5	162
909	Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45, 191-212.	8.3	171
910	Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries. Angewandte Chemie, 2021, 133, 13145-13151.	1.6	16
911	Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries. Angewandte Chemie - International Edition, 2021, 60, 13035-13041.	7.2	239
913	Aqueous Rechargeable Multivalent Metalâ€Ion Batteries: Advances and Challenges. Advanced Energy Materials, 2021, 11, 2100608.	10.2	122
914	Reduced Intercalation Energy Barrier by Rich Structural Water in Spinel ZnMn ₂ O ₄ for High-Rate Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23822-23832.	4.0	40
915	Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges. Materials Today, 2021, 45, 169-190.	8.3	53
916	Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries. Nanotechnology, 2021, 32, 315405.	1.3	9
917	A Chemically Selfâ€Charging Flexible Solidâ€State Zincâ€Ion Battery Based on VO ₂ Cathode and Polyacrylamide–Chitin Nanofiber Hydrogel Electrolyte. Advanced Energy Materials, 2021, 11, 2003902.	10.2	77
918	Recent advances in rechargeable Zn-based batteries. Journal of Power Sources, 2021, 493, 229677.	4.0	41
919	Synthesis, Characterization and Electrochemical Evaluation of Layered Vanadium Phosphates as Cathode Material for Aqueous Rechargeable Zn-ion Batteries. Frontiers in Materials, 2021, 8, .	1.2	8
920	Rich Alkali Ions Preintercalated Vanadium Oxides for Durable and Fast Zinc-Ion Storage. ACS Energy Letters, 2021, 6, 2111-2120.	8.8	94
921	Modulating MnO ₂ Interface with Flexible and Self-Adhering Alkylphosphonic Layers for High-Performance Zn-MnO ₂ Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23724-23731.	4.0	13
922	Nanostructured arrays for metal–ion battery and metal–air battery applications. Journal of Power Sources, 2021, 493, 229722.	4.0	22

#	Article	IF	CITATIONS
923	Ammonium Ion and Structural Water <scp>Coâ€Assisted</scp> Zn ²⁺ Intercalation/ <scp>Deâ€Intercalation</scp> in <scp>NH₄V₄O₁₀</scp> â^™0. <scp>28H₂O</scp> ^{â€< Chinese Journal of Chemistry, 2021, 39, 1885-1890.}	:/sup>.	19
924	High-Capacity and Long-Lifespan Aqueous LiV3O8/Zn Battery Using Zn/Li Hybrid Electrolyte. Nanomaterials, 2021, 11, 1429.	1.9	8
925	Establishing High-Performance Quasi-Solid Zn/I ₂ Batteries with Alginate-Based Hydrogel Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 24756-24764.	4.0	64
926	Porous structure ZnV2O4/C-N composite activating vanadium-based cathode in aqueous zinc-ion batteries. Materials Today Communications, 2021, 27, 102271.	0.9	8
927	Successive electrochemical conversion reaction to understand the performance of aqueous Zn/MnO2 batteries with Mn2+ additive. Materials Today Energy, 2021, 20, 100646.	2.5	51
928	Free-standing manganese oxide on flexible graphene films as advanced electrodes for stable, high energy-density solidâ€state zinc-ion batteries. Chemical Engineering Journal, 2021, 414, 128916.	6.6	48
929	Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zincâ€ion batteries. Nano Energy, 2021, 84, 105876.	8.2	172
930	Sulfite modified and ammonium ion intercalated vanadium hydrate with enhanced redox kinetics for aqueous zinc ion batteries. Journal of Power Sources, 2021, 496, 229832.	4.0	31
931	In Situ Lattice Tunnel Distortion of Vanadium Trioxide for Enhancing Zinc Ion Storage. Advanced Energy Materials, 2021, 11, 2100973.	10.2	74
932	Zinc dendrite growth and inhibition strategies. Materials Today Energy, 2021, 20, 100692.	2.5	131
933	Layered Barium Vanadate Cathodes for Aqueous Zinc Batteries: Enhancing Cycling Stability through Inhibition of Vanadium Dissolution. ACS Applied Energy Materials, 2021, 4, 6197-6204.	2.5	18
934	Interfacial <scp>adsorption–insertion</scp> mechanism induced by phase boundary toward better aqueous <scp>Znâ€ion</scp> battery. InformaÄnÃ-Materiály, 2021, 3, 1028-1036.	8.5	194
935	V2O3 as cathode of zinc ion battery with high stability and long cycling life. Ionics, 2021, 27, 3393-3402.	1.2	18
936	Oxygen Defects Engineering of VO ₂ · <i>x</i> H ₂ O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage. Advanced Functional Materials, 2021, 31, 2103070.	7.8	153
937	A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Materials, 2021, 38, 299-308.	9.5	79
938	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 9244-9272.	7.3	272
939	Manipulating Crystallographic Orientation of Zinc Deposition for Dendriteâ€free Zinc Ion Batteries. Advanced Energy Materials, 2021, 11, 2101299.	10.2	304
940	Reversible Molecular and Ionic Storage Mechanisms in High-Performance Zn _{0.1} V ₂ O ₅ · <i>n</i> H ₂ O Xerogel Cathode for Aqueous Zn-Ion Batteries. ACS Nano, 2021, 15, 10678-10688.	7.3	68

#	Article	IF	CITATIONS
941	Tuning Surface Energy of Zn Anodes via Sn Heteroatom Doping Enabled by a Codeposition for Ultralong Life Span Dendrite-Free Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 27085-27095.	4.0	41
942	A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nature Communications, 2021, 12, 3369.	5.8	59
943	Interlayer Engineering of Preintercalated Layered Oxides as Cathode for Emerging Multivalent Metal-ion Batteries: Zinc and Beyond. Energy Storage Materials, 2021, 38, 397-437.	9.5	90
944	Cation- deficient Zn0.3(NH4)0.3V4O10•0.91H2O for rechargeable aqueous zinc battery with superior low- temperature performance. Energy Storage Materials, 2021, 38, 389-396.	9.5	64
945	Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. Nanomaterials, 2021, 11, 1517.	1.9	27
946	The Emerging of Aqueous Zincâ€Based Dual Electrolytic Batteries. Small, 2021, 17, e2008043.	5.2	23
947	Constructing <scp>nanoâ€channeled</scp> tin layer on metal zinc for highâ€performance zincâ€ion batteries anode. EcoMat, 2021, 3, e12125.	6.8	55
948	Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Materials Today Energy, 2021, 20, 100626.	2.5	42
949	A high-voltage activated high-erformance cathode for aqueous Zn-ion batteries. Energy Storage Materials, 2021, 38, 473-481.	9.5	53
950	Employing the Dynamics of the Electrochemical Interface in Aqueous Zincâ€Ion Battery Cathodes. Advanced Functional Materials, 2021, 31, 2102135.	7.8	34
951	Fundamentals, status and promise of sodium-based batteries. Nature Reviews Materials, 2021, 6, 1020-1035.	23.3	496
952	Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. ACS Nano, 2021, 15, 11828-11842.	7.3	140
953	Cathode strategies to improve the performance of zincâ€ion batteries. Electrochemical Science Advances, 2022, 2, e2100090.	1.2	14
954	Enhanced and stabilized charge transport boosting by Fe-doping effect of V2O5 nanorod for rechargeable Zn-ion battery. Journal of Industrial and Engineering Chemistry, 2021, 99, 344-351.	2.9	29
955	A Universal Compensation Strategy to Anchor Polar Organic Molecules in Bilayered Hydrated Vanadates for Promoting Aqueous Zincâ€ion Storage. Advanced Materials, 2021, 33, e2102701.	11.1	76
956	A novel 3-phenylpropylamine intercalated molecular bronze with ultrahigh layer spacing as a high-rate and stable cathode for aqueous zinc-ion batteries. Fundamental Research, 2021, 1, 425-431.	1.6	9
957	Ultrafast charge in Zn-based batteries through high-potential deposition. Materials Today Physics, 2021, 19, 100425.	2.9	9
958	Microwave-Assisted Rapid Synthesis of NH4V4O10 Layered Oxide: A High Energy Cathode for Aqueous Rechargeable Zinc Ion Batteries. Nanomaterials, 2021, 11, 1905.	1.9	8

#	Article	IF	CITATIONS
959	Recent Progress in Alâ€; Kâ€; and Znâ€ion Batteries: Experimental and Theoretical Viewpoints. Energy Technology, 2021, 9, 2100382.	1.8	5
960	Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries. Nano Energy, 2021, 85, 105969.	8.2	71
961	Atomic-scale unveiling of multiphase evolution during hydrated Zn-ion insertion in vanadium oxide. Nature Communications, 2021, 12, 4599.	5.8	23
962	A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nature Communications, 2021, 12, 4424.	5.8	180
963	Comparative structural and electrochemical study of spherical ZnO with different tap density and morphology as anode materials for Ni/Zn secondary batteries. Journal of Alloys and Compounds, 2021, 868, 159141.	2.8	7
964	High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Metals, 2022, 41, 448-456.	3.6	55
965	Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode. Journal of Alloys and Compounds, 2021, 870, 159403.	2.8	45
966	Study of catecholate-functionalized zinc complex on carbon steel and its application to corrosion resistance. Journal of Physics: Conference Series, 2021, 1978, 012009.	0.3	1
967	Selfâ€Assembling Films of Covalent Organic Frameworks Enable Longâ€Term, Efficient Cycling of Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2101726.	11.1	114
968	Nitrogen-Doped Metallic MoS ₂ Derived from a Metal–Organic Framework for Aqueous Rechargeable Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34495-34506.	4.0	48
969	Zn-Ion Batteries: Boosting the Rate Capability and Low-temperature Performance by Combining Structure and Morphology Engineering. ACS Applied Materials & Interfaces, 2021, 13, 34468-34476.	4.0	15
970	Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Metals, 2022, 41, 415-424.	3.6	58
971	A Full Flexible NH ₄ ⁺ Ion Battery Based on the Concentrated Hydrogel Electrolyte for Enhanced Performance. Chemistry - A European Journal, 2021, 27, 15450-15459.	1.7	26
972	A COFâ€Like Nâ€Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for Highâ€Energy Aqueous Zinc Dualâ€Ion Batteries. Advanced Materials, 2021, 33, e2101857.	11.1	90
973	Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 593, 417-423.	5.0	52
974	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Znâ€Metal Battery. Advanced Energy Materials, 2021, 11, 2100962.	10.2	39
975	Two-dimensional non-van der Waals magnetic layers: functional materials for potential device applications. Journal Physics D: Applied Physics, 2021, 54, 413001.	1.3	25
976	A review on recent developments of vanadium-based cathode for rechargeable zinc-ion batteries. Tungsten, 2021, 3, 289-304.	2.0	33

#	Article	IF	CITATIONS
977	A high specific capacity aqueous zinc-manganese battery with a Îμ-MnO2 cathode. Ionics, 2021, 27, 3933-3941.	1.2	20
978	Cr3+ pre-intercalated hydrated vanadium oxide as an excellent performance cathode for aqueous zinc-ion batteries. Fundamental Research, 2021, 1, 418-424.	1.6	9
979	Vanadiumâ€Containing Layered Materials as Highâ€Performance Cathodes for Aqueous Zincâ€Ion Batteries. Advanced Materials Technologies, 2022, 7, 2100505.	3.0	23
980	(NH 4) 2 V 7 O 16 Microbricks as a Novel Anode for Aqueous Lithiumâ€Ion Battery with Good Cyclability. Chemistry - A European Journal, 2021, 27, 12341-12351.	1.7	11
981	Yttrium Vanadium Oxide–Poly(3,4â€ethylenedioxythiophene) Composite Cathode Material for Aqueous Zincâ€ion Batteries. Small Methods, 2021, 5, e2100544.	4.6	25
982	Computational Search for Novel Zn-Ion Conductors—A Crystallochemical, Bond Valence, and Density Functional Study. Journal of Physical Chemistry C, 2021, 125, 17590-17599.	1.5	12
983	Rational Design of Hierarchical Mn-Doped Na ₅ V ₁₂ O ₃₂ Nanorods with Low Crystallinity as Advanced Cathodes for Aqueous Zinc Ion Batteries. Energy & Fuels, 2021, 35, 13483-13490.	2.5	5
984	A Highâ€Voltage Zn–Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie, 2021, 133, 21193-21200.	1.6	5
985	Rational Design of Sulfur-Doped Three-Dimensional Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano, 2021, 15, 15259-15273.	7.3	167
986	Bilayered VOPO ₄ â<2H ₂ O Nanosheets with Highâ€Concentration Oxygen Vacancies for Highâ€Performance Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2106816.	7.8	104
987	High-performance Cu0.95V2O5 nanoflowersÂas cathode materials for aqueous zinc-ion batteries. Rare Metals, 2022, 41, 29-36.	3.6	26
988	A Highâ€Voltage Zn–Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 21025-21032.	7.2	67
989	Amino Acidâ€Induced Interface Charge Engineering Enables Highly Reversible Zn Anode. Advanced Functional Materials, 2021, 31, 2103514.	7.8	156
990	Oxygen-Deficient β-MnO2@Graphene Oxide Cathode for High-Rate and Long-Life Aqueous Zinc Ion Batteries. Nano-Micro Letters, 2021, 13, 173.	14.4	89
991	Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity. Nano Energy, 2021, 86, 106124.	8.2	85
992	Molecular Engineering on MoS ₂ Enables Large Interlayers and Unlocked Basal Planes for Highâ€Performance Aqueous Znâ€lon Storage. Angewandte Chemie - International Edition, 2021, 60, 20286-20293.	7.2	141
993	La _{0.14} V ₂ O ₅ /Reduced Graphene Oxide Composite for Aqueous Zincâ^`lon Batteries with Long Cycle Life. Journal of the Electrochemical Society, 2021, 168, 080527.	1.3	10
994	Pomegranate-inspired Zn2Ti3O8/TiO2@C nanospheres with pseudocapacitive effect for ultra-stable lithium-ion batteries. Chemical Engineering Journal, 2021, 418, 129227.	6.6	9

#	Article	IF	CITATIONS
995	Realizing Stretchable Aqueous Zn–Based Batteries by Material and Structural Designs. Frontiers in Energy Research, 2021, 9, .	1.2	2
996	Designing Advanced Aqueous Zincâ€lon Batteries: Principles, Strategies, and Perspectives. Energy and Environmental Materials, 2022, 5, 823-851.	7.3	69
997	A Thin and Uniform Fluoride-Based Artificial Interphase for the Zinc Metal Anode Enabling Reversible Zn/MnO ₂ Batteries. ACS Energy Letters, 2021, 6, 3063-3071.	8.8	134
998	Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. Chemical Engineering Journal, 2021, 417, 128408.	6.6	52
999	PVA-assisted hydrated vanadium pentoxide/reduced graphene oxide films for excellent Li+ and Zn2+ storage properties. Journal of Materials Science and Technology, 2021, 83, 7-17.	5.6	17
1000	Recent Advances on Spinel Zinc Manganate Cathode Materials for Zincâ€lon Batteries. Chemical Record, 2022, 22, .	2.9	22
1001	Multifold Electrochemical Protons and Zinc Ion Storage Behavior in Copper Vanadate Cathodes. ACS Applied Energy Materials, 2021, 4, 10197-10202.	2.5	4
1002	Synthesis of Hierarchical V2O5 Hydrate Composite Micronanostructures as Cathode Materials for Aqueous Zinc- ion Batteries with Good Performance. International Journal of Electrochemical Science, 0, , ArticleID:210840.	0.5	0
1003	Molecular Engineering on MoS ₂ Enables Large Interlayers and Unlocked Basal Planes for Highâ€Performance Aqueous Znâ€ion Storage. Angewandte Chemie, 2021, 133, 20448-20455.	1.6	52
1004	Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Materials, 2021, 39, 365-394.	9.5	139
1005	Tremella-like Hydrated Vanadium Oxide Cathode with an Architectural Design Strategy toward Ultralong Lifespan Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 41688-41697.	4.0	25
1006	Defect-Rich MoO ₃ Nanobelt Cathode for a High-Performance Hybrid Alkali/Acid Zn-MoO ₃ Rechargeable Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 11524-11533.	3.2	20
1007	Crystal water assisting MoS2 nanoflowers for reversible zinc storage. Journal of Alloys and Compounds, 2021, 872, 159599.	2.8	18
1008	Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V ₂ O ₅ via La ³⁺ Incorporation Enable Advanced Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38416-38424.	4.0	70
1009	Intercalation Mechanism of the Ammonium Vanadate (NH ₄ V ₄ O ₁₀) 3D Decussate Superstructure as the Cathode for High-Performance Aqueous Zinc-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 11769-11777.	3.2	67
1010	Pyrrolic-Dominated Nitrogen Redox Enhances Reaction Kinetics of Pitch-Derived Carbon Materials in Aqueous Zinc Ion Hybrid Supercapacitors. , 2021, 3, 1291-1299.		54
1011	Reducing Water Activity by Zeolite Molecular Sieve Membrane for Longâ€Life Rechargeable Zinc Battery. Advanced Materials, 2021, 33, e2102415.	11.1	164
1012	Structure control in VNxOy by hydrogen bond association extraction for enhanced zinc ion storage. Electrochimica Acta, 2021, 389, 138722.	2.6	6

#	Article	IF	CITATIONS
1013	Hydrothermal reaction induced phase transition of vanadium oxide towards high-performance zinc ion batteries cathode. Ionics, 2021, 27, 4793-4800.	1.2	5
1014	Chemically Self-Charging Aqueous Zinc-Organic Battery. Journal of the American Chemical Society, 2021, 143, 15369-15377.	6.6	109
1015	In Situ and Operando Analyses of Reaction Mechanisms in Vanadium Oxides for Liâ€, Naâ€, Znâ€, and Mgâ€lons Batteries. Advanced Materials Technologies, 2022, 7, 2100799.	3.0	24
1016	Flexible high-energy and stable rechargeable vanadium-zinc battery based on oxygen defect modulated V2O5 cathode. Nano Energy, 2021, 87, 106164.	8.2	64
1017	Regulating Intercalation of Layered Compounds for Electrochemical Energy Storage and Electrocatalysis. Advanced Functional Materials, 2021, 31, 2104543.	7.8	29
1018	Accessing the 2ÂV VV/VIV redox process of vanadyl phosphate cathode for aqueous batteries. Journal of Power Sources, 2021, 507, 230270.	4.0	5
1019	Hybrid and Aqueous Li ⁺ –Ni Metal Batteries. CCS Chemistry, 2021, 3, 2498-2508.	4.6	23
1020	Electrochemical Stability of Prospective Current Collectors in the Sulfate Electrolyte for Aqueous Zn-Ion Battery Application. Journal of the Electrochemical Society, 2021, 168, 090560.	1.3	5
1021	Electrochemical Overview: A Summary of ACo <i>_x</i> Mn <i>_y</i> Ni <i>_z</i> O ₂ and Metal Oxides as Versatile Cathode Materials for Metalâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2107761.	7.8	13
1022	A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021, 11, 100149.	2.5	64
1023	Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries. Energy Storage Materials, 2021, 40, 209-218.	9.5	86
1024	Emerging Intercalation Cathode Materials for Multivalent Metalâ€lon Batteries: Status and Challenges. Small Structures, 2021, 2, 2100082.	6.9	61
1025	Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery. Chemical Engineering Journal, 2021, 420, 129920.	6.6	30
1026	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. Journal of the American Chemical Society, 2021, 143, 15475-15489.	6.6	148
1027	Layered Ni0.22V2O5•nH2O as high-performance cathode material for aqueous zinc-ion batteries. Ionics, 2021, 27, 4801.	1.2	1
1028	Revealing the impacts of oxygen defects on Zn2+ storage performance in V2O5. Materials Today Energy, 2021, 21, 100824.	2.5	29
1029	A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. Advanced Materials, 2021, 33, e2105480.	11.1	25
1030	A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Materials, 2021, 40, 31-40.	9.5	130

#	Article	IF	CITATIONS
1031	Toward a Practical Zn Powder Anode: Ti ₃ C ₂ T <i>x</i> MXene as a Lattice-Match Electrons/Ions Redistributor. ACS Nano, 2021, 15, 14631-14642.	7.3	137
1032	Suppressing Charge Disproportionation of MnO ₂ Cathodes in Rechargeable Zinc Ion Batteries via Cooperative Jahnâ€Teller Distortion. Batteries and Supercaps, 2021, 4, 1881-1888.	2.4	17
1033	The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chemical Engineering Journal, 2021, 419, 129659.	6.6	35
1034	A dendrite-free Zn@CuxZny composite anode for rechargeable aqueous batteries. Electrochimica Acta, 2021, 399, 139334.	2.6	22
1035	Understanding of the electrochemical behaviors of aqueous zinc–manganese batteries: Reaction processes and failure mechanisms. Green Energy and Environment, 2022, 7, 858-899.	4.7	20
1036	Effects of I ₃ ^{â^²} Electrolyte Additive on the Electrochemical Performance of Zn Anodes and Zn/MnO ₂ Batteries. Batteries and Supercaps, 2022, 5, .	2.4	20
1037	Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chemical Engineering Journal, 2021, 419, 129491.	6.6	45
1038	High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes. Journal of Energy Chemistry, 2021, 60, 233-240.	7.1	65
1039	Pre-potassiated hydrated vanadium oxide as cathode for quasi-solid-state zinc-ion battery. Chinese Chemical Letters, 2022, 33, 2663-2668.	4.8	15
1040	Guest ions pre-intercalation strategy of manganese-oxides for supercapacitor and battery applications. Journal of Energy Chemistry, 2021, 60, 480-493.	7.1	36
1041	Enhanced Zinc Ion Storage Capability of V ₂ O ₅ Electrode Materials with Hollow Interior Cavities. Batteries and Supercaps, 2021, 4, 1867-1873.	2.4	31
1042	Fe-doping enabled a stable vanadium oxide cathode with rapid Zn diffusion channel for aqueous zinc-ion batteries. Materials Today Energy, 2021, 21, 100842.	2.5	39
1043	Oxygen-defective V2O5 nanosheets boosting 3D diffusion and reversible storage of zinc ion for aqueous zinc-ion batteries. Applied Surface Science, 2021, 562, 150196.	3.1	33
1044	Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 61, 594-601.	7.1	30
1045	Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials, 2021, 41, 715-737.	9.5	93
1046	Spinel Zn3V3O8: A high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Materials, 2021, 41, 297-309.	9.5	83
1047	Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2021, 421, 129786.	6.6	68
1048	The mystery and promise of multivalent metal-ion batteries. Current Opinion in Electrochemistry, 2021, 29, 100819.	2.5	17

#	Article	IF	CITATIONS
1049	Boosting proton storage in layered vanadium oxides for aqueous zincâ^'ion batteries. Electrochimica Acta, 2021, 394, 139134.	2.6	26
1050	Constructing electron pathways by graphene oxide for V2O5 nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion batteries. Journal of Alloys and Compounds, 2021, 878, 160324.	2.8	32
1051	A Novel Raw of Alkaline Stripped Pentavalent Vanadium Solution for High-Capacity Sodium Vanadate Aqueous Zinc Ion Battery Cathode. Journal of the Taiwan Institute of Chemical Engineers, 2021, 127, 276-282.	2.7	8
1052	A porous puckered V2O5 polymorph as new high performance cathode material for aqueous rechargeable zinc batteries. Journal of Energy Chemistry, 2021, 61, 459-468.	7.1	13
1053	Recent advances in vanadium-based materials for aqueous metal ion batteries: Design of morphology and crystal structure, evolution of mechanisms and electrochemical performance. Energy Storage Materials, 2021, 41, 152-182.	9.5	29
1054	Spontaneous knitting behavior of 6.7-nm thin (NH4)0.38V2O5 nano- ribbons for binder-free zinc-ion batteries. Energy Storage Materials, 2021, 42, 286-294.	9.5	46
1055	Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond. Carbon, 2021, 185, 126-151.	5.4	71
1056	Uncovering electrochemistries of rechargeable magnesium-ion batteries at low and high temperatures. Energy Storage Materials, 2021, 42, 129-144.	9.5	28
1057	Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 486-494.	5.0	38
1058	α-MnO2/super-P with conductive carbon network for rechargeable aqueous Zinc ion batteries. Materials Letters, 2021, 302, 130419.	1.3	12
1059	Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2021, 882, 160704.	2.8	17
1060	Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors. Energy Storage Materials, 2021, 42, 705-714.	9.5	96
1061	Mn2+ as the "spearhead―preventing the trap of Zn2+ in layered Mn2+ inserted hydrated vanadium pentoxide enables high rate capacity. Journal of Colloid and Interface Science, 2021, 602, 14-22.	5.0	39
1062	Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Materials, 2021, 42, 533-569.	9.5	74
1063	Diffusion-driven fabrication of yolk-shell structured K-birnessite@mesoporous carbon nanospheres with rich oxygen vacancies for high-energy and high-power zinc-ion batteries. Energy Storage Materials, 2021, 42, 753-763.	9.5	36
1064	Synergetic effect of water-in-bisalt electrolyte and hydrogen-bond rich additive improving the performance of aqueous batteries. Journal of Power Sources, 2021, 511, 230413.	4.0	19
1065	High voltage aqueous Zn/LiCoO2 hybrid battery under mildly alkaline conditions. Energy Storage Materials, 2021, 43, 158-164.	9.5	14
1066	Flexible solid-state Zn-polymer batteries with practical functions. Chemical Engineering Journal, 2021, 425, 131454.	6.6	10

#	Article	IF	CITATIONS
1067	Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and Na3MnTi(PO4)3 cathode. Chemical Engineering Journal, 2021, 425, 130459.	6.6	40
1068	Aqueous rechargeable zinc batteries: Challenges and opportunities. Current Opinion in Electrochemistry, 2021, 30, 100801.	2.5	14
1069	The ultrathin prenucleation interface–stabilized metal Zn anode towardÂhigh-performance flexible Zn-batteries. Materials Today Energy, 2021, 22, 100849.	2.5	11
1070	Suppressing Cu-based cathode dissolution in rechargeable aqueous zinc batteries with equilibrium principles. Applied Surface Science, 2021, 568, 150948.	3.1	3
1071	A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chemical Engineering Journal, 2021, 425, 130643.	6.6	57
1072	Sandwich-Like Sulfur-Doped V2O5/Reduced graphene Oxide/Sulfur-Doped V2O5 Core-shell structure boosts Zinc-Ion storage. Applied Surface Science, 2021, 568, 150919.	3.1	23
1073	Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries. Journal of Colloid and Interface Science, 2021, 603, 641-650.	5.0	57
1074	Realizing the leucoemeraldine-emeraldine-pernigraniline redox reactions in polyaniline cathode materials for aqueous zinc-polymer batteries. Chemical Engineering Journal, 2022, 427, 131988.	6.6	40
1075	2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode. Journal of Colloid and Interface Science, 2022, 607, 1262-1268.	5.0	18
1076	Vertically aligned 1ÂT phase MoS2 nanosheet array for high-performance rechargeable aqueous Zn-ion batteries. Chemical Engineering Journal, 2022, 428, 130981.	6.6	32
1077	Hydrated lithium ions intercalated V2O5 with dual-ion synergistic insertion mechanism for high-performance aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 645-653.	5.0	29
1078	A dual-polymer strategy boosts hydrated vanadium oxide for ammonium-ion storage. Journal of Colloid and Interface Science, 2022, 606, 1322-1332.	5.0	33
1079	Ammonium vanadium oxide framework with stable NH4+ aqueous storage for flexible quasi-solid-state supercapacitor. Chemical Engineering Journal, 2022, 427, 131548.	6.6	39
1080	Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chemical Engineering Journal, 2022, 427, 131705.	6.6	61
1081	Cathode materials for aqueous zinc-ion batteries: A mini review. Journal of Colloid and Interface Science, 2022, 605, 828-850.	5.0	92
1082	Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering. Journal of Materials Science and Technology, 2022, 102, 272-277.	5.6	10
1083	Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy. Journal of Colloid and Interface Science, 2022, 607, 68-75.	5.0	26
1084	Driving intercalation kinetic through hydrated Na+ insertion in V2O5 for high rate performance aqueous zinc ion batteries. Journal of Alloys and Compounds, 2022, 891, 161946.	2.8	18

#	Article	IF	CITATIONS
1085	Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chemical Engineering Journal, 2022, 428, 131283.	6.6	43
1086	A DFT Study of the Electronic, Magnetic and Structural Properties of Rutile VO2. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2022, 92, 117-128.	0.8	3
1087	Sodium manganese hexacyanoferrate as Zn ion host toward aqueous energy storage. Journal of Electroanalytical Chemistry, 2021, 881, 114968.	1.9	14
1088	High-rate aqueous zinc-ion batteries enabled by a polymer/graphene composite cathode involving reversible electrolyte anion doping/dedoping. Journal of Materials Chemistry A, 2021, 9, 10666-10671.	5.2	27
1089	Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 19245-19281.	5.2	41
1090	Electrochemical activation strategies of a novel high entropy amorphous V-based cathode material for high-performance aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 18488-18497.	5.2	23
1091	High energy density aqueous zinc–benzoquinone batteries enabled by carbon cloth with multiple anchoring effects. Journal of Materials Chemistry A, 2021, 9, 6131-6138.	5.2	22
1092	Research Progress and Challenge of Aqueous Zinc Ion Battery. Acta Chimica Sinica, 2021, 79, 158.	0.5	9
1093	Realizing excellent cycle stability of Zn/Na3V2(PO4)3 batteries by suppressing dissolution and structural degradation in non-aqueous Na/Zn dual-salt electrolytes. Science China Materials, 2021, 64, 1386-1395.	3.5	23
1094	Water-steam activation toward oxygen-deficient vanadium oxides for enhancing zinc ion storage. Journal of Materials Chemistry A, 2021, 9, 24517-24527.	5.2	19
1095	Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities. Advanced Functional Materials, 2021, 31, 2010445.	7.8	102
1096	Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn–organic batteries. Materials Horizons, 2021, 8, 3124-3132.	6.4	17
1097	Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2, 1821-1871.	2.6	1,049
1098	A high-performance free-standing Zn anode for flexible zinc-ion batteries. Nanoscale, 2021, 13, 10100-10107.	2.8	30
1099	A long-term stable aqueous aluminum battery electrode based on one-dimensional molybdenum–tantalum oxide nanotube arrays. Nanoscale, 2021, 13, 6087-6095.	2.8	20
1100	Structure engineering of van der Waals layered transition metal-containing compounds for aqueous energy storage. Materials Chemistry Frontiers, 2021, 5, 2996-3020.	3.2	4
1101	Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy and Environmental Science, 2021, 14, 4095-4106.	15.6	121
1102	A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A, 2021, 9, 4734-4743.	5.2	97

#	Article	IF	CITATIONS
1103	A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. Journal of Materials Chemistry A, 2021, 9, 6811-6818.	5.2	51
1104	Mechanistic investigation of redox processes in Zn–MnO ₂ battery in mild aqueous electrolytes. Journal of Materials Chemistry A, 2021, 9, 20766-20775.	5.2	18
1105	In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 5034-5043.	4.0	43
1106	In Situ Oriented Mn Deficient ZnMn ₂ 0 ₄ @C Nanoarchitecture for Durable Rechargeable Aqueous Zincâ€lon Batteries. Advanced Science, 2021, 8, 2002636.	5.6	90
1107	Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 9535-9572.	5.2	54
1108	Intrinsic Structure Modification of Electrode Materials for Aqueous Metalâ€Ion and Metalâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2006855.	7.8	36
1109	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	11.1	23
1110	Layerâ€by‣ayer Selfâ€Assembled Nanostructured Electrodes for Lithiumâ€Ion Batteries. Small, 2021, 17, e2006434.	5.2	12
1111	A large format aqueous rechargeable LiMn2O4/Zn battery with high energy density and long cycle life. Science China Materials, 2021, 64, 783-788.	3.5	12
1112	Carbon nanohorns/nanotubes: An effective binary conductive additive in the cathode of high energy-density zinc-ion rechargeable batteries. Carbon, 2020, 167, 431-438.	5.4	42
1113	Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Materials, 2020, 30, 337-345.	9.5	92
1114	Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy, 2020, 75, 104869.	8.2	66
1115	Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chemical Reviews, 2020, 120, 2811-2878.	23.0	334
1116	NaV ₆ O ₁₅ microflowers as a stable cathode material for high-performance aqueous zinc-ion batteries. RSC Advances, 2020, 10, 6807-6813.	1.7	23
1117	Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2020, 2, 042001.	6.3	96
1118	Roadmap for advanced aqueous batteries: From design of materials to applications. Science Advances, 2020, 6, eaba4098.	4.7	1,069
1119	Effects of the Low Coulombic Efficiency of Zinc Anode on the Cycle Performance of Zn–Ni Battery. Journal of the Electrochemical Society, 2020, 167, 130509.	1.3	12
1120	Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries. Research, 2019, 2019, 2635310.	2.8	31

#	Article	IF	CITATIONS
1121	Ultrafast Synthesis of Calcium Vanadate for Superior Aqueous Calcium-Ion Battery. Research, 2019, 2019, 6585686.	2.8	14
1122	Fundamental role of Fe–N–C active sites in a CO ₂ -derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 23660-23674.	5.2	28
1123	A self-preserving pitted texture enables reversible topographic evolution and cycling on Zn metal anodes. Journal of Materials Chemistry A, 2021, 9, 25495-25501.	5.2	5
1124	A room-temperature rechargeable dual-plating lithium–aluminium battery. Chemical Communications, 2021, 57, 11529-11532.	2.2	2
1125	Recent progress in tackling Zn anode challenges for Zn ion batteries. Journal of Materials Chemistry A, 2021, 9, 25750-25772.	5.2	29
1126	Porous Ultrathin W-Doped VO ₂ Nanosheets Enable Boosted Zn ²⁺ (De)Intercalation Kinetics in VO ₂ for High-Performance Aqueous Zn-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 14193-14201.	3.2	38
1127	Environmental Impacts of Aqueous Zinc Ion Batteries Based on Life Cycle Assessment. Advanced Sustainable Systems, 2022, 6, 2100308.	2.7	27
1128	Hierarchical Kâ€Birnessiteâ€MnO ₂ Carbon Framework for Highâ€Energyâ€Density and Durable Aqueous Zincâ€ion Battery. Small, 2021, 17, e2104557.	5.2	37
1129	Highly reversible zinc-ion battery enabled by suppressing vanadium dissolution through inorganic Zn2+ conductor electrolyte. Nano Energy, 2021, 90, 106621.	8.2	40
1130	Interfacial thermodynamics-inspired electrolyte strategy to regulate output voltage and energy density of battery chemistry. Science Bulletin, 2022, 67, 626-635.	4.3	16
1131	Interfacial Engineering Regulates Deposition Kinetics of Zinc Metal Anodes. ACS Applied Energy Materials, 2021, 4, 11743-11751.	2.5	8
1132	Mn _{0.26} V ₂ O ₅ · <i>n</i> H ₂ O Nanoribbons with Fast Ion Diffusion Channels and High Electrical Conductivity for Intercalation Pseudocapacitive Zn ²⁺ Storage. Energy & Fuels, 2021, 35, 17948-17955.	2.5	7
1133	Deciphering the Electrochemical Behaviors of the Electrodeâ€Electrolyte Coupling toward Advanced Electrochemical Energy Storage Device. Advanced Functional Materials, 2022, 32, 2106996.	7.8	6
1134	A study on the properties of hexagonal Zn3(OH)2V2O7·2H2O as cathode material for zinc-ion battery. Ionics, 2022, 28, 283-293.	1.2	6
1135	Electrochemically Activated Cu _{2–} <i>_x</i> Te as an Ultraflat Discharge Plateau, Low Reaction Potential, and Stable Anode Material for Aqueous Znâ€ion Half and Full Batteries. Advanced Energy Materials, 2021, 11, 2102607.	10.2	37
1136	An aqueous zinc pyrovanadate nanowire cathode doped by nitrogen-doped carbon from PANI calcination for capacity and stability enhancement. Ionics, 2022, 28, 295-305.	1.2	3
1137	Unraveling H ⁺ /Zn ²⁺ Sequential Conversion Reactions in Tellurium Cathodes for Rechargeable Aqueous Zinc Batteries. Journal of Physical Chemistry Letters, 2021, 12, 10163-10168.	2.1	19
1138	Unlocking the Allometric Growth and Dissolution of Zn Anodes at Initial Nucleation and an Early Stage with Atomic Force Microscopy. ACS Applied Materials & Interfaces, 2021, 13, 53227-53234.	4.0	16

#	Article	IF	CITATIONS
1139	Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Materials, 2022, 44, 197-205.	9.5	100
1140	Investigation of zinc storage capacity of WS2 nanosheets for rechargeable aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2022, 894, 162391.	2.8	15
1141	Localization of electrons within interlayer stabilizes NASICON-type solid-state electrolyte. Materials Today Energy, 2021, 22, 100875.	2.5	9
1142	Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1684-1692.	2.4	20
1143	Building Ohmic Contact Interfaces toward Ultrastable Zn Metal Anodes. Advanced Science, 2021, 8, e2102612.	5.6	87
1144	Quantifying and Suppressing Proton Intercalation to Enable Highâ€Voltage Znâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2102016.	10.2	48
1145	High-performance and low-cost manganese oxide/multiwalled carbon nanotubes composite as cathode material for aqueous magnesium ion battery. Journal of Electroanalytical Chemistry, 2021, 901, 115764.	1.9	6
1146	Polysulfone grafted with anthraquinone-hydroanthraquinone redox as a flexible membrane electrode for aqueous batteries. Polymer, 2021, 234, 124245.	1.8	8
1147	Enhanced reversibility of vanadium oxide cathode by diminished surface precipitation in Zn(TFSI)2 aqueous electrolyte. Electrochimica Acta, 2021, 399, 139432.	2.6	16
1148	Tuning the kinetics of binder-free ammonium vanadate cathode via defect modulation for ultrastable rechargeable zinc ion batteries. Nano Energy, 2021, 90, 106596.	8.2	29
1149	Graphdiyne Hybrid Nanowall Arrays for High-capacity Aqueous Rechargeable Zinc Ion Battery. Chemical Research in Chinese Universities, 2021, 37, 1301-1308.	1.3	4
1150	Stable bismuth-antimony alloy cathode with a conversion-dissolution/deposition mechanism for high-performance zinc batteries. Materials Today, 2021, 51, 87-95.	8.3	10
1151	A Highly Reversible Zinc Anode for Rechargeable Aqueous Batteries. ACS Applied Materials & Interfaces, 2021, 13, 52659-52669.	4.0	31
1152	β-VO2/carbon nanotubes core-shelled microspheres and their applications for advanced cathode in aqueous zinc ion batteries. Electrochimica Acta, 2021, 400, 139425.	2.6	19
1153	Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Materials, 2022, 44, 57-65.	9.5	211
1154	Long cycle life aqueous rechargeable battery Zn/Vanadium hexacyanoferrate with H+/Zn2+ coinsertion for high capacity. Chemical Engineering Journal, 2022, 430, 132864.	6.6	37
1155	Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions. Nanoscale, 2021, 13, 19291-19305.	2.8	29
1156	A cellulose nanofiber–polyacrylamide hydrogel based on a co-electrolyte system for solid-state zinc ion batteries to operate at extremely cold temperatures. Journal of Materials Chemistry A, 2021, 9, 25651-25662.	5.2	34

#	Article	IF	CITATIONS
1157	Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer. Energy Storage Materials, 2022, 44, 452-460.	9.5	60
1158	Reconstructing Vanadium Oxide with Anisotropic Pathways for a Durable and Fast Aqueous K-Ion Battery. ACS Nano, 2021, 15, 17717-17728.	7.3	30
1159	High-Capacity NH ₄ ⁺ Charge Storage in Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 19178-19186.	6.6	109
1160	A self-healing zinc ion battery under -20 °C. Energy Storage Materials, 2022, 44, 517-526.	9.5	53
1161	Perspectives in Electrochemical in situ Structural Reconstruction of Cathode Materials for Multivalentâ€ion Storage. Energy and Environmental Materials, 2023, 6, .	7.3	23
1162	Binder-free flexible zinc-ion batteries: one-step potentiostatic electrodeposition strategy derived Ce doped-MnO2 cathode. Chemical Engineering Journal, 2022, 431, 133387.	6.6	31
1163	Construction of rechargeable bio-battery cells from electroactive antioxidants extracted from wasted vegetables. Cleaner Engineering and Technology, 2021, 5, 100342.	2.1	4
1164	Flexible one-dimensional Zn-based electrochemical energy storage devices: recent progress and future perspectives. Journal of Materials Chemistry A, 2021, 9, 26573-26602.	5.2	7
1165	Anti-aggregation growth and hierarchical porous carbon encapsulation enables the C@VO2 cathode with superior storage capability for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2022, 67, 645-654.	7.1	25
1166	Dual redox groups enable organic cathode material with a high capacity for aqueous zinc-organic batteries. Electrochimica Acta, 2022, 404, 139620.	2.6	21
1167	Carbon nanotube@Mn3O4 composite as cathode for high-performance aqueous zinc ion battery. Journal of Alloys and Compounds, 2022, 898, 162747.	2.8	14
1168	<i>Operando</i> XAFS on Hydrated Calcium Vanadium Bronze Cathode for Aqueous Znâ€ion Storage. ChemPhysChem, 2022, 23, .	1.0	3
1169	Organic–Inorganic Hybrid Cathode with Dual Energyâ€Storage Mechanism for Ultrahighâ€Rate and Ultralongâ€Life Aqueous Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2105452.	11.1	129
1170	Cathode Engineering for High Energy Density Aqueous Zn Batteries. Accounts of Materials Research, 2022, 3, 78-88.	5.9	32
1171	Achieving mechanically sturdy properties and high energy density for Zn-ion structural batteries based on carbon-fiber-reinforced composites. Composites Science and Technology, 2022, 218, 109156.	3.8	14
1172	Hierarchical Atomic Layer Deposited V ₂ O ₅ on 3D Printed Nanocarbon Electrodes for Highâ€Performance Aqueous Zincâ€ion Batteries. Small, 2022, 18, e2105572.	5.2	29
1173	Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries. Chemical Engineering Journal, 2022, 433, 133795.	6.6	88
1174	Intercalation in two-dimensional transition metal chalcogenides: interlayer engineering and applications. Progress in Energy, 2022, 4, 022001.	4.6	2

#	Article	IF	CITATIONS
1175	Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nature Communications, 2021, 12, 6878.	5.8	118
1176	A Longâ€Life Manganese Oxide Cathode Material for Aqueous Zinc Batteries with a Negatively Charged Porous Host to Promote the Backâ€Deposition of Dissolved Mn ²⁺ . Advanced Functional Materials, 2022, 32, 2106994.	7.8	39
1177	Progress and prospect of low-temperature zinc metal batteries. , 2022, 1, 100011.		107
1178	Vanadium oxides obtained by chimie douce reactions: The influences of transition metal species on crystal structures and electrochemical behaviors in zinc–ion batteries. Journal of Colloid and Interface Science, 2022, 608, 3121-3129.	5.0	13
1179	Rational modulation of emerging MXene materials for zincâ€ion storage. , 2022, 4, 60-76.		46
1180	Ultralong-Life Cathode for Aqueous Zinc-Organic Batteries via Pouring 9,10-Phenanthraquinone into Active Carbon. ACS Applied Materials & Interfaces, 2021, 13, 58818-58826.	4.0	36
1181	Fast Ionic Storage in Aqueous Rechargeable Batteries: From Fundamentals to Applications. Advanced Materials, 2022, 34, e2105611.	11.1	62
1182	A rechargeable aqueous manganese-ion battery based on intercalation chemistry. Nature Communications, 2021, 12, 6991.	5.8	77
1183	Directing the Preferred Crystal Orientation by a Cellulose Acetate/Graphene Oxide Composite Separator for Dendrite-Free Zn-Metal Anodes. ACS Applied Energy Materials, 2021, 4, 14599-14607.	2.5	25
1184	RGO/Manganese Silicate/MOF-derived carbon Double-Sandwich-Like structure as the cathode material for aqueous rechargeable Zn-ion batteries. Journal of Colloid and Interface Science, 2022, 610, 805-817.	5.0	16
1185	Energy storage mechanism and electrochemical performance of Cu2O/rGO as advanced cathode for aqueous zinc ion batteries. Journal of Alloys and Compounds, 2022, 895, 162653.	2.8	15
1186	High-performance reversible aqueous Zinc-Ion battery based on Zn2+ pre-intercalation alpha-manganese dioxide nanowires/carbon nanotubes. Journal of Colloid and Interface Science, 2022, 609, 557-565.	5.0	16
1187	Controlled Deposition of Zincâ€Metal Anodes via Selectively Polarized Ferroelectric Polymers. Advanced Materials, 2022, 34, e2106937.	11.1	105
1188	Bi Doping-Enhanced Reversible-Phase Transition of α-MnO ₂ Raising the Cycle Capability of Aqueous Zn–Mn Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55208-55217.	4.0	33
1189	Freestanding CuV2O6/carbon nanotube composite films for flexible aqueous zinc-ion batteries. Applied Surface Science, 2022, 578, 152053.	3.1	10
1190	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	11.5	277
1191	lon migration and defect effect of electrode materials in multivalent-ion batteries. Progress in Materials Science, 2022, 125, 100911.	16.0	79
1192	Dynamic interphase–mediated assembly for deep cycling metal batteries. Science Advances, 2021, 7, eabl3752.	4.7	81

#	Article	IF	CITATIONS
1193	Reduction of silver ions in molybdates: elucidation of framework acidity as the factor controlling charge balance mechanisms in aqueous zinc-ion electrolyte. RSC Advances, 2021, 11, 39523-39533.	1.7	2
1194	Investigated the Performance of Dandelion-Like VO ₂ Nanomaterials as Cathode for Aqueous Zinc Ion Batteries. Applied Physics, 2021, 11, 453-460.	0.0	0
1195	Contribution of nano-design approaches to future electrochemical energy storage systems. Frontiers of Nanoscience, 2021, 19, 273-325.	0.3	2
1196	Tuning the Solvation Structure in Aqueous Zinc Batteries to Maximize Zn-Ion Intercalation and Optimize Dendrite-Free Zinc Plating. ACS Energy Letters, 2022, 7, 533-540.	8.8	62
1197	High energy density, flexible, low temperature resistant and self-healing Zn-ion hybrid capacitors based on hydrogel electrolyte. Journal of Energy Storage, 2022, 46, 103858.	3.9	25
1198	In-situ synthesis of graphdiyne on Mn3O4 nanoparticles for efficient Zn ions diffusion and storage. Chemical Engineering Journal, 2022, 432, 134402.	6.6	18
1199	Chromium vanadate with unsaturated coordination sites for high-performance zinc-ion battery. Chemical Engineering Journal, 2022, 431, 134034.	6.6	27
1200	Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-Ion batteries. Energy Storage Materials, 2022, 45, 568-577.	9.5	49
1201	Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes. Chemical Engineering Journal, 2022, 432, 134227.	6.6	42
1202	Unraveling the mechanism of non-uniform zinc deposition in rechargeable zinc-based batteries with vertical orientation. Chemical Engineering Journal, 2022, 431, 134032.	6.6	19
1203	Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ Co-uptake. Chemical Engineering Journal, 2022, 431, 134253.	6.6	37
1204	Defect-engineered Mn3O4/CNTs composites enhancing reaction kinetics for zinc-ions storage performance. Journal of Energy Chemistry, 2022, 68, 538-547.	7.1	15
1205	Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors. Journal of Energy Storage, 2022, 48, 103996.	3.9	18
1206	Computational design of materials for metal-ion batteries. , 2023, , 404-429.		4
1207	Reversible K _{0.54} V ₂ O ₅ Nanorods for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1656-1661.	2.5	14
1208	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	164
1209	Aluminum-ion intercalation and reduced graphene oxide wrapping enable the electrochemical properties of hydrated V2O5 for Zn-ion storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128473.	2.3	13
1210	Recent Advances in Aqueous Batteries with Nonmetal Cations as Charge Carriers. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5

#	Article	IF	CITATIONS
1211	Preparation and Electrochemical Performance of Three-Dimensional Vertically Aligned Graphene by Unidirectional Freezing Method. Molecules, 2022, 27, 376.	1.7	7
1213	Oxygen Vacancies of Commercial V ₂ O ₅ Induced by Mechanical Force to Enhance the Diffusion of Zinc Ions in Aqueous Zinc Battery. Batteries and Supercaps, 2022, 5, .	2.4	19
1214	Waterâ€Processable and Multiscaleâ€Designed Vanadium Oxide Cathodes with Predominant Zn ²⁺ Intercalation Pseudocapacitance toward High Gravimetric/Areal/Volumetric Capacity. Small, 2022, 18, e2105796.	5.2	19
1215	Fabricating a Gel Electrolyte Based on Lignin-Coated Nanosilica to Enhance the Reversibility of Zinc Anodes for Rechargeable Aqueous Zn/MnO ₂ Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 2063-2071.	3.2	11
1216	Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage. Nature Communications, 2022, 13, 64.	5.8	43
1217	Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration. Aggregate, 2022, 3, .	5.2	37
1218	In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries. Science China Materials, 2022, 65, 1165-1175.	3.5	18
1219	Synergistic engineering of oxygen-defect and heterojunction boosts Zn2+ (De)intercalation kinetics in vanadium oxide for high-performance zinc-ion batteries. Chemical Engineering Journal, 2022, 435, 134949.	6.6	29
1220	Boosting Polysulfide Catalytic Conversion and Facilitating Li ⁺ Transportation by Ionâ€Selective COFs Composite Nanowire for Lïi£¿S Batteries. Small, 2022, 18, e2106679.	5.2	29
1221	A dual conducting network corbelled hydrated vanadium pentoxide cathode for high-rate aqueous zinc-ion batteries. Nanoscale, 2022, 14, 1008-1013.	2.8	10
1222	Finely crafted lanthanum vanadium oxide cathode as durable and flexible quasi-solid state zinc ion battery. Journal of Materials Science: Materials in Electronics, 2022, 33, 5635.	1.1	1
1223	Recent advances in vanadium pentoxide (V ₂ O ₅) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives. Journal of Materials Chemistry C, 2022, 10, 4019-4071.	2.7	53
1224	Strategies of regulating Zn ²⁺ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.	15.6	313
1225	Scalable Spray Drying Production of Amorphous V ₂ O ₅ –EGO 2D Heterostructured Xerogels for Highâ€Rate and Highâ€Capacity Aqueous Zinc Ion Batteries. Small, 2022, 18, e2105761.	5.2	24
1226	Potassium manganese hexacyanoferrate with improved lifespan in Zn(CF ₃ SO ₃) ₂ electrolyte for aqueous zinc-ion batteries. Sustainable Energy and Fuels, 2022, 6, 1353-1361.	2.5	10
1227	Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nature Communications, 2022, 13, 576.	5.8	61
1228	Ubiquitous clean and sustainable energy-driven self-rechargeable batteries realized by and used in organic electronics. Journal of Materials Chemistry C, 2022, 10, 388-412.	2.7	9
1229	Cathode Materials for Rechargeable Aqueous Zn Batteries. , 2022, , .		1

#	Article	IF	CITATIONS
1230	Aluminium vanadate with unsaturated coordinated V centers and oxygen vacancies: surface migration and partial phase transformation mechanism in high performance zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10, 912-927.	5.2	32
1231	Highâ€Performance Aqueous Rechargeable K/Zn Hybrid Batteries Based on Berlin Green Cathode Materials. ChemElectroChem, 2022, 9, .	1.7	7
1232	Understanding and Performance of the Zinc Anode Cycling in Aqueous Zincâ€lon Batteries and a Roadmap for the Future. Batteries and Supercaps, 2022, 5, .	2.4	27
1233	Ca-ion modified vanadium oxide nanoribbons with enhanced Zn-ion storage capability. Journal of Materials Chemistry A, 2022, 10, 5614-5619.	5.2	19
1234	Modulating residual ammonium in MnO ₂ for high-rate aqueous zinc-ion batteries. Nanoscale, 2022, 14, 3242-3249.	2.8	11
1235	Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Materials, 2022, 47, 98-104.	9.5	56
1236	Design Strategies for Highâ€Energyâ€Density Aqueous Zinc Batteries. Angewandte Chemie, 2022, 134, .	1.6	47
1237	Design Strategies for Highâ€Energyâ€Density Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	383
1238	Block Copolymerâ€Derived Porous Carbon Fibers Enable High MnO ₂ Loading and Fast Charging in Aqueous Zincâ€Ion Battery. Batteries and Supercaps, 2022, 5, .	2.4	9
1239	Brookite phase vanadium dioxide (B) with nanosheet structure for superior rate capability aqueous Zn-ion batteries. Journal of Electroanalytical Chemistry, 2022, 907, 116039.	1.9	7
1240	Electrochemical Characteristics of Zn-Ion Hybrid Supercapacitors Based on Aqueous Solution of Different Electrolytes. Journal of the Electrochemical Society, 2022, 169, 020512.	1.3	10
1241	Boosting Zn ²⁺ Diffusion via Tunnel-Type Hydrogen Vanadium Bronze for High-Performance Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 7909-7916.	4.0	21
1242	High capacity and inexpensive multivalent cathode materials for aqueous rechargeable Zn-ion battery fabricated via in situ electrochemical oxidation of VO2 nanorods. Journal of Power Sources, 2022, 523, 231060.	4.0	22
1243	Uniform zinc electrodeposition directed by interfacial cation reservoir for stable Zn–I2 battery. Journal of Power Sources, 2022, 523, 231036.	4.0	13
1244	A highly stable 1.3ÂV organic cathode for aqueous zinc batteries designed in-situ by solid-state electrooxidation. Energy Storage Materials, 2022, 46, 129-137.	9.5	11
1245	Improving performance of zinc-manganese battery via efficient deposition/dissolution chemistry. Energy Storage Materials, 2022, 46, 165-174.	9.5	32
1246	Conformal surface-nanocoating strategy to boost high-performance film cathodes for flexible zinc-ion batteries as an amphibious soft robot. Energy Storage Materials, 2022, 46, 472-481.	9.5	11
1247	Manganese hexacyanoferrate anchoring MnO2 with enhanced stability for aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2022, 903, 163833.	2.8	10

#	Article	IF	Citations
1248	High mass loading CaV4O9 microflowers with amorphous phase transformation as cathode for aqueous zinc-ion battery. Chemical Engineering Journal, 2022, 434, 134642.	6.6	46
1249	Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Materials, 2022, 46, 233-242.	9.5	53
1250	(NH4)2Co2V10O28·16H2O/(NH4)2V10O25·8H2O heterostructure as cathode for high-performance aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2022, 903, 163824.	2.8	114
1251	Highly Stable Cathode Materials for Aqueous Zn Ion Batteries: Synergistic Effect of Pre-Inserted Bimetallic Ions in Vanadium Oxide Layer. SSRN Electronic Journal, 0, , .	0.4	0
1252	From vanadium slag to multi-cation-intercalated V ₂ O ₅ · <i>n</i> H ₂ O: low-cost direct synthesis and high-performance aqueous battery application. Journal of Materials Chemistry A, 2022, 10, 5479-5487.	5.2	19
1254	Inâ€Situ Growth of Mn ₃ O ₄ Nanoparticles on Nitrogenâ€Doped Carbon Dotsâ€Derived Carbon Skeleton as Cathode Materials for Aqueous Zinc Ion Batteries. ChemSusChem, 2022, 15, .	3.6	20
1255	New Insights into Phaseâ€Mechanism Relationship of Mg _x MnO ₂ Nanowires in Aqueous Zincâ€ion Batteries. Small, 2022, 18, e2107743.	5.2	16
1256	Synthesis of Nitrogenâ€Doped KMn ₈ O ₁₆ with Oxygen Vacancy for Stable Zincâ€Ion Batteries. Advanced Science, 2022, 9, e2106067.	5.6	70
1257	Aqueous Zn-ion batteries: Cathode materials and analysis. Current Opinion in Electrochemistry, 2022, 33, 100954.	2.5	9
1258	Pseudocapacitive Coâ€Free Trimetallic Niâ€Znâ€Mn Perovskite Fluorides Enable Fastâ€Rechargeable Znâ€Based Aqueous Batteries. Advanced Functional Materials, 2022, 32, .	7.8	11
1259	Recent Advances of Aqueous Rechargeable Zincâ€iodine Batteries: Challenges, Solutions, and Prospects. Advanced Materials, 2022, 34, e2108856.	11.1	119
1260	Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nature Communications, 2022, 13, 752.	5.8	49
1261	Engineering the Proton-Substituted HNaV ₆ O ₁₆ ·4H ₂ O Cathode for the Ultrafast-Charging Zinc Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 2441-2449.	3.2	11
1262	Hydrogen Bondâ€Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	82
1263	Ultra-stable zinc-ion batteries by suppressing vanadium dissolution via multiple ion-bonded vanadate cathodes. Applied Physics Reviews, 2022, 9, 011416.	5.5	5
1264	Revisiting recent and traditional strategies for surface protection of Zn metal anode. Journal of Power Sources, 2022, 525, 231122.	4.0	41
1265	Unsaturated coordination modes of Mn/V in manganese vanadate: Inner capture and surface migration of zinc ions for high performance zinc-ion battery. Journal of Power Sources, 2022, 525, 231134.	4.0	15
1266	<pre><scp>Improvedâ€quality</scp> graphene film decorated with ultrafine <scp> MnO ₂ </scp> nanoparticles as a multifunctional current collector for <scp>highâ€reversibility</scp> zincâ€ion batteries. International Journal of Energy Research, 2022, 46, 6817-6832.</pre>	2.2	13

#	Article	IF	CITATIONS
1267	Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review. Small, 2022, 18, e2104640.	5.2	69
1268	Engineering Interlayer Space of Vanadium Oxide by Pyridinesulfonic Acid-Assisted Intercalation of Polypyrrole Enables Enhanced Aqueous Zinc-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 61154-61165.	4.0	40
1269	Novel Multivalent Rechargeable Ion Battery: An Organic Nickel Ion Battery with Li 3 V 2 (Po 4) 3 ÂCathode. SSRN Electronic Journal, 0, , .	0.4	0
1270	Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries Through Nanofibrous Coating of Bead-Like Mnox Cathode. SSRN Electronic Journal, 0, , .	0.4	0
1271	Layered MnO ₂ Quantum Dots as High-Rate and Stable Cathode Materials for Aqueous Zinc-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
1272	Boosting the Rate Capability of Aqueous Zinc-Ion Batteries Using Vnxoy/C Spheres Derived from Self-Assemble V-Polydopamine Complex. SSRN Electronic Journal, 0, , .	0.4	0
1273	A Dendrite Suppression Coating Formulated Via Electrophoretic Deposition Using Bi-FunctionalÂSurfactants for Zn-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1274	Ultrathin Carbon Coated Preferentially Orientated V10o24·12h2o Nanosheets with Large Interplanar Spacing Toward Superior Zinc Storage. SSRN Electronic Journal, 0, , .	0.4	1
1275	Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy and Environmental Science, 2022, 15, 1805-1839.	15.6	71
1276	Regulating Uniform Nucleation of Zns Enables Low-Polarized and High Stable Aqueous Zn-S Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1277	Navigating fast and uniform zinc deposition <i>via</i> a versatile metal–organic complex interphase. Energy and Environmental Science, 2022, 15, 1872-1881.	15.6	145
1278	Extracting Oxygen Anions from Manganese Vanadate Used as Cathode for High Stability Aqueous Zinc Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1279	Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy and Environmental Science, 2022, 15, 1682-1693.	15.6	105
1280	A NiFe/NiSe ₂ heterojunction bifunctional catalyst rich in oxygen vacancies introduced using dielectric barrier discharge plasma for liquid and flexible all-solid-state rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 8739-8750.	5.2	28
1281	Simultaneous reversible tuning of H ⁺ and Zn ²⁺ coinsertion in MnO ₂ cathode for high-capacity aqueous Zn-ion battery. Nanoscale, 2022, 14, 6085-6093.	2.8	21
1282	Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. Journal of Materials Chemistry A, 2022, 10, 9773-9787.	5.2	30
1283	A Lewis acidity adjustable organic ammonium cation derived robust protecting shield for stable aqueous zinc-ion batteries by inhibiting the tip effect. Materials Chemistry Frontiers, 2022, 6, 901-907.	3.2	13
1284	Zinc Storage Mechanism in Polypyrrole Electrodeposited from Aqueous, Organic, and Ionic Liquid Electrolytes: An In Situ Raman Spectroelectrochemical Study. ACS Applied Energy Materials, 2022, 5, 3217-3226.	2.5	8
#	Article	IF	Citations
------	---	------	-----------
1285	Electrospun V ₂ O ₃ @Carbon Nanofibers as a Flexible and Binder-Free Cathode for Highly Stable Aqueous Zn-Ion Full Batteries. ACS Applied Energy Materials, 2022, 5, 3525-3535.	2.5	27
1286	Constructing Advanced Aqueous Zincâ€lon Batteries with 2D Carbonâ€Rich Materials. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	4
1287	Research Progresses and Challenges of Flexible Zinc Battery. Frontiers in Chemistry, 2022, 10, 827563.	1.8	10
1288	Achieving Stable Zinc-Ion Storage Performance of Manganese Oxides by Synergistic Engineering of the Interlayer Structure and Interface. ACS Applied Materials & Interfaces, 2022, 14, 10489-10497.	4.0	11
1289	Low Currentâ€Density Stable Zincâ€Metal Batteries Via Aqueous/Organic Hybrid Electrolyte. Batteries and Supercaps, 2022, 5, .	2.4	42
1290	Open-Framework Metal Oxides for Fast and Reversible Hydrated Zinc-Ion Intercalation. ACS Applied Materials & Interfaces, 2022, 14, 10407-10418.	4.0	5
1291	Enhanced Electrochemical Performance of Zn/VO _{<i>x</i>} Batteries by a Carbon-Encapsulation Strategy. ACS Applied Materials & Interfaces, 2022, 14, 11654-11662.	4.0	51
1292	Enabling Reversible MnO ₂ /Mn ²⁺ Transformation by Al ³⁺ Addition for Aqueous Zn–MnO ₂ Hybrid Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10526-10534.	4.0	20
1293	An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Research, 2022, 15, 5081-5088.	5.8	5
1294	Ca/Ni Codoping Enables the Integration of High-Rate and High-Capacity Zn-Ion Storage Performances for Layered Hydrated Vanadate. Industrial & Engineering Chemistry Research, 2022, 61, 4212-4221.	1.8	4
1295	The research and synthesis of the cubic 2MnCO3@ZnO applied as cathode material for zinc ion battery. Journal of Materials Science: Materials in Electronics, 2022, 33, 9988-10001.	1.1	4
1296	Potassium Ammonium Vanadate with Rich Oxygen Vacancies for Fast and Highly Stable Zn-Ion Storage. ACS Nano, 2022, 16, 4588-4598.	7.3	118
1297	Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Storage Materials, 2022, 49, 122-134.	9.5	57
1298	A superiorâ€kinetics rechargeable zincâ€air battery derived from efficient electroseparation of zinc, lead and copper in concentrated solutions. ChemSusChem, 2022, , .	3.6	5
1299	"Threeâ€inâ€One―Strategy that Ensures V ₂ O ₅ · <i>n</i> H ₂ O with Superior Zn ²⁺ Storage by Simultaneous Protonated Polyaniline Intercalation and Encapsulation. Small Structures, 2022, 3, .	6.9	33
1300	A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Znâ€ion Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
1301	An Ultrafast, Durable, and High‣oading Polymer Anode for Aqueous Zincâ€Ion Batteries and Supercapacitors. Advanced Materials, 2022, 34, e2200077.	11.1	60
1302	Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density. Energy Storage Materials, 2022, 49, 93-101.	9.5	51

#	Article	IF	CITATIONS
1303	Advances of Metal Oxide Composite Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	4
1304	A binderâ€free bivalent manganese oxide cathode elective structure with high activity in aqueous zinc ion batteries. International Journal of Energy Research, 2022, 46, 9720-9732.	2.2	9
1305	A Universal Polyiodide Regulation Using Quaternization Engineering toward High Valueâ€Added and Ultraâ€Stable Zincâ€Iodine Batteries. Advanced Science, 2022, 9, e2105598.	5.6	58
1306	Nonâ€Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solidâ€Electrolyteâ€Interphase, Current Collectors, Binders, and Separators. Advanced Materials, 2022, 34, e2108206.	11.1	58
1307	Protonâ€Assisted Aqueous Manganeseâ€lon Battery Chemistry. Angewandte Chemie, 2022, 134, .	1.6	6
1308	Regulating the Electrolyte Solvation Structure Enables Ultralong Lifespan Vanadiumâ€Based Cathodes with Excellent Lowâ€Temperature Performance. Advanced Functional Materials, 2022, 32, .	7.8	56
1309	High-surface-area titanium nitride nanosheets as zinc anode coating for dendrite-free rechargeable aqueous batteries. Science China Materials, 2022, 65, 1771-1778.	3.5	21
1310	Rapid Electrochemical Activation of V ₂ O ₃ @C Cathode for Highâ€Performance Zincâ€Ion Batteries in Waterâ€inâ€Salt Electrolyte. ChemSusChem, 2022, 15, .	3.6	16
1311	In-situ prepared of quadrilateral flake Zn0.25(NH4)V2O5·H2O as a cathode for aqueous rechargeable Zn-ion batteries. Applied Surface Science, 2022, 592, 153137.	3.1	14
1312	Hydrated Eutectic Electrolyte with Ligandâ€Oriented Solvation Shell to Boost the Stability of Zinc Battery. Advanced Functional Materials, 2022, 32, .	7.8	87
1313	Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zincâ€lon Batteries. Advanced Materials, 2022, 34, e2200782.	11.1	85
1314	Protonâ€Assisted Aqueous Manganeseâ€lon Battery Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
1315	Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. EScience, 2022, 2, 209-218.	25.0	138
1316	Cableâ€like V ₂ O ₅ Decorated Carbon Cloth as a High apacity Cathode for Flexible Zinc Ion Batteries. Energy Technology, 2022, 10, .	1.8	4
1317	In Situ Constructing Coordination Compounds Interphase to Stabilize Zn Metal Anode for Highâ€Performance Aqueous Zn–SeS ₂ Batteries. Small, 2022, 18, e2200567.	5.2	19
1318	Highâ€Efficiency and Stable Znâ^'Na3V2(PO4)3 Aqueous Battery Enabled by Electrolyteâ€Induced Interphasial Engineering. ChemSusChem, 2022, , .	3.6	11
1319	Impact of Morphology and Transition Metal Doping of Vanadate Nanowires without Surface Modification on the Performance of Aqueous Zinc-Ion Batteries. Bulletin of the Chemical Society of Japan, 2022, 95, 728-734.	2.0	7
1320	Additiveâ€Free Ultrastable Hydrated Vanadium Oxide Sol/Carbon Nanotube Ink for Durable and Highâ€Power Aqueous Zincâ€Ion Battery. Advanced Materials Interfaces, 2022, 9, .	1.9	3

#	Article	IF	CITATIONS
1321	An Environmentâ€Friendly Highâ€Performance Aqueous <scp>Mgâ€Na</scp> Hybridâ€Ion Battery Using an Organic Polymer Anode. Energy and Environmental Materials, 2023, 6, .	7.3	7
1322	Chemical Passivation Stabilizes Zn Anode. Advanced Materials, 2022, 34, e2109872.	11.1	81
1323	Construction of Novel Hierarchical Honeycomb-Like Mn ₃ O ₄ MnO ₂ Core-Shell Architecture with High Voltage for Advanced Aqueous Zinc-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 040519.	1.3	11
1324	Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries through Nanofibrous Coating of a Bead-like MnO _x Cathode. ACS Applied Materials & Interfaces, 2022, 14, 17570-17577.	4.0	12
1325	An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Metals, 2022, 41, 2230-2236.	3.6	26
1326	Unexpected Role of the Interlayer "Dead Zn ²⁺ ―in Strengthening the Nanostructures of VS ₂ Cathodes for Highâ€Performance Aqueous Znâ€Ion Storage. Advanced Energy Materials, 2022, 12, .	10.2	74
1327	Electrochemical zinc and hydrogen co-intercalation in Li3(V6O16): A high-capacity aqueous zinc-ion battery cathode. Electrochimica Acta, 2022, 412, 140120.	2.6	11
1328	Aqueous zinc batteries: Design principles toward organic cathodes for grid applications. IScience, 2022, 25, 104204.	1.9	20
1329	Interlayer-expanded VS2 nanosheet: Fast ion transport, dynamic mechanism and application in Zn2+ and Mg2+/Li+ hybrid batteries systems. Journal of Colloid and Interface Science, 2022, 620, 119-126.	5.0	55
1330	Design and Characterization of Host Frameworks for Facile Magnesium Transport. Annual Review of Materials Research, 2022, 52, 129-158.	4.3	11
1331	Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17415-17425.	4.0	16
1332	Amorphous H0.82MoO3.26 cathodes based long cyclelife fiber-shaped Zn-ion battery for wearable sensors. Energy Storage Materials, 2022, 49, 227-235.	9.5	15
1333	Beyond conventional sodium-ion storage mechanisms: a combinational intercalation/conversion reaction mechanism in Ni-ion modified hydrated vanadate for high-rate sodium-ion storage. Energy Storage Materials, 2022, 47, 579-590.	9.5	17
1334	Novel multi-valent rechargeable ion battery: An organic nickel ion battery with Li3V2(PO4)3 cathode. Chemical Engineering Journal, 2022, 438, 135445.	6.6	3
1335	Improved working voltage and high rate performance of sodium vanadate cathode materials for aqueous zinc ion batteries by altering synthetic solution pH guiding the structure change. Materials Today Communications, 2022, 31, 103460.	0.9	5
1336	Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Materials, 2022, 48, 335-343.	9.5	91
1337	High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy, 2022, 96, 107120.	8.2	24
1338	Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coordination Chemistry Reviews, 2022, 460, 214477.	9.5	31

	Ста	TION REPORT	
#	Article	IF	CITATIONS
1339	Highly stable cathode materials for aqueous Zn ion batteries: Synergistic effect of pre-inserted bimetallic ions in vanadium oxide layer. Journal of Alloys and Compounds, 2022, 910, 164872.	2.8	11
1340	Expanded spinel ZnxMn2O4 induced by electrochemical activation of glucoseÂâ^'Âmediated manganese oxide for stable cycle performance in zincÂâ^'Âion batteries. Journal of Colloid and Interface Science, 2022, 617, 274-283.	e 5.0	10
1341	Quench-tailored Al-doped V2O5 nanomaterials for efficient aqueous zinc-ion batteries. Journal of Energy Chemistry, 2022, 70, 52-58.	7.1	46
1342	Unsaturated Ni/V centers and short Ni·V/Ni distances in nickel vanadate for high-performance zinc-ion battery. Chemical Engineering Journal, 2022, 441, 136007.	6.6	17
1343	Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. Journal of Materials Science and Technology, 2022, 120, 159-166.	5.6	11
1344	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti ₃ C ₂ MXenes. ACS Nano, 2022, 16, 813-822.	7.3	90
1345	Manipulating the Zinc Deposition Behavior in Hexagonal Patterns at the Preferential Zn (100) Crystal Plane to Construct Surficial Dendriteâ€Free Zinc Metal Anode. Small, 2022, 18, e2105978.	5.2	61
1346	In Situ Electrochemical Transformation toward Structure Optimized VEG@MXene Cathode for Enhanced Zincâ€ion Storage. Small, 2022, 18, e2105325.	5.2	17
1347	<i>In Situ</i> Electrochemically Activated Vanadium Oxide Cathode for Advanced Aqueous Zn-Ion Batteries. Nano Letters, 2022, 22, 119-127.	4.5	113
1348	V ₂ O ₅ /NaV ₆ O ₁₅ nanocomposites synthesized by molten salt method as a high-performances cathode material for aqueous zinc-ion batteries. Nanotechnology, 2022, 33, 115402.	1.3	2
1349	Cathode Materials Challenge Varied with Different Electrolytes in Zinc Batteries. , 2022, 4, 190-204.		24
1350	Architecting a Hydrated Ca _{0.24} V ₂ O ₅ Cathode with a Facile Desolvation Interface for Superior-Performance Aqueous Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60035-60045.	4.0	26
1351	Reversible aqueous zinc-ion battery based on ferric vanadate cathode. Chinese Chemical Letters, 2022, 33, 4628-4634.	4.8	25
1352	A bi-component polyoxometalate-derivative cathode material showed impressive electrochemical performance for the aqueous zinc-ion batteries. Chinese Chemical Letters, 2022, 33, 3955-3960.	4.8	10
1353	Interfacial Charge Transfer and Zinc Ion Intercalation and Deintercalation Dynamics in Flexible Multicolor Electrochromic Energy Storage Devices. ACS Applied Energy Materials, 2022, 5, 88-97.	2.5	23
1354	Hierarchical Mg-Birnessite Nanowall Arrays with Enriched (010) Planes for High Performance Aqueous Mg-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 120549.	1.3	8
1355	Water–Solid Interface Engineering Stabilizes Kâ€Birnessite Cathode. Advanced Functional Materials, 2022, 32, 2108267.	7.8	2
1356	Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries: From Synthetic to Biopolymers. Polymers, 2021, 13, 4284.	2.0	7

#	Article	IF	CITATIONS
1357	Polypyrrole-Coated K ₂ Mn[Fe(CN) ₆] Stabilizing Its Interfaces and Inhibiting Irreversible Phase Transition during the Zinc Storage Process in Aqueous Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1092-1101.	4.0	13
1358	Manipulating Ion Concentration to Boost Twoâ€Electron Mn ⁴⁺ /Mn ²⁺ Redox Kinetics through a Colloid Electrolyte for Highâ€Capacity Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	65
1359	γ′-V ₂ O ₅ Polymorph: A Genuine Zn Intercalation Material for Nonaqueous Rechargeable Batteries. Chemistry of Materials, 2022, 34, 1203-1212.	3.2	6
1360	Poly(3,4-ethylenedioxythiophene)–Polystyrenesulfonate-Added Layered Vanadium Oxide Cathode for High-Performance Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 14582-14589.	2.5	11
1361	Metal–organic-framework-derived vanadium(<scp>iii</scp>) phosphate nanoaggregates for zinc-ion battery cathodes with long-term cycle stability. Journal of Materials Chemistry A, 2022, 10, 10638-10650.	5.2	19
1362	Robust synthesis of a composite phase of copper vanadium oxide with enhanced performance for durable aqueous Zn-ion batteries. Nanotechnology Reviews, 2022, 11, 1633-1642.	2.6	4
1363	Realizing high-rate aqueous zinc-ion batteries using organic cathode materials containing electron-withdrawing groups. Sustainable Energy and Fuels, 2022, 6, 2523-2531.	2.5	21
1364	Template-assisted synthesis of single-atom catalysts supported on highly crystalline vanadium pentoxide for stable oxygen evolution. Chem Catalysis, 2022, 2, 1191-1210.	2.9	8
1365	Polyiodide Confinement by Starch Enables Shuttleâ€Free Zn–Iodine Batteries. Advanced Materials, 2022, 34, e2201716.	11.1	98
1366	Coupling High Rate Capability and High Capacity in an Intercalation-Type Sodium-Ion Hybrid Capacitor Anode Material of Hydrated Vanadate via Interlayer-Cation Engineering. ACS Applied Materials & Interfaces, 2022, 14, 17547-17559.	4.0	4
1367	Recent Progress and Prospects on Dendriteâ€free Engineerings for Aqueous Zinc Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	15
1368	Tuning the layer structure of molybdenum trioxide towards high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2023, 34, 107410.	4.8	2
1369	Elastomer–Alginate Interface for Highâ€Power and Highâ€Energy Zn Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	51
1370	Mg2+ pre-intercalated hydrated vanadium oxide as high-performance cathode for aqueous zinc-ion batteries. Modern Physics Letters B, 2022, 36, .	1.0	3
1371	Synergistic Engineering of Sulfur Vacancies and Heterointerfaces in Copper Sulfide Anodes for Aqueous Znâ€Ion Batteries with Fast Diffusion Kinetics and an Ultralong Lifespan. Advanced Energy Materials, 2022, 12, .	10.2	39
1372	Flexible and Safe Additivesâ€Based Zincâ€Binderâ€Freeâ€Hierarchical MnO ₂ â€Solid Alkaline Polymer Battery for Potential Wearable Applications. Small, 2022, 18, e2103495.	5.2	2
1373	MILâ€47(V) Derived V ₂ O ₅ @Carbon Core‧hell Microcuboids with Oxygen Vacancies as Advanced Conversion Cathodes for Highâ€Performance Zincâ€Ion Batteries. ChemElectroChem, 2022, 9, .	1.7	12
1374	Electrochemical Activation of Oxygen Vacancy-Rich Nitrogen-Doped Manganese Carbonate Microspheres for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 18476-18485.	4.0	12

#	Article	IF	CITATIONS
1375	Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors. Science China Materials, 2022, 65, 2401-2411.	3.5	17
1376	Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy, 2022, 98, 107269.	8.2	102
1377	Towards high-performance aqueous zinc-ion battery via cesium ion intercalated vanadium oxide nanorods. Chemical Engineering Journal, 2022, 442, 136349.	6.6	49
1378	The in-system growth of highly-reversible hierarchical Zn for seawater-based energy storage with self-regulation interface. Chemical Engineering Journal, 2022, 442, 136327.	6.6	3
1379	Regulating Dendriteâ€Free Zinc Deposition by Red Phosphorousâ€Derived Artificial Protective Layer for Zinc Metal Batteries. Advanced Science, 2022, 9, e2200155.	5.6	41
1380	Interface and electronic structure engineering induced Prussian blue analogues with ultra-stable capability for aqueous NH ₄ ⁺ storage. Nanoscale, 2022, 14, 8501-8509.	2.8	35
1381	Two-Dimensional Conductive Polymer/V2o5 Composite with Rapid Zinc-Ion Storage Kinetics for High-Power Aqueous Zinc-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
1382	Synthesis, characterisation, and feasibility studies on the use of vanadium tellurate(<scp>vi</scp>) as a cathode material for aqueous rechargeable Zn-ion batteries. RSC Advances, 2022, 12, 12211-12218.	1.7	2
1383	Vanadium Dioxide Nanosheets Supported on Carbonized Cotton Fabric as Bifunctional Textiles for Flexible Pressure Sensors and Zinc-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1384	A distinctive conversion mechanism for reversible zinc ion storage. Inorganic Chemistry Frontiers, 2022, 9, 2706-2713.	3.0	7
1385	The magnetohydrodynamic effect enables a dendrite-free Zn anode in alkaline electrolytes. Journal of Materials Chemistry A, 2022, 10, 11971-11979.	5.2	24
1386	Stabilization of VOPO ₄ ·2H ₂ O voltage and capacity retention in aqueous zinc batteries with a hydrogen bond regulator. Chemical Communications, 2022, 58, 5905-5908.	2.2	3
1387	Boosting the Zn-ion energy storage capability of graphene sandwiched nanoporous VO _{<i>x</i>} derived from MXene. Nanoscale, 2022, 14, 8640-8648.	2.8	9
1388	The advent of membrane-less zinc-anode aqueous batteries with lithium battery-like voltage. Materials Horizons, 2022, 9, 2160-2171.	6.4	4
1389	Simultaneous Incorporation of V and Mn Element into Polyanionic NASICON for High Energyâ€Density and Longâ€Lifespan Znâ€Ion Storage. Advanced Energy Materials, 2022, 12, .	10.2	53
1390	Quinone Electrodes for Alkali–Acid Hybrid Batteries. Journal of the American Chemical Society, 2022, 144, 8066-8072.	6.6	23
1391	Quasiâ€5olid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for Highâ€5tability Zinc Metal Battery. Advanced Energy Materials, 2022, 12, .	10.2	42
1392	Improving the Performance of Aqueous Zincâ€ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Chemistry - an Asian Journal, 2022, 17, .	1.7	9

#	Article	IF	CITATIONS
1393	Highly Transparent and Flexible Zn-Ti ₃ C ₂ T _{<i>x</i>} MXene Hybrid Capacitors. Langmuir, 2022, 38, 5968-5976.	1.6	6
1394	Metal-ion inserted vanadium oxide nanoribbons as high-performance cathodes for aqueous zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 136861.	6.6	34
1395	Atomic Layer-Deposited ZnO Layer on Hydrated Vanadium Dioxide Cathodes against Vanadium Dissolution for Stable Zinc Ion Batteries. ACS Applied Energy Materials, 2022, 5, 6139-6145.	2.5	8
1396	Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nature Communications, 2022, 13, 2371.	5.8	126
1397	Enriching Oxygen Vacancy Defects via Ag–O–Mn Bonds for Enhanced Diffusion Kinetics of Î′-MnO ₂ in Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 21159-21172.	4.0	21
1398	Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. Journal of Power Sources, 2022, 536, 231489.	4.0	40
1399	Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy, 2022, 98, 107333.	8.2	93
1400	Conductive polymer intercalated vanadium oxide on carbon cloth for fast ammonium-ion storage in supercapacitor applications. Chemical Engineering Journal, 2022, 445, 136747.	6.6	33
1401	Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges. Energy Storage Materials, 2022, 50, 21-46.	9.5	79
1402	A sustainable route from spent hydrogenation catalysts to lamellar spherical vanadium oxide hydrates for superior low-cost aqueous Zn-ion batteries. Energy Storage Materials, 2022, 50, 1-11.	9.5	18
1403	High-capacity zinc vanadium oxides with long-term cyclability enabled by in-situ electrochemical oxidation as zinc-ion battery cathode. Chemical Engineering Journal, 2022, 445, 136714.	6.6	52
1404	Regulating uniform nucleation of ZnS enables low-polarized and high stable aqueous Zn–S batteries. Materials Today Energy, 2022, 27, 101025.	2.5	19
1405	Recycling of Zincâ^'Carbon Batteries into MnO/ZnO/C to Fabricate Sustainable Cathodes for Rechargeable Zincâ€lon Batteries. ChemSusChem, 2022, 15, .	3.6	7
1406	A _{<i>m</i>} V ₂ O ₅ with Binary Phases as High-Performance Cathode Materials for Zinc-Ion Batteries: Effect of the Pre-Intercalated Cations A and Reversible Transformation of Coordination Polyhedra. ACS Applied Materials & amp; Interfaces, 2022, 14, 24415-24424	4.0	13
1407	Oxygen Plasma Modified Carbon Cloth with C=O Zincophilic Sites as a Stable Host for Zinc Metal Anodes. Frontiers in Chemistry, 2022, 10, 899810.	1.8	7
1408	Electrocatalytic Selenium Redox Reaction for Highâ€Mass‣oading Zincâ€5elenium Batteries with Improved Kinetics and Selenium Utilization. Advanced Energy Materials, 2022, 12, .	10.2	29
1409	Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule, 2022, 6, 1103-1120.	11.7	131
1410	One-pot preparation of La(OH)3 nanoparticles and NiMn LDH nanosheets with mutual support structure as cathode for high-performance aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165547.	2.8	6

#	Article	IF	CITATIONS
1411	Hydrated ammonium manganese phosphates by electrochemically induced manganese-defect as cathode material for aqueous zinc ion batteries. Chinese Chemical Letters, 2023, 34, 107540.	4.8	3
1412	Recent development of aqueous zincâ€ion battery cathodes and future challenges: Review. International Journal of Energy Research, 2022, 46, 13152-13177.	2.2	17
1413	Dual polymer engineering enables high-performance 3D printed Zn-organic battery cathodes. Applied Materials Today, 2022, 28, 101515.	2.3	3
1414	Sodium ion stabilized ammonium vanadate as a high-performance aqueous zinc-ion battery cathode. Chemical Engineering Journal, 2022, 446, 137090.	6.6	31
1415	Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 137069.	6.6	23
1416	Regulating solvation shells and interfacial chemistry in zinc-ion batteries using glutaronitrile based electrolyte. Journal of Materials Chemistry A, 2022, 10, 14345-14354.	5.2	3
1417	Dual intercalation of inorganics–organics for synergistically tuning the layer spacing of V ₂ O ₅ · <i>n</i> H ₂ O to boost Zn ²⁺ storage for aqueous zinc-ion batteries. Nanoscale, 2022, 14, 8776-8788.	2.8	22
1418	Synergistic Optimization Strategy Involving Sandwich-like MnO ₂ @rGO and Laponite-Modified PAM for High-Performance Zinc-Ion Batteries and Zinc Dendrite Suppression. ACS Applied Materials & Interfaces, 2022, 14, 25962-25971.	4.0	15
1419	The Emergence of 2D MXenes Based Znâ€lon Batteries: Recent Development and Prospects. Small, 2022, 18,	5.2	76
1420	Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. , 2022, 1, e9120007.		89
1421	Recycling spent lead acid batteries into aqueous zinc-ion battery material with ultra-flat voltage platforms. Ceramics International, 2022, 48, 25808-25815.	2.3	5
1422	Metalâ€Organic Frameworkâ€Based Materials for Aqueous Zincâ€Ion Batteries: Energy Storage Mechanism and Function. Chemical Record, 2022, 22, .	2.9	29
1423	All 3D Printing Shapeâ€Conformable Zinc Ion Hybrid Capacitors with Ultrahigh Areal Capacitance and Improved Cycle Life. Advanced Energy Materials, 2022, 12, .	10.2	18
1424	Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells. ACS Applied Materials & Interfaces, 2022, 14, 25501-25515.	4.0	15
1425	Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
1426	Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie, 2022, 134, .	1.6	0
1427	Metal–organic framework for dendrite-free anodes in aqueous rechargeable zinc batteries. Electrochimica Acta, 2022, 425, 140648.	2.6	17
1428	Ammonium vanadate electrode materials with stable layered structures for rechargeable zinc ion batteries. CrystEngComm, 2022, 24, 5421-5427.	1.3	6

#	Article	IF	CITATIONS
1429	A Binder-Free Amorphous Manganese Dioxide for Aqueous Zinc-Ion Battery. Journal of Materials Science and Chemical Engineering, 2022, 10, 13-18.	0.2	1
1430	High-Performance 3d Biphasic Nvo/Zvo Synthesized by Rapid Chemical PrecipitationÂAs CathodesÂFor Zn-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1431	Boosted Zn ²⁺ storage performance of hydrated vanadium oxide by defect and heterostructure. Journal of Materials Chemistry A, 2022, 10, 13428-13438.	5.2	12
1432	Recent advances in metal-ion batteries with metal sulfide/selenide. , 2022, , 645-678.		1
1433	Snâ€, Sb―and Biâ€Based Anodes for Potassium Ion Battery. Chemical Record, 2022, 22, .	2.9	13
1434	Insight on Cathodes Chemistry for Aqueous Zincâ€lon Batteries: From Reaction Mechanisms, Structural Engineering, and Modification Strategies. Small, 2022, 18, .	5.2	30
1435	Hydrophilic crosslinked TEMPOâ€methacrylate copolymers – a straight forward approach towards aqueous semiâ€organic batteries. ChemSusChem, 0, , .	3.6	4
1437	Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive. Nano Research, 2022, 15, 8039-8047.	5.8	15
1438	Biomolecular Regulation of Zinc Deposition to Achieve Ultra‣ong Life and Highâ€Rate Zn Metal Anodes. Small, 2022, 18, .	5.2	26
1439	Methods for Rational Design of Advanced Znâ€Based Batteries. Small Methods, 2022, 6, .	4.6	24
1440	Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2022, 14, .	14.4	65
1441	Ionic Liquid-Softened Polymer Electrolyte for Anti-Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 27287-27293.	4.0	20
1442	Zn _{0.52} V ₂ O _{5â^'<i>a</i>} â<1.8 H ₂ O Cathode Stabilized Situ Phase Transformation for Aqueous Zincâ€ion Batteries with Ultraâ€Long Cyclability. Angewandte Chemie - International Edition, 2022, 61, .	by In 7.2	41
1443	Zn _{0.52} V ₂ O _{5â^'<i>a</i>} â<1.8 H ₂ O Cathode Stabilized I Situ Phase Transformation for Aqueous Zincâ€ion Batteries with Ultraâ€Long Cyclability. Angewandte Chemie, 2022, 134, .	by In 1.6	1
1444	Methyl-functionalized hydrangea-like vanadium pentoxide cathode for aqueous zinc ion batteries with high-rate and long-term cycling stability. Journal of Alloys and Compounds, 2022, 920, 166010.	2.8	8
1445	Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem, 2022, 4, 100076.	10.1	59
1446	Ultrasonic guided wave monitoring of dendrite formation at electrode–electrolyte interface in aqueous zinc ion batteries. Journal of Power Sources, 2022, 542, 231730.	4.0	11
1447	A dendrite suppression coating formulated via electrophoretic deposition using Bi-functional surfactants for Zn-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165790.	2.8	5

		15	0
#	ARTICLE	IF	CITATIONS
1448	batteries. Journal of Alloys and Compounds, 2022, 919, 165804.	2.8	12
1449	Local protonation of polyaniline induced by nitrogen-doped carbon skeleton towards ultra-stable Zn-organic batteries with a dual-ion insertion/extraction mechanism. Chemical Engineering Journal, 2022, 448, 137711.	6.6	22
1450	MoS2 with high 1T phase content enables fast reversible zinc-ion storage via pseudocapacitance. Chemical Engineering Journal, 2022, 448, 137688.	6.6	24
1451	Regulating zinc metal anodes <i>via</i> novel electrolytes in rechargeable zinc-based batteries. Journal of Materials Chemistry A, 2022, 10, 14692-14708.	5.2	12
1452	Fabricating TiN/CNTs on carbon cloth via CVD-ALD method as free-standing electrodes for zinc ion hybrid capacitors. New Journal of Chemistry, 0, , .	1.4	4
1453	Solvothermally Prepared Vo2(B) for Aqueous Zinc Ion Batteries with High Capacity and Excellent Rate Capability. SSRN Electronic Journal, 0, , .	0.4	0
1454	Operando synchrotron X-ray studies of MnVOH@SWCNT nanocomposites as cathodes for high-performance aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10, 14540-14554.	5.2	9
1455	Ammonium ion pre-intercalation stabilized tunnel <i>h</i> -WO ₃ for fast NH ₄ ⁺ storage. Journal of Materials Chemistry A, 2022, 10, 15614-15622.	5.2	25
1456	A facile method for pre-insertion of cations and structural water in preparing durable zinc storage vanadate cathodes. CrystEngComm, 2022, 24, 5487-5496.	1.3	7
1457	Interlayer Doping of Pseudocapacitive Hydrated Vanadium Oxide Via Mn2+ for High-Performance Aqueous Zinc-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
1458	Towards a Stable Layered Vanadium Oxide Cathode for High apacity Calcium Batteries. Small, 2022, 18, .	5.2	7
1459	Cobalt–Nickel Double Hydroxide toward Mild Aqueous Zincâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	68
1460	Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries. Energy & Fuels, 2022, 36, 7854-7864.	2.5	5
1461	Two-dimensional materials for aqueous zinc-ion batteries. 2D Materials, 2022, 9, 042001.	2.0	10
1462	Anionic Coâ€ i nsertion Charge Storage in Dinitrobenzene Cathodes for Highâ€Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie, 2022, 134, .	1.6	22
1463	<scp>Zincâ€ion</scp> battery based on heteroatomâ€doped <scp>improvedâ€quality</scp> graphene film as a functional current collector. International Journal of Energy Research, 2022, 46, 16658-16669.	2.2	5
1464	Pathways towards Highâ€₽erformance Aqueous Zincâ€Organic Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
1465	Structural Oxygen Vacancies and Crystalline Defects in Iron Vanadate with Multiple Redox Centers Boosting Surface Migration for Highâ€Performance Zincâ€Ion Battery. Advanced Materials Interfaces, 2022, 9, .	1.9	4

#	Article	IF	CITATIONS
1466	Surface Transformation Enables a Dendriteâ€Free Zincâ€Metal Anode in Nonaqueous Electrolyte. Advanced Materials, 2022, 34, .	11.1	34
1467	Manipulating Hierarchical Orientation of Wetâ€Spun Hybrid Fibers via Rheological Engineering for Znâ€Ion Fiber Batteries. Advanced Materials, 2022, 34, .	11.1	25
1468	Metal-organic framework (MOF) composites as promising materials for energy storage applications. Advances in Colloid and Interface Science, 2022, 307, 102732.	7.0	126
1469	A freestanding hydroxylated carbon nanotube film boosting the stability of Zn metal anodes. Materials Today Communications, 2022, 32, 103939.	0.9	4
1470	Oxygen vacancies and Nâ€doping in organic–inorganic preâ€intercalated vanadium oxide for highâ€performance aqueous zincâ€ion batteries. InformaÂnÃ-Materiály, 2022, 4, .	8.5	60
1471	Ultralow-concentration electrolyte boosting K0.486V2O5 for high-performance proton storage. Science China Materials, 2022, 65, 3069-3076.	3.5	6
1472	Structural Regulation of Oxygen Vacancyâ€Rich K _{0.5} Mn ₂ O ₄ Cathode by Carbon Hybridization for Enhanced Zincâ€lon Energy Storage. ChemSusChem, 2022, 15, .	3.6	4
1473	Facile and Rapid Synthesis of Porous Hydrated V2O5 Nanoflakes for High-Performance Zinc Ion Battery Applications. Nanomaterials, 2022, 12, 2400.	1.9	4
1474	Anionic Coâ€insertion Charge Storage in Dinitrobenzene Cathodes for Highâ€Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	89
1475	Graphene oxide wrapped ZnMnO ₃ nanorod as advanced cathode for aqueous zinc ion batteries. Energy Technology, 0, , .	1.8	0
1476	Zincâ€lon Hybrid Supercapacitors Employing Acetateâ€Based Waterâ€inâ€Salt Electrolytes. Small, 2022, 18, .	5.2	22
1477	Improved reversible zinc storage achieved in aÂconstitutionally crystallineâ€stable Mn(VO3)2 nanobelts cathode. Chemistry - A European Journal, 0, , .	1.7	1
1478	Self-standing ultrathin NiCo2S4@carbon nanotubes and carbon nanotubes hybrid films as battery-type electrodes for advanced flexible supercapacitors. Journal of Power Sources, 2022, 543, 231829.	4.0	21
1479	Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy, 2022, 100, 107539.	8.2	33
1480	Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Storage Materials, 2022, 50, 641-647.	9.5	47
1481	High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Materials, 2022, 51, 294-305.	9.5	31
1482	Rational design of continuous gradient composite films for high-performance zinc-ion batteries. Energy Storage Materials, 2022, 51, 382-390.	9.5	8
1483	Scalable fabrication of NiCoMnO4 yolk-shell microspheres with gradient oxygen vacancies for high-performance aqueous zinc ion batteries. Journal of Colloid and Interface Science, 2022, 626, 314-323.	5.0	12

#	Article	IF	CITATIONS
1484	Chitosan modified filter paper separators with specific ion adsorption to inhibit side reactions and induce uniform Zn deposition for aqueous Zn batteries. Chemical Engineering Journal, 2022, 450, 137902.	6.6	21
1485	Synthesis and Electrochemical Performance of the Orthorhombic V2O5•nH2O Nanorods as Cathodes for Aqueous Zinc Batteries. Nanomaterials, 2022, 12, 2530.	1.9	4
1486	Critical factors to inhibit waterâ€splitting side reaction in carbonâ€based electrode materials for zinc metal anodes. , 2022, 4, 1080-1092.		7
1487	A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods, 2022, 6, .	4.6	124
1488	A new sodium ion preintercalated and oxygen vacancy-enriched vanadyl phosphate cathode for aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2022, 627, 1021-1029.	5.0	14
1489	Releasing Plating Induced Stress for Highly Reversible Aqueous Zn Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
1490	A hydrophobic layer of amino acid enabling dendrite-free Zn anodes for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10, 17501-17510.	5.2	40
1491	Novel Inorganic–Organic Hybrid Cathode for Aqueous Zinc-Ion Batteries: V ₂ O ₅ Pillared with Diethylenetriamine like a Double-Stud. ACS Sustainable Chemistry and Engineering, 2022, 10, 10243-10251.	3.2	8
1492	High-performance 3D biphasic NH4V3O8/Zn3(OH)2V2O7·2H2O synthesized by rapid chemical precipitation as cathodes for Zn-ion batteries. Electrochemistry Communications, 2022, 140, 107331.	2.3	4
1493	Tartaric acid as a novel additive for approaching high-performance capacity retention in zinc-ion battery. Scientific Reports, 2022, 12, .	1.6	8
1494	Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule, 2022, 6, 1733-1738.	11.7	201
1495	An Ultrahigh Rate and Stable Zinc Anode by Facetâ€Matchingâ€Induced Dendrite Regulation. Advanced Materials, 2022, 34, .	11.1	64
1496	Boosting the Rate Capability of Aqueous Zinc-Ion Batteries Using VN <i>_x</i> O <i>_y</i> /C Spheres Derived from a Self-Assembled V-polydopamine Complex. ACS Applied Energy Materials, 2022, 5, 10776-10785.	2.5	4
1497	Charge carrier unveiled. Nature Sustainability, 0, , .	11.5	0
1498	Cathodic Zn underpotential deposition: an evitable degradation mechanism in aqueous zinc-ion batteries. Science Bulletin, 2022, 67, 1882-1889.	4.3	52
1499	Vat Orange 7 as an organic electrode with ultrafast hydronium-ion storage and super-long life for rechargeable aqueous zinc batteries. Chemical Engineering Journal, 2023, 451, 138776.	6.6	10
1500	An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2022, 14, 38689-38695.	4.0	21
1501	Copper Hexacyanoferrate Solidâ€State Electrolyte Protection Layer on Zn Metal Anode for Highâ€Performance Aqueous Zincâ€Ion Batteries. Small, 2022, 18, .	5.2	34

#	Article	IF	CITATIONS
1502	Activated Proton Storage in Molybdenum Selenide through Electronegativity Regulation. Advanced Functional Materials, 2022, 32, .	7.8	12
1503	Activating ZnV ₂ 0 ₄ by an Electrochemical Oxidation Strategy for Enhanced Energy Storage in Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 10196-10206.	2.5	10
1504	Advances in Zinc and Magnesium Battery Polymer Cathode Materials. ACS Applied Energy Materials, 2022, 5, 10331-10358.	2.5	3
1505	Construction of hollow mesoporous ZnMn2O4/C microspheres with carbon nanotubes embedded in shells for high-performance aqueous zinc ions batteries. Nano Research, 2023, 16, 1726-1732.	5.8	15
1506	Cationâ€Anion Redox Active Organic Complex for High Performance Aqueous Zinc Ion Battery. Energy and Environmental Materials, 2024, 7, .	7.3	7
1507	Advances on Defect Engineering of Vanadiumâ€Based Compounds for Highâ€Energy Aqueous Zinc–Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	70
1508	Eliminating the Micropore Confinement Effect of Carbonaceous Electrodes for Promoting Zn″on Storage Capability. Advanced Materials, 2022, 34, .	11.1	61
1509	Simply Prepared Magnesium Vanadium Oxides as Cathode Materials for Rechargeable Aqueous Magnesium Ion Batteries. Nanomaterials, 2022, 12, 2767.	1.9	2
1510	Csâ€Induced Phase Transformation of Vanadium Oxide for Highâ€Performance Zincâ€Ion Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	4
1511	Unlocking Layered Double Hydroxide as a Highâ€Performance Cathode Material for Aqueous Zincâ€lon Batteries. Advanced Materials, 2022, 34, .	11.1	35
1512	Tug-of-War in the Selection of Materials for Battery Technologies. Batteries, 2022, 8, 105.	2.1	7
1513	Synthesis of Zn2+-Pre-Intercalated V2O5·nH2O/rGO Composite with Boosted Electrochemical Properties for Aqueous Zn-Ion Batteries. Molecules, 2022, 27, 5387.	1.7	5
1514	Strategies to inhibition the dendrites of the anode in zinc ion batteries. International Journal of Electrochemical Science, 0, , ArticleID:220954.	0.5	0
1515	Revealing excess Al3+ preinsertion on altering diffusion paths of aluminum vanadate for zinc-ion batteries. Energy Storage Materials, 2022, 52, 291-298.	9.5	34
1516	Interfacial engineering of hydrated vanadate to promote the fast and highly reversible H+/Zn2+ co-insertion processes for high-performance aqueous rechargeable batteries. Energy Storage Materials, 2022, 52, 473-484.	9.5	20
1517	The intercalation cathode materials of heterostructure MnS/MnO with dual ions defect embedded in N-doped carbon fibers for aqueous zinc ion batteries. Energy Storage Materials, 2022, 52, 180-188.	9.5	61
1518	Intrinsic structural optimization of zinc anode with uniform second phase for stable zinc metal batteries. Energy Storage Materials, 2022, 52, 161-168.	9.5	24
1519	Synergistic co-reaction of Zn2+ and H+ with carbonyl groups towards stable aqueous zinc–organic batteries. Energy Storage Materials, 2022, 52, 386-394.	9.5	31

#	Article	IF	CITATIONS
1520	Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Materials, 2022, 52, 250-283.	9.5	23
1521	Enhancing the kinetics of vanadium oxides via conducting polymer and metal ions co-intercalation for high-performance aqueous zinc-ions batteries. Journal of Colloid and Interface Science, 2022, 628, 204-213.	5.0	17
1522	High performance aqueous zinc battery enabled by potassium ion stabilization. Journal of Colloid and Interface Science, 2022, 628, 33-40.	5.0	28
1523	Synergistic interlayer and defect engineering of hydrated vanadium oxide toward stable Zn-ion batteries. Chemical Engineering Journal, 2022, 450, 138367.	6.6	22
1524	Building a robust sulfur host for aqueous Cu-S battery by introducing nitrogen into carbon nanotubes. Scripta Materialia, 2022, 221, 114975.	2.6	3
1525	Adjusting the V5+ content of vanadium oxide cathodes for high-performance Zn-ion batteries by aging. Journal of Alloys and Compounds, 2022, 926, 166773.	2.8	4
1526	Towards Highâ€Performance Aqueous Zinc Batteries via a Semiâ€Conductive Bipolarâ€Type Polymer Cathode. Angewandte Chemie, 2022, 134, .	1.6	2
1527	Boosting Cathode Activity and Anode Stability of Znâ€5 Batteries in Aqueous Media Through Cosolventâ€Catalyst Synergy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
1528	Tripleâ€Function Electrolyte Regulation toward Advanced Aqueous Znâ€Ion Batteries. Advanced Materials, 2022, 34, .	11.1	118
1529	Ultralow-concentration electrolyte unlocking the high-stable proton storage in (NH4)0.5V2O5 electrode. Electrochimica Acta, 2022, 431, 141097.	2.6	6
1530	Dendrite-free Zn anodes enabled by a hierarchical zincophilic TiO2 layer for rechargeable aqueous zinc-ion batteries. Applied Surface Science, 2022, 606, 154932.	3.1	19
1531	Modulating the V10O24·12H2O nanosheets decorated with carbon for enhanced and durable zinc storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130093.	2.3	1
1532	Eco-friendly synthesis of vanadium metal-organic frameworks from gasification waste for wearable Zn-ion batteries. Energy Storage Materials, 2022, 53, 352-362.	9.5	8
1533	Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Materials, 2022, 53, 273-304.	9.5	63
1534	Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy, 2022, 103, 107814.	8.2	16
1535	Superior electrochemical performance of dual-monoclinic δ-NaxV2O5/VO2(B) composite material with enhanced synergistic effects. Journal of Alloys and Compounds, 2022, 926, 166952.	2.8	4
1536	Achieving high-energy and long-cycling aqueous zinc-metal batteries by highly reversible insertion mechanisms in Ti-substituted Na0.44MnO2 cathode. Chemical Engineering Journal, 2023, 451, 139059.	6.6	13
1537	Microstructural engineering of hydrated vanadium pentoxide for boosted zinc ion thermoelectrochemical cells. Journal of Materials Chemistry A, 2022, 10, 21446-21455.	5.2	11

#	Article	IF	CITATIONS
1538	Two-dimensional metallic VTe ₂ demonstrating fast ion diffusion for aqueous zinc-ion batteries. Sustainable Energy and Fuels, 2022, 6, 4626-4635.	2.5	6
1539	Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects. Journal of Materials Chemistry A, 2022, 10, 21197-21250.	5.2	43
1540	Theoretical design of high-performance halogen anion batteries with MXene electrodes: influence of functional groups, metals, and anions. Journal of Materials Chemistry A, 2022, 10, 21611-21621.	5.2	9
1541	Reduced water activity in co-solvent electrolyte enables 2 V zinc-ion hybrid capacitors with prolonged stability and high energy density. Journal of Materials Chemistry A, 2022, 10, 20431-20445.	5.2	3
1542	Printed Electronics Applications: Energy Conversion and Storage Devices. , 2022, , 445-515.		0
1543	Solvothermally Prepared Vo2(B) for Aqueous Zinc Ion Batteries with High Capacity and Excellent Rate Capability. SSRN Electronic Journal, 0, , .	0.4	0
1544	Suppressing Vanadium Dissolution in 2d V2o5/Mxene Heterostructures Via Organic/Aqueous Hybrid Electrolyte for Stable Zinc Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1545	A two-dimensional conductive polymer/V ₂ O ₅ composite with rapid zinc-ion storage kinetics for high-power aqueous zinc-ion batteries. Nanoscale, 2022, 14, 12013-12021.	2.8	7
1546	Advances in the regulation of kinetics of cathodic H ⁺ /Zn ²⁺ interfacial transport in aqueous Zn/MnO ₂ electrochemistry. Nanoscale, 2022, 14, 14433-14454.	2.8	5
1547	Practical conversion-type titanium telluride anodes for high-capacity long-lifespan rechargeable aqueous zinc batteries. Journal of Materials Chemistry A, 2022, 10, 16976-16985.	5.2	9
1548	A Li ⁺ and PANI co-intercalation strategy for hydrated V ₂ O ₅ to enhance zinc ion storage performance. Journal of Materials Chemistry A, 2022, 10, 18962-18971.	5.2	10
1549	Recent Advancement in Zn-Ion Batteries. , 2022, , 1-27.		0
1550	A shear-thickening colloidal electrolyte for aqueous zinc-ion batteries with resistance on impact. Nanoscale, 2022, 14, 14544-14551.	2.8	14
1551	Li ⁺ , Na ⁺ co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance. Journal of Materials Chemistry A, 2022, 10, 21531-21539.	5.2	9
1552	P-doped porous carbon derived from walnut shell for zinc ion hybrid capacitors. RSC Advances, 2022, 12, 24724-24733.	1.7	2
1553	Zincophilic Polymer Semiconductor as Multifunctional Protective Layer Enables Dendrite-Free Zinc Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	Ο
1554	Tungsten-oxygen bond pre-introduced VO2(B) nanoribbons enable fast and stable zinc ion storage ability. Journal of Colloid and Interface Science, 2023, 629, 928-936.	5.0	6
1555	Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface. Journal of Energy Chemistry, 2023, 76, 32-40.	7.1	49

#	Article	IF	CITATIONS
1556	Study of Quaternary Ammonium Additives towards High-Rate Zinc Deposition and Dissolution Cycling for Application in Zinc-Based Rechargeable Batteries. Batteries, 2022, 8, 106.	2.1	3
1557	Ultrathin Polyaniline-Coated Single-Crystalline Mn ₂ O ₃ Nanoporous Ellipsoids with High Energy Density and Cyclability for Low-Cost Zinc-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 12729-12736.	2.4	2
1558	Recent advances in cathode materials for aqueous zinc-ion batteries: Mechanisms, materials, challenges, and opportunities. MRS Energy & Sustainability, 2022, 9, 248-280.	1.3	7
1559	Vanadium Dioxide Nanosheets Supported on Carbonized Cotton Fabric as Bifunctional Textiles for Flexible Pressure Sensors and Zinc-Ion Batteries. ACS Applied Materials & (1), 10, 14, 41577-41587.	4.0	7
1560	Oxygen Vacancies Enhance H ⁺ Diffusion Kinetics for a Flexible and Lightweight Aqueous Zinc/Manganese Monoxide Battery. ACS Sustainable Chemistry and Engineering, 2022, 10, 12188-12196.	3.2	4
1561	Ni-Containing Electrolytes for Superior Zinc-Ion Aqueous Batteries with Zinc Hexacyanoferrate Cathodes. ACS Omega, 2022, 7, 33942-33948.	1.6	3
1562	Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects. Batteries, 2022, 8, 117.	2.1	9
1563	Spreading the full spectrum of layer-structured compounds for kinetics-enhanced aqueous multivalent metal-ion batteries. Energy Storage Materials, 2022, 53, 646-683.	9.5	8
1564	Heteroleptic Coordination Polymer Electrolytes Initiated by Lewis-Acidic Eutectics for Solid Zinc–Metal Batteries. Chemistry of Materials, 2022, 34, 8975-8986.	3.2	13
1565	Hydrogenâ€Bond Reinforced Superstructural Manganese Oxide As the Cathode for Ultraâ€Stable Aqueous Zinc Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	52
1566	Safe and extended operating voltage zinc-ion battery engineered by a gel-polymer/ionic-liquid electrolyte and water molecules pre-intercalated V2O5 cathode. Journal of Molecular Liquids, 2022, 367, 120399.	2.3	4
1567	Balanced Crystallinity and Nanostructure for SnS ₂ Nanosheets through Optimized Calcination Temperature toward Enhanced Pseudocapacitive Na ⁺ Storage. ACS Nano, 2022, 16, 14745-14753.	7.3	21
1568	Structure and oxygen-defect regulation of hydrated vanadium oxide for enhanced zinc ion storage via interlayer doping strategy. Nano Research, 2023, 16, 6094-6103.	5.8	7
1569	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
1570	Defect engineering of vanadium-based electrode materials for zinc ion battery. Chinese Chemical Letters, 2023, 34, 107839.	4.8	20
1571	Cationic Additive with a Rigid Solvation Shell for Highâ€Performance Zinc Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	3
1572	Boosting Cathode Activity and Anode Stability of Znâ€S Batteries in Aqueous Media Through Cosolventâ€Catalyst Synergy. Angewandte Chemie, 2022, 134, .	1.6	6
1573	Material Design and Energy Storage Mechanism of Mnâ€Based Cathodes for Aqueous Zincâ€ŀon Batteries. Chemical Record, 2022, 22,	2.9	14

#	Article	IF	CITATIONS
1574	Towards Highâ€Performance Aqueous Zinc Batteries via a Semiâ€Conductive Bipolarâ€Type Polymer Cathode. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
1575	Multifunctional 1D Nanostructures toward Future Batteries: A Comprehensive Review. Advanced Functional Materials, 2022, 32, .	7.8	18
1576	Van der Waals Interaction-Driven Self-Assembly of V ₂ O ₅ Nanoplates and MXene for High-Performing Zinc-Ion Batteries by Suppressing Vanadium Dissolution. ACS Nano, 2022, 16, 14539-14548.	7.3	100
1578	Suppressing the Exacerbated Hydrogen Evolution of Porous Zn Anode with an Artificial Solid-Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2022, 14, 41988-41996.	4.0	13
1579	Superâ€Fast and Super‣ong‣ife Rechargeable Zinc Battery. Advanced Energy Materials, 2022, 12, .	10.2	13
1580	Cationic Additive with a Rigid Solvation Shell for Highâ€Performance Zinc Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
1581	Suppressing vanadium dissolution in 2D V2O5/MXene heterostructures via organic/aqueous hybrid electrolyte for stable zinc ion batteries. Chemical Engineering Journal, 2023, 452, 139574.	6.6	39
1582	Fiber-Based Materials for Aqueous Zinc Ion Batteries. Advanced Fiber Materials, 2023, 5, 36-58.	7.9	36
1583	Hewettite ZnV6O16·8H2O with Remarkably Stable Layers and Ultralarge Interlayer Spacing for Highâ€Performance Aqueous Znâ€lon Batteries. Angewandte Chemie, 0, , .	1.6	2
1584	Hewettite ZnV ₆ O ₁₆ â< 8H ₂ O with Remarkably Stable Layers a Ultralarge Interlayer Spacing for Highâ€Performance Aqueous Znâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	nd 7.2	19
1585	Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Materials, 2022, 53, 827-872.	9.5	67
1586	Bilayer separator enabling dendrite-free zinc anode with ultralong lifespan >5000Âh. Green Energy and Environment, 2024, 9, 771-776.	4.7	2
1587	Effect of heat treatment on the electrochemical performance of V2O5•nH2O as a cathode material for aqueous rechargeable zinc ion batteries. Journal of Industrial and Engineering Chemistry, 2022, 115, 554-560.	2.9	4
1588	Developing a high-performance aqueous zinc battery with Zn2+ pre-intercalated V3O7·H2O cathode coupled with surface engineered metallic zinc anode. Journal of Electroanalytical Chemistry, 2022, 924, 116851.	1.9	5
1589	Alloying effects on inhibiting hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Materials Today Communications, 2022, 33, 104576.	0.9	2
1590	Manipulating Oxygen Vacancies by K ⁺ Doping and Controlling Mn ²⁺ Deposition to Boost Energy Storage in β-MnO ₂ . ACS Applied Materials & Interfaces, 2022, 14, 47725-47736.	4.0	12
1591	Unlocking the Potential of Vanadium Oxide for Ultrafast and Stable Zn ²⁺ Storage Through Optimized Stress Distribution: From Engineering Simulation to Elaborate Structure Design. Small Methods, 2022, 6, .	4.6	9
1592	Evaluation of the Effects of Being Over 65 Years of Age on Different Clinical Outcomes in Diabetic Patients with COVID-19. European Journal of Geriatrics and Gerontology, 2022, 4, 173-181.	0.1	0

#	Article	IF	CITATIONS
1593	Intrinsic Hydrogenâ€Bond Donorsâ€Lined Organophosphate Superionic Nanochannels Levering Highâ€Rateâ€Endurable Aqueous Zn Batteries. Advanced Energy Materials, 2022, 12, .	10.2	30
1594	Optimized strategies to enhance electrochemical properties of ammonium vanadates for aqueous Zn ion batteries. Applied Surface Science, 2023, 610, 155408.	3.1	4
1595	Tunable Vanadium Oxide Microflowers as High-Capacity Cathode Materials for Aqueous Rechargeable Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 14311-14322.	2.5	2
1596	Uniformly MXeneâ€Grafted Eutectic Aluminumâ€Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum″on Battery. Advanced Functional Materials, 2023, 33, .	7.8	28
1597	A Sustainable NH ₄ ⁺ Ion Battery by Electrolyte Engineering. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
1598	A Sustainable NH4+ Ion Battery by Electrolyte Engineering. Angewandte Chemie, 0, , .	1.6	4
1599	Inhibiting dendrites on Zn anode by ZIF-8 as solid electrolyte additive for aqueous zinc ion battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130255.	2.3	9
1600	Organic interlayer engineering of TiS2 for enhanced aqueous Zn ions storage. Journal of Materials Science and Technology, 2023, 140, 135-141.	5.6	25
1601	Synergistic Design of Multifunctional Interfacial Zn Host toward Practical Zn Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	37
1602	Hybrid Organic/Inorganic Interphase for Stabilizing a Zinc Metal Anode in a Mild Aqueous Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 48675-48681.	4.0	3
1603	H ₂ O Activity Adjustment by Hydrogen Bonding Enables Highâ€Performance Znâ€Organic Battery. ChemSusChem, 2022, 15, .	3.6	2
1604	Turning Trash to Treasure: Reusable Glucose Kit as a Cell Using ZnO Derived from Metal Organic Framework (MOF) Electrode for Redox Flow Battery. Energies, 2022, 15, 7635.	1.6	1
1605	Anchoring I ₃ [–] via Charge-Transfer Interaction by a Coordination Supramolecular Network Cathode for a High-Performance Aqueous Dual-Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 47716-47724.	4.0	4
1606	V ₂ O ₅ as a versatile electrode material for postlithium energy storage systems. , 2023, 2, .		7
1607	Twoâ€dimensional V ₂ CT _x Inâ€situ Derived Porous V ₂ O ₃ @C Flakes Towards Zincâ€lon Capacitors as a Competitive Cathode Material. ChemNanoMat, 2023, 9, .	1.5	2
1608	Electrolyte for Highâ€Energy―and Powerâ€Density Zinc Batteries and Ion Capacitors. Advanced Materials, 2023, 35, .	11.1	10
1609	A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Science Advances, 2022, 8, .	4.7	80
1610	Electrochemically activated nickel-cobalt double hydroxide for aqueous ammonium-zinc hybrid battery. Nano Research, 2023, 16, 2495-2501.	5.8	5

#	Article	IF	CITATIONS
1611	Sieve-Like interface built by ZnO porous sheets towards stable zinc anodes. Journal of Colloid and Interface Science, 2023, 630, 676-684.	5.0	4
1612	In Situ Nitrogen Functionalization of 2D-Ti3C2Tx-MXenes for High-Performance Zn-Ion Supercapacitor. Molecules, 2022, 27, 7446.	1.7	22
1613	Simultaneously Stabilizing Both Electrodes and Electrolytes by a Selfâ€Separating Organometallics Interface for Highâ€Performance Zincâ€Ion Batteries at Wide Temperatures. Advanced Materials, 2022, 34, .	11.1	53
1614	Design of structural batteries: carbon fibers and alternative form factors. Materials Today Sustainability, 2022, 20, 100252.	1.9	6
1615	Redox-active benzoquinone-intercalated layered vanadate for high performance zinc-ion battery: Phenol-keto conversion and the anchoring effect of V-O-V host framework. Electrochimica Acta, 2022, 436, 141447.	2.6	5
1616	Aqueous non-metallic ion batteries: Materials, mechanisms and design strategies. Coordination Chemistry Reviews, 2023, 474, 214867.	9.5	32
1617	MOF-derived heterostructured C@VO2 @V2O5 for stable aqueous zinc-ion batteries cathode. Journal of Alloys and Compounds, 2023, 932, 167681.	2.8	17
1618	Nanoengineered Carbonâ€Based Interfaces for Advanced Energy and Photonics Applications: A Recent Progress and Innovations. Advanced Materials Interfaces, 2023, 10, .	1.9	6
1619	A cerium vanadate/S heterostructure for a long-life zinc-ion battery: efficient electron transfer by the anchored sulfur. Nanoscale, 2022, 14, 16673-16682.	2.8	7
1620	Interlayer Engineering of V2O5 Anode toward High Rate and Durable Dual Ion Batteries. Inorganic Chemistry Frontiers, 0, , .	3.0	0
1621	Reaction mechanism for the α-MnO ₂ cathode in aqueous Zn ion batteries revisited: elucidating the irreversible transformation of α-MnO ₂ into Zn–vernadite. Journal of Materials Chemistry A, 2022, 10, 25620-25632.	5.2	10
1622	A glutamate anion boosted zinc anode for deep cycling aqueous zinc ion batteries. Journal of Materials Chemistry A, 2022, 10, 25029-25038.	5.2	19
1623	Al doped manganous oxide for high-performance aqueous Zn-ion batteries. Journal of Power Sources, 2023, 554, 232353.	4.0	12
1624	Advanced ammonium salt materials for electrochemical energy storage: Recent progress and future perspectives. Chemical Engineering Journal, 2023, 454, 140194.	6.6	6
1625	Single-crystalline Mn2V2O7 anodes with high rate and ultra-stable capability for sodium-ion batteries. Journal of Alloys and Compounds, 2023, 934, 168018.	2.8	7
1626	Assisting Zn storage in layered vanadyl phosphate cathode by interactions with oligoaniline pillars for rechargeable aqueous zinc batteries. Chemical Engineering Journal, 2023, 454, 140323.	6.6	5
1627	Constructing Three-Dimensional Topological Zn Deposition for Long-Life Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 51010-51017.	4.0	5
1628	Porous Electrode Materials for Zn-Ion Batteries: From Fabrication and Electrochemical Application. Batteries, 2022, 8, 223.	2.1	3

#	Article	IF	CITATIONS
1629	Highâ€Performance Aqueous Zincâ€Organic Battery Achieved by Reasonable Molecular Design. Batteries and Supercaps, 2023, 6, .	2.4	8
1630	Insights into Chemical and Electrochemical Interactions between Zn Anode and Electrolytes in Aqueous Znâ~'ion Batteries. Journal of the Electrochemical Society, 2022, 169, 110536.	1.3	8
1631	Designing modern aqueous batteries. Nature Reviews Materials, 2023, 8, 109-122.	23.3	153
1632	Alkali Adatom-amplified Schottky contact and built-in voltage for stable Zn-metal anodes. Energy Storage Materials, 2023, 54, 863-874.	9.5	7
1633	Polyaniline-Intercalated Vanadium Dioxide Nanoflakes for High-Performance Aqueous Zinc Ion Batteries. ACS Applied Energy Materials, 2022, 5, 13692-13701.	2.5	5
1634	Boosting the Zn ion storage ability of amorphous MnO ₂ via surface engineering and valence modulation. , 2023, 2, 28-36.		11
1635	Empowering Zn Electrode Current Capability Along Interfacial Stability by Optimizing Intrinsic Safe Organic Electrolytes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1636	"Empowering Zn Electrode Current Capability Along Interfacial Stability by Optimizing Intrinsic Safe Organic Electrolytesâ€: Angewandte Chemie, 0, , .	1.6	0
1637	Binary solvents assisting the long-term stability of aqueous K/Zn hybrid batteries. Materials Today Energy, 2023, 31, 101204.	2.5	7
1638	Cobalt-doped MoS2·nH2O nanosheets induced heterogeneous phases as high-rate capability and long-term cyclability cathodes for wearable zinc-ion batteries. Energy Storage Materials, 2023, 55, 1-11.	9.5	24
1639	Inducing the Preferential Growth of Zn (002) Plane for Long Cycle Aqueous Zn″on Batteries. Advanced Energy Materials, 2023, 13, .	10.2	67
1640	Piezoelectric 1T Phase MoSe ₂ Nanoflowers and Crystallographically Textured Electrodes for Enhanced Lowâ€Temperature Zincâ€Ion Storage. Advanced Materials, 2023, 35, .	11.1	11
1641	One-step co-precipitation of MnSe2/CNTs as a high-performance cathode material for zinc-ion batteries. Ceramics International, 2023, 49, 10165-10171.	2.3	5
1642	A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries. Journal of Power Sources, 2023, 555, 232385.	4.0	27
1643	De/protonation associated sustainable conversion reaction applicable to high-capacity zinc storage in mildly acidic aqueous system. Energy Storage Materials, 2023, 55, 105-116.	9.5	5
1644	Millisecond-induced defect chemistry realizes high-rate fiber-shaped zinc-ion battery as a magnetically soft robot. Energy Storage Materials, 2023, 55, 64-72.	9.5	7
1645	Boosting zinc-ion storage in hydrated vanadium oxides via migration regulation. Energy Storage Materials, 2023, 55, 279-288.	9.5	25
1646	Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects. Materials Today Chemistry, 2023, 27, 101294.	1.7	8

#	Article	IF	CITATIONS
1647	A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy and Environmental Science, 2023, 16, 89-96.	15.6	42
1648	A mechanically durable hybrid hydrogel electrolyte developed by controllable accelerated polymerization mechanism towards reliable aqueous zinc-ion battery. Energy Storage Materials, 2023, 55, 236-243.	9.5	20
1649	Construction of multi-channel basic cobalt/nickel phosphate core-shell microsphere for superior hybrid Zn-based supercapacitor performances. Chemical Engineering Journal, 2023, 455, 140953.	6.6	16
1650	Aqueous Zn-ion batteries using amorphous Zn-buserite with high activity and stability. Journal of Materials Chemistry A, 2023, 11, 1380-1393.	5.2	5
1651	Long-lifespan layered Strontium vanadate for high-performance zinc-ion battery: Ultralow migration barrier of Zn2+ on the surface and the effect of pH value. Journal of Solid State Chemistry, 2023, 318, 123788.	1.4	0
1652	Free-standing vanadium oxide hydration/reduced graphene oxide film for ammonium ion supercapacitors. Journal of Colloid and Interface Science, 2023, 633, 333-342.	5.0	8
1653	Solvothermally prepared hydrated VO2(B) for aqueous zinc ion batteries with high capacity and excellent rate capability. Journal of Alloys and Compounds, 2023, 936, 168218.	2.8	4
1654	Cation pre-intercalation and oxygen vacancies in vanadium oxide for synergistically enhanced high-rate and stability for zinc-ion batteries. Applied Surface Science, 2023, 612, 155876.	3.1	5
1655	Zinc Batteries: Basics, Materials Functions, and Applications. , 2022, , 1-37.		0
1656	A Semiâ€Liquid Electrode toward Stable Zn Powder Anode. Advanced Functional Materials, 2023, 33, .	7.8	19
1657	Ultra‣table Zn Anode Enabled by Fiberâ€Directed Ion Migration Using Massâ€Producible Separator. Advanced Functional Materials, 2023, 33, .	7.8	30
1658	Chitosan-Carboxymethylcellulose Hydrogels as Electrolytes for Zinc–Air Batteries: An Approach to the Transition towards Renewable Energy Storage Devices. Batteries, 2022, 8, 265.	2.1	6
1659	Uncovering the Fundamental Role of Interlayer Water in Charge Storage for Bilayered V ₂ O ₅ · <i>n</i> H ₂ O Xerogel Cathode Materials. Advanced Energy Materials, 2023, 13, .	10.2	32
1660	Interface challenges and optimization strategies for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2023, 77, 642-659.	7.1	38
1661	Mechanically Improved Zn-Ion Battery Cathodes Based on Branched Aramid Nanofibers. Journal of Physical Chemistry C, 2022, 126, 20293-20301.	1.5	1
1662	Regulating Zinc Nucleation Sites and Electric Field Distribution to Achieve Highâ€Performance Zinc Metal Anode via Surface Texturing. Small, 2023, 19, .	5.2	9
1663	Three-in-one organic-inorganic heterostructures: From scalable ball-milling synthesis to freestanding cathodes with high areal capacity for aqueous zinc-ion batteries. Chemical Engineering Journal, 2023, 457, 141140.	6.6	11
1664	Interlayer Modulation of Layered Transition Metal Compounds for Energy Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 54369-54388.	4.0	4

#	Article	IF	CITATIONS
1665	Metal-organic-framework-derived cobalt-vanadium oxides with tunable compositions for high-performance aqueous zinc-ion batteries. Chemical Engineering Journal, 2023, 457, 141162.	6.6	9
1666	Fundamentals and Scientific Challenges in Structural Design of Cathode Materials for Zincâ€lon Hybrid Supercapacitors. Advanced Energy Materials, 2023, 13, .	10.2	56
1667	Organic Compound as a Cathode for Aqueous Zinc-Ion Batteries with Improved Electrochemical Performance via Multiple Active Centers. ACS Applied Energy Materials, 2022, 5, 15780-15787.	2.5	9
1668	Chemical Preintercalation Synthesis of Versatile Electrode Materials for Electrochemical Energy Storage. Accounts of Chemical Research, 2023, 56, 13-24.	7.6	8
1669	Interfacial Chemistry Modulation via Amphoteric Glycine for a Highly Reversible Zinc Anode. ACS Nano, 2023, 17, 552-560.	7.3	65
1670	Expanding Layer Spacing of Carbonâ€Coated Vanadium Oxide via Ammonium Ions for Fast Electrochemical Kinetics in Aqueous Zincâ€lon Batteries. Energy Technology, 2023, 11, .	1.8	4
1671	MnAl Layered Double Hydroxides: A Robust Host for Aqueous Ammoniumâ€Ion Storage with Stable Plateau and High Capacity. Advanced Energy Materials, 2023, 13, .	10.2	19
1672	Recent Advances of Transition Metal Sulfides/Selenides Cathodes for Aqueous Zincâ€ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	35
1673	A long-life aqueous Zn battery enabled by simultaneous suppressing cathode dissolution and Zn dendrites via a novel water-in-deep eutectic solvent electrolyte. Chemical Engineering Journal, 2023, 456, 141019.	6.6	10
1674	Engineering pâ€Band Center of Oxygen Boosting H ⁺ Intercalation in δâ€MnO ₂ for Aqueous Zinc Ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
1675	Manipulating OH ^{â^'} â€Mediated Anodeâ€Cathode Crossâ€Communication Toward Longâ€Life Aqueous Zincâ€Vanadium Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
1676	Manipulating OH ^{â^'} â€Mediated Anodeâ€Cathode Crossâ€Communication Toward Longâ€Life Aqueous Zincâ€Vanadium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
1677	Anomalous Zn ²⁺ Storage Behavior in Dualâ€lonâ€lnâ€Sequence Reconstructed Vanadium Oxides. Advanced Functional Materials, 2023, 33, .	7.8	16
1678	Aging-Responsive Phase Transition of VOOH to V ₁₀ O ₂₄ · <i>n</i> H ₂ O vs Zn ²⁺ Storage Performance as a Rechargeable Aqueous Zn-Ion Battery Cathode. ACS Applied Materials & Interfaces, 2022, 14, 56886-56899.	4.0	10
1679	Engineering pâ€Band Center of Oxygen Boosting H ⁺ Intercalation in δâ€MnO ₂ for Aqueous Zinc Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	50
1680	Phase Transformation of VO ₂ /rGO Composites as Highâ€Voltage Cathodes in Zincâ€Ion Batteries. Batteries and Supercaps, 2023, 6, .	2.4	6
1681	Recent Progress on the Performance of Zn-Ion Battery Using Various Electrolyte Salt and Solvent Concentrations. ACS Applied Electronic Materials, 2023, 5, 100-116.	2.0	6
1682	A High-Performance Quasi-Solid-State Aqueous Zinc–Dual Halogen Battery. ACS Nano, 2022, 16, 20389-20399	7.3	17

#	Article	IF	CITATIONS
1683	Dual Strategies of Metal Preintercalation and In Situ Electrochemical Oxidization Operating on MXene for Enhancement of Ion/Electron Transfer and Zincâ€Ion Storage Capacity in Aqueous Zincâ€Ion Batteries. Advanced Science, 2023, 10, .	5.6	12
1684	An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries. Batteries, 2023, 9, 41.	2.1	11
1685	Fan-like MnV2O6 superstructure for rechargeable aqueous zinc ion batteries. Chinese Chemical Letters, 2023, 34, 108143.	4.8	5
1686	Towards high-performance zinc anode for zinc ion hybrid capacitor: Concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive. Energy Storage Materials, 2023, 55, 857-866.	9.5	17
1687	Unlocking the Capacity of Vanadium Oxide by Atomically Thin Grapheneâ€Analogous V ₂ O ₅ ·nH ₂ O in Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	32
1688	Supramolecular engineering of cathode materials for aqueous zinc-ion hybrid supercapacitors: novel thiophene-bridged donor–acceptor sp ² carbon-linked polymers. Journal of Materials Chemistry A, 2023, 11, 2718-2725.	5.2	5
1689	Spray-dried V2O5 as cathode material for high-performance aqueous zinc-ion batteries. Journal of Electroanalytical Chemistry, 2023, 929, 117133.	1.9	3
1690	Designing strategies of advanced electrode materials for high-rate rechargeable batteries. Journal of Materials Chemistry A, 2023, 11, 4428-4457.	5.2	11
1691	Advanced Zinc–Iodine Batteries with Ultrahigh Capacity and Superior Rate Performance Based on Reduced Graphene Oxide and Waterâ€inâ€Salt Electrolyte. Advanced Functional Materials, 2023, 33, .	7.8	28
1692	Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Storage Materials, 2023, 56, 227-257.	9.5	35
1693	Supramolecular Engineering of Cathode Materials for Aqueous Zincâ€ion Energy Storage Devices: Novel Benzothiadiazole Functionalized Twoâ€Dimensional Olefinâ€Linked COFs. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
1694	Anode corrosion in aqueous Zn metal batteries. EScience, 2023, 3, 100093.	25.0	68
1695	Supramolecular Engineering of Cathode Materials for Aqueous Zincâ€ion Energy Storage Devices: Novel Benzothiadiazole Functionalized Twoâ€Dimensional Olefinâ€Linked COFs. Angewandte Chemie, 2023, 135, .	1.6	3
1696	Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries. Green Chemical Engineering, 2023, 4, 264-284.	3.3	1
1697	Constructing advanced vanadium oxide cathode materials for aqueous zinc-ion batteries via the micro-nano morphology regulation strategies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 130953.	2.3	2
1698	Long-Life Aqueous Zinc–Organic Batteries with a Trimethyl Phosphate Electrolyte and Organic Cathode. ACS Sustainable Chemistry and Engineering, 2023, 11, 957-964.	3.2	5
1699	Constructing graphene conductive networks in manganese vanadate as high-performance cathode for aqueous zinc-ion batteries. Electrochimica Acta, 2023, 441, 141856.	2.6	4
1700	Controlling crystal structures of vanadium oxides via pH regulation and decoupling crystallographic perspective on zinc storage behaviors. Acta Materialia, 2023, 245, 118663.	3.8	6

#	Article	IF	CITATIONS
1701	Polypyrrole-coated V2O5 nanobelts arrays on carbon cloth for high performance zinc energy storage. Electrochimica Acta, 2023, 441, 141806.	2.6	2
1702	Interlayer doping of pseudocapacitive hydrated vanadium oxide via Mn2+ for high-performance aqueous zinc-ion battery. Electrochimica Acta, 2023, 441, 141810.	2.6	4
1703	Calvanostatic stimulated Na3Mn2(P2O7)(PO4) as a high-voltage cathode material for aqueous zinc-ion batteries. Electrochimica Acta, 2023, 441, 141841.	2.6	4
1704	Boosting high-rate Zn-ion storage capability of α-MnO2 through Tri-ion co-intercalation. Journal of Alloys and Compounds, 2023, 939, 168813.	2.8	2
1705	Dendrite growth inhibition in a V6O13 nanorods based non-aqueous Zn-ion battery by a scalable polycarbazole@Carbon nanotubes overlayer. Composites Part B: Engineering, 2023, 252, 110516.	5.9	3
1706	Low-Cost Zinc–Alginate-Based Hydrogel–Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes. Polymers, 2023, 15, 212.	2.0	7
1707	A Symmetric Aqueous Magnesium Ion Supercapattery Based on Covalent Organic Frameworks. Advanced Energy Materials, 2023, 13, .	10.2	18
1708	Intercalation Hosts for Multivalentâ€ion Batteries. Small Structures, 2023, 4, .	6.9	5
1709	A Covalent Organic Framework as a Longâ€ l ife and Highâ€Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angewandte Chemie, 2023, 135, .	1.6	4
1710	A Covalent Organic Framework as a Longâ€life and Highâ€Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
1711	Conductive coating, cationâ€intercalation, and oxygen vacancies coâ€modified vanadium oxides as highâ€rate and stable cathodes for aqueous zincâ€ion batteries. EcoMat, 2023, 5, .	6.8	13
1712	Electrochemically stable tunnel-type $\hat{l}\pm$ -MnO2-based cathode materials for rechargeable aqueous zinc-ion batteries. Frontiers in Chemistry, 0, 11, .	1.8	4
1713	KOH-Induced Oxygen-Deficient VO ₂ for High-Rate Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 1871-1876.	2.5	4
1714	Configurationâ€dependent stretchable allâ€solidâ€state supercapacitors and hybrid supercapacitors. , 2023, 5, .		36
1715	Insights on Artificial Interphases of Zn and Electrolyte: Protection Mechanisms, Constructing Techniques, Applicability, and Prospective. Advanced Functional Materials, 2023, 33, .	7.8	53
1716	How About Vanadiumâ€Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries?. Advanced Science, 2023, 10,	5.6	45
1717	Controlled Synthesis of Metal–Organic-Framework-Derived V ₂ O ₅ Nanostructures with Polypyrrole Coating for Zinc-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 1849-1858.	2.4	2
1718	Valid design and evaluation of cathode and anode materials of aqueous zinc ion batteries with high-rate capability and cycle stability. Nanoscale, 2023, 15, 3737-3748.	2.8	5

#	Article	IF	Citations
1719	Integrated Uniformly Microporous C ₄ N/Multiâ€Walled Carbon Nanotubes Composite Toward Ultraâ€Stable and Ultralowâ€Temperature Proton Batteries. Small, 2023, 19, .	5.2	4
1720	Two-dimensional sandwich-like heterostructures of amorphous VOx/MXene as freestanding cathode materials with superior electrochemical performance for aqueous zinc-ion batteries. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
1721	Oxygenated copper vanadium selenide composite nanostructures as a cathode material for zinc-ion batteries with high stability up to 10 000 cycles. Nanoscale, 2023, 15, 3978-3990.	2.8	6
1722	2D Dynamic Heterogeneous Interface Coupling Endowing Extra Zn ²⁺ Storage. Advanced Functional Materials, 2023, 33, .	7.8	13
1723	In-situ construction of barium-induced cathode electrolyte interphase to enable mechanostable high-performance zinc-ion batteries. Materials Today Energy, 2023, 32, 101254.	2.5	3
1724	Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range. Journal of Power Sources, 2023, 559, 232688.	4.0	24
1725	Trisodium citrate as a modulation additive to increase the cycling capability of a Bi ₂ S ₃ cathode in a zinc-ion battery. Dalton Transactions, 2023, 52, 3709-3715.	1.6	0
1726	Ultrafast 3D Hybridâ€lon Transport in Porous V ₂ O ₅ Cathodes for Superiorâ€Rate Rechargeable Aqueous Zinc Batteries. Advanced Energy Materials, 2023, 13, .	10.2	32
1727	Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage. Chinese Chemical Letters, 2024, 35, 108421.	4.8	10
1728	Utilizing Cationic Vacancies and Spontaneous Polarization on Cathode to Enhance Zincâ€Ion Storage and Inhibit Dendrite Growth in Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1729	Effect of lattice water on the proton diffusion mechanism in hydrated tungsten trioxide nanostructures. Physica Scripta, 2023, 98, 055918.	1.2	0
1730	Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nature Communications, 2023, 14, .	5.8	53
1731	Construction of an Artificial Interfacial Layer with Porous Structure toward Stable Zincâ€Metal Anodes. Small Science, 2023, 3, .	5.8	28
1732	Enhanced zinc ion storage performance of V2O5·nH2O prepared by hydrothermal method with the assistance of sodium dodecylbenzene sulfonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668, 131459.	2.3	2
1733	Preparation and sodium storage performance of 2D bilayered V2O5â‹nH2O nanomaterial with Zn2+ intercalation. Journal of Electroanalytical Chemistry, 2023, 937, 117416.	1.9	2
1734	Tightly confined iodine in surface-oxidized carbon matrix toward dual-mechanism zinc-iodine batteries. Energy Storage Materials, 2023, 59, 102760.	9.5	13
1735	Byproduct reverse engineering to construct unusually enhanced protection layers for dendrite-free Zn anode. Chemical Engineering Journal, 2023, 464, 142580.	6.6	7
1736	Tailoring porous three-dimensional (Co,Mn)(Co,Mn)2O4/PPy architecture towards high-performance cathode for aqueous zinc-ion batteries. Chemical Engineering Journal, 2023, 465, 142897.	6.6	5

#	Article	IF	CITATIONS
1737	Upcycling of phosphogypsum waste for efficient zinc-ion batteries. Journal of Energy Chemistry, 2023, 81, 157-166.	7.1	16
1738	Stabilizing Zn anodes by constructing PEGMA protecting layers for high-performance Zn-ion batteries. Journal of Power Sources, 2023, 570, 233048.	4.0	10
1739	Construction of double-shell Ni3Se4@Co3Se4 microsphere for hybrid Zn-based supercapacitor with superior rate and energy density. Journal of Energy Storage, 2023, 62, 106855.	3.9	9
1740	Building stable small molecule imide cathodes toward ultralong-life aqueous zinc-organic batteries. Chemical Engineering Journal, 2023, 465, 142824.	6.6	6
1741	Electrochemical performance of Zn2VO4/ZnO nanocomposite material derived from Zn-V layered double hydroxides as a cathode for aqueous zinc ion battery. Journal of Alloys and Compounds, 2023, 952, 169915.	2.8	2
1742	Thermo-electro dually activated carbon cloth as cathode material for aqueous hybrid zinc ion supercapacitor with ultrahigh stability and dramatically enhanced areal capacitance. Electrochimica Acta, 2023, 451, 142290.	2.6	1
1743	A design of MnO-CNT@C3N4 cathodes for high-performance aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2023, 642, 340-350.	5.0	10
1745	Fabrication and morphological effect of waxberry-like carbon for high-performance aqueous zinc-ion electrochemical storage. Carbon, 2023, 205, 226-235.	5.4	7
1746	Quantitative Regulation of Interlayer Space of NH ₄ V ₄ O ₁₀ for Fast and Durable Zn ²⁺ and NH ₄ ⁺ Storage. Advanced Science, 2023, 10, .	5.6	9
1747	Synthesis of V ₂ O ₅ Nanoribbon–Reduced Graphene Oxide Hybrids as Stable Aqueous Zinc-Ion Battery Cathodes via Divalent Transition Metal Cation-Mediated Coprecipitation. ACS Sustainable Chemistry and Engineering, 2023, 11, 2670-2679.	3.2	9
1748	An artificial protection layer for Zn electrode enabling uniform Zn deposition and stable cycling of Zn-MnO2 full cells under limited anode condition. Chemical Engineering Journal, 2023, 460, 141678.	6.6	8
1749	Vanadium Oxides with Amorphousâ€Crystalline Heterointerface Network for Aqueous Zincâ€ŀon Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	37
1750	A path forward for the translational development of aqueous zinc-ion batteries. Joule, 2023, 7, 244-250.	11.7	56
1751	Vanadium Oxides with Amorphousâ€Crystalline Heterointerface Network for Aqueous Zincâ€ŀon Batteries. Angewandte Chemie, 2023, 135, .	1.6	10
1752	Dynamically Interfacial pHâ€Buffering Effect Enabled by <i>N</i> â€Methylimidazole Molecules as Spontaneous Proton Pumps toward Highly Reversible Zincâ€Metal Anodes. Advanced Materials, 0, , 2208630.	11.1	37
1753	High-Performance Aqueous Zinc-Ion Batteries Enabled by Superlattice Intercalation Zn ₃ V ₂ O ₇ -C Cathodes. ACS Applied Energy Materials, 2023, 6, 2462-2470.	2.5	2
1754	Spatiotemporal Resolution of Phase Formation in Thick Porous Sodium Vanadium Oxide (NaV ₃ O ₈) Electrodes via <i>Operando</i> Energy Dispersive X-ray Diffraction. Journal of Physical Chemistry C, 2023, 127, 3940-3951.	1.5	2
1755	An intercalation-type Li-free cathode with energy density exceeding 550 Wh kgâ~'1. National Science Review, 2023, 10, .	4.6	0

#	Article	IF	CITATIONS
1756	Enhancing cation storage performance of layered double hydroxides by increasing the interlayer distance. Journal of Chemical Physics, 2023, 158, 094703.	1.2	1
1757	Enabling Onâ€Demand Conformal Znâ€lon Batteries on Nonâ€Developable Surfaces. Advanced Functional Materials, 2023, 33, .	7.8	6
1758	Sustained-Compensated Interfacial Zincophilic Sites to Assist High-Capacity Aqueous Zn Metal Batteries. Nano Letters, 2023, 23, 1135-1143.	4.5	9
1759	Designing interstitial boronâ€doped tunnelâ€type vanadium dioxide cathode for enhancing zinc ion storage capability. , 2023, 5, .		13
1760	N/S Co-modified carbon/Na ₃ V ₂ (PO ₄) ₃ with high rate capability for Zn-ion storage. New Journal of Chemistry, 2023, 47, 5715-5722.	1.4	0
1761	Pom-Pom Flower-like Morphology of δ-MnO2 with Superior Electrochemical Performances for Rechargeable Aqueous Zinc Ion Batteries. Batteries, 2023, 9, 133.	2.1	3
1762	Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule, 2023, 7, 366-379.	11.7	36
1763	Unlocking the intrinsic mechanisms of A-site K/Na doped perovskite fluorides pseudocapacitive cathode materials for enhanced aqueous zinc-based batteries. Energy Storage Materials, 2023, 57, 334-345.	9.5	4
1764	Oxygen-Related Defect Engineering of Amorphous Vanadium Pentoxide Cathode for Achieving High-Performance Thin-Film Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 2719-2727.	2.5	4
1765	2D Mesoporous Zincophilic Sieve for High-Rate Sulfur-Based Aqueous Zinc Batteries. Journal of the American Chemical Society, 2023, 145, 5384-5392.	6.6	28
1766	Insights into the oxygen vacancies in transition metal oxides for aqueous Zinc-Ion batteries. Chemical Engineering Journal, 2023, 461, 142033.	6.6	12
1767	Activating Co(OH) ₂ Active Sites by Coupled with V ₂ O ₅ to Boost Highly Efficient Oxygen Evolution Reaction. Advanced Sustainable Systems, 2023, 7, .	2.7	1
1768	Ion Selective and Water Resistant Cellulose Nanofiber/MXene Membrane Enabled Cycling Zn Anode at High Currents. Advanced Energy Materials, 2023, 13, .	10.2	29
1769	Regulating Inorganic and Organic Components to Build Amorphousâ€ZnF _x Enriched Solidâ€Electrolyte Interphase for Highly Reversible Zn Metal Chemistry. Advanced Materials, 2023, 35, .	11.1	34
1770	Ionic Liquid "Water Pocket―for Stable and Environmentâ€Adaptable Aqueous Zinc Metal Batteries. Advanced Materials, 2023, 35, .	11.1	31
1771	Review on Recent Developments, Challenges, and Perspectives of Mn-Based Oxide Cathode Materials for Aqueous Zinc-Ion Batteries and the Status of Mn Resources in China. Energy & Fuels, 2023, 37, 4198-4221.	2.5	5
1772	Facile synthesis of TiO1.77(OH)0.46·0.2 H2O and TiO2 and their applications for aqueous ammonium-ion battery. Ionics, 2023, 29, 1479-1486.	1.2	1
1773	Recent progress of dendriteâ€free stable zinc anodes for advanced zincâ€based rechargeable batteries: Fundamentals, challenges, and perspectives. SusMat, 2023, 3, 180-206.	7.8	15

#	Article	IF	CITATIONS
1774	Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators. Angewandte Chemie, 2023, 135, .	1.6	1
1775	Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators. Angewandte Chemie - International Edition, 2023, 62, .	7.2	74
1776	Integrating molybdenum into zinc vanadate enables Zn ₃ V ₂ MoO ₈ as a high-capacity Zn-supplied cathode for Zn-metal free aqueous batteries. Nanoscale, 2023, 15, 6722-6731.	2.8	1
1777	A nanocellulose-mediated, multiscale ion-sieving separator with selective Zn2+ channels for durable aqueous zinc-based batteries. Energy Storage Materials, 2023, 57, 557-567.	9.5	14
1778	Enabling Multi-electron Reactions in NASICON Positive Electrodes for Aqueous Zinc-Metal Batteries. ACS Energy Letters, 2023, 8, 1671-1679.	8.8	11
1779	Progress and perspective on multi-dimensional structured carbon nanomaterials for cathodes in aqueous zinc-based energy storage. Materials Research Letters, 2023, 11, 481-516.	4.1	5
1780	Solid Interhalogen Compounds with Effective Br ⁰ Fixing for Stable Highâ€energy Zinc Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
1781	Solid Interhalogen Compounds with Effective Br ⁰ Fixing for Stable Highâ€energy Zinc Batteries. Angewandte Chemie, 2023, 135, .	1.6	3
1782	High Interspace-Layer Manganese Selenide Nanorods as a High-Performance Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3225-3235.	2.5	11
1783	Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	44
1784	Layered Structure Regulation for Zincâ€lon Batteries: Rate Capability and Cyclability Enhancement by Rotatable Pillars. Advanced Energy Materials, 2023, 13, .	10.2	10
1785	Electrode/electrolyte interfacial engineering for aqueous Znâ€ion batteries. , 2023, 2, 186-212.		9
1786	Research progress of "rocking chair―type zinc-ion batteries with zinc metal-free anodes. Chinese Chemical Letters, 2023, 34, 108307.	4.8	9
1787	Redox-enhanced zinc-ion hybrid capacitors with high energy density enabled by high-voltage active aqueous electrolytes based on low salt concentration. Energy Storage Materials, 2023, 58, 30-39.	9.5	4
1788	Dopamine-intercalated vanadate hollow microtube arrays with S-doping for high-performance zinc-ion batteries: disorder/defect-induced clusters and a reversible phase transition. Nanoscale, 2023, 15, 6273-6284.	2.8	0
1789	Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy. Inorganics, 2023, 11, 118.	1.2	2
1790	Interphases in aqueous rechargeable zinc metal batteries. Journal of Materials Chemistry A, 2023, 11, 8470-8496.	5.2	6
1791	Agar-based hydrogel polymer electrolyte for high-performance zinc-ion batteries at all climatic temperatures. IScience, 2023, 26, 106437.	1.9	5

#	Article	IF	Citations
1792	Sustainable high-energy aqueous zinc–manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity. Energy and Environmental Science, 2023, 16, 2133-2141.	15.6	15
1793	Recent advances in two-dimensional MXenes for zinc-ion batteries. Materials Chemistry Frontiers, 2023, 7, 2373-2404.	3.2	5
1794	Inhibition of side reactions and dendrite growth using a low-cost and non-flammable eutectic electrolyte for high-voltage and super-stable zinc hybrid batteries. Journal of Materials Chemistry A, 2023, 11, 8368-8379.	5.2	6
1795	Intercalant-induced V <i>t</i> _{<i>2</i>} <i> _g </i> orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
1796	Defect Modulation in Cobalt Manganese Oxide Sheets for Stable and Highâ€Energy Aqueous Aluminumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	11
1797	Bimetallic MnMoO4 nanostructures on carbon fibers as flexible cathode for high performance zinc-ion batteries. Journal of Colloid and Interface Science, 2023, 641, 981-989.	5.0	4
1798	Conductive halloysite nanotubes/polypyrrole cathodes prepared by one-step in situ polymerization for zinc-ion batteries. Polymer Bulletin, 2024, 81, 1117-1129.	1.7	1
1799	Mitigating the interfacial concentration gradient by negatively charged quantum dots toward dendrite-free Zn anodes. Energy Storage Materials, 2023, 58, 215-221.	9.5	32
1800	Synergistic zinc-ion storage enabled by Cu ion in anthraquinone-preinserted vanadate: structural integrity and H ⁺ -promoted reversible phase conversion. Dalton Transactions, 0, , .	1.6	1
1801	Enlarged Interlayer Spacing of Marigold-Shaped 1T-MoS2 with Sulfur Vacancies via Oxygen-Assisted Phosphorus Embedding for Rechargeable Zinc-Ion Batteries. Nanomaterials, 2023, 13, 1185.	1.9	1
1802	Reconciling Mass Loading and Gravimetric Performance of MnO ₂ Cathodes by 3Dâ€Printed Carbon Structures for Zincâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
1803	Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry. , 2023, 2, e9120064.		15
1804	Molecular Engineering on MoS ₂ Interlayer for High-Capacity and Rapid-Charging Aqueous Ion Batteries. Nanoscale Advances, 0, , .	2.2	0
1805	Utilizing Cationic Vacancies and Spontaneous Polarization on Cathode to Enhance Zinc″on Storage and Inhibit Dendrite Growth in Zinc″on Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
1806	An organic–inorganic solid–electrolyte interface generated from dichloroisocyanurate electrolyte additive for a stable Zn metal anode in aqueous Zn batteries. Chemical Communications, 2023, 59, 5079-5082.	2.2	4
1807	In-situ cation-inserted MnO2 with selective accelerated intercalation of individual H+ or Zn2+ ions in aqueous zinc ion batteries. Journal of Energy Chemistry, 2023, 82, 88-102.	7.1	10
1808	Examining Concentrationâ€Reliant Zn Deposition/Stripping Behavior in Organic Alcohol/Sulfonesâ€Modified Aqueous Electrolytes. Small, 2023, 19, .	5.2	5
1809	High-Performance Zn-Ion Microbatteries by Subtractive Manufacturing. ACS Sustainable Chemistry and Engineering, 2023, 11, 6474-6484.	3.2	2

#	Article	IF	CITATIONS
1810	Reversible Ammonium Ion Intercalation/deâ€intercalation with Crystal Water Promotion Effect in Layered VOPO ₄ â‹2 H ₂ O**. Angewandte Chemie - International Edition, 2023, 62	, 7.2 ., .	15
1811	Reversible Ammonium Ion Intercalation/deâ€intercalation with Crystal Water Promotion Effect in Layered VOPO ₄ â‹2 H ₂ O**. Angewandte Chemie, 2023, 135, .	1.6	0
1812	Aromatic additives with designed functions ameliorating chemo-mechanical reliability for zinc-ion batteries. Energy Storage Materials, 2023, 59, 102769.	9.5	18
1814	Reconstruction of helmholtz plane to stabilize zinc metal anode/electrolyte interface. Energy Storage Materials, 2023, 59, 102774.	9.5	12
1815	Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects. Advanced Functional Materials, 2024, 34, .	7.8	45
1816	In situ characterizations for aqueous rechargeable zinc batteries. , 2023, 2, 310-338.		5
1817	Preparation of CoFe ₂ O ₄ -Doped TiO ₂ Nanofibers by Electrospinning and Annealing for Oxygen Electrocatalysis. Langmuir, 2023, 39, 6211-6221.	1.6	3
1818	An Artificial MnWO4 Cathode Electrolyte Interphase Enabling Enhanced Electrochemical Performance of Î-MnO2 Cathode for Aqueous Zinc Ion Battery. Materials, 2023, 16, 3228.	1.3	1
1819	Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. Journal of Energy Chemistry, 2023, 83, 287-303.	7.1	36
1820	Rational design of interfacial bonds within dual carbon-protected manganese oxide towards durable aqueous zinc ion battery. Science China Chemistry, 2023, 66, 1406-1416.	4.2	4
1821	Mg ²⁺ Ion Preâ€Insertion Boosting Reaction Kinetics and Structural Stability of Ammonium Vanadates for Highâ€Performance Aqueous Zincâ€Ion Batteries. ChemSusChem, 2023, 16, .	3.6	9
1822	V ₂ O ₃ @C Microspheres as the High-Performance Cathode Materials for Advanced Aqueous Zinc-Ion Storage. ACS Applied Materials & Interfaces, 2023, 15, 20876-20884.	4.0	4
1823	Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering. Journal of Energy Chemistry, 2023, 83, 209-228.	7.1	8
1826	Zinc Batteries: Basics, Materials Functions, and Applications. , 2023, , 2331-2367.		1
1828	Magneto-electrochemistry driven ultralong-life Zn-VS ₂ aqueous zinc-ion batteries. Materials Horizons, 2023, 10, 3162-3173.	6.4	3
1891	Opportunities and challenges of zinc anodes in rechargeable aqueous batteries. Journal of Materials Chemistry A, 2023, 11, 11987-12001.	5.2	21
1894	A Near 0 V and Low-Strain Intercalative Anode for Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2023, 8, 3171-3179.	8.8	5
1930	Design strategies for rechargeable aqueous metal-ion batteries. Science China Chemistry, 0, , .	4.2	3

#	Article	IF	CITATIONS
1935	Novel and innovative ionic liquids based electrolytes and their applications in batteries. , 2023, , 313-335.		0
1939	Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Metals, 2023, 42, 2868-2905.	3.6	10
1944	Recent advances in aqueous zinc–sulfur batteries: overcoming challenges for sustainable energy storage. Journal of Materials Chemistry A, 2023, 11, 18029-18045.	5.2	1
1952	A dual-mediator for a sulfur cathode approaching theoretical capacity with low overpotential in aqueous Zn–S batteries. Energy and Environmental Science, 2023, 16, 4326-4333.	15.6	6
1957	Oxygen vacancy enriched Na _{1.19} V ₈ O ₂₀ ·4.42H ₂ O nanosheets for fast and stable Zn-ion batteries. Chemical Communications, 2023, 59, 11668-11671.	2.2	5
1964	On Energy Storage Chemistry of Aqueous Zn-Ion Batteries: From Cathode to Anode. Electrochemical Energy Reviews, 2023, 6, .	13.1	7
1979	Utilization of 2D materials in aqueous zinc ion batteries for safe energy storage devices. Nanoscale, 2023, 15, 17270-17312.	2.8	1
2017	Iron-based fluorophosphate Na ₂ FePO ₄ F as a cathode for aqueous zinc-ion batteries. Chemical Communications, 0, , .	2.2	0
2030	An Electrochemical Perspective of Aqueous Zinc Metal Anode. Nano-Micro Letters, 2024, 16, .	14.4	1
2039	Fundamentals of Vanadium-Based Nanomaterials. , 2023, , 1-15.		0
2041	Vanadate Nanomaterials for Electrochemical Energy Storage. , 2023, , 177-219.		0
2048	Basic Information of Electrochemical Energy Storage. , 2023, , 17-48.		0
2052	Chloride ion batteries-excellent candidates for new energy storage batteries following lithium-ion batteries. Ionics, 0, , .	1.2	0
2063	Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy and Environmental Science, 2024, 17, 369-385.	15.6	1
2066	Recent development of manganese dioxide-based material as zinc-ion battery cathode. Nanoscale, 0, , .	2.8	0
2066 2077	Recent development of manganese dioxide-based material as zinc-ion battery cathode. Nanoscale, 0, , . Aqueous MnO ₂ /Mn ²⁺ electrochemistry in batteries: progress, challenges, and perspectives. Energy and Environmental Science, 2024, 17, 425-441.	2.8	0
2066 2077 2127	Recent development of manganese dioxide-based material as zinc-ion battery cathode. Nanoscale, 0, , . Aqueous MnO ₂ /Mn ²⁺ electrochemistry in batteries: progress, challenges, and perspectives. Energy and Environmental Science, 2024, 17, 425-441. Best practices for zinc metal batteries. Nature Sustainability, 2024, 7, 98-99.	2.8 15.6 11.5	0 3 1

ARTICLE

IF CITATIONS