Design of anti-icing surfaces: smooth, textured or slippe

Nature Reviews Materials

1,

DOI: 10.1038/natrevmats.2015.3

Citation Report

#	Article	IF	CITATIONS
1	Anti-Icing Superhydrophobic Surfaces: Controlling Entropic Molecular Interactions to Design Novel Icephobic Concrete. Entropy, 2016, 18, 132.	1.1	79
2	An IR thermal imaging method to investigate spreading process of ethanol solution droplets on carbon fiber mats. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	2
3	Improvement of lubricant-infused surfaces for anti-icing applications. Surface Innovations, 2016, 4, 214-217.	1.4	44
4	Fabrication of non-modified metallic superhydrophobic surfaces with temperature insensitivity and self-healing ability. Applied Physics Letters, 2016, 109, .	1.5	8
5	How a Surface Nanodroplet Sits on the Rim of a Microcap. Langmuir, 2016, 32, 5744-5754.	1.6	8
6	Controllable Broadband Optical Transparency and Wettability Switching of Temperature-Activated Solid/Liquid-Infused Nanofibrous Membranes. ACS Nano, 2016, 10, 9387-9396.	7.3	121
7	Air Cushion Convection Inhibiting Icing of Self-Cleaning Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 29169-29178.	4.0	53
8	Hybrid MWCNTs membrane with well-tunable wettability. Journal of Colloid and Interface Science, 2016, 484, 173-182.	5.0	7
9	A superrepellent coating with dynamic fluorine chains for frosting suppression: effects of polarity, coalescence and ice nucleation free energy barrier. RSC Advances, 2016, 6, 92197-92205.	1.7	16
10	Droplet impact on superhydrophobic surfaces: A review of recent developments. Journal of Industrial and Engineering Chemistry, 2016, 42, 1-14.	2.9	265
11	Bioinspired Composite Materials: Applications in Diagnostics and Therapeutics. Journal of Molecular and Engineering Materials, 2016, 04, 1640004.	0.9	31
12	SiO2-g-PS/fluoroalkylsilane composites for superhydrophobic and highly oleophobic coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 26-35.	2.3	13
13	Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces. Langmuir, 2016, 32, 9664-9675.	1.6	23
14	Long-Term Repellency of Liquids by Superoleophobic Surfaces. Physical Review Letters, 2016, 117, 046102.	2.9	18
15	Strategies for anti-icing: low surface energy or liquid-infused?. RSC Advances, 2016, 6, 70251-70260.	1.7	118
16	Durable gels with ultra-low adhesion to ice. Journal of Materials Chemistry A, 2016, 4, 18253-18258.	5.2	158
17	Infused polymers for cell sheet release. Scientific Reports, 2016, 6, 26109.	1.6	28
18	Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long-Term Infusion Stability. ACS Applied Materials & Interfaces, 2016, 8, 32050-32059.	4.0	134

#	Article	IF	CITATIONS
19	Design and Fabrication of the Lyophobic Slippery Surface and Its Application in Anti-Icing. Journal of Physical Chemistry C, 2016, 120, 11054-11059.	1.5	84
20	A Robust Epoxy Resins @ Stearic Acid-Mg(OH) ₂ Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications. ACS Applied Materials & Interfaces, 2016, 8, 16511-16520.	4.0	154
21	Crystals creeping out of cracks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 797-799.	3.3	15
22	Fabrication of a superhydrophobic surface with a hierarchical nanoflake–micropit structure and its anti-icing properties. RSC Advances, 2017, 7, 9981-9988.	1.7	29
23	Ion-specific ice propagation behavior on polyelectrolyte brush surfaces. RSC Advances, 2017, 7, 840-844.	1.7	34
24	Hot embossed micro-textured thin superhydrophobic Teflon FEP sheets for low ice adhesion. Surface and Coatings Technology, 2017, 313, 17-23.	2.2	31
25	Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost. Scientific Reports, 2017, 7, 40300.	1.6	44
26	Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 6512-6519.	4.0	40
27	Soft blasting of fluorinated polymers: The easy way to superhydrophobicity. Materials and Design, 2017, 121, 414-420.	3.3	16
28	Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection. ACS Applied Materials & Interfaces, 2017, 9, 11247-11257.	4.0	225
29	Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 10233-10242.	4.0	66
30	Control of Ice Formation. ACS Nano, 2017, 11, 2665-2674.	7.3	49
31	Octagon to Square Wetting Area Transition of Water–Ethanol Droplets on a Micropyramid Substrate by Increasing Ethanol Concentration. Langmuir, 2017, 33, 1147-1154.	1.6	21
32	Phase Change Materials for Application in Energy-Efficient Buildings. , 2017, , 57-118.		32
33	Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications. Journal of Materials Chemistry A, 2017, 5, 9882-9890.	5.2	112
34	Slippery Liquid-Immobilized Coating Films Using in Situ Oxidation–Reduction Reactions of Metal Ions in Polyelectrolyte Films. ACS Applied Materials & Interfaces, 2017, 9, 15122-15129.	4.0	22
35	Roles of Surface Energy and Temperature in Heterogeneous Ice Nucleation. Journal of Physical Chemistry C, 2017, 121, 11552-11559.	1.5	23
36	Durable Anti-Icing Coatings Based on Self-Sustainable Lubricating Layer. ACS Omega, 2017, 2, 2047-2054.	1.6	40

	CITATION	Report	
#	Article	IF	Citations
37	Superoleophobic surfaces. Chemical Society Reviews, 2017, 46, 4168-4217.	18.7	613
38	Nano-striped chemically anisotropic surfaces have near isotropic wettability. Applied Physics Letters, 2017, 110, .	1.5	18
39	Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer. Advanced Materials, 2017, 29, 1700865.	11.1	109
40	Fabrication of superhydrophobic unplasticized poly(vinyl chloride)/nanosilica sheets using Taguchi design methodology. Polymer International, 2017, 66, 672-678.	1.6	1
41	Modeling nanoscale ice adhesion. Acta Mechanica Solida Sinica, 2017, 30, 224-226.	1.0	11
42	Drop mobility on chemically heterogeneous and lubricant-impregnated surfaces. Advances in Physics: X, 2017, 2, 591-607.	1.5	27
43	In Situ Determination of the Water Condensation Mechanisms on Superhydrophobic and Superhydrophilic Titanium Dioxide Nanotubes. Langmuir, 2017, 33, 6449-6456.	1.6	23
44	Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces. Computers and Fluids, 2017, 154, 142-166.	1.3	27
45	Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites. Journal of Materials Chemistry A, 2017, 5, 8376-8384.	5.2	87
46	A nanoporous, ultrahydrophobic aluminum-coating process with exceptional dropwise condensation and shedding properties. Materials Research Express, 2017, 4, 045003.	0.8	6
47	Nanoengineered materials for liquid–vapour phase-change heat transfer. Nature Reviews Materials, 2017, 2, .	23.3	431
48	Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect. ACS Nano, 2017, 11, 906-917.	7.3	47
49	Collective interactions in the nucleation and growth of surface droplets. Soft Matter, 2017, 13, 937-944.	1.2	23
50	Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model. Applied Surface Science, 2017, 400, 498-505.	3.1	122
51	Water Penetration through a Superhydrophobic Mesh During a Drop Impact. Physical Review Letters, 2017, 118, 014501.	2.9	79
52	Icephobic Surfaces Induced by Interfacial Nonfrozen Water. ACS Applied Materials & Interfaces, 2017, 9, 4202-4214.	4.0	138
53	Highly icephobic properties on slippery surfaces formed from polysiloxane and fluorinated POSS. Progress in Organic Coatings, 2017, 103, 48-59.	1.9	44
54	Superwettable Microchips as a Platform toward Microgravity Biosensing. ACS Nano, 2017, 11, 621-626.	7.3	74

#	Article	IF	CITATIONS
55	Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles. ACS Applied Materials & Interfaces, 2017, 9, 39863-39871.	4.0	162
56	Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review. Advances in Colloid and Interface Science, 2017, 250, 132-157.	7.0	203
57	Distinct ice patterns on solid surfaces with various wettabilities. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11285-11290.	3.3	132
58	Spontaneous self-dislodging of freezing water droplets and the role of wettability. Proceedings of the United States of America, 2017, 114, 11040-11045.	3.3	73
59	Solution-processed fabrication of superhydrophobic hierarchical zinc oxide nanostructures via nanotransfer printing and hydrothermal growth. Surface and Coatings Technology, 2017, 331, 189-195.	2.2	16
60	Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature. Langmuir, 2017, 33, 8891-8898.	1.6	34
61	Emerging Biorecognition and Transduction Schemes for Rapid Detection of Pathogenic Bacteria in Food. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1188-1205.	5.9	56
62	Antiâ€icing Performance of Superhydrophobic Texture Surfaces Depending on Reference Environments. Advanced Materials Interfaces, 2017, 4, 1700836.	1.9	90
63	Peristomeâ€Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Waterâ€inâ€Oil Drops. Angewandte Chemie, 2017, 129, 13811-13816.	1.6	19
64	A predictive framework for the design and fabrication of icephobic polymers. Science Advances, 2017, 3, e1701617.	4.7	123
65	Self-crosslinking coatings of fluorinated polysiloxanes with enhanced icephobicity. Thin Solid Films, 2017, 639, 113-122.	0.8	17
66	Peristomeâ€Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Waterâ€inâ€Oil Drops. Angewandte Chemie - International Edition, 2017, 56, 13623-13628.	7.2	84
67	Bioinspired silica-based superhydrophobic materials. Applied Surface Science, 2017, 426, 1-18.	3.1	40
68	Control of Ice Propagation by Using Polyelectrolyte Multilayer Coatings. Angewandte Chemie - International Edition, 2017, 56, 11436-11439.	7.2	41
69	Questions and Answers on the Wettability of Nanoâ€Engineered Surfaces. Advanced Materials Interfaces, 2017, 4, 1700381.	1.9	69
70	Control of Ice Propagation by Using Polyelectrolyte Multilayer Coatings. Angewandte Chemie, 2017, 129, 11594-11597.	1.6	1
71	<i>Nepenthes</i> Inspired Design of Selfâ€Repairing Omniphobic Slippery Liquid Infused Porous Surface (SLIPS) by Femtosecond Laser Direct Writing. Advanced Materials Interfaces, 2017, 4, 1700552.	1.9	120
72	Inhibition of Heterogeneous Ice Nucleation by Bioinspired Coatings of Polyampholytes. ACS Applied Materials & amp; Interfaces, 2017, 9, 30092-30099.	4.0	34

#	Article	IF	CITATIONS
73	Superhydrophobic, Low-Hysteresis Patterning Chemistry for Water-Drop Manipulation. ACS Applied Materials & amp; Interfaces, 2017, 9, 41126-41130.	4.0	20
74	Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. Journal of Materials Chemistry A, 2017. 5. 25249-25257.	5.2	147
75	Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography. Nanotechnology, 2017, 28, 465303.	1.3	9
76	Role of Water Solidification Concepts in Designing Nano-Textured Anti-Icing Surfaces. Journal of Physical Chemistry B, 2017, 121, 7527-7535.	1.2	17
77	Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions. ACS Applied Materials & Interfaces, 2017, 9, 24210-24219.	4.0	142
78	Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2, .	23.3	1,212
79	Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 24308-24317.	4.0	42
80	A Review of Condensation Frosting. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 81-101.	1.4	137
81	Use of Liquid Ad(ab)sorbing Surfaces for Anti-icing Applications. Advances in Polymer Science, 2017, , 53-98.	0.4	5
82	Fabrication of high aspect ratio silicon micro-/nano-pore arrays and surface modification aiming at long lifetime liquid-infused-type self-cleaning function. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2017, 11, JAMDSM0013-JAMDSM0013.	0.3	6
83	Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel. IOP Conference Series: Materials Science and Engineering, 2017, 258, 012003.	0.3	3
84	4.18 Surface Texturing and Control of Bacterial Adhesion. , 2017, , 303-320.		9
85	Bio-Inspired Polymeric Structures with Special Wettability and Their Applications: An Overview. Polymers, 2017, 9, 725.	2.0	44
86	Fluid-structure interaction with the entropic lattice Boltzmann method. Physical Review E, 2018, 97, 023305.	0.8	26
87	A critical review of the measurement of ice adhesion to solid substrates. Progress in Aerospace Sciences, 2018, 98, 1-26.	6.3	150
88	Delay in the Freezing of Supercooled Water Drops on Superhydrophobic Surfaces of Silicone Rubber at Negative Temperatures. Russian Journal of Physical Chemistry A, 2018, 92, 178-184.	0.1	8
89	Robust anti-icing performance of silicon wafer with hollow micro-/nano-structured ZnO. Journal of Industrial and Engineering Chemistry, 2018, 62, 46-51.	2.9	26
90	In Situ Formation of Slippery-Liquid-Infused Nanofibrous Surface for a Transparent Antifouling Endoscope Lens. ACS Biomaterials Science and Engineering, 2018, 4, 1871-1879.	2.6	19

#	Article	IF	CITATIONS
91	Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization. Accounts of Chemical Research, 2018, 51, 1082-1091.	7.6	159
92	Robust silicon dioxide @ epoxy resin micronanosheet superhydrophobic omnipotent protective coating for applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 9-19.	2.3	25
93	Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils. Applied Thermal Engineering, 2018, 137, 758-766.	3.0	49
94	Anti-icing agent releasing diatomaceous earth/SBS composites. New Journal of Chemistry, 2018, 42, 8544-8552.	1.4	5
95	Surface Energy-Mediated Multistep Pathways for Heterogeneous Ice Nucleation. Journal of Physical Chemistry C, 2018, 122, 9474-9479.	1.5	14
96	Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: toward the non-invasive detection of glucose. NPG Asia Materials, 2018, 10, 177-189.	3.8	57
97	Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography. Physical Review Letters, 2018, 120, 075902.	2.9	84
98	Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying. Surface and Coatings Technology, 2018, 341, 15-23.	2.2	99
99	Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops. Physical Review E, 2018, 97, 023103.	0.8	11
100	Superhydrophobic WS ₂ â€Nanosheetâ€Wrapped Sponges for Underwater Detection of Tiny Vibration. Advanced Science, 2018, 5, 1700655.	5.6	54
101	Development of multifunctional liquid-infused materials by printing assisted functionalization on porous nanocomposites. Journal of Materials Chemistry A, 2018, 6, 4199-4208.	5.2	47
102	Ice Release Coatings of High Durability for Aerospace Applications. Advances in Polymer Science, 2018, , 167-183.	0.4	2
103	Self-lubricating icephobic elastomer coating (SLIC) for ultralow ice adhesion with enhanced durability. Cold Regions Science and Technology, 2018, 148, 29-37.	1.6	57
104	Three-Dimensional Graphene Foam–Polymer Composite with Superior Deicing Efficiency and Strength. ACS Applied Materials & Interfaces, 2018, 10, 5022-5029.	4.0	65
105	Icephobicity: Definition and Measurement Regarding Atmospheric Icing. Advances in Polymer Science, 2018, , 123-143.	0.4	13
106	Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets on anisotropic slippery surfaces. Journal of Materials Chemistry A, 2018, 6, 3414-3421.	5.2	98
107	Designing a Flexible and Transparent Ultrarapid Electrothermogenic Film Based on Thermal Loss Suppression Effect: A Self-Fused Cu/Ni Composite Junctionless Nanonetwork for Effective Deicing Heater. ACS Applied Nano Materials, 2018, 1, 860-868.	2.4	19
108	An Experimental Investigation on the Dynamic Impact of Water Droplets onto Soft Surfaces at High Weber Numbers. , 2018, , .		4

#	Article	IF	CITATIONS
110	Designing 3D Biological Surfaces via the Breathâ€Figure Method. Advanced Healthcare Materials, 2018, 7, e1701043.	3.9	35
111	Sol–gel-based treatments of textiles for water repellence. , 2018, , 233-265.		6
112	Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology Research, 2018, 15, 231-250.	1.2	388
113	Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers. ACS Sensors, 2018, 3, 72-78.	4.0	84
114	Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation. Advanced Materials, 2018, 30, 1703838.	11.1	68
115	Superhydrophobic Microporous Substrates via Photocuring: Coupling Optical Pattern Formation to Phase Separation for Process-Tunable Pore Architectures. ACS Applied Materials & Interfaces, 2018, 10, 3094-3105.	4.0	19
116	Influence of Topography on Adhesion and Bioadhesion. Advances in Polymer Science, 2018, , 19-50.	0.4	3
117	Superhydrophobic Graphene/Cellulose/Silica Aerogel with Hierarchical Structure as Superabsorbers for High Efficiency Selective Oil Absorption and Recovery. Industrial & Engineering Chemistry Research, 2018, 57, 1745-1755.	1.8	69
118	Nonwettable Hierarchical Structure Effect on Droplet Impact and Spreading Dynamics. Langmuir, 2018, 34, 5480-5486.	1.6	17
119	Oblique impact of droplets on microstructured superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2018, 123, 693-704.	2.5	33
120	Textured WO3 and WO3:Mo films deposited from chemical solution on stainless steel. Thin Solid Films, 2018, 653, 179-187.	0.8	10
121	Biofilm growth and control in cooling water industrial systems. FEMS Microbiology Ecology, 2018, 94, .	1.3	35
122	Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function. ACS Applied Materials & Interfaces, 2018, 10, 11972-11978.	4.0	99
123	lcing temperature measurements of water on pyroelectric single crystals: Impact of experimental methods on the degree of supercooling. Cold Regions Science and Technology, 2018, 151, 53-63.	1.6	9
124	A Review of Femtosecondâ€Laserâ€Induced Underwater Superoleophobic Surfaces. Advanced Materials Interfaces, 2018, 5, 1701370.	1.9	95
125	Polyols-Infused Slippery Surfaces Based on Magnetic Fe ₃ O ₄ -Functionalized Polymer Hybrids for Enhanced Multifunctional Anti-Icing and Deicing Properties. Langmuir, 2018, 34, 4052-4058.	1.6	81
126	Icephobic Behavior of UV-Cured Polymer Networks Incorporated into Slippery Lubricant-Infused Porous Surfaces: Improving SLIPS Durability. ACS Applied Materials & Interfaces, 2018, 10, 2890-2896.	4.0	97
127	A significant reduction of ice adhesion on nanostructured surfaces that consist of an array of single-walled carbon nanotubes: A molecular dynamics simulation study. Applied Surface Science, 2018, 437, 202-208.	3.1	20

#	Article	IF	CITATIONS
128	Self-formation of polymer nanostructures in plasma etching: mechanisms and applications. Journal of Micromechanics and Microengineering, 2018, 28, 014006.	1.5	14
129	Molecular Dynamics at the Interface between Ice and Poly(vinyl alcohol) and Ice Recrystallization Inhibition. Langmuir, 2018, 34, 5116-5123.	1.6	50
130	Transparent icephobic coatings using bio-based epoxy resin. Materials and Design, 2018, 140, 516-523.	3.3	49
131	Meltwater Evolution during Defrosting on Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 1415-1421.	4.0	39
132	The effect of surface anisotropy on contact angles and the characterization of elliptical cap droplets. Science China Technological Sciences, 2018, 61, 309-316.	2.0	15
133	Electrical potential induced switchable wettability of super-aligned carbon nanotube films. Applied Surface Science, 2018, 427, 628-635.	3.1	13
134	Study of the Dynamics of Water Droplet Freezing on the Surface of Nanocomposites in the Long-Wavelength Infrared Range. Technical Physics, 2018, 63, 1808-1813.	0.2	1
135	A sudden-melting event during water freezing inside a copper well. RSC Advances, 2018, 8, 35257-35262.	1.7	2
136	Large-scale fabrication of waterborne superamphiphobic coatings for flexible applications. RSC Advances, 2018, 8, 36375-36382.	1.7	14
137	Aerospace and Marine Environments as Design Spaces for Contamination-Mitigating Polymeric Coatings. Advances in Polymer Science, 2018, , 1-16.	0.4	2
139	Icephobic Strategies and Materials with Superwettability: Design Principles and Mechanism. Langmuir, 2018, 34, 15425-15444.	1.6	108
140	General Way To Compute the Intrinsic Contact Angle at Tubes. Journal of Physical Chemistry C, 2018, 122, 29210-29219.	1.5	21
141	Preferential water condensation on superhydrophobic nano-cones array. Applied Physics Letters, 2018, 113, .	1.5	21
142	Effects of the influence factors in adhesive workpiece clamping with ice: experimental study and performance evaluation for industrial manufacturing applications. International Journal of Advanced Manufacturing Technology, 2018, 99, 137-160.	1.5	3
143	Cleaning of Fluid-Infused Surfaces in Microchannels. Langmuir, 2018, 34, 12532-12537.	1.6	3
144	Tunable Multimodal Drop Bouncing Dynamics and Anti-Icing Performance of a Magnetically Responsive Hair Array. ACS Nano, 2018, 12, 10693-10702.	7.3	86
145	"Openâ€Mouth―Mesoporous Hollow Micro/Nano Coatings Based on POSS/PDMS: Fabrication, Mechanisms, and Antiâ€Icing Performance. Particle and Particle Systems Characterization, 2018, 35, 1800323.	1.2	12
146	Water-free dedusting on antireflective glass with durable superhydrophobicity. Surface and Coatings Technology, 2018, 356, 123-131.	2.2	23

#	Article	IF	CITATIONS
147	Coatings super-repellent to ultralow surface tension liquids. Nature Materials, 2018, 17, 1040-1047.	13.3	289
148	Suppression of droplets freezing on glass surfaces on which antifreeze polypeptides are adhered by a silane coupling agent. PLoS ONE, 2018, 13, e0204686.	1.1	10
149	Cascade Freezing of Supercooled Water Droplet Collectives. ACS Nano, 2018, 12, 11274-11281.	7.3	26
150	Enhancing and Impeding Heterogeneous Ice Nucleation through Nanogrooves. Journal of Physical Chemistry C, 2018, 122, 25992-25998.	1.5	27
151	Sustaining enhanced condensation on hierarchical mesh-covered surfaces. National Science Review, 2018, 5, 878-887.	4.6	51
152	Passive Antifrosting Surfaces Using Microscopic Ice Patterns. ACS Applied Materials & Interfaces, 2018, 10, 32874-32884.	4.0	61
153	Micro-patterned anti-icing coatings with dual hydrophobic/hydrophilic properties. Journal of Materials Chemistry A, 2018, 6, 19353-19357.	5.2	30
154	Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass. Langmuir, 2018, 34, 11316-11324.	1.6	25
155	Mapping Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 33669-33677.	4.0	69
156	Film Dynamics and Lubricant Depletion by Droplets Moving on Lubricated Surfaces. Physical Review X, 2018, 8, .	2.8	71
157	Constrained droplet base in condensed water on carbon nanoparticle coating for delayed freezing. Extreme Mechanics Letters, 2018, 24, 38-46.	2.0	4
158	Biological and chemical sensing applications based on special wettable surfaces. TrAC - Trends in Analytical Chemistry, 2018, 108, 183-194.	5.8	30
159	Tuning Ice Nucleation and Propagation with Counterions on Multilayer Hydrogels. Langmuir, 2018, 34, 11986-11991.	1.6	17
160	Mechanical and chemical stability of super-hydrophobic coatings on SMA490BW substrate prepared by HVOF spraying. Materials Research Express, 2018, 5, 115030.	0.8	5
161	Electrodeposited Zn for Water-Repellent Coatings. Journal of the Electrochemical Society, 2018, 165, D472-D476.	1.3	5
162	One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces. ACS Omega, 2018, 3, 10139-10144.	1.6	68
163	Designing Liquidâ€Infused Surfaces for Medical Applications: A Review. Advanced Materials, 2018, 30, e1802724.	11.1	232
164	Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier. RSC Advances, 2018, 8, 19906-19916.	1.7	21

ARTICLE IF CITATIONS # Clumping of frozen par-fried foods: Lessons from frosting on structured surfaces. Food Structure, 165 2.3 7 2018, 17, 9-20. Monolithic Polymer Nanoridges with Programmable Wetting Transitions. Advanced Materials, 2018, 11.1 30, e1706657. Development and evaluation of poly(dimethylsiloxane) based composite coatings for icephobic 167 2.2 40 applications. Surface and Coatings Technology, 2018, 349, 980-985. Metasurfaces Leveraging Solar Energy for Icephobicity. ACS Nano, 2018, 12, 7009-7017. 93 Fabrication of robust and scalable superhydrophobic surfaces and investigation of their anti-icing 169 3.3 74 properties. Materials and Design, 2018, 156, 320-328. Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum. Physics 1.6 of Fluids, 2018, 30, . Mechanically Robust Transparent Antiâ€lcing Coatings: Roles of Dispersion Status of Titanate 171 1.9 16 Nanotubes. Advanced Materials Interfaces, 2018, 5, 1800773. A mechanically robust transparent coating for anti-icing and self-cleaning applications. Journal of 5.2 Materials Chemistry A, 2018, 6, 16043-16052. Impact of Surface Electrostatic Potential on Icephobic Properties of Nanoimprinted Flexible Polymer 173 1.1 1 Foils. Macromolecular Chemistry and Physics, 2018, 219, 1800070. An Experimental Study on the Durability of Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS) 174 Pertinent to Aircraft Anti-/De-lcing., 2018,,. Thermal Transport in Micro- and Nanoscale Systems., 2018, , 277-327. 175 2 Scalable superhydrophobic coating with controllable wettability and investigations of its drag 2.3 reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 290-295. Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing 178 1.6 14 Singularity. Langmuir, 2018, 34, 9064-9071. Desublimation Frosting on Nanoengineered Surfaces. ACS Nano, 2018, 12, 8288-8296. 179 Anti-icing Properties on Surfaces through a Functional Composite: Effect of Ionic Salts. ACS Omega, 180 1.6 11 2018, 3, 7934-7943. An implicit surface tension model for the analysis of droplet dynamics. Journal of Computational Physics, 2018, 374, 1196-1218. Control of ice nucleation: freezing and antifreeze strategies. Chemical Society Reviews, 2018, 47, 182 18.7 215 7116-7139. An analysis of hydronic heating pavement to optimize the required energy for anti-icing. Applied Thermal Engineering, 2018, 144, 278-290.

#	Article	IF	CITATIONS
184	Facile Fabrication of Superhydrophobic and Underwater Superoleophobic Coatings. ACS Applied Nano Materials, 2018, 1, 4894-4899.	2.4	28
185	Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields. Chemistry - A European Journal, 2018, 24, 14864-14877.	1.7	63
186	Entropic multi-relaxation free-energy lattice Boltzmann model for two-phase flows. Europhysics Letters, 2018, 122, 14002.	0.7	15
187	Anti-icing performance of super-wetting surfaces from icing-resistance to ice-phobic aspects: Robust hydrophobic or slippery surfaces. Journal of Alloys and Compounds, 2018, 765, 721-730.	2.8	100
188	Robust Superhydrophobic Surface with Controlled Adhesion: In Situ Growth Depending on Its Bulk Phase Composition and Environment. Advanced Materials Interfaces, 2018, 5, 1800444.	1.9	2
189	Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. Journal of Materials Chemistry A, 2018, 6, 13549-13581.	5.2	194
190	Diazonium salt chemistry for the design of nano-textured anti-icing surfaces. Chemical Communications, 2018, 54, 8983-8986.	2.2	16
191	Modelling anti-icing of railway overhead catenary wires by resistive heating. International Journal of Heat and Mass Transfer, 2019, 143, 118505.	2.5	9
192	Ice Crystallization in Shear Flows. Journal of Physical Chemistry C, 2019, 123, 21042-21049.	1.5	9
193	Enabling sequential rupture for lowering atomistic ice adhesion. Nanoscale, 2019, 11, 16262-16269.	2.8	20
194	Liquid-Infused Surfaces: A Review of Theory, Design, and Applications. ACS Nano, 2019, 13, 8517-8536.	7.3	272
195	Fluorinated Nanocomposite Coatings for Confinement and Pumpless Transport of Lowâ€Surfaceâ€Tension Liquids. Advanced Materials Interfaces, 2019, 6, 1901105.	1.9	8
196	A Review on Graphene Polymer Nanocomposites in Harsh Operating Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 17106-17129.	1.8	31
197	Visual detection of the prostate specific antigen via a sandwich immunoassay and by using a superwettable chip coated with pH-responsive silica nanoparticles. Mikrochimica Acta, 2019, 186, 550.	2.5	7
198	Effects of crosslinking, embedded TiO2 particles and extreme aging on PDMS icephobic barriers. Polymer Degradation and Stability, 2019, 166, 272-282.	2.7	7
199	Fast Healable Superhydrophobic Material. ACS Applied Materials & Interfaces, 2019, 11, 29388-29395.	4.0	54
200	Solidification dynamics of an impacted drop. Journal of Fluid Mechanics, 2019, 874, 756-773.	1.4	45
201	Beech wood cross sections as natural templates to fabricate superhydrophobic surfaces. Wood Science and Technology, 2019, 53, 985-999.	1.4	10

#	Article	IF	CITATIONS
	Facile fabrication of superhydrophobic aluminum surfaces by chemical etching and its		
202	anti-icing/self-cleaning performances. Materials Research Express, 2019, 6, 096586.	0.8	13
203	Numerical investigation of vibration-induced droplet shedding on microstructured superhydrophobic surfaces. Physical Review E, 2019, 99, 063111.	0.8	6
204	Spatially Engraving Morphological Structure on a Polymeric Surface by Ion Beam Milling. Polymers, 2019, 11, 1229.	2.0	4
205	Liquid layer generators for excellent icephobicity at extremely low temperatures. Materials Horizons, 2019, 6, 2063-2072.	6.4	53
206	Drop Impact on Two-Tier Monostable Superrepellent Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 43698-43707.	4.0	22
207	Bioinspired functions. , 2019, , 147-246.		1
208	Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Progress in Organic Coatings, 2019, 137, 105373.	1.9	129
209	Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study. Langmuir, 2019, 35, 16377-16387.	1.6	39
210	Interlaboratory Study of Ice Adhesion Using Different Techniques. Coatings, 2019, 9, 678.	1.2	44
211	Realization and Optimization of a Nepenthes-Inspired Microstructure Employing PR Sacrificial Layer Technology. , 2019, , .		0
212	Femtosecond-Laser-Produced Underwater "Superpolymphobic―Nanorippled Surfaces: Repelling Liquid Polymers in Water for Applications of Controlling Polymer Shape and Adhesion. ACS Applied Nano Materials, 2019, 2, 7362-7371.	2.4	22
213	Application of anti-icing coating based on adsorption of functional substances by microporous sphere. Progress in Organic Coatings, 2019, 137, 105320.	1.9	15
214	Effect of surface adsorption on icing behaviour of metallic coating. Surface and Coatings Technology, 2019, 380, 125068.	2.2	11
215	Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil. Applied Surface Science, 2019, 496, 143677.	3.1	85
216	Super-robust superamphiphobic surface with anti-icing property. RSC Advances, 2019, 9, 27702-27709.	1.7	14
217	Mechanically robust superhydrophobic coating for aeronautical composite against ice accretion and ice adhesion. Composites Part B: Engineering, 2019, 176, 107267.	5.9	67
218	New approach to moisture accumulation assessment. Materials and Design, 2019, 183, 108162.	3.3	0
219	Stress-localized durable icephobic surfaces. Materials Horizons, 2019, 6, 758-766.	6.4	128

#	Article	IF	CITATIONS
220	Antifreeze Liquid-Infused Surface with High Transparency, Low Ice Adhesion Strength, and Antifrosting Properties Fabricated through a Spray Layer-by-Layer Method. Industrial & Engineering Chemistry Research, 2019, 58, 2225-2234.	1.8	41
221	Biological and Engineered Topological Droplet Rectifiers. Advanced Materials, 2019, 31, e1806501.	11.1	113
222	Free radical copolymerization of trifluoroethyl methacrylate with perfluoroalkyl ethyl acrylates for superhydrophobic coating application. Journal of Coatings Technology Research, 2019, 16, 711-719.	1.2	9
223	Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release. Advanced Materials Interfaces, 2019, 6, 1801569.	1.9	13
224	Micro-/Nanoscale Approach for Studying Scale Formation and Developing Scale-Resistant Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 7330-7337.	4.0	19
225	How Slippery are SLIPS? Measuring Effective Slip on Lubricated Surfaces with Colloidal Probe Atmoc Force Microscopy. Langmuir, 2019, 35, 2976-2982.	1.6	34
227	Femtosecond Laser-Structured Underwater "Superpolymphobic―Surfaces. Langmuir, 2019, 35, 9318-9322.	1.6	21
228	Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction, 2019, 7, 289-306.	3.4	23
229	Mg(OH)2 and PDMS-coated cotton fabrics for excellent oil/water separation and flame retardancy. Cellulose, 2019, 26, 6879-6890.	2.4	28
230	Durability of superhydrophobic laser-treated metal surfaces under icing conditions. Materials Letters: X, 2019, 3, 100021.	0.3	12
231	Lyophobic slippery surfaces on smooth/hierarchical structured substrates and investigations of their dynamic liquid repellency. Physical Chemistry Chemical Physics, 2019, 21, 15705-15711.	1.3	10
232	Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process. Journal of Colloid and Interface Science, 2019, 552, 613-621.	5.0	19
233	Fabrication of a mechanically-stable anti-icing graphene oxide-diatomaceous earth/epoxy coating. Materials Research Express, 2019, 6, 085090.	0.8	15
234	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	11.1	138
235	Characterizing the bifurcating configuration of hydrogen bonding network in interfacial liquid water and its adhesion on solid surfaces. RSC Advances, 2019, 9, 16423-16430.	1.7	2
236	Nature-Inspired Liquid Infused Systems for Superwettable Surface Energies. ACS Applied Materials & Interfaces, 2019, 11, 21275-21293.	4.0	55
237	Cryogenic viscoelastic surfactant fluids: Fabrication and application in a subzero environment. Journal of Colloid and Interface Science, 2019, 551, 89-100.	5.0	13
238	The effect of ice type on ice adhesion. AIP Advances, 2019, 9, .	0.6	60

#	Article	IF	CITATIONS
239	Hydrophobicity, Freezing Delay, and Morphology of Laser-Treated Aluminum Surfaces. Langmuir, 2019, 35, 6483-6491.	1.6	29
240	Reactive silica nanoparticles turn epoxy coating from hydrophilic to super-robust superhydrophobic. RSC Advances, 2019, 9, 12547-12554.	1.7	28
241	Quantum Mechanical Prediction of Wettability of Multiphase Fluids–Solid Systems at Elevated Temperature. Journal of Physical Chemistry C, 2019, 123, 12753-12761.	1.5	4
242	Water droplet impact on superhydrophobic surfaces with various inclinations and supercooling degrees. International Journal of Heat and Mass Transfer, 2019, 138, 844-851.	2.5	54
243	Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances. Journal of Colloid and Interface Science, 2019, 548, 224-232.	5.0	94
244	Icephobic surfaces: Definition and figures of merit. Advances in Colloid and Interface Science, 2019, 269, 203-218.	7.0	115
245	A novel microstructure inspired from <i>Nepenthes alata</i> and lizard skin and its enhanced uni-directional liquid spreading property. RSC Advances, 2019, 9, 7842-7848.	1.7	10
246	Modifying Surfaces with the Primary and Secondary Faces of Cyclodextrins To Achieve a Distinct Anti-icing Capability. Langmuir, 2019, 35, 5176-5182.	1.6	3
247	Amphiphobic Nanostructured Coatings for Industrial Applications. Materials, 2019, 12, 787.	1.3	7
248	Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nature Communications, 2019, 10, 950.	5.8	135
249	Cryogenic wormlike micelles. Soft Matter, 2019, 15, 2511-2516.	1.2	12
250	A femtosecond laser-induced superhygrophobic surface: beyond superhydrophobicity and repelling various complex liquids. RSC Advances, 2019, 9, 6650-6657.	1.7	18
251	Icephobic materials: Fundamentals, performance evaluation, and applications. Progress in Materials Science, 2019, 103, 509-557.	16.0	258
252	Design of surfaces for controlling hard and soft fouling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180266.	1.6	34
253	Gas-surface interactions on two-dimensional crystals. Surface Science Reports, 2019, 74, 141-177.	3.8	16
254	Lateral motion of a droplet after impacting on groove-patterned superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 48-54.	2.3	21
255	All printable snow-based triboelectric nanogenerator. Nano Energy, 2019, 60, 17-25.	8.2	42
256	New method of preventing ice disaster in power grid using expanded conductors in heavy icing area. IET Generation, Transmission and Distribution, 2019, 13, 536-542.	1.4	26

#	Article	IF	CITATIONS
257	Delaying Ice and Frost Formation Using Phaseâ€Switching Liquids. Advanced Materials, 2019, 31, e1807812.	11.1	75
258	Highly Stable Amphiphilic Organogel with Exceptional Anti-icing Performance. ACS Applied Materials & Interfaces, 2019, 11, 12838-12845.	4.0	92
259	A Laser Scanning Method to Control the Location, Shape, Contact Angle and Sliding of Water Droplet on Superhydrophobic Surface. Advanced Engineering Materials, 2019, 21, 1801375.	1.6	10
260	Heterogeneous ice nucleation correlates with bulk-like interfacial water. Science Advances, 2019, 5, eaat9825.	4.7	60
261	Effect of plasticizer on the wear behavior and ice adhesion of elastomeric coatings. Wear, 2019, 426-427, 212-218.	1.5	7
262	Physics of pre-wetted, lubricated and impregnated surfaces: a review. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180264.	1.6	8
263	Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings. Journal of Thermal Spray Technology, 2019, 28, 598-644.	1.6	202
264	A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation. Renewable Energy, 2019, 140, 943-956.	4.3	67
265	An ultra-durable icephobic coating by a molecular pulley. Soft Matter, 2019, 15, 3607-3611.	1.2	47
266	Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Progress in Organic Coatings, 2019, 132, 235-256.	1.9	292
267	<i>Modus Operandi</i> of Protective and Anti-icing Mechanisms Underlying the Design of Longstanding Outdoor Icephobic Coatings. ACS Nano, 2019, 13, 4335-4346.	7.3	146
268	Slippery Properties and the Robustness of Lubricant-impregnated Surfaces. Journal of Bionic Engineering, 2019, 16, 291-298.	2.7	12
269	Antiicing Properties of Bioinspired Liquidâ€Infused Doubleâ€Layer Surface with Internal Wetting Transport Ability. Advanced Materials Interfaces, 2019, 6, 1900244.	1.9	9
270	Icephobic nanocoatings for infrastructure protection. , 2019, , 281-302.		1
271	2D compositional self-patterning in magnetron sputtered thin films. Applied Surface Science, 2019, 480, 115-121.	3.1	3
272	Magnetic fluid based on mussel inspired chemistry as corrosion-resistant coating of NdFeB magnetic material. Chemical Engineering Journal, 2019, 368, 331-339.	6.6	28
273	Perfluoroalkane wax infused gels for effective, regenerating, anti-icing surfaces. Chemical Communications, 2019, 55, 3215-3218.	2.2	21
274	Relationships between surface chemistry, nanotopography, wettability and ice adhesion in epoxy and SU-8 modified with fluoroalkylsilanes from the vapor phase. Applied Surface Science, 2019, 479, 489-498.	3.1	24

#	Article	IF	CITATIONS
275	Advances in the experimental exploration of water's phase diagram. Journal of Chemical Physics, 2019, 150, 060901.	1.2	139
276	lcing behavior of water droplets impinging on cold superhydrophobic surface. Surface and Coatings Technology, 2019, 363, 362-368.	2.2	56
277	Study of the Influence of Silicon Dioxide Nanoparticles on the Surface Properties of Silicon Organic Coatings. Nanotechnologies in Russia, 2019, 14, 216-221.	0.7	1
278	3D Organic Nanofabrics: Plasma-Assisted Synthesis and Antifreezing Behavior of Superhydrophobic and Lubricant-Infused Slippery Surfaces. Langmuir, 2019, 35, 16876-16885.	1.6	13
279	Epidermal Gland Inspired Self-Repairing Slippery Lubricant-Infused Porous Coatings with Durable Low Ice Adhesion. Coatings, 2019, 9, 602.	1.2	26
280	pH-sensitive organic diimide materials-based superhydrophobic surface for oil-water separation applications. Materials Research Express, 2019, 6, 125112.	0.8	10
281	Sessile Droplet Freezing on Hydrophobic Structured Surfaces under Cold Ambient Conditions. Langmuir, 2019, 35, 16401-16406.	1.6	18
282	Liquid-Infused Micro-Nanostructured MOF Coatings (LIMNSMCs) with High Anti-Icing Performance. ACS Applied Materials & Interfaces, 2019, 11, 47545-47552.	4.0	28
283	Effect of Tier Surface Structure on Nonâ€wetting Materials and Robust Superamphiphobic Surface. ChemistrySelect, 2019, 4, 13045-13052.	0.7	0
284	Liquid infused surfaces with anti-icing properties. Nanoscale, 2019, 11, 22615-22635.	2.8	61
285	Ice adhesion mechanism on lubricant-impregnated surfaces using molecular dynamics simulations. Molecular Simulation, 2019, 45, 394-402.	0.9	14
286	Fluorinated graphene provides long lasting ice inhibition in high humidity. Carbon, 2019, 141, 451-456.	5.4	42
287	Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horizons, 2019, 4, 52-76.	4.1	213
288	Influence of lubricant-mediated droplet coalescence on frosting delay on lubricant impregnated surfaces. International Journal of Heat and Mass Transfer, 2019, 128, 217-228.	2.5	19
289	Supercooled Water Drops Do Not Freeze During Impact on Hybrid Janus Particle-Based Surfaces. Chemistry of Materials, 2019, 31, 112-123.	3.2	14
290	High-performance icephobic droplet rebound surface with nanoscale doubly reentrant structure. International Journal of Heat and Mass Transfer, 2019, 133, 341-351.	2.5	26
291	Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS. ACS Applied Materials & Interfaces, 2019, 11, 4654-4666.	4.0	58
292	A review of liquid droplet impacting onto solid spherical particles: A physical pathway to encapsulation mechanisms. Journal of Industrial and Engineering Chemistry, 2019, 71, 50-64.	2.9	52

#	Article	IF	CITATIONS
293	How To Obtain Six Different Superwettabilities on a Same Microstructured Pattern: Relationship between Various Superwettabilities in Different Solid/Liquid/Gas Systems. Langmuir, 2019, 35, 921-927.	1.6	48
294	Prototyping of Superhydrophobic Surfaces from Structure‶unable Micropillar Arrays Using Visible Light Photocuring. Advanced Engineering Materials, 2019, 21, 1801150.	1.6	9
295	Durable Waterborne Hydrophobic Bio-Epoxy Coating with Improved Anti-Icing and Self-Cleaning Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 641-649.	3.2	77
296	Phase transition enabled durable anti-icing surfaces and its DIY design. Chemical Engineering Journal, 2019, 360, 243-249.	6.6	68
297	Slippery Lubricantâ€Infused Surfaces: Properties and Emerging Applications. Advanced Functional Materials, 2019, 29, 1802317.	7.8	172
298	The verification of icephobic performance on biomimetic superhydrophobic surfaces and the effect of wettability and surface energy. Applied Surface Science, 2019, 466, 503-514.	3.1	52
299	Role and importance of surface heterogeneities in transport of particles in saturated porous media. Critical Reviews in Environmental Science and Technology, 2020, 50, 244-329.	6.6	50
300	Nature-inspired surface topography: design and function. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	23
301	Nanotextured Aluminum-Based Surfaces with Icephobic Properties. Heat Transfer Engineering, 2020, 41, 1663-1672.	1.2	10
302	Icephobic Behaviour and Thermal Stability of Flame-Sprayed Polyethylene Coating: The Effect of Process Parameters. Journal of Thermal Spray Technology, 2020, 29, 241-254.	1.6	14
303	Fabrication of transparent icephobic surfaces with self-reparability: Effect of structuring and thickness of the lubricant-elastomer layer. Applied Surface Science, 2020, 504, 144061.	3.1	27
304	Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124180.	2.3	73
305	Nanowall enclosed architecture infused by lubricant: A bio-inspired strategy for inhibiting bio-adhesion and bio-corrosion on stainless steel. Surface and Coatings Technology, 2020, 381, 125143.	2.2	22
306	Hydrodynamics and mechanism of hydrophobic foam column tray: Contact angle hysteresis effect. AICHE Journal, 2020, 66, e16793.	1.8	12
307	Micro″Nanostructured Interface for Liquid Manipulation and Its Applications. Small, 2020, 16, e1903849.	5.2	70
308	The need for standards in low ice adhesion surface research: a critical review. Journal of Adhesion Science and Technology, 2020, 34, 319-347.	1.4	76
309	Improving the anti-icing performance of superhydrophobic surfaces by nucleation inhibitor. Surface Engineering, 2020, 36, 621-627.	1.1	18
310	Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft. Aerospace, 2020, 7, 2.	1.1	42

#	Article	IF	Citations
311	External Stimuli Responsive Liquidâ€Infused Surfaces Switching between Slippery and Nonslippery States: Fabrications and Applications. Advanced Functional Materials, 2020, 30, 1901130.	7.8	80
312	Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Applied Materials Today, 2020, 19, 100542.	2.3	40
313	Transparent Electrothermal Film Defoggers and Antiicing Coatings based on Wrinkled Graphene. Small, 2020, 16, e1905945.	5.2	33
314	Reconfigurable Surfaces Based on Photocontrolled Dynamic Bonds. Advanced Functional Materials, 2020, 30, 1907605.	7.8	27
315	Identifying Nearâ€Infrared Persistent Luminescence in Cr ³⁺ â€Doped Magnesium Gallogermanates Featuring Afterglow Emission at Extremely Low Temperature. Advanced Optical Materials, 2020, 8, 1901848.	3.6	45
316	Intelligent Icephobic Surface toward Self-Deicing Capability. ACS Sustainable Chemistry and Engineering, 2020, 8, 792-799.	3.2	25
317	Anti-icing epoxy resin surface modified by spray coating of PTFE Teflon particles for wind turbine blades. Materials Today Communications, 2020, 22, 100770.	0.9	26
318	Electrospun nanofibre membrane based transparent slippery liquid-infused porous surfaces with icephobic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124177.	2.3	27
319	Magnetoresponsive Surfaces for Manipulation of Nonmagnetic Liquids: Design and Applications. Advanced Functional Materials, 2020, 30, 1906507.	7.8	41
320	FDTSâ€Modified SiO ₂ /rGO Wrinkled Films with a Microâ€Nanoscale Hierarchical Structure and Antiâ€Icing/Deicing Properties under Condensation Condition. Advanced Materials Interfaces, 2020, 7, 1901446.	1.9	39
321	Passive anti-frosting cables. International Journal of Heat and Mass Transfer, 2020, 146, 118808.	2.5	23
322	Extremely Iceâ€Detached Array of Pine Needleâ€Inspired Concave one Pillars. Advanced Materials Interfaces, 2020, 7, 1901714.	1.9	1
323	Facile fabrication of biomimetic slippery lubricant-infused transparent and multifunctional omniphobic surfaces. Journal of Materials Science, 2020, 55, 4225-4237.	1.7	13
324	Avoiding snow and ice accretion on building integrated photovoltaics – challenges, strategies, and opportunities. Solar Energy Materials and Solar Cells, 2020, 206, 110306.	3.0	45
325	Spectroscopic Determination of Iceâ€Induced Interfacial Strain on Singleâ€Layer Graphene. Small, 2020, 16, 2003892.	5.2	1
326	Fabrication of anti-icing surface with halloysite spherical microcapsule. Journal of Materials Research, 2020, 35, 2887-2896.	1.2	2
327	Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment. Applied Surface Science, 2020, 534, 147576.	3.1	63
328	Enhanced Condensation on Liquid-Infused Nanoporous Surfaces by Vibration-Assisted Droplet Sweeping. ACS Nano, 2020, 14, 13367-13379.	7.3	41

#	Article	IF	CITATIONS
329	Superhydrophobic surfaces with flake-like structures and lubricant-infused composite surfaces to enhance anti-icing ability. Chemical Physics Letters, 2020, 758, 137903.	1.2	10
330	Freezing of Nanofluid Droplets on Superhydrophobic Surfaces. Langmuir, 2020, 36, 13034-13040.	1.6	12
331	Lubricated icephobic coatings prepared by flame spraying with hybrid feedstock injection. Surface and Coatings Technology, 2020, 403, 126396.	2.2	15
332	Dynamical behavior of droplets transiently impacting on superhydrophobic microstructures. Physics of Fluids, 2020, 32, .	1.6	30
333	Fabrication of a Porous Slippery Icephobic Surface and Effect of Lubricant Viscosity on Anti-Icing Properties and Durability. Coatings, 2020, 10, 896.	1.2	18
334	Fast increase of nanofluidic slip in supercooled water: the key role of dynamics. Nanoscale, 2020, 12, 20396-20403.	2.8	20
335	Droplet Impact on the Cold Elastic Superhydrophobic Membrane with Low Ice Adhesion. Coatings, 2020, 10, 964.	1.2	11
336	Disclination regulated depression and elevation of glassy nematic coatings on soft elastic substrates. Extreme Mechanics Letters, 2020, 40, 100938.	2.0	0
337	Recent trends in fabrication of nepenthes inspired SLIPs: Design strategies for self-healing efficient anti-icing surfaces. Surfaces and Interfaces, 2020, 21, 100678.	1.5	26
338	Selfâ€Limited Ice Formation and Efficient Deâ€lcing on Superhydrophobic Microâ€Structured Airfoils through Direct Laser Interference Patterning. Advanced Materials Interfaces, 2020, 7, 2001231.	1.9	38
339	Tunable wetting surfaces with interacting cavities via femtosecond laser patterning and wet etching. Journal of Applied Physics, 2020, 128, .	1.1	4
340	3D-Printed Repeating Re-Entrant Topography to Achieve On-Demand Wettability and Separation. ACS Applied Materials & Interfaces, 2020, 12, 35725-35730.	4.0	13
341	Self-Deicing Electrolyte Hydrogel Surfaces with Pa-level Ice Adhesion and Durable Antifreezing/Antifrost Performance. ACS Applied Materials & Interfaces, 2020, 12, 35572-35578.	4.0	65
342	Capillary Balancing: Designing Frost-Resistant Lubricant-Infused Surfaces. Nano Letters, 2020, 20, 8508-8515.	4.5	45
343	Bioinspired Tough Organohydrogel Dynamic Interfaces Enabled Subzero Temperature Antifrosting, Deicing, and Antiadhesion. ACS Applied Materials & Interfaces, 2020, 12, 55501-55509.	4.0	16
344	Modified Microwave Sensor with a Patterned Ground Heater for Detection and Prevention of Ice Accumulation. ACS Applied Materials & amp; Interfaces, 2020, 12, 55483-55492.	4.0	44
345	Multifunctional aluminium surfaces – Laser-structured micropatterns with ice-repellent, superhydrophobic and easy-to-clean properties. MATEC Web of Conferences, 2020, 326, 04005.	0.1	0
346	Wettability on Different Surfaces. , 2020, , .		0

#	Article	IF	CITATIONS
347	Durability of Superamphiphobic Polyester Fabrics in Simulated Aerodynamic Icing Conditions. Coatings, 2020, 10, 1058.	1.2	5
351	Low Ice Adhesion Surfaces Based on Flexible Fluorinated Polymers with a Polynorbornene Backbone. ACS Applied Materials & Interfaces, 2020, 12, 53494-53502.	4.0	10
352	Dynamic Behavior of Droplet Impact on Inclined Surfaces with Acoustic Waves. Langmuir, 2020, 36, 10175-10186.	1.6	29
353	Evaporation dynamics of water droplets on superhydrophobic nanograss surfaces. International Journal of Heat and Mass Transfer, 2020, 160, 120149.	2.5	23
354	Evaluation of Functionalized Coatings for the Prevention of Ice Accretion by Using Icing Wind Tunnel Tests. Coatings, 2020, 10, 636.	1.2	15
355	Durability of superhydrophobic duplex coating systems for aerospace applications. Surface and Coatings Technology, 2020, 401, 126249.	2.2	38
356	Controlling ice formation on gradient wettability surface for high-performance bioinspired materials. Science Advances, 2020, 6, eabb4712.	4.7	86
357	Superwettability-based systems: Basic concepts, recent trends and future prospects for innovation in food engineering. Trends in Food Science and Technology, 2020, 104, 27-36.	7.8	14
358	Cloaking Dynamics on Lubricantâ€Infused Surfaces. Advanced Materials Interfaces, 2020, 7, 2000983.	1.9	24
359	On the use of smart on-board systems for aircraft ice removal. , 2020, , .		3
359 360	On the use of smart on-board systems for aircraft ice removal. , 2020, , . Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. ACS Omega, 2020, 5, 28776-28783.	1.6	3
359 360 361	On the use of smart on-board systems for aircraft ice removal. , 2020, , . Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. ACS Omega, 2020, 5, 28776-28783. Bio-inspired Hydrogels as Multi-task Anti-icing Hydrogel Coatings. CheM, 2020, 6, 820-822.	1.6	3 4 29
359 360 361 362	On the use of smart on-board systems for aircraft ice removal., 2020, , . Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. ACS Omega, 2020, 5, 28776-28783. Bio-inspired Hydrogels as Multi-task Anti-icing Hydrogel Coatings. CheM, 2020, 6, 820-822. Theoretical study of perfluorodecyltrimethoxysilane and polyethylene glycol adsorption/dissociation reactions on dry and hydrated Al2O3(0A0Â0Â1) surface. Computational and Theoretical Chemistry, 2020, 1191, 113027.	1.6 5.8 1.1	3 4 29 5
359 360 361 362 363	On the use of smart on-board systems for aircraft ice removal. , 2020, , . Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. ACS Omega, 2020, 5, 28776-28783. Bio-inspired Hydrogels as Multi-task Anti-icing Hydrogel Coatings. CheM, 2020, 6, 820-822. Theoretical study of perfluorodecyltrimethoxysilane and polyethylene glycol adsorption/dissociation reactions on dry and hydrated Al2O3(0A0A0A1) surface. Computational and Theoretical Chemistry, 2020, 1191, 113027. Superwettable Surface Engineering in Controlling Cell Adhesion for Emerging Bioapplications. Small Methods, 2020, 4, 2000573.	1.6 5.8 1.1 4.6	3 4 29 5 40
 359 360 361 362 363 364 	On the use of smart on-board systems for aircraft ice removal. , 2020, , . Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. ACS Omega, 2020, 5, 28776-28783. Bio-inspired Hydrogels as Multi-task Anti-icing Hydrogel Coatings. CheM, 2020, 6, 820-822. Theoretical study of perfluorodecyltrimethoxysilane and polyethylene glycol adsorption/dissociation reactions on dry and hydrated Al2O3(0A0A0A1) surface. Computational and Theoretical Chemistry, 2020, 1191, 113027. Superwettable Surface Engineering in Controlling Cell Adhesion for Emerging Bioapplications. Small Methods, 2020, 4, 2000573. Omniphobic Etched Aluminum Surfaces with Anti-Icing Ability. Langmuir, 2020, 36, 10916-10922.	1.6 5.8 1.1 4.6 1.6	3 4 29 5 40 21
 359 360 361 362 363 364 365 	On the use of smart on-board systems for aircraft ice removal. , 2020, , . Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. ACS Omega, 2020, 5, 28776-28783. Bio-inspired Hydrogels as Multi-task Anti-icing Hydrogel Coatings. CheM, 2020, 6, 820-822. Theoretical study of perfluorodecyltrimethoxysilane and polyethylene glycol adsorption/dissociation reactions on dry and hydrated Al2O3(0A0A0A1) surface. Computational and Theoretical Chemistry, 2020, 1191, 113027. Superwettable Surface Engineering in Controlling Cell Adhesion for Emerging Bioapplications. Small Methods, 2020, 4, 2000573. Omniphobic Etched Aluminum Surfaces with Anti-Icing Ability. Langmuir, 2020, 36, 10916-10922. Spreading and retraction kinetics for impact of nanodroplets on hydrophobic surfaces. Physics of Fluids, 2020, 32, .	1.6 5.8 1.1 4.6 1.6	3 4 29 5 40 21 31
 359 360 361 362 363 364 365 366 	On the use of smart on-board systems for aircraft ice removal. , 2020, , . Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. ACS Omega, 2020, 5, 28776-28783. Bio-inspired Hydrogels as Multi-task Anti-icing Hydrogel Coatings. CheM, 2020, 6, 820-822. Theoretical study of perfluorodecyltrimethoxysilane and polyethylene glycol adsorption/dissociation reactions on dry and hydrated Al2O3(0A0A0A1) surface. Computational and Theoretical Chemistry, 2020, 1191, 113027. Superwettable Surface Engineering in Controlling Cell Adhesion for Emerging Bioapplications. Small Methods, 2020, 4, 2000573. Omniphobic Etched Aluminum Surfaces with Anti-Icing Ability. Langmuir, 2020, 36, 10916-10922. Spreading and retraction kinetics for impact of nanodroplets on hydrophobic surfaces. Physics of Fluids, 2020, 32, . Water Freezes at Near-Zero Temperatures Using Carbon Nanotube-Based Electrodes under Static Electric Fields. ACS Applied Materials & amp; Interfaces, 2020, 12, 45525-45532.	1.6 5.8 1.1 4.6 1.6 1.6	3 4 29 5 40 21 31 7

#	Article	IF	Citations
368	Spontaneous Deicing on Cold Surfaces. Langmuir, 2020, 36, 11245-11254.	1.6	18
369	Effect of Pre-treatment on Roughness and Hydrophobicity of Electro-Etched Steel with Improved Corrosion Resistance. Journal of Materials Engineering and Performance, 2020, 29, 5950-5958.	1.2	9
370	Superhydrophobic coatings for aeronautical applications. , 2020, , .		2
371	Ice-Inspired Superlubricated Electrospun Nanofibrous Membrane for Preventing Tissue Adhesion. Nano Letters, 2020, 20, 6420-6428.	4.5	29
372	Wettability Control of Sapphire by Surface Texturing in Combination with Femtosecond Laser Irradiation and Chemical Etching. ChemistrySelect, 2020, 5, 9555-9562.	0.7	6
373	Antifrosting Performance of a Superhydrophobic Surface by Optimizing the Surface Morphology. Langmuir, 2020, 36, 10156-10165.	1.6	14
375	Wettability and Stability of Wetting States for the Surfaces with Reentrant Structures. Journal of Physical Chemistry C, 2020, 124, 28479-28487.	1.5	7
376	Laser Fabrication of Anti-Icing Surfaces: A Review. Materials, 2020, 13, 5692.	1.3	44
377	Functional Superhydrophobic Surfaces with Spatially Programmable Adhesion. Polymers, 2020, 12, 2968.	2.0	2
378	Understanding the Solid–Ice Interface Mechanism on the Hydrophobic Nano-Pillar Structure Epoxy Surface for Reducing Ice Adhesion. Coatings, 2020, 10, 1043.	1.2	4
383	Heterogeneous freezing on pyroelectric poly(vinylidene fluoride oâ€ŧrifluoroethylene) thin films. Surface and Interface Analysis, 2020, 52, 1150-1155.	0.8	1
384	Robust Slippery Liquid-Infused Porous Network Surfaces for Enhanced Anti-icing/Deicing Performance. ACS Applied Materials & Interfaces, 2020, 12, 25471-25477.	4.0	98
385	Superhydrophobic photothermal icephobic surfaces based on candle soot. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11240-11246.	3.3	220
386	Mapping ice formation to mineral-surface topography using a micro mixing chamber with video and atomic-force microscopy. Atmospheric Measurement Techniques, 2020, 13, 2209-2218.	1.2	5
387	Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chemical Society Reviews, 2020, 49, 3688-3715.	18.7	200
388	Anti-icing performance of superhydrophobic surface fabricated by femtosecond laser composited dual-layers coating. Energy and Buildings, 2020, 223, 110175.	3.1	31
389	An extremely chemical and mechanically durable siloxane bearing copolymer coating with self-crosslinkable and anti-icing properties. Composites Part B: Engineering, 2020, 195, 108031.	5.9	45
390	Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces. Soft Matter, 2020, 16, 5388-5397.	1.2	11

#	Article	IF	CITATIONS
391	Magnetic field induced motion of water droplets and bubbles on the lubricant coated surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124773.	2.3	12
392	Fabrication and coating adhesion study of superhydrophobic stainless steel surfaces: The effect of substrate surface roughness. Surfaces and Interfaces, 2020, 20, 100526.	1.5	14
393	Highly efficient solar anti-icing/deicing <i>via</i> a hierarchical structured surface. Materials Horizons, 2020, 7, 2097-2104.	6.4	108
394	Robust superhydrophobic aluminum alloy surfaces with anti-icing ability, thermostability, and mechanical durability. Progress in Organic Coatings, 2020, 147, 105745.	1.9	28
395	Dynamic Self-Repairing Hybrid Liquid-in-Solid Protective Barrier for Cementitious Materials. ACS Applied Materials & Interfaces, 2020, 12, 31922-31932.	4.0	6
396	High Performance Bubble Manipulation on Ferrofluid-Infused Laser-Ablated Microstructured Surfaces. Nano Letters, 2020, 20, 5513-5521.	4.5	63
397	Droplet impact on cylindrical surfaces: Effects of surface wettability, initial impact velocity, and cylinder size. Journal of Colloid and Interface Science, 2020, 578, 207-217.	5.0	54
398	Design and High-Resolution Characterization of Silicon Wafer-like Omniphobic Liquid Layers Applicable to Any Substrate. ACS Applied Materials & Interfaces, 2020, 12, 31933-31939.	4.0	29
399	Fabrication of robust conductive and superhydrophobic coating based on carbon nanotubes. Materials Research Express, 2020, 7, 055009.	0.8	11
401	Waterâ€Based Robust Transparent Superamphiphobic Coatings for Resistance to Condensation, Frosting, Icing, and Fouling. Advanced Materials Interfaces, 2020, 7, 1902201.	1.9	22
402	Frost-free zone on macrotextured surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6323-6329.	3.3	51
403	Fine Switching between Underwater Superoleophilicity and Underwater Superoleophobicity while Maintaining Superhydrophobicity. Langmuir, 2020, 36, 3300-3307.	1.6	4
404	Contact Time of a Bouncing Nanodroplet. Journal of Physical Chemistry Letters, 2020, 11, 2818-2823.	2.1	56
405	Easy and Fast Fabrication of Self-Cleaning and Anti-Icing Perfluoroalkyl Silane Film on Aluminium. Coatings, 2020, 10, 234.	1.2	23
406	Thermally Sprayed Coatings: Novel Surface Engineering Strategy Towards Icephobic Solutions. Materials, 2020, 13, 1434.	1.3	18
407	How Micro-/Nanostructure Evolution Influences Dynamic Wetting and Natural Deicing Abilities of Bionic Lotus Surfaces. Langmuir, 2020, 36, 4005-4014.	1.6	25
408	Inhibiting Condensation Freezing on Patterned Polyelectrolyte Coatings. ACS Nano, 2020, 14, 5000-5007.	7.3	32
409	Highly crossâ€linked UV ured siloxane copolymer networks as icephobic coatings. Journal of Polymer Science, 2020, 58, 1022-1029.	2.0	12

#	Article	IF	CITATIONS
410	Facile approach to design a stable, damage resistant, slippery, and omniphobic surface. RSC Advances, 2020, 10, 19157-19168.	1.7	33
411	Versatile, mechanochemically robust, sprayed superomniphobic coating enabling low surface tension and high viscous organic liquid bouncing. Chemical Engineering Journal, 2020, 402, 126160.	6.6	21
412	Water and Ice Adhesion to Solid Surfaces: Common and Specific, the Impact of Temperature and Surface Wettability. Coatings, 2020, 10, 648.	1.2	54
413	Facile preparation of a slippery oil-infused polymer surface for robust icephobicity. Progress in Organic Coatings, 2020, 148, 105849.	1.9	13
414	In situ ice growth kinetics on water-repellent coatings under atmospheric icing conditions. Surface and Coatings Technology, 2020, 399, 126136.	2.2	6
415	Potential anti-icing applications of encapsulated phase change material–embedded coatings; a review. Journal of Energy Storage, 2020, 31, 101638.	3.9	24
416	Design Rules for Laserâ€Treated Icephobic Metallic Surfaces for Aeronautic Applications. Advanced Functional Materials, 2020, 30, 1910268.	7.8	109
417	How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface?. ACS Applied Materials & Interfaces, 2020, 12, 14531-14541.	4.0	16
418	Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives. Langmuir, 2020, 36, 2493-2509.	1.6	134
419	Hierarchically Ordered Silicon Metastructures from Improved Self-Assembly-Based Nanosphere Lithography. ACS Applied Materials & Interfaces, 2020, 12, 12345-12352.	4.0	50
420	From Extremely Water-Repellent Coatings to Passive Icing Protection—Principles, Limitations and Innovative Application Aspects. Coatings, 2020, 10, 66.	1.2	34
421	Thickness of the Ice-Shedding Lubricant Layer in Equilibrium with an Underlying Cross-Linked Polymer Film. ACS Applied Polymer Materials, 2020, 2, 1369-1377.	2.0	13
422	What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface?. Materials Horizons, 2020, 7, 1697-1726.	6.4	96
423	Mesoscopic Dynamical Model of Ice Crystal Nucleation Leading to Droplet Freezing. ACS Omega, 2020, 5, 3322-3332.	1.6	19
424	Durable ice-lubricating surfaces based on polydimethylsiloxane embedded silicone oil infused silica aerogel. Applied Surface Science, 2020, 512, 145728.	3.1	48
425	3D printing of bioinspired textured surfaces with superamphiphobicity. Nanoscale, 2020, 12, 2924-2938.	2.8	54
426	Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 7805-7814.	4.0	52
427	Large-area nanostructured surfaces with tunable zeta potentials. Applied Materials Today, 2020, 19, 100553.	2.3	12

#	Article	IF	CITATIONS
428	Control the droplet motion by using chemically stripe-patterned surfaces. Chemical Physics, 2020, 532, 110678.	0.9	6
429	Bioinspired Multifunctional Anti-icing Hydrogel. Matter, 2020, 2, 723-734.	5.0	150
430	Biomimetic Superlyophobic Metallic Surfaces: Focusing on Their Fabrication and Applications. Journal of Bionic Engineering, 2020, 17, 1-33.	2.7	32
431	Nanogenerators with Superwetting Surfaces for Harvesting Water/Liquid Energy. Advanced Functional Materials, 2020, 30, 1908252.	7.8	103
432	Self‧upplying Liquidity Oilâ€Adsorbed Slippery Smooth Surface for Both Liquid and Solid Repellency. Advanced Materials Interfaces, 2020, 7, 1901818.	1.9	12
433	Microscopic mechanism of ice nucleation: The effects of surface rough structure and wettability. Applied Surface Science, 2020, 510, 145520.	3.1	17
434	Superhydrophobic coatings for corrosion protection of magnesium alloys. Journal of Materials Science and Technology, 2020, 52, 100-118.	5.6	164
435	Nanoscale Correlations of Ice Adhesion Strength and Water Contact Angle. Coatings, 2020, 10, 379.	1.2	20
436	Anti-Icing Properties of Vertically Aligned TiO ₂ Nanopillars. Langmuir, 2020, 36, 6041-6050.	1.6	14
437	Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite. Journal of Materials Science and Technology, 2020, 49, 106-116.	5.6	23
438	Reversibly Thermosecreting Organogels with Switchable Lubrication and Antiâ€Icing Performance. Angewandte Chemie - International Edition, 2020, 59, 11876-11880.	7.2	53
439	Numerical study of a droplet impact on cylindrical objects: Towards the anti-icing property of power transmission lines. Applied Surface Science, 2020, 516, 146155.	3.1	40
440	A New Measuring System for the Determination of the Ice Adhesion Strength on Smooth Surfaces. Langmuir, 2020, 36, 4465-4476.	1.6	14
441	Passive Removal of Highly Wetting Liquids and Ice on Quasi-Liquid Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 20084-20095.	4.0	66
442	Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?. Journal of Materials Chemistry A, 2020, 8, 7536-7547.	5.2	104
443	Rebound of self-lubricating compound drops. Science Advances, 2020, 6, eaay3499.	4.7	48
444	Precursor-Film-Mediated Thermocapillary Motion of Low-Surface-Tension Microdroplets. Langmuir, 2020, 36, 5096-5105.	1.6	6
445	Robust superhydrophobic surface with wrinkle-like structures on AZ31 alloy that repels viscous oil and investigations of the anti-icing property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124655.	2.3	17

#	Article	IF	CITATIONS
446	Reversibly Thermosecreting Organogels with Switchable Lubrication and Antiâ€icing Performance. Angewandte Chemie, 2020, 132, 11974-11978.	1.6	6
447	Wetting state transition of a liquid gallium drop at the nanoscale. Physical Chemistry Chemical Physics, 2020, 22, 11809-11816.	1.3	8
448	Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces. Langmuir, 2020, 36, 4308-4316.	1.6	17
449	Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance. Soft Matter, 2020, 16, 4462-4476.	1.2	30
450	Reducing Static and Impact Ice Adhesion with a Self-Lubricating Icephobic Coating (SLIC). Coatings, 2020, 10, 262.	1.2	21
451	Selfâ€Stratifying Porous Silicones with Enhanced Liquid Infusion and Protective Skin Layer for Biofouling Prevention. Advanced Materials Interfaces, 2021, 8, 2000359.	1.9	12
452	Directing Surface Functions by Inducing Ordered and Irregular Morphologies at Single and Two‶iered Length Scales. Advanced Engineering Materials, 2021, 23, 2001057.	1.6	9
453	Droplet Retention on Superhydrophobic Surfaces: A Critical Review. Advanced Materials Interfaces, 2021, 8, 2001205.	1.9	56
454	Freezing delay of sessile drops: Probing the impact of contact angle, surface roughness and thermal conductivity. Applied Surface Science, 2021, 537, 147964.	3.1	18
455	Polysiloxane as icephobic materials – The past, present and the future. Chemical Engineering Journal, 2021, 405, 127088.	6.6	83
456	The challenge of lubricant-replenishment on lubricant-impregnated surfaces. Advances in Colloid and Interface Science, 2021, 287, 102329.	7.0	56
457	Wetting and icing of surfaces. Current Opinion in Colloid and Interface Science, 2021, 53, 101400.	3.4	18
458	Reducing surface fouling against emulsified oils using CuO nanostructured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125991.	2.3	2
459	Frosting and defrosting on the hydrophilic nylon-6 nanofiber membrane–coated surfaces. Applied Thermal Engineering, 2021, 184, 116300.	3.0	10
460	Self-healing solid slippery surface with porous structure and enhanced corrosion resistance. Chemical Engineering Journal, 2021, 417, 128083.	6.6	43
461	Magnetically responsive lubricant-infused porous surfaces with controllable lubricity and durable anti-icing performance. Surface and Coatings Technology, 2021, 406, 126742.	2.2	17
462	Highly transparent, hot water and scratch resistant, lubricant-infused slippery surfaces developed from a mechanically-weak superhydrophobic coating. Chemical Engineering Journal, 2021, 416, 127809.	6.6	44
463	Metallic skeleton promoted two-phase durable icephobic layers. Journal of Colloid and Interface Science, 2021, 587, 47-55.	5.0	14

#	Article	IF	CITATIONS
464	<i>Nepenthes</i> pitcher inspired isotropic/anisotropic polymer solid–liquid composite interface: preparation, function, and application. Materials Chemistry Frontiers, 2021, 5, 1716-1742.	3.2	19
465	Realization of Selfâ€Rotating Droplets Based on Liquid Metal. Advanced Materials Interfaces, 2021, 8, 2001756.	1.9	4
466	A novel approach for the evaluation of ice release performance of coatings using static friction measurements. Journal of Coatings Technology Research, 2021, 18, 665-676.	1.2	3
467	Efficient and economical approach for flexible photothermal icephobic copper mesh with robust superhydrophobicity and active deicing property. Soft Matter, 2021, 17, 1901-1911.	1.2	22
468	Underwater superpolymphobicity: Concept, achievement, and applications. Nano Select, 2021, 2, 1011-1022.	1.9	3
469	Employing micro pyramidal holes and porous nanostructures for enhancing the durability of lubricant-infused surfaces in anti-icing. Surface and Coatings Technology, 2021, 405, 126568.	2.2	24
470	Electrohydrodynamic and Hydroelectric Effects at the Water–Solid Interface: from Fundamentals to Applications. Advanced Materials Interfaces, 2021, 8, 2000670.	1.9	32
471	Bio-inspired wettability patterns for biomedical applications. Materials Horizons, 2021, 8, 124-144.	6.4	52
472	Robust superhydrophobicity: mechanisms and strategies. Chemical Society Reviews, 2021, 50, 4031-4061.	18.7	334
473	Patterned hydrothermal synthesis of TiO ₂ rods-array and its application to oil repellent surface in water. Transactions of the JSME (in Japanese), 2021, 87, 21-00257-21-00257.	0.1	0
475	Adsorption of water on epitaxial graphene. Journal of Materials Research, 2021, 36, 129-139.	1.2	6
476	Surface engineering with microstructured gel networks for superwetting membranes. Journal of Materials Chemistry A, 2021, 9, 7924-7934.	5.2	37
477	Tailoring of optical, hydrophobic, and anti-icing properties of Ca–Mg co-doped ZnO thin films via sol–gel method. Journal of Sol-Gel Science and Technology, 2021, 97, 706-720.	1.1	6
478	Universal and tunable liquid–liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nature Communications, 2021, 12, 80.	5.8	32
479	Design of Continuous Transport of the Droplet by the Contact-Boiling Regime. Langmuir, 2021, 37, 553-560.	1.6	8
480	Bioinspired photocatalytic hedgehog coating for super liquid repellency. Materials Chemistry Frontiers, 2021, 5, 4174-4181.	3.2	6
481	Nanomechanical Insights into Versatile Polydopamine Wet Adhesive Interacting with Liquid-Infused and Solid Slippery Surfaces. ACS Applied Materials & amp; Interfaces, 2021, 13, 6941-6950.	4.0	23
482	Anti-icing capability of textured silicone rubber surfaces via laser processing. Materials and Manufacturing Processes, 2021, 36, 979-986.	2.7	14

#	Articif	IF	CITATIONS
484	A highly controlled fabrication of porous anodic aluminium oxide surface with versatile features by spatial thermo-anodization. Surface and Coatings Technology, 2021, 408, 126809.	2.2	6
485	A pH-responsive polyelectrolyte multilayer film with tunable interfacial properties. Polymer, 2021, 214, 123367.	1.8	8
486	Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nature Communications, 2021, 12, 982.	5.8	132
487	Suspended penetration wetting state of droplets on microstructured surfaces. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	6
488	Self-lubricated anti-icing MOF coating with long-term durability. Progress in Organic Coatings, 2021, 151, 106089.	1.9	7
489	A comparison of bioinspired slippery and superhydrophobic surfaces: Micro-droplet impact. Physics of Fluids, 2021, 33, .	1.6	16
490	Large-Scale Fabrication of Wettability-Controllable Coatings for Optimizing Condensate Transfer Ability. Langmuir, 2021, 37, 2476-2484.	1.6	4
491	Critical Amphiphilic Concentration: Effect of the Extent of Amphiphilicity on Marine Fouling-Release Performance. Langmuir, 2021, 37, 2728-2739.	1.6	14
492	Facile Fabrication of Novel Multifunctional Lubricant-Infused Surfaces with Exceptional Tribological and Anticorrosive Properties. ACS Applied Materials & amp; Interfaces, 2021, 13, 6678-6687.	4.0	34
493	Silicone nanofilaments grown on aircraft alloys for low ice adhesion. Surface and Coatings Technology, 2021, 410, 126971.	2.2	13
494	Fluorine-Free Superhydrophobic Surface by Single-Step-Synthesized Homogeneous Polymeric Raspberry Nanoparticle Coating. ACS Applied Polymer Materials, 2021, 3, 2138-2143.	2.0	3
495	Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Progress in Organic Coatings, 2021, 152, 106117.	1.9	97
496	Self-stratifying amphiphobic coating based on functional polyacrylates. Progress in Organic Coatings, 2021, 152, 106106.	1.9	8
497	Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface. Langmuir, 2021, 37, 3025-3037.	1.6	25
498	How Frost Forms and Grows on Lubricated Micro- and Nanostructured Surfaces. ACS Nano, 2021, 15, 4658-4668.	7.3	23
499	Recent progress on the surface finishing of metals and alloys to achieve superhydrophobic surfaces: a critical review. Transactions of the Institute of Metal Finishing, 2021, 99, 61-72.	0.6	5
500	Refillable anti-icing SBS composite films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126203.	2.3	3
501	Active sites for ice nucleation differ depending on nucleation mode. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22

#	Article	IF	CITATIONS
502	Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
503	Spontaneous Motion and Rotation of Acid Droplets on the Surface of a Liquid Metal. Langmuir, 2021, 37, 4370-4379.	1.6	7
504	Numerical analysis of laser ablated structural size effect on enhanced anti-icing property of TC4 surface**Research supported by Fujian Provincial Science and Technology Programme (Industry) Tj ETQq0 0 0 rg (2020A1515010519) 2021	gBT /Overlo	ock 10 Tf 50 6
505	Novel superhydrophobic carbon fiber/epoxy composites with anti-icing properties. Journal of Materials Research, 2021, 36, 1695-1704.	1.2	11
506	Fabrication of Cartilage-Inspired Hydrogel/Entangled Polymer–Elastomer Structures Possessing Poro-Elastic Properties. ACS Applied Polymer Materials, 2021, 3, 2694-2708.	2.0	8
507	Fabrication of Durable Superhydrophobic Aluminium Surface and its Anti-icing Properties. , 2021, , .		0
508	A Review of Ice Protection Techniques for Structures in the Arctic and Offshore Harsh Environments. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143, .	0.6	4
509	Solution-Based One-Step Preparation of Three-Dimensional Self-Assembled Octadecyl Silica Nanosquare Plate and Microlamella Structures for Superhydrophobic and Icephobic Surfaces. Langmuir, 2021, 37, 5886-5894.	1.6	9
510	Keeping ice at bay. Nature Materials, 2021, 20, 720-720.	13.3	0
511	A Hierarchical Conical Array with Controlled Adhesion and Drop Bounce Ability for Reducing Residual Non-Newtonian Liquids. Journal of Bionic Engineering, 2021, 18, 637-648.	2.7	6
512	Slippery damper of an overlay for arresting and manipulating droplets on nonwetting surfaces. Nature Communications, 2021, 12, 3154.	5.8	29
513	Assessment of Icephobic Coatings—How Can We Monitor Performance Durability?. Coatings, 2021, 11, 614.	1.2	5
514	Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: The Extent of Lubricant Miscibility. ACS Applied Materials & Interfaces, 2021, 13, 23121-23133.	4.0	22
515	Super liquid repellent coatings against the everyday life wear: Heating, freezing, scratching. IScience, 2021, 24, 102460.	1.9	6
516	Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 24321-24328.	4.0	19
517	Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nature Communications, 2021, 12, 3120.	5.8	20
518	Fabrication and characterization of multiscale spherical artificial compound eye with self-cleaning and anti-icing properties. Results in Physics, 2021, 24, 104153.	2.0	3
519	A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances. Journal of Colloid and Interface Science, 2021, 590, 301-310.	5.0	128

#	Article	IF	CITATIONS
520	Droplet impact dynamics and heat transfer on nanostructured doubly reentrant cavity under freezing temperature. Physics of Fluids, 2021, 33, .	1.6	7
521	Numerical and theoretical modeling of droplet impact on spherical surfaces. Physics of Fluids, 2021, 33, .	1.6	32
522	Droplet Dynamics and Freezing Delay on Nanoporous Microstructured Surfaces at Condensing Environment. Coatings, 2021, 11, 617.	1.2	7
523	Substrateâ€Independent Design of Liquidâ€Infused Slippery Surfaces via Musselâ€Inspired Chemistry. Advanced Materials Interfaces, 2021, 8, 2100156.	1.9	8
524	A Review of Design and Fabrication Methods for Nanoparticle Network Hydrogels for Biomedical, Environmental, and Industrial Applications. Advanced Functional Materials, 2021, 31, 2102355.	7.8	46
525	Fluorinated Metal–Organic Coatings with Selective Wettability. Journal of the American Chemical Society, 2021, 143, 9972-9981.	6.6	21
526	A Superhydrophobic Selfâ€Cleaning and Antiâ€lcing Aluminum Sheet Fabricated by Alkaline Solution. Advanced Engineering Materials, 2021, 23, 2100347.	1.6	9
527	Facile fabrication of slippery lubricant-infused porous surface with pressure responsive property for anti-icing application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126457.	2.3	17
528	Transparent Organogel Films Showing Extremely Efficient and Durable Anti-Icing Performance. ACS Applied Materials & Interfaces, 2021, 13, 28925-28937.	4.0	47
529	Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction. Micromachines, 2021, 12, 656.	1.4	19
530	Plasmonic photothermal film for defogging and anti-icing/deicing on PTFE. Journal of Alloys and Compounds, 2021, 866, 158827.	2.8	25
532	Superhydrophobic heat exchangers delay frost formation and enhance efficency of electric vehicle heat pumps. International Journal of Heat and Mass Transfer, 2021, 172, 121162.	2.5	45
533	Reflected Laser Interferometry: A Versatile Tool to Probe Condensation of Low-Surface-Tension Droplets. Langmuir, 2021, 37, 8073-8082.	1.6	6
534	Biomimetic Approach for the Elaboration of Highly Hydrophobic Surfaces: Study of the Links between Morphology and Wettability. Biomimetics, 2021, 6, 38.	1.5	7
535	Synergistic effect of hybrid fillers on electro-thermal behavior of nanocomposite for active de-icing application. Composites Communications, 2021, 25, 100746.	3.3	11
536	Hydration and Seamless Integration of Hydrogen Peroxide in Water. Journal of Physical Chemistry B, 2021, 125, 6986-6993.	1.2	7
537	A universal, multifunctional, high-practicability superhydrophobic paint for waterproofing grass houses. NPG Asia Materials, 2021, 13, .	3.8	26
538	Bioinspired Depletionâ€Resistant Lubricantâ€Infused Surfaces with Selfâ€Replenishing Lubrication Through Capillary Filament. Advanced Materials Interfaces, 2021, 8, 2100561.	1.9	5

#	Article	IF	CITATIONS
539	How Does the Step on Graphite Surface Impact Ice Nucleation?. Crystal Growth and Design, 2021, 21, 4354-4361.	1.4	4
540	Condensation frosting and passive anti-frosting. Cell Reports Physical Science, 2021, 2, 100474.	2.8	35
541	An investigation on ice adhesion and wear of surfaces with differential stiffness. Wear, 2021, 476, 203662.	1.5	4
542	Enhancement of Condensation Heat Transfer, Anti-Frosting and Water Harvesting by Hybrid Wettability Coating. Nano, 2021, 16, 2150086.	0.5	2
543	Delayed Lubricant Depletion of Slippery Liquid Infused Porous Surfaces Using Precision Nanostructures. Langmuir, 2021, 37, 10071-10078.	1.6	31
544	Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science, 2021, 120, 100823.	16.0	117
545	Preventing algae biofilm formation via designing long-term oil storage surfaces for excellent antifouling performance. Applied Surface Science, 2021, 554, 149612.	3.1	16
546	Design and applications of surfaces that control the accretion of matter. Science, 2021, 373, .	6.0	114
547	Lubricant-Mediated Strong Droplet Adhesion on Lubricant-Impregnated Surfaces. Langmuir, 2021, 37, 8607-8615.	1.6	9
548	Furcated droplet motility on crystalline surfaces. Nature Nanotechnology, 2021, 16, 1106-1112.	15.6	36
549	Role of Surface Templating on Ice Nucleation Efficiency on a Silver Iodide Surface. Journal of Physical Chemistry C, 2021, 125, 18857-18865.	1.5	4
550	Macroscopic Evidence of the Liquidlike Nature of Nanoscale Polydimethylsiloxane Brushes. ACS Nano, 2021, 15, 13559-13567.	7.3	45
551	Designing Antiâ€lcing Surfaces by Controlling Ice Formation. Advanced Materials Interfaces, 2021, 8, 2100327.	1.9	29
552	Bouncing behavior of a water droplet on a super-hydrophobic surface near freezing temperatures. International Journal of Heat and Mass Transfer, 2021, 174, 121304.	2.5	22
554	lce-resistant surface with three dimensional spherical halloysite aerogel: Construction and anti-icing mechanism. Ceramics International, 2021, 47, 22976-22984.	2.3	3
555	Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures. ACS Applied Materials & Interfaces, 2021, 13, 42005-42013.	4.0	2
556	Hierarchical hydrophobic surfaces with controlled dual transition between rose petal effect and lotus effect via structure tailoring or chemical modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126661.	2.3	17
557	Architecturing materials at mesoscale: some current trends. Materials Research Letters, 2021, 9, 399-421.	4.1	51

#	Article	IF	CITATIONS
558	Numerical study on surface-heterogeneity-induced anisotropic impact dynamics of droplet. Colloids and Interface Science Communications, 2021, 44, 100495.	2.0	6
559	Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings. ACS Applied Materials & Interfaces, 2021, 13, 48270-48280.	4.0	40
560	Robust liquid repellency by stepwise wetting resistance. Applied Physics Reviews, 2021, 8, .	5.5	34
561	Effective Approach to Render Stable Dynamic Omniphobicity and Icephobicity to Ultrasmooth Metal Surfaces. Langmuir, 2021, 37, 11771-11780.	1.6	2
562	Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 43489-43504.	4.0	20
563	A Simple Approach for Flexible and Stretchable Anti-icing Lubricant-Infused Tape. ACS Applied Materials & Interfaces, 2021, 13, 45105-45115.	4.0	9
564	The Device Using a Polydimethylsiloxane Membrane and the Phase Transition of Water. Coatings, 2021, 11, 1102.	1.2	0
565	Lubricant-Infused Three-Dimensional Frame Composed of a Micro/Nanospinous Ball Cluster Structure with Salient Durability and Superior Fog Harvesting Capacity. ACS Applied Materials & amp; Interfaces, 2021, 13, 46192-46201.	4.0	10
566	Reduction of Ice Adhesion Using Surface Acoustic Waves: Nanoscale Vibration and Interface Heating Effects. Langmuir, 2021, 37, 11851-11858.	1.6	12
567	Citrus-peel-like durable slippery surfaces. Chemical Engineering Journal, 2021, 420, 129599.	6.6	21
568	Blood repellent superhydrophobic surfaces constructed from nanoparticle-free and biocompatible materials. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111864.	2.5	35
569	Dynamic Antiâ€lcing Surfaces (DAIS). Advanced Science, 2021, 8, e2101163.	5.6	49
570	Study on a mesoscopic model of droplets freezing considering the recalescence process. Physics of Fluids, 2021, 33, .	1.6	9
571	Flow and Drop Transport Along Liquid-Infused Surfaces. Annual Review of Fluid Mechanics, 2022, 54, 83-104.	10.8	42
572	Hydrophilic Slippery Surface Promotes Efficient Defrosting. Langmuir, 2021, 37, 11931-11938.	1.6	3
573	Transparent hierarchical micro-nano structure PTFE-SiO2 nanocomposite thin film with superhydrophobic, self-cleaning and anti-icing properties. Optik, 2021, 241, 166967.	1.4	20
574	Bioinspired Multifunctional Glass Surfaces through Regenerative Secondary Mask Lithography. Advanced Materials, 2021, 33, e2102175.	11.1	13
575	Recent advances of organogels: from fabrications and functions to applications. Progress in Organic Coatings, 2021, 159, 106417.	1.9	44

#	Article	IF	CITATIONS
576	Asymmetric composite wound nanodressing with superhydrophilic/superhydrophobic alternate pattern for reducing blood loss and adhesion. Composites Part B: Engineering, 2021, 223, 109134.	5.9	27
577	Temperature self-regulating electrothermal pseudo-slippery surface for anti-icing. Chemical Engineering Journal, 2021, 422, 130110.	6.6	28
578	On the dynamics of contact line freezing of water droplets on superhydrophobic carbon soot coatings. Current Applied Physics, 2021, 31, 74-86.	1.1	12
579	Functionalized superhydrophobic quartz fabric with electro-photo-thermal conversion performance: Designed for low-cost and efficient self-heating deicing. Surface and Coatings Technology, 2021, 425, 127646.	2.2	17
580	Anti-freezing characteristics of water droplet impinging the superhydrophobic surface: An experimental and predictive study. Applied Surface Science, 2021, 566, 150717.	3.1	18
581	Liquid-like surface modification for effective anti-scaling membrane distillation with uncompromised flux. Journal of Membrane Science, 2021, 637, 119673.	4.1	16
582	Superhydrophobic versus SLIPS: Temperature dependence and the stability of ice adhesion strength. Journal of Colloid and Interface Science, 2022, 606, 556-566.	5.0	57
583	NIR-driven fast construction of patterned-wettability on slippery lubricant infused surface for droplet manipulation. Chemical Engineering Journal, 2022, 428, 131141.	6.6	19
584	Micro/nano-cactus structured aluminium with superhydrophobicity and plasmon-enhanced photothermal trap for icephobicity. Chemical Engineering Journal, 2022, 429, 132183.	6.6	14
585	Comprehensive study on the electrochemical, morphological, and adhesion properties of Cr-free thin film: with and without polyurethane coating. Journal of Coatings Technology Research, 2021, 18, 761-776.	1.2	7
586	Synergistic Ice Inhibition Effect Enhances Rapid Freezing Cryopreservation with Low Concentration of Cryoprotectants. Advanced Science, 2021, 8, 2003387.	5.6	26
587	Effects of Modifiers on the Anti-wetting and Anti-icing Property of Aluminum Surface. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 143-147.	0.4	2
588	Recent Progress and Future Directions of Multifunctional (Super)Wetting Smooth/Structured Surfaces and Coatings. Advanced Functional Materials, 2020, 30, 1907772.	7.8	53
589	Fabrication of Unmodified Bionic Copper Surfaces with Highly Stable Hydrophobicity and Antiâ€lcing Properties via a Transfer with Zrâ€Based Metallic Glasses. Advanced Materials Interfaces, 2021, 8, 2001743.	1.9	4
590	Nanoscale "Earthquake―Effect Induced by Thin Film Surface Acoustic Waves as a New Strategy for Ice Protection. Advanced Materials Interfaces, 2021, 8, 2001776.	1.9	16
591	Review of experimental data associated with the solidification characteristics of water droplets on a cold plate surface at the early frosting stage. Energy and Buildings, 2020, 223, 110103.	3.1	55
592	Wettability, durability and corrosion properties of slippery laser-textured aluminum alloy surface under water impact. Surface and Coatings Technology, 2020, 394, 125856.	2.2	14
593	Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing. Langmuir, 2021, 37, 348-356.	1.6	17

#	Article	IF	CITATIONS
594	Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. ACS Applied Materials & Interfaces, 2021, 13, 1743-1753.	4.0	147
595	Dual-Functional, Superhydrophobic Coatings with Bacterial Anticontact and Antimicrobial Characteristics. ACS Applied Materials & amp; Interfaces, 2020, 12, 21311-21321.	4.0	67
596	Reversible Wettability between Underwater Superoleophobicity and Superhydrophobicity of Stainless Steel Mesh for Efficient Oil–Water Separation. ACS Omega, 2021, 6, 77-84.	1.6	25
597	One-step synthesis of a robust and anti-oil-fouling biomimetic cactus-like hierarchical architecture for highly efficient oil/water separation. Environmental Science: Nano, 2020, 7, 903-911.	2.2	28
598	How nanoscale surface steps promote ice growth on feldspar: microscopy observation of morphology-enhanced condensation and freezing. Nanoscale, 2019, 11, 21147-21154.	2.8	11
599	Methods for estimating ice adhesion to surface. IOP Conference Series: Materials Science and Engineering, 0, 775, 012116.	0.3	1
600	Multifunctional structural composites for thermal energy storage. Multifunctional Materials, 2020, 3, 042001.	2.4	14
601	Contact line arrest in solidifying spreading drops. Physical Review Fluids, 2017, 2, .	1.0	37
602	Freezing a rivulet. Physical Review Fluids, 2020, 5, .	1.0	6
603	A Cost-Effective Method for Preparing Robust and Conductive Superhydrophobic Coatings Based on Asphalt. Scanning, 2020, 2020, 1-8.	0.7	3
604	A Novel Simple Anti-Ice Aluminum Coating: Synthesis and In-Lab Comparison with a Superhydrophobic Hierarchical Surface. Coatings, 2020, 10, 111.	1.2	8
605	Facile One-Step Method to Fabricate a Slippery Lubricant-Infused Surface (LIS) with Self-Replenishment Properties for Anti-Icing Applications. Coatings, 2020, 10, 119.	1.2	15
606	Tunable Hierarchical Nanostructures on Micro-Conical Arrays of Laser Textured TC4 Substrate by Hydrothermal Treatment for Enhanced Anti-Icing Property. Coatings, 2020, 10, 450.	1.2	12
607	Counterintuitive Ballistic and Directional Liquid Transport on a Flexible Droplet Rectifier. Research, 2020, 2020, 6472313.	2.8	16
608	An Experimental Study to Evaluate the Droplet Impinging Erosion Characteristics of an Icephobic, Elastic Soft Surface. , 0, , .		1
609	Wear-Resistant Nanostructured Sol-Gel Coatings for Functional Applications. Journal of Coating Science and Technology, 2017, 3, 100-108.	0.3	8
610	New dissipative particle dynamics boundary condition for complex geometry. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 140204.	0.2	7
611	Ultralow Icing Adhesion of a Superhydrophobic Coating Based on the Synergistic Effect of Soft and Stiff Particles. Langmuir, 2021, 37, 12016-12026.	1.6	21

#	Article	IF	CITATIONS
612	Coral-like silicone nanofilament coatings with extremely low ice adhesion. Scientific Reports, 2021, 11, 20427.	1.6	4
613	Nanostructural Manipulation of Polyphenol Coatings for Superwetting Membrane Surfaces. ACS Sustainable Chemistry and Engineering, 2021, 9, 14525-14536.	3.2	9
614	Effect of perfluoropolyether and the micro nano structure of ZnO on anti icing performance of fluorinated organic superhydrophobicity coatings on wind turbine blade surface. Materials Research Express, 2021, 8, 115008.	0.8	2
615	Fabrication of phase change microcapsules and their applications to anti-icing coating. Surfaces and Interfaces, 2021, 27, 101516.	1.5	15
616	Thermal Transport in Micro- and Nanoscale Systems. , 2017, , 1-51.		1
617	Progress on the Application of Slippery Liquid Infused Porous Surface. Material Sciences, 2018, 08, 438-446.	0.0	0
618	Fabrication of Arrays of the Three-dimensional Microstructures on a Substrate Using the Combined Etching Processes. IEEJ Transactions on Sensors and Micromachines, 2018, 138, 263-267.	0.0	0
619	A Novel Heating-Coating Hybrid Strategy for Wind Turbine Icing Mitigation. , 0, , .		1
620	Measurement of Water Distribution on Micro-structured Surface Buried in Water as a Model of Super Water Repellent Surface by Stimulated Raman Scattering Interferometer. Analytical Sciences, 2019, 35, 911-915.	0.8	1
621	Contact line depinning from sharp edges. Physical Review Fluids, 2019, 4, .	1.0	3
622	ĐĩÑÑлеĐƊ¾Đ²Đ°Đ½Đ,е Đ²Đ»Đ,ÑĐ½Đ,Ñ•Đ½Đ°Đ½Đ¾Ñ‡Đ°ÑÑ,Đ,ц ĐƊ,Đ¾ĐºÑĐ,ĐƊ° ĐºÑ€ĐµĐ¼Đ½	ŧÐ,Ñ •Ð ½Ð	° ĐైĐ¾Đ²Đµ
623	Superhydrophobic materials used for anti-icing Theory, application, and development. IScience, 2021, 24, 103357.	1.9	52
624	Water enabled self-healing polymeric coating with reduced graphene oxide-reinforcement for sensors. Sensors and Actuators Reports, 2021, , 100059.	2.3	0
625	A new scaling number reveals droplet dynamics on vibratory surfaces. Journal of Colloid and Interface Science, 2022, 608, 2414-2420.	5.0	13
626	Rapid and Robust Surface Treatment for Simultaneous Solid and Liquid Repellency. ACS Applied Materials & Interfaces, 2021, 13, 53171-53180.	4.0	15
628	Rediscovering Silicones: The Anomalous Water Permeability of "Hydrophobic―PDMS Suggests Nanostructure and Applications in Water Purification and Antiâ€Icing. Macromolecular Rapid Communications, 2021, 42, e2000682.	2.0	25
629	Anti-Icing Technology based on Drop Bouncing Dynamics for the Prevention of Freezing of Electric Power Equipment. Journal of the Korean Society for Precision Engineering, 2020, 37, 917-928.	0.1	0
630	Magneto-responsive photothermal composite cilia for active anti-icing and de-icing. Composites Science and Technology, 2022, 217, 109086.	3.8	31

#	Article	IF	CITATIONS
631	Ice adhesion of PDMS surfaces with balanced elastic and water-repellent properties. Journal of Colloid and Interface Science, 2022, 608, 792-799.	5.0	35
632	Investigation of Heterogeneous Ice Nucleation on the Micro-Cubic Structure Superhydrophobic Surface for Enhancing Icing-Delay Performance. Journal of Renewable Materials, 2020, 8, 1617-1631.	1.1	2
633	Antifreeze Protein-Covered Surfaces. , 2020, , 307-326.		1
634	PTFE/EP Reinforced MOF/SiO ₂ Composite as a Superior Mechanically Robust Superhydrophobic Agent towards Corrosion Protection, Selfâ€Cleaning and Antiâ€Icing. Chemistry - A European Journal, 2022, 28, e202103220.	1.7	11
635	A review of many-body dissipative particle dynamics (MDPD): Theoretical models and its applications. Physics of Fluids, 2021, 33, .	1.6	30
636	Industrial applications of superhydrophobic coatings: Challenges and prospects. Hacettepe Journal of Biology and Chemistry, 0, , .	0.3	1
637	Adsorption of water on epitaxial graphene. Journal of Materials Research, 2021, 36, 1-11.	1.2	0
638	Preparation and anti-icing performance of cross-linked polysiloxane coatings containing silicone oil. Reactive and Functional Polymers, 2022, 170, 105124.	2.0	7
639	Nanofabrication through molding. Progress in Materials Science, 2022, 125, 100891.	16.0	39
640	Fabrication of hierarchical Ti6Al4V structures by hydrothermal treatment and laser interference lithography with enhanced ice resistance. , 2021, , .		0
641	Magnetically coupled planar microwave resonators for real-time saltwater ice detection. Sensors and Actuators A: Physical, 2022, 333, 113245.	2.0	15
642	Freezing of few nanometers water droplets. Nature Communications, 2021, 12, 6973.	5.8	24
643	Aqueous Dropâ€onâ€Drop Impact on Superâ€Repellent Surface. Advanced Materials Interfaces, 2022, 9, .	1.9	7
644	Current Ice Adhesion Testing Methods and the Need for a Standard: A Concise Review. Standards, 2021, 1, 117-133.	0.6	12
645	Programmable droplet manipulation and wetting with soft magnetic carpets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
646	Development of novel icephobic surfaces using siloxane-modified epoxy nanocomposites. Chemical Engineering Journal, 2022, 433, 133637.	6.6	17
647	Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications. Polymers, 2021, 13, 4164.	2.0	15
648	The effect of mechanical and thermal stresses on the performance of lubricated icephobic coatings during cyclic icing/deicing tests. Progress in Organic Coatings, 2022, 163, 106614.	1.9	11

#	ARTICLE	IF	CITATIONS
649	A Review on Applications of Superhydrophobic Materials in Civil Engineering. Advanced Engineering Materials, 2022, 24, .	1.6	15
650	Patterning Configuration of Surface Hydrophilicity by Graphene Nanosheet towards the Inhibition of Ice Nucleation and Growth. Coatings, 2022, 12, 52.	1.2	1
651	Turning industrial paints superhydrophobic via femtosecond laser surface hierarchical structuring. Progress in Organic Coatings, 2022, 163, 106625.	1.9	11
652	Numerical study of droplet impact on superhydrophobic vibrating surfaces with microstructures. Case Studies in Thermal Engineering, 2022, 30, 101732.	2.8	1
653	Easily fabricated icephobic surface with external and self-replenishing properties. Applied Surface Science, 2022, 579, 152069.	3.1	6
654	A multifunction superhydrophobic surface with excellent mechanical/chemical/physical robustness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128258.	2.3	10
655	Scaling laws for the droplet rebound with lateral motion after impacting on heterogeneous surfaces. International Journal of Multiphase Flow, 2022, 148, 103960.	1.6	5
656	A novel flexible and fluoride-free superhydrophobic thermal energy storage coating for photothermal energy conversion. Composites Part B: Engineering, 2022, 232, 109588.	5.9	17
657	Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review. Renewable and Sustainable Energy Reviews, 2022, 156, 111974.	8.2	27
658	Phase Equilibria of a Brush-Bearing Coating Swollen with a Lubricant and Regulation of Its Composition to Facilitate Ice Shedding. ACS Applied Polymer Materials, 2020, 2, 4814-4824.	2.0	9
659	Icing Flashover Tests and Arc Developing Characteristics on Superhydrophobic Surface. , 2020, , .		0
660	Bioinspired Fatty Acid Amideâ€Based Slippery Oleogels for Shearâ€Stable Lubrication. Advanced Science, 2022, 9, e2105528.	5.6	12
662	Combination of Universal Chemical Deposition and Unique Liquid Etching for the Design of Superhydrophobic Aramid Paper with Bioinspired Multiscale Hierarchical Dendritic Structure. ACS Applied Materials & Interfaces, 2022, 14, 4791-4807.	4.0	12
663	Durability of Lubricated Icephobic Coatings under Various Environmental Stresses. Polymers, 2022, 14, 303.	2.0	5
664	Suspended Kirigami Surfaces for Multifoulant Adhesion Reduction. ACS Applied Materials & Interfaces, 2022, 14, 6221-6229.	4.0	1
665	Highly Transparent and Selfâ€Healable Solar Thermal Antiâ€∤Deicing Surfaces: When Ultrathin MXene Multilayers Marry a Solid Slippery Selfâ€Cleaning Coating. Advanced Materials, 2022, 34, e2108232.	11.1	76
666	Interfacial dynamics of viscous droplets impacting a superhydrophobic candle soot surface: Overview and comparison. Physics of Fluids, 2022, 34, .	1.6	12
667	Fabrication of durable underoil superhydrophobic surfaces with self-cleaning and oilâ \in "water separation properties. RSC Advances, 2022, 12, 3838-3846.	1.7	10

#	Article	IF	CITATIONS
668	Hydration Mechanism in Blood-Compatible Polymers Undergoing Phase Separation. Langmuir, 2022, 38, 1090-1098.	1.6	6
669	Kinetic Inhibition of Clathrate Hydrate by Copolymers Based on <i>N</i> -Vinylcaprolactam and <i>N</i> -Acryloylpyrrolidine: Optimization Effect of Interfacial Nonfreezable Water of Polymers. Langmuir, 2022, 38, 1522-1532.	1.6	9
670	Ice-Shedding Polymer Coatings with High Hardness but Low Ice Adhesion. ACS Applied Materials & Interfaces, 2022, 14, 6071-6082.	4.0	27
671	Multifunctional Slippery Polydimethylsiloxane/Carbon Nanotube Composite Strain Sensor with Excellent Liquid Repellence and Anti-Icing/Deicing Performance. Polymers, 2022, 14, 409.	2.0	26
672	Cryofouling avoidance in the Antarctic scallop Adamussium colbecki. Communications Biology, 2022, 5, 83.	2.0	6
673	Antifreeze Proteins: A Tale of Evolution From Origin to Energy Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 770588.	2.0	13
674	Preparation of slippery liquid-infused porous surface based on MgAlLa-layered double hydroxide for effective corrosion protection on AZ31 Mg alloy. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104176.	2.7	17
675	On the universality of shapes of the freezing water droplets. Colloids and Interface Science Communications, 2022, 47, 100590.	2.0	16
676	Spraying pressure-tuning for the fabrication of the tunable adhesion superhydrophobic coatings between Lotus effect and Petal effect and their anti-icing performance. Chemical Engineering Journal, 2022, 434, 134710.	6.6	35
677	Investigations of Interfacial Heat Transfer and Droplet Nucleation on Bioinspired Superhydrophobic Surface for Anti-Icing/De-Icing. SSRN Electronic Journal, 0, , .	0.4	1
678	Microscale investigation on interfacial slippage and detachment of ice from soft materials. Materials Horizons, 2022, 9, 1222-1231.	6.4	12
679	Nature-Inspired Superwettability Achieved by Femtosecond Lasers. Ultrafast Science, 2022, 2022, .	5.8	50
680	Superhydrophobic and icephobic polyurethane coatings: Fundamentals, progress, challenges and opportunities. Progress in Organic Coatings, 2022, 165, 106715.	1.9	22
681	Photothermal trap with multi-scale micro-nano hierarchical structure enhances light absorption and promote photothermal anti-icing/deicing. Chemical Engineering Journal, 2022, 435, 135025.	6.6	58
682	Directional passive transport of nanodroplets on general axisymmetric surfaces. Physical Chemistry Chemical Physics, 2022, 24, 9727-9734.	1.3	4
683	Cauliflower-Like Micro-Nano Structured Superhydrophobic Surfaces for Durable Anti-Icing and Photothermal De-Icing. SSRN Electronic Journal, 0, , .	0.4	0
684	Influence of Early Drop Bouncing on Heat Transfer During Drop Impact. SSRN Electronic Journal, 0, , .	0.4	0
685	Scaling laws of the maximum spreading factor for impact of nanodroplets on solid surfaces. Journal of Fluid Mechanics, 2022, 937, .	1.4	28

#	Article	IF	CITATIONS
686	Emerging Separation Applications of Surface Superwettability. Nanomaterials, 2022, 12, 688.	1.9	12
687	Dynamics of Frost Propagation on Breath Figures. Langmuir, 2022, 38, 2972-2978.	1.6	3
688	éžå⊷陿įä»¶ä,‹äºŒç»´å†°çš"å½¢æ^åŠç"Ÿé•;机å^¶ç"ç©¶. Chinese Science Bulletin, 2022, , .	0.4	1
689	Selective Adsorption and Photocatalytic Cleanâ€Up of Oil by TiO ₂ Thin Film Decorated with pâ€V ₃ D ₃ Modified Flowerlike Ag Nanoplates. Advanced Materials Interfaces, 2022, 9, .	1.9	3
690	Self-peeling of frozen water droplets upon impacting a cold surface. Communications Physics, 2022, 5,	2.0	13
691	An experimental study on the effect of horizontal cold plate surface temperature on frosting characteristics under natural convection. Applied Thermal Engineering, 2022, 211, 118416.	3.0	13
692	Micro-fabricated aluminium surfaces for reduced ice adhesion. Experimental Thermal and Fluid Science, 2022, 136, 110646.	1.5	2
693	Surface Science in the Research and Development of Hydrate-Based Sustainable Technologies. ACS Sustainable Chemistry and Engineering, 2022, 10, 4041-4058.	3.2	18
694	Droplet Bouncing: Fundamentals, Regulations, and Applications. Small, 2022, 18, e2200277.	5.2	34
695	Transparent, Photothermal, and Icephobic Surfaces via Layerâ€by‣ayer Assembly. Advanced Science, 2022, 9, e2105986.	5.6	14
696	Bio-Inspired Hierarchical Micro/Nanostructured Surfaces for Superhydrophobic and Anti-Ice Applications. Frontiers in Bioengineering and Biotechnology, 2022, 10, 872268.	2.0	5
697	Multiscale Textured Mesh Substrates that Clide Alcohol Droplets and Impede Ice Nucleation. Advanced Engineering Materials, 2022, 24, .	1.6	1
698	Costâ€Effective Fabrication of Microâ€Nanostructured Superhydrophobic Polyethylene/Graphene Foam with Selfâ€Floating, Optical Trapping, Acidâ€∤Alkali Resistance for Efficient Photothermal Deicing and Interfacial Evaporation. Small, 2022, 18, e2200175.	5.2	54
699	Polydimethylsiloxane brushes and the search for extraterrestrial life. Surface Topography: Metrology and Properties, 2022, 10, 024002.	0.9	1
700	A Family of Frostâ€Resistant and Icephobic Coatings. Advanced Materials, 2022, 34, e2109930.	11.1	22
701	Characterization in Relevant Icing Conditions of Two Superhydrophobic Coatings. Applied Sciences (Switzerland), 2022, 12, 3705.	1.3	6
702	Oscillatory motion of viscoelastic drops on slippery lubricated surfaces. Communications Physics, 2022, 5, .	2.0	6
703	Investigations of interfacial heat transfer and phase change on bioinspired superhydrophobic surface for anti-icing/de-icing. International Communications in Heat and Mass Transfer, 2022, 134, 105994.	2.9	21

#	Article	IF	CITATIONS
704	Superhydrophobic coatings for food packaging applications: A review. Food Packaging and Shelf Life, 2022, 32, 100823.	3.3	57
705	A comparative study of mechanical and chemical durability of non-wetting superhydrophobic and lubricant-infused surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128711.	2.3	5
707	Anti-icing propagation and icephobicity of slippery liquid-infused porous surface for condensation frosting. International Journal of Heat and Mass Transfer, 2022, 190, 122730.	2.5	23
708	Water-mediated adhesion of oil sands on solid surfaces at low temperature. Fuel, 2022, 320, 123778.	3.4	3
709	Disjoining pressure analysis of the lubricant nanofilm stability of liquid-infused surface upon lubricant depletion. Journal of Colloid and Interface Science, 2022, 618, 121-128.	5.0	16
710	Hydrophobic Composites Designed by a Nonwoven Cellulose-Based Material and Polymer/CaCO ₃ Patterns with Biomedical Applications. Biomacromolecules, 2022, 23, 89-99.	2.6	7
711	Evaporation Dynamics of Surfactant-Laden Droplets on a Superhydrophobic Surface: Influence of Surfactant Concentration. Langmuir, 2022, 38, 593-601.	1.6	11
712	Rationally Regulating the Mechanical Performance of Porous PDMS Coatings for the Enhanced Icephobicity toward Large-Scale Ice. Langmuir, 2022, 38, 937-944.	1.6	12
713	Studying Ice with Environmental Scanning Electron Microscopy. Molecules, 2022, 27, 258.	1.7	5
714	Bioinspired superwettable electrodes towards electrochemical biosensing. Chemical Science, 2022, 13, 5069-5084.	3.7	14
715	Altering the Surface Properties of Metal Alloys Utilizing Facile and Ecological Methods. Langmuir, 2022, 38, 4826-4838.	1.6	5
716	Multiphysics-Multiphase Modeling of Supercooled Droplets Impinging Superhydrophobic and Icephobic Surfaces. International Journal of Multiphase Flow, 2022, , 104101.	1.6	3
717	Intrusion of liquids into liquid-infused surfaces with nanoscale roughness. Physical Review E, 2022, 105, 044803.	0.8	2
718	Recent progress in the development and anti-icing applications of superhydrophobic coatings. Materials Today: Proceedings, 2022, 62, 3922-3928.	0.9	5
719	"Anti-Condensation―Aluminum Superhydrophobic Surface by Smaller Nanostructures. Frontiers in Bioengineering and Biotechnology, 2022, 10, 887902.	2.0	1
720	Role of Surface Topography in the Superhydrophobic Effect—Experimental and Numerical Studies. Materials, 2022, 15, 3112.	1.3	6
721	Thermal Insulation and Superhydrophobicity Synergies for Passive Snow Repellency. ACS Applied Materials & Interfaces, 2022, 14, 21657-21667.	4.0	3
722	Effects of surface topography at different scales on the dispersion of the wetting data for sessile water droplets on nitrided austenitic stainless steels. Surface and Coatings Technology, 2022, 441, 128510	2.2	5

#	Article	IF	CITATIONS
723	Ultra-low ice-substrate adhesion and self-deicing during droplet impact freezing. Cell Reports Physical Science, 2022, 3, 100894.	2.8	7
724	Enabling Renewable Energy Technologies in Harsh Climates with Ultraâ€Efficient Electroâ€Thermal Desnowing, Defrosting, and Deicing. Advanced Functional Materials, 2022, 32, .	7.8	21
725	Micro–Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance. ACS Applied Materials & Interfaces, 2022, 14, 23973-23982.	4.0	39
726	Durable Liquid- and Solid-Repellent Elastomeric Coatings Infused with Partially Crosslinked Lubricants. ACS Applied Materials & Interfaces, 2022, 14, 22466-22475.	4.0	7
727	Coupling lattice model and many-body dissipative particle dynamics to make elastocapillary simulation simple. Extreme Mechanics Letters, 2022, 54, 101741.	2.0	2
728	Nanosecond laser fabrication of superhydrophobic copper and anti-frost surface on copper. Surface and Coatings Technology, 2022, 441, 128514.	2.2	18
729	Polygonal non-wetting droplets on microtextured surfaces. Nature Communications, 2022, 13, 2685.	5.8	12
730	Contact time of a droplet impacting hydrophobic surfaces. Physics of Fluids, 2022, 34, .	1.6	15
731	Advances in the development of superhydrophobic and icephobic surfaces. International Journal of Mechanics and Materials in Design, 2022, 18, 509-547.	1.7	9
732	Hydrophobically/oleophilically guarded powder metallurgical structures and liquid impregnation for ice mitigation. Chemical Engineering Journal, 2022, 446, 137115.	6.6	5
733	In-Situ Fabrication of Superhydrophobic Surface on Copper with Excellent Anti-Icing and Anti-Corrosion Properties. SSRN Electronic Journal, 0, , .	0.4	0
734	Vibration-induced detachment of droplets on superhydrophobic surfaces. Physics of Fluids, 2022, 34, .	1.6	7
735	Research on Ice Suppression Performance of Titanium Alloy Surface Induced by Nanosecond Laser. Journal of Materials Research and Technology, 2022, , .	2.6	2
736	Droplets on lubricated surfaces: The slow dynamics of skirt formation. Physical Review Fluids, 2022, 7,	1.0	6
737	Multifunctional Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Composite Coatings with Superhydrophobic Anti-icing and Photothermal Deicing Properties. ACS Applied Materials & Interfaces, 2022, 14, 26077-26087.	4.0	36
738	Role of chemistry in bio-inspired liquid wettability. Chemical Society Reviews, 2022, 51, 5452-5497.	18.7	53
739	Mechanical Durability of Low Ice Adhesion Polydimethylsiloxane Surfaces. ACS Omega, 2022, 7, 20741-20749.	1.6	6
740	Sustainable anti-frosting surface for efficient thermal transport. Cell Reports Physical Science, 2022, 3, 100937.	2.8	6

#	Article	IF	CITATIONS
741	Inhibition Effect of Ti ₃ C ₂ T _{<i>x</i>} MXene on Ice Crystals Combined with Laser-Mediated Heating Facilitates High-Performance Cryopreservation. ACS Nano, 2022, 16, 8837-8850.	7.3	14
742	Contact Line Catch Up by Growing Ice Crystals. Physical Review Letters, 2022, 128, .	2.9	7
743	Sprayable superhydrophobic coating with high mechanical/chemical robustness and anti-corrosion. Surface and Coatings Technology, 2022, 443, 128609.	2.2	21
744	The effect of superhydrophobic coating composition on the topography and ice adhesion. Cold Regions Science and Technology, 2022, 201, 103623.	1.6	8
745	Endowment of Omniphobicity and Exceptional Bendability to a Poss Coating with High Hardness and Wear Resistance. SSRN Electronic Journal, 0, , .	0.4	0
746	Vapor Lubrication for Reducing Water and Ice Adhesion on Poly(dimethylsiloxane) Brushes. Advanced Materials, 2022, 34, .	11.1	17
747	Role of Molecular Chains Arrangement and Surface Energy State in the Low Ice Adhesion on Poly(tetrafluoroethylene). Journal of Physical Chemistry Letters, 2022, 13, 6117-6122.	2.1	0
748	Universal and Stable Slippery Coatings: Chemical Combination Induced Adhesiveâ€Lubricant Cooperation. Small, 2022, 18, .	5.2	8
749	Light-induced charged slippery surfaces. Science Advances, 2022, 8, .	4.7	63
750	Durable Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Flame- and Cold-Spraying. Sustainability, 2022, 14, 8422.	1.6	7
751	Superhydrophobic and photothermal deicing composite coating with self-healing and anti-corrosion for anti-icing applications. Surface and Coatings Technology, 2022, 444, 128668.	2.2	18
752	Anti-icing strategies are on the way. Innovation(China), 2022, 3, 100278.	5.2	3
753	Split of droplets at the nanoscale using mixed-wettability surfaces: A molecular dynamics simulation. Applied Surface Science, 2022, 600, 154025.	3.1	8
754	Molecular dynamic study of local interfacial thermal resistance of solid-liquid and solid-solid interfaces: Water and nanotextured surface. International Communications in Heat and Mass Transfer, 2022, 137, 106232.	2.9	2
755	How micropatterns affect the anti-icing performance of superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2022, 195, 123196.	2.5	13
756	Influence of early drop bouncing on heat transfer during drop impact. International Communications in Heat and Mass Transfer, 2022, 137, 106235.	2.9	3
757	Bouncing dynamics of impact droplets on bioinspired surfaces with mixed wettability and directional transport control. Journal of Colloid and Interface Science, 2022, 626, 193-207.	5.0	11
758	Cauliflower-like micro-nano structured superhydrophobic surfaces for durable anti-icing and photothermal de-icing. Chemical Engineering Journal, 2022, 450, 137936.	6.6	24

#	Article	IF	CITATIONS
759	Bioâ€Inspired Antiâ€Icing Material as an Energyâ€Saving Design toward Sustainable Ice Repellency. Advanced Materials Technologies, 2022, 7, .	3.0	8
760	Liquid-Repellent Surfaces. Langmuir, 2022, 38, 9073-9084.	1.6	16
761	Fabrication of Anti-Icing Surface Structures on Aluminum Alloy for Aerospace Applications. Key Engineering Materials, 0, 926, 1643-1649.	0.4	0
762	Nanostructure-based Wettability Modification of TiAl6V4 Alloy Surface for Modulating Biofilm Production: Superhydrophilic, Superhydrophobic, and Slippery Surfaces. Journal of Alloys and Compounds, 2022, , 166492.	2.8	2
763	Review of the State of the Art in Studying Adhesion Phenomena at Interfaces of Solids with Solid and Liquid Aqueous Media. Colloid Journal, 2022, 84, 265-286.	0.5	11
764	Size of Nanoscale Domains in Inhomogeneous Surfaces Determines Ice Nucleation. Journal of Physical Chemistry C, 2022, 126, 13373-13380.	1.5	3
765	Plasmonic heating of protected silver nanowires for anti-frosting superhydrophobic coating. Nanotechnology, 0, , .	1.3	0
766	Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection. Materials Today, 2022, 58, 41-47.	8.3	15
767	Ultralow-adhesion icephobic surfaces: Combining superhydrophobic and liquid-like properties in the same surface. Nano Research, 2023, 16, 589-598.	5.8	12
768	The rebounding-coalescing behaviors in drop-on-drop impact on a superhydrophobic surface. Applied Physics Letters, 2022, 121, .	1.5	5
769	Detection of Nanobubbles on Lubricant-Infused Surfaces Using AFM Meniscus Force Measurements. Langmuir, 2022, 38, 10234-10243.	1.6	3
770	Bionic superhydrophobic surfaces based on topography of copper oxides. Biosurface and Biotribology, 0, , .	0.6	0
771	Advances in lubricated polydimethylsiloxane surfaces for polyurethane foam molding. Journal of Applied Polymer Science, 0, , .	1.3	0
772	Leveraging Solidification Dynamics to Design Robust Ice-Shedding Surfaces. ACS Applied Materials & Interfaces, 2022, 14, 38379-38387.	4.0	4
773	Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications. Science China Technological Sciences, 2022, 65, 1975-1994.	2.0	3
774	Superrepellent Doubly Reentrant Geometry Promotes Antibiofouling and Prevention of Coronavirus Contamination. Advanced Materials Technologies, 2023, 8, .	3.0	1
775	Low friction of superslippery and superlubricity: A review. Friction, 2023, 11, 1121-1137.	3.4	18
776	Recent advances in superhydrophobic surfaces for practical applications: A review. European Polymer Journal, 2022, 178, 111481.	2.6	47

#	ARTICLE	IF	CITATIONS
777	Recent advances of bio-inspired anti-icing surfaces. Advances in Colloid and Interface Science, 2022, 308, 102756.	7.0	32
778	Oblique impacts of water nanodroplets on superhydrophobic surfaces: A molecular dynamics study. Journal of Molecular Liquids, 2022, 365, 120074.	2.3	6
779	Fabrication of stable and versatile superhydrophobic PTFE coating by simple electrodeposition on metal surface. Progress in Organic Coatings, 2022, 172, 107090.	1.9	8
780	An extreme environment-tolerant anti-icing coating. Chemical Engineering Science, 2022, 262, 118010.	1.9	6
781	Freezing delay of water droplets on metallic hydrophobic surfaces in a cold environment. Applied Thermal Engineering, 2022, 216, 119131.	3.0	13
782	Ice nucleation on silicone rubber surfaces differing in roughness parameters and wettability: Experimental investigation and machine learning–based predictions. Cold Regions Science and Technology, 2022, 203, 103659.	1.6	4
783	Carnivorous plants inspired shape-morphing slippery surfaces. Opto-Electronic Advances, 2023, 6, 210163-210163.	6.4	14
784	Facile preparation of pliable superamphiphobic papers with high and durable liquid repellency for anti-corrosion and open surface microfluidics. Applied Surface Science, 2022, 606, 154845.	3.1	7
785	TiO2-based slippery liquid-infused porous surfaces with excellent ice-phobic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 129994.	2.3	11
786	Fracture-controlled surfaces as extremely durable ice-shedding materials. Materials Horizons, 2022, 9, 2524-2532.	6.4	11
787	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
788	Superhydrophobic Stearic Acid Deposited by Dip-Coating on AISI 304 Stainless Steel: Electrochemical Behavior in a Saline Solutions. Materials Research, 2022, 25, .	0.6	1
789	Low ice adhesion anti-icing coatings based on PEG release from mesoporous silica particle loaded SBS. Materials Advances, 2022, 3, 8168-8177.	2.6	4
790	Customizing multiple superlyophobic surfaces in water-oil-air systems: From controllable preparation to smart switching via manipulating heterogeneous surface chemistry. Applied Surface Science, 2023, 607, 155028.	3.1	4
791	A new freezing model of sessile droplets considering ice fraction and ice distribution after recalescence. Physics of Fluids, 2022, 34, .	1.6	7
792	Linear Axially Chiral Conjugated Polymers Exhibiting Ultralong Lowâ€Temperature Phosphorescence and Intense Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
793	A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications. Science and Technology of Advanced Materials, 2022, 23, 473-497.	2.8	10
794	Thermo-responsive Fluorinated Organogels Showing Anti-fouling and Long-Lasting/Repeatable Icephobic Properties. Langmuir, 2022, 38, 11362-11371.	1.6	6

#	Article	IF	CITATIONS
795	Superhydrophilic–superhydrophobic patterned surfaces: From simplified fabrication to emerging applications. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2022, 5, .	1.7	12
796	Manipulation of droplets and bubbles for thermal applications. , 2022, 1, 80-91.		26
797	Bioengineered Protein Fibers with Antiâ€Freezing Mechanical Behaviors. Advanced Functional Materials, 2022, 32, .	7.8	11
798	Prediction of the Lotus Effect on Solid Surfaces by Machine Learning. Small, 2022, 18, .	5.2	7
799	Renewable Plant Oil-Based Polysiloxane Coatings with Efficient Frost Resistance and Anti-Icing Properties. ACS Applied Polymer Materials, 2022, 4, 7626-7633.	2.0	5
800	Droplet impact on sparse hydrophobic pillar surface: Impact phenomena, spreading mode, and droplet breakup. Physics of Fluids, 2022, 34, .	1.6	13
801	Iodine-Oxidized Diene-Based Rubbers as Anti-icing and Deicing Polymer Coatings. Langmuir, 2022, 38, 12382-12389.	1.6	4
802	Linear Axially Chiral Conjugated Polymers Exhibiting Ultralong Lowâ€temperature Phosphorescence and Intense Circularly Polarized Luminescence. Angewandte Chemie, 0, , .	1.6	0
803	Superomniphobic surfaces for easy-removals of environmental-related liquids after icing and melting. Nano Research, 2023, 16, 3267-3277.	5.8	8
804	Dynamic characteristics of ellipsoidal Janus drop impact on a solid surface. Physics of Fluids, 2022, 34, 102104.	1.6	3
805	In-situ fabrication of superhydrophobic surface on copper with excellent anti-icing and anti-corrosion properties. Materials Today Communications, 2022, 33, 104633.	0.9	6
806	Robust Anti-Icing Surfaces Based on Dual Functionality─Microstructurally-Induced Ice Shedding with Superimposed Nanostructurally-Enhanced Water Shedding. ACS Applied Materials & Interfaces, 2022, 14, 47310-47321.	4.0	8
807	Electron microscopy and calorimetry of proteins in supercooled water. Scientific Reports, 2022, 12, .	1.6	1
808	Mineral scaling on brass and aluminum surfaces with a range of wettability. Surfaces and Interfaces, 2022, 34, 102379.	1.5	2
809	Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell?. Materials Horizons, 2023, 10, 209-220.	6.4	20
810	Green Fabrication of Anti-friction Slippery Liquid-Infused Metallic Surface with Sub-millimeter-Scale Asymmetric Bump Arrays and Its Application. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1281-1298.	2.7	2
811	Oblique Impacts of Nanodroplets upon Surfaces. Langmuir, 2022, 38, 13093-13102.	1.6	2
812	Gradient droplet distribution promotes spontaneous formation of frost-free zone. Communications Materials, 2022, 3, .	2.9	7

#	Article	IF	CITATIONS
813	In Situ Activation of Superhydrophobic Surfaces with Triple Icephobicity at Low Temperatures. ACS Applied Materials & Interfaces, 2022, 14, 49352-49361.	4.0	17
814	The reduction in ice adhesion using controlled topography superhydrophobic coatings. Journal of Coatings Technology Research, 0, , .	1.2	0
815	Numerical study on effects of large curved superhydrophobic surfaces on droplet post-impact dynamics. Colloids and Interface Science Communications, 2022, 51, 100676.	2.0	5
816	Robust superhydrophobic composite fabricated by a dual-sized particle design. Composites Science and Technology, 2023, 231, 109785.	3.8	14
817	Asymmetric freezing behaviors of inclined impact of water droplets on cold hydrophobic surfaces. International Communications in Heat and Mass Transfer, 2022, 139, 106485.	2.9	4
818	Behaviors of the water droplet impacting on subcooled superhydrophobic surfaces in the electrostatic field. Chemical Engineering Science, 2023, 266, 118282.	1.9	6
819	Bouncing dynamics of nanodroplets impacting superhydrophobic surfaces: The coupling influence of wetting transitions and scale effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130579.	2.3	5
820	Quantification and modeling of anisotropic wetting of textured surfaces. Applied Surface Science, 2023, 611, 155606.	3.1	2
821	Water adsorption and dynamics on graphene and other 2D materials: computational and experimental advances. Advances in Physics: X, 2023, 8, .	1.5	8
822	A Slippery Liquid-Infused Network-like Surface with Anti/De-icing Properties Constructed Based on the Phosphating Reaction. Langmuir, 2022, 38, 14118-14128.	1.6	7
823	Fluid transportation by droplets impacting wettability-controlled surfaces at the nanoscale: a molecular dynamics simulation study. Microfluidics and Nanofluidics, 2022, 26, .	1.0	0
824	How to Select Phase Change Materials for Tuning Condensation and Frosting?. Advanced Functional Materials, 2023, 33, .	7.8	4
825	Long-lasting ceria-based anti-frosting surfaces. International Communications in Heat and Mass Transfer, 2023, 140, 106550.	2.9	1
826	Study of the drag reduction performance on steel spheres with superhydrophobic ER/ZnO coating. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 288, 116144.	1.7	6
827	Slippery liquid infused porous surfaces with anti-icing performance fabricated by direct laser interference lithography. Progress in Organic Coatings, 2023, 175, 107308.	1.9	10
828	Anti-icing mechanism of combined active ethanol spraying and passive surface wettability. Applied Thermal Engineering, 2023, 220, 119805.	3.0	6
829	Microporous metallic scaffolds supported liquid infused icephobic construction. Journal of Colloid and Interface Science, 2023, 634, 369-378.	5.0	5
830	Thermal characteristics of stabilization effects induced by nanostructures in plasma heat source interacting with ice blocks. International Journal of Heat and Mass Transfer, 2023, 202, 123695.	2.5	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
831	Thermotropic Optical Response of Silicone–Paraffin Flexible Blends. Polymers, 2022,	, 14, 5117.	2.0	0
832	Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition. Langmuir, 14666-14672.	2022, 38,	1.6	3
833	Heterogeneous Ice Nucleation Studied with Single-Layer Graphene. Langmuir, 2022, 3	8, 15121-15131.	1.6	0
834	Multifunctional Photothermal Phase-Change Superhydrophobic Film with Excellent Lig Conversion and Thermal-Energy Storage Capability for Anti-icing/De-icing Applications. 38, 15245-15252.	ht–Thermal . Langmuir, 2022,	1.6	14
835	Recyclable Biomass-Derived Polyethylene-Like Materials as Functional Coatings for Cor Fabrics: Toward Upcycling of Waste Textiles. ACS Sustainable Chemistry and Engineer 17187-17197.	nmercial ing, 2022, 10,	3.2	4
836	Multifunctional droplet $\hat{a} {\in} s$ urface interaction effected by bulk properties. , 2023, 2, .			10
837	Freezing as a Path to Build Microâ€Nanostructured Icephobic Coatings. Advanced Fun 2023, 33, .	ctional Materials,	7.8	10
838	An overview of surface with controllable wettability for microfluidic system, intelligent water harvesting, and surface protection. Advanced Composites and Hybrid Materials,	cleaning, 2023, 6, .	9.9	17
839	Nano-Capillary Bridges Control the Adhesion of Ice: Implications for Anti-Icing via Supe Coatings. ACS Applied Nano Materials, 2022, 5, 19017-19024.	rhydrophobic	2.4	1
840	Experimental investigation on the impacting and freezing characteristics of water drop PDMS-decorated superhydrophobic aluminum alloy surface. Physica Scripta, 2023, 98,	olets on a ,015711.	1.2	1
841	In Situ Opto-Hydrodynamic Characterization of Lubricant-Infused Surface Degradation 2023, 39, 367-376.	ı. Langmuir,	1.6	2
842	Considering Thermal Diffusivity as a Design Factor in Multilayer Hybrid Ice Protection S Coatings, 2022, 12, 1952.	Systems.	1.2	1
843	An Extremeâ€Environmentâ€Resistant Selfâ€Healing Antiâ€Icing Coating. Small, 2023	3, 19, .	5.2	16
844	Sustainable Repellent Coatings Based on Renewable Drying and Nondrying Oils. Advar Interfaces, 2023, 10, .	nced Materials	1.9	1
845	Superhydrophobic and photothermal SiC/TiN durable composite coatings for passive a de-icing and de-frosting. Materials Today Physics, 2023, 30, 100927.	nti-icing/active	2.9	12
846	Bouncing dynamics of droplets on nanopillar-arrayed surfaces: the effect of impact pos Chemistry Chemical Physics, 2023, 25, 4969-4979.	sition. Physical	1.3	1
847	Numerical and experimental investigation of static wetting morphologies of aqueous c lubricated slippery surfaces using a quasi-static approach. Soft Matter, 0, , .	lrops on	1.2	1
848	Omniphobic liquid-like surfaces. Nature Reviews Chemistry, 2023, 7, 123-137.		13.8	55

#	Article	IF	CITATIONS
849	Tailorable and scalable production of eco-friendly lignin micro-nanospheres and their application in functional superhydrophobic coating. Chemical Engineering Journal, 2023, 457, 141309.	6.6	12
850	Nucleation enhancement by energy dissipation with the collision of a supercooled water droplet. Physics of Fluids, 2023, 35, 013336.	1.6	0
851	The Rising Aerogel Fibers: Status, Challenges, and Opportunities. Advanced Science, 2023, 10, .	5.6	26
852	Dissipative particle dynamics for anti-icing on solid surfaces. Chemical Physics, 2023, 568, 111824.	0.9	2
853	Polyhedral oligomeric silsesquioxaneâ€based functional coatings: A review. Canadian Journal of Chemical Engineering, 2023, 101, 4979-4991.	0.9	3
854	The coupled impact-freezing mechanism of supercooled droplet on superhydrophobic surface. Aerospace Systems, 0, , .	0.7	1
855	Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover. ACS Applied Materials & Interfaces, 2023, 15, 6025-6034.	4.0	9
856	Fabrication of Slippery Surfaces on Aluminum Alloy and Its Anti-Icing Performance in Glaze Ice. Coatings, 2023, 13, 732.	1.2	1
857	Scalable fabrication of superhydrophobic armor microstructure arrays with enhanced tribocorrosion performance via maskless electrochemical machining. Surface and Coatings Technology, 2023, 461, 129427.	2.2	8
858	Numerical study on the nonwetting ability of trapezoid topography. Journal of Fluids and Structures, 2023, 119, 103868.	1.5	0
859	Endowment of omniphobicity and exceptional bendability to a wear-resistant POSS coating. Chemical Engineering Journal, 2023, 464, 142702.	6.6	4
860	Facile fabrication of durable and fluorine-free liquid infused surfaces on aluminum substrates with excellent anti-icing, anticorrosion, and antibiofouling properties. Surfaces and Interfaces, 2023, 38, 102860.	1.5	3
861	Stable photothermal solid slippery surface with enhanced anti-icing and de-icing properties. Applied Surface Science, 2023, 624, 157178.	3.1	9
862	Regulation of droplet impacting on superhydrophobic surfaces: Coupled effects of macrostructures, wettability patterns, and surface motion. Applied Physics Letters, 2023, 122, .	1.5	19
863	Environmentally adapted slippery-superhydrophobic switchable interfaces for anti-icing. Applied Surface Science, 2023, 626, 157201.	3.1	3
864	Di-particles-derived slippery lubricant-infused porous surface with broad anti-adhesion performance. Applied Surface Science, 2023, 616, 156462.	3.1	3
865	Omniphobic, ice-repellent, anti-bacterial, slippery liquid-infused porous surface (SLIPS) using sprayable chitin nanofiber coating. Macromolecular Research, 2023, 31, 65-74.	1.0	1
866	Effect of surface roughness on methane hydrate formation and its implications in nucleation design. AICHE Journal, 2023, 69, .	1.8	4

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
867	Freezing-induced wetting transitions on superhydrophobic surfaces. Nature Physics, 2023, 19, 649-655.	6.5	23
868	Spontaneous peeling of ice accretion: A novel expansion force de-icing unit based on phase transition time lag. Cold Regions Science and Technology, 2023, 208, 103801.	1.6	1
869	Self-healable and transparent PDMS- <i>g</i> -poly(fluorinated acrylate) coating with ultra-low ice adhesion strength for anti-icing applications. Chemical Communications, 2023, 59, 3293-3296.	2.2	0
870	Reduction of ice adhesion on nanostructured and nanoscale slippery surfaces. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2023, 6, .	1.7	3
871	Spontaneous, scalable, and self-similar superhydrophobic coatings for all-weather deicing. Nano Research, 2023, 16, 7171-7179.	5.8	10
872	è¶è€ç""ç–冰æ¶,å±,çš"å^¶å‡åŠæ€§èf½ç"ç©¶. Science China Materials, 2023, 66, 2071-2078.	3.5	5
873	Sustainable Drag Reduction of Fatty Acid Amideâ€Based Oleogel Surface Under Highâ€Speed Shear Flows. Advanced Materials Interfaces, 2023, 10, .	1.9	1
874	Through-drop imaging of moving contact lines and contact areas on opaque water-repellent surfaces. Soft Matter, 2023, 19, 2350-2359.	1.2	5
875	Infusing Silicone and Camellia Seed Oils into Micro-/Nanostructures for Developing Novel Anti-Icing/Frosting Surfaces for Food Freezing Applications. ACS Applied Materials & Interfaces, 0, ,	4.0	7
876	Bio-inspired and metal-derived superwetting surfaces: Function, stability and applications. Advances in Colloid and Interface Science, 2023, 314, 102879.	7.0	12
877	The Anti-Snow Behaviour of Icephobic Coatings: Laboratory and In-Field Testing. Coatings, 2023, 13, 616.	1.2	3
878	Achieving Extreme Pressure Resistance to Liquids on a Superâ€Omniphobic Surface with Armored Reentrants. Small Methods, 0, , .	4.6	4
879	Photothermal MOF-Based Multifunctional Coating with Passive and Active Protection Synergy. , 2023, 1, 1058-1068.		3
880	Fabrication of silicone modified polyurethane matrix superhydrophobic coating with hydroxy-terminated polydimethylsiloxane modified SiO ₂ nanoparticles. Polymer-Plastics Technology and Materials, 2022, 61, 482-496.	0.6	0
882	Ultrafast laser reconstructed PS-PVD thermal barrier coatings with superior silicophobic triple-scale micro/nano structure. Materials and Design, 2023, 228, 111846.	3.3	4
883	Modifying flexible polymer films towards superhydrophobicity and superoleophobicity by utilizing water-based nanohybrid coatings. Nanoscale, 2023, 15, 6984-6998.	2.8	1
884	Inorganic–Organic Silica/PDMS Nanocomposite Antiadhesive Coating with Ultrahigh Hardness and Thermal Stability. ACS Applied Materials & Interfaces, 2023, 15, 17245-17255.	4.0	3
885	Facile designing a superhydrophobic anti-icing surface applied for reliable long-term deicing. Chinese Chemical Letters, 2023, 34, 108353.	4.8	7

#	Article	IF	Citations
886	Wetting ridges on slippery liquid-infused porous surfaces. Reports on Progress in Physics, 2023, 86, 066601.	8.1	7
887	Robust Polyurethane Coatings with Lightly Cross-Linked Surfaces for Ice Shedding. ACS Applied Polymer Materials, 2023, 5, 3119-3128.	2.0	2
888	Molecular insights into the hydration of zwitterionic polymers. Molecular Systems Design and Engineering, 2023, 8, 1040-1048.	1.7	2
889	Design of medical tympanostomy conduits with selective fluid transport properties. Science Translational Medicine, 2023, 15, .	5.8	0
890	Nanoscale control of non-reciprocal ripple writing. Optics Express, 2023, 31, 14796.	1.7	0
891	Droplet interface in additive manufacturing: From process to application. , 2023, 2, .		4
892	Fluorine-Free Super-Liquid-Repellent Surfaces: Pushing the Limits of PDMS. Nano Letters, 2023, 23, 3116-3121.	4.5	7
893	Droplet bouncing on moving superhydrophobic groove surfaces. International Journal of Multiphase Flow, 2023, 165, 104454.	1.6	3
894	The Criterion of Supercooled Bionic Lotus Surfaces Repelling Impacting Droplets for Antiâ€lcing Engineering. Advanced Materials Interfaces, 2023, 10, .	1.9	1
895	Multiscale Superhydrophobic Zeolitic Imidazolate Framework Coating for Static and Dynamic Antiâ€lcing Purposes. Advanced Materials Interfaces, 2023, 10, .	1.9	0
897	Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings. Research, 2023, 6, .	2.8	5
898	Sliding and rolling of yield stress fluid droplets on highly slippery lubricated surfaces. Journal of Colloid and Interface Science, 2023, 644, 487-495.	5.0	2
902	ANTI-ICING PERFORMANCE OF A SUPERHYDROPHOBIC AND ELECTROTHERMAL COATING ON METALLIC SUBSTRATES. , 2023, , .		1
914	Effect of Surface Modification on the Hybrid Ice Protection Systems Performances. , 0, , .		1
915	Passive Ice Protection Systems Lab Scale Testing Methodology. , 0, , .		0
933	Probing surface wetting across multiple force, length and time scales. Communications Physics, 2023, 6, .	2.0	9
978	Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. Nanoscale, 2023, 15, 18980-18998.	2.8	2
988	Adhesion of impure ice on surfaces. Materials Horizons, 0, , .	6.4	0