Tissue mechanics promote IDH1-dependent HIF1α–t glioblastoma aggression

Nature Cell Biology 18, 1336-1345

DOI: 10.1038/ncb3429

Citation Report

#	Article	IF	CITATIONS
1	Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 189-205.	2.0	136
2	Tenascin-C at a glance. Journal of Cell Science, 2016, 129, 4321-4327.	1.2	293
3	Quantifying forces in cell biology. Nature Cell Biology, 2017, 19, 742-751.	4.6	376
4	The Microenvironmental Landscape of Brain Tumors. Cancer Cell, 2017, 31, 326-341.	7.7	1,163
5	Tissue mechanics regulate brain development, homeostasis and disease. Journal of Cell Science, 2017, 130, 71-82.	1.2	243
6	Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discovery, 2017, 7, 1224-1237.	7.7	181
7	Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells. Biomacromolecules, 2017, 18, 3040-3051.	2.6	70
8	The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels. Advanced Healthcare Materials, 2017, 6, 1700687.	3.9	58
9	Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. Trends in Cell Biology, 2017, 27, 738-752.	3.6	99
10	Emerging roles of mechanical forces in chromatin regulation. Journal of Cell Science, 2017, 130, 2243-2250.	1.2	152
11	The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. International Journal of Molecular Sciences, 2017, 18, 1586.	1.8	301
12	Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms. PLoS ONE, 2017, 12, e0177561.	1.1	87
13	Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. Journal of Experimental and Clinical Cancer Research, 2017, 36, 102.	3.5	140
15	MR Elastography Analysis of Glioma Stiffness and <i>IDH1</i> Neuroradiology, 2018, 39, 31-36.	1.2	70
16	Control of Mechanotransduction by Molecular Clutch Dynamics. Trends in Cell Biology, 2018, 28, 356-367.	3.6	218
17	Brain-Mimetic 3D Culture Platforms Allow Investigation of Cooperative Effects of Extracellular Matrix Features on Therapeutic Resistance in Glioblastoma. Cancer Research, 2018, 78, 1358-1370.	0.4	72
18	Tenascin-C Promotes Tumor Cell Migration and Metastasis through Integrin α9β1–Mediated YAP Inhibition. Cancer Research, 2018, 78, 950-961.	0.4	77
19	Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology, 2018, 154, 820-838.	0.6	173

#	Article	IF	CITATIONS
20	Long noncoding RNA DANCR mediates cisplatin resistance in glioma cells via activating AXL/PI3K/Akt/NF-κB signaling pathway. Neurochemistry International, 2018, 118, 233-241.	1.9	98
21	Up-regulated miR-548k promotes esophageal squamous cell carcinoma progression via targeting long noncoding RNA-LET. Experimental Cell Research, 2018, 362, 90-101.	1.2	26
22	Unlocking the Dangers of a Stiffening Brain. Neuron, 2018, 100, 763-765.	3.8	4
23	Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration. Cell Reports, 2018, 25, 2591-2604.e8.	2.9	37
24	Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. International Journal of Molecular Sciences, 2018, 19, 2879.	1.8	151
25	Noninvasive Imaging: Brillouin Confocal Microscopy. Advances in Experimental Medicine and Biology, 2018, 1092, 351-364.	0.8	11
26	A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron, 2018, 100, 799-815.e7.	3.8	241
27	Modeling Cell Migration Mechanics. Advances in Experimental Medicine and Biology, 2018, 1092, 159-187.	0.8	22
28	Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. NeuroMolecular Medicine, 2018, 20, 452-474.	1.8	18
29	A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nature Cell Biology, 2018, 20, 1203-1214.	4.6	103
30	MRI analysis to map interstitial flow in the brain tumor microenvironment. APL Bioengineering, 2018, 2, \cdot	3.3	50
31	Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nature Communications, 2018, 9, 1899.	5.8	43
32	Heterozygous IDH1R132H/WT created by "single base editing―inhibits human astroglial cell growth by downregulating YAP. Oncogene, 2018, 37, 5160-5174.	2.6	27
33	Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World Neurosurgery, 2018, 116, 505-517.	0.7	105
34	Perspective on Translating Biomaterials Into Glioma Therapy: Lessons From in Vitro Models. Frontiers in Materials, 2018, 5, .	1.2	9
35	Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration. Developmental Cell, 2018, 45, 331-346.e7.	3.1	24
36	MiR-3662 suppresses hepatocellular carcinoma growth through inhibition of HIF- $1\hat{l}\pm$ -mediated Warburg effect. Cell Death and Disease, 2018, 9, 549.	2.7	81
37	Phenotypic Basis for Matrix Stiffness-Dependent Chemoresistance of Breast Cancer Cells to Doxorubicin. Frontiers in Oncology, 2018, 8, 337.	1.3	89

#	ARTICLE	IF	CITATIONS
38	Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Biomaterials, 2019, 198, 122-134.	5.7	53
39	Interstitial fluid flow under the microscope: is it a future drug target for high grade brain tumours such as glioblastoma?. Expert Opinion on Therapeutic Targets, 2019, 23, 725-728.	1.5	3
40	Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nature Reviews Materials, 2019, 4, 651-668.	23.3	103
41	Tissue mechanics, an important regulator of development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180215.	1.8	61
42	Friend or foeâ€"IDH1 mutations in glioma 10 years on. Carcinogenesis, 2019, 40, 1299-1307.	1.3	58
43	Microenvironmental Heterogeneity in Brain Malignancies. Frontiers in Immunology, 2019, 10, 2294.	2.2	78
44	Oxygenâ€'induced circRNA profiles and coregulatory networks in a retinopathy of prematurity mouse model. Experimental and Therapeutic Medicine, 2019, 18, 2037-2050.	0.8	6
45	Detection of chromosome-mediated tet(X4)-carrying Aeromonas caviae in a sewage sample from a chicken farm. Journal of Antimicrobial Chemotherapy, 2019, 74, 3628-3630.	1.3	27
46	The Drosophila Model in Cancer. Advances in Experimental Medicine and Biology, 2019, , .	0.8	4
47	Grade II/III Glioma Microenvironment Mining and Its Prognostic Merit. World Neurosurgery, 2019, 132, e76-e88.	0.7	5
48	<p>lsocitrate dehydrogenase 1 mutation is associated with reduced levels of inflammation in glioma patients</p> . Cancer Management and Research, 2019, Volume 11, 3227-3236.	0.9	17
49	Aggressive Progression in Glioblastoma Cells through Potentiated Activation of Integrin α5β1 by the Tenascin-C–Derived Peptide TNIIA2. Molecular Cancer Therapeutics, 2019, 18, 1649-1658.	1.9	11
50	Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15550-15559.	3.3	39
51	Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes and Development, 2019, 33, 591-609.	2.7	303
52	Peptide TNIIIA2 Derived from Tenascin-C Contributes to Malignant Progression in Colitis-Associated Colorectal Cancer via \hat{l}^21 -Integrin Activation in Fibroblasts. International Journal of Molecular Sciences, 2019, 20, 2752.	1.8	13
53	Synthesis, characterization of novel isoindolinyl- and bis-isoindolinylphenylboronic anhydrides. Antiproliferative activityÂonÂglioblastoma cells and microglial cells assays of boronÂandÂisoindolines compounds. Journal of Organometallic Chemistry, 2019, 891, 35-43.	0.8	5
54	Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip. Biochip Journal, 2019, 13, 8-19.	2.5	49
55	Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. International Journal of Biochemistry and Cell Biology, 2019, 109, 90-104.	1.2	62

#	Article	IF	Citations
56	Distinct Cancer-Promoting Stromal Gene Expression Depending on Lung Function. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 348-358.	2.5	20
57	The Extracellular Matrix and Biocompatible Materials in Glioblastoma Treatment. Frontiers in Bioengineering and Biotechnology, 2019, 7, 341.	2.0	45
58	Epigenetic modulation of tenascin C in the heart. Journal of Hypertension, 2019, 37, 1861-1870.	0.3	19
59	IL-33/ST2 axis promotes glioblastoma cell invasion by accumulating tenascin-C. Scientific Reports, 2019, 9, 20276.	1.6	23
60	Glioblastoma's Next Top Model: Novel Culture Systems for Brain Cancer Radiotherapy Research. Cancers, 2019, 11, 44.	1.7	59
61	Transcriptomic analysis reveals that BMP4 sensitizes glioblastoma tumor-initiating cells to mechanical cues. Matrix Biology, 2020, 85-86, 112-127.	1.5	11
62	Brain malignancies: Glioblastoma and brain metastases. Seminars in Cancer Biology, 2020, 60, 262-273.	4.3	208
63	Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer. Journal of Translational Medicine, 2020, 18, 10.	1.8	41
64	Identification and validation of a 21-mRNA prognostic signature in diffuse lower-grade gliomas. Journal of Neuro-Oncology, 2020, 146, 207-217.	1.4	5
65	Impact of breast cancer cells´ secretome on the brain metastatic niche remodeling. Seminars in Cancer Biology, 2020, 60, 294-301.	4.3	20
66	REVIEW: MR elastography of brain tumors. NeuroImage: Clinical, 2020, 25, 102109.	1.4	65
67	Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma. Oncogene, 2020, 39, 6990-7004.	2.6	35
68	Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Frontiers in Cellular Neuroscience, 2020, 14, 558381.	1.8	38
69	Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron, 2020, 108, 1025-1044.	3.8	31
70	miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Experimental and Molecular Pathology, 2020, 117, 104550.	0.9	26
71	Identification of PIEZO1 as a potential prognostic marker in gliomas. Scientific Reports, 2020, 10, 16121.	1.6	39
72	Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nature Communications, 2020, 11, 3945.	5.8	52
73	Increased Stiffness Inhibits Invadopodia Formation and Cell Migration in 3D. Biophysical Journal, 2020, 119, 726-736.	0.2	25

#	Article	IF	CITATIONS
74	Mechanical properties of human glioma. Neurological Research, 2020, 42, 1018-1026.	0.6	6
75	Physical traits of cancer. Science, 2020, 370, .	6.0	371
76	Injectable Biomaterials for Treatment of Glioblastoma. Advanced Materials Interfaces, 2020, 7, 2001055.	1.9	4
77	Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 103-133.	0.9	9
78	Proteoglycans as Mediators of Cancer Tissue Mechanics. Frontiers in Cell and Developmental Biology, 2020, 8, 569377.	1.8	28
79	Cellular Plasticity and Tumor Microenvironment in Gliomas: The Struggle to Hit a Moving Target. Cancers, 2020, 12, 1622.	1.7	29
80	The Physical Microenvironment of Tumors: Characterization and Clinical Impact. Biophysical Reviews and Letters, 2020, 15, 51-82.	0.9	3
81	Multidimensional hydrogel models reveal endothelial network angiocrine signals increase glioblastoma cell number, invasion, and temozolomide resistance. Integrative Biology (United) Tj ETQq1 1 0.784	31 4. ægBT ,	Overlock 10
82	Matrix Rigidity Controls Epithelial-Mesenchymal Plasticity and Tumor Metastasis via a Mechanoresponsive EPHA2/LYN Complex. Developmental Cell, 2020, 54, 302-316.e7.	3.1	128
83	Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, 2020, , .	0.8	2
84	Framing cancer progression: influence of the organ―and tumourâ€specific matrisome. FEBS Journal, 2020, 287, 1454-1477.	2.2	27
85	The creatine–phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nature Metabolism, 2020, 2, 62-80.	5.1	96
86	Positron Emission Tomography Imaging of Functional Transforming Growth Factor \hat{I}^2 (TGF \hat{I}^2) Activity and Benefit of TGF \hat{I}^2 Inhibition in Irradiated Intracranial Tumors. International Journal of Radiation Oncology Biology Physics, 2021, 109, 527-539.	0.4	13
87	Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology, 2021, 22, 22-38.	16.1	193
88	Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in glioblastoma. Nature Cancer, 2021, 2, 174-188.	5.7	83
89	Signaling in the tumor microenvironment of therapy-resistant glioblastoma. , 2021, , 153-184.		1
90	Anoikis resistance conferred by tenascin-C-derived peptide TNIIIA2 and its disruption by integrin inactivation. Biochemical and Biophysical Research Communications, 2021, 536, 14-19.	1.0	12
91	Plexin-B2 facilitates glioblastoma infiltration by modulating cell biomechanics. Communications Biology, 2021, 4, 145.	2.0	16

#	Article	IF	Citations
92	Matrix stiffness promotes glioma cell stemness by activating BCL9L/Wnt/ \hat{l}^2 -catenin signaling. Aging, 2021, 13, 5284-5296.	1.4	22
93	Energy Metabolism in IDH1 Wild-Type and IDH1-Mutated Glioblastoma Stem Cells: A Novel Target for Therapy?. Cells, 2021, 10, 705.	1.8	15
94	Advanced Spheroid, Tumouroid and 3D Bioprinted In-Vitro Models of Adult and Paediatric Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 2962.	1.8	16
96	Compliant Substrates Enhance Macrophage Cytokine Release and NLRP3 Inflammasome Formation During Their Pro-Inflammatory Response. Frontiers in Cell and Developmental Biology, 2021, 9, 639815.	1.8	26
97	Hypergravity affects cell traction forces of fibroblasts. Biophysical Journal, 2021, 120, 773-780.	0.2	7
98	Molecular Signatures of Chromosomal Instability Correlate With Copy Number Variation Patterns and Patient Outcome in IDH-Mutant and IDH-Wildtype Astrocytomas. Journal of Neuropathology and Experimental Neurology, 2021, 80, 354-365.	0.9	12
99	In vivo self-assembled small RNAs as a new generation of RNAi therapeutics. Cell Research, 2021, 31, 631-648.	5.7	56
100	Biofunctional Peptide FNIII14: Therapeutic Potential. Encyclopedia, 2021, 1, 350-359.	2.4	1
101	Heterogeneous Glioma Cell Invasion Under Interstitial Flow Depending on Their Differentiation Status. Tissue Engineering - Part A, 2021, 27, 467-478.	1.6	7
102	Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell, 2021, 39, 548-565.e6.	7.7	274
103	High Level of METTL7B Indicates Poor Prognosis of Patients and Is Related to Immunity in Glioma. Frontiers in Oncology, 2021, 11, 650534.	1.3	15
104	Channeling Force in the Brain: Mechanosensitive Ion Channels Choreograph Mechanics and Malignancies. Trends in Pharmacological Sciences, 2021, 42, 367-384.	4.0	12
105	The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes, 2021, 12, 819.	1.0	35
106	Structural and Functional Modulation of Perineuronal Nets: In Search of Important Players with Highlight on Tenascins. Cells, 2021, 10, 1345.	1.8	11
107	Targeting cytoskeletal phosphorylation in cancer. Exploration of Targeted Anti-tumor Therapy, 0, , .	0.5	1
108	Mechanotransduction assays for neural regeneration strategies: A focus on glial cells. APL Bioengineering, 2021, 5, 021505.	3.3	16
109	Mechanical Forces in Nuclear Organization. Cold Spring Harbor Perspectives in Biology, 2022, 14, a039685.	2.3	28
110	Progress in mimicking brain microenvironments to understand and treat neurological disorders. APL Bioengineering, 2021, 5, 020902.	3.3	9

#	ARTICLE	IF	CITATIONS
112	Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism, 2021, 33, 1322-1341.e13.	7.2	65
113	The blood–tumour barrier in cancer biology and therapy. Nature Reviews Clinical Oncology, 2021, 18, 696-714.	12.5	112
114	Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annual Review of Cell and Developmental Biology, 2021, 37, 285-310.	4.0	27
115	Dynamic Stromal Alterations Influence Tumor-Stroma Crosstalk to Promote Pancreatic Cancer and Treatment Resistance. Cancers, 2021, 13, 3481.	1.7	13
116	Brain Microenvironment Heterogeneity: Potential Value for Brain Tumors. Frontiers in Oncology, 2021, 11, 714428.	1.3	1
117	Involvement of integrin-activating peptides derived from tenascin-C in colon cancer progression. World Journal of Gastrointestinal Oncology, 2021, 13, 980-994.	0.8	2
118	A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends in Cell Biology, 2022, 32, 110-123.	3.6	22
119	Bioengineered Models to Study Microenvironmental Regulation of Glioblastoma Metabolism. Journal of Neuropathology and Experimental Neurology, 2021, 80, 1012-1023.	0.9	1
120	Gelatin methacrylate hydrogels culture model for glioblastoma cells enriches for mesenchymal-like state and models interactions with immune cells. Scientific Reports, 2021, 11, 17727.	1.6	8
121	Extracellular Matrix Proteome Remodeling in Human Glioblastoma and Medulloblastoma. Journal of Proteome Research, 2021, 20, 4693-4707.	1.8	12
122	Atomic Force Microscope Nanoindentation Analysis of Diffuse Astrocytic Tumor Elasticity: Relation with Tumor Histopathology. Cancers, 2021, 13, 4539.	1.7	6
123	TAGLN mediated stiffness-regulated ovarian cancer progression via RhoA/ROCK pathway. Journal of Experimental and Clinical Cancer Research, 2021, 40, 292.	3.5	25
124	Rationally designed drug delivery systems for the local treatment of resected glioblastoma. Advanced Drug Delivery Reviews, 2021, 177, 113951.	6.6	41
125	Targeting the molecular mechanisms of glioma stem cell resistance to chemotherapy., 2021,, 587-634.		1
126	Mechano-Biological Features in a Patient-Specific Computational Model of Glioblastoma. Neuromethods, 2021, , 265-287.	0.2	1
127	Drosophila melanogaster as a Model System for Human Glioblastomas. Advances in Experimental Medicine and Biology, 2019, 1167, 207-224.	0.8	11
128	Spinal Cord Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1226, 97-109.	0.8	7
129	Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro-Oncology, 2021, 23, 718-731.	0.6	5

#	ARTICLE	IF	CITATIONS
134	Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. Journal of Clinical Investigation, 2020, 130, 5721-5737.	3.9	73
135	Quantifying cellular forces and biomechanical properties by correlative micropillar traction force and Brillouin microscopy. Biomedical Optics Express, 2019, 10, 2202.	1.5	16
136	Glioblastoma: To Target the Tumor Cell or the Microenvironment?., 0,, 315-340.		31
137	Transcriptional response to hypoxic stress in melanoma and prognostic potential of GBE1 and BNIP3. Oncotarget, 2017, 8, 108786-108801.	0.8	22
138	Pleiotropic Role of Tenascin-C in Central Nervous System Diseases: From Basic to Clinical Applications. Frontiers in Neurology, 2020, 11, 576230.	1.1	7
139	Traction Force Microscopy for Understanding Cellular Mechanotransduction. BMB Reports, 2020, 53, 74-081.	1.1	39
147	Induction of cellular senescence in fibroblasts through \hat{l}^21 -integrin activation by tenascin-C-derived peptide and its protumor effect. American Journal of Cancer Research, 2021, 11, 4364-4379.	1.4	1
148	Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene, 2022, 41, 757-769.	2.6	12
149	Spatial heterogeneity of invading glioblastoma cells regulated by paracrine factors. Tissue Engineering - Part A, $2021, \ldots$	1.6	0
150	Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathologica, 2022, 143, 291-310.	3.9	23
151	Enhanced Chemodynamic Therapy by Cu–Fe Peroxide Nanoparticles: Tumor Microenvironment-Mediated Synergistic Fenton Reaction. ACS Nano, 2022, 16, 2535-2545.	7.3	120
152	Mechanical Properties in the Glioma Microenvironment: Emerging Insights and Theranostic Opportunities. Frontiers in Oncology, 2021, 11, 805628.	1.3	12
153	Polycystinâ€1 and hydrostatic pressure are implicated in glioblastoma pathogenesis in vitro. Journal of Cellular and Molecular Medicine, 2022, 26, 1699-1709.	1.6	5
154	Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Advanced Drug Delivery Reviews, 2022, 182, 114111.	6.6	15
155	Glioblastoma Vasculature: From its Critical Role in Tumor Survival to Relevant in Vitro Modelling. Frontiers in Drug Delivery, 2022, 2, .	0.4	2
156	Matrix Stiffness Contributes to Cancer Progression by Regulating Transcription Factors. Cancers, 2022, 14, 1049.	1.7	57
157	Magnetic Resonance Elastography in Intracranial Neoplasms: A Scoping Review. Topics in Magnetic Resonance Imaging, 2022, 31, 9-22.	0.7	8
158	circCUL2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-l ^o B signaling pathway. Journal of Experimental and Clinical Cancer Research, 2022, 41, 71.	3.5	25

#	Article	IF	CITATIONS
161	Tenascin-C can Serve as an Indicator for the Immunosuppressive Microenvironment of Diffuse Low-Grade Gliomas. Frontiers in Immunology, 2022, 13, 824586.	2.2	6
162	The N6-Methylandenosine-Related Gene BIRC5 as a Prognostic Biomarker Correlated With Cell Migration and Immune Cell Infiltrates in Low Grade Glioma. Frontiers in Molecular Biosciences, 2022, 9, 773662.	1.6	5
163	Physical Forces in Glioblastoma Migration: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 4055.	1.8	7
164	Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer's disease. Life Sciences, 2022, 297, 120470.	2.0	9
165	Cancer cell development, migratory response, and the role of the tumor microenvironment in invasion and metastasis., 2022,, 245-270.		0
166	Synthetic extracellular matrices and astrocytes provide a supportive microenvironment for the cultivation and investigation of primary pediatric gliomas. Neuro-Oncology Advances, 2022, 4, .	0.4	3
167	Tumor Microenvironment in Glioma Invasion. Brain Sciences, 2022, 12, 505.	1.1	28
168	Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Advanced Drug Delivery Reviews, 2022, 185, 114301.	6.6	28
171	A Novel Risk Score Model Based on Eleven Extracellular Matrix-Related Genes for Predicting Overall Survival of Glioma Patients. Journal of Oncology, 2022, 2022, 1-20.	0.6	3
173	Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	5
174	The Unfolded Protein Response Sensor PERK Mediates Stiffness-Dependent Adaptation in Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 6520.	1.8	4
175	Comparing the effects of linear and one-term Ogden elasticity in a model of glioblastoma invasion Brain Multiphysics, 2022, 3, 100050.	0.8	3
177	Impairing proliferation of glioblastoma multiforme with CD44+ selective conjugated polymer nanoparticles. Scientific Reports, 2022, 12, .	1.6	5
178	Correlation of biomechanics and cancer cell phenotype by combined Brillouin and Raman spectroscopy of U87-MG glioblastoma cells. Journal of the Royal Society Interface, 2022, 19, .	1.5	4
179	Directed cell migration towards softer environments. Nature Materials, 2022, 21, 1081-1090.	13.3	86
180	ldentification of Prognostic Genes in Gliomas Based on Increased Microenvironment Stiffness. Cancers, 2022, 14, 3659.	1.7	4
181	High levels of TIMP1 are associated with increased extracellular matrix stiffness in isocitrate dehydrogenase 1-wild type gliomas. Laboratory Investigation, 2022, 102, 1304-1313.	1.7	6
182	Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene, 2022, 41, 4211-4230.	2.6	34

#	Article	IF	CITATIONS
183	Coupling solid and fluid stresses with brain tumour growth and white matter tract deformations in a neuroimaging-informed model. Biomechanics and Modeling in Mechanobiology, 2022, 21, 1483-1509.	1.4	2
184	IGFBPs were associated with stemness, inflammation, extracellular matrix remodeling and poor prognosis of low-grade glioma. Frontiers in Endocrinology, 0, 13 , .	1.5	5
185	Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Frontiers in Oncology, 0, 12 , .	1.3	3
186	Correlation of Matrisome-Associatted Gene Expressions with LOX Family Members in Astrocytomas Stratified by IDH Mutation Status. International Journal of Molecular Sciences, 2022, 23, 9507.	1.8	1
187	The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer and Metastasis Reviews, 2022, 41, 871-898.	2.7	8
188	Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels, 2022, 8, 496.	2.1	4
189	Magnetic resonance elastography of malignant tumors. Frontiers in Physics, 0, 10, .	1.0	3
190	Advances in research on glioma microenvironment and immunotherapeutic targets., 0,, 14-29.		0
191	Neuropilin-1 modulates the 3D invasive properties of glioblastoma stem-like cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
192	Advances on the roles of tenascin-C in cancer. Journal of Cell Science, 2022, 135, .	1.2	14
194	Perivascular Stromal Cells Instruct Glioblastoma Invasion, Proliferation, and Therapeutic Response within an Engineered Brain Perivascular Niche Model. Advanced Science, 2022, 9, .	5 . 6	5
195	Targeting Tumor Physical Microenvironment for Improved Radiotherapy. Small Methods, 2022, 6, .	4.6	5
196	The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Frontiers in Oncology, 0, 12, .	1.3	12
197	Multimodal microscale mechanical mapping of cancer cells in complex microenvironments. Biophysical Journal, 2022, 121, 3586-3599.	0.2	13
198	NIR-II-Triggered Composite Nanofibers to Simultaneously Achieve Intracranial Hemostasis, Killing Superbug and Residual Cancer Cells in Brain Tumor Resection Surgery. Advanced Fiber Materials, 2023, 5, 209-222.	7.9	29
199	Crosstalk between Extracellular Matrix Stiffness and ROS Drives Endometrial Repair via the HIF-1α/YAP Axis during Menstruation. Cells, 2022, 11, 3162.	1.8	2
200	Mechanics of lung cancer: A finite element model shows strain amplification during early tumorigenesis. PLoS Computational Biology, 2022, 18, e1010153.	1.5	1
201	Integrated analysis of the genomic and transcriptional profile of gliomas with isocitrate dehydrogenase-1 and tumor protein 53 mutations. International Journal of Immunopathology and Pharmacology, 2022, 36, 039463202211392.	1.0	0

#	Article	IF	CITATIONS
202	Challenges in glioblastoma research: focus on the tumor microenvironment. Trends in Cancer, 2023, 9, 9-27.	3.8	53
203	YAP Activation in Promoting Negative Durotaxis and Acral Melanoma Progression. Cells, 2022, 11, 3543.	1.8	2
205	Substrate stiffness regulates the recurrent glioblastoma cell morphology and aggressiveness. Matrix Biology, 2023, 115, 107-127.	1.5	6
206	Expression of hub genes of endothelial cells in glioblastoma-A prognostic model for GBM patients integrating single-cell RNA sequencing and bulk RNA sequencing. BMC Cancer, 2022, 22, .	1.1	19
207	Convergent Approaches to Delineate the Metabolic Regulation of Tumor Invasion by Hyaluronic Acid Biosynthesis. Advanced Healthcare Materials, 2023, 12, .	3.9	6
208	Stromal protein CCN family contributes to the poor prognosis in lower-grade gioma by modulating immunity, matrix, stemness, and metabolism. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
210	Multi-omics characterization of silent and productive HPV integration in cervical cancer. Cell Genomics, 2023, 3, 100211.	3.0	12
211	Tumor sound, auditory cues, and tissue pathology in glioma surgery: a proof-of-concept study. Journal of Neurosurgery, 2022, , 1-9.	0.9	O
212	The role of glycans in the mechanobiology of cancer. Journal of Biological Chemistry, 2023, 299, 102935.	1.6	2
213	Extracellular matrix stiffness mediates uterine repair via the Rap1a/ARHGAP35/RhoA/F-actin/YAP axis. Cell Communication and Signaling, 2023, 21, .	2.7	1
214	The variant <scp>senescenceâ€associated secretory phenotype</scp> induced by centrosome amplification constitutes a pathway that activates <scp>hypoxiaâ€inducible factor</scp> â€lα. Aging Cell, 2023, 22, .	3.0	5
217	Glioblastoma Spheroid Invasion through Soft, Brain‣ike Matrices Depends on Hyaluronic Acid–CD44 Interactions. Advanced Healthcare Materials, 2023, 12, .	3.9	6
218	Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Advanced Healthcare Materials, 2023, 12, .	3.9	7
219	Cell–extracellular matrix mechanotransduction in 3D. Nature Reviews Molecular Cell Biology, 2023, 24, 495-516.	16.1	72
220	MR elastography identifies regions of extracellular matrix reorganization associated with shorter survival in glioblastoma patients. Neuro-Oncology Advances, 2023, 5, .	0.4	1
221	Non-operable glioblastoma: Proposition of patient-specific forecasting by image-informed poromechanical model. Brain Multiphysics, 2023, 4, 100067.	0.8	1
222	Characterizing viscoelastic properties of human melanoma tissue using Prony series. Frontiers in Bioengineering and Biotechnology, $0,11,.$	2.0	3
223	The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics, 2023, 8, 146.	1.5	8

#	Article	IF	CITATIONS
224	Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes. Science Advances, 2023, 9, .	4.7	7
225	CEBPD is a master transcriptional factor for hypoxia regulated proteins in glioblastoma and augments hypoxia induced invasion through extracellular matrix-integrin mediated EGFR/PI3K pathway. Cell Death and Disease, 2023, 14, .	2.7	6
226	Methylcellulose/agarose hydrogel loaded with short electrospun PLLA/laminin fibers as an injectable scaffold for tissue engineering/3D cell culture model for tumour therapies. RSC Advances, 2023, 13, 11889-11902.	1.7	1
228	Cell characterization by nanonewton force sensing. , 2023, , 245-270.		1
242	A cell cycle centric view of tumour dormancy. British Journal of Cancer, 2023, 129, 1535-1545.	2.9	4
254	Cell–biomaterials interactions. , 2024, , 181-198.		0