Occurrence, structure, and evolution of nitric oxide synkingdom

Science Signaling

9, re2

DOI: 10.1126/scisignal.aad4403

Citation Report

#	Article	IF	CITATIONS
1	Dinitrosyl Iron Complexes and other Physiological Metabolites of Nitric Oxide: Multifarious Role in Plants. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	3
2	Carbon Monoxide as a Signaling Molecule in Plants. Frontiers in Plant Science, 2016, 7, 572.	1.7	45
3	A Comprehensive Phylogeny Reveals Functional Conservation of the UV-B Photoreceptor UVR8 from Green Algae to Higher Plants. Frontiers in Plant Science, 2016, 7, 1698.	1.7	65
4	Unveiling the molecular details of plant signaling. Science Signaling, 2016, 9, eg9.	1.6	2
5	Nitro-linolenic acid is a nitric oxide donor. Nitric Oxide - Biology and Chemistry, 2016, 57, 57-63.	1.2	51
6	A positive role for hydrogen gas in adventitious root development. Plant Signaling and Behavior, 2016, 11, e1187359.	1.2	7
7	NO Signalling in Plant Immunity. Signaling and Communication in Plants, 2016, , 219-238.	0.5	3
8	The Auxin-Nitric Oxide Highway: A Right Direction in Determining the Plant Root System. Signaling and Communication in Plants, 2016, , 117-136.	0.5	4
9	Redox State in Plant Mitochondria and its Role in Stress Tolerance. , 2016, , 93-115.		1
10	The combined nitrate reductase and nitrite-dependent route of NO synthesis in potato immunity to Phytophthora infestans. Plant Physiology and Biochemistry, 2016, 108, 468-477.	2.8	31
11	A new NO ledge in Chlamydomonas: when the old nitrate reductase meets amidoxime reducing component to produce nitric oxide. Plant, Cell and Environment, 2016, 39, 2095-2096.	2.8	2
12	Decoding the Interaction Between Nitric Oxide and Hydrogen Sulfide in Stomatal Movement. Signaling and Communication in Plants, 2016, , 271-287.	0.5	6
13	Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis. Trends in Plant Science, 2017, 22, 163-174.	4.3	338
14	Nitric Oxide Is Involved in Ethylene-Induced Adventitious Rooting in Marigold. Canadian Journal of Plant Science, 2017, , .	0.3	3
15	Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives. Plant Physiology and Biochemistry, 2017, 113, 56-63.	2.8	102
16	How Chlamydomonas handles nitrate and the nitric oxide cycle. Journal of Experimental Botany, 2017, 68, 2593-2602.	2.4	34
17	The biosynthesis of nitrous oxide in the green alga <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2017, 91, 45-56.	2.8	26
18	Evidence towards the involvement of nitric oxide in drought tolerance of sugarcane. Plant Physiology and Biochemistry, 2017, 115, 354-359.	2.8	42

#	ARTICLE	IF	CITATIONS
19	Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. Journal of Experimental Botany, 2017, 68, 2149-2162.	2.4	54
20	Nitric oxide-polyamines cross-talk during dormancy release and germination of apple embryos. Nitric Oxide - Biology and Chemistry, 2017, 68, 38-50.	1.2	25
21	Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide. Journal of Inorganic Biochemistry, 2017, 177, 171-182.	1.5	7
22	The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Science, 2017, 265, 100-111.	1.7	43
23	The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants. Current Biology, 2017, 27, 3183-3190.e4.	1.8	118
24	Citrulline metabolism in plants. Amino Acids, 2017, 49, 1543-1559.	1.2	67
25	Detection of Copper Bisguanidine NO Adducts by UVâ€vis Spectroscopy and a SuperFocus Mixer. Chemical Engineering and Technology, 2017, 40, 1475-1483.	0.9	2
26	Nitric oxide synthase-like activity in higher plants. Nitric Oxide - Biology and Chemistry, 2017, 68, 5-6.	1.2	100
27	Nitric oxide synthase in plants: Where do we stand?. Nitric Oxide - Biology and Chemistry, 2017, 63, 30-38.	1.2	173
28	Chlamydomonas: Anoxic Acclimation and Signaling. Microbiology Monographs, 2017, , 155-199.	0.3	0
29	A Concise History of the Discovery of Mammalian Nitric Oxide (Nitrogen Monoxide) Biogenesis. , 2017, , 1-7.		2
30	Harnessing Evolutionary Toxins for Signaling: Reactive Oxygen Species, Nitric Oxide and Hydrogen Sulfide in Plant Cell Regulation. Frontiers in Plant Science, 2017, 8, 189.	1.7	44
31	Ectopic Expression of PII Induces Stomatal Closure in Lotus japonicus. Frontiers in Plant Science, 2017, 8, 1299.	1.7	15
32	Synthesis, Actions, and Perspectives of Nitric Oxide in Photosynthetic Organisms. , 2017, , 125-136.		6
33	Nitric Oxide-Donating Devices for Topical Applications. , 2017, , 55-74.		3
34	Nitric oxide buffering and conditional nitric oxide release in stress response. Journal of Experimental Botany, 2018, 69, 3425-3438.	2.4	107
35	Re-investigation of the (3, 0) band in the b4 $\hat{1}$ £ \hat{a} ° - a4 $\hat{1}$ system for nitric oxide by laser absorption spectroscopy. Journal of Molecular Spectroscopy, 2018, 346, 1-3.	0.4	1
36	Nitric oxide production in plants: an update. Journal of Experimental Botany, 2018, 69, 3401-3411.	2.4	311

#	Article	IF	Citations
37	Nitric oxide synthase in plants: The surprise from algae. Plant Science, 2018, 268, 64-66.	1.7	28
38	L-NAME decreases the amount of nitric oxide and enhances the toxicity of cadmium via superoxide generation in barley root tip. Journal of Plant Physiology, 2018, 224-225, 68-74.	1.6	11
39	Nitrogen and Sulfur Metabolism in Microalgae and Plants: 50 Years of Research. Progress in Botany Fortschritte Der Botanik, 2018, , 1-40.	0.1	2
40	Arginine is a component of the ammonium-CYG56 signalling cascade that represses genes of the nitrogen assimilation pathway in Chlamydomonas reinhardtii. PLoS ONE, 2018, 13, e0196167.	1.1	6
42	A Role for RNS in the Communication of Plant Peroxisomes with Other Cell Organelles?. Sub-Cellular Biochemistry, 2018, 89, 473-493.	1.0	8
43	Specificity in nitric oxide signalling. Journal of Experimental Botany, 2018, 69, 3439-3448.	2.4	53
44	LeSPL-CNR negatively regulates Cd acquisition through repressing nitrate reductase-mediated nitric oxide production in tomato. Planta, 2018, 248, 893-907.	1.6	24
45	Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress. Frontiers in Plant Science, 2018, 9, 273.	1.7	178
46	A singular nitric oxide synthase with a globin domain found in Synechococcus PCC 7335 mobilizes N from arginine to nitrate. Scientific Reports, 2018, 8, 12505.	1.6	27
47	Nitric Oxide and Reactive Oxygen Species Interactions in Plant Tolerance and Adaptation to Stress Factors., 2018,, 239-256.		0
49	The Nitrate Assimilatory Pathway in Sinorhizobium meliloti: Contribution to NO Production. Frontiers in Microbiology, 2019, 10, 1526.	1.5	36
50	Methods for the Addition of Redox Compounds. Methods in Molecular Biology, 2019, 1990, 13-25.	0.4	1
52	Multifaceted roles of nitric oxide in plants. Journal of Experimental Botany, 2019, 70, 4319-4322.	2.4	15
53	A forty year journey: The generation and roles of NO in plants. Nitric Oxide - Biology and Chemistry, 2019, 93, 53-70.	1.2	209
54	Recognition of Elicitors in Grapevine: From MAMP and DAMP Perception to Induced Resistance. Frontiers in Plant Science, 2019, 10, 1117.	1.7	55
55	Protein <i>S</i> à€Nitrosylation in plants: Current progresses and challenges. Journal of Integrative Plant Biology, 2019, 61, 1206-1223.	4.1	103
56	The era of nitric oxide in plant biology: Twenty years tying up loose ends. Nitric Oxide - Biology and Chemistry, 2019, 85, 17-27.	1.2	103
57	Nitric oxide and hydrogen sulfide in plants: which comes first?. Journal of Experimental Botany, 2019, 70, 4391-4404.	2.4	206

#	ARTICLE	IF	Citations
58	Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Scientific Reports, 2019, 9, 8973.	1.6	26
59	Nitric oxide induced modulations in adventitious root growth, lignin content and lignin synthesizing enzymes in the hypocotyls of Vigna radiata. Plant Physiology and Biochemistry, 2019, 141, 225-230.	2.8	15
60	Nitric oxide in plant–fungal interactions. Journal of Experimental Botany, 2019, 70, 4489-4503.	2.4	42
61	The function of S-nitrosothiols during abiotic stress in plants. Journal of Experimental Botany, 2019, 70, 4429-4439.	2.4	37
62	Nitrate Reductase-Mediated Nitric Oxide Regulates the Leaf Shape in Arabidopsis by Mediating the Homeostasis of Reactive Oxygen Species. International Journal of Molecular Sciences, 2019, 20, 2235.	1.8	19
63	Role of nitric oxide in plant responses to heavy metal stress: exogenous application versus endogenous production. Journal of Experimental Botany, 2019, 70, 4477-4488.	2.4	87
64	Nitric oxide and plant mineral nutrition: current knowledge. Journal of Experimental Botany, 2019, 70, 4461-4476.	2.4	69
65	Nitric oxide in plants: pro- or anti-senescence. Journal of Experimental Botany, 2019, 70, 4419-4427.	2.4	48
66	Dormancy removal by cold stratification increases glutathione and S-nitrosoglutathione content in apple seeds. Plant Physiology and Biochemistry, 2019, 138, 112-120.	2.8	11
67	The evolution of nitric oxide signalling diverges between animal and green lineages. Journal of Experimental Botany, 2019, 70, 4355-4364.	2.4	42
68	Sulfur: the heart of nitric oxide-dependent redox signalling. Journal of Experimental Botany, 2019, 70, 4279-4286.	2.4	11
69	Hydrogen Peroxide and Nitric Oxide Metabolism in Chloroplasts. , 2019, , 107-144.		2
70	S-Nitrosoglutathione Reductaseâ€"The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. Plants, 2019, 8, 48.	1.6	85
71	Role of Nitrate Reductase in NO Production in Photosynthetic Eukaryotes. Plants, 2019, 8, 56.	1.6	57
72	Systematized biosynthesis and catabolism regulate citrulline accumulation in watermelon. Phytochemistry, 2019, 162, 129-140.	1.4	50
73	Nitric Oxide-Induced Regulation of Plant Developmental Processes and Abiotic Stress Responses. , 2019, , 381-408.		1
74	Nitric Oxide and Hydrogen Peroxide: Signals in Fruit Ripening. , 2019, , 175-199.		7
75	Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. Journal of Experimental Botany, 2019, 70, 4505-4520.	2.4	44

#	Article	IF	Citations
76	The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants, 2019, 8, 94.	2.2	456
77	Nitric Oxide and Hydrogen Peroxide in Plant Response to Biotic Stress. , 2019, , 221-243.		3
78	Hydrogen Peroxide and Nitric Oxide Generation in Plant Cells: Overview and Queries. , 2019, , 1-16.		5
79	Considerations of the importance of redox state for reactive nitrogen species action. Journal of Experimental Botany, 2019, 70, 4323-4331.	2.4	23
80	Nitric Oxide: Its Generation and Interactions with Other Reactive Signaling Compounds. Plants, 2019, 8, 41.	1.6	87
81	Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5015-5020.	3.3	138
82	Plant responses to low-oxygen stress: Interplay between ROS and NO signaling pathways. Environmental and Experimental Botany, 2019, 161, 134-142.	2.0	22
83	The origin and evolution of cell-intrinsic antibacterial defenses in eukaryotes. Current Opinion in Genetics and Development, 2019, 58-59, 111-122.	1.5	14
84	Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots. Frontiers in Plant Science, 2019, 10, 1077.	1.7	9
85	Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 233-258.	0.5	37
86	Plant peroxisomes at the crossroad of NO and H ₂ O ₂ metabolism. Journal of Integrative Plant Biology, 2019, 61, 803-816.	4.1	71
87	Early events following phosphorus restriction involve changes in proteome and affects nitric oxide metabolism in soybean leaves. Environmental and Experimental Botany, 2019, 161, 203-217.	2.0	12
88	Nitric oxide synthase inhibitor Lâ€NAME affects <i>Arabidopsis</i> root growth, morphology, and microtubule organization. Cell Biology International, 2019, 43, 1049-1055.	1.4	8
89	Strigolactoneâ€nitric oxide interplay in plants: The story has just begun. Physiologia Plantarum, 2019, 165, 487-497.	2.6	27
90	Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. Plant, Cell and Environment, 2020, 43, 1-15.	2.8	78
91	Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytologist, 2020, 225, 1828-1834.	3.5	56
92	Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants. Annual Review of Plant Biology, 2020, 71, 741-765.	8.6	41
93	WDR5a functions in cadmium-inhibited root meristem growth by regulating nitric oxide accumulation in Arabidopsis. Planta, 2020, 252, 78.	1.6	10

#	Article	IF	CITATIONS
94	Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. Plant, Cell and Environment, 2020, 43, 2336-2354.	2.8	18
95	Nitric Oxide Signaling in Plants. Plants, 2020, 9, 1550.	1.6	21
96	The Physiological Implications of S-Nitrosoglutathione Reductase (GSNOR) Activity Mediating NO Signalling in Plant Root Structures. Antioxidants, 2020, 9, 1206.	2.2	11
97	Chlamydomonas reinhardtii, an Algal Model in the Nitrogen Cycle. Plants, 2020, 9, 903.	1.6	22
98	Differential modulation of S-nitrosoglutathione reductase and reactive nitrogen species in wild and cultivated tomato genotypes during development and powdery mildew infection. Plant Physiology and Biochemistry, 2020, 155, 297-310.	2.8	6
99	The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. Plant Physiology and Biochemistry, 2020, 155, 523-534.	2.8	40
100	Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants. Plants, 2020, 9, 1426.	1.6	15
101	Overexpression of the spinach S-nitrosoglutathione reductase (SoGSNOR) in tobacco resulted in enhanced nitrate stress tolerance. Plant Cell, Tissue and Organ Culture, 2020, 143, 173-187.	1.2	2
102	Nitric Oxide Overproduction by cue1 Mutants Differs on Developmental Stages and Growth Conditions. Plants, 2020, 9, 1484.	1.6	7
103	An Update on Nitric Oxide Production and Role Under Phosphorus Scarcity in Plants. Frontiers in Plant Science, 2020, 11, 413.	1.7	20
104	Nitric oxide in cellular adaptation and disease. Redox Biology, 2020, 34, 101550.	3.9	98
105	Nitric oxide under abiotic stress conditions. , 2020, , 735-754.		6
106	Strigolactones Interact With Nitric Oxide in Regulating Root System Architecture of Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 1019.	1.7	30
107	Nitric Oxide Boosts Bemisia tabaci Performance Through the Suppression of Jasmonic Acid Signaling Pathway in Tobacco Plants. Frontiers in Physiology, 2020, 11, 847.	1.3	9
108	Nitrogen Depletion Blocks Growth Stimulation Driven by the Expression of Nitric Oxide Synthase in Tobacco. Frontiers in Plant Science, 2020, 11, 312.	1.7	10
109	Nitric oxide, other reactive signalling compounds, redox, and reductive stress. Journal of Experimental Botany, 2021, 72, 819-829.	2.4	22
110	Nanomaterial-mediated sustainable hydrogen supply induces lateral root formation via nitrate reductase-dependent nitric oxide. Chemical Engineering Journal, 2021, 405, 126905.	6.6	27
111	Unravelling ties in the nitrogen network: Polyamines and nitric oxide emerging as essential players in signalling roadway. Annals of Applied Biology, 2021, 178, 192-208.	1.3	12

#	Article	IF	Citations
112	The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. Journal of Experimental Botany, 2021, 72, 885-903.	2.4	17
113	The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. Journal of Experimental Botany, 2021, 72, 793-807.	2.4	17
114	Nitric oxide signaling in the plant nucleus: the function of nitric oxide in chromatin modulation and transcription. Journal of Experimental Botany, 2021, 72, 808-818.	2.4	10
115	The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava. Plant Biotechnology Journal, 2021, 19, 785-800.	4.1	25
116	Nitrate reductases and hemoglobins control nitrogen-fixing symbiosis by regulating nitric oxide accumulation. Journal of Experimental Botany, 2021, 72, 873-884.	2.4	15
117	Nitric oxide production and signalling in algae. Journal of Experimental Botany, 2021, 72, 781-792.	2.4	25
118	Nitric Oxide, an Essential Intermediate in the Plant–Herbivore Interaction. Frontiers in Plant Science, 2020, 11, 620086.	1.7	14
119	Nitric oxide synthase in plants—A follow-up of ABR volume 77: Nitric oxide and signaling in plants. Advances in Botanical Research, 2021, 100, 379-395.	0.5	1
120	Implication of Nitric Oxide Under Salinity Stress: The Possible Interaction with Other Signaling Molecules. Journal of Plant Growth Regulation, 2022, 41, 163-177.	2.8	24
121	Functional Interaction of Hydrogen Sulfide with Nitric Oxide, Calcium, and Reactive Oxygen Species Under Abiotic Stress in Plants. Plant in Challenging Environments, 2021, , 31-57.	0.4	2
122	The Emerging Role of GSNOR in Oxidative Stress Regulation. Trends in Plant Science, 2021, 26, 156-168.	4.3	34
123	Rhizobia: highways to NO. Biochemical Society Transactions, 2021, 49, 495-505.	1.6	1
124	Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. Journal of Experimental Botany, 2021, 72, 848-863.	2.4	31
125	Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environmental Pollution, 2021, 273, 116486.	3.7	54
126	Induction of <i>S</i> -nitrosoglutathione reductase protects root growth from ammonium toxicity by regulating potassium homeostasis in Arabidopsis and rice. Journal of Experimental Botany, 2021, 72, 4548-4564.	2.4	21
127	Molecular functions of nitric oxide and its potential applications in horticultural crops. Horticulture Research, 2021, 8, 71.	2.9	54
128	Role of NO Synthesis Modification in the Protective Effect of Putrescine in Wheat Seedlings Subjected to Heat Stress. Applied Biochemistry and Microbiology, 2021, 57, 384-391.	0.3	7
129	Nitric Oxide as a Key Gasotransmitter in Fruit Postharvest: An Overview. Journal of Plant Growth Regulation, 2021, 40, 2286-2302.	2.8	18

#	ARTICLE	IF	CITATIONS
130	Cyanobacterial NOS expression improves nitrogen use efficiency, nitrogen-deficiency tolerance and yield in Arabidopsis. Plant Science, 2021, 307, 110860.	1.7	4
131	Involvement of Nitrate Reductase and Nitric Oxide (NO) in Implementation of the Stress-Protective Action of a Carbon Monoxide (CO) Donor on Wheat Seedlings under Hyperthermy. Russian Journal of Plant Physiology, 2021, 68, 688-695.	0.5	6
132	Evidence for an arginineâ€dependent route for the synthesis of <scp>NO</scp> in the model filamentous fungus <i>Aspergillus nidulans</i> . Environmental Microbiology, 2021, 23, 6924-6939.	1.8	9
133	Nitric oxide synthases from photosynthetic microorganisms. , 2022, , 753-767.		0
134	Nitric oxide synthase in the plant kingdom. , 2022, , 43-52.		3
135	Role of NO in lichens. , 2022, , 407-429.		0
136	Nitrate reductase dependent synthesis of NO in plants. , 2022, , 95-110.		3
137	Overview of nitric oxide homeostasis. , 2022, , 3-41.		2
138	Nitric Oxide: A Key Modulator of Plant Responses Under Environmental Stress. , 2021, , 301-328.		2
139	Nitric Oxide Balance in Health and Diseases: Implications for New Treatment Strategies. The Open Biochemistry Journal, 2020, 14, 25-32.	0.3	6
140	What does Idquo NO-Synthase rdquo stand for. Frontiers in Bioscience - Landmark, 2019, 24, 133-171.	3.0	24
141	The Antioxidant Power of Arginine/Nitric Oxide Attenuates Damage Induced by Methyl Viologen Herbicides in Plant Cells. , 2016, , 349-363.		1
143	cGMP Signal Transduction in Plant Cells: Metabolisms, Functions, Control of Gene Expression by cGMP and Relationships with NO. Kagaku To Seibutsu, 2018, 56, 104-110.	0.0	0
144	Nitric Oxide: A Tiny Decoder and Transmitter of Information. , 2019, , 311-322.		0
145	Carbon monoxide (CO) in plants: participation in cell signaling and adaptive reactions. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ Bìologiâ, 2020, 2020, 35-53.	0.1	0
146	Chimera of Globin/Nitric Oxide Synthase: Toward Improving Nitric Oxide Homeostasis and Nitrogen Recycling and Availability. Frontiers in Plant Science, 2020, 11, 575651.	1.7	5
147	Induction of plants resistance to influence of abiotic stressors by exogenous brassinosteroids. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serì¢ Bìologiâ, 2020, 2020, 6-36.	0.1	1
149	Nitrate Signaling in Plants: Evolutionary Aspects. Russian Journal of Plant Physiology, 2022, 69, 1.	0.5	0

#	ARTICLE	IF	CITATIONS
150	NO source in higher plants: present and future of an unresolved question. Trends in Plant Science, 2022, 27, 116-119.	4.3	33
151	Nitric oxide regulation of plant metabolism. Molecular Plant, 2022, 15, 228-242.	3.9	61
153	Protein Tyrosine Nitration in Plant Nitric Oxide Signaling. Frontiers in Plant Science, 2022, 13, 859374.	1.7	8
154	â€~ <i>Candidatus</i> Liberibacter asiaticus'-Encoded BCP Peroxiredoxin Suppresses Lipopolysaccharide-Mediated Defense Signaling and Nitrosative Stress In Planta. Molecular Plant-Microbe Interactions, 2022, 35, 257-273.	1.4	5
155	Identification of Partner Proteins of the Algae Klebsormidium nitens NO Synthases: Toward a Better Understanding of NO Signaling in Eukaryotic Photosynthetic Organisms. Frontiers in Plant Science, 2021, 12, 797451.	1.7	4
163	Arginine-Dependent Nitric Oxide Generation and S-Nitrosation in the Non-Photosynthetic Unicellular Alga Polytomella parva. Antioxidants, 2022, 11, 949.	2.2	3
166	æ ♥ ‰©ä¸€æ°§åŒ−æ°®å•̂æ^뻣谢与信å•转导ç"究迸展与展望. Scientia Sinica Vitae, 2022, , .	0.1	0
167	The Evolution of Nitric Oxide Function: From Reactivity in the Prebiotic Earth to Examples of Biological Roles and Therapeutic Applications. Antioxidants, 2022, 11, 1222.	2.2	6
168	<scp>MSD2</scp> â€mediated <scp>ROS</scp> metabolism fineâ€tunes the timing of floral organ abscission in Arabidopsis. New Phytologist, 2022, 235, 2466-2480.	3.5	8
169	The Role of Nitric Oxide Signaling in Plant Responses to Cadmium Stress. International Journal of Molecular Sciences, 2022, 23, 6901.	1.8	25
170	Iterative analysis of metabolic modulation in the cyanobacterium Aphanizomenon flos-aquae 2012 KM1/D3 upon nitric oxide synthase derived NO induction. Environmental and Experimental Botany, 2022, 201, 104967.	2.0	8
171	Role of Nitric Oxide of Bacterial Origin in the <i>Medicago truncatula–Sinorhizobium meliloti</i> Symbiosis. Molecular Plant-Microbe Interactions, 2022, 35, 887-892.	1.4	5
172	Current Concepts of the Mechanisms of Nitric Oxide Formation in Plants. Russian Journal of Plant Physiology, 2022, 69, .	0.5	2
173	Role of nitric oxide in adventitious root formation. , 2023, , 329-342.		0
174	Innovative Hybrid-Alignment Annotation Method for Bioinformatics Identification and Functional Verification of a Novel Nitric Oxide Synthase in Trichomonas vaginalis. Biology, 2022, 11, 1210.	1.3	0
175	Nitric oxide mediated alleviation of abiotic challenges in plants. Nitric Oxide - Biology and Chemistry, 2022, 128, 37-49.	1.2	11
176	Nitric Oxide, Nitric Oxide Formers and Their Physiological Impacts in Bacteria. International Journal of Molecular Sciences, 2022, 23, 10778.	1.8	7
177	Gasotransmitters in Plants: Mechanisms of Participation in Adaptive Responses. Open Agriculture Journal, 2022, 16, .	0.3	9

#	ARTICLE	IF	CITATIONS
178	Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. Journal of Experimental Botany, 2022, 73, 7219-7242.	2.4	3
179	Auxin Crosstalk with Reactive Oxygen and Nitrogen Species in Plant Development and Abiotic Stress. Plant and Cell Physiology, 2023, 63, 1814-1825.	1.5	13
180	Expanding roles for S-nitrosylation in the regulation of plant immunity. Free Radical Biology and Medicine, 2023, 194, 357-368.	1.3	4
181	The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. Frontiers in Plant Science, 0, 14 , .	1.7	13
182	Nitrogen metabolism in Chlamydomonas. , 2023, , 99-128.		4
183	Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions. International Journal of Molecular Sciences, 2023, 24, 4782.	1.8	26
184	Cellular Mechanisms of the Formation of Plant Adaptive Responses to High Temperatures. Cytology and Genetics, 2023, 57, 55-75.	0.2	4
185	Participation of Nitric Oxide in the Regulation of Plants' Development and Their Resistance to Water Deficit. Russian Journal of Plant Physiology, 2023, 70, .	0.5	2
189	Reactive Nitrogen Species in Plant Metabolism. Progress in Botany Fortschritte Der Botanik, 2023, , .	0.1	0
193	Nitric oxide biosynthesis under stressful environments. , 2023, , 17-30.		0
194	Nutrients homeostasis and nitric oxide in plants. , 2023, , 201-215.		0
200	Chemical biology of reactive nitrogen species (RNS) and its application in postharvest horticultural crops. , 2024, , 75-110.		0
201	Compartmentalization in the production of ROS and RNS in horticultural crops., 2024, , 141-162.		0
205	Understanding the Role of Nitric Oxide and Its Interactive Effects with Phytohormones in Mitigation of Salinity Stress. Plant in Challenging Environments, 2023, , 121-145.	0.4	0
211	Nitric oxide synthases in cyanobacteria: an overview on their occurrence, structure, and function., 2024,, 233-254.		0
213	Strigolactones interplay with signaling molecules of plant. , 2024, , 127-145.		0