Hybrid Lightâ
 ${\ensuremath{\mathbb C}}^{\ensuremath{\mathbb C}}$ Matter States in a Molecular and Mater

Accounts of Chemical Research 49, 2403-2412 DOI: 10.1021/acs.accounts.6b00295

Citation Report

#	Article	IF	CITATIONS
1	Vibrational Strong Coupling of Organometallic Complexes. Journal of Physical Chemistry C, 2016, 120, 28138-28143.	1.5	57
2	High-Efficiency Second-Harmonic Generation from Hybrid Light-Matter States. Nano Letters, 2016, 16, 7352-7356.	4.5	90
3	Molecular Plasmonics: Strong Coupling at the Low Molecular Density Limit. Journal of Physical Chemistry C, 2017, 121, 14819-14825.	1.5	10
4	Energy Transfer between Spatially Separated Entangled Molecules. Angewandte Chemie - International Edition, 2017, 56, 9034-9038.	7.2	274
5	What's so Hot about Electrons in Metal Nanoparticles?. ACS Energy Letters, 2017, 2, 1641-1653.	8.8	341
6	Many-Molecule Reaction Triggered by a Single Photon in Polaritonic Chemistry. Physical Review Letters, 2017, 119, 136001.	2.9	121
7	Inducing Multiple Reactions with a Single Photon. Physics Magazine, 2017, 10, .	0.1	1
8	Optics of exciton-plasmon nanomaterials. Journal of Physics Condensed Matter, 2017, 29, 443003.	0.7	73
9	Strong Exciton–Photon Coupling in a Nanographene Filled Microcavity. Nano Letters, 2017, 17, 5521-5525.	4.5	30
10	Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. Journal of Chemical Theory and Computation, 2017, 13, 4324-4335.	2.3	123
11	Energy Transfer between Spatially Separated Entangled Molecules. Angewandte Chemie, 2017, 129, 9162-9166.	1.6	23
12	A Nanophotonic Structure Containing Living Photosynthetic Bacteria. Small, 2017, 13, 1701777.	5.2	46
13	Carbon Dots–Plasmonics Coupling Enables Energy Transfer and Provides Unique Chemical Signatures. Journal of Physical Chemistry Letters, 2017, 8, 6080-6085.	2.1	11
14	Voltageâ€Controlled Switching of Strong Light–Matter Interactions using Liquid Crystals. Chemistry - A European Journal, 2017, 23, 18166-18170.	1.7	50
15	Hybrid States of Biomolecules in Strong-Coupling Regime. Nanotechnologies in Russia, 2017, 12, 327-337.	0.7	1
16	Exact functionals for correlated electron–photon systems. New Journal of Physics, 2017, 19, 113036.	1.2	19
17	Monitoring polariton dynamics in the LHCII photosynthetic antenna in a microcavity by two-photon coincidence counting. Journal of Chemical Physics, 2018, 148, 074302.	1.2	26
18	From a quantum-electrodynamical light–matter description to novel spectroscopies. Nature Reviews Chemistry, 2018, 2, .	13.8	182

#	Article	IF	CITATIONS
19	Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State. ACS Photonics, 2018, 5, 992-1005.	3.2	96
20	Two-dimensional infrared spectroscopy of vibrational polaritons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4845-4850.	3.3	143
21	Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Science and Applications, 2018, 7, 17172-17172.	7.7	257
22	Surface-Enhanced Molecular Electron Energy Loss Spectroscopy. ACS Nano, 2018, 12, 4775-4786.	7.3	35
23	Coherent dynamics in cavity femtochemistry: Application of the multi-configuration time-dependent Hartree method. Chemical Physics, 2018, 509, 55-65.	0.9	75
24	Multidimensional photon correlation spectroscopy of cavity polaritons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1451-1456.	3.3	23
25	Light–matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale, 2018, 10, 3589-3605.	2.8	179
26	Ultrastrong Coupling of Electrically Pumped Nearâ€Infrared Excitonâ€Polaritons in High Mobility Polymers. Advanced Optical Materials, 2018, 6, 1700962.	3.6	38
27	Long-Range Transport of Organic Exciton-Polaritons Revealed by Ultrafast Microscopy. ACS Photonics, 2018, 5, 105-110.	3.2	105
28	Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling. ACS Nano, 2018, 12, 402-415.	7.3	71
29	Fabrication of 3D nanovolcano-shaped nanopores with helium ion microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 011603.	0.6	9
30	Collective effect of light-induced and natural nonadiabatic phenomena in the dissociation dynamics of the Nal molecule. Chemical Physics, 2018, 509, 91-97.	0.9	8
31	Ultrafast Transmission Modulation and Recovery via Vibrational Strong Coupling. Journal of Physical Chemistry A, 2018, 122, 965-971.	1.1	55
32	Room temperature magnetism in CeO 2 —A review. Physics Reports, 2018, 746, 1-39.	10.3	70
33	Overwhelming Analogies between Plasmon Hybridization Theory and Molecular Orbital Theory Revealed: The Story of Plasmonic Heterodimers. Journal of Physical Chemistry C, 2018, 122, 7382-7388.	1.5	16
34	Polariton-Assisted Singlet Fission in Acene Aggregates. Journal of Physical Chemistry Letters, 2018, 9, 1951-1957.	2.1	106
35	Theory of Nanoscale Organic Cavities: The Essential Role of Vibration-Photon Dressed States. ACS Photonics, 2018, 5, 65-79.	3.2	88
36	Polaritonic Chemistry with Organic Molecules. ACS Photonics, 2018, 5, 205-216.	3.2	295

ARTICLE IF CITATIONS # Electronic Lightâ€"Matter Strong Coupling in Nanofluidic Fabryâ€"Pérot Cavities. ACS Photonics, 2018, 5, 37 3.2 28 225-232. Vibro-Polaritonic IR Emission in the Strong Coupling Regime. ACS Photonics, 2018, 5, 217-224. 3.2 34 Differential Wavevector Distribution of Surface-Enhanced Raman Scattering and Fluorescence in a 39 4.5 34 Film-Coupled Plasmonic Nanowire Cavity. Nano Letters, 2018, 18, 650-655. Photon-mediated hybridization of molecular vibrational states. Physical Chemistry Chemical Physics, 2018, 20, 850-857. Lightâ€"matter interaction in the long-wavelength limit: no ground-state without dipole self-energy. 41 0.6 132 Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 034005. Null Exciton Splitting in Chromophoric Greek Crossâ€...(+) Aggregate. Angewandte Chemie, 2018, 130, 1.6 15922-15927 Manipulation of the dephasing time by strong coupling between localized and propagating surface 43 5.8 85 plasmon modes. Nature Communications, 2018, 9, 4858. Null Exciton Splitting in Chromophoric Greek Crossâ€...(+) Aggregate. Angewandte Chemie - International 44 7.2 68 Edition, 2018, 57, 15696-15701. Reproduction of surface-enhanced resonant Raman scattering and fluorescence spectra of a strong 45 coupling system composed of a single silver nanoparticle dimer and a few dye molecules. Journal of 1.2 20 Chemical Physics, 2018, 149, 244701. Conserving approximations in cavity quantum electrodynamics: Implications for density functional 1.1 theory of electron-photon systems. Physical Review B, 2018, 98, Collective Jahn-Teller Interactions through Light-Matter Coupling in a Cavity. Physical Review Letters, 47 2.9 75 2018, 121, 253001. Room-Temperature Optical Picocavities below 1 nm³ Accessing Single-Atom Geometries. 2.1 48 88 Journal of Physical Chemistry Letters, 2018, 9, 7146-7151. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its 49 4.7 140 influénce on superconductivity. Science Advances, 2018, 4, eaau6969. Near-Field Spectroscopy of Nanoscale Molecular Aggregates. Journal of Physical Chemistry Letters, 2.1 2018, 9, 6003-6010. Strong Light–Matter Coupling as a New Tool for Molecular and Material Engineering: Quantum 51 1.8 41 Approach. Advanced Quantum Technologies, 2018, 1, 1800001. <i>Ab initio</i>>nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum 126 optics from weak to strong coupling. Physical Réview A, 2018, 98, Angle-Independent Polariton Emission Lifetime Shown by Perylene Hybridized to the Vacuum Field 53 1.522 Inside a Fabry–Pérot Cavity. Journal of Physical Chemistry C, 2018, 122, 24917-24923. Conical Intersections Induced by Quantum Light: Field-Dressed Spectra from the Weak to the 54 2.1 Ultrastrong Coupling Regimes. Journal of Physical Chemistry Letters, 2018, 9, 6215-6223.

#	Article	IF	CITATIONS
55	Molecular Emission near Metal Interfaces: The Polaritonic Regime. Journal of Physical Chemistry Letters, 2018, 9, 6511-6516.	2.1	17
56	Cavity-Correlated Electron-Nuclear Dynamics from First Principles. Physical Review Letters, 2018, 121, 113002.	2.9	80
57	Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces. ACS Photonics, 2018, 5, 4046-4055.	3.2	37
58	Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics, 2018, 7, 1479-1501.	2.9	181
59	Control of Strong Light–Matter Interaction in Monolayer WS ₂ through Electric Field Gating. Nano Letters, 2018, 18, 6455-6460.	4.5	72
60	Shedding light on correlated electron–photon states using the exact factorization. European Physical Journal B, 2018, 91, 1.	0.6	23
61	A versatile tunable microcavity for investigation of light–matter interaction. Review of Scientific Instruments, 2018, 89, 053105.	0.6	9
62	Theory for Nonlinear Spectroscopy of Vibrational Polaritons. Journal of Physical Chemistry Letters, 2018, 9, 3766-3771.	2.1	72
63	Strong coupling in a microcavity containing \hat{I}^2 -carotene. Optics Express, 2018, 26, 3320.	1.7	10
64	Spatially resolved measurement of plasmon dispersion using Fourier-plane spectral imaging. Photonics Research, 2018, 6, 653.	3.4	4
65	Spectroscopic studies of dye-doped porous alumina membranes. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1785.	0.9	4
66	As good as gold and better: conducting metal oxide materials for mid-infrared plasmonic applications. Journal of Materials Chemistry C, 2018, 6, 8326-8342.	2.7	46
67	Surface Plasmon Polariton-Controlled Molecular Switch. Journal of Physical Chemistry C, 2018, 122, 20083-20089.	1.5	12
68	Dynamics of Strongly Coupled Hybrid States by Transient Absorption Spectroscopy. Advanced Functional Materials, 2018, 28, 1801761.	7.8	17
69	Coherent Light Harvesting through Strong Coupling to Confined Light. Journal of Physical Chemistry Letters, 2018, 9, 4848-4851.	2.1	63
70	Light-matter interactions via the exact factorization approach. European Physical Journal B, 2018, 91, 1.	0.6	44
71	Selective manipulation of electronically excited states through strong light–matter interactions. Nature Communications, 2018, 9, 2273.	5.8	155
72	Using a Fabry–Perot Cavity to Augment the Enhancement Factor for Surface-Enhanced Raman Spectroscopy and Tip-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 14865-14871.	1.5	17

#	Article	IF	CITATIONS
73	Polariton chemistry: controlling molecular dynamics with optical cavities. Chemical Science, 2018, 9, 6325-6339.	3.7	403
74	Shaping excitons in light-harvesting proteins through nanoplasmonics. Chemical Science, 2018, 9, 6219-6227.	3.7	9
75	Strong light-matter coupling for reduced photon energy losses in organic photovoltaics. Nature Communications, 2019, 10, 3706.	5.8	72
76	Strong exciton—photon coupling in anthradithiophene microcavities: from isolated molecules to aggregates. MRS Communications, 2019, 9, 956-963.	0.8	5
77	From Optical to Chemical Hot Spots in Plasmonics. Accounts of Chemical Research, 2019, 52, 2525-2535.	7.6	131
78	Enhanced Delayed Fluorescence in Tetracene Crystals by Strong Lightâ€Matter Coupling. Advanced Functional Materials, 2019, 29, 1901317.	7.8	33
79	Enhanced exciton transport in an optical cavity field with spatially varying profile. Physical Review E, 2019, 100, 012125.	0.8	3
80	Cavity-Modified Exciton Dynamics in Photosynthetic Units. Journal of Physical Chemistry Letters, 2019, 10, 4252-4258.	2.1	17
81	Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nature Communications, 2019, 10, 3248.	5.8	85
82	Quantum Electrodynamical Bloch Theory with Homogeneous Magnetic Fields. Physical Review Letters, 2019, 123, 047202.	2.9	30
83	Ultrafast dynamics in the vicinity of quantum light-induced conical intersections. New Journal of Physics, 2019, 21, 093040.	1.2	36
84	Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions. Journal of Chemical Physics, 2019, 151, 154109.	1.2	24
85	Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nature Communications, 2019, 10, 4685.	5.8	144
86	Hybrid plasmonic metasurfaces. Journal of Applied Physics, 2019, 126, .	1.1	19
87	Propagating Hybrid Tamm Exciton Polaritons in Organic Microcavity. Journal of Physical Chemistry C, 2019, 123, 26509-26515.	1.5	21
88	Multi-level quantum Rabi model for anharmonic vibrational polaritons. Journal of Chemical Physics, 2019, 151, 144116.	1.2	51
89	Modification of Enzyme Activity by Vibrational Strong Coupling of Water. Angewandte Chemie, 2019, 131, 15468-15472.	1.6	21
90	Absorption cross-section spectroscopy of a single strong-coupling system between plasmon and molecular exciton resonance using a single silver nanoparticle dimer generating surface-enhanced resonant Raman scattering. Physical Review B, 2019, 99, .	1.1	17

#	Article	IF	CITATIONS
91	Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2019, 10, 5476-5483.	2.1	100
92	Exact Potential Energy Surface for Molecules in Cavities. Physical Review Letters, 2019, 123, 083201.	2.9	49
93	Singlet fission of amorphous rubrene modulated by polariton formation. Journal of Chemical Physics, 2019, 151, 074703.	1.2	37
94	Modification of Enzyme Activity by Vibrational Strong Coupling of Water. Angewandte Chemie - International Edition, 2019, 58, 15324-15328.	7.2	126
95	Triplet harvesting in the polaritonic regime: A variational polaron approach. Journal of Chemical Physics, 2019, 151, .	1.2	50
96	Reduced Density-Matrix Approach to Strong Matter-Photon Interaction. ACS Photonics, 2019, 6, 2694-2711.	3.2	31
97	Investigating New Reactivities Enabled by Polariton Photochemistry. Journal of Physical Chemistry Letters, 2019, 10, 5519-5529.	2.1	96
98	Tuning Vibrational Strong Coupling with Co-Resonators. ACS Photonics, 2019, 6, 2405-2412.	3.2	21
99	Modifying the Nonradiative Decay Dynamics through Conical Intersections via Collective Coupling to a Cavity Mode. Journal of Physical Chemistry A, 2019, 123, 8832-8844.	1.1	52
100	Light–Matter Response in Nonrelativistic Quantum Electrodynamics. ACS Photonics, 2019, 6, 2757-2778.	3.2	79
101	Strong light–matter interactions: a new direction within chemistry. Chemical Society Reviews, 2019, 48, 937-961.	18.7	260
102	Effect of Strongly Coupled Vibration–Cavity Polaritons on the Bulk Vibrational States within a Wavelength-Scale Cavity. Journal of Physical Chemistry B, 2019, 123, 1302-1306.	1.2	20
103	Hybridization of Multiple Vibrational Modes via Strong Coupling Using Confined Light Fields. Advanced Optical Materials, 2019, 7, 1900403.	3.6	29
104	State-Selective Polariton to Dark State Relaxation Dynamics. Journal of Physical Chemistry A, 2019, 123, 5918-5927.	1.1	65
105	Bimetallic nanostructures: combining plasmonic and catalytic metals for photocatalysis. Advances in Physics: X, 2019, 4, 1619480.	1.5	72
106	Plasmonic Nanocavities Enable Selfâ€Induced Electrostatic Catalysis. Angewandte Chemie, 2019, 131, 8790-8794.	1.6	4
107	Cavity Catalysis by Cooperative Vibrational Strong Coupling of Reactant and Solvent Molecules. Angewandte Chemie - International Edition, 2019, 58, 10635-10638.	7.2	189
108	Cavity Catalysis by Cooperative Vibrational Strong Coupling of Reactant and Solvent Molecules. Angewandte Chemie, 2019, 131, 10745-10748.	1.6	33

#	Article	IF	CITATIONS
109	Magnetism in d0 oxides. Nature Materials, 2019, 18, 652-656.	13.3	72
110	Variational Theory of Nonrelativistic Quantum Electrodynamics. Physical Review Letters, 2019, 122, 193603.	2.9	46
111	Electron transfer in confined electromagnetic fields. Journal of Chemical Physics, 2019, 150, 174122.	1.2	56
112	Hybrid cavity-antenna systems for quantum optics outside the cryostat?. Nanophotonics, 2019, 8, 1513-1531.	2.9	44
113	Cavity Quantum Eliashberg Enhancement of Superconductivity. Physical Review Letters, 2019, 122, 167002.	2.9	90
114	Enhancement of the Electron–Phonon Scattering Induced by Intrinsic Surface Plasmon–Phonon Polaritons. ACS Photonics, 2019, 6, 1073-1081.	3.2	15
115	Remote Control of Chemistry in Optical Cavities. CheM, 2019, 5, 1167-1181.	5.8	68
116	Polariton chemistry: Thinking inside the (photon) box. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5214-5216.	3.3	48
117	Plasmonic Nanocavities Enable Selfâ€Induced Electrostatic Catalysis. Angewandte Chemie - International Edition, 2019, 58, 8698-8702.	7.2	43
118	Spectral Control of an X-Ray <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>L</mml:mi></mml:math> -Edge Transition via a Thin-Film Cavity. Physical Review Letters, 2019, 122, 123608.	2.9	19
119	Cavity-Mediated Electron-Photon Superconductivity. Physical Review Letters, 2019, 122, 133602.	2.9	149
120	Tilting a ground-state reactivity landscape by vibrational strong coupling. Science, 2019, 363, 615-619.	6.0	495
121	Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4883-4892.	3.3	138
122	Strong Light–Matter Coupling in Carbon Nanotubes as a Route to Exciton Brightening. ACS Photonics, 2019, 6, 904-914.	3.2	27
123	One-body reduced density-matrix functional theory in finite basis sets at elevated temperatures. Physics Reports, 2019, 806, 1-47.	10.3	25
124	Polaritonics: from microcavities to sub-wavelength confinement. Nanophotonics, 2019, 8, 641-654.	2.9	47
125	Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications. Advances in Physics, 2019, 68, 225-333.	35.9	54
126	Control of Physical and Chemical Processes with Nonlocal Metal–Dielectric Environments. ACS Photonics, 2019, 6, 3039-3056.	3.2	10

		REFORT	
#	Article	IF	CITATIONS
127	Quantum control with quantum light of molecular nonadiabaticity. Physical Review A, 2019, 100, .	1.0	17
128	Interrogating the Structure of Molecular Cavity Polaritons with Resonance Raman Scattering: An Experimentally Motivated Theoretical Description. Journal of Physical Chemistry C, 2019, 123, 30551-30561.	1.5	12
129	Manipulating optical nonlinearities of molecular polaritons by delocalization. Science Advances, 2019, 5, eaax5196.	4.7	57
130	Near-field analysis of strong coupling between localized surface plasmons and excitons. Physical Review B, 2019, 100, .	1.1	5
131	Hybrid Loss ompensated Plasmonic Device. Advanced Optical Materials, 2019, 7, 1801189.	3.6	2
132	Induced Transparency in Plasmon–Exciton Nanostructures for Sensing Applications. Laser and Photonics Reviews, 2019, 13, 1800176.	4.4	35
133	Strong Coupling in Microcavity Structures: Principle, Design, and Practical Application. Laser and Photonics Reviews, 2019, 13, 1800219.	4.4	45
134	Vacuum-enhanced optical nonlinearities with disordered molecular photoswitches. Physical Review B, 2019, 99, .	1.1	8
135	Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1, 19-40.	11.9	916
136	Superradiant Quantum Materials. Physical Review Letters, 2019, 122, 017401.	2.9	93
137	Semiconducting Singleâ€Walled Carbon Nanotubes or Very Rigid Conjugated Polymers: A Comparison. Advanced Electronic Materials, 2019, 5, 1800514.	2.6	18
138	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
139	Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities. Chemical Science, 2020, 11, 343-354.	3.7	98
140	Manipulating nonadiabatic conical intersection dynamics by optical cavities. Chemical Science, 2020, 11, 1290-1298.	3.7	58
141	Modifying the Spectral Weights of Vibronic Transitions via Strong Coupling to Surface Plasmons. ACS Photonics, 2020, 7, 43-48.	3.2	9
142	Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields. Journal of Physics Condensed Matter, 2020, 32, 125301.	0.7	7
143	Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics, 2020, 9, 249-255.	2.9	71
144	Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems. Nanophotonics, 2020, 9, 295-308.	2.9	23

#	Article	IF	CITATIONS
145	Polarized Fock States and the Dynamical Casimir Effect in Molecular Cavity Quantum Electrodynamics. Journal of Physical Chemistry Letters, 2020, 11, 9215-9223.	2.1	45
146	Cathodoluminescence Nanoscopy of 3D Plasmonic Networks. Nano Letters, 2020, 20, 8205-8211.	4.5	10
147	Role of Cavity Losses on Nonadiabatic Couplings and Dynamics in Polaritonic Chemistry. Journal of Physical Chemistry Letters, 2020, 11, 9063-9069.	2.1	44
148	Entropy Reorders Polariton States. Journal of Physical Chemistry Letters, 2020, 11, 6389-6395.	2.1	42
149	The Role of Long-Lived Excitons in the Dynamics of Strongly Coupled Molecular Polaritons. ACS Photonics, 2020, 7, 2292-2301.	3.2	34
150	Guest-responsive polaritons in a porous framework: chromophoric sponges in optical QED cavities. Chemical Science, 2020, 11, 7972-7978.	3.7	16
151	Virtual Issue on Polaritons in Physical Chemistry. Journal of Physical Chemistry C, 2020, 124, 19875-19879.	1.5	0
152	Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition. Physical Review X, 2020, 10, .	2.8	72
153	Strong Coupling beyond the Light-Line. ACS Photonics, 2020, 7, 2448-2459.	3.2	19
154	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	23.3	136
155	Strongly coupled exciton–plasmon nanohybrids reveal extraordinary resistance to harsh environmental stressors: temperature, pH and irradiation. Nanoscale, 2020, 12, 16875-16883.	2.8	9
156	Collective Mie Exciton-Polaritons in an Atomically Thin Semiconductor. Journal of Physical Chemistry C, 2020, 124, 19196-19203.	1.5	23
157	Conductivity and Photoconductivity of a p-Type Organic Semiconductor under Ultrastrong Coupling. ACS Nano, 2020, 14, 10219-10225.	7.3	56
158	Photoinduced Electron Pairing in a Driven Cavity. Physical Review Letters, 2020, 125, 053602.	2.9	37
159	Recent Progress in Vibropolaritonic Chemistry. ChemPlusChem, 2020, 85, 1981-1988.	1.3	68
160	Dynamics and spectroscopy of molecular ensembles in a lossy microcavity. Journal of Chemical Physics, 2020, 153, 044108.	1.2	40
161	Collective Dissipative Molecule Formation in a Cavity. Physical Review Letters, 2020, 125, 193201.	2.9	12
162	Polaritons and excitons: Hamiltonian design for enhanced coherence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200278	1.0	39

#	Article	IF	CITATIONS
163	Effect of many modes on self-polarization and photochemical suppression in cavities. Journal of Chemical Physics, 2020, 153, 104103.	1.2	44
164	Manipulating Two-Photon-Absorption of Cavity Polaritons by Entangled Light. Journal of Physical Chemistry Letters, 2020, 11, 8177-8182.	2.1	25
165	Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy. Communications Physics, 2020, 3, .	2.0	37
166	Resolution of Gauge Ambiguities in Molecular Cavity Quantum Electrodynamics. Physical Review Letters, 2020, 125, 123602.	2.9	46
167	First principles modeling of exciton-polaritons in polydiacetylene chains. Journal of Chemical Physics, 2020, 153, 084103.	1.2	14
168	<i>Ab initio</i> polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. Journal of Chemical Physics, 2020, 153, 094116.	1.2	44
169	Virial Relations for Electrons Coupled to Quantum Field Modes. Journal of Chemical Theory and Computation, 2020, 16, 6236-6243.	2.3	6
170	Simulating ultrastrong-coupling processes breaking parity conservation in Jaynes-Cummings systems. Physical Review A, 2020, 102, .	1.0	18
171	Chemistry in Quantum Cavities: Exact Results, the Impact of Thermal Velocities, and Modified Dissociation. Journal of Physical Chemistry Letters, 2020, 11, 7525-7530.	2.1	26
172	Photoprotecting Uracil by Coupling with Lossy Nanocavities. Journal of Physical Chemistry Letters, 2020, 11, 8810-8818.	2.1	47
173	Strong Exciton–Photon Coupling in Dyeâ€Đoped Polymer Microcavities. Macromolecular Materials and Engineering, 2020, 305, 2000456.	1.7	1
174	Molecule Detection with Graphene Dimer Nanoantennas. Journal of Physical Chemistry C, 2020, 124, 28210-28219.	1.5	9
175	Theory of molecular emission power spectra. I. Macroscopic quantum electrodynamics formalism. Journal of Chemical Physics, 2020, 153, 184102.	1.2	17
176	Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States. Physical Review X, 2020, 10, .	2.8	102
177	Atoms in separated resonators can jointly absorb a single photon. Scientific Reports, 2020, 10, 21660.	1.6	6
178	Effect of Random Nanostructured Metallic Environments on Spontaneous Emission of HITC Dye. Nanomaterials, 2020, 10, 2135.	1.9	6
179	Polaritonic normal modes in transition state theory. Journal of Chemical Physics, 2020, 152, 161101.	1.2	75
180	The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2020, 74, 1313-1340.	1.2	26

#	Article	IF	CITATIONS
181	Unveiling the molecule–plasmon interactions in surface-enhanced infrared absorption spectroscopy. National Science Review, 2020, 7, 1228-1238.	4.6	17
182	Light–Matter Coupling Strength Controlled by the Orientation of Organic Crystals in Plasmonic Cavities. Journal of Physical Chemistry C, 2020, 124, 12030-12038.	1.5	23
183	Cooperative Conical Intersection Dynamics of Two Pyrazine Molecules in an Optical Cavity. Journal of Physical Chemistry Letters, 2020, 11, 5555-5562.	2.1	32
184	Multimode Vibrational Strong Coupling of Methyl Salicylate to a Fabry–Pérot Microcavity. Journal of Physical Chemistry B, 2020, 124, 5709-5716.	1.2	19
185	Molecular polaritons for controlling chemistry with quantum optics. Journal of Chemical Physics, 2020, 152, 100902.	1.2	186
186	Bose–Einstein Condensation of Exciton-Polaritons in Organic Microcavities. Annual Review of Physical Chemistry, 2020, 71, 435-459.	4.8	84
187	Polariton Transitions in Femtosecond Transient Absorption Studies of Ultrastrong Light–Molecule Coupling. Journal of Physical Chemistry Letters, 2020, 11, 2667-2674.	2.1	60
188	Three-player polaritons: nonadiabatic fingerprints in an entangled atom–molecule–photon system. New Journal of Physics, 2020, 22, 053001.	1.2	10
189	On the Role of Symmetry in Vibrational Strong Coupling: The Case of Chargeâ€Transfer Complexation. Angewandte Chemie - International Edition, 2020, 59, 10436-10440.	7.2	57
190	Vacuum field in a cavity, light-mediated vibrational coupling, and chemical reactivity. Chemical Physics, 2020, 535, 110767.	0.9	43
191	Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. Journal of Chemical Physics, 2020, 152, 124119.	1.2	210
192	Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics. Journal of Physical Chemistry B, 2020, 124, 6321-6340.	1.2	90
193	Exploiting chemistry and molecular systems for quantum information science. Nature Reviews Chemistry, 2020, 4, 490-504.	13.8	247
194	Controlling the nonadiabatic electron-transfer reaction rate through molecular-vibration polaritons in the ultrastrong coupling regime. Scientific Reports, 2020, 10, 7318.	1.6	29
195	Anti-crossing property of strong coupling system of silver nanoparticle dimers coated with thin dye molecular films analyzed by electromagnetism. Journal of Chemical Physics, 2020, 152, 054710.	1.2	12
196	Decoupling from a Thermal Bath via Molecular Polariton Formation. Journal of Physical Chemistry Letters, 2020, 11, 1349-1356.	2.1	22
197	Vibrational Coupling to Epsilon-Near-Zero Waveguide Modes. ACS Photonics, 2020, 7, 614-621.	3.2	35
198	Molecular Monolayer Strong Coupling in Dielectric Soft Microcavities. Nano Letters, 2020, 20, 1766-1773	4.5	21

#	Article	IF	CITATIONS
199	Relevance of the Quadratic Diamagnetic and Self-Polarization Terms in Cavity Quantum Electrodynamics. ACS Photonics, 2020, 7, 975-990.	3.2	105
200	Promoting heterogeneous catalysis beyond catalyst design. Chemical Science, 2020, 11, 1456-1468.	3.7	66
201	Modulation of Prins Cyclization by Vibrational Strong Coupling. Angewandte Chemie, 2020, 132, 5370-5373.	1.6	26
202	Quantum Control of Ultrafast Internal Conversion Using Nanoconfined Virtual Photons. Journal of Physical Chemistry Letters, 2020, 11, 1013-1021.	2.1	31
203	Molecular Semiconductors for Logic Operations: Deadâ€End or Bright Future?. Advanced Materials, 2020, 32, e1905909.	11.1	135
204	Modulation of Prins Cyclization by Vibrational Strong Coupling. Angewandte Chemie - International Edition, 2020, 59, 5332-5335.	7.2	83
205	Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nature Reviews Physics, 2020, 2, 253-271.	11.9	309
206	The Effect of Coupling Mode in the Vibrational Strong Coupling Regime. ChemPhotoChem, 2020, 4, 612-617.	1.5	19
207	Controlling Quantum Pathways in Molecular Vibrational Polaritons. ACS Photonics, 2020, 7, 919-924.	3.2	25
208	Collective Rayleigh Scattering from Molecular Ensembles under Strong Coupling. Journal of Physical Chemistry Letters, 2020, 11, 3803-3808.	2.1	9
209	On the Role of Symmetry in Vibrational Strong Coupling: The Case of Chargeâ€Transfer Complexation. Angewandte Chemie, 2020, 132, 10522-10526.	1.6	13
210	Mesoscopic orbital paramagnetism: The role of zero-point energy. Journal of Magnetism and Magnetic Materials, 2021, 520, 167366.	1.0	1
211	Born–Oppenheimer approximation in optical cavities: from success to breakdown. Chemical Science, 2021, 12, 1251-1258.	3.7	27
212	Modifying Woodward–Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angewandte Chemie - International Edition, 2021, 60, 5712-5717.	7.2	48
213	Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nature Photonics, 2021, 15, 125-130.	15.6	78
214	Quantum Information and Algorithms for Correlated Quantum Matter. Chemical Reviews, 2021, 121, 3061-3120.	23.0	67
215	Modifying Woodward–Hoffmann Stereoselectivity Under Vibrational Strong Coupling. Angewandte Chemie, 2021, 133, 5776-5781.	1.6	13
216	Engineering Giant Rabi Splitting via Strong Coupling between Localized and Propagating Plasmon Modes on Metal Surface Lattices: Observation of <i>â^šN</i> Scaling Rule. Nano Letters, 2021, 21, 605-611.	4.5	17

#	Article	IF	CITATIONS
217	Excitons bound by photon exchange. Nature Physics, 2021, 17, 31-35.	6.5	25
218	Abundance of cavity-free polaritonic states in resonant materials and nanostructures. Journal of Chemical Physics, 2021, 154, 024701.	1.2	33
219	Cavity-enhanced light–matter interaction in Vogel-spiral devices as a platform for quantum photonics. Applied Physics Letters, 2021, 118, .	1.5	12
220	Polariton induced conical intersection and berry phase. Physical Chemistry Chemical Physics, 2021, 23, 16868-16879.	1.3	18
221	Cavity-modified Chemistry: Towards Vacuum-field Catalysis. RSC Theoretical and Computational Chemistry Series, 2021, , 343-393.	0.7	8
222	Ring polymer quantization of the photon field in polariton chemistry. Journal of Chemical Physics, 2021, 154, 044109.	1.2	22
223	Selective switching of multiple plexcitons in colloidal materials: directing the energy flow at the nanoscale. Nanoscale, 2021, 13, 6005-6015.	2.8	12
224	Ultrafast thermal modification of strong coupling in an organic microcavity. APL Photonics, 2021, 6, 016103.	3.0	9
225	Scouting for strong light–matter coupling signatures in Raman spectra. Physical Chemistry Chemical Physics, 2021, 23, 16837-16846.	1.3	14
226	Between plasmonics and surface-enhanced resonant Raman spectroscopy: toward single-molecule strong coupling at a hotspot. Nanoscale, 2021, 13, 1566-1580.	2.8	27
227	Nanoporous gold nanoleaf as tunable metamaterial. Scientific Reports, 2021, 11, 1795.	1.6	3
228	Enhancing Vibrational Light–Matter Coupling Strength beyond the Molecular Concentration Limit Using Plasmonic Arrays. Nano Letters, 2021, 21, 1320-1326.	4.5	20
229	Selective crystallization <i>via</i> vibrational strong coupling. Chemical Science, 2021, 12, 11986-11994.	3.7	29
230	Coupled plasmonic systems: controlling the plasmon dynamics and spectral modulations for molecular detection. Nanoscale, 2021, 13, 5187-5201.	2.8	11
231	Joint Effects of Exciton–Exciton and Exciton–Photon Couplings on the Singlet Fission Dynamics in Organic Aggregates. Journal of Physical Chemistry C, 2021, 125, 1654-1664.	1.5	15
232	Large-Scale Soft-Lithographic Patterning of Plasmonic Nanoparticles. , 2021, 3, 282-289.		11
233	A quantum optics approach to photoinduced electron transfer in cavities. Journal of Chemical Physics, 2021, 154, 054104.	1.2	16
234	Strongly Coupled Systems for Nonlinear Optics. Laser and Photonics Reviews, 2021, 15, 2000514.	4.4	31

#	Article	IF	CITATIONS
235	Optical-Cavity Manipulation of Conical Intersections and Singlet Fission in Pentacene Dimers. Journal of Physical Chemistry Letters, 2021, 12, 2052-2056.	2.1	30
236	Reflected phonons reveal strong coupling. Nature Photonics, 2021, 15, 169-170.	15.6	9
237	Cavity frequency-dependent theory for vibrational polariton chemistry. Nature Communications, 2021, 12, 1315.	5.8	122
238	Nonadiabatic phenomena in molecular vibrational polaritons. Journal of Chemical Physics, 2021, 154, 064305.	1.2	11
239	Manipulating Core Excitations in Molecules by X-Ray Cavities. Physical Review Letters, 2021, 126, 053201.	2.9	13
240	Electromagnetic Field Dependence of Strong Coupling in WS ₂ Monolayers. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000580.	1.2	8
241	Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling. Journal of Chemical Physics, 2021, 154, 094109.	1.2	9
242	Polar diatomic molecules in optical cavities: Photon scaling, rotational effects, and comparison with classical fields. Journal of Chemical Physics, 2021, 154, 094120.	1.2	10
243	Quantum–classical nonadiabatic dynamics of Floquet driven systems. Journal of Chemical Physics, 2021, 154, 114101.	1.2	14
244	Multi-scale dynamics simulations of molecular polaritons: The effect of multiple cavity modes on polariton relaxation. Journal of Chemical Physics, 2021, 154, 104112.	1.2	50
245	Photoisomerization Efficiency of a Solar Thermal Fuel in the Strong Coupling Regime. Advanced Functional Materials, 2021, 31, 2010737.	7.8	32
246	Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory. Journal of Chemical Physics, 2021, 154, 094112.	1.2	44
247	Light–matter interaction of a molecule in a dissipative cavity from first principles. Journal of Chemical Physics, 2021, 154, 104109.	1.2	35
248	Polariton-assisted excitation energy channeling in organic heterojunctions. Nature Communications, 2021, 12, 1874.	5.8	42
249	Observation of photon-mode decoupling in a strongly coupled multimode microcavity. Journal of Chemical Physics, 2021, 154, 124309.	1.2	11
250	Vibrational Strong Coupling in Subwavelength Nanogap Patch Antenna at the Single Resonator Level. Journal of Physical Chemistry Letters, 2021, 12, 3171-3175.	2.1	18
251	Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Cavity-Modified Molecular Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 3163-3170.	2.1	17
252	Plasmonic Split-Trench Resonator for Trapping and Sensing. ACS Nano, 2021, 15, 6669-6677.	7.3	17

#	Article	IF	CITATIONS
253	Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System. Nano Letters, 2021, 21, 2596-2602.	4.5	21
254	Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities. Journal of Chemical Physics, 2021, 154, 104311.	1.2	31
255	Resonant Enhancement of Cavity Exciton–Polaritons via a Fano-Type Interaction in Organic Microcavities. ACS Photonics, 2021, 8, 1034-1040.	3.2	1
256	Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths. Physical Review Letters, 2021, 126, 153603.	2.9	44
257	Polariton Chemistry in Cavity Vacuum Fields. Chemistry Letters, 2021, 50, 727-732.	0.7	1
258	Vibrational strong coupling between Tamm phonon polaritons and organic molecules. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1505.	0.9	0
259	Evolutionary optimization of light-matter coupling in open plasmonic cavities. Journal of Chemical Physics, 2021, 154, 134110.	1.2	7
260	Understanding radiative transitions and relaxation pathways in plexcitons. CheM, 2021, 7, 1092-1107.	5.8	28
261	Boosting Self-interaction of Molecular Vibrations under Ultrastrong Coupling Condition. Journal of Physical Chemistry Letters, 2021, 12, 4313-4318.	2.1	13
262	Charge-transfer chemical reactions in nanofluidic Fabry-Pérot cavities. Physical Review B, 2021, 103, .	1.1	13
263	Quantum Plasmonics: Energy Transport Through Plasmonic Gap. Advanced Materials, 2021, 33, e2006606.	11.1	19
264	Effect of molecular Stokes shift on polariton dynamics. Journal of Chemical Physics, 2021, 154, 154303.	1.2	23
265	Large Enhancement of Ferromagnetism under a Collective Strong Coupling of YBCO Nanoparticles. Nano Letters, 2021, 21, 4365-4370.	4.5	40
266	Analysis of the Forward and Reverse Strongly Coupled States on the Nonradiative Energy Transfer Effect. Journal of Physical Chemistry Letters, 2021, 12, 4944-4950.	2.1	3
267	Near-Perfect Absorption of Light by Coherent Plasmon–Exciton States. Nano Letters, 2021, 21, 3864-3870.	4.5	8
268	Molecular Polaritons Generated from Strong Coupling between CdSe Nanoplatelets and a Dielectric Optical Cavity. Journal of Physical Chemistry Letters, 2021, 12, 5030-5038.	2.1	18
270	Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime. Journal of Chemical Physics, 2021, 154, 191103.	1.2	63
271	Polaritonic States of Matter in a Rotating Cavity. Journal of Physical Chemistry Letters, 2021, 12, 6056-6061.	2.1	9

#	Article	IF	CITATIONS
273	2D Electronic Spectroscopic Techniques for Quantum Technology Applications. Journal of Physical Chemistry C, 2021, 125, 13096-13108.	1.5	39
274	Vacuum-Deposited Microcavity Perovskite Photovoltaic Devices. ACS Photonics, 2021, 8, 2067-2073.	3.2	6
275	Generalization of the Tavis–Cummings model for multi-level anharmonic systems. New Journal of Physics, 2021, 23, 063081.	1.2	16
276	Coupling and decoupling of polaritonic states in multimode cavities. Physical Review B, 2021, 103, .	1.1	13
277	Second harmonic generation by strongly coupled exciton–plasmons: The role of polaritonic states in nonlinear dynamics. Journal of Chemical Physics, 2021, 154, 244701.	1.2	7
278	Strong Coupling in a Self-Coupled Terahertz Photonic Crystal. ACS Photonics, 2021, 8, 1881-1888.	3.2	12
279	Enhanced optical nonlinearities under collective strong light-matter coupling. Physical Review A, 2021, 103, .	1.0	28
281	Impact of cavity on interatomic Coulombic decay. Nature Communications, 2021, 12, 4083.	5.8	18
282	Emergence of Collective Coherent States from Strong-Light Coupling of Disordered Systems. Journal of Physical Chemistry A, 2021, 125, 6739-6750.	1.1	5
283	Supramolecular Assembly of Conjugated Polymers under Vibrational Strong Coupling. Angewandte Chemie, 2021, 133, 19817-19822.	1.6	1
284	Lightâ€Harvesting Properties of a Subphthalocyanine Solar Absorber Coupled to an Optical Cavity. Solar Rrl, 2021, 5, 2100308.	3.1	9
285	Theory of Mode-Selective Chemistry through Polaritonic Vibrational Strong Coupling. Journal of Physical Chemistry Letters, 2021, 12, 6974-6982.	2.1	35
286	Open questions on water confined in nanoporous materials. Communications Chemistry, 2021, 4, .	2.0	15
287	Exciton–Photonics: From Fundamental Science to Applications. ACS Nano, 2021, 15, 12628-12654.	7.3	47
288	Cavity-Free Ultrastrong Light-Matter Coupling. Journal of Physical Chemistry Letters, 2021, 12, 6914-6918.	2.1	24
289	Supramolecular Assembly of Conjugated Polymers under Vibrational Strong Coupling. Angewandte Chemie - International Edition, 2021, 60, 19665-19670.	7.2	23
290	Changing Vibration Coupling Strengths of Liquid Acetonitrile with an Angle-Tuned Etalon. Journal of Physical Chemistry B, 2021, 125, 8472-8483.	1.2	5
291	Super-reaction: The collective enhancement of a reaction rate by molecular polaritons in the presence of energy fluctuations. Journal of Chemical Physics, 2021, 155, 014308.	1.2	5

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
292	Vacuum anomalous Hall effect in gyrotropic cavity. Physical Review B, 2021, 104, .		1.1	7
293	Local molecular probes of ultrafast relaxation channels in strongly coupled metallopor systems. Journal of Chemical Physics, 2021, 155, 064702.	phyrin-cavity	1.2	15
294	Molecular vibrational polariton: Its dynamics and potentials in novel chemistry and quatechnology. Journal of Chemical Physics, 2021, 155, 050901.	antum	1.2	36
295	Theory of molecular emission power spectra. II. Angle, frequency, and distance depend electromagnetic environment factor of a molecular emitter in plasmonic environments Chemical Physics, 2021, 155, 074101.	ence of 5. Journal of	1.2	8
296	Theoretical proposals to measure resonator-induced modifications of the electronic gr doped quantum wells. Physical Review A, 2021, 104, .	ound state in	1.0	2
297	Quantum-electrodynamical time-dependent density functional theory within Gaussian Journal of Chemical Physics, 2021, 155, 064107.	atomic basis.	1.2	29
298	Anderson pseudospin and Superradiant Superconductivity revisited. Annals of Physics, 168580.	. 2021, 435,	1.0	0
299	Defect Polaritons from First Principles. ACS Nano, 2021, 15, 15142-15152.		7.3	7
300	Towards strong linear and nonlinear light-matter interactions in hybrid nanostructures molecule and a plasmonic nanocavity. Physical Review B, 2021, 104, .	of a single	1.1	4
301	Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donorâ Journal of Physical Chemistry C, 2021, 125, 18119-18128.	€"Acceptor Pair?.	1.5	21
302	Plexcitonic Nanohybrids Based on Gold Nanourchins: The Role of the Capping Layer. Jo Physical Chemistry C, 2021, 125, 19897-19905.	urnal of	1.5	10
303	Metamaterial Analogues of Strongly Coupled Molecular Ensembles. ACS Photonics, 20	21, 8, 2997-3003.	3.2	1
304	Quantum Effects in Chemical Reactions under Polaritonic Vibrational Strong Coupling Physical Chemistry Letters, 2021, 12, 9531-9538.	Journal of	2.1	53
305	Nonadiabatic Dynamics with Coupled Trajectories. Journal of Chemical Theory and Cor 17, 5969-5991.	nputation, 2021,	2.3	17
306	Directional energy transport in strongly coupled chiral quantum emitter plasmonic nar Journal of Physics Condensed Matter, 2021, 33, 475301.	iostructures.	0.7	1
307	Near-infrared photoluminescent hybrid structures based on freestanding porous silicon crystals and PbS quantum dots. Applied Nanoscience (Switzerland), 0, , 1.	n photonic	1.6	Ο
308	Polariton Decay in Donor–Acceptor Cavity Systems. Journal of Physical Chemistry Le 9774-9782.	tters, 2021, 12,	2.1	22
309	Theoretical insight into electronic and molecular properties of halogenated (F, Cl, Br) a hetero-atom (N, O, S) doped cyclooctane. Materials Chemistry and Physics, 2022, 275	nd , 125239.	2.0	21

#	Article	IF	CITATIONS
310	Polariton-assisted manipulation of energy relaxation pathways: donor–acceptor role reversal in a tuneable microcavity. Chemical Science, 2021, 12, 12794-12805.	3.7	16
311	Molecular photodissociation enabled by ultrafast plasmon decay. Journal of Chemical Physics, 2021, 154, 014303.	1.2	17
312	Manipulating valence and core electronic excitations of a transition-metal complex using UV/Vis and X-ray cavities. Chemical Science, 2021, 12, 8088-8095.	3.7	9
313	Finding the Needle in a Haystack: Capturing Veiled Plexcitonic Coupling through Differential Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 26387-26395.	1.5	7
314	Improving Enzyme Catalytic Efficiency by Co-operative Vibrational Strong Coupling of Water. Journal of Physical Chemistry Letters, 2021, 12, 379-384.	2.1	53
315	Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local Modification of Chemical Properties. Journal of Physical Chemistry Letters, 2021, 12, 508-516.	2.1	65
316	Quantum light-induced nonadiabatic phenomena in the absorption spectrum of formaldehyde: Full- and reduced-dimensionality studies. Journal of Chemical Physics, 2020, 153, 234302.	1.2	9
317	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi><i>-</i>zero magnetism in nanoporous amorphous alumina membranes. Physical Review Materials, 2018, 2, .</mml:math 	0.9	7
318	Topological Floquet engineering of twisted bilayer graphene. Physical Review Research, 2019, 1, .	1.3	56
319	Precise determination of excitation energies in condensed-phase molecular systems based on exciton-polariton measurements. Physical Review Research, 2019, 1, .	1.3	5
320	Polaritonic coupled-cluster theory. Physical Review Research, 2020, 2, .	1.3	57
321	Strong light–matter coupling and exciton-polariton condensation in lattices of plasmonic nanoparticles [Invited]. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E88.	0.9	28
322	Emission of R6G dye in Fabry–Perot cavities in weak and strong coupling regimes. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3200.	0.9	3
323	Effect of strong coupling on photodegradation of the semiconducting polymer P3HT. Optica, 2019, 6, 318.	4.8	59
327	First Principles Modelling of Exciton-Photon Interactions. Springer Theses, 2021, , 67-92.	0.0	0
328	Making ab initio QED functional(s): Nonperturbative and photon-free effective frameworks for strong light–matter coupling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
329	Enhanced Reverse Intersystem Crossing Promoted by Triplet Exciton–Photon Coupling. Journal of the American Chemical Society, 2021, 143, 17786-17792.	6.6	11
330	Simple but accurate estimation of light–matter coupling strength and optical loss for a molecular emitter coupled with photonic modes. Journal of Chemical Physics, 2021, 155, 134117.	1.2	9

# 331	ARTICLE <i>Colloquium:</i> Nonthermal pathways to ultrafast control in quantum materials. Reviews of Modern Physics, 2021, 93, .	IF 16.4	Citations 175
332	Chemistry under Vibrational Strong Coupling. Journal of the American Chemical Society, 2021, 143, 16877-16889.	6.6	106
333	Temporal dynamics of strongly coupled exciton-localized surface plasmons beyond Rabi oscillations. , 2018, , .		0
334	Controlling chemistry with vibrational polaritons. , 2019, , .		0
335	Strong Coupling of Light with Collective Terahertz Vibrations in Organic Materials. , 2019, , .		0
336	Light-Matter Interaction in Disordered Metal-Dielectric Environments. , 2019, , .		0
337	Detection of "anomalies―inside microcavities through parametric fluorescence: a formalism based on modulated commutation relations and consequences on the concept of density of states. Journal of the Optical Society of America B: Optical Physics, 2019, 36, C62.	0.9	2
338	Collective Rayleigh Scattering from Molecular Ensembles under Strong Coupling. , 2020, , .		0
339	Assessing the non-radiative relaxation of molecular cavity polaritons using ultrafast dynamical spectroscopy. , 2020, , .		0
340	Ultrastrong Exciton–Photon Coupling in Broadband Solar Absorbers. Journal of Physical Chemistry Letters, 2021, 12, 10706-10712.	2.1	11
342	Manipulating two-photon absorption of cavity polaritons by entangled photon. , 2020, , .		0
343	Vibrational Coupling of Water from Weak to Ultrastrong Coupling Regime via Cavity Mode Tuning. Journal of Physical Chemistry C, 2021, 125, 25832-25840.	1.5	12
344	Probing Vibrational Strong Coupling of Molecules with Wavelengthâ€Modulated Raman Spectroscopy. Advanced Optical Materials, 2022, 10, .	3.6	10
345	Cooperative Molecular Rabi Splitting for Strong Coupling between a Plain Au Layer and an Azo-Dye. Photonics, 2021, 8, 531.	0.9	2
346	Strong coupling between an optical microcavity and photosystems in single living cyanobacteria. Journal of Biophotonics, 2021, , e202100136.	1.1	3
347	Femtosecond Photophysics of Molecular Polaritons. Journal of Physical Chemistry Letters, 2021, 12, 11444-11459.	2.1	15
348	Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. Nature Communications, 2021, 12, 6519.	5.8	32
349	Conditional Wave Function Theory: A Unified Treatment of Molecular Structure and Nonadiabatic Dynamics. Journal of Chemical Theory and Computation, 2021, , .	2.3	1

		CITATION R	EPORT	
#	Article		IF	CITATIONS
350	Free electron gas in cavity quantum electrodynamics. Physical Review Research, 2022,	4, .	1.3	33
351	Strong coupling between an inverse bowtie Nano-Antenna and a J-aggregate. Journal o Interface Science, 2022, 610, 438-445.	f Colloid and	5.0	5
352	Virtual Issue on Polaritons in Physical Chemistry. Journal of Physical Chemistry Letters, 7920-7924.	2020, 11,	2.1	1
353	Polariton-mediated coupling of quasi-degenerate porphyrin excitons. , 2021, , .			Ο
354	Large Optical Nonlinearity of Dielectric Nanocavity-Assisted Mie Resonances Strongly (Epsilon-near-Zero Mode. Nano Letters, 2022, 22, 702-709.	Coupled to an	4.5	16
355	Probing Light-Induced Conical Intersections by Monitoring Multidimensional Polaritoni Journal of Physical Chemistry Letters, 2022, 13, 1172-1179.	c Surfaces.	2.1	10
356	Vibration-Cavity Polariton Chemistry and Dynamics. Annual Review of Physical Chemist 429-451.	try, 2022, 73,	4.8	58
357	Ultrafast Coherence Delocalization in Real Space Simulated by Polaritons. Advanced O Materials, 0, , 2102237.	ptical	3.6	6
358	Effective mass of cavity-vibration polaritons formed in etalons with liquid carbon tetrac Journal of Chemical Physics, 2022, 156, 044508.	chloride.	1.2	2
359	Polariton ring currents and circular dichroism of Mg-porphyrin in a chiral cavity. Chemic 2022, 13, 1037-1048.	cal Science,	3.7	18
360	Strong Coupling of Multimolecular Species to Soft Microcavities. Journal of Physical Ch Letters, 2022, 13, 1019-1024.	ıemistry	2.1	3
361	Cavity catalysis: modifying linear free-energy relationship under cooperative vibrationa coupling. Chemical Science, 2021, 13, 195-202.	l strong	3.7	25
362	Floquet Time-Dependent Configuration Interaction for Modeling Ultrafast Electron Dyr Journal of Chemical Theory and Computation, 2022, 18, 795-806.	namics.	2.3	2
363	Dynamics of disordered Tavis–Cummings and Holstein–Tavis–Cummings model Physics, 2022, 156, 024102.	s. Journal of Chemical	1.2	23
364	Polariton chemistry: Molecules in cavities and plasmonic media. Journal of Chemical Ph 030401.	lysics, 2022, 156,	1.2	20
365	Equation-of-motion cavity quantum electrodynamics coupled-cluster theory for electro attachment. Journal of Chemical Physics, 2022, 156, 054105.	n	1.2	22
366	Analysis of the classical trajectory treatment of photon dynamics for polaritonic pheno of Chemical Physics, 2022, 156, 054101.	mena. Journal	1.2	8
367	Cavity magnon-polaritons in cuprate parent compounds. Physical Review Research, 20	22, 4, .	1.3	22

#	Article	IF	CITATIONS
368	Exciton Polaritons Reveal "Hidden―Populations in Functionalized Pentacene Films. Journal of Physical Chemistry C, 2021, 125, 27381-27393.	1.5	7
369	Photon Correlation Signals in Coupled-Cavity Polaritons Created by Entangled Light. ACS Photonics, 2022, 9, 938-943.	3.2	2
370	Planar Chirality and Optical Spin–Orbit Coupling for Chiral Fabry–Perot Cavities. ACS Photonics, 2022, 9, 778-783.	3.2	18
371	Catalysis by Dark States in Vibropolaritonic Chemistry. Physical Review Letters, 2022, 128, 096001.	2.9	62
372	Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. Journal of Chemical Physics, 2022, 156, 124104.	1.2	11
373	Non-Hermitian cavity quantum electrodynamics–configuration interaction singles approach for polaritonic structure with <i>ab initio</i> molecular Hamiltonians. Journal of Chemical Physics, 2022, 156, 154103.	1.2	17
374	Driving chemical reactions with polariton condensates. Nature Communications, 2022, 13, 1645.	5.8	19
375	Cavity quantum materials. Applied Physics Reviews, 2022, 9, .	5.5	65
376	Tunable cryogenic terahertz cavity for strong light–matter coupling in complex materials. Review of Scientific Instruments, 2022, 93, 033102.	0.6	8
377	Thermalization of Fluorescent Protein Exciton–Polaritons at Room Temperature. Advanced Materials, 2022, 34, e2109107.	11.1	7
378	An Accurate Linearized Semiclassical Approach for Calculating Cavity-Modified Charge Transfer Rate Constants. Journal of Physical Chemistry Letters, 2022, 13, 2330-2337.	2.1	9
379	A point-like thermal light source as a probe for sensing light-matter interaction. Scientific Reports, 2022, 12, 4881.	1.6	1
380	Semi-empirical quantum optics for mid-infrared molecular nanophotonics. Journal of Chemical Physics, 2022, 156, 124110.	1.2	8
381	Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials. Journal of Chemical Physics, 2022, 156, 114702.	1.2	8
382	Multimode polariton effects on molecular energy transport and spectral fluctuations. Communications Chemistry, 2022, 5, .	2.0	17
383	Not dark yet for strong light-matter coupling to accelerate singlet fission dynamics. Cell Reports Physical Science, 2022, 3, 100841.	2.8	16
384	Optimizing molecular light absorption in the strong coupling regime for solar energy harvesting. Nano Energy, 2022, 98, 107244.	8.2	4
385	Cavity-Modified Unimolecular Dissociation Reactions via Intramolecular Vibrational Energy Redistribution. Journal of Physical Chemistry Letters, 2022, 13, 3317-3324.	2.1	32

#	Article	IF	CITATIONS
386	Generalization of the Tavis–Cummings model for multi-level anharmonic systems: Insights on the second excitation manifold. Journal of Chemical Physics, 2022, 156, .	1.2	16
387	Excitonâ€Polaritons and Their Bose–Einstein Condensates in Organic Semiconductor Microcavities. Advanced Materials, 2022, 34, e2106095.	11.1	22
388	Quantum theory of nonradiative decay dependent on the coupling strength in a plexcitonic system. Optics Express, 2021, 29, 43292.	1.7	3
389	Negligible rate enhancement from reported cooperative vibrational strong coupling catalysis. Journal of Chemical Physics, 2021, 155, 241103.	1.2	38
390	Optical dressing of the electronic response of two-dimensional semiconductors in quantum and classical descriptions of cavity electrodynamics. Physical Review B, 2021, 104, .	1.1	11
391	Shortcut to Self-Consistent Light-Matter Interaction and Realistic Spectra from First Principles. Physical Review Letters, 2022, 128, 156402.	2.9	22
392	Coupling, lifetimes, and "strong coupling―maps for single molecules at plasmonic interfaces. Journal of Chemical Physics, 2022, 156, 154303.	1.2	4
393	Cooperative molecular structure in polaritonic and dark states. Journal of Chemical Physics, 2022, 156, 184102.	1.2	9
394	Sunlightâ€Induced In Situ Isomerization of Both Ligands in a Mixedâ€Ligand Coordination Polymer: From Photosalient to Photoinert Crystals. Chemistry - A European Journal, 2022, 28, .	1.7	6
395	Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry. Journal of Chemical Physics, 2022, 156, 154305.	1.2	19
396	Ab Initio Linear-Response Approach to Vibro-Polaritons in the Cavity Born–Oppenheimer Approximation. Journal of Chemical Theory and Computation, 2022, 18, 2764-2773.	2.3	16
397	Chasing Vibro-Polariton Fingerprints in Infrared and Raman Spectra Using Surface Lattice Resonances on Extended Metasurfaces. Journal of Physical Chemistry C, 2022, 126, 7143-7151.	1.5	7
398	Optical Cavity Manipulation and Nonlinear UV Molecular Spectroscopy of Conical Intersections in Pyrazine. Journal of the American Chemical Society, 2022, 144, 7758-7767.	6.6	8
399	Dissipation and spontaneous emission in quantum electrodynamical density functional theory based on optimized effective potential: A proof of concept study. Physical Review B, 2022, 105, .	1.1	2
400	Polaritonic effects in the vibronic spectrum of molecules in an optical cavity. Journal of Chemical Physics, 2022, 156, .	1.2	6
401	Light Emission from Vibronic Polaritons in Coupled Metalloporphyrin-Multimode Cavity Systems. Journal of Physical Chemistry Letters, 2022, 13, 4036-4045.	2.1	9
402	Evidence for a Polariton-Mediated Biexciton Transition in Single-Walled Carbon Nanotubes. ACS Photonics, 0, , .	3.2	1
403	Suppression and Enhancement of Thermal Chemical Rates in a Cavity. Journal of Physical Chemistry Letters, 2022, 13, 4441-4446.	2.1	34

#	Article	IF	CITATIONS
404	<scp>Vibrationâ€induced</scp> symmetry breaking in hybrid <scp>lightâ€matter</scp> dimer states. Journal of the Chinese Chemical Society, 0, , .	0.8	1
405	Engineering Cavity Singlet Fission in Rubrene. Journal of Physical Chemistry Letters, 2022, 13, 4090-4097.	2.1	7
406	Interplay between Polaritonic and Molecular Trap States. Journal of Physical Chemistry C, 2022, 126, 7965-7972.	1.5	3
407	Effects of disorder on polaritonic and dark states in a cavity using the disordered Tavis–Cummings model. Journal of Chemical Physics, 2022, 156, .	1.2	15
408	Disorder enhanced vibrational entanglement and dynamics in polaritonic chemistry. Communications Physics, 2022, 5, .	2.0	17
409	Polaritonic Hofstadter butterfly and cavity control of the quantized Hall conductance. Physical Review B, 2022, 105, .	1.1	20
410	A perspective on <i>ab initio</i> modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity. Journal of Chemical Physics, 2022, 156, .	1.2	39
411	Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity. Communications Physics, 2022, 5, .	2.0	16
412	Ultrastrong Coupling Leads to Slowed Cooling of Hot Excitons in Few-Layer Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 8710-8719.	1.5	6
413	Strongly correlated electron–photon systems. Nature, 2022, 606, 41-48.	13.7	66
414	Metasurfaceâ€Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. Advanced Materials, 2023, 35, .	11.1	25
415	Tripletâ€ŧriplet Annihilation Dynamics of Naphthalene. Chemistry - A European Journal, 2022, 28, .	1.7	9
416	Ultrafast Multidimensional Spectroscopy to Probe Molecular Vibrational Polariton Dynamics. ACS Symposium Series, 0, , 89-107.	0.5	3
417	Autotuning of Vibrational Strong Coupling for Siteâ€Selective Reactions. Chemistry - A European Journal, 2022, 28, .	1.7	9
418	Nonperturbative waveguide quantum electrodynamics. Physical Review Research, 2022, 4, .	1.3	13
419	Bose enhancement of excitation-energy transfer with molecular-exciton-polariton condensates. Journal of Chemical Physics, 2022, 156, 234301.	1.2	4
420	On the characteristic features of ionization in QED environments. Journal of Chemical Physics, 2022, 156, .	1.2	15
421	Spectral response of vibrational polaritons in an optomechanical cavity. Journal of Chemical Physics, 0, , .	1.2	2

#	Article	IF	CITATIONS
422	Development of a Spacerless Flow-Cell Cavity for Vibrational Polaritons. Journal of Physical Chemistry B, 2022, 126, 4689-4696.	1.2	3
423	Inherent Promotion of Ionic Conductivity via Collective Vibrational Strong Coupling of Water with the Vacuum Electromagnetic Field. Journal of the American Chemical Society, 2022, 144, 12177-12183.	6.6	21
424	Molecular Vibrational Polaritons Towards Quantum Technologies. Advanced Quantum Technologies, 2022, 5, .	1.8	4
425	Frequency-Dependent Sternheimer Linear-Response Formalism for Strongly Coupled Light–Matter Systems. Journal of Chemical Theory and Computation, 2022, 18, 4354-4365.	2.3	9
426	Cavity-induced non-adiabatic dynamics and spectroscopy of molecular rovibrational polaritons studied by multi-mode quantum models. Journal of Chemical Physics, 2022, 157, .	1.2	8
427	Ultrafast Dynamics of Multiple Plexcitons in Colloidal Nanomaterials: The Mediating Action of Plasmon Resonances and Dark States. Journal of Physical Chemistry Letters, 2022, 13, 6412-6419.	2.1	9
428	Competition between collective and individual conical intersection dynamics in an optical cavity. New Journal of Physics, 2022, 24, 073022.	1.2	11
429	Polaritonic Chemistry from First Principles via Embedding Radiation Reaction. Journal of Physical Chemistry Letters, 2022, 13, 6905-6911.	2.1	23
430	Synthetic dimensions in optical cavities and their analogies to two-dimensional materials. Physical Review B, 2022, 106, .	1.1	1
431	Exact Results for the Tavis–Cummings and Hückel Hamiltonians with Diagonal Disorder. Journal of Physical Chemistry A, 2022, 126, 5449-5457.	1.1	4
432	Effect of Plasmonic Au and Ag/Au Nanoparticles and Sodium Citrate on the Optical Properties of Chitin-Based Photonic Nanoarchitectures in Butterfly Wing Scales. Photonics, 2022, 9, 553.	0.9	3
433	Nuclear gradient expressions for molecular cavity quantum electrodynamics simulations using mixed quantum-classical methods. Journal of Chemical Physics, 2022, 157, .	1.2	5
434	Collective response in light–matter interactions: The interplay between strong coupling and local dynamics. Journal of Chemical Physics, 2022, 157, .	1.2	10
435	Fano plasmonics goes nonlinear. Journal of Chemical Physics, 2022, 157, .	1.2	1
436	Resolution of Gauge Ambiguities in Cavity Quantum Electrodynamics. , 2022, , .		0
437	Long-range photodetection of organic exciton-polaritons. , 2022, , .		0
438	Antisymmetric stretching vibration of sulfur dioxide and carbon disulfide modified by optical cavity. Journal of Molecular Structure, 2023, 1272, 134248.	1.8	0
439	Vibrational Polaritons in Disordered Molecular Ensembles. Journal of Physical Chemistry Letters, 2022, 13, 8369-8375.	2.1	14

		CITATION RE	PORT	
#	Article		IF	Citations
440	Cavity-controlled exciton transport of the Su-Schrieffer-Heeger chain. Physical Review	4, 2022, 106, .	1.0	1
441	Cavity Polaritons Formed from Spatially Separated Quasi-degenerate Porphyrin Excitor Modulations of Bright and Dark State Energies and Compositions. Journal of Physical C 2022, 126, 15776-15787.	is: Structural Chemistry C,	1.5	6
442	Spin-orbit coupling in organic microcavities: Lower polariton splitting, triplet polariton disorder-induced dark-state relaxation. Physical Review A, 2022, 106, .	s, and	1.0	3
443	Detuning Effects on the Reverse Intersystem Crossing from Triplet Exciton to Lower Po Journal of Physical Chemistry Letters, 2022, 13, 9279-9286.	lariton.	2.1	2
444	Molecular cavity polariton formation using multimode resonator structures. , 2022, , .			0
445	Time-resolved X-ray and XUV based spectroscopic methods for nonadiabatic processes photochemistry. Chemical Communications, 2022, 58, 12763-12781.	in	2.2	8
446	Dynamical stabilization by vacuum fluctuations in a cavity: Resonant electron scatterir ultrastrong light-matter coupling regime. Physical Review A, 2022, 106, .	ig in the	1.0	3
447	Polariton enhanced free charge carrier generation in donor–acceptor cavity systems second-hybridization mechanism. Journal of Chemical Physics, 2022, 157, .	by a	1.2	5
448	Strong coupling for bifunctionality in organic systems. Applied Physics Letters, 2022, 2	.21, 181101.	1.5	0
449	Origin of an Anticrossing between a Leaky Photonic Mode and an Epsilon-Near-Zero Po Journal of Physical Chemistry C, 0, , .	vint of Silver.	1.5	1
450	Quasi-diabatic propagation scheme for simulating polariton chemistry. Journal of Cher 2022, 157, .	nical Physics,	1.2	7
451	Incoherent charge transport in an organic polariton condensate. Physical Review B, 20	22, 106, .	1.1	4
452	Real-space, real-time approach to quantum-electrodynamical time-dependent density f Journal of Chemical Physics, 2022, 157, .	unctional theory.	1.2	10
453	Multiscale Catalysis Under Magnetic Fields: Methodologies, Advances, and Trends. Ch 2022, 14, .	emCatChem,	1.8	4
454	Influence of Vibrational Strong Coupling on an Ordered Liquid Crystal. Journal of Physi B, 2022, 126, 9399-9407.	cal Chemistry	1.2	6
455	Advances in modeling plasmonic systems. Journal of Chemical Physics, 2022, 157, 190	401.	1.2	3
456	Reduced-density-matrix-based <i>ab initio</i> cavity quantum electrodynamics. Physic 106, .	al Review A, 2022,	1.0	9
457	Cavity-induced chiral edge currents and spontaneous magnetization in two-dimension systems. Physical Review B, 2022, 106, .	al electron	1.1	1

#	Article	IF	CITATIONS
458	Multidimensional Quantum Dynamical Simulation of Infrared Spectra under Polaritonic Vibrational Strong Coupling. Journal of Physical Chemistry Letters, 2022, 13, 11253-11261.	2.1	5
459	Active Control of Plasmonic–Photonic Interactions in a Microbubble Cavity. Journal of Physical Chemistry C, 2022, 126, 20470-20479.	1.5	2
460	Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nature Communications, 2022, 13, .	5.8	23
461	Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity. Nano Letters, 0, , .	4.5	2
462	Spectral Engineering of Hybrid Biotemplated Photonic/Photocatalytic Nanoarchitectures. Nanomaterials, 2022, 12, 4490.	1.9	3
463	Enhanced Diastereocontrol via Strong Light–Matter Interactions in an Optical Cavity. Journal of Physical Chemistry A, 2022, 126, 9303-9312.	1.1	20
464	Silicon surface lattice resonances and halide perovskite semiconductors for exciton-polaritons at room temperature. Optical Materials Express, 2023, 13, 179.	1.6	0
465	Tuning and Enhancing Quantum Coherence Time Scales in Molecules via Light-Matter Hybridization. Journal of Physical Chemistry Letters, 2022, 13, 11503-11511.	2.1	4
466	Nonadiabatic Wave Packet Dynamics with Ab Initio Cavity-Born-Oppenheimer Potential Energy Surfaces. Journal of Chemical Theory and Computation, 2023, 19, 460-471.	2.3	6
467	Dynamics of Cavity Multipolaritons formed from Quasi-degenerate Porphyrin Excitons. , 2022, , .		0
468	Efficient parallel strategy for molecular plasmonics – A numerical tool for integrating Maxwell-Schr¶dinger equations in three dimensions. Journal of Computational Physics, 2023, 477, 111920.	1.9	1
469	Analytical solution of the disordered Tavis-Cummings model and its Fano resonances. Physical Review A, 2022, 106, .	1.0	0
470	Enabling multiple intercavity polariton coherences by adding quantum confinement to cavity molecular polaritons. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
471	Vertex-Based Diagrammatic Treatment of Light-Matter-Coupled Systems. Physical Review Letters, 2023, 130, .	2.9	0
472	Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS ₂ Monolayer and Multilayer. ACS Nano, 2023, 17, 2356-2367.	7.3	6
473	Anomalous dips in reflection spectra of optical polymers deposited on plasmonic metals. Nanophotonics, 2023, .	2.9	1
474	A Mean-Field Treatment of Vacuum Fluctuations in Strong Light–Matter Coupling. Journal of Physical Chemistry Letters, 2023, 14, 1253-1258.	2.1	4
475	Etalon-Assisted Determination of the Complex Index of Refraction of a Solution for the Study of Strong Cavity–Vibrational Coupling of PF ₆ ^{–} in Acetonitrile. Journal of Physical Chemistry B, 2023, 127, 980-995.	1.2	2

#	Article	IF	Citations
476	Surface hopping modeling of charge and energy transfer in active environments. Physical Chemistry Chemical Physics, 2023, 25, 8293-8316.	1.3	6
477	Degenerate parametric down-conversion facilitated by exciton-plasmon polariton states in a nonlinear plasmonic cavity. Nanotechnology, 2023, 34, 175001.	1.3	0
478	Room Temperature Narrowing of Organic Polaritons in Fabry-Perot Cavity. , 2022, , .		0
479	Cavity-Modified Fermi's Golden Rule Rate Constants from Cavity-Free Inputs. Journal of Physical Chemistry C, 2023, 127, 3154-3164.	1.5	2
480	Dissociation slowdown by collective optical response under strong coupling conditions. Journal of Chemical Physics, 2023, 158, .	1.2	2
481	Hartree method for molecular polaritons. Physical Review B, 2023, 107, .	1.1	0
482	Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chemical Reviews, 2023, 123, 1552-1634.	23.0	82
483	Polaritonic Chemistry: Band-Selective Control of Chemical Reactions by Vibrational Strong Coupling. ACS Catalysis, 2023, 13, 2631-2636.	5.5	3
484	Chiral-Induced Spin Selectivity in Photon-Coupled Achiral Matters. Journal of Physical Chemistry Letters, 2023, 14, 1626-1632.	2.1	4
485	Modification of ATP hydrolysis by Strong Coupling with Oâ^'H Stretching Vibration. ChemPhotoChem, 2023, 7, .	1.5	3
486	Vibrational coupling with O–H stretching increases catalytic efficiency of sucrase in Fabry–Pérot microcavity. Biochemical and Biophysical Research Communications, 2023, 652, 31-34.	1.0	3
487	Chiral discrimination in helicity-preserving Fabry-Pérot cavities. Physical Review A, 2023, 107, .	1.0	12
488	Polaritonic Huang–Rhys Factor: Basic Concepts and Quantifying Light–Matter Interactions in Media. Journal of Physical Chemistry Letters, 2023, 14, 2395-2401.	2.1	5
489	Rovibrational Polaritons in Gas-Phase Methane. Journal of the American Chemical Society, 2023, 145, 5982-5987.	6.6	17
490	Multidimensional Coherent Spectroscopy of Molecular Polaritons: Langevin Approach. Physical Review Letters, 2023, 130, .	2.9	5
491	Understanding the Energy Gap Law under Vibrational Strong Coupling. Journal of Physical Chemistry C, 2023, 127, 5491-5501.	1.5	2
492	Molecular Vibrational Polariton Dynamics: What Can Polaritons Do?. Accounts of Chemical Research, 2023, 56, 776-786.	7.6	9
493	Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. Journal of Chemical Theory and Computation, 2023, 19, 2353-2368.	2.3	7

#	Article	IF	CITATIONS
494	Control, Modulation, and Analytical Descriptions of Vibrational Strong Coupling. Chemical Reviews, 2023, 123, 5020-5048.	23.0	20
495	Cavity-catalyzed hydrogen transfer dynamics in an entangled molecular ensemble under vibrational strong coupling. Physical Chemistry Chemical Physics, 2023, 25, 11771-11779.	1.3	7
496	Control and Enhancement of Single-Molecule Electroluminescence through Strong Light–Matter Coupling. Nano Letters, 2023, 23, 3231-3238.	4.5	2
497	Electronic effects of the substituted dopants on stability and reactivity of difuranosilapyridine-4-ylidenes: DFT approach. Structural Chemistry, 0, , .	1.0	0
498	Quantum-Coherence-Enhanced Hot-Electron Injection under Modal Strong Coupling. ACS Nano, 2023, 17, 8315-8323.	7.3	7
505	Molecular Energy Transfer under the Strong Light–Matter Interaction Regime. Chemical Reviews, 2023, 123, 8044-8068.	23.0	5
542	Aerogel-Like Metals Produced Through Physical Vapor Deposition. Springer Handbooks, 2023, , 1189-1210.	0.3	0
545	Keeping the chromophores crossed: evidence for null exciton splitting. Chemical Society Reviews, 2023, 52, 6664-6679	18.7	6