Learning through a portfolio of carbon capture and stor

Nature Energy

1,

DOI: 10.1038/nenergy.2015.11

Citation Report

#	Article	IF	CITATIONS
1	The Valley of Death, the Technology Pork Barrel, and Public Support for Large Demonstration Projects. SSRN Electronic Journal, 0, , .	0.4	5
2	Research priorities for negative emissions. Environmental Research Letters, 2016, 11, 115007.	5.2	138
3	Geophysical monitoring technology for CO2 sequestration. Applied Geophysics, 2016, 13, 288-306.	0.6	23
4	The trouble with negative emissions. Science, 2016, 354, 182-183.	12.6	915
5	The role of the US in the geopolitics of climate policy and stranded oil reserves. Nature Energy, 2016, 1, .	39.5	13
6	Persuasiveness, importance and novelty of arguments about Carbon Capture and Storage. Environmental Science and Policy, 2016, 59, 58-66.	4.9	24
7	Energy scenarios: the value and limits of scenario analysis. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e242.	4.1	25
8	Key indicators to track current progress and future ambition of the Paris Agreement. Nature Climate Change, 2017, 7, 118-122.	18.8	298
9	Corrosion behaviour of X65 carbon steel in supercritical-CO 2 containing H 2 O and O 2 in carbon capture and storage (CCS) technology. Corrosion Science, 2017, 118, 118-128.	6.6	86
10	Geological storage of captured carbon dioxide as a largeâ€scale carbon mitigation option. Water Resources Research, 2017, 53, 3527-3533.	4.2	70
11	Selling stories of techno-optimism? The role of narratives on discursive construction of carbon capture and storage in the Japanese media. Energy Research and Social Science, 2017, 31, 50-59.	6.4	44
12	Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects. Renewable and Sustainable Energy Reviews, 2017, 77, 1349-1362.	16.4	49
13	CO ₂ -Selective Absorbents in Air: Reverse Lipid Bilayer Structure Forming Neutral Carbamic Acid in Water without Hydration. Journal of the American Chemical Society, 2017, 139, 4639-4642.	13.7	46
14	Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon, 2017, 114, 608-618.	10.3	170
15	CO ₂ Capture from Ambient Air by Crystallization with a Guanidine Sorbent. Angewandte Chemie, 2017, 129, 1062-1065.	2.0	21
16	CO ₂ Capture from Ambient Air by Crystallization with a Guanidine Sorbent. Angewandte Chemie - International Edition, 2017, 56, 1042-1045.	13.8	89
17	Challenges and uncertainties of ex ante techno-economic analysis of low TRL CO2 capture technology: Lessons from a case study of an NGCC with exhaust gas recycle and electric swing adsorption. Applied Energy, 2017, 208, 920-934.	10.1	51
18	Poverty eradication in a carbon constrained world. Nature Communications, 2017, 8, 912.	12.8	171

	CITATION R	CITATION REPORT	
# 19	ARTICLE Carbon Capture and Storage Readiness Index: Comparative Review of Global Progress towards	IF 1.8	CITATIONS
20	How does Changing the Penetration of Renewables and Flexibility Measures Affect the Economics of CCS Penetration?. Energy Procedia, 2017, 114, 7596-7600.	1.8	1
21	Keeping it clean. Nature Climate Change, 2017, 7, 87-87.	18.8	2
22	Energy storage deployment and innovation for the clean energy transition. Nature Energy, 2017, 2, .	39.5	676
23	Catalysing a political shift from low to negative carbon. Nature Climate Change, 2017, 7, 619-621.	18.8	102
24	Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2, .	39.5	428
25	Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 2017, 14, 4829-4850.	3.3	33
26	Carbon capture and storage in the oil and gas industry: 40 years on. APPEA Journal, 2017, 57, 413.	0.2	0
27	Construction of the Oxazolidinone Framework from Propargylamine and CO ₂ in Air at Ambient Temperature: Catalytic Effect of a Gold Complex Featuring an L ₂ /Zâ€Type Ligand. European Journal of Organic Chemistry, 2018, 2018, 2972-2976.	2.4	24
29	How diplomacy saved the COP21 Paris Climate Conference, but now, can we save ourselves?. Frontiers in Energy, 2018, 12, 344-352.	2.3	0
30	Key aspects in the strategic development of synthetic natural gas (BioSNG) supply chains. Biomass and Bioenergy, 2018, 110, 80-97.	5.7	11
31	The political economy of negative emissions technologies: consequences for international policy design. Climate Policy, 2018, 18, 306-321.	5.1	118
32	The valley of death, the technology pork barrel, and public support for large demonstration projects. Energy Policy, 2018, 119, 154-167.	8.8	59
33	Integrating carbon dioxide removal into EU climate policy: Prospects for a paradigm shift. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e521.	8.1	40
34	Rapid fuel switching from coal to natural gas through effective carbon pricing. Nature Energy, 2018, 3, 365-372.	39.5	130
35	Demonstrating climate mitigation technologies: An early assessment of the NER 300 programme. Energy Policy, 2018, 117, 100-107.	8.8	26
36	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	30.8	2,378
37	A search for selectivity to enable CO ₂ capture with porous adsorbents. Energy and Environmental Science, 2018, 11, 57-70.	30.8	457

#	Article	IF	CITATIONS
38	Understanding key elements in establishing a social license for CCS: An empirical approach. International Journal of Greenhouse Gas Control, 2018, 68, 16-25.	4.6	47
39	Consumer Attitudes towards Industrial CO2 Capture and Storage Products and Technologies. Energies, 2018, 11, 2787.	3.1	24
40	Modeling and Simulation of Energy Systems: A Review. Processes, 2018, 6, 238.	2.8	99
41	Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis. Energies, 2018, 11, 2319.	3.1	26
42	Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nature Communications, 2018, 9, 3734.	12.8	166
43	Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO ₂ /CH ₄ . Journal of Materials Chemistry A, 2018, 6, 12380-12392.	10.3	74
44	Impact of myopic decision-making and disruptive events in power systems planning. Nature Energy, 2018, 3, 634-640.	39.5	58
45	Metal–Organic Frameworks with Reduced Hydrophilicity for Postcombustion CO ₂ Capture from Wet Flue Gas. ACS Sustainable Chemistry and Engineering, 2018, 6, 11904-11912.	6.7	43
46	Ultrapermeable Thin Film ZIFâ€8/Polyamide Membrane for H ₂ /CO ₂ Separation at High Temperature without Using Sweep Gas. Advanced Materials Interfaces, 2018, 5, 1800647.	3.7	41
47	Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution. Applied Energy, 2019, 254, 113696.	10.1	39
48	Exergoeconomic Analysis of the Allam Cycle. Energy & Fuels, 2019, 33, 7561-7568.	5.1	16
49	A comprehensive review of metal corrosion in a supercritical CO2 environment. International Journal of Greenhouse Gas Control, 2019, 90, 102814.	4.6	43
50	Methoxy Groups Increase Reactivity of Bifunctional Tetraarylphosphonium Salt Catalysts for Carbon Dioxide Fixation: A Mechanistic Study. Journal of Organic Chemistry, 2019, 84, 15578-15589.	3.2	33
51	Near-Term Potential of Biofuels, Electrofuels, and Battery Electric Vehicles in Decarbonizing Road Transport. Joule, 2019, 3, 2390-2402.	24.0	61
52	Large-Scale Affordable CO2 Capture Is Possible by 2030. Joule, 2019, 3, 2154-2164.	24.0	32
53	CO2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica. Journal of CO2 Utilization, 2019, 34, 606-615.	6.8	53
54	Blood Protein as a Sustainable Bifunctional Catalyst for Reversible Li-CO ₂ Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 16151-16159.	6.7	15
55	Covalent triazine frameworks for carbon dioxide capture. Journal of Materials Chemistry A, 2019, 7, 22848-22870.	10.3	106

# 56	ARTICLE A new scenario logic for the Paris Agreement long-term temperature goal. Nature, 2019, 573, 357-363.	IF 27.8	Citations 307
57	An analysis of research hotspots and modeling techniques on carbon capture and storage. Science of the Total Environment, 2019, 687, 687-701.	8.0	50
58	Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environmental Research Letters, 2019, 14, 084001.	5.2	25
59	Restricting Lattice Flexibility in Polycrystalline Metal–Organic Framework Membranes for Carbon Capture. Advanced Materials, 2019, 31, e1900855.	21.0	122
60	Optimum Particle Size of Treated Calcites for CO2 Capture in a Power Plant. Materials, 2019, 12, 1284.	2.9	7
61	Using Different Ions in the Hydrothermal Method to Enhance the Photoluminescence Properties of Synthesized ZnO-Based Nanowires. Electronics (Switzerland), 2019, 8, 446.	3.1	5
62	Solvent Impregnated Polymers for Carbon Capture. Industrial & Engineering Chemistry Research, 2019, 58, 6626-6634.	3.7	11
63	Comparative net energy analysis of renewable electricity and carbon capture and storage. Nature Energy, 2019, 4, 456-465.	39.5	148
64	Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO2-saturated aqueous environments. Journal of Alloys and Compounds, 2019, 792, 328-340.	5.5	25
65	The Potential of Biogas; the Solution to Energy Storage. ChemSusChem, 2019, 12, 2147-2153.	6.8	52
66	Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris agreement. Climate Policy, 2019, 19, 329-341.	5.1	50
67	Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption. Chemical Engineering Journal, 2019, 361, 199-208.	12.7	79
68	Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles. Applied Energy, 2019, 235, 1001-1016.	10.1	50
69	The role and perception of energy through the eyes of the society. , 2020, , 239-277.		1
70	Accelerating CO ₂ capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AICHE Journal, 2020, 66, e16800.	3.6	21
71	The fossil fuel industry's framing of carbon capture and storage: Faith in innovation, value instrumentalization, and status quo maintenance. Journal of Cleaner Production, 2020, 252, 119767.	9.3	29
72	Introducing social acceptance into the design of CCS supply chains: A case study at a European level. Journal of Cleaner Production, 2020, 249, 119337.	9.3	18
73	Accelerating Low-Carbon Innovation. Joule, 2020, 4, 2259-2267.	24.0	76

#	Article	IF	CITATIONS
74	Highly effective capture and subsequent catalytic transformation of low-concentration CO ₂ by superbasic guanidines. Green Chemistry, 2020, 22, 7832-7838.	9.0	10
75	Cross-regional drivers for CCUS deployment. Clean Energy, 2020, 4, 202-232.	3.2	12
76	Insights into the Dielectric-Heating-Enhanced Regeneration of CO ₂ -Rich Aqueous Amine Solutions. ACS Sustainable Chemistry and Engineering, 2020, 8, 13593-13599.	6.7	12
77	The Neglected Role of Risk Mitigation Perception in the Risk Governance of Underground Technologies—The Example of Induced Seismicity. International Journal of Disaster Risk Science, 2020, 11, 630-639.	2.9	3
78	State-of-the-art advancements in photo-assisted CO ₂ hydrogenation: recent progress in catalyst development and reaction mechanisms. Journal of Materials Chemistry A, 2020, 8, 24868-24894.	10.3	40
79	Electrochemical Approaches toward CO ₂ Capture and Concentration. ACS Catalysis, 2020, 10, 13058-13074.	11.2	100
80	Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21968-21977.	7.1	110
81	What shapes public support for climate change mitigation policies? The role of descriptive social norms and elite cues. Behavioural Public Policy, 2021, 5, 503-527.	2.4	30
82	Community compensation in the context of Carbon Capture and Storage: Current debates and practices. International Journal of Greenhouse Gas Control, 2020, 101, 103128.	4.6	10
83	Reorientable fluorinated aryl rings in triangular channel Fe-MOFs: an investigation on CO ₂ –matrix interactions. Journal of Materials Chemistry A, 2020, 8, 11406-11413.	10.3	21
84	Do Pilot and Demonstration Projects Work? Evidence from a Green Building Program. Journal of Policy Analysis and Management, 2020, 39, 1100-1132.	1.4	17
85	Catalytic conversion of CO ₂ to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride. Materials Advances, 2020, 1, 1506-1545.	5.4	96
86	Challenges in the decarbonization of the energy sector. Energy, 2020, 205, 118025.	8.8	294
87	Prospect of near-zero-emission IGCC power plants to decarbonize coal-fired power generation in China: Implications from the GreenGen project. Journal of Cleaner Production, 2020, 271, 122615.	9.3	45
88	Energy systems for climate change mitigation: A systematic review. Applied Energy, 2020, 263, 114602.	10.1	135
89	MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints. Energy and Environmental Science, 2020, 13, 986-1017.	30.8	78
90	Carbon Geoengineering and the Metabolic Rift: Solution or Social Reproduction?. Critical Sociology, 2020, 46, 1233-1249.	1.9	8
91	Charge-regulated CO2 capture capacity of metal atom embedded graphyne: A first-principles study. Applied Surface Science, 2020, 509, 145392,	6.1	79

#	Article	IF	CITATIONS
92	Construction of Microporous Polyimides with Tunable Pore Size and High CO ₂ Selectivity Based on Cross-Linkable Linear Polyimides. Industrial & Engineering Chemistry Research, 2020, 59, 2953-2959.	3.7	11
93	Societal penetration of hydrogen into the future energy system: Impacts of policy, technology and carbon targets. International Journal of Hydrogen Energy, 2020, 45, 3883-3898.	7.1	95
94	Public views of Scotland's path to decarbonization: Evidence from citizens' juries and focus groups. Energy Policy, 2020, 140, 111332.	8.8	16
95	Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks. Clean Energy, 2020, 4, 26-47.	3.2	32
96	Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation. Catalysis Today, 2021, 362, 35-46.	4.4	45
97	The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective. Renewable and Sustainable Energy Reviews, 2021, 138, 110521.	16.4	132
98	High-throughput screening of metal – Organic frameworks for CO2 and CH4 separation in the presence of water. Chemical Engineering Journal, 2021, 403, 126392.	12.7	53
99	A vision of European biogas sector development towards 2030: Trends and challenges. Journal of Cleaner Production, 2021, 287, 125065.	9.3	81
100	An overview of CO32â^'/HCO3â^' binding by aerial CO2 fixation within the self-assemblies of hydrogen-bond donor scaffolds. CrystEngComm, 2021, 23, 512-527.	2.6	8
101	Media Framing of Climate Change Mitigation and Adaptation. , 2021, , 1-69.		3
103	Energy and CO ₂ Emissions Penalty Ranges for Geologic Carbon Storage Brine Management. Environmental Science & Technology, 2021, 55, 4305-4313.	10.0	5
104	Ultrahigh Carbon Dioxide-Selective Composite Membrane Containing a Î ³ -CD-MOF Layer. ACS Applied Materials & Interfaces, 2021, 13, 13034-13043.	8.0	24
105	Membrane technology for CO2 capture: From pilot-scale investigation of two-stage plant to actual system design. Journal of Membrane Science, 2021, 624, 119137.	8.2	62
106			
	Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy. Energy Policy, 2021, 151, 112149.	8.8	35
107	Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy. Energy Policy, 2021, 151, 112149. Design, synthesis, and physicochemical study of a biomass-derived CO2 sorbent 2,5-furan-bis(iminoguanidine). IScience, 2021, 24, 102263.	8.8 4.1	35 3
107 108	Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy. Energy Policy, 2021, 151, 112149. Design, synthesis, and physicochemical study of a biomass-derived CO2 sorbent 2,5-furan-bis(iminoguanidine). IScience, 2021, 24, 102263. DFT-D3 calculations of the charge-modulated CO2 capture of N/Sc-embedded graphyne: Compilation of some factors. Journal of CO2 Utilization, 2021, 46, 101469.	8.8 4.1 6.8	35 3 17
107 108 109	Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy. Energy Policy, 2021, 151, 112149.Design, synthesis, and physicochemical study of a biomass-derived CO2 sorbent 2,5-furan-bis(iminoguanidine). IScience, 2021, 24, 102263.DFT-D3 calculations of the charge-modulated CO2 capture of N/Sc-embedded graphyne: Compilation of some factors. Journal of CO2 Utilization, 2021, 46, 101469.Capillary-Driven Formation of Iron Nanoparticles Embedded in Nanotubes for Catalyzed Lithium〓Carbon Dioxide Reaction., 2021, 3, 815-825.	8.8 4.1 6.8	35 3 17 19

#	Article	IF	CITATIONS
111	Confronting mitigation deterrence in low-carbon scenarios. Environmental Research Letters, 2021, 16, 064099.	5.2	29
112	Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways. Applied Energy, 2021, 291, 116751.	10.1	7
113	The Oxymoron of Carbon Dioxide Removal: Escaping Carbon Lock-In and yet Perpetuating the Fossil Status Quo?. Frontiers in Climate, 2021, 3, .	2.8	13
114	Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges. Renewable and Sustainable Energy Reviews, 2021, 145, 110977.	16.4	49
115	Sunsetting coal power in China. IScience, 2021, 24, 102939.	4.1	11
116	Anticipating the social fit of CCS projects by looking at place factors. International Journal of Greenhouse Gas Control, 2021, 110, 103399.	4.6	8
117	A social learning approach to carbon capture and storage demonstration project management: An empirical analysis. Applied Energy, 2021, 299, 117336.	10.1	10
118	Low-cost temperature transition mixtures (TTM) based on ethylene glycol/potassium hydroxide as reversible CO2 sorbents. Journal of Molecular Liquids, 2021, 340, 117180.	4.9	6
119	How do people perceive carbon capture and storage for industrial processes? Examining factors underlying public opinion in the Netherlands and the United Kingdom. Energy Research and Social Science, 2021, 81, 102236.	6.4	17
120	What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy, 2021, 158, 112546.	8.8	64
121	Value-added diagnostics for the assessment and validation of integrated assessment models. Renewable and Sustainable Energy Reviews, 2021, 152, 111605.	16.4	2
122	Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. Journal of Membrane Science, 2022, 641, 119912.	8.2	50
123	Introduction to CO ₂ utilisation. Green Chemistry, 2021, 23, 3499-3501.	9.0	40
125	Understanding the Role of CCS Deployment in Meeting Ambitious Climate Goals. RSC Energy and Environment Series, 2019, , 8-35.	0.5	4
126	What is needed to deliver carbon-neutral heat using hydrogen and CCS?. Energy and Environmental Science, 2020, 13, 4204-4224.	30.8	54
127	Direct air capture of CO ₂ – topological analysis of the experimental electron density (QTAIM) of the highly insoluble carbonate salt of a 2,6-pyridine-bis(iminoguanidine), (PyBIGH ₂)(CO ₃)(H ₂ O) ₄ . IUCrJ, 2019, 6, 56-65.	2.2	11
128	Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nature Climate Change, 2021, 11, 925-936.	18.8	69
129	Testing Supply-Side Climate Policies for the Global Steam Coal Market - Can They Curb Coal Consumption?. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
130	The Political Economy of Carbon Capture and Storage. RSC Energy and Environment Series, 2019, , 536-558.	0.5	2
131	Ancillary Benefits of Carbon Capture and Storage. Springer Climate, 2020, , 213-225.	0.6	1
132	Space-based Solar Power as a Catalyst for Space Development. Space Policy, 2022, 59, 101451.	1.5	1
133	Self-templating synthesis of nitrogen-rich porous carbons using pyridyl functionalized conjugated microporous polytriphenylamine for electrochemical energy storage. Electrochimica Acta, 2022, 402, 139531.	5.2	16
134	Cost reductions in renewables can substantially erode the value of carbon capture and storage in mitigation pathways. One Earth, 2021, 4, 1588-1601.	6.8	26
135	Why and Where to Fund Carbon Capture and Storage. Science and Engineering Ethics, 2021, 27, 70.	2.9	8
136	Global trends in the invention and diffusion of climate change mitigation technologies. Nature Energy, 2021, 6, 1077-1086.	39.5	39
137	What are the potential paths for carbon capture and storage in Sweden? A multi-level assessment of historical and current developments. Energy Research and Social Science, 2022, 87, 102452.	6.4	13
139	CO2 capture and utilization with solid waste. Green Chemical Engineering, 2022, 3, 199-209.	6.3	25
140	Laboratory demonstration of the stability of CO2 hydrates in deep-oceanic sediments. Chemical Engineering Journal, 2022, 432, 134290.	12.7	31
141	Plant conversions and abatement technologies cannot prevent stranding of power plant assets in 2 °C scenarios. Nature Communications, 2022, 13, 806.	12.8	13
142	Direct air capture: process technology, techno-economic and socio-political challenges. Energy and Environmental Science, 2022, 15, 1360-1405.	30.8	176
143	Will the regime ever break? Assessing socio-political and economic pressures to climate action and European oil majors' response (2005-2019). Climate Policy, 2022, 22, 488-501.	5.1	6
144	Zeolite-X synthesized from halloysite nanotubes and its application in CO2 capture. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104281.	5.3	7
145	Carbon capture and storage investment: Fiddling while the planet burns. One Earth, 2022, 5, 434-442.	6.8	4
146	Theoretical Study of the Hydrogen-Bond Interactions of CO ₂ in the Organic Absorbent 1,3-Diphenylguanidine. Chinese Journal of Chemical Physics, 0, , .	1.3	0
147	Three decades of topic evolution, hot spot mining and prospect in CCUS Studies based on CitNetExplorer. Chinese Journal of Population Resources and Environment, 2022, 20, 91-104.	2.7	7
148	Risk–risk governance in a lowâ€carbon future: Exploring institutional, technological, and behavioral tradeoffs in climate geoengineering pathways. Risk Analysis, 2023, 43, 838-859.	2.7	15

#	Article	IF	Citations
149	Media Framing of Climate Change Mitigation and Adaptation. , 2022, , 3295-3363.		0
150	Performance of Tsa and Vsa Post-Combustion Co2 Capture Processes with a Biomass Waste-Based Adsorbent. SSRN Electronic Journal, 0, , .	0.4	0
151	Biomassâ€Based Nâ€Rich Porous Carbon Materials for CO ₂ Capture and inâ€situ Conversion. ChemSusChem, 2022, 15, .	6.8	22
152	A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renewable and Sustainable Energy Reviews, 2022, 167, 112537.	16.4	176
153	Community acceptance and social impacts of carbon capture, utilization and storage projects: A systematic meta-narrative literature review. PLoS ONE, 2022, 17, e0272409.	2.5	7
154	On the Organisation of Translation—An Inter- and Transdisciplinary Approach to Developing Design Options for CO2 Storage Monitoring Systems. Energies, 2022, 15, 5678.	3.1	6
155	Methods of Large-Scale Capture and Removal of Atmospheric Greenhouse Gases. Energies, 2022, 15, 6560.	3.1	3
156	Enhancing the realism of decarbonisation scenarios with practicable regional constraints on CO2 storage capacity. International Journal of Greenhouse Gas Control, 2022, 120, 103766.	4.6	10
157	Political and Socio-economic Challenges of Greenhouse Gas Removal Technologies. RSC Energy and Environment Series, 2022, , 390-429.	0.5	0
158	Understanding Societal Requirements of CCS Projects: Application of the Societal Embeddedness Level Assessment Methodology in Four National Case Studies. Clean Technologies, 2022, 4, 893-907.	4.2	4
159	Carbon neutrality orientates the reform of the steel industry. Nature Materials, 2022, 21, 1094-1098.	27.5	19
160	Empirically grounded technology forecasts and the energy transition. Joule, 2022, 6, 2057-2082.	24.0	138
161	Climate innovation policy from Glasgow to Pittsburgh. Nature Energy, 2022, 7, 776-778.	39.5	1
162	Data driven identification of international cutting edge science and technologies using SpaCy. PLoS ONE, 2022, 17, e0275872.	2.5	1
163	Performance of TSA and VSA post-combustion CO2 capture processes with a biomass waste-based adsorbent. Journal of Environmental Chemical Engineering, 2022, 10, 108759.	6.7	11
164	What China's Environmental Policy Means for PV Solar, Electric Vehicles, and Carbon Capture and Storage Technologies. Energies, 2022, 15, 9037.	3.1	0
165	Mechanism of CO ₂ Capture and Release on Redox-Active Organic Electrodes. Energy & Fuels, 0, , .	5.1	2
166	Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes. Membranes, 2023, 13, 130.	3.0	13

#	Article	IF	CITATIONS
167	The contribution of carbon capture and storage to Canada's net-zero plan. Journal of Cleaner Production, 2023, 404, 136901.	9.3	2
168	CO ₂ hydrogenation over cubic yttrium oxide support: Effect of metal type. Energy and Environment, 0, , 0958305X2311594.	4.6	0
169	Reduction potential of the energy penalty for CO2 capture in CCS. Frontiers in Energy, 2023, 17, 390-399.	2.3	3
170	Real-time high-resolution CO ₂ geological storage prediction using nested Fourier neural operators. Energy and Environmental Science, 2023, 16, 1732-1741.	30.8	14
171	Sustainable or Not for Water Consumption after Implementing CCS in China's Coal-Fired Power Plants for Achieving 2 °C Target. Water (Switzerland), 2023, 15, 1167.	2.7	1
172	Sustainable Energy, Fuel and Chemicals. , 2021, , 488-588.		0
173	Techno-Economic Analysis of a Hybrid System with Carbon Capture for Simultaneous Power Generation and Coal-to-Hydrogen Conversion. Industrial & Engineering Chemistry Research, 2023, 62, 7048-7057.	3.7	2
174	Storing carbon dioxide for climate's sake: contradictions and parallels with enhanced oil recovery. Frontiers in Climate, 0, 5, .	2.8	1
175	Carbon-Neutral Steel Production and Its Impact on the Economies of China, Japan, and Korea: A Simulation with E3ME-FTT:Steel. Energies, 2023, 16, 4498.	3.1	4
176	Enhanced selectivity in thin film composite membrane for CO2 capture through improvement to support layer. Chemical Engineering Journal, 2023, 468, 143645.	12.7	2
177	Ethics, risks, and governance of NETs. , 2023, , 41-66.		0
178	Electrochemically responsive materials for energy-efficient water treatment and carbon capture. Applied Physics Reviews, 2023, 10, .	11.3	0
179	Six principles to guide large-scale carbon capture and storage development. Energy Research and Social Science, 2023, 103, 103214.	6.4	0
180	Methyl-Functionalized Al-Based MOF ZJU-620(Al): A Potential Physisorbent for Carbon Dioxide Capture. ACS Applied Materials & Interfaces, 2023, 15, 43925-43932.	8.0	0
181	Risks and uncertainties in carbon capture, transport, and storage projects: A comprehensive review. , 2023, 119, 205117.		7
182	Feasibility of Carbon Dioxide Storage Resource Use within Climate Change Mitigation Scenarios for the United States. Environmental Science & amp; Technology, 2023, 57, 14938-14949.	10.0	1
183	Controversies of carbon dioxide removal. Nature Reviews Earth & Environment, 2023, 4, 808-814.	29.7	0
184	Solidification of Aerial CO ₂ â€Captured Aralkylamines in Water Triggered by Selfâ€Assembly Against Affinity for Formation of Reverse Lipid Bilayer. Advanced Materials Interfaces, 2024, 11, .	3.7	0

#	Article	IF	CITATIONS
185	Temperature and Reaction Time's Effects on N80 Steel Corrosion Behavior in Supercritical CO2 and Formation Water Environments. Applied Sciences (Switzerland), 2024, 14, 728.	2.5	0
186	Can media influence public support for carbon capture and storage? Comparing the impacts of frames in Denmark. Energy Research and Social Science, 2024, 110, 103452.	6.4	0