Engineering the Edges of MoS₂ (WS<sub>2 Exfoliation into Monolayers in Polar Micromolecular Sc

Journal of the American Chemical Society 138, 14962-14969 DOI: 10.1021/jacs.6b08096

Citation Report

#	Article	IF	CITATIONS
2	Heterostructured WS ₂ â€MoS ₂ Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solarâ€Driven Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 1563-1570.	3.6	150
3	Surface Tension Components Ratio: An Efficient Parameter for Direct Liquid Phase Exfoliation. ACS Applied Materials & Interfaces, 2017, 9, 9168-9175.	4.0	45
4	Photocatalytic Properties of MoS2/CdS Composites Prepared Via One-Pot Hydrothermal Synthesis in Hydrogen Evolution Reactions from Aqueous Solutions of Organic Acids. Theoretical and Experimental Chemistry, 2017, 53, 25-30.	0.2	1
5	Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie, 2017, 129, 5961-5965.	1.6	84
6	Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 5867-5871.	7.2	808
7	Very Large-Sized Transition Metal Dichalcogenides Monolayers from Fast Exfoliation by Manual Shaking. Journal of the American Chemical Society, 2017, 139, 9019-9025.	6.6	109
8	Light‧witchable Oxygen Vacancies in Ultrafine Bi ₅ O ₇ Br Nanotubes for Boosting Solarâ€Ðriven Nitrogen Fixation in Pure Water. Advanced Materials, 2017, 29, 1701774.	11.1	533
9	Engineering the crystallinity of MoS ₂ monolayers for highly efficient solar hydrogen production. Journal of Materials Chemistry A, 2017, 5, 8591-8598.	5.2	69
10	Surfactantâ€Free Polarâ€toâ€Nonpolar Phase Transfer of Exfoliated MoS ₂ Twoâ€Dimensional Colloids. ChemPlusChem, 2017, 82, 732-741.	1.3	10
11	Rapid and highly efficient chemical exfoliation of layered MoS 2 and WS 2. Journal of Alloys and Compounds, 2017, 699, 222-229.	2.8	79
12	Preparation, Structure and Functional Properties of MoS2 and WS2 Nanocomposites with Inorganic Chalcogenide Semiconductors: a Review. Theoretical and Experimental Chemistry, 2017, 53, 211-234.	0.2	3
13	Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 2017, 9, 17859-17864.	2.8	299
14	Amorphous WS x as an efficient cocatalyst grown on CdS nanoparticles via photochemical deposition for enhanced visible-light-driven hydrogen evolution. Molecular Catalysis, 2017, 440, 190-198.	1.0	26
15	A novel Ni-S-W-C electrode for hydrogen evolution reaction in alkaline electrolyte. Materials Letters, 2017, 209, 532-534.	1.3	20
16	Large-scale production of defect-free MoS2 nanosheets via pyrene-assisted liquid exfoliation. Journal of Alloys and Compounds, 2017, 728, 1030-1036.	2.8	28
17	A transparent CdS@TiO ₂ nanotextile photoanode with boosted photoelectrocatalytic efficiency and stability. Nanoscale, 2017, 9, 15650-15657.	2.8	40
18	Lateral-Size-Mediated Efficient Oxygen Evolution Reaction: Insights into the Atomically Thin Quantum Dot Structure of NiFe ₂ 0 ₄ . ACS Catalysis, 2017, 7, 5557-5567.	5.5	156
19	Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. Nano Energy, 2017, 39, 409-417.	8.2	107

#	Article	IF	CITATIONS
20	Crystal lattice distortion in ultrathin Co(OH) ₂ nanosheets inducing elongated Co–O _{OH} bonds for highly efficient oxygen evolution reaction. Green Chemistry, 2017, 19, 5809-5817.	4.6	43
21	Environmental Applications of 2D Molybdenum Disulfide (MoS ₂) Nanosheets. Environmental Science & Technology, 2017, 51, 8229-8244.	4.6	647
22	Photocatalytic hydrogen evolution activity over MoS2/ZnIn2S4 microspheres. Chinese Journal of Catalysis, 2017, 38, 2067-2075.	6.9	63
23	Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection. Talanta, 2018, 182, 38-48.	2.9	58
24	Liquid Phase Exfoliation of MoS ₂ Assisted by Formamide Solvothermal Treatment and Enhanced Electrocatalytic Activity Based on (H ₃ Mo ₁₂ O ₄₀ P/MoS ₂) _n Multilayer Structure. ACS Sustainable Chemistry and Engineering, 2018, 6, 5227-5237.	3.2	39
25	One-step hydrothermal preparation of MoS2 loaded on CdMoO4/CdS hybrids for efficient photocatalytic hydrogen evolution. Catalysis Communications, 2018, 110, 10-13.	1.6	9
26	Flower-like SnO2/g-C3N4 heterojunctions: The face-to-face contact interface and improved photocatalytic properties. Advanced Powder Technology, 2018, 29, 1153-1157.	2.0	25
27	Synergetic Exfoliation and Lateral Size Engineering of MoS ₂ for Enhanced Photocatalytic Hydrogen Generation. Small, 2018, 14, e1704153.	5.2	84
28	Efficient Hydrogen Production on a 3D Flexible Heterojunction Material. Advanced Materials, 2018, 30, e1707082.	11.1	158
29	Natural Sugar: A Green Assistance To Efficiently Exfoliate Inorganic Layered Nanomaterials. Inorganic Chemistry, 2018, 57, 5560-5566.	1.9	14
30	Preparation of Few-Layer MoS ₂ Nanosheets via an Efficient Shearing Exfoliation Method. Industrial & Engineering Chemistry Research, 2018, 57, 2838-2846.	1.8	45
31	Layered Aggregation with Steric Effect: Morphologyâ€Homogeneous Semiconductor MoS ₂ as an Alternative 2D Probe for Visual Immunoassay. Small, 2018, 14, 1703560.	5.2	26
32	Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light. Journal of Solid State Chemistry, 2018, 260, 23-30.	1.4	27
33	NiSx Quantum Dots Accelerate Electron Transfer in Cd _{0.8} Zn _{0.2} S Photocatalytic System via an rGO Nanosheet "Bridge―toward Visible-Light-Driven Hydrogen Evolution. ACS Catalysis, 2018, 8, 1532-1545.	5.5	137
34	High Yield Exfoliation of WS ₂ Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS ₂ /CdS Nanorod Composites. ACS Applied Materials & Interfaces, 2018, 10, 2810-2818.	4.0	112
35	Production of mono- to few-layer MoS2 nanosheets in isopropanol by a salt-assisted direct liquid-phase exfoliation method. Journal of Colloid and Interface Science, 2018, 515, 27-31.	5.0	57
36	Solvothermal fabrication of MoS2 anchored on ZnIn2S4 microspheres with boosted photocatalytic hydrogen evolution activity. International Journal of Hydrogen Energy, 2018, 43, 6977-6986.	3.8	65
37	Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 232, 446-453.	10.8	63

#	Article	IF	CITATIONS
38	Enhanced photocatalytic hydrogen production on three-dimensional gold butterfly wing scales/CdS nanoparticles. Applied Surface Science, 2018, 427, 807-812.	3.1	13
39	Direct Exfoliation of Highâ€Quality, Atomically Thin MoSe ₂ Layers in Water. Advanced Sustainable Systems, 2018, 2, 1700107.	2.7	11
40	Defect Mitigation of Solution-Processed 2D WSe ₂ Nanoflakes for Solar-to-Hydrogen Conversion. Nano Letters, 2018, 18, 215-222.	4.5	70
41	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	4.1	309
42	Understanding the exfoliation and dispersion of MoS2 nanosheets in pure water. Journal of Colloid and Interface Science, 2018, 517, 204-212.	5.0	103
43	Remarkably enhanced photocatalytic hydrogen evolution over MoS 2 nanosheets loaded on uniform CdS nanospheres. Applied Surface Science, 2018, 430, 523-530.	3.1	104
44	Microwave-assisted mass synthesis of Mo _{1â^'x} W _x S ₂ alloy composites with a tunable lithium storage property. Dalton Transactions, 2018, 47, 15148-15154.	1.6	9
45	Water-soluble MoS ₂ quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. Nanoscale, 2018, 10, 21298-21306.	2.8	49
46	Compositing Two-Dimensional Materials with TiO2 for Photocatalysis. Catalysts, 2018, 8, 590.	1.6	31
47	Simultaneous Exfoliation and Functionalization of 2H-MoS ₂ by Thiolated Surfactants: Applications in Enhanced Antibacterial Activity. Journal of the American Chemical Society, 2018, 140, 12634-12644.	6.6	176
48	Self-assembly optimization of cadmium/molybdenum sulfide hybrids by cation coordination competition toward extraordinarily efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 18396-18402.	5.2	22
49	Three-Dimensional CdS/Au Butterfly Wing Scales with Hierarchical Rib Structures for Plasmon-Enhanced Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 19649-19655.	4.0	54
50	Synthesis of MoS ₂ nanosheets for mercury speciation analysis by HPLC-UV-HG-AFS. RSC Advances, 2018, 8, 18364-18371.	1.7	20
51	A general strategy for the functionalization of two-dimensional metal chalcogenides. Nanoscale, 2018, 10, 10657-10663.	2.8	9
52	Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 239, 537-544.	10.8	219
53	Fabrication of CdSe/CaTiO3 nanocomposties in aqueous solution for improved photocatalytic hydrogen production. Applied Surface Science, 2018, 459, 520-526.	3.1	52
54	Atomic‣cale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis. Advanced Materials, 2018, 30, e1707301.	11.1	148
55	Role of oxygen adsorption in modification of optical and surface electronic properties of MoS2. Journal of Applied Physics, 2018, 123, .	1.1	23

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
56	Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis. Applied Catalysis B: Environmental, 2019, 259, 118026.	10.8	36
57	Electrocatalysis on Edge-Rich Spiral WS ₂ for Hydrogen Evolution. ACS Nano, 2019, 13, 10448-10455.	7.3	77
58	Multifunctional MoS ₂ ultrathin nanoflakes loaded by Cd _{0.5} Zn _{0.5} S QDs for enhanced photocatalytic H ₂ production. International Journal of Energy Research, 2019, 43, 5678-5686.	2.2	25
59	Formation of large area WS ₂ nanosheets using an oxygen-plasma assisted exfoliation suitable for optical devices. Nanotechnology, 2019, 30, 425204.	1.3	20
60	Synthesis of oil-soluble WS2 nanosheets under mild condition and study of their effect on tribological properties of poly-alpha olefin under evaluated temperatures. Tribology International, 2019, 138, 68-78.	3.0	25
61	Tungsten phosphide nanosheets seamlessly grown on tungsten foils toward efficient hydrogen evolution reaction in basic and acidic media. International Journal of Hydrogen Energy, 2019, 44, 27483-27491.	3.8	10
62	Space-confined synthesis of monolayer molybdenum disulfide using tetrathiomolybdate intercalated layered double hydroxide as precursor. Journal of Colloid and Interface Science, 2019, 541, 183-191.	5.0	13
63	Powder exfoliated MoS ₂ nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. Nanoscale, 2019, 11, 1887-1900.	2.8	93
64	Mild Covalent Functionalization of Transition Metal Dichalcogenides with Maleimides: A "Click― Reaction for 2H-MoS ₂ and WS ₂ . Journal of the American Chemical Society, 2019, 141, 3767-3771.	6.6	72
65	Ultrasound-Assisted Alkaline Solution Reflux for As-Exfoliated MoS ₂ Nanosheets. ACS Omega, 2019, 4, 9823-9827.	1.6	10
66	Decorating MoS2 and CoSe2 nanostructures on 1D-CdS nanorods for boosting photocatalytic hydrogen evolution rate. Journal of Molecular Liquids, 2019, 289, 111164.	2.3	12
67	Surface functionalization of bulk MoS2 sheets for efficient liquid phase exfoliation in polar micromolecular solvents. Applied Surface Science, 2019, 486, 362-370.	3.1	31
68	Ultrathin MoS ₂ Nanosheets Decorated Hollow CoP Heterostructures for Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 10105-10111.	3.2	50
69	Amorphous MoS ₂ decorated on uniform Cd _{0.8} Zn _{0.2} S microspheres with dramatically improved photocatalytic hydrogen evolution performance. New Journal of Chemistry, 2019, 43, 7846-7854.	1.4	9
70	A top-down exfoliation for MoS2 nanosheets based on Li+/Na+-intercalated and shearing synergistic process. Materials Letters, 2019, 248, 236-240.	1.3	13
71	New Simultaneous Exfoliation and Doping Process for Generating MX ₂ Nanosheets for Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 14786-14795.	4.0	54
72	Reconstructing Dualâ€Induced {0 0 1} Facets Bismuth Oxychloride Nanosheets Heterostructures: An Effective Strategy to Promote Photocatalytic Oxygen Evolution. Solar Rrl, 2019, 3, 1900059.	3.1	44
73	Hierarchical ZnIn2S4: A promising cocatalyst to boost visible-light-driven photocatalytic hydrogen evolution of In(OH)3. International Journal of Hydrogen Energy, 2019, 44, 5787-5798.	3.8	40

#	Article	IF	CITATIONS
74	Fe-Doped BiOCl Nanosheets with Light-Switchable Oxygen Vacancies for Photocatalytic Nitrogen Fixation. ACS Applied Energy Materials, 2019, 2, 8394-8398.	2.5	109
75	Electrochemical Hydrogen Evolution over Hydrothermally Synthesized Re-Doped MoS2 Flower-Like Microspheres. Molecules, 2019, 24, 4631.	1.7	24
76	Hierarchical "nanoroll―like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 241, 89-94.	10.8	214
77	Surfactant-free exfoliation of multilayer molybdenum disulfide nanosheets in water. Journal of Colloid and Interface Science, 2019, 537, 28-33.	5.0	6
78	In situ photoelectrochemical activation of sulfite by MoS2 photoanode for enhanced removal of ammonium nitrogen from wastewater. Applied Catalysis B: Environmental, 2019, 244, 396-406.	10.8	71
79	Activating MoS ₂ Basal Plane with Ni ₂ P Nanoparticles for Pt‣ike Hydrogen Evolution Reaction in Acidic Media. Advanced Functional Materials, 2019, 29, 1809151.	7.8	114
80	2D Schottky Junction between Graphene Oxide and Transitionâ€Metal Dichalcogenides: Photoresponsive Properties and Electrocatalytic Performance. Advanced Materials Interfaces, 2019, 6, 1801657.	1.9	13
81	Full spectrum light driven photocatalytic in-situ epitaxy of one-unit-cell Bi2O2CO3 layers on Bi2O4 nanocrystals for highly efficient photocatalysis and mechanism unveiling. Applied Catalysis B: Environmental, 2019, 243, 667-677.	10.8	114
82	Underwater superoleophobic and underoil superhydrophobic surface made by liquid-exfoliated MoS2 for on-demand oil-water separation. Chemical Engineering Journal, 2019, 361, 322-328.	6.6	45
83	Electrochemical capacitive properties of all-solid-state supercapacitors based on ternary MoS2/CNTs-MnO2 hybrids and ionic mixture electrolyte. Journal of Alloys and Compounds, 2019, 780, 276-283.	2.8	32
84	Tuning charge transfer process of MoS2 photoanode for enhanced photoelectrochemical conversion of ammonia in water into gaseous nitrogen. Chemical Engineering Journal, 2020, 382, 123048.	6.6	29
85	Scalable exfoliation and friction performance of few-layered WS2 nanosheets by microwave-assisted liquid-phase sonication. Ceramics International, 2020, 46, 3786-3792.	2.3	22
86	Formation of Few―and Monolayered WS ₂ Sheets Using Plasmaâ€Treated Dimethylâ€&ulfoxide Solventâ€Based Exfoliation. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900396.	1.2	8
87	Kopplung von Solarenergie und WÄ r meenergie zur Kohlendioxidreduktion: Aktueller Stand und Perspektiven. Angewandte Chemie, 2020, 132, 8092-8111.	1.6	27
88	Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angewandte Chemie - International Edition, 2020, 59, 8016-8035.	7.2	323
89	Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection. Journal of Colloid and Interface Science, 2020, 560, 177-185.	5.0	45
90	Waferâ€Scale and Lowâ€Temperature Growth of 1Tâ€WS ₂ Film for Efficient and Stable Hydrogen Evolution Reaction. Small, 2020, 16, e1905000.	5.2	53
91	Confining Mo-activated CoSx active sites within MCM-41 for highly efficient dye-sensitized photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2020, 563, 112-121.	5.0	12

#	Article	IF	CITATIONS
92	Solvent-Exfoliated 2D WS ₂ /Polyethersulfone Antifouling Mixed Matrix Ultrafiltration Membrane for Water Treatment. ACS Applied Polymer Materials, 2020, 2, 5039-5047.	2.0	10
93	Combating Actions of Green 2D-Materials on Gram Positive and Negative Bacteria and Enveloped Viruses. Frontiers in Bioengineering and Biotechnology, 2020, 8, 569967.	2.0	34
94	Robust water splitting on staggered gap heterojunctions based on WO3â^–WS2–MoS2 nanostructures. Renewable Energy, 2020, 162, 504-512.	4.3	13
95	The construction and performance of photocatalytic-fuel-cell with Fe-MoS2/reduced graphene oxide@carbon fiber cloth and ZnFe2O4/Ag/Ag3VO4@carbon felt as photo electrodes. Electrochimica Acta, 2020, 362, 137037.	2.6	14
96	Investigating the exfoliation behavior of MoS2 and graphite in water: A comparative study. Applied Surface Science, 2020, 512, 145588.	3.1	22
97	Enhanced Charge Transfer in Atomâ€Thick 2H–WS ₂ Nanosheets' Electron Transport Layers of Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000260.	3.1	26
98	Scalable and efficient extraction of two-dimensional MoS2 nanosheets from dispersions as a co-catalyst for enhancing Fenton reactions. Journal of Materials Science, 2020, 55, 14358-14372.	1.7	7
99	Covalent 0D–2D Heterostructuring of Co ₉ S ₈ –MoS ₂ for Enhanced Hydrogen Evolution in All pH Electrolytes. Advanced Functional Materials, 2020, 30, 2002536.	7.8	114
100	Steer the Rheology of Solvent with Little Surfactant to Exfoliate MoS ₂ Nanosheet by Liquid Phase Exfoliation Method. Nano, 2020, 15, 2050118.	0.5	3
101	Aggregationâ€Induced Emission Luminogens for Direct Exfoliation of 2D Layered Materials in Ethanol. Advanced Materials Interfaces, 2020, 7, 2000795.	1.9	5
102	Study of Structural and Optoelectronic Properties of Thin Films Made of a Few Layered WS2 Flakes. Materials, 2020, 13, 5315.	1.3	6
103	Efficient and scalable preparation of MoS2 nanosheet/carbon nanotube composites for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 16489-16499.	3.8	24
104	Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity. Journal of Materials Science and Technology, 2020, 56, 179-188.	5.6	73
105	Visible-Light-Driven Nitrogen Fixation Catalyzed by Bi ₅ O ₇ Br Nanostructures: Enhanced Performance by Oxygen Vacancies. Journal of the American Chemical Society, 2020, 142, 12430-12439.	6.6	260
106	Improved charge carrier dynamics of WS ₂ nanostructures by the way of CdS@WS ₂ heterostructures for use in water splitting and water purification. Sustainable Energy and Fuels, 2020, 4, 4096-4107.	2.5	13
107	Fabrication of Ultrathin MoS2 Nanosheets and Application on Adsorption of Organic Pollutants and Heavy Metals. Processes, 2020, 8, 504.	1.3	29
108	Facile Preparation of WO _{3â^'<i>x</i>} Dots with Remarkably Low Toxicity and Uncompromised Activity as Coâ€reactants for Clinical Diagnosis by Electrochemiluminescence. Angewandte Chemie - International Edition, 2020, 59, 16747-16754.	7.2	77
109	2D nano-materials beyond graphene: from synthesis to tribological studies. Applied Nanoscience (Switzerland), 2020, 10, 3353-3388.	1.6	89

#	Article	IF	CITATIONS
110	Facile Preparation of WO 3â^' x Dots with Remarkably Low Toxicity and Uncompromised Activity as Coâ€reactants for Clinical Diagnosis by Electrochemiluminescence. Angewandte Chemie, 2020, 132, 16890.	1.6	1
111	Few-layer WS2 decorating ZnIn2S4 with markedly promoted charge separation and photocatalytic H2 evolution activity. Applied Surface Science, 2020, 514, 145965.	3.1	63
112	Hemispherical shell-thin lamellar WS2 porous structures composited with CdS photocatalysts for enhanced H2 evolution. Chemical Engineering Journal, 2020, 388, 124346.	6.6	56
113	A bioconjugated MoS ₂ based nanoplatform with increased binding efficiency to cancer cells. Biomaterials Science, 2020, 8, 1973-1980.	2.6	8
114	A noble-metal-free MoS ₂ nanosheet-coupled MAPbI ₃ photocatalyst for efficient and stable visible-light-driven hydrogen evolution. Chemical Communications, 2020, 56, 3281-3284.	2.2	43
115	Simultaneous exfoliation and colloidal formation of few-layer semiconducting MoS2 sheets in water. Chemical Communications, 2020, 56, 2035-2038.	2.2	7
116	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 1900547.	3.1	47
117	Efficient Visible Light Driven Ammonia Synthesis on Sandwich Structured C3N4/MoS2/Mn3O4 catalyst. Applied Catalysis B: Environmental, 2021, 281, 119476.	10.8	37
118	Proton-induced fast preparation of size-controllable MoS2 nanocatalyst towards highly efficient water electrolysis. Chinese Chemical Letters, 2021, 32, 1191-1196.	4.8	8
119	Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chemical Engineering Journal, 2021, 406, 126815.	6.6	88
120	Direct synthesis of 1T-phase MoS ₂ nanosheets with abundant sulfur-vacancies through (CH ₃) ₄ N ⁺ cation-intercalation for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 13996-14003.	5.2	17
121	Realization of Waferâ€Scale 1Tâ€MoS ₂ Film for Efficient Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 1344-1350.	3.6	21
122	Graphdiyne@NiO _x (OH) _y heterostructure for efficient overall water splitting. Materials Chemistry Frontiers, 2021, 5, 5305-5311.	3.2	13
123	Exfoliation of large-flake, few-layer MoS ₂ nanosheets mediated by carbon nanotubes. Chemical Communications, 2021, 57, 4400-4403.	2.2	10
124	Amorphous CoS _{<i>x</i>} Growth on CaTiO ₃ Nanocubes Formed S-Scheme Heterojunction for Photocatalytic Hydrogen Production. Energy & Fuels, 2021, 35, 6231-6239.	2.5	17
125	Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem Catalysis, 2021, 1, 44-68.	2.9	83
126	Ru-Doped CuO/MoS ₂ Nanostructures as Bifunctional Water-Splitting Electrocatalysts in Alkaline Media. ACS Applied Nano Materials, 2021, 4, 7675-7685.	2.4	29
127	Aqueous Adsorption of Heavy Metals on Metal Sulfide Nanomaterials: Synthesis and Application. Water (Switzerland), 2021, 13, 1843.	1.2	28

#	ARTICLE	IF	CITATIONS
" 128	Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu-In-Zn-S QDs/MoS2 photocatalysts. Applied Catalysis B: Environmental, 2022, 301, 120755.	10.8	63
129	Bioinspired Precious-Metal-Free N4 Macrocycle as an Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 10826-10834.	2.5	15
130	Effect of composition of few-layered transition metal dichalcogenide nanosheets on separation mechanism of hydrogen selective membranes. Journal of Membrane Science, 2021, 634, 119419.	4.1	6
131	Molecular Dynamics Simulations of Water Anchored in Multilayered Nanoporous MoS ₂ Membranes: Implications for Desalination. ACS Applied Nano Materials, 2021, 4, 10467-10476.	2.4	12
132	Raspberry Plant-like CNT@MoS2/Cd0.5Zn0.5S ternary photocatalytic systems for High-efficient hydrogen evolution. Applied Surface Science, 2021, 565, 150507.	3.1	21
133	Efficient mineralization of TBBPA via an integrated photocatalytic reduction/oxidation process mediated by MoS2/SnIn4S8 photocatalyst. Chemosphere, 2021, 285, 131542.	4.2	30
134	Local electrochemical activity of transition metal dichalcogenides and their heterojunctions on 3D-printed nanocarbon surfaces. Nanoscale, 2021, 13, 5324-5332.	2.8	15
135	2D MXene-Based Materials for Electrocatalysis. Transactions of Tianjin University, 2020, 26, 149-171.	3.3	65
136	Effective promotion of spacial charge separation in direct Z-scheme WO3/CdS/WS2 tandem heterojunction with enhanced visible-light-driven photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 398, 125602.	6.6	73
137	Highly efficient solution exfoliation of few-layer molybdenum disulfide nanosheets for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 577, 38-47.	5.0	11
138	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87
139	A biodegradable polymer-assisted efficient and universal exfoliation route to a stable few layer dispersion of transition metal dichalcogenides. Materials Chemistry and Physics, 2022, 276, 125347.	2.0	6
140	Ultrafast synchrotron X-ray imaging and multiphysics modelling of liquid phase fatigue exfoliation of graphite under ultrasound. Carbon, 2022, 186, 227-237.	5.4	14
141	Controlling 1T/2H heterophase junctions in the MoS ₂ microsphere for the highly efficient photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 7914-7921.	2.1	4
142	Electrochemically Exfoliated WS ₂ Nanosheets for the Electrochemical Impedimetric Detection of NADH. ChemElectroChem, 2021, 8, 4597-4604.	1.7	3
143	High-yield exfoliation of MoS2 (WS2) monolayers towards efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 431, 133286.	6.6	14
144	Insight into the Role of H ₂ in WS ₂ Growth by Chemical Vapor Deposition. ACS Applied Electronic Materials, 2021, 3, 5138-5146.	2.0	5
145	Surface brÃ,nsted-lewis dual acid sites for high-efficiency dinitrogen photofixation in pure water. Journal of Energy Chemistry, 2021, , .	7.1	5

#	Article	IF	CITATIONS
146	The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward future biotechnological applications. Advanced Drug Delivery Reviews, 2022, 182, 114099.	6.6	28
147	High-efficiency 2D nanosheet exfoliation by a solid suspension-improving method. Nanotechnology, 2022, 33, 185602.	1.3	5
148	MoS2/CdS rod-like nanocomposites as high-performance visible light photocatalyst for water splitting photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 8247-8260.	3.8	59
150	MoS ₂ nanosheets for the detoxification of Hg ²⁺ in living cells. Materials Advances, 0, , .	2.6	0
151	Facile and Scalable Preparation of 2d-Mos2/Graphene Oxide Composite for Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
152	Recent advances in <scp>MXene</scp> as electrocatalysts for sustainable energy generation: A review on surface engineering and compositing of <scp>MXene</scp> . International Journal of Energy Research, 2022, 46, 8625-8656.	2.2	26
153	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121
154	Fabricating WS2/Mn0.5Cd0.5S/CuInS2 hierarchical tandem p-n heterojunction for highly efficient hydrogen production. Applied Surface Science, 2022, 593, 153448.	3.1	10
155	Can the Production of 2D Crystals be Driven by Differential Temperature? Research with MoS ₂ as An Example. Crystal Research and Technology, 2022, 57, .	0.6	2
157	Two-Dimensional Transition Metal Dichalcogenide as Electron Transport Layer of Perovskite Solar Cells. , 0, , .		0
158	Vanadiumâ€Doped Molybdenum Diselenide Atomic Layers with Roomâ€Temperature Ferromagnetism. ChemPhysChem, 2022, 23, .	1.0	5
159	Recent Progress of Metal Sulfide Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, .	11.1	122
160	Photoelectrochemical Enhancement of Graphene@WS2 Nanosheets for Water Splitting Reaction. Nanomaterials, 2022, 12, 1914.	1.9	4
161	Strategies for Controlled Growth of Transition Metal Dichalcogenides by Chemical Vapor Deposition for Integrated Electronics. ACS Materials Au, 2022, 2, 665-685.	2.6	16
162	Spontaneous heteroassembly of 2D semiconducting van der Waals materials in random solution phase. Materials Today, 2022, 58, 18-29.	8.3	5
163	Facile and scalable preparation of 2D-MoS2/graphene oxide composite for supercapacitor. lonics, 2022, 28, 5223-5232.	1.2	1
164	MoS ₂ and MoSe ₂ Nanosheets as Triggers for Glutathione Dimerization in Solution and Glutathione Oxidation in Live Cells. ACS Applied Nano Materials, 2022, 5, 10583-10595.	2.4	5
165	2022 Pioneers in Energy Research: Jinhua Ye. Energy & Fuels, 2022, 36, 11269-11274.	2.5	2

#	Article	IF	CITATIONS
166	Fabrication of TaON/CdS Heterostructures for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Catalysts, 2022, 12, 1110.	1.6	3
167	Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Research, 2023, 16, 3524-3535.	5.8	19
168	Systematic study: From worldwide-renowned drink to low-cost solvent for non-organic synthesis of two-dimensional tungsten disulfide. Surfaces and Interfaces, 2022, , 102387.	1.5	0
169	High-yield exfoliation of MoS2 nanosheets by a novel spray technique and the importance of soaking and surfactants. Nano Structures Nano Objects, 2022, 32, 100922.	1.9	3
170	Regulating Charge Carrier's Transportation rate via Bridging Ternary Heterojunctions Enabling CdS nanorods Solar Driven Hydrogen Evolution Rate. Dalton Transactions, 0, , .	1.6	4
171	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
172	Assessing recent progress in MXene-based nanomaterials for oxygen evolution reactions. International Journal of Hydrogen Energy, 2024, 52, 293-301.	3.8	3