The epigenetic landscape of T cell exhaustion

Science 354, 1165-1169 DOI: 10.1126/science.aae0491

Citation Report

#	Article	IF	CITATIONS
1	Can T cells be too exhausted to fight back?. Science, 2016, 354, 1104-1105.	6.0	12
2	SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells. Immunity, 2017, 46, 51-64.	6.6	122
3	Satb1: Restraining PD1 and T Cell Exhaustion. Immunity, 2017, 46, 3-5.	6.6	19
4	The chronicles of T-cell exhaustion. Nature, 2017, 543, 190-191.	13.7	24
5	The Balance between CD8+ T Cell-Mediated Clearance of AAV-Encoded Antigen in the Liver and Tolerance Is Dependent on the Vector Dose. Molecular Therapy, 2017, 25, 880-891.	3.7	50
6	Exhaustion-associated regulatory regions in CD8 ⁺ tumor-infiltrating T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2776-E2785.	3.3	242
7	PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood, 2017, 129, 2186-2197.	0.6	156
8	The Principles of Engineering Immune Cells to Treat Cancer. Cell, 2017, 168, 724-740.	13.5	844
9	Cutting Edge: Chromatin Accessibility Programs CD8 T Cell Memory. Journal of Immunology, 2017, 198, 2238-2243.	0.4	68
10	Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity, 2017, 46, 714-729.	6.6	234
11	Epigenetic Remodeling in Exhausted T Cells. Transplantation, 2017, 101, 894-895.	0.5	3
12	Is autoimmunity the Achilles' heel of cancer immunotherapy?. Nature Medicine, 2017, 23, 540-547.	15.2	367
13	Systematic Epigenomic Analysis Reveals Chromatin States Associated with Melanoma Progression. Cell Reports, 2017, 19, 875-889.	2.9	78
14	Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell, 2017, 169, 1342-1356.e16.	13.5	1,540
15	Transcriptional and epigenetic regulation of T cell hyporesponsiveness. Journal of Leukocyte Biology, 2017, 102, 601-615.	1.5	39
16	Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature, 2017, 545, 452-456.	13.7	643
17	Industry 'road tests' new wave of immune checkpoints. Nature Biotechnology, 2017, 35, 487-488.	9.4	11
18	Epigenetic modulation in cancer immunotherapy. Current Opinion in Pharmacology, 2017, 35, 48-56.	1.7	50

TION REDO

#	Article	IF	CITATIONS
19	Immune engineering: From systems immunology to engineering immunity. Current Opinion in Biomedical Engineering, 2017, 1, 54-62.	1.8	7
20	Obstacles Posed by the Tumor Microenvironment to TÂcell Activity: A Case for Synergistic Therapies. Cancer Cell, 2017, 31, 311-325.	7.7	502
21	Functional interrogation of non-coding DNA through CRISPR genome editing. Methods, 2017, 121-122, 118-129.	1.9	28
22	Successful and Maladaptive T Cell Aging. Immunity, 2017, 46, 364-378.	6.6	250
23	High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Molecular Cell, 2017, 68, 44-59.	4.5	54
24	Hypothesis: stimulation of trained immunity as adjunctive immunotherapy in cancer. Journal of Leukocyte Biology, 2017, 102, 1323-1332.	1.5	35
25	Driving CARs on the Highway to Solid Cancer: Some Considerations on the Adoptive Therapy with CAR T Cells. Human Gene Therapy, 2017, 28, 1047-1060.	1.4	35
26	Atezolizumab for the treatment of non-small cell lung cancer. Expert Review of Clinical Pharmacology, 2017, 10, 935-945.	1.3	34
27	Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells. Cell Reports, 2017, 20, 1017-1028.	2.9	156
28	Stochastics of Cellular Differentiation Explained by Epigenetics: The Case of T ell Differentiation and Functional Plasticity. Scandinavian Journal of Immunology, 2017, 86, 184-195.	1.3	8
29	Modulation of antitumor immunity with histone deacetylase inhibitors. Immunotherapy, 2017, 9, 1359-1372.	1.0	37
30	Challenges and recommendations for epigenomics in precision health. Nature Biotechnology, 2017, 35, 1128-1132.	9.4	19
31	De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncology, The, 2017, 18, e731-e741.	5.1	568
32	32nd Annual Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC) Tj ETQq1	1 0.7843	14 rgBT /Ove
33	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
34	Target Discovery for Precision Medicine Using High-Throughput Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 123-145.	0.8	6
35	Molecular Dissection of CD8 + T-Cell Dysfunction. Trends in Immunology, 2017, 38, 567-576.	2.9	51
36	PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response?. Frontiers in Immunology, 2017, 8, 1597.	2.2	225

#	Article	IF	CITATIONS
37	Epigenetic Strategies to Boost Cancer Immunotherapies. International Journal of Molecular Sciences, 2017, 18, 1108.	1.8	29
38	NK Cell Exhaustion. Frontiers in Immunology, 2017, 8, 760.	2.2	221
39	Coinhibitory Receptor Expression and Immune Checkpoint Blockade: Maintaining a Balance in CD8+ T Cell Responses to Chronic Viral Infections and Cancer. Frontiers in Immunology, 2017, 8, 1215.	2.2	80
40	The Potential of Donor T-Cell Repertoires in Neoantigen-Targeted Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1718.	2.2	36
41	Hurdles to the Development of Effective HBV Immunotherapies and HCV Vaccines. Pathogens and Immunity, 2017, 2, 102.	1.4	11
42	CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncolmmunology, 2018, 7, e1440169.	2.1	219
43	Metabolites, genome organization, and cellular differentiation gene programs. Current Opinion in Immunology, 2018, 51, 62-67.	2.4	7
44	CRISPR-based methods for high-throughput annotation of regulatory DNA. Current Opinion in Biotechnology, 2018, 52, 32-41.	3.3	13
45	The (gradual) rise of memory inflation. Immunological Reviews, 2018, 283, 99-112.	2.8	70
46	The function and dysfunction of memory <scp>CD</scp> 8 ⁺ T cells in tumor immunity. Immunological Reviews, 2018, 283, 194-212.	2.8	121
47	Co-inhibitory Molecule B7 Superfamily Member 1 Expressed by Tumor-Infiltrating Myeloid Cells Induces Dysfunction of Anti-tumor CD8+ T Cells. Immunity, 2018, 48, 773-786.e5.	6.6	150
48	Enhancer talk. Epigenomics, 2018, 10, 483-498.	1.0	32
49	T Cell Dysfunction in Cancer. Cancer Cell, 2018, 33, 547-562.	7.7	787
50	PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Review of Clinical Pharmacology, 2018, 11, 475-486.	1.3	83
51	Strategies to overcome HBV-specific T cell exhaustion: checkpoint inhibitors and metabolic re-programming. Current Opinion in Virology, 2018, 30, 1-8.	2.6	36
52	CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Annual Review of Medicine, 2018, 69, 301-318.	5.0	432
53	Current state and future prospects of immunotherapy for glioma. Immunotherapy, 2018, 10, 317-339.	1.0	60
54	Epigenetic control of CD8+ T cell differentiation. Nature Reviews Immunology, 2018, 18, 340-356.	10.6	334

#	Article	IF	CITATIONS
55	Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Annals of Oncology, 2018, 29, 812-824.	0.6	73
56	Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. The Lancet Gastroenterology and Hepatology, 2018, 3, 192-202.	3.7	75
57	MAIT cells and viruses. Immunology and Cell Biology, 2018, 96, 630-641.	1.0	90
58	Disease tolerance: concept and mechanisms. Current Opinion in Immunology, 2018, 50, 88-93.	2.4	108
59	Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Scientific Reports, 2018, 8, 208.	1.6	24
60	Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual Review of Immunology, 2018, 36, 221-246.	9.5	93
61	Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 2018, 118, 9-16.	2.9	944
62	Inhibitors of the PD-1 Pathway in Tumor Therapy. Journal of Immunology, 2018, 200, 375-383.	0.4	112
63	Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. Journal of Immunology, 2018, 200, 450-458.	0.4	78
64	Adenovirus Vector Vaccination Impacts NK Cell Rheostat Function following Lymphocytic Choriomeningitis Virus Infection. Journal of Virology, 2018, 92, .	1.5	7
65	Immune checkpoint blockade therapy. Journal of Allergy and Clinical Immunology, 2018, 142, 1403-1414.	1.5	79
66	Leukemia cell-derived microvesicles induce T cell exhaustion via miRNA delivery. OncoImmunology, 2018, 7, e1448330.	2.1	24
67	Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies. Immunity, 2018, 48, 417-433.	6.6	416
68	Cancer immunotherapy using checkpoint blockade. Science, 2018, 359, 1350-1355.	6.0	4,274
69	Tumor infiltrating lymphocytes in early breast cancer. Breast, 2018, 37, 207-214.	0.9	108
70	CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cellular and Molecular Life Sciences, 2018, 75, 689-713.	2.4	351
71	The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology, 2018, 18, 153-167.	10.6	1,210
72	Immune checkpoint blockade in infectious diseases. Nature Reviews Immunology, 2018, 18, 91-104.	10.6	407

#	Article	IF	CITATIONS
73	PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy?. OncoImmunology, 2018, 7, e1364828.	2.1	243
74	Emerging trends in the immunotherapy of pancreatic cancer. Cancer Letters, 2018, 417, 35-46.	3.2	77
75	Metabolic Control of CD8+ T Cell Fate Decisions and Antitumor Immunity. Trends in Molecular Medicine, 2018, 24, 30-48.	3.5	158
76	Phase I Study of Chimeric Antigen Receptor–Modified T Cells in Patients with EGFR-Positive Advanced Biliary Tract Cancers. Clinical Cancer Research, 2018, 24, 1277-1286.	3.2	159
77	CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood, 2018, 131, 311-322.	0.6	159
78	CD137 (4-1BB) Costimulation Modifies DNA Methylation in CD8+ T Cell–Relevant Genes. Cancer Immunology Research, 2018, 6, 69-78.	1.6	34
79	Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival. JCI Insight, 2018, 3, .	2.3	49
80	Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Frontiers in Pediatrics, 2018, 6, 373.	0.9	53
81	T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Frontiers in Immunology, 2018, 9, 2569.	2.2	241
82	Tumor Immunology, Immunotherapy and Its Application to Head and Neck Squamous Cell Carcinoma (HNSCC). , 2018, , 341-355.		2
83	The antitumor effects of entinostat in ovarian cancer require adaptive immunity. Cancer, 2018, 124, 4657-4666.	2.0	22
85	Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell, 2018, 175, 1958-1971.e15.	13.5	378
86	Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nature Medicine, 2018, 24, 978-985.	15.2	1,044
87	High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Frontiers in Immunology, 2018, 9, 2981.	2.2	137
88	Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nature Communications, 2018, 9, 5368.	5.8	26
89	Immediate Progressive Disease in Patients with Metastatic Renal Cell Carcinoma Treated with Nivolumab: a Multi-Institution Retrospective Study. Targeted Oncology, 2018, 13, 611-619.	1.7	3
90	Limited Phenotypic and Functional Plasticity of Influenza Virus–Specific Memory CD8+T Cells during Activation in an Alternative Cytokine Environment. Journal of Immunology, 2018, 201, 3282-3293.	0.4	2
91	Recent advances in immunotherapies: from infection and autoimmunity, to cancer, and back again. Genome Medicine, 2018, 10, 79.	3.6	36

	Сітатіо	on Report	
Article		IF	CITATIONS
Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8 ^{+ dysfunction and maintain memory phenotype. Science Immunology, 2018, 3, .}	T cell	5.6	133
Nobel goes to immune checkpoint—Innovative cancer treatment by immunotherapy Sciences, 2018, 61, 1445-1450.	. Science China Life	2.3	3
Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Mel 175, 998-1013.e20.	anoma. Cell, 2018,	13.5	1,260
Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver. Molecu 2018, 26, 2553-2566.	ılar Therapy,	3.7	20
Epigenetic mechanisms regulating T-cell responses. Journal of Allergy and Clinical Imm 142, 728-743.	unology, 2018,	1.5	100
Epigenetic programming of T cells impacts immune reconstitution in hematopoietic st transplant recipients. Blood Advances, 2018, 2, 656-668.	em cell	2.5	8
Transcription Factor IRF8 Orchestrates the Adaptive Natural Killer Cell Response. Immu 1172-1182.e6.	unity, 2018, 48,	6.6	100
Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exh Cells. Immunity, 2018, 48, 1029-1045.e5.	austed CD8ÂT	6.6	250
Strength in diversity: Phenotypic, functional, and molecular heterogeneity within the r repertoire. Immunological Reviews, 2018, 284, 67-78.	nemory B cell	2.8	29
Epigenetics of T cell aging. Journal of Leukocyte Biology, 2018, 104, 691-699.		1.5	46
CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Co Research, 2018, 78, 4692-4703.	ells. Cancer	0.4	140
Immune cell profiling in the age of immune checkpoint inhibitors: implications for bion discovery and understanding of resistance mechanisms. Mammalian Genome, 2018, 2	narker 9, 866-878.	1.0	10
PD-L1, TIM-3, and CTLA-4 Blockade Fails To Promote Resistance to Secondary Infectior Strains of Toxoplasma gondii. Infection and Immunity, 2018, 86, .	ו with Virulent	1.0	14
Immune Checkpoint-Mediated Interactions Between Cancer and Immune Cells in Pros Adenocarcinoma and Melanoma. Frontiers in Immunology, 2018, 9, 1786.	tate	2.2	29
Epigenetic control of innate and adaptive immune memory. Nature Immunology, 2018	3, 19, 963-972.	7.0	217

107	Disrupting the Code: Epigenetic Dysregulation of Lymphocyte Function during Infectious Disease and Lymphoma Development. Journal of Immunology, 2018, 201, 1109-1118.	0.4	17
108	Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nature Medicine, 2018, 24, 1143-1150.	15.2	212
109	Hepatitis B Virus-Specific CD8+ T Cells Maintain Functional Exhaustion after Antigen Reexposure in an Acute Activation Immune Environment, Frontiers in Immunology, 2018, 9, 219,	2.2	48

#

92

94

96

98

100

102

104

#	Article	IF	CITATIONS
110	Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Frontiers in Immunology, 2018, 9, 339.	2.2	133
111	H3K4me3 mediates the NF-κB p50 homodimer binding to the <i>pdcd1</i> promoter to activate PD-1 transcription in T cells. Oncolmmunology, 2018, 7, e1483302.	2.1	15
112	Regulation of Memory CD8+ T Cell Differentiation by MicroRNAs. Cellular Physiology and Biochemistry, 2018, 47, 2187-2198.	1.1	18
113	Sirtuin1 Targeting Reverses Innate and Adaptive Immune Tolerance in Septic Mice. Journal of Immunology Research, 2018, 2018, 1-13.	0.9	16
114	Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	152
115	Epigenetic mechanisms of tumor resistance to immunotherapy. Cellular and Molecular Life Sciences, 2018, 75, 4163-4176.	2.4	27
116	Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 2018, 8, 1069-1086.	7.7	2,128
117	Ctrl-Alt-inDel: genome editing to reprogram a cell in the clinic. Current Opinion in Genetics and Development, 2018, 52, 48-56.	1.5	11
118	Decoding the noncoding genome via large-scale CRISPR screens. Current Opinion in Genetics and Development, 2018, 52, 70-76.	1.5	20
119	Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature, 2018, 558, 454-459.	13.7	336
120	The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trends in Cell Biology, 2019, 29, 31-43.	3.6	79
121	Long-term reprogramming of the innate immune system. Journal of Leukocyte Biology, 2019, 105, 329-338.	1.5	120
122	Combination PD-1 and PD-L1 Blockade Promotes Durable Neoantigen-Specific T Cell-Mediated Immunity in Pancreatic Ductal Adenocarcinoma. Cell Reports, 2019, 28, 2140-2155.e6.	2.9	64
123	Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas, 2019, 156, 29.	0.5	49
124	Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Frontiers in Cellular Neuroscience, 2019, 13, 352.	1.8	53
125	Regulatory Mechanisms of Inhibitory Immune Checkpoint Receptors Expression. Trends in Cell Biology, 2019, 29, 777-790.	3.6	48
126	Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nature Biotechnology, 2019, 37, 925-936.	9.4	622
127	The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nature Immunology, 2019, 20, 1150-1160.	7.0	81

#	Article	IF	CITATIONS
128	The Role of Biomarkers for the Prediction of Response to Checkpoint Immunotherapy and the Rationale for the Use of Checkpoint Immunotherapy in Cervical Cancer. Clinical Oncology, 2019, 31, 834-843.	0.6	48
130	HCV-specific CD4+ T cells of patients with acute and chronic HCV infection display high expression of TIGIT and other co-inhibitory molecules. Scientific Reports, 2019, 9, 10624.	1.6	27
131	T Cell Dysfunction in Cancer Immunity and Immunotherapy. Frontiers in Immunology, 2019, 10, 1719.	2.2	219
132	Hepatitis C Virus as a Unique Human Model Disease to Define Differences in the Transcriptional Landscape of T Cells in Acute versus Chronic Infection. Viruses, 2019, 11, 683.	1.5	5
133	CD8+ T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Frontiers in Immunology, 2019, 10, 1896.	2.2	52
134	Recharacterizing Tumor-Infiltrating Lymphocytes by Single-Cell RNA Sequencing. Cancer Immunology Research, 2019, 7, 1040-1046.	1.6	57
135	TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature, 2019, 571, 211-218.	13.7	934
136	The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Frontiers in Cellular and Infection Microbiology, 2019, 9, 207.	1.8	194
137	New Clones on the Block. Immunity, 2019, 51, 606-608.	6.6	4
138	Heterogeneity of HBV-Specific CD8+ T-Cell Failure: Implications for Immunotherapy. Frontiers in Immunology, 2019, 10, 2240.	2.2	31
139	TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8ÂT Cell-Fate Decision. Immunity, 2019, 51, 840-855.e5.	6.6	409
140	Common gamma chain cytokines and CD8 T cells in cancer. Seminars in Immunology, 2019, 42, 101307.	2.7	25
141	The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resistance Updates, 2019, 47, 100646.	6.5	81
142	Shortened ex vivo manufacturing time of EGFRvIII-specific chimeric antigen receptor (CAR) T cells reduces immune exhaustion and enhances antiglioma therapeutic function. Journal of Neuro-Oncology, 2019, 145, 429-439.	1.4	33
143	Direct-Acting Antiviral Treatment of HCV Infection Does Not Resolve the Dysfunction of Circulating CD8+ T-Cells in Advanced Liver Disease. Frontiers in Immunology, 2019, 10, 1926.	2.2	41
144	The Janus Face of Tumor Microenvironment Targeted by Immunotherapy. International Journal of Molecular Sciences, 2019, 20, 4320.	1.8	43
145	Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nature Communications, 2019, 10, 4109.	5.8	72

#	Article	IF	CITATIONS
147	The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8+ T Cell Fitness and Functionality. Immunity, 2019, 51, 491-507.e7.	6.6	148
148	Defining â€~T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	10.6	879
149	Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nature Reviews Clinical Oncology, 2019, 16, 356-371.	12.5	872
150	CRISPR-Based Tools in Immunity. Annual Review of Immunology, 2019, 37, 571-597.	9.5	38
151	Is There a Positive Side to T Cell Exhaustion?. Frontiers in Immunology, 2019, 10, 111.	2.2	32
152	Anti–PD-L1 Treatment Results in Functional Remodeling of the Macrophage Compartment. Cancer Research, 2019, 79, 1493-1506.	0.4	118
153	CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annual Review of Immunology, 2019, 37, 457-495.	9.5	1,143
154	Epigenetic therapy in immune-oncology. Nature Reviews Cancer, 2019, 19, 151-161.	12.8	345
155	Development of circulating CD4 ⁺ Tâ€cell memory. Immunology and Cell Biology, 2019, 97, 617-624.	1.0	12
156	Can Immunogenic Chemotherapies Relieve Cancer Cell Resistance to Immune Checkpoint Inhibitors?. Frontiers in Immunology, 2019, 10, 1181.	2.2	20
157	Adaptation and memory in immune responses. Nature Immunology, 2019, 20, 783-792.	7.0	109
158	TOX promotes the exhaustion of antitumor CD8+ T cells by preventing PD1 degradation in hepatocellular carcinoma. Journal of Hepatology, 2019, 71, 731-741.	1.8	193
159	Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections. Current Opinion in Immunology, 2019, 58, 98-103.	2.4	83
160	The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular Cell Biology, 2019, 20, 490-507.	16.1	957
161	TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 ⁺ T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12410-12415.	3.3	481
162	Dynamics of Expression of Programmed Cell Death Protein-1 (PD-1) on T Cells After Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2019, 10, 1034.	2.2	39
163	HBV Immune-Therapy: From Molecular Mechanisms to Clinical Applications. International Journal of Molecular Sciences, 2019, 20, 2754.	1.8	43
164	Prognostic value of the association between MHC class I downregulation and PD-L1 upregulation in head and neck squamous cell carcinoma patients. Scientific Reports, 2019, 9, 7680.	1.6	36

ARTICLE IF CITATIONS # Coexpression of Inhibitory Receptors Enriches for Activated and Functional CD8+ T Cells in Murine 36 165 1.6 Syngeneic Tumor Models. Cancer Immunology Research, 2019, 7, 963-976. Curing HIV by â€⁻kick and killâ€[™]: from theory to practice?. Expert Review of Anti-Infective Therapy, 2019, 17, 383-386. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? American Society of Clinical Oncology Educational Book / 167 1.8 459 ASCO American Society of Clinical Oncology Meeting, 2019, 39, 147-164. Natural Genetic Variation Reveals Key Features of Epigenetic and Transcriptional Memory in Virus-Specific CD8ÂT Cells. Immunity, 2019, 50, 1202-1217.e7. Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help?. Journal of 169 0.6 5 Oncology, 2019, 2019, 1-18. Addition of Low-Dose Decitabine to Anti–PD-1 Antibody Camrelizumab in Relapsed/Refractory Classical Hodgkin Lymphoma. Journal of Clinical Oncology, 2019, 37, 1479-1489. 0.8 171 CD8+ T cell exhaustion. Seminars in Immunopathology, 2019, 41, 327-337. 2.8 169 Provir/Latitude 45 study: A step towards a multi-epitopic CTL vaccine designed on archived HIV-1 DNA 1.1 and according to dominant HLA I alleles. PLoS ONE, 2019, 14, e0212347. Towards multiscale modeling of the CD8⁺ T cell response to viral infections. Wiley 173 6.6 16 Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1446. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resistance Updates, 174 6.5 2019, 43, 10-28. A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy. Frontiers 175 2.2 23 in Immunology, 2019, 10, 491. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews 12.8 1,657 Cancer, 2019, 19, 133-150. Therapeutic Cancer Vaccinesâ€"T Cell Responses and Epigenetic Modulation. Frontiers in Immunology, 177 2.2 26 2018, 9, 3109. The Transcription Factor TCF1 Preserves the Effector Function of Exhausted CD8 T Cells During 178 2.2 66 Chronic Viral Infection. Frontiers in Immunology, 2019, 10, 169. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature, 2019, 567, 179 13.7 311 525-529. NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 2019, 567, 530-534. 519 Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint 181 7.0 1,148 blockade. Nature Immunology, 2019, 20, 326-336. CD4⁺T help promotes influenza virus-specific CD8⁺T cell memory by limiting metabolic dysfunction. Proceedings of the National Academy of Sciences of the United States of 3.3

CITATION REPORT

America, 2019, 116, 4481-4488.

#	Article	IF	CITATIONS
183	Immune Exhaustion: Past Lessons and New Insights from Lymphocytic Choriomeningitis Virus. Viruses, 2019, 11, 156.	1.5	32
184	<p>DNA Methyltransferase Inhibitors: Catalysts For Antitumour Immune Responses</p> . OncoTargets and Therapy, 2019, Volume 12, 10903-10916.	1.0	53
185	Metabolic Control of Epigenetics and Its Role in CD8+ T Cell Differentiation and Function. Frontiers in Immunology, 2019, 10, 2718.	2.2	36
186	Liver-Mediated Adaptive Immune Tolerance. Frontiers in Immunology, 2019, 10, 2525.	2.2	125
187	Molecular and immune correlates of TIM-3 (HAVCR2) and galectin 9 (LGALS9) mRNA expression and DNA methylation in melanoma. Clinical Epigenetics, 2019, 11, 161.	1.8	49
188	c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 2019, 576, 293-300.	13.7	480
189	Tâ€cell exhaustion in HIV infection. Immunological Reviews, 2019, 292, 149-163.	2.8	217
190	Hypophysitis induced by immune checkpoint inhibitors: a 10-year assessment. Expert Review of Endocrinology and Metabolism, 2019, 14, 381-398.	1.2	54
191	PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nature Immunology, 2019, 20, 1335-1347.	7.0	142
192	Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling. Nature Immunology, 2019, 20, 1668-1680.	7.0	53
193	Enforcing the checkpoints. Current Opinion in Endocrinology, Diabetes and Obesity, 2019, 26, 213-218.	1.2	25
194	Epigenetic regulation of the hypoxic response. Current Opinion in Physiology, 2019, 7, 1-8.	0.9	5
195	Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut, 2019, 68, 893-904.	6.1	102
196	Multilayer regulation of CD4 T cell subset differentiation in the era of single cell genomics. Advances in Immunology, 2019, 141, 1-31.	1.1	13
197	Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1â^'CD8+ Tumor-Infiltrating T Cells. Immunity, 2019, 50, 181-194.e6.	6.6	424
198	T cell toxicity of HIV latency reversing agents. Pharmacological Research, 2019, 139, 524-534.	3.1	35
199	T cell dysfunction in chronic hepatitis B infection and liver cancer: evidence from transcriptome analysis. Journal of Medical Genetics, 2019, 56, 22-28.	1.5	12
200	Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 151-167.	12.5	1,093

#	Article	IF	CITATIONS
201	The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1â^'Th2 paradigm. Journal of Cellular Physiology, 2019, 234, 2204-2216.	2.0	83
202	Cytokine-Mediated Regulation of CD8 T-Cell Responses During Acute and Chronic Viral Infection. Cold Spring Harbor Perspectives in Biology, 2019, 11, a028464.	2.3	38
203	CD8+ T-cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy. Briefings in Functional Genomics, 2019, 18, 99-106.	1.3	77
204	Genomic and epigenomic perspectives of T-cell exhaustion in cancer. Briefings in Functional Genomics, 2019, 18, 113-118.	1.3	6
205	Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Annals of the New York Academy of Sciences, 2020, 1461, 73-103.	1.8	15
206	The emerging role of epigenetic therapeutics in immuno-oncology. Nature Reviews Clinical Oncology, 2020, 17, 75-90.	12.5	260
207	Precursor exhausted T cells: key to successful immunotherapy?. Nature Reviews Immunology, 2020, 20, 128-136.	10.6	253
208	Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Seminars in Cancer Biology, 2020, 65, 13-27.	4.3	170
209	PD-1 Expression during Acute Infection Is Repressed through an LSD1–Blimp-1 Axis. Journal of Immunology, 2020, 204, 449-458.	0.4	24
210	Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular and Molecular Immunology, 2020, 17, 27-35.	4.8	168
211	Immuno-Oncology. Methods in Pharmacology and Toxicology, 2020, , .	0.1	4
212	Prevention of CAR-T-cell dysfunction. Nature Biomedical Engineering, 2020, 4, 16-17.	11.6	2
213	Activated PD-1+ CD4+ T cells represent a short-lived part of the viral reservoir and predict poor immunologic recovery upon initiation of ART. Aids, 2020, 34, 197-202.	1.0	6
214	Modulation of SRSF2 expression reverses the exhaustion of TILs via the epigenetic regulation of immune checkpoint molecules. Cellular and Molecular Life Sciences, 2020, 77, 3441-3452.	2.4	22
215	An Introduction to CAR Immunotherapy. , 2020, , 1-11.		1
216	Memory T cell, exhaustion, and tumor immunity. Immunological Medicine, 2020, 43, 1-9.	1.4	118
217	Stem, Effector, and Hybrid States of Memory CD8+ T Cells. Trends in Immunology, 2020, 41, 17-28.	2.9	65
218	Epigenetic Regulation of T Cell Memory: Recalling Therapeutic Implications. Trends in Immunology, 2020, 41, 29-45.	2.9	46

#	Article	IF	CITATIONS
219	Landscape of Exhausted Virus-Specific CD8ÂT Cells in Chronic LCMV Infection. Cell Reports, 2020, 32, 108078.	2.9	45
220	Role of Nurr1 in Carcinogenesis and Tumor Immunology: A State of the Art Review. Cancers, 2020, 12, 3044.	1.7	8
221	Cellular and Molecular Mechanisms of CD8+ T Cell Differentiation, Dysfunction and Exhaustion. International Journal of Molecular Sciences, 2020, 21, 7357.	1.8	43
222	Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nature Immunology, 2020, 21, 1552-1562.	7.0	167
223	The Resistance Mechanisms of Lung Cancer Immunotherapy. Frontiers in Oncology, 2020, 10, 568059.	1.3	47
224	Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nature Immunology, 2020, 21, 1540-1551.	7.0	252
225	Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nature Immunology, 2020, 21, 1022-1033.	7.0	227
226	Neuropilin-1 is a T cell memory checkpoint limiting long-term antitumor immunity. Nature Immunology, 2020, 21, 1010-1021.	7.0	85
227	T Cell-Intrinsic IRF5 Regulates T Cell Signaling, Migration, and Differentiation and Promotes Intestinal Inflammation. Cell Reports, 2020, 31, 107820.	2.9	25
228	Analysis of singleâ€eell RNAseq identifies transitional states of T cells associated with hepatocellular carcinoma. Clinical and Translational Medicine, 2020, 10, e133.	1.7	17
229	An Integrated Epigenomic and Transcriptomic Map of Mouse and Human αβ T Cell Development. Immunity, 2020, 53, 1182-1201.e8.	6.6	49
230	Applications of Single-Cell Omics to Dissect Tumor Microenvironment. Frontiers in Genetics, 2020, 11, 548719.	1.1	18
231	Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. Nature Communications, 2020, 11, 6268.	5.8	206
232	ATAC-seq with unique molecular identifiers improves quantification and footprinting. Communications Biology, 2020, 3, 675.	2.0	21
233	A peripheral immune signature of responsiveness to PD-1 blockade in patients with classical Hodgkin lymphoma. Nature Medicine, 2020, 26, 1468-1479.	15.2	87
234	Unraveling the Complexity of the Cancer Microenvironment With Multidimensional Genomic and Cytometric Technologies. Frontiers in Oncology, 2020, 10, 1254.	1.3	45
235	Premature aging of circulating T cells predicts all-cause mortality in hemodialysis patients. BMC Nephrology, 2020, 21, 271.	0.8	17
236	The complex role of EZH2 in the tumor microenvironment: opportunities and challenges for immunotherapy combinations. Future Medicinal Chemistry, 2020, 12, 1415-1430.	1.1	16

#	Article	IF	Citations
237	Epigenetic Mechanisms of Resistance to Immune Checkpoint Inhibitors. Biomolecules, 2020, 10, 1061.	1.8	59
238	Adaptive Immune Response against Hepatitis C Virus. International Journal of Molecular Sciences, 2020, 21, 5644.	1.8	18
239	Loss of survival advantage for deficient mismatch repair in patients with advanced colorectal cancer may be caused by changes in prognostic value of CD8+T cell. World Journal of Surgical Oncology, 2020, 18, 196.	0.8	7
240	Reversal of T Cell Exhaustion in Chronic HCV Infection. Viruses, 2020, 12, 799.	1.5	14
241	Clonal tracing reveals diverse patterns of response to immune checkpoint blockade. Genome Biology, 2020, 21, 263.	3.8	15
242	EZH2 as a Regulator of CD8+ T Cell Fate and Function. Frontiers in Immunology, 2020, 11, 593203.	2.2	26
244	Helpless Priming Sends CD8+ T Cells on the Road to Exhaustion. Frontiers in Immunology, 2020, 11, 592569.	2.2	25
245	Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature, 2020, 585, 277-282.	13.7	280
246	Metabolic and epigenetic regulation of T-cell exhaustion. Nature Metabolism, 2020, 2, 1001-1012.	5.1	167
247	Profound Functional Suppression of Tumor-Infiltrating T-Cells in Ovarian Cancer Patients Can Be Reversed Using PD-1-Blocking Antibodies or DARPin® Proteins. Journal of Immunology Research, 2020, 2020, 1-12.	0.9	8
248	A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23684-23694.	3.3	32
249	Endogenous Glucocorticoid Signaling Regulates CD8+ T Cell Differentiation and Development of Dysfunction in the Tumor Microenvironment. Immunity, 2020, 53, 658-671.e6.	6.6	98
250	The Transcription Factor TCF1 in T Cell Differentiation and Aging. International Journal of Molecular Sciences, 2020, 21, 6497.	1.8	49
251	Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nature Immunology, 2020, 21, 1256-1266.	7.0	160
252	Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration, 2020, 99, 903-929.	1.2	18
253	T cell factor 1: A master regulator of the T cell response in disease. Science Immunology, 2020, 5, .	5.6	85
254	Chimeric Antigen Receptor T Cell Exhaustion during Treatment for Hematological Malignancies. BioMed Research International, 2020, 2020, 1-9.	0.9	10
255	Receptor signaling, transcriptional, and metabolic regulation of T cell exhaustion. Oncolmmunology, 2020, 9, 1747349.	2.1	11

	CHATION R	LFORT	
#	Article	IF	CITATIONS
256	T-cells in chronic lymphocytic leukemia: Guardians or drivers of disease?. Leukemia, 2020, 34, 2012-2024.	3.3	70
257	Biomarkers in Precision Cancer Immunotherapy: Promise and Challenges. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e275-e291.	1.8	32
258	Emerging technologies for systems vaccinology — multi-omics integration and single-cell (epi)genomic profiling. Current Opinion in Immunology, 2020, 65, 57-64.	2.4	23
259	Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomarker Research, 2020, 8, 19.	2.8	42
260	Epigenetics mechanisms driving immune memory cell differentiation and function. , 2020, , 117-137.		1
261	Systems immunology meets epigenetics. , 2020, , 239-252.		Ο
262	Characterization of functional transposable element enhancers in acute myeloid leukemia. Science China Life Sciences, 2020, 63, 675-687.	2.3	7
263	Pretreatment Innate Cell Populations and CD4 T Cells in Blood Are Associated With Response to Immune Checkpoint Blockade in Melanoma Patients. Frontiers in Immunology, 2020, 11, 372.	2.2	20
264	Checkpoint Inhibitors and Therapeutic Vaccines for the Treatment of Chronic HBV Infection. Frontiers in Immunology, 2020, 11, 401.	2.2	39
265	Single-Cell Approaches to Profile the Response to Immune Checkpoint Inhibitors. Frontiers in Immunology, 2020, 11, 490.	2.2	38
266	Checkpoint inhibitor blockade and epigenetic reprogrammability in CD8+ T-cell activation and exhaustion. , 2020, 8, 251513552090423.	1.4	2
267	T Cell Dysfunction and Exhaustion in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 17.	1.8	226
268	Synthetic immunity by remote control. Theranostics, 2020, 10, 3652-3667.	4.6	17
269	Endocytosis Inhibition in Humans to Improve Responses to ADCC-Mediating Antibodies. Cell, 2020, 180, 895-914.e27.	13.5	127
270	Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Frontiers in Immunology, 2020, 11, 1350.	2.2	13
271	Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR) Tj ETQ	q1 <u>1</u> 0.78	4314 rgBT /C
272	Toward Systems Biomarkers of Response to Immune Checkpoint Blockers. Frontiers in Oncology, 2020, 10, 1027.	1.3	16
273	Rapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7Âpromotor methylation. PLoS Pathogens, 2020, 16, e1008555.	2.1	36

	CITATION	CITATION REPORT	
# 274	ARTICLE Chromatin Priming Renders T Cell Tolerance-Associated Genes Sensitive to Activation below theÂSignaling Threshold for Immune Response Genes. Cell Reports, 2020, 31, 107748.	IF 2.9	CITATIONS
275	Rewriting History: Epigenetic Reprogramming of CD8+ T Cell Differentiation to Enhance Immunotherapy. Trends in Immunology, 2020, 41, 665-675.	2.9	42
276	Cancer Epigenetics, Tumor Immunity, and Immunotherapy. Trends in Cancer, 2020, 6, 580-592.	3.8	166
277	Use of Mass Cytometry to Profile Human T Cell Exhaustion. Frontiers in Immunology, 2019, 10, 3039.	2.2	37
278	Epigenetics of T cell fate decision. Current Opinion in Immunology, 2020, 63, 43-50.	2.4	21
279	The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Research, 2020, 30, 285-299.	5.7	129
280	Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discovery, 2020, 10, 552-567.	7.7	184
281	Dynamic Post-Transcriptional Events Governing CD8+ T Cell Homeostasis and Effector Function. Trends in Immunology, 2020, 41, 240-254.	2.9	39
282	Cancer immunotherapy: Pros, cons and beyond. Biomedicine and Pharmacotherapy, 2020, 124, 109821.	2.5	337
284	Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2020, 26, 3671-3681.	3.2	53
285	Unravelling the heterogeneity and dynamic relationships of tumorâ€infiltrating T cells by singleâ€cell RNA sequencing analysis. Journal of Leukocyte Biology, 2020, 107, 917-932.	1.5	21
286	The Emerging Landscape of Immune Cell Therapies. Cell, 2020, 181, 46-62.	13.5	247
287	Persistent expansion and Th1-like skewing of HIV-specific circulating T follicular helper cells during antiretroviral therapy. EBioMedicine, 2020, 54, 102727.	2.7	42
288	HIV-1 Vpu Downregulates Tim-3 from the Surface of Infected CD4 ⁺ T Cells. Journal of Virology, 2020, 94, .	1.5	28
289	Calcium phosphate nanoneedle based gene delivery system for cancer genetic immunotherapy. Biomaterials, 2020, 250, 120072.	5.7	27
290	Epitherapy and immune checkpoint blockade: using epigenetic reinvigoration of exhausted and dysfunctional T cells to reimburse immunotherapy response. BMC Immunology, 2020, 21, 22.	0.9	14
291	Targeting PD-1 or PD-L1 in Metastatic Kidney Cancer: Combination Therapy in the First-Line Setting. Clinical Cancer Research, 2020, 26, 2087-2095.	3.2	35
292	CD226hiCD8+ T Cells Are a Prerequisite for Anti-TIGIT Immunotherapy. Cancer Immunology Research, 2020, 8, 912-925.	1.6	53

#	Article	IF	CITATIONS
293	Treatment of Advanced Melanoma in 2020 and Beyond. Journal of Investigative Dermatology, 2021, 141, 23-31.	0.3	193
294	Ectopic Tcf1 expression instills a stem-like program in exhausted CD8+ T cells to enhance viral and tumor immunity. Cellular and Molecular Immunology, 2021, 18, 1262-1277.	4.8	49
295	Targeting metabolism to reverse Tâ€cell exhaustion in chronic viral infections. Immunology, 2021, 162, 135-144.	2.0	23
296	Metabolic regulation of the HBV-specific T cell function. Antiviral Research, 2021, 185, 104989.	1.9	9
297	Understanding the tumor microenvironment for effective immunotherapy. Medicinal Research Reviews, 2021, 41, 1474-1498.	5.0	130
298	Advanced Melanoma. Hematology/Oncology Clinics of North America, 2021, 35, 111-128.	0.9	5
299	CTLA4 promoter methylation predicts response and progression-free survival in stage IV melanoma treated with anti-CTLA-4 immunotherapy (ipilimumab). Cancer Immunology, Immunotherapy, 2021, 70, 1781-1788.	2.0	22
300	Origin and fine-tuning of effector CD8 T cell subpopulations in chronic infection. Current Opinion in Virology, 2021, 46, 27-35.	2.6	4
301	Role, function and regulation of the thymocyte selection-associated high mobility group box protein in CD8+ T cell exhaustion. Immunology Letters, 2021, 229, 1-7.	1.1	9
302	SLAMF7 Signaling Reprograms T Cells toward Exhaustion in the Tumor Microenvironment. Journal of Immunology, 2021, 206, 193-205.	0.4	40
303	Notch signaling defects in NK cells in patients with cancer. Cancer Immunology, Immunotherapy, 2021, 70, 981-988.	2.0	4
304	Reinvigorating exhausted CD8 ⁺ cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Medicinal Research Reviews, 2021, 41, 156-201.	5.0	56
305	TheÂDNA methylation landscape of <i>PD-1</i> (<i>PDCD1</i>) and adjacent lncRNA <i>AC131097.3</i> in head and neck squamous cell carcinoma. Epigenomics, 2021, 13, 113-127.	1.0	9
306	Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature Reviews Clinical Oncology, 2021, 18, 215-229.	12.5	486
308	CRISPR technologies for precise epigenome editing. Nature Cell Biology, 2021, 23, 11-22.	4.6	248
309	The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers, 2021, 13, 134.	1.7	67
310	Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells, 2021, 10, 56.	1.8	14
311	Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nature Immunology, 2021, 22, 205-215.	7.0	358

#	Article	IF	CITATIONS
312	Ontogeny and heterogeneity of innate lymphoid cells and the noncoding genome. Immunological Reviews, 2021, 300, 152-166.	2.8	8
313	BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nature Immunology, 2021, 22, 370-380.	7.0	75
314	Exhausted T cells in systemic lupus erythematosus patients in long-standing remission. Clinical and Experimental Immunology, 2021, 204, 285-295.	1.1	14
315	Functionally Competent, PD-1+ CD8+ Trm Cells Populate the Brain Following Local Antigen Encounter. Frontiers in Immunology, 2020, 11, 595707.	2.2	6
316	A Regenerative Perspective on Successful and Failed T-Cell Immunity. Cold Spring Harbor Perspectives in Biology, 2021, 13, a037937.	2.3	2
317	Combination immunotherapy strategies for glioblastoma. Journal of Neuro-Oncology, 2021, 151, 375-391.	1.4	38
318	T Cell Exhaustion and CAR-T Immunotherapy in Hematological Malignancies. BioMed Research International, 2021, 2021, 1-8.	0.9	35
319	Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling. Nature Communications, 2021, 12, 1009.	5.8	19
320	Epigenetic Mechanisms beyond Tumour–Stroma Crosstalk. Cancers, 2021, 13, 914.	1.7	10
321	Improved Functionality of Exhausted Intrahepatic CXCR5+ CD8+ T Cells Contributes to Chronic Antigen Clearance Upon Immunomodulation. Frontiers in Immunology, 2020, 11, 592328.	2.2	3
322	Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nature Communications, 2021, 12, 1455.	5.8	96
323	PD-1 is imprinted on cytomegalovirus-specific CD4+ T cells and attenuates Th1 cytokine production whilst maintaining cytotoxicity. PLoS Pathogens, 2021, 17, e1009349.	2.1	15
324	Decreased Peripheral NaÃ ⁻ ve T Cell Number and Its Role in Predicting Cardiovascular and Infection Events in Hemodialysis Patients. Frontiers in Immunology, 2021, 12, 644627.	2.2	10
325	KDM6B-dependent chromatin remodeling underpins effective virus-specific CD8+ TÂcell differentiation. Cell Reports, 2021, 34, 108839.	2.9	20
326	Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunological Reviews, 2021, 300, 100-124.	2.8	13
327	Memory T-Cell Heterogeneity and Terminology. Cold Spring Harbor Perspectives in Biology, 2021, 13, a037929.	2.3	26
328	Gamma-Chain Receptor Cytokines & PD-1 Manipulation to Restore HCV-Specific CD8+ T Cell Response during Chronic Hepatitis C. Cells, 2021, 10, 538.	1.8	4
329	Inspired Epigenetic Modulation Synergy with Adenosine Inhibition Elicits Pyroptosis and Potentiates Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2100007.	7.8	39

#	Article	IF	CITATIONS
330	CharPlant: A De Novo Open Chromatin Region Prediction Tool for Plant Genomes. Genomics, Proteomics and Bioinformatics, 2021, 19, 860-871.	3.0	4
331	CD8+ T Cell Responses during HCV Infection and HCC. Journal of Clinical Medicine, 2021, 10, 991.	1.0	22
332	InÂvivo CD8+ TÂcell CRISPR screening reveals control by Fli1 in infection and cancer. Cell, 2021, 184, 1262-1280.e22.	13.5	107
333	Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Frontiers in Immunology, 2021, 12, 652160.	2.2	12
334	CD8 ⁺ T-Cell Memory: The Why, the When, and the How. Cold Spring Harbor Perspectives in Biology, 2021, 13, a038661.	2.3	7
335	T-cell dysfunction in chronic lymphocytic leukemia from an epigenetic perspective. Haematologica, 2021, 106, 1234-1243.	1.7	18
336	The architectural design of CD8+ T cell responses in acute and chronic infection: Parallel structures with divergent fates. Journal of Experimental Medicine, 2021, 218, .	4.2	41
337	Beyond immune checkpoint blockade: emerging immunological strategies. Nature Reviews Drug Discovery, 2021, 20, 899-919.	21.5	208
338	CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers, 2021, 13, 1440.	1.7	88
339	Groupâ€2 Innate Lymphoid Cells Promote HCC Progression Through CXCL2â€Neutrophilâ€Induced Immunosuppression. Hepatology, 2021, 74, 2526-2543.	3.6	53
339 340		3.6 3.3	53 21
	Immunosuppression. Hepatology, 2021, 74, 2526-2543. E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation. Proceedings of the		
340	Immunosuppression. Hepatology, 2021, 74, 2526-2543. E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Immunity reloaded: Deconstruction of the PD-1 axis in B cell lymphomas. Blood Reviews, 2021, 50,	3.3	21
340 341	Immunosuppression. Hepatology, 2021, 74, 2526-2543. E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Immunity reloaded: Deconstruction of the PD-1 axis in B cell lymphomas. Blood Reviews, 2021, 50, 100832. UTX promotes CD8+ TÂcell-mediated antiviral defenses but reduces TÂcell durability. Cell Reports, 2021,	3.3 2.8	21 5
340 341 342	Immunosuppression. Hepatology, 2021, 74, 2526-2543. E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Immunity reloaded: Deconstruction of the PD-1 axis in B cell lymphomas. Blood Reviews, 2021, 50, 100832. UTX promotes CD8+ TÂcell-mediated antiviral defenses but reduces TÂcell durability. Cell Reports, 2021, 35, 108966.	3.3 2.8 2.9	21 5 9
340 341 342 344	 Immunosuppression. Hepatology, 2021, 74, 2526-2543. E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Immunity reloaded: Deconstruction of the PD-1 axis in B cell lymphomas. Blood Reviews, 2021, 50, 100832. UTX promotes CD8+ TÂcell-mediated antiviral defenses but reduces TÂcell durability. Cell Reports, 2021, 35, 108966. Find the Flame: Predictive Biomarkers for Immunotherapy in Melanoma. Cancers, 2021, 13, 1819. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. 	3.3 2.8 2.9 1.7	21 5 9 16
340 341 342 344 345	 Immunosuppression. Hepatology, 2021, 74, 2526-2543. E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Immunity reloaded: Deconstruction of the PD-1 axis in B cell lymphomas. Blood Reviews, 2021, 50, 100832. UTX promotes CD8+ TÂcell-mediated antiviral defenses but reduces TÂcell durability. Cell Reports, 2021, 35, 108966. Find the Flame: Predictive Biomarkers for Immunotherapy in Melanoma. Cancers, 2021, 13, 1819. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 2021, 372, . Anti-PD-1/PD-L1 Based Combination Immunotherapy to Boost Antigen-Specific CD8+ T Cell Response in 	 3.3 2.8 2.9 1.7 6.0 	21 5 9 16 297

#	Article	IF	CITATIONS
349	Reversing T-cell exhaustion in immunotherapy: a review on current approaches and limitations. Expert Opinion on Therapeutic Targets, 2021, 25, 347-363.	1.5	25
350	Chromatin accessibility governs the differential response of cancer and TÂcells to arginine starvation. Cell Reports, 2021, 35, 109101.	2.9	20
351	Immune Regulation in Time and Space: The Role of Local- and Long-Range Genomic Interactions in Regulating Immune Responses. Frontiers in Immunology, 2021, 12, 662565.	2.2	13
352	Heads or tails: histone tail clipping regulates macrophage activity. Nature Immunology, 2021, 22, 678-680.	7.0	6
353	"Goâ€; "No Go,―or "Where to Goâ€; does microbiota dictate T cell exhaustion, programming, and HIV persistence?. Current Opinion in HIV and AIDS, 2021, 16, 215-222.	1.5	9
354	An exhausted phenotype of T H 2 cells is primed by allergen exposure, but not reinforced by allergenâ€specific immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2827-2839.	2.7	16
355	Antigen-driven EGR2 expression is required for exhausted CD8+ T cell stability and maintenance. Nature Communications, 2021, 12, 2782.	5.8	20
356	Epigenetic Features of HIV-Induced T-Cell Exhaustion Persist Despite Early Antiretroviral Therapy. Frontiers in Immunology, 2021, 12, 647688.	2.2	19
357	Reversing Post-Infectious Epigenetic-Mediated Immune Suppression. Frontiers in Immunology, 2021, 12, 688132.	2.2	21
358	Role of CD8+ T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharmaceutica Sinica B, 2021, 11, 1365-1378.	5.7	38
359	Transcriptional Control of Cell Fate Determination in Antigen-Experienced CD8 T Cells. Cold Spring Harbor Perspectives in Biology, 2022, 14, a037945.	2.3	4
360	Efficacy and Safety of Bone Marrow-Derived Mesenchymal Stem Cells for Chronic Antibody-Mediated Rejection After Kidney Transplantation- A Single-Arm, Two-Dosing-Regimen, Phase I/II Study. Frontiers in Immunology, 2021, 12, 662441.	2.2	8
361	Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nature Immunology, 2021, 22, 809-819.	7.0	113
362	Epigenetic Regulation of Cancer Immune Cells. Seminars in Cancer Biology, 2021, , .	4.3	9
363	Defining the Molecular Hallmarks of T-Cell Memory. Cold Spring Harbor Perspectives in Biology, 2022, 14, a037804.	2.3	2
364	CD4 T-Cell Exhaustion: Does It Exist and What Are Its Roles in Cancer?. Clinical Cancer Research, 2021, 27, 5742-5752.	3.2	98
365	Follicular helper-T cells restore CD8 ⁺ -dependent antitumor immunity and anti-PD-L1/PD-1 efficacy. , 2021, 9, e002157.		63
366	A unified atlas of CD8 TÂcell dysfunctional states in cancer and infection. Molecular Cell, 2021, 81, 2477-2493.e10.	4.5	57

#	Article	IF	CITATIONS
367	Single-Cell Analysis of the Pan-Cancer Immune Microenvironment and scTIME Portal. Cancer Immunology Research, 2021, 9, 939-951.	1.6	35
368	T-cell Exhaustion in Organ Transplantation. Transplantation, 2022, 106, 489-499.	0.5	14
369	CD8+ T Cell Exhaustion in Cancer. Frontiers in Immunology, 2021, 12, 715234.	2.2	163
370	PDL1â€positive exosomes suppress antitumor immunity by inducing tumorâ€specific CD8 ⁺ T cell exhaustion during metastasis. Cancer Science, 2021, 112, 3437-3454.	1.7	33
371	Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nature Immunology, 2021, 22, 1020-1029.	7.0	124
372	Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
373	CD8+ T cell differentiation and dysfunction in cancer. Nature Reviews Immunology, 2022, 22, 209-223.	10.6	345
374	Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nature Immunology, 2021, 22, 1008-1019.	7.0	116
375	COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous Retroviruses in Mild and Severe Cases. International Journal of Molecular Sciences, 2021, 22, 7481.	1.8	37
376	Improving T cell therapy: in vivo CRISPR-Cas9 screens tell us how to do. Precision Clinical Medicine, 2021, 4, 176-178.	1.3	1
377	Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell, 2021, 28, 1758-1774.e8.	5.2	98
378	Gene Regulatory Network of Human GM-CSF-Secreting T Helper Cells. Journal of Immunology Research, 2021, 2021, 1-24.	0.9	2
380	Getting better mileage with logically primed CARs. Med, 2021, 2, 785-787.	2.2	2
381	The therapeutic and prognostic implications of immunobiology in colorectal cancer: a review. British Journal of Cancer, 2021, 125, 1341-1349.	2.9	21
382	BATF regulates progenitor to cytolytic effector CD8+ T cell transition during chronic viral infection. Nature Immunology, 2021, 22, 996-1007.	7.0	78
383	Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers, 2021, 13, 4263.	1.7	32
385	Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cellular and Molecular Immunology, 2021, 18, 2325-2333.	4.8	106
386	BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. Journal of Clinical Investigation, 2021, 131, .	3.9	45

#	Article	IF	CITATIONS
387	Schrödinger's T Cells: Molecular Insights Into Stemness and Exhaustion. Frontiers in Immunology, 2021, 12, 725618.	2.2	22
388	The epigenetic immunomodulator, HBI-8000, enhances the response and reverses resistance to checkpoint inhibitors. BMC Cancer, 2021, 21, 969.	1.1	13
389	A therapeutic cancer vaccine delivers antigens and adjuvants to lymphoid tissues using genetically modified T cells. Journal of Clinical Investigation, 2021, 131, .	3.9	12
390	Epigenetic networks driving T cell identity and plasticity during immunosenescence. Trends in Genetics, 2021, , .	2.9	1
391	Unraveling the Multifaceted Nature of CD8 T Cell Exhaustion Provides the Molecular Basis for Therapeutic T Cell Reconstitution in Chronic Hepatitis B and C. Cells, 2021, 10, 2563.	1.8	12
392	An Updated Model for the Epigenetic Regulation of Effector and Memory CD8+ T Cell Differentiation. Journal of Immunology, 2021, 207, 1497-1505.	0.4	5
394	Single-cell technologies to dissect heterogenous immune cell therapy products. Current Opinion in Biomedical Engineering, 2021, 20, 100343.	1.8	1
395	Mapping genomic and epigenomic evolution in cancer ecosystems. Science, 2021, 373, 1474-1479.	6.0	38
396	Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacological Research, 2021, 171, 105780.	3.1	196
398	Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ TÂcells in tumor-draining lymph nodes. Immunity, 2021, 54, 2338-2353.e6.	6.6	111
399	Yangyin Fuzheng Jiedu Prescription exerts anti-tumor immunity in hepatocellular carcinoma by alleviating exhausted T cells. Phytomedicine, 2021, 91, 153722.	2.3	5
400	Epigenetic programming of the immune responses in cancer. , 2022, , 197-235.		1
401	Synthetic receptors for logic gated T cell recognition and function. Current Opinion in Immunology, 2022, 74, 9-17.	2.4	7
402	Chromatin accessibility profiling methods. Nature Reviews Methods Primers, 2021, 1, .	11.8	95
403	Remodeling the chromatin landscape in T lymphocytes by a division of labor among transcription factors. Immunological Reviews, 2021, 300, 167-180.	2.8	7
404	Epigenetic Regulation in Breast Cancer. Advances in Experimental Medicine and Biology, 2021, 1187, 103-119.	0.8	3
405	Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nature Communications, 2021, 12, 409.	5.8	109
406	Hirsutella Sinensis Fungus Regulates CD8+ T Cell Exhaustion Through Involvement of T-Bet/Eomes in the Tumor Microenvironment. Frontiers in Pharmacology, 2020, 11, 612620.	1.6	8

#	Article	IF	CITATIONS
407	A Human In Vitro T Cell Exhaustion Model for Assessing Immuno-Oncology Therapies. Methods in Pharmacology and Toxicology, 2020, , 89-101.	0.1	15
408	Histone Modifications as Biomarkers for Immunotherapy. Methods in Molecular Biology, 2020, 2055, 213-228.	0.4	8
409	The Promise for Histone Methyltransferase Inhibitors for Epigenetic Therapy in Clinical Oncology: A Narrative Review. Advances in Therapy, 2020, 37, 3059-3082.	1.3	61
410	Landscape and Dynamics of the Transcriptional Regulatory Network During Natural Killer Cell Differentiation. Genomics, Proteomics and Bioinformatics, 2020, 18, 501-515.	3.0	16
411	Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity, 2020, 52, 825-841.e8.	6.6	497
412	Chromatin dependencies in cancer and inflammation. Nature Reviews Molecular Cell Biology, 2018, 19, 245-261.	16.1	64
413	Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection. Nature Communications, 2020, 11, 604.	5.8	44
422	Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight, 2019, 4, .	2.3	148
423	β-catenin and PI3Kδ inhibition expands precursor Th17 cells with heightened stemness and antitumor activity. JCI Insight, 2017, 2, .	2.3	35
424	CTLA4 methylation predicts response to anti–PD-1 and anti–CTLA-4 immunotherapy in melanoma patients. JCI Insight, 2018, 3, .	2.3	67
425	CD19 CAR T cell product and disease attributes predict leukemia remission durability. Journal of Clinical Investigation, 2019, 129, 2123-2132.	3.9	244
426	Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. Journal of Clinical Investigation, 2019, 129, 3770-3785.	3.9	125
427	DNA hypermethylation during tuberculosis dampens host immune responsiveness. Journal of Clinical Investigation, 2020, 130, 3113-3123.	3.9	47
428	Stability and flexibility in chromatin structure and transcription underlies memory CD8 T-cell differentiation. F1000Research, 2019, 8, 1278.	0.8	14
429	Epigenetic changes in fibroblasts drive cancer metabolism and differentiation. Endocrine-Related Cancer, 2019, 26, R673-R688.	1.6	34
430	Characterization of infiltrating lymphocytes in human benign and malignant prostate tissue. Oncotarget, 2017, 8, 60257-60269.	0.8	12
431	Correlation between lower balance of Th2 helper T-cells and expression of PD-L1/PD-1 axis genes enables prognostic prediction in patients with glioblastoma. Oncotarget, 2018, 9, 19065-19078.	0.8	37
432	Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors. , 2019, 2, 744-761.		3

	CHATION	ICLFORT	
#	Article	IF	CITATIONS
433	Exhausted T cells and epigenetic status. Cancer Biology and Medicine, 2020, 17, 923-936.	1.4	32
434	Unlocking the epigenetic code of T cell exhaustion. Translational Cancer Research, 2017, 6, S384-S387.	0.4	12
435	Viruses Teaching Immunology: Role of LCMV Model and Human Viral Infections in Immunological Discoveries. Viruses, 2019, 11, 106.	1.5	16
436	Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Network, 2020, 20, e2.	1.6	33
437	Why natural killer cells in triple negative breast cancer?. World Journal of Clinical Oncology, 2020, 11, 464-476.	0.9	33
438	Antigen receptor control of methionine metabolism in T cells. ELife, 2019, 8, .	2.8	132
439	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
440	Chronic LCMV Infection Is Fortified with Versatile Tactics to Suppress Host T Cell Immunity and Establish Viral Persistence. Viruses, 2021, 13, 1951.	1.5	3
441	Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell, 2021, 39, 1578-1593.e8.	7.7	275
443	Archetypes of checkpoint-responsive immunity. Trends in Immunology, 2021, 42, 960-974.	2.9	5
444	T cell responses during HBV and HCV infections: similar but not quite the same?. Current Opinion in Virology, 2021, 51, 80-86.	2.6	10
446	Novel Methods to Overcome Acquired Resistance to Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 97-129.	0.1	0
451	DNA Methylation in T-Cell Development and Differentiation. Critical Reviews in Immunology, 2020, 40, 135-156.	1.0	25
454	Fueling T-cell Antitumor Immunity: Amino Acid Metabolism Revisited. Cancer Immunology Research, 2021, 9, 1373-1382.	1.6	33
455	mTOR Inhibitors Prevent CMV Infection through the Restoration of Functional αβ and γδT cells in Kidney Transplantation. Journal of the American Society of Nephrology: JASN, 2022, 33, 121-137.	3.0	22
456	Tight Interplay Between Therapeutic Monoclonal Antibodies and the Tumour Microenvironment in Cancer Therapy. Advances in Experimental Medicine and Biology, 2020, 1277, 127-141.	0.8	0
457	The therapeutic potential of epigenetic manipulation during infectious diseases. , 2020, , 217-236.		1
459	Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Review of Anticancer Therapy, 2021, 21, 1333-1353.	1.1	9

#	Article	IF	CITATIONS
463	Cancer Epigenomics and Beyond: Advancing the Precision Oncology Paradigm. Journal of Immunotherapy and Precision Oncology, 2020, 3, 147-156.	0.6	0
465	Mapping the evolution of TÂcell states during response and resistance to adoptive cellular therapy. Cell Reports, 2021, 37, 109992.	2.9	37
466	Targeting BMI-1 in B cells restores effective humoral immune responses and controls chronic viral infection. Nature Immunology, 2022, 23, 86-98.	7.0	17
467	T cell–derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death. JCl Insight, 2021, 6, .	2.3	7
468	Cancer immunotherapy: Challenges and limitations. Pathology Research and Practice, 2022, 229, 153723.	1.0	53
469	Strong Expansion of Human Regulatory T Cells for Adoptive Cell Therapy Results in Epigenetic Changes Which May Impact Their Survival and Function. Frontiers in Cell and Developmental Biology, 2021, 9, 751590.	1.8	10
470	LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade. Nature Communications, 2021, 12, 6831.	5.8	46
471	Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies. Frontiers in Immunology, 2021, 12, 777073.	2.2	5
472	Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Science Translational Medicine, 2021, 13, eabh0272.	5.8	123
473	Genetic ablation of PRDM1 in antitumor T cells enhances therapeutic efficacy of adoptive immunotherapy. Blood, 2022, 139, 2156-2172.	0.6	33
474	Mechanisms of Resistance and Relapse After CAR-T Cell Therapy. Cancer Drug Discovery and Development, 2022, , 207-219.	0.2	1
475	Perspective on the Immunotherapy of Pancreatic Cancer. , 2021, , 257-270.		0
476	Emerging Role of Epigenetic Alterations as Biomarkers and Novel Targets for Treatments in Pancreatic Ductal Adenocarcinoma. Cancers, 2022, 14, 546.	1.7	5
477	JAK inhibition in a patient with a STAT1 gain-of-function variant reveals STAT1 dysregulation as a common feature of aplastic anemia. Med, 2022, 3, 42-57.e5.	2.2	11
478	Inhibition of Calcium Signaling Prevents Exhaustion and Enhances Antiâ€Leukemia Efficacy of CARâ€T Cells via SOCEâ€Calcineurinâ€NFAT and Glycolysis Pathways. Advanced Science, 2022, 9, e2103508.	5.6	21
479	G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumor-specific cytotoxic T lymphocytes. , 2022, 10, e003543.		10
480	Resistance and recurrence of malignancies after CAR-T cell therapy. Experimental Cell Research, 2022, 410, 112971.	1.2	4
481	Nicotinamide Inhibits T Cell Exhaustion and Increases Differentiation of CD8 Effector T Cells. Cancers, 2022, 14, 323.	1.7	6

~		_	
Сітат	ION	DEDC	DT.
CHAI	IUN	NLPU	ואר

#	Article	IF	CITATIONS
482	Checkpoint blockade-induced CD8+ T cell differentiation in head and neck cancer responders. , 2022, 10, e004034.		14
483	Single-Cell Technologies to Decipher the Immune Microenvironment in Myeloid Neoplasms: Perspectives and Opportunities. Frontiers in Oncology, 2021, 11, 796477.	1.3	0
484	Reduced chromatin accessibility to CD4 T cell super-enhancers encompassing susceptibility loci of rheumatoid arthritis. EBioMedicine, 2022, 76, 103825.	2.7	1
485	Gene Regulatory Circuits in Innate and Adaptive Immune Cells. Annual Review of Immunology, 2022, 40, 387-411.	9.5	6
486	ERCC6L is a biomarker and therapeutic target for non–small cell lung adenocarcinoma. Medical Oncology, 2022, 39, 51.	1.2	4
487	Interleukin-10 receptor signaling promotes the maintenance of a PD-1int TCF-1+ CD8+ TÂcell population that sustains anti-tumor immunity. Immunity, 2021, 54, 2825-2841.e10.	6.6	57
488	Epigenetic regulation of natural killer cell memory*. Immunological Reviews, 2022, 305, 90-110.	2.8	17
489	Epigenetics and CD8 ⁺ T cell memory*. Immunological Reviews, 2022, 305, 77-89.	2.8	22
490	Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science, 2021, 374, abe6474.	6.0	460
491	Immune Checkpoint Inhibitors in 10 Years: Contribution of Basic Research and Clinical Application in Cancer Immunotherapy. Immune Network, 2022, 22, e2.	1.6	53
492	New Developments in T Cell Immunometabolism and Implications for Cancer Immunotherapy. Cells, 2022, 11, 708.	1.8	8
494	Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science, 2022, 375, 877-884.	6.0	156
495	Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers, 2022, 14, 1078.	1.7	23
496	Batf-mediated epigenetic control of effector CD8 ⁺ T cell differentiation. Science Immunology, 2022, 7, eabi4919.	5.6	19
497	Fatty Acid Metabolism and Cancer Immunotherapy. Current Oncology Reports, 2022, 24, 659-670.	1.8	23
498	CD8+ T-Cell Exhaustion Phenotype in Chronic Hepatitis C Virus Infection Is Associated With Epitope Sequence Variation. Frontiers in Immunology, 2022, 13, 832206.	2.2	4
499	Human epigenetic and transcriptional TÂcell differentiation atlas for identifying functional TÂcell-specific enhancers. Immunity, 2022, 55, 557-574.e7.	6.6	47
502	PeakVI: A deep generative model for single-cell chromatin accessibility analysis. Cell Reports Methods, 2022, 2, 100182.	1.4	34

#	Article	IF	CITATIONS
503	Increased DNA methylation, cellular senescence and premature epigenetic aging in guinea pigs and humans with tuberculosis. Aging, 2022, 14, 2174-2193.	1.4	15
504	Protein arginine N-methyltransferase 4 (PRMT4) contributes to lymphopenia in experimental sepsis. Thorax, 2023, 78, 383-393.	2.7	5
505	T cell senescence and impaired CMV-specific response are associated with infection risk in kidney transplant recipients. Human Immunology, 2022, 83, 273-280.	1.2	7
506	TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. , 2022, 10, e004711.		69
507	Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date?. Drugs, 2022, 82, 491-510.	4.9	18
508	Expression of Id3 represses exhaustion of anti-tumor CD8 T cells in liver cancer. Molecular Immunology, 2022, 144, 117-126.	1.0	5
510	NFAT-dependent and -independent exhaustion circuits program maternal CD8 T cell hypofunction in pregnancy. Journal of Experimental Medicine, 2022, 219, .	4.2	13
511	Vascular Microenvironment, Tumor Immunity and Immunotherapy. Frontiers in Immunology, 2021, 12, 811485.	2.2	43
512	DNA Methylation and mRNA Expression of OX40 (TNFRSF4) and GITR (TNFRSF18, AITR) in Head and Neck Squamous Cell Carcinoma Correlates With HPV Status, Mutational Load, an Interferon-Î ³ Signature, Signatures of Immune Infiltrates, and Survival. Journal of Immunotherapy, 2022, 45, 194-206.	1.2	6
513	HDAC Inhibition to Prime Immune Checkpoint Inhibitors. Cancers, 2022, 14, 66.	1.7	32
514	DNA methylation regulates TIGIT expression within the melanoma microenvironment, is prognostic for overall survival, and predicts progression-free survival in patients treated with anti-PD-1 immunotherapy. Clinical Epigenetics, 2022, 14, 50.	1.8	9
529	MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106083119.	3.3	7
530	A variety of â€~exhausted' T cells in the tumor microenvironment. International Immunology, 2022, 34, 563-570.	1.8	13
531	Dissecting the heterogeneity of exhausted T cells at the molecular level. International Immunology, 2022, 34, 547-553.	1.8	2
532	A Unique Epigenomic Landscape Defines CD8 ⁺ Tissue-Resident Memory T Cells. SSRN Electronic Journal, 0, , .	0.4	0
533	The TOX subfamily: all-round players in the immune system. Clinical and Experimental Immunology, 2022, 208, 268-280.	1.1	4
534	T cell receptor and IL-2 signaling strength control memory CD8+ T cell functional fitness via chromatin remodeling. Nature Communications, 2022, 13, 2240.	5.8	17
535	Spatial determinants of CD8+ T cell differentiation in cancer. Trends in Cancer, 2022, 8, 642-654.	3.8	8

#	ARTICLE	IF	CITATIONS
537	CD4 ⁺ T-cell epitope-based heterologous prime-boost vaccination potentiates anti-tumor immunity and PD-1/PD-L1 immunotherapy. , 2022, 10, e004022.		7
538	Single-cell landscape reveals active cell subtypes and their interaction in the tumor microenvironment of gastric cancer. Theranostics, 2022, 12, 3818-3833.	4.6	40
540	Epigenetic regulation of T cell exhaustion. Nature Immunology, 2022, 23, 848-860.	7.0	82
541	â€~Stem-like' precursors are the fount to sustain persistent CD8+ T cell responses. Nature Immunology, 2022, 23, 836-847.	7.0	50
542	HIV UTR, LTR, and Epigenetic Immunity. Viruses, 2022, 14, 1084.	1.5	6
543	Pan-Cancer Methylated Dysregulation of Long Non-coding RNAs Reveals Epigenetic Biomarkers. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	3
544	Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Frontiers in Immunology, 0, 13, .	2.2	1
545	Tumor-Specific CD4+ T Cells Restrain Established Metastatic Melanoma by Developing Into Cytotoxic CD4– T Cells. Frontiers in Immunology, 0, 13, .	2.2	6
546	Genome-wide CRISPR screens of TÂcell exhaustion identify chromatin remodeling factors that limit TÂcell persistence. Cancer Cell, 2022, 40, 768-786.e7.	7.7	104
547	CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas. Nature Communications, 2022, 13, .	5.8	11
548	Application of ATAC-seq in tumor-specific T cell exhaustion. Cancer Gene Therapy, 2023, 30, 1-10.	2.2	4
551	CTLA4, PD-1, PD-L1, PD-L2, TIM-3, TIGIT, and LAG3 DNA Methylation Is Associated With BAP1-Aberrancy, Transcriptional Activity, and Overall Survival in Uveal Melanoma. Journal of Immunotherapy, 2022, 45, 324-334.	1.2	8
552	Single-cell ATAC-seq maps the comprehensive and dynamic chromatin accessibility landscape of CAR-T cell dysfunction. Leukemia, 2022, 36, 2656-2668.	3.3	15
553	Tumor microenvironmental signals reshape chromatin landscapes to limit the functional potential of exhausted T cells. Science Immunology, 2022, 7, .	5.6	35
554	Methionine cycle-dependent regulation of T cells in cancer immunity. Frontiers in Oncology, 0, 12, .	1.3	5
555	New Immuno-oncology Targets and Resistance Mechanisms. Current Treatment Options in Oncology, 2022, 23, 1201-1218.	1.3	10
556	Epigenetic engineering for optimal CARâ \in T cell therapy. Cancer Science, 0, , .	1.7	4
557	Immune checkpoint expression on HIV-specific CD4+ T cells and response to their blockade are dependent on lineage and function. EBioMedicine, 2022, 84, 104254.	2.7	4

#	Article	IF	CITATIONS
558	CD137 (4-1BB) Signaling Drives a TcR-Independent Exhaustion Program in CD8 T Cells. SSRN Electronic Journal, 0, , .	0.4	0
559	Metabolic plasticity and regulation of T cell exhaustion. Immunology, 2022, 167, 482-494.	2.0	14
560	Introduction: Redefining T-cell Exhaustion Special Issue. International Immunology, 2022, 34, 545-546.	1.8	0
561	PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature, 2022, 610, 173-181.	13.7	96
562	Loss of CD47 alters CD8+ T cell activation <i>in vitro</i> and immunodynamics in mice. Oncolmmunology, 2022, 11, .	2.1	10
563	Epigenetics: An opportunity to shape innate and adaptive immune responses. Immunology, 2022, 167, 451-470.	2.0	9
564	NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 9985.	1.8	11
566	TBX21 Methylation as a Potential Regulator of Immune Suppression in CMS1 Subtype Colorectal Cancer. Cancers, 2022, 14, 4594.	1.7	0
567	<scp>CD8</scp> ⁺ T cell exhaustion in antiâ€ŧumour immunity: The new insights for cancer immunotherapy. Immunology, 2023, 168, 30-48.	2.0	20
569	Divergent clonal differentiation trajectories of T cell exhaustion. Nature Immunology, 2022, 23, 1614-1627.	7.0	49
571	Relapse after CAR-T cell therapy in B-cell malignancies: challenges and future approaches. Journal of Zhejiang University: Science B, 2022, 23, 793-811.	1.3	9
572	Clinical implications of T cell exhaustion for cancer immunotherapy. Nature Reviews Clinical Oncology, 2022, 19, 775-790.	12.5	182
573	Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. Nature Immunology, 2022, 23, 1600-1613.	7.0	62
574	Non-viral precision T cell receptor replacement for personalized cell therapy. Nature, 2023, 615, 687-696.	13.7	85
575	Role of CXCR5+ CD8+ T cells in human immunodeficiency virus-1 infection. Frontiers in Microbiology, 0, 13, .	1.5	2
576	Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines, 2022, 10, 2809.	1.4	8
577	BLIMP1 and NR4A3 transcription factors reciprocally regulate antitumor CAR T cell stemness and exhaustion. Science Translational Medicine, 2022, 14, .	5.8	25
578	Exhaustion and over-activation of immune cells in COVID-19: Challenges and therapeutic opportunities. Clinical Immunology, 2022, 245, 109177.	1.4	12

#	Article	IF	CITATIONS
580	Estimation of Tumor Immune Signatures from Transcriptomics Data. Springer Handbooks of Computational Statistics, 2022, , 311-338.	0.2	0
581	Strategies to enhance CAR-T persistence. Biomarker Research, 2022, 10, .	2.8	15
582	Mechanisms of Resistance and Strategies to Combat Resistance in PD-(L)1 Blockade. Immuno, 2022, 2, 671-691.	0.6	2
583	Multiplexed engineering and precision gene editing in cellular immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	4
584	Identification of human progenitors of exhausted CD8+ T cells associated with elevated IFN-γ response in early phase of viral infection. Nature Communications, 2022, 13, .	5.8	8
585	CD8+ T cell exhaustion and cancer immunotherapy. Cancer Letters, 2023, 559, 216043.	3.2	18
586	Expression of Inhibitory Receptors TIGIT, TIM-3, and LAG-3 on CD4+ T Cells from Patients with Different Clinical Forms of Chronic Chagas Disease. Journal of Immunology, 2023, 210, 568-579.	0.4	2
587	Epigenetics in T-cell driven inflammation and cancer. Seminars in Cell and Developmental Biology, 2024, 154, 250-260.	2.3	2
588	Fundamentals to therapeutics: Epigenetic modulation of CD8+ T Cell exhaustion in the tumor microenvironment. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
590	Intimate communications within the tumor microenvironment: stromal factors function as an orchestra. Journal of Biomedical Science, 2023, 30, .	2.6	15
591	The scientific basis of combination therapy for chronic hepatitis B functional cure. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 238-253.	8.2	26
592	Integrated single-cell profiling dissects cell-state-specific enhancer landscapes of human tumor-infiltrating CD8+ TÂcells. Molecular Cell, 2023, 83, 622-636.e10.	4.5	7
594	T-Cell Exhaustion in Cancers. , 2023, , 1-29.		0
595	Early transcriptional and epigenetic divergence of CD8+ T cells responding to acute versus chronic infection. PLoS Biology, 2023, 21, e3001983.	2.6	8
596	Epigenetic remodeling of the immune landscape in cancer: therapeutic hurdles and opportunities. Journal of Biomedical Science, 2023, 30, .	2.6	7
597	T cell exhaustion in malignant gliomas. Trends in Cancer, 2023, 9, 270-292.	3.8	23
598	MMP11 is associated with the immune response and immune microenvironment in EGFR-mutant lung adenocarcinoma. Frontiers in Oncology, 0, 13, .	1.3	0
601	Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. Journal of Immunology, 2023, 210, 869-879.	0.4	2

#	Article	IF	CITATIONS
602	Immunological scars after cure of hepatitis C virus infection: Longâ€HepC?. Current Opinion in Immunology, 2023, 82, 102324.	2.4	1
603	Exhausted T cells hijacking the cancer-immunity cycle: Assets and liabilities. Frontiers in Immunology, 0, 14, .	2.2	1
604	Hallmarks and Biomarkers of Skin Senescence: An Updated Review of Skin Senotherapeutics. Antioxidants, 2023, 12, 444.	2.2	9
605	Epstein-Barr virus DNA seropositivity links distinct tumoral heterogeneity and immune landscape in nasopharyngeal carcinoma. Frontiers in Immunology, 0, 14, .	2.2	2
606	TIPE2 acts as a tumor suppressor and correlates with tumor microenvironment immunity in epithelial ovarian cancer. Aging, 0, , .	1.4	0
608	Deciphering comprehensive features of tumor microenvironment controlled by chromatin regulators to predict prognosis and guide therapies in uterine corpus endometrial carcinoma. Frontiers in Immunology, 0, 14, .	2.2	1
609	<i>De-novo</i> reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters. NAR Genomics and Bioinformatics, 2023, 5, .	1.5	0
611	Immunogen-Specific Strengths and Limitations of the Activation-Induced Marker Assay for Assessing Murine Antigen-Specific CD4+ T Cell Responses. Journal of Immunology, 2023, 210, 916-925.	0.4	0
612	Role of regulation of PD-1 and PD-L1 expression in sepsis. Frontiers in Immunology, 0, 14, .	2.2	6
613	Exhausted CD8+ T cells face a developmental fork in the road. Trends in Immunology, 2023, 44, 276-286.	2.9	5
614	A Phase II Trial of Guadecitabine plus Atezolizumab in Metastatic Urothelial Carcinoma Progressing after Initial Immune Checkpoint Inhibitor Therapy. Clinical Cancer Research, 2023, 29, 2052-2065.	3.2	8
615	Combination immunotherapy for hepatocellular carcinoma. Journal of Hepatology, 2023, 79, 506-515.	1.8	46
616	Guadecitabine increases response to combined anti-CTLA-4 and anti-PD-1 treatment in mouse melanoma in vivo by controlling T-cells, myeloid derived suppressor and NK cells. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	3.5	4
618	Stepwise activities of mSWI/SNF family chromatin remodeling complexes direct T cell activation and exhaustion. Molecular Cell, 2023, 83, 1216-1236.e12.	4.5	13
619	Empowering the Potential of CAR-T Cell Immunotherapies by Epigenetic Reprogramming. Cancers, 2023, 15, 1935.	1.7	2
620	Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proceedings of the United States of America, 2023, 120, .	3.3	10
621	Regulatory Mechanisms and Reversal of CD8+T Cell Exhaustion: A Literature Review. Biology, 2023, 12, 541.	1.3	2
622	Tâ€cell heterogeneity, progenitor–progeny relationships, and function during latent and chronic viral infections. Immunological Reviews, 2023, 316, 136-159.	2.8	3

#	Article	IF	Citations
623	Cell-Intrinsic CD38 Expression Sustains Exhausted CD8 ⁺ T Cells by Regulating Their Survival and Metabolism during Chronic Viral Infection. Journal of Virology, 2023, 97, .	1.5	6
629	Challenges for single-cell epigenetic analysis. , 2023, , 553-576.		0
631	Localization, tissue biology and T cell state — implications for cancer immunotherapy. Nature Reviews Immunology, 2023, 23, 807-823.	10.6	10
645	New insights into T-cell exhaustion in liver cancer: from mechanism to therapy. Journal of Cancer Research and Clinical Oncology, 2023, 149, 12543-12560.	1.2	1
647	Cancer Vaccines. , 2023, , 191-210.e9.		0
654	The road not taken en route to T cell exhaustion. Nature Immunology, 2023, 24, 1402-1404.	7.0	Ο
655	Regulation of CD8+ T memory and exhaustion by the mTOR signals. , 2023, 20, 1023-1039.		4
662	Stem-like exhausted and memory CD8+ T cells in cancer. Nature Reviews Cancer, 2023, 23, 780-798.	12.8	5
683	Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discovery, 2024, 10, .	2.0	1