A triple protostar system formed via fragmentation of a

Nature 538, 483-486 DOI: 10.1038/nature20094

Citation Report

#	Article	IF	CITATIONS
1	Birth of stellar siblings. Nature, 2016, 538, 466-467.	13.7	0
2	On the fragmentation boundary in magnetized self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3406-3416.	1.6	21
3	Grand-design Spiral Arms in a Young Forming Circumstellar Disk. Astrophysical Journal Letters, 2017, 835, L11.	3.0	78
4	Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks. Astrophysical Journal, 2017, 840, 93.	1.6	38
5	Embedded binaries and their dense cores. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3881-3900.	1.6	27
6	ALMA Observations of Starless Core Substructure in Ophiuchus. Astrophysical Journal, 2017, 838, 114.	1.6	32
7	Apparent Disk-mass Reduction and Planetisimal Formation in GravitationallyUnstable Disks in Class 0/I Young Stellar Objects. Astrophysical Journal, 2017, 838, 151.	1.6	39
8	An Extraordinary Outburst in the Massive Protostellar System NGC 6334I-MM1: Quadrupling of the Millimeter Continuum. Astrophysical Journal Letters, 2017, 837, L29.	3.0	117
9	Consistent SPH Simulations of Protostellar Collapse and Fragmentation. Astrophysical Journal, 2017, 835, 287.	1.6	10
10	Impact of Protostellar Outflows on Turbulence and Star Formation Efficiency in Magnetized Dense Cores. Astrophysical Journal, 2017, 847, 104.	1.6	75
11	The Fragmentation Criteria in Local Vertically Stratified Self-gravitating Disk Simulations. Astrophysical Journal, 2017, 848, 40.	1.6	42
12	The structure of young embedded protostellar discs. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3775-3788.	1.6	6
13	The dependence of protostar formation on the geometry and strength of the initial magnetic field. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3324-3337.	1.6	27
14	An Incipient Debris Disk in the Chamaeleon I Cloud. Astrophysical Journal, 2017, 844, 60.	1.6	5
15	Identifying and analysing protostellar disc fragments in smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2517-2538.	1.6	38
16	Strongly Misaligned Triple System in SR 24 Revealed by ALMA. Astrophysical Journal, 2017, 845, 10.	1.6	28
17	On the Origin of the Spiral Morphology in the Elias 2–27 Circumstellar Disk. Astrophysical Journal Letters, 2017, 839, L24.	3.0	60
18	Formation of wide binaries by turbulent fragmentation. Nature Astronomy, 2017, 1, .	4.2	34

ATION RED

#	ARTICLE	IF	Citations
19	Gravitational instabilities in a protosolar-like disc – II. Continuum emission and mass estimates. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1828-1847.	1.6	12
20	The chemistry of protoplanetary fragments formed via gravitational instabilities. Monthly Notices of the Royal Astronomical Society, 2017, 472, 189-204.	1.6	60
21	An ALMA and MagAO Study of the Substellar Companion GQ Lup B ^{â^—} . Astrophysical Journal, 2017, 836, 223.	1.6	49
22	A Face-on Accretion System in High-mass Star Formation: Possible Dusty Infall Streams within 100 AU. Astrophysical Journal, 2017, 849, 23.	1.6	9
23	On the Origin of Banded Structure in Dusty Protoplanetary Disks: HL Tau and TW Hya. Astrophysical Journal, 2017, 850, 103.	1.6	30
24	An Intertextual Analysis of JiÌmi SoÌ£ Ì•lanÌ•keÌ'̣s OÌ€na La (In The Path) via the Multiple Star System Theory of Mutual Illumination and Interaction. Legon Journal of the Humanities, 2017, 28, 62.	0.1	0
25	Magnetic diffusivities in 3D radiative chemo-hydrodynamic simulations of protostellar collapse. Astronomy and Astrophysics, 2017, 603, A105.	2.1	22
26	Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2384-2395.	1.6	7
27	The Updated Multiple Star Catalog. Astrophysical Journal, Supplement Series, 2018, 235, 6.	3.0	114
28	Dancing Twins: Stellar Hierarchies That Formed Sequentially?. Astronomical Journal, 2018, 155, 160.	1.9	30
29	A Brief Overview of Planet Formation. , 2018, , 1-19.		1
30	Brown Dwarf Formation: Theory. , 2018, , 1-22.		3
31	Dynamical Formation of Close Binaries during the Pre-main-sequence Phase. Astrophysical Journal, 2018, 854, 44.	1.6	112
32	The VLA Nascent Disk And Multiplicity Survey of Perseus Protostars (VANDAM). III. Extended Radio Emission from Protostars in Perseus. Astrophysical Journal, 2018, 852, 18.	1.6	16
33	EPIC 203868608: A Low-mass Quadruple Star System in the Upper Scorpius OB Association. Astrophysical Journal, 2018, 865, 141.	1.6	9
34	Spiral Arms in Disks: Planets or Gravitational Instability?. Astrophysical Journal, 2018, 862, 103.	1.6	64
35	The Disk Substructures at High Angular Resolution Project (DSHARP). IV. Characterizing Substructures and Interactions in Disks around Multiple Star Systems. Astrophysical Journal Letters, 2018, 869, L44.	3.0	86
36	Role of environment and gas temperature in the formation of multiple protostellar systems: molecular tracers. Astronomy and Astrophysics, 2018, 620, A30.	2.1	9

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). V. 18 Candidate Disks around Class 0 and I Protostars in the Perseus Molecular Cloud. Astrophysical Journal, 2018, 866, 161.	1.6	58
38	On the Effects of Self-obscuration in the (Sub)Millimeter Spectral Indices and the Appearance of Protostellar Disks. Astrophysical Journal, 2018, 868, 39.	1.6	27
39	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus Protostars. VI. Characterizing the Formation Mechanism for Close Multiple Systems. Astrophysical Journal, 2018, 867, 43.	1.6	52
40	A Brief Overview of Planet Formation. , 2018, , 2185-2203.		8
41	Circumstellar Discs: What Will Be Next?. , 2018, , 3321-3352.		4
42	Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region. Astrophysical Journal, 2018, 869, 17.	1.6	337
43	The Maximum Mass Solar Nebula and the early formation of planets. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3273-3278.	1.6	22
44	Chemistry of a newly detected circumbinary disk in Ophiuchus. Astronomy and Astrophysics, 2018, 614, A26.	2.1	22
45	Is the spiral morphology of the Elias 2-27 circumstellar disc due to gravitational instability?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1004-1014.	1.6	28
46	Brown Dwarf Formation: Theory. , 2018, , 447-468.		3
47	Search for high-mass protostars with ALMA revealed up to kilo-parsec scales (SPARKS). Astronomy and Astrophysics, 2018, 617, A89.	2.1	39
48	The Eccentric Cavity, Triple Rings, Two-armed Spirals, and Double Clumps of the MWC 758 Disk. Astrophysical Journal, 2018, 860, 124.	1.6	126
49	Near-infrared High-resolution Imaging Polarimetry of FU Ori-type Objects: Toward a Unified Scheme for Low-mass Protostellar Evolution*. Astrophysical Journal, 2018, 864, 20.	1.6	38
50	Formation and Evolution of Protoplanetary Disks: Observations and Modeling of Jets, Disks, and Disk Substructures. Proceedings of the International Astronomical Union, 2018, 14, 96-101.	0.0	0
51	Decoupling of magnetic fields in collapsing protostellar envelopes and disc formation and fragmentation. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4868-4889.	1.6	88
52	The ALMA early science view of FUor/EXor objects – V. Continuum disc masses and sizes. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4347-4357.	1.6	45
53	On the diversity and statistical properties of protostellar discs. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5618-5658.	1.6	213
54	Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment–fragment interactions. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5036-5048.	1.6	77

#	Article	IF	CITATIONS
55	Spiral arms in thermally stratified protoplanetary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 474, L32-L36.	1.2	34
56	From Large-scale to Protostellar Disk Fragmentation into Close Binary Stars. Astrophysical Journal, 2018, 857, 40.	1.6	10
57	The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months. Astrophysical Journal, 2018, 854, 31.	1.6	38
58	ALMA Observations of Polarized 872 μm Dust Emission from the Protostellar Systems VLA 1623 and L1527. Astrophysical Journal, 2018, 861, 91.	1.6	47
59	The Envelope Kinematics and a Possible Disk around the Class 0 Protostar within BHR7. Astrophysical Journal, 2018, 856, 164.	1.6	10
60	Linear analysis of the non-axisymmetric secular gravitational instability. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5405-5415.	1.6	1
61	Probing the cold magnetised Universe with SPICA-POL (B-BOP). Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	13
62	The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	95
63	The Degree of Alignment between Circumbinary Disks and Their Binary Hosts. Astrophysical Journal, 2019, 883, 22.	1.6	69
64	Discovery of an equal-mass â€~twin' binary population reaching 1000Â+Âau separations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5822-5857.	1.6	84
65	The ALMA-PILS survey: gas dynamics in IRAS 16293â^2422 and the connection between its two protostars. Astronomy and Astrophysics, 2019, 626, A93.	2.1	27
66	Forming Pop III binaries in self-gravitating discs: how to keep the orbital angular momentum. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2658-2672.	1.6	25
67	Gas flow and accretion via spiral streamers and circumstellar disks in a young binary protostar. Science, 2019, 366, 90-93.	6.0	57
68	Ciant planets and brown dwarfs on wide orbits: a code comparison project. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4398-4413.	1.6	17
69	Time Evolution of 3D Disk Formation with Misaligned Magnetic Field and Rotation Axes. Astrophysical Journal, 2019, 873, 114.	1.6	6
70	The First Bird's-eye View of a Gravitationally Unstable Accretion Disk in High-mass Star Formation. Astrophysical Journal Letters, 2019, 877, L25.	3.0	26
71	Close Companions around Young Stars. Astronomical Journal, 2019, 157, 196.	1.9	81
72	Hydrodynamics of Circumbinary Accretion: Angular Momentum Transfer and Binary Orbital Evolution. Astrophysical Journal, 2019, 871, 84.	1.6	149

#	Article	IF	CITATIONS
73	The Temporal Requirements of Directly Observing Self-gravitating Spiral Waves in Protoplanetary Disks with ALMA. Astrophysical Journal, 2019, 871, 228.	1.6	24
74	On the Nature of the Compact Sources in IRAS 16293–2422 Seen at Centimeter to Submillimeter Wavelengths. Astrophysical Journal, 2019, 875, 94.	1.6	17
75	A Fast Poisson Solver of Second-order Accuracy for Isolated Systems in Three-dimensional Cartesian and Cylindrical Coordinates. Astrophysical Journal, Supplement Series, 2019, 241, 24.	3.0	11
76	Disc formation and fragmentation using radiative non-ideal magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	31
77	The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity. Astrophysical Journal, 2019, 875, 61.	1.6	140
78	A 10- <i>M</i> _⊙ YSO with a Keplerian disk and a nonthermal radio jet. Astronomy and Astrophysics, 2019, 622, A206.	2.1	15
79	Growth and Settling of Dust Particles in Protoplanetary Nebulae: Implications for Opacity, Thermal Profile, and Gravitational Instability. Astrophysical Journal, 2019, 874, 26.	1.6	12
80	Flybys in protoplanetary discs: I. Gas and dust dynamics. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4114-4139.	1.6	85
81	The Mass Evolution of Protostellar Disks and Envelopes in the Perseus Molecular Cloud. Astrophysical Journal, 2019, 873, 54.	1.6	27
82	Structure of a Protobinary System: An Asymmetric Circumbinary Disk and Spiral Arms. Astrophysical Journal, 2019, 871, 36.	1.6	21
83	The Formation of Binary Stars: Insights from Theory and Observation. , 2019, , 225-243.		0
84	Ring structure in the MWC 480 disk revealed by ALMA. Astronomy and Astrophysics, 2019, 622, A75.	2.1	55
85	Physical Processes in Protoplanetary Disks. Saas-Fee Advanced Course, 2019, , 1-150.	1.1	24
86	Characterizing young protostellar disks with the CALYPSO IRAM-PdBI survey: large Class 0 disks are rare. Astronomy and Astrophysics, 2019, 621, A76.	2.1	92
87	Observational constraints on dust disk sizes in tidally truncated protoplanetary disks in multiple systems in the Taurus region. Astronomy and Astrophysics, 2019, 628, A95.	2.1	60
88	Interferometric Observations of Magnetic Fields in Forming Stars. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	71
89	The bridge: a transient phenomenon of forming stellar multiples. Astronomy and Astrophysics, 2019, 628, A112.	2.1	42
90	Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysics, 2019, 631, A1.	2.1	16

#	Article	IF	Citations
91	Spiral structures in an embedded protostellar disk driven by envelope accretion. Nature Astronomy, 2020, 4, 142-146.	4.2	31
92	Spiral arms and instability within the AFGL 4176 mm1 disc. Astronomy and Astrophysics, 2020, 634, L11.	2.1	36
93	Twin Jets and Close Binary Formation. Astrophysical Journal Letters, 2020, 897, L22.	3.0	14
94	Observations of Protoplanetary Disk Structures. Annual Review of Astronomy and Astrophysics, 2020, 58, 483-528.	8.1	220
95	A protostellar system fed by a streamer of 10,500 au length. Nature Astronomy, 2020, 4, 1158-1163.	4.2	77
96	Three-dimensional cylindrical Poisson solver with vacuum boundary conditions. Journal of Physics: Conference Series, 2020, 1623, 012017.	0.3	0
97	Massive discs around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4130-4148.	1.6	26
98	Angular momentum profiles of Class 0 protostellar envelopes. Astronomy and Astrophysics, 2020, 637, A92.	2.1	39
99	Searching for kinematic evidence of Keplerian disks around Class 0 protostars with CALYPSO. Astronomy and Astrophysics, 2020, 635, A15.	2.1	39
100	The Origin of the Stellar Mass Distribution and Multiplicity. Space Science Reviews, 2020, 216, 1.	3.7	29
101	Understanding the Origin of the Magnetic Field Morphology in the Wide-binary Protostellar System BHR 71. Astrophysical Journal, 2020, 892, 152.	1.6	29
102	Formation of close binaries by disc fragmentation and migration, and its statistical modelling. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5158-5171.	1.6	74
103	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class I Protostellar Disks. Astrophysical Journal, 2020, 890, 130.	1.6	170
104	Observations of Planetary Systems. , 2020, , 1-48.		0
105	Terrestrial Planet Formation. , 2020, , 181-219.		0
106	Hall effect in protostellar disc formation and evolution. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3375-3395.	1.6	21
108	Protoplanetary Disk Structure. , 2020, , 49-85.		0
109	Protoplanetary Disk Evolution. , 2020, , 86-140.		0

#	Article	IF	Citations
110	Planetesimal Formation. , 2020, , 141-180.		0
111	Giant Planet Formation. , 2020, , 220-246.		0
112	Early Evolution of Planetary Systems. , 2020, , 247-300.		0
117	Formation and Evolution of Disks Around Young Stellar Objects. Space Science Reviews, 2020, 216, 43.	3.7	49
118	Kinematic Analysis of a Protostellar Multiple System: Measuring the Protostar Masses and Assessing Gravitational Instability in the Disks of L1448 IRS3B and L1448 IRS3A. Astrophysical Journal Letters, 2021, 907, L10.	3.0	13
119	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of Extremely High-density Compact Structure of Prestellar Cores and Multiple Substructures Within. Astrophysical Journal Letters, 2021, 907, L15.	3.0	16
120	FAUST. II. Discovery of a Secondary Outflow in IRAS 15398â^'3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?. Astrophysical Journal, 2021, 910, 11.	1.6	19
121	A survey of the linear polarization of directly imaged exoplanets and brown dwarf companions with SPHERE-IRDIS. Astronomy and Astrophysics, 2021, 647, A21.	2.1	28
122	Misaligned Twin Molecular Outflows from the Class 0 Protostellar Binary System VLA 1623A Unveiled by ALMA. Astrophysical Journal, 2021, 912, 34.	1.6	15
123	Unveiling the traits of massive young stellar objects through a multi-scale survey. Astronomy and Astrophysics, 2021, 648, A62.	2.1	14
124	Growth of Massive Disks and Early Disk Fragmentation in Primordial Star Formation. Astrophysical Journal, 2021, 911, 52.	1.6	12
125	Circumbinary and circumstellar discs around the eccentric binary IRAS 04158+2805 — a testbed for binary–disc interaction. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1157-1174.	1.6	14
126	The Architecture of the V892 Tau System: The Binary and Its Circumbinary Disk. Astrophysical Journal, 2021, 915, 131.	1.6	14
127	Primordial obliquities of brown dwarfs and super-Jupiters from fragmenting gravito-turbulent discs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5187-5194.	1.6	12
128	Spatial statistics in star-forming regions: is star formation driven by column density alone?. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1904-1922.	1.6	1
129	Long Live the Disk: Lifetimes of Protoplanetary Disks in Hierarchical Triple-star Systems and a Possible Explanation for HD 98800 B. Astrophysical Journal, 2021, 916, 113.	1.6	13
130	No Impact of Core-scale Magnetic Field, Turbulence, or Velocity Gradient on Sizes of Protostellar Disks in Orion A. Astrophysical Journal, 2021, 916, 97.	1.6	3
131	The young protostellar disc in IRAS 16293â^2422 B is hot and shows signatures of gravitational instability. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2583-2599.	1.6	12

#	Article	IF	CITATIONS
132	Gravitational fragmentation of extremely metal-poor circumstellar discs. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4767-4785.	1.6	6
133	Circumstellar Discs: What Will Be Next?. , 2017, , 1-32.		2
134	Constraints from Planets in Binaries. Astrophysics and Space Science Library, 2017, , 315-337.	1.0	3
135	Zooming in on Individual Star Formation: Low- and High-Mass Stars. Space Science Reviews, 2020, 216, 1.	3.7	33
137	The wind and the magnetospheric accretion onto the T Tauri star S Coronae Australis at sub-au resolution. Astronomy and Astrophysics, 2017, 608, A78.	2.1	2
138	Implementing primordial binaries in simulations of star cluster formation with a hybrid MHD and direct <i>N</i> -body method. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4464-4478.	1.6	12
139	Binary Star Population with Common Proper Motion in Gaia DR2. Astronomy Reports, 2020, 64, 756-768.	0.2	6
140	The Formation and Evolution of Wide-orbit Stellar Multiples In Magnetized Clouds. Astrophysical Journal, 2019, 887, 232.	1.6	39
141	High-resolution Near-infrared Polarimetry and Submillimeter Imaging of FS Tau A: Possible Streamers in Misaligned Circumbinary Disk System. Astrophysical Journal, 2020, 889, 140.	1.6	3
142	Orbital Parameter Determination for Wide Stellar Binary Systems in the Age of Gaia. Astrophysical Journal, 2020, 894, 115.	1.6	30
143	Temperature Structures of Embedded Disks: Young Disks in Taurus Are Warm. Astrophysical Journal, 2020, 901, 166.	1.6	49
144	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. III. Substructures in Protostellar Disks. Astrophysical Journal, 2020, 902, 141.	1.6	54
145	Constraining the Chemical Signatures and the Outburst Mechanism of the Class 0 Protostar HOPS 383. Astrophysical Journal, 2020, 904, 78.	1.6	6
146	Substructures in the Disk-forming Region of the Class 0 Low-mass Protostellar Source IRAS 16293â°'2422 Source A on a 10 au Scale. Astrophysical Journal, 2020, 904, 185.	1.6	18
147	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. IV. Unveiling the Embedded Intermediate-Mass Protostar and Disk within OMC2-FIR3/HOPS-370. Astrophysical Journal, 2020, 905, 162.	1.6	13
148	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows. Astrophysical Journal, Supplement Series, 2020, 251, 20.	3.0	22
149	Multi-scale Dust Polarization and Spiral-like Stokes-I Residual in the Class I Protostellar System TMC-1A. Astrophysical Journal, 2021, 920, 71.	1.6	12
150	Rotating Motion of the Outflow of IRAS 16293-2422 A1 at Its Origin Point Near the Protostar. Astrophysical Journal, 2021, 921, 12.	1.6	5

#	Article	IF	Citations
151	The non-monotonic, strong metallicity dependence of the wide-binary fraction. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4329-4343.	1.6	20
152	The VLA/ALMA Nascent Disk And Multiplicity (VANDAM) Survey of Orion Protostars. V. A Characterization of Protostellar Multiplicity. Astrophysical Journal, 2022, 925, 39.	1.6	19
153	Testing the accretion scenario of lambda Boo stars. Astronomy and Astrophysics, 0, , .	2.1	2
154	Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623–2417: FAUST. III. Astrophysical Journal, 2022, 927, 54.	1.6	7
155	Ninety-seven Eclipsing Quadruple Star Candidates Discovered in TESS Full-frame Images. Astrophysical Journal, Supplement Series, 2022, 259, 66.	3.0	16
156	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. VI. Insights from Radiative Transfer Modeling. Astrophysical Journal, 2022, 929, 76.	1.6	20
157	The Physical Properties of the SVS 13 Protobinary System: Two Circumstellar Disks and a Spiraling Circumbinary Disk in the Making. Astrophysical Journal, 2022, 930, 91.	1.6	13
158	A massive Keplerian protostellar disk with flyby-induced spirals in the Central Molecular Zone. Nature Astronomy, 2022, 6, 837-843.	4.2	8
159	Companion-induced accretion in protobinaries. Nature Astronomy, 2022, 6, 633-634.	4.2	0
160	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): How Do Dense Core Properties Affect the Multiplicity of Protostars?. Astrophysical Journal, 2022, 931, 158.	1.6	4
161	Dust coagulation and fragmentation in a collapsing cloud core and their influence on non-ideal magnetohydrodynamic effects. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2072-2087.	1.6	14
162	Von Zeipel – Lidov – Kozai cycles in action: <i>Kepler</i> triples with eclipse depth variations: KICs 6964043, 5653126, 5731312, and 8023317. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3773-3795.	1.6	7
163	A VLA View of the Flared, Asymmetric Disk around the Class 0 Protostar L1527 IRS. Astrophysical Journal, 2022, 934, 95.	1.6	14
164	The impact of the initial core temperature on protostellar disc fragmentation. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
165	The McDonald Accelerating Stars Survey: Architecture of the Ancient Five-planet Host System Kepler-444. Astronomical Journal, 2023, 165, 73.	1.9	6
166	Gravito-turbulence in local disk simulations with an adaptive moving mesh. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	2
167	On the Role of Dynamical Cooling in the Dynamics of Circumbinary Disks. Astrophysical Journal, 2023, 943, 175.	1.6	5
168	The Mass Accretion Rate and Stellar Properties in Class I Protostars. Astrophysical Journal, 2023, 944, 135.	1.6	9

#	Article	IF	CITATIONS
169	The role of magnetic fields in the formation of multiple massive stars. Astronomy and Astrophysics, 2023, 673, A134.	2.1	1
170	TIC 219006972: a compact, coplanar quadruple star system consisting of two eclipsing binaries with an outer period of 168Âd. Monthly Notices of the Royal Astronomical Society, 2023, 522, 90-101.	1.6	3
171	The HH 24 Complex: Jets, Multiple Star Formation, and Orphaned Protostars. Astronomical Journal, 2023, 165, 209.	1.9	0
179	Observations of planet forming disks in multiple stellar systems. European Physical Journal Plus, 2023, 138, .	1.2	3