Silicate application increases the photosynthesis and its Kentucky bluegrass under drought stress and post-drou

Environmental Science and Pollution Research 23, 17647-17655 DOI: 10.1007/s11356-016-6957-x

Citation Report

#	Article	IF	CITATIONS
1	miRNAs: Major modulators for crop growth and development under abiotic stresses. Biotechnology Letters, 2017, 39, 685-700.	2.2	77
2	Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. Environmental Science and Pollution Research, 2017, 24, 9142-9158.	5.3	159
3	Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environmental Science and Pollution Research, 2017, 24, 14551-14566.	5.3	103
4	Water-saving technologies affect the grain characteristics and recovery of fine-grain rice cultivars in semi-arid environment. Environmental Science and Pollution Research, 2017, 24, 12971-12981.	5.3	25
5	Bacillus safensis with plant-derived smoke stimulates rice growth under saline conditions. Environmental Science and Pollution Research, 2017, 24, 23850-23863.	5.3	22
6	Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 2017, 247, 42-55.	4.8	126
7	Effects of Nitrogen Supply on Water Stress and Recovery Mechanisms in Kentucky Bluegrass Plants. Frontiers in Plant Science, 2017, 8, 983.	3.6	143
8	Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy, 2017, 7, 67.	3.0	112
9	Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 2018, 51, 47.	3.4	126
10	Influence of composted poultry manure and irrigation regimes on some morpho-physiology parameters of maize under semiarid environments. Environmental Science and Pollution Research, 2018, 25, 19918-19931.	5.3	7
11	Arsenic accumulation in lentil (Lens culinaris) genotypes and risk associated with the consumption of grains. Scientific Reports, 2019, 9, 9431.	3.3	34
12	Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	71
13	Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environmental Science and Pollution Research, 2019, 26, 16923-16938.	5.3	90
14	Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions. Environmental Science and Pollution Research, 2019, 26, 13410-13421.	5.3	33
15	Biosynthesis and Signal Transduction of ABA, JA, and BRs in Response to Drought Stress of Kentucky Bluegrass. International Journal of Molecular Sciences, 2019, 20, 1289.	4.1	59
16	Improving maize grain yield by matching maize growth and solar radiation. Scientific Reports, 2019, 9, 3635.	3.3	54
17	Morphological acclimation to agronomic manipulation in leaf dispersion and orientation to promote "Ideotype―breeding: Evidence from 3D visual modeling of "super―rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2019, 135, 499-510.	5.8	32
18	Developing the first halophytic turfgrasses for the urban landscape from native Arabian desert grass. Environmental Science and Pollution Research, 2020, 27, 39702-39716.	5.3	23

#	Article	IF	CITATIONS
19	Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan. Environmental Science and Pollution Research, 2020, 27, 39676-39692.	5.3	114
20	Quantitative leaf anatomy and photophysiology systems of C3 and C4 turfgrasses in response to shading. Scientia Horticulturae, 2020, 274, 109674.	3.6	24
21	Effects of arbuscular mycorrhizal fungi, biochar, selenium, silica gel, and sulfur on arsenic uptake and biomass growth in Pisum sativum L. Emerging Contaminants, 2020, 6, 312-322.	4.9	21
22	Biofortification Under Climate Change: The Fight Between Quality and Quantity. , 2020, , 173-227.		16
23	Consequences of Salinity Stress on the Quality of Crops and Its Mitigation Strategies for Sustainable Crop Production: An Outlook of Arid and Semi-arid Regions. , 2020, , 503-533.		31
24	Alternative and Non-conventional Soil and Crop Management Strategies for Increasing Water Use Efficiency. , 2020, , 323-338.		8
25	Beneficial Effects of Mixing Kentucky Bluegrass With Red Fescue via Plant-Soil Interactions in Black Soil of Northeast China. Frontiers in Microbiology, 2020, 11, 556118.	3.5	7
27	The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture (Switzerland), 2020, 10, 396.	3.1	185
28	Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environmental Science and Pollution Research, 2020, 27, 37121-37133.	5.3	69
29	Use of crop growth model to simulate the impact of climate change on yield of various wheat cultivars under different agro-environmental conditions in Khyber Pakhtunkhwa, Pakistan. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	27
30	Determining nitrogen isotopes discrimination under drought stress on enzymatic activities, nitrogen isotope abundance and water contents of Kentucky bluegrass. Scientific Reports, 2020, 10, 6415.	3.3	38
31	Mechanisms of Environmental Stress Tolerance in Turfgrass. Agronomy, 2020, 10, 522.	3.0	29
32	Effects of Root Zone Temperature Increase on Physiological Indexes and Photosynthesis of Different Genotype Maize Seedlings. Russian Journal of Plant Physiology, 2021, 68, 169-178.	1.1	7
33	Role of Plant Growth Hormones During Soil Water Deficit: A Review. , 2021, , 489-583.		2
34	Cross-Talk between Phytohormone-Signalling Pathways under Abiotic Stress Conditions. , 2021, , 99-116.		2
35	Plant Growth and Morphophysiological Modifications in Perennial Ryegrass under Environmental Stress. , 0, , .		0
36	A Review on Kentucky Bluegrass Responses and Tolerance to Drought Stress. , 0, , .		2
37	Drought Responses on Physiological Attributes of <i>Zea mays</i> in Relation to Nitrogen and Source-Sink Relationships. , 0, , .		2

#	Article	IF	CITATIONS
38	Morphophysiological Traits, Biochemical Characteristic and Productivity of Wheat under Water and Nitrogen-Colimitation: Pathways to Improve Water and N Uptake. , 0, , .		0
39	Influence of Water Stress on Growth, Chlorophyll Contents and Solute Accumulation in Three Accessions of Vicia faba L. from Tunisian Arid Region. , 0, , .		2
40	Adapting Cereal Grain Crops to Drought Stress: 2020 and Beyond. , 0, , .		4
41	Abiotic Stress Responses in Plants: Current Knowledge and Future Prospects. , 0, , .		5
42	Effects of Salinity on Seed Germination and Early Seedling Stage. , 0, , .		19
43	Salt Stress in Plants and Amelioration Strategies: A Critical Review. , 0, , .		15
44	Protagonist of Mineral Nutrients in Drought Stress Tolerance of Field Crops. , 0, , .		2
45	QTL Mapping for Abiotic Stresses in Cereals. , 2020, , 229-251.		7
46	Role of Biotechnology in Climate Resilient Agriculture. , 2020, , 339-365.		7
47	Rice Production Under Climate Change: Adaptations and Mitigating Strategies. , 2020, , 659-686.		29
48	Leaf gas exchange, oxidative stress, and physiological attributes of rapeseed (Brassica napus L.) grown under different light-emitting diodes. Photosynthetica, 2020, 58, 836-845.	1.7	44
49	Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.). Photosynthetica, 2020, 58, 922-931.	1.7	53
51	Carbon Cycle in Response to Global Warming. , 2020, , 1-15.		9
52	Biochar; a Remedy for Climate Change. , 2020, , 151-171.		13
53	Climate Change and Costal Plant Lives. , 2020, , 93-108.		5
54	Immobilization of cadmium in soil-plant system through soil and foliar applied silicon. International Journal of Phytoremediation, 2022, , 1-12.	3.1	7
55	Land use and land cover (LULC) change analysis using TM, ETM+ and OLI Landsat images in district of Okara, Punjab, Pakistan. Physics and Chemistry of the Earth, 2022, 126, 103117.	2.9	52
56	Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms. Biotechnology and Biotechnological Equipment, 2021, 35, 1912-1925.	1.3	49

#	Article	IF	CITATIONS
57	Management of abiotic stresses with nano-black carbon is a tool for crop production. Journal of Plant Nutrition, 2023, 46, 145-166.	1.9	4
58	Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency. Scientific Reports, 2022, 12, 4454.	3.3	3
59	Selenium- and Silicon-Mediated Recovery of Satureja (Satureja mutica Fisch. & C.ÂA. Mey.) Chemotypes Subjected to Drought Stress Followed by Rewatering. Gesunde Pflanzen, 2022, 74, 737-757.	3.0	2
60	Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS ONE, 2021, 16, e0261472.	2.5	7
61	Assessment of cold stress tolerance in maize through quantitative trait locus, genome-wide association study and transcriptome analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12525.	1.1	3
72	Inorganic Nitrogen Enhances the Drought Tolerance of Evergreen Broad-Leaved Tree Species in the Short-Term, but May Aggravate Their Water Shortage in the Mid-Term. Frontiers in Plant Science, 2022, 13, 875293.	3.6	1
73	Improving Drought Stress Tolerance in Ramie (Boehmeria nivea L.) Using Molecular Techniques. Frontiers in Plant Science, 0, 13, .	3.6	4
74	Transcriptomic Analysis of Fusarium oxysporum Stress-Induced Pathosystem and Screening of Fom-2 Interaction Factors in Contrasted Melon Plants. Frontiers in Plant Science, 0, 13, .	3.6	3
75	Exogenous tryptophan application improves cadmium tolerance and inhibits cadmium upward transport in broccoli (Brassica oleracea var. italica). Frontiers in Plant Science, 0, 13, .	3.6	7
76	Oxidativer Stress und antioxidative EnzymaktivitÃæn bei Tomatenpflanzen (Solanum lycopersicum), die bei zwei verschiedenen LichtintensitÃæn angebaut wurden. Gesunde Pflanzen, 2023, 75, 479-485.	3.0	4
77	Growth-limiting drought stress induces time-of-day-dependent transcriptome and physiological responses in hybrid poplar. AoB PLANTS, 2022, 14, .	2.3	3
78	Role of inorganic bio stimulant elements in plant growth. , 2023, , 229-261.		Ο
79	Exogenous application of Atonik (sodium nitrophenolate) under skip irrigation regimes modulated the physiology, growth and productivity of <i>Zea mays</i> L. Archives of Agronomy and Soil Science, 0, , 1-15.	2.6	2
81	Exogenous Appliance of Nano-Zeolite and Nano-Silicon Elevate Solidago canadensis Invasive Plant Tolerance to Water Deficiency. Horticulturae, 2023, 9, 172.	2.8	1
82	Silicon (Si): A Regulator Nutrient for Optimum Growth of Wheat Under Salinity and Drought Stresses- A Review. Journal of Plant Growth Regulation, 2023, 42, 5354-5378.	5.1	6
83	Biochar for Mitigation of Heat Stress in Crop Plants. Sustainable Agriculture Reviews, 2023, , 159-187.	1.1	Ο
84	Biochar Application to Soil for Mitigation of Nutrients Stress in Plants. Sustainable Agriculture Reviews, 2023, , 189-216.	1.1	0
85	Biochar for Improving Crop Productivity and Soil Fertility. Sustainable Agriculture Reviews, 2023, , 75-98.	1.1	0

#	Article	IF	CITATIONS
86	Biochar Application for Improving the Yield and Quality of Crops Under Climate Change. Sustainable Agriculture Reviews, 2023, , 3-55.	1.1	0
87	Irrigation Scheduling Under Crop Water Requirements: Simulation and Field Learning. , 2023, , 261-279.		0
88	Sustainable Development Goals, Deep Tech, and the Path Forward. , 2023, , 241-300.		0
89	Diversity of individuals' methylation patterns to different moisture regimes in Einkorn wheat revealed by CRED-RA technique. Genetic Resources and Crop Evolution, 0, , .	1.6	0
91	Genetic variation and response to selection of photosynthetic and forage characteristics in Kentucky bluegrass (Poa pratensis L.) ecotypes under drought conditions. Frontiers in Plant Science, 0, 14, .	3.6	0
92	Humic and fulvic acid influence the morphophysiological and biochemical properties of cowpea (Vigna unguiculata) under water deficit. Crop and Pasture Science, 2023, , .	1.5	0
93	Assessment of future prediction of urban growth and climate change in district Multan, Pakistan using CA-Markov method. Urban Climate, 2024, 53, 101766.	5.7	5