Mitochondrial dysfunction is an important cause of neuinflammatory model of multiple sclerosis

Scientific Reports 6, 33249 DOI: 10.1038/srep33249

Citation Report

#	Article	IF	CITATIONS
1	Mitochondria-Division Inhibitor 1 Protects Against Amyloid-β induced Mitochondrial Fragmentation and Synaptic Damage in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 147-162.	1.2	83
2	A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Multiple Sclerosis Journal, 2017, 23, 1309-1319.	1.4	64
3	Sublethal oligodendrocyte injury: A reversible condition in multiple sclerosis?. Annals of Neurology, 2017, 81, 811-824.	2.8	30
4	C10ORF2 mutation associated with progressive external ophthalmoplegia and clinically isolated syndrome. Acta Neurologica Belgica, 2017, 117, 947-949.	0.5	9
5	Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture. Neuron, 2017, 96, 651-666.	3.8	379
6	Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Scientific Reports, 2017, 7, 13663.	1.6	38
7	Mitochondrial DNA Double-Strand Breaks in Oligodendrocytes Cause Demyelination, Axonal Injury, and CNS Inflammation. Journal of Neuroscience, 2017, 37, 10185-10199.	1.7	34
8	Reply to the letter by Finsterer et al. concerning the paper: "Affection of immune-cells by a C10orf2 mutation manifesting as mitochondrial myopathy and transient sensory transverse syndrome―by Galassi G. et al Acta Neurologica Belgica, 2017, 117, 971-972.	0.5	0
9	Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cellular and Molecular Life Sciences, 2017, 74, 3863-3881.	2.4	369
10	<i>In Vivo</i> Imaging of CNS Injury and Disease. Journal of Neuroscience, 2017, 37, 10808-10816.	1.7	24
11	Formation and disruption of functional domains in myelinated CNS axons. Neuroscience Research, 2017, 116, 77-87.	1.0	21
12	Riboflavin Responsive Mitochondrial Dysfunction in Neurodegenerative Diseases. Journal of Clinical Medicine, 2017, 6, 52.	1.0	83
13	Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. International Journal of Molecular Sciences, 2017, 18, 353.	1.8	48
14	Impaired Cardiac Function in Patients with Multiple Sclerosis by Comparison with Normal Subjects. Scientific Reports, 2018, 8, 3300.	1.6	15
15	Neuroprotective effect of S-allyl cysteine on an experimental model of multiple sclerosis: Antioxidant effects. Journal of Functional Foods, 2018, 42, 281-288.	1.6	8
16	Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience, 2018, 376, 48-71.	1.1	64
17	2- O -Carba-oleoyl cyclic phosphatidic acid induces glial proliferation through the activation of lysophosphatidic acid receptor. Brain Research, 2018, 1681, 44-51.	1.1	16
18	Mitochondrial Reactive Oxygen Species and Type 1 Diabetes. Antioxidants and Redox Signaling, 2018, 29, 1361-1372.	2.5	70

#	Article	IF	CITATIONS
19	Mitochondrial damage and "plugging―of transport selectively in myelinated, small-diameter axons are major early events in peripheral neuroinflammation. Journal of Neuroinflammation, 2018, 15, 61.	3.1	13
20	Lower Arterial Cross-Sectional Area of Carotid and Vertebral Arteries and Higher Frequency of Secondary Neck Vessels Are Associated with Multiple Sclerosis. American Journal of Neuroradiology, 2018, 39, 123-130.	1.2	25
21	Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery, 2018, 17, 865-886.	21.5	508
22	Maintenance mechanisms of circuit-integrated axons. Current Opinion in Neurobiology, 2018, 53, 162-173.	2.0	12
23	Re-examining the potential of targeting ABHD6 in multiple sclerosis: Efficacy of systemic and peripherally restricted inhibitors in experimental autoimmune encephalomyelitis. Neuropharmacology, 2018, 141, 181-191.	2.0	22
24	HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy, 2018, 14, 1596-1619.	4.3	101
25	On the Neuroprotective Role of Astaxanthin: New Perspectives?. Marine Drugs, 2018, 16, 247.	2.2	139
26	The Axon-Myelin Unit in Development and Degenerative Disease. Frontiers in Neuroscience, 2018, 12, 467.	1.4	161
27	Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis. Biochemistry (Moscow), 2018, 83, 813-830.	0.7	35
28	Blood Mononuclear Cell Mitochondrial Respiratory Chain Complex IV Activity is Decreased in Multiple Sclerosis Patients: Effects of β-Interferon Treatment. Journal of Clinical Medicine, 2018, 7, 36.	1.0	21
29	A metabolic perspective on CSF-mediated neurodegeneration in multiple sclerosis. Brain, 2019, 142, 2756-2774.	3.7	35
30	Assessment of Mitochondrial Dysfunction in Experimental Autoimmune Encephalomyelitis (EAE) Models of Multiple Sclerosis. International Journal of Molecular Sciences, 2019, 20, 4975.	1.8	14
31	On elucidation of the role of mitochondria dysfunction and oxidative stress in multiple sclerosis. Neurology and Clinical Neuroscience, 2019, 7, 305-317.	0.2	6
32	Surgical preparations, labeling strategies, and optical techniques for cell-resolved, in vivo imaging in the mouse spinal cord. Experimental Neurology, 2019, 318, 192-204.	2.0	25
33	Imaging the execution phase of neuroinflammatory disease models. Experimental Neurology, 2019, 320, 112968.	2.0	3
34	Targeting mitochondria to protect axons in progressive MS. Neuroscience Letters, 2019, 710, 134258.	1.0	14
35	Mitochondrial Dysfunction and Multiple Sclerosis. Biology, 2019, 8, 37.	1.3	126
36	Interplay between ER stress and autophagy: A possible mechanism in multiple sclerosis pathology. Experimental and Molecular Pathology, 2019, 108, 183-190.	0.9	28

CITATION REPORT

#	Article	IF	CITATIONS
37	Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. International Journal of Neuroscience, 2020, 130, 279-300.	0.8	11
38	Gypenosides Prevent H2O2-Induced Retinal Ganglion Cell Apoptosis by Concurrently Suppressing the Neuronal Oxidative Stress and Inflammatory Response. Journal of Molecular Neuroscience, 2020, 70, 618-630.	1.1	20
39	Neuronal mitochondrial calcium uniporter deficiency exacerbates axonal injury and suppresses remyelination in mice subjected to experimental autoimmune encephalomyelitis. Experimental Neurology, 2020, 333, 113430.	2.0	5
40	Metformin as a Potential Agent in the Treatment of Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 5957.	1.8	31
41	Optical Coherence Tomography Angiography (OCTA) in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. Frontiers in Neurology, 2020, 11, 604049.	1.1	32
42	Axonal transport dysfunction of mitochondria in traumatic brain injury: A novel therapeutic target. Experimental Neurology, 2020, 329, 113311.	2.0	8
43	Mn-TAT PTD-Ngb ameliorates inflammation through the elimination of damaged mitochondria and the activation of Nrf2-antioxidant signaling pathway. Biochemical Pharmacology, 2020, 178, 114055.	2.0	8
44	Inflammation and Oxidative Stress in Multiple Sclerosis: Consequences for Therapy Development. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	73
45	Anterior visual system imaging to investigate energy failure in multiple sclerosis. Brain, 2020, 143, 1999-2008.	3.7	14
46	NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro, 2020, 12, 175909141989978.	1.5	158
47	Nimodipine Reduces Dysfunction and Demyelination in Models of Multiple Sclerosis. Annals of Neurology, 2020, 88, 123-136.	2.8	19
48	Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. ELife, 2021, 10, .	2.8	34
49	Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Frontiers in Cell and Developmental Biology, 2021, 9, 653101.	1.8	59
50	Targeting the brain lesions using peptides: A review focused on the possibility of targeted drug delivery to multiple sclerosis lesions. Pharmacological Research, 2021, 167, 105441.	3.1	7
51	Coenzyme Q ₁₀ and the exclusive club of diseases that show a limited response to treatment. Expert Opinion on Orphan Drugs, 2021, 9, 151-160.	0.5	4
52	Potential of PINK1 and PARKIN Proteins as Biomarkers for Active Multiple Sclerosis: A Japanese Cohort Study. Frontiers in Immunology, 2021, 12, 681386.	2.2	12
54	Experimental autoimmune encephalomyelitis from a tissue energy perspective. F1000Research, 2017, 6, 1973.	0.8	8
55	Novel Approaches of Oxidative Stress Mechanisms in the Multiple Sclerosis Pathophysiology and Therapy. , 0, , 155-171.		6

#	Article	IF	CITATIONS
56	Conserved spinal cord bioenergetics in experimental autoimmune encephalomyelitis in C57BL6 mice, measured using phosphorescence oxygen analyzer. Heliyon, 2021, 7, e08111.	1.4	0
57	Immunopathological factors associated with disability in multiple sclerosis. Noropsikiyatri Arsivi, 2018, 55, S26-S30.	0.2	2
58	Polyphenols' Role in Autoimmune and Chronic Inflammatory Diseases and the Advent of Computer-Driven Plant Therapies. , 2020, , 59-84.		2
59	The Role of Nutrition in Integrative Oncology. , 2020, , 407-436.		0
61	Neuroprotective Effects of Fingolimod in a Cellular Model of Optic Neuritis. Cells, 2021, 10, 2938.	1.8	4
62	Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics, 2021, 13, 2055.	2.0	12
63	CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology. Cells, 2022, 11, 1175.	1.8	0
64	Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Current Opinion in Pharmacology, 2022, 63, 102184.	1.7	2
65	Integrating Lipidomics and Transcriptomics Reveals the Crosstalk Between Oxidative Stress and Neuroinflammation in Central Nervous System Demyelination. Frontiers in Aging Neuroscience, 2022, 14, 870957.	1.7	12
66	The differentially expressed proteins related to clinical viral encephalitis revealed by proteomics. , 2022, 8, 148-164.		2
68	Basic Leucine Zipper Protein Nuclear Factor Erythroid 2–related Factor 2 as a Potential Therapeutic Target in Brain Related Disorders. Protein and Peptide Letters, 2022, 29, 676-691.	0.4	0
69	Biochemical Discrimination of the Down Syndrome-Related Metabolic and Oxidative/Nitrosative Stress Alterations from the Physiologic Age-Related Changes through the Targeted Metabolomic Analysis of Serum. Antioxidants, 2022, 11, 1208.	2.2	1
70	Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan–Kynurenine Metabolic System. Cells, 2022, 11, 2607.	1.8	72
71	Mitochondrial diseases mimicking autoimmune diseases of the CNS and good response to steroids initially. European Journal of Paediatric Neurology, 2022, 41, 27-35.	0.7	2
72	Axonal response of mitochondria to demyelination and complex IV activity within demyelinated axons in experimental models of multiple sclerosis. Neuropathology and Applied Neurobiology, 2023, 49, .	1.8	6
73	Neuronal deletion of MnSOD in mice leads to demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis. Redox Biology, 2023, 59, 102550.	3.9	8
74	Mitochondrial Dysfunction: Pathophysiology and Mitochondria-Targeted Drug Delivery Approaches. Pharmaceutics, 2022, 14, 2657.	2.0	12
75	Analysis of shared underlying mechanism in neurodegenerative disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	5

CITATION REPORT

#	Article	IF	CITATIONS
76	Oxygen treatment reduces neurological deficits and demyelination in two animal models of multiple sclerosis. Neuropathology and Applied Neurobiology, 2023, 49, .	1.8	3
78	The crocin usage in multiple sclerosis disease. , 2023, , 483-497.		0
81	TCA cycle deficiency in multiple sclerosis. Nature Metabolism, 0, , .	5.1	0

CITATION REPORT