The Discovery of Rolling Circle Amplification and Rollin

Accounts of Chemical Research 49, 2540-2550

DOI: 10.1021/acs.accounts.6b00417

Citation Report

#	Article	IF	CITATIONS
1	A pure DNA hydrogel with stable catalytic ability produced by one-step rolling circle amplification. Chemical Communications, 2017, 53, 3038-3041.	2.2	72
2	Oneâ€Pot Synthesis of Multiple Proteinâ€Encapsulated DNA Flowers and Their Application in Intracellular Protein Delivery. Advanced Materials, 2017, 29, 1701086.	11.1	105
3	Pseudorotaxane formation via the slippage process with chemically cyclized oligonucleotides. Nucleic Acids Research, 2017, 45, 5036-5047.	6.5	8
4	Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacidÂand rolling circle amplification. Mikrochimica Acta, 2017, 184, 4757-4763.	2.5	19
5	Fabricating MnO ₂ Nanozymes as Intracellular Catalytic DNA Circuit Generators for Versatile Imaging of Baseâ€Excision Repair in Living Cells. Advanced Functional Materials, 2017, 27, 1702748.	7.8	106
6	An Efficient Beadâ€captured Denaturation Method for Preparing Long Singleâ€stranded <scp>DNA</scp> . Journal of the Chinese Chemical Society, 2017, 64, 1065-1070.	0.8	2
7	Ultrasensitive Electrochemiluminescence Biosensor for MicroRNA Detection by 3D DNA Walking Machine Based Target Conversion and Distance-Controllable Signal Quenching and Enhancing. Analytical Chemistry, 2017, 89, 8282-8287.	3.2	119
8	Advances in single-particle detection for DNA sensing. Science China Chemistry, 2017, 60, 1285-1292.	4.2	12
9	Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers. Biosensors and Bioelectronics, 2018, 109, 27-34.	5.3	149
10	A simple "mix-and-detection―method for the sensitive detection of telomerase from cancer cells under absolutely isothermal conditions. Chemical Communications, 2018, 54, 2483-2486.	2.2	41
11	Dualâ∈Heminâ∈Labelled Catalytic Molecular Beacon: A Monomerâ€Dimer Switching Probe for Sensitive Chemiluminescence Detection of Biomolecules. ChemistrySelect, 2018, 3, 1908-1914.	0.7	2
12	A microfluidic enrichment platform with a recombinase polymerase amplification sensor for pathogen diagnosis. Analytical Biochemistry, 2018, 544, 87-92.	1.1	34
13	Porous Hydrogel Encapsulated Photonic Barcodes for Multiplex MicroRNA Quantification. Advanced Functional Materials, 2018, 28, 1704458.	7.8	56
14	Rolling circle amplification shows a sinusoidal template length-dependent amplification bias. Nucleic Acids Research, 2018, 46, 538-545.	6.5	51
15	T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures. Nucleic Acids Research, 2018, 46, 5332-5343.	6.5	15
16	Direct incorporation and extension of a fluorescent nucleotide through rolling circle DNA amplification for the detection of microRNA 24-3P. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2035-2038.	1.0	7
17	Nucleic Acids—Immunoassays â~†. , 2018, , .		0
18	Post-transcriptional Processing of mRNA in Neurons: The Vestiges of the RNA World Drive Transcriptome Diversity. Frontiers in Molecular Neuroscience, 2018, 11, 304.	1.4	25

#	Article	IF	CITATIONS
19	High-Yield Method To Fabricate and Functionalize DNA Nanoparticles from the Products of Rolling Circle Amplification. ACS Applied Bio Materials, 2018, 1, 511-519.	2.3	13
20	DNA enters a new phase. Nature Nanotechnology, 2018, 13, 624-625.	15.6	4
21	Moving ions confined between graphene sheets. Nature Nanotechnology, 2018, 13, 625-627.	15.6	19
22	Target-induced aptamer displacement on gold nanoparticles and rolling circle amplification for ultrasensitive live Salmonella typhimurium electrochemical biosensing. Journal of Electroanalytical Chemistry, 2018, 826, 174-180.	1.9	32
23	Trinucleotide Rolling Circle Amplification: A Novel Method for the Detection of RNA and DNA. Methods and Protocols, $2018,1,15.$	0.9	9
24	Poly-adenine-Coupled LAMP Barcoding to Detect <i>Apple Scar Skin Viroid</i> Science, 2018, 20, 472-481.	3.8	14
25	Smartphone-Based in-Gel Loop-Mediated Isothermal Amplification (gLAMP) System Enables Rapid Coliphage MS2 Quantification in Environmental Waters. Environmental Science & Envi	4.6	43
26	Magnetic Ni/Fe layered double hydroxide nanosheets as enhancer for DNA hairpin sensitive detection of miRNA. Talanta, 2018, 187, 265-271.	2.9	30
27	Enzyme-free synthesis of cyclic single-stranded DNA constructs containing a single triazole, amide or phosphoramidate backbone linkage and their use as templates for rolling circle amplification and nanoflower formation. Chemical Science, 2018, 9, 8110-8120.	3.7	24
28	Triple-Helix Molecular Switch Electrochemiluminescence Nanoamplifier Based on a S-Doped Lu ₂ O ₃ /Ag ₂ S Pair for Sensitive MicroRNA Detection. Analytical Chemistry, 2019, 91, 12038-12045.	3.2	33
29	Potent anti-tumor immunostimulatory biocompatible nanohydrogel made from DNA. Nanoscale Research Letters, 2019, 14, 217.	3.1	12
30	Multiply Modified Repeating DNA Templates for Production of Novel DNA-Based Nanomaterial. Bioconjugate Chemistry, 2019, 30, 2201-2208.	1.8	1
31	Enzymatically Synthesized DNA Polymer as Co-carrier for Enhanced RNA Interference. ACS Applied Bio Materials, 2019, 2, 5204-5215.	2.3	9
32	Polymerase synthesis of four-base DNA from two stable dimeric nucleotides. Nucleic Acids Research, 2019, 47, 9495-9501.	6.5	10
33	Multimode MicroRNA Sensing via Multiple Enzyme-Free Signal Amplification and Cation-Exchange Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36476-36484.	4.0	41
34	Fabrication and Biomedical Applications of "Polymer-Like―Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS Applied Bio Materials, 2019, 2, 4106-4120.	2.3	33
35	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	23.0	207
36	Polymerase-amplified release of ATP (POLARA) for detecting single nucleotide variants in RNA and DNA. Chemical Science, 2019, 10, 3264-3270.	3.7	10

#	ARTICLE	IF	Citations
37	Rolling Circle Transcription-Amplified Hierarchically Structured Organic–Inorganic Hybrid RNA Flowers for Enzyme Immobilization. ACS Applied Materials & Diterfaces, 2019, 11, 22932-22940.	4.0	17
38	Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification, glucose oxidase, and readout of pH changes. Mikrochimica Acta, 2019, 186, 318.	2.5	29
39	High-Fidelity Nanopore Sequencing of Ultra-Short DNA Targets. Analytical Chemistry, 2019, 91, 6783-6789.	3.2	50
40	One-Pot Production of RNA Nanoparticles <i>via</i> Automated Processing and Self-Assembly. ACS Nano, 2019, 13, 4603-4612.	7.3	23
41	A rapidly self-assembling soft-brush DNA hydrogel based on RCA products. Chemical Communications, 2019, 55, 5375-5378.	2.2	24
42	Nucleic Acid–Based Functional Nanomaterials as Advanced Cancer Therapeutics. Small, 2019, 15, e1900172.	5.2	80
43	Mathematical modeling of a realâ€time isothermal amplification assay for <i>Erwinia amylovora</i> Engineering Reports, 2019, 1, e12047.	0.9	6
44	Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin. Mikrochimica Acta, 2019. 186. 840.	2.5	23
45	Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B virus infection. Talanta, 2019, 191, 277-282.	2.9	34
46	Discriminating cyclic from linear nucleotides â^' CRISPR/Cas-related cyclic hexaadenosine monophosphate as a case study. Analytical Biochemistry, 2019, 567, 21-26.	1.1	3
47	The Influence of Reaction Conditions on DNA Multimerization During Isothermal Amplification with Bst exoâ ^o DNA Polymerase. Applied Biochemistry and Biotechnology, 2020, 190, 758-771.	1.4	21
48	Hyper-dendritic rolling circle amplification for RNA and GSH detection. Microchemical Journal, 2020, 153, 104381.	2.3	3
49	Label-free sensing platform for miRNA-146a based on chromo-fluorogenic pyrophosphate recognition. Journal of Inorganic Biochemistry, 2020, 203, 110867.	1.5	17
50	Rolling circle amplification based colorimetric determination of Staphylococcus aureus. Mikrochimica Acta, 2020, 187, 119.	2.5	18
51	A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. Journal of Materials Chemistry B, 2020, 8, 3527-3533.	2.9	55
52	Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo- DNA polymerase. Biochimie, 2020, 168, 259-267.	1.3	21
53	ddRFC: A scalable multiplexed droplet digital nucleic acid amplification test platform. Biosensors and Bioelectronics, 2020, 167, 112499.	5.3	8
54	Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing. Angewandte Chemie, 2020, 132, 23147-23151.	1.6	3

#	Article	IF	CITATIONS
55	Rolling circle amplification: A high fidelity and efficient alternative to plasmid preparation for the rescue of infectious clones. Virology, 2020, 551, 58-63.	1.1	9
56	Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing. Angewandte Chemie - International Edition, 2020, 59, 22947-22951.	7.2	10
57	A Simple Blocking PCRâ€Based Method for the Synthesis of Highâ€Copy dsDNA Tandem Repeats. Small, 2020, 16, e2003671.	5.2	0
58	Target-triggered and T7 exonuclease-assisted cascade recycling amplification strategy for label-free and ultrasensitive fluorescence detection of aflatoxin B1. Sensors and Actuators B: Chemical, 2020, 321, 128599.	4.0	28
59	Silver nanoclusters-based fluorescent biosensing strategy for determination of mucin 1: Combination of exonuclease I-assisted target recycling and graphene oxide-assisted hybridization chain reaction. Analytica Chimica Acta, 2020, 1129, 40-48.	2.6	12
60	Cyclodextrin-mediated formation of porous RNA nanospheres and their application in synergistic targeted therapeutics of hepatocellular carcinoma. Biomaterials, 2020, 261, 120304.	5.7	24
61	DNA nanoscaffold-based SARS-CoV-2 detection for COVID-19 diagnosis. Biosensors and Bioelectronics, 2020, 167, 112479.	5.3	72
62	Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies. Molecules, 2020, 25, 3386.	1.7	29
63	Sub-attomole detection of HIV-1 using padlock probes and rolling circle amplification combined with microfluidic affinity chromatography. Biosensors and Bioelectronics, 2020, 166, 112442.	5.3	25
64	Effect of metal ions on isothermal amplification with Bst exo- DNA polymerase. International Journal of Biological Macromolecules, 2020, 161, 1447-1455.	3.6	9
65	Rationally Designed DNA Nanostructures for Drug Delivery. Frontiers in Chemistry, 2020, 8, 751.	1.8	27
66	Isothermal SARS-CoV-2 Diagnostics: Tools for Enabling Distributed Pandemic Testing as a Means of Supporting Safe Reopenings. ACS Synthetic Biology, 2020, 9, 2861-2880.	1.9	64
67	Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 2020, 5, 2701-2723.	4.0	56
68	The synchronization of multiple signal amplifications for label-free and sensitive aptamer-based sensing of a protein biomarker. Analyst, The, 2020, 145, 7858-7863.	1.7	6
69	DNA aptamer-based rolling circle amplification product as a novel immunological adjuvant. Scientific Reports, 2020, 10, 22282.	1.6	7
70	Enzyme-based fabrication of physical DNA hydrogels: new materials and applications. Polymer Journal, 2020, 52, 891-898.	1.3	11
71	Re-Evaluating the Conventional Wisdom about Binding Assays. Trends in Biochemical Sciences, 2020, 45, 639-649.	3.7	32
72	Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosensors and Bioelectronics, 2020, 165, 112356.	5.3	128

#	Article	IF	CITATIONS
73	Label-free homogeneous electrochemical biosensor for HPV DNA based on entropy-driven target recycling and hyperbranched rolling circle amplification. Sensors and Actuators B: Chemical, 2020, 320, 128407.	4.0	35
74	Circular Nucleic Acids: Discovery, Functions and Applications. ChemBioChem, 2020, 21, 1547-1566.	1.3	43
75	Synthesis and "DNA Interlocks―Formation of Small Circular Oligodeoxynucleotides. ACS Applied Materials & Discrete Representation of Small Circular Oligodeoxynucleotides. ACS Applied Materials & Discrete Representation of Small Circular Oligodeoxynucleotides. ACS Applied Materials & Discrete Representation of Small Circular Oligodeoxynucleotides. ACS Applied Materials & Discrete Representation of Small Circular Oligodeoxynucleotides. ACS Applied Materials & Discrete Representation of Small Circular Oligodeoxynucleotides. ACS Applied Materials & Discrete Representation of Small Circular Oligodeoxynucleotides. ACS Applied Materials & Discrete Representation of Small Circular Oligodeoxynucleotides. ACS Applied Materials & Discrete Representation of Small Circular Oligodeoxynucleotides.	4.0	9
76	Elimination of DNA Multimerization Arising from Isothermal Amplification in the Presence of Bst Exo– DNA Polymerase. Russian Journal of Bioorganic Chemistry, 2020, 46, 52-59.	0.3	9
77	Sensitive and specific microRNA detection by RNA dependent DNA ligation and rolling circle optical signal amplification. Talanta, 2020, 216, 120954.	2.9	13
78	Aptamer-based CRISPR/Cas12a assay for the ultrasensitive detection of extracellular vesicle proteins. Talanta, 2021, 221, 121670.	2.9	45
79	A rolling circle amplification based platform for ultrasensitive detection of heparin. Analyst, The, 2021, 146, 714-720.	1.7	12
80	Sensitive glucometer-based microfluidic immune-sensing platform via DNA signal amplification coupled with enzymatic reaction. Sensors and Actuators B: Chemical, 2021, 329, 129055.	4.0	7
81	Real-time isothermal DNA amplification monitoring in picoliter volumes using an optical fiber sensor. Lab on A Chip, 2021, 21, 397-404.	3.1	27
82	DNA Nanomachines for Identifying Cancer Biomarkers in Body Fluids and Cells. Analytical Chemistry, 2021, 93, 1855-1865.	3.2	31
83	A review on sensing mechanisms and strategies for telomerase activity detection. TrAC - Trends in Analytical Chemistry, 2021, 134, 116115.	5.8	14
84	Aptamer-mediated rolling circle amplification for label-free and sensitive detection of histone acetyltransferase activity. Chemical Communications, 2021, 57, 2041-2044.	2.2	18
85	Mechanochemical bond scission for the activation of drugs. Nature Chemistry, 2021, 13, 131-139.	6.6	152
86	Padlock probe-based rolling circle amplification lateral flow assay for point-of-need nucleic acid detection. Analyst, The, 2021, 146, 4340-4347.	1.7	25
87	DNAâ€Guided Programmable Protein Assemblies for Biomedical Applications. ChemPlusChem, 2021, 86, 284-290.	1.3	2
89	Tumorâ€Targeting Cholesterolâ€Decorated DNA Nanoflowers for Intracellular Ratiometric Aptasensing. Advanced Materials, 2021, 33, e2007738.	11.1	34
90	A trifunctional split dumbbell probe coupled with ligation-triggered isothermal rolling circle amplification for label-free and sensitive detection of nicotinamide adenine dinucleotide. Talanta, 2021, 224, 121962.	2.9	9
91	A Selfâ€Catabolic Multifunctional DNAzyme Nanosponge for Programmable Drug Delivery and Efficient Gene Silencing. Angewandte Chemie - International Edition, 2021, 60, 10766-10774.	7.2	81

#	Article	IF	Citations
92	Recent advances in rolling circle amplification-based biosensing strategies-A review. Analytica Chimica Acta, 2021, 1148, 238187.	2.6	95
93	Diagnosis for COVID-19: current status and future prospects. Expert Review of Molecular Diagnostics, 2021, 21, 269-288.	1.5	29
94	Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends in Biotechnology, 2021, 39, 1160-1172.	4.9	127
95	A Selfâ€Catabolic Multifunctional DNAzyme Nanosponge for Programmable Drug Delivery and Efficient Gene Silencing. Angewandte Chemie, 2021, 133, 10861-10869.	1.6	12
96	Periodically programmed building and collapse of DNA networks enables an ultrahigh signal amplification effect for ultrasensitive nucleic acids analysis. Analytica Chimica Acta, 2021, 1150, 338221.	2.6	2
97	Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Frontiers in Molecular Biosciences, 2021, 8, 637559.	1.6	79
98	Aktivierung der katalytischen Aktivitävon Thrombin für die Bildung von Fibrin durch Ultraschall. Angewandte Chemie, 2021, 133, 14829-14836.	1.6	1
99	Universal and Programmable Rolling Circle Amplification-CRISPR/Cas12a-Mediated Immobilization-Free Electrochemical Biosensor. Analytical Chemistry, 2021, 93, 7499-7507.	3.2	89
100	Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound. Angewandte Chemie - International Edition, 2021, 60, 14707-14714.	7.2	35
101	Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. Biosensors, 2021, 11, 352.	2.3	17
102	A Sensitive Thrombin Aptasensor Based on Target Circulation Strategy. Analytical Sciences, 2021, 37, 1221-1226.	0.8	3
103	A high-specificity flap probe-based isothermal nucleic acid amplification method based on recombinant FEN1-Bst DNA polymerase. Biosensors and Bioelectronics, 2021, 192, 113503.	5.3	6
104	Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection. Biosensors and Bioelectronics, 2021, 192, 113507.	5.3	14
105	A sensitive aptasensor based on rolling circle amplification and G-rich ssDNA/terbium (III) luminescence enhancement for ofloxacin detection in food. Talanta, 2021, 235, 122783.	2.9	7
106	Recent advances in nucleic acid analysis and detection with microfluidic and nanofluidics., 2022,, 199-233.		0
107	Generating single-stranded DNA circles with minimal resources. MethodsX, 2021, 8, 101300.	0.7	0
108	Ring-Structured DNA and RNA as Key Players <i>In Vivo</i> and <i>In Vitro</i> . Bulletin of the Chemical Society of Japan, 2021, 94, 141-157.	2.0	10
109	Nucleic acid nanotechnology for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188377.	3.3	31

#	ARTICLE	IF	CITATIONS
110	Highly Reproducible and Sensitive Electrochemiluminescence Biosensors for HPV Detection Based on Bovine Serum Albumin Carrier Platforms and Hyperbranched Rolling Circle Amplification. ACS Applied Materials & Diterfaces, 2021, 13, 298-305.	4.0	35
112	Rolling Circle Amplification in Integrated Microsystems: An Uncut Gem toward Massively Multiplexed Pathogen Diagnostics and Genotyping. Accounts of Chemical Research, 2021, 54, 3979-3990.	7.6	26
113	Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Applied Materials Today, 2021, 25, 101217.	2.3	21
115	Mechanism of SATIC Method and History of Development. Journal of the Nihon University Medical Association, 2020, 79, 379-382.	0.0	0
116	Detection of HIV/HCV virus DNA with homogeneous DNA machine-triggered in situ formation of silver nanoclusters. Sensors and Actuators B: Chemical, 2022, 352, 131041.	4.0	18
117	Kissing loop-mediated fabrication of RNA nanoparticles and their potential as cellular and <i>in vivo</i> i> siRNA delivery platforms. Biomaterials Science, 2021, 9, 8148-8152.	2.6	2
119	Nucleic acid extraction without electrical equipment via magnetic nanoparticles in Pasteur pipettes for pathogen detection. Analytical Biochemistry, 2021, 635, 114445.	1.1	11
120	Nucleic acidâ€based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1765.	3.3	28
121	Recent Progress in Nanomaterials Modified Electrochemical Biosensors for the Detection of MicroRNA. Micromachines, 2021, 12, 1409.	1.4	61
123	Introduction to Immunohistochemistry: From to Evolving Science to Timeless Art. Methods in Molecular Biology, 2022, 2422, 1-16.	0.4	1
125	Recent advances in biosensor for DNA glycosylase activity detection. Talanta, 2022, 239, 123144.	2.9	5
126	Design of synthetic biology for the detection of microorganisms. , 2022, , 231-249.		0
127	Rolling circle RNA synthesis catalyzed by RNA. ELife, 2022, 11, .	2.8	25
128	Oxygen vacancy modulated MnO2 bi-electrode system for attomole-level pathogen nucleic acid sequence detection. Electrochimica Acta, 2022, 407, 139876.	2.6	5
129	Visual detection of aflatoxin B1 based on specific aptamer recognition combining with triple amplification strategy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120862.	2.0	20
130	State-of-the-art nanotechnologies used in the development of SARS-CoV-2 biosensors: a review. Measurement Science and Technology, 2022, 33, 062002.	1.4	4
131	Circular RNA expression alteration and bioinformatics analysis in patients with acute cerebral infarction injury. Bioengineered, 2021, 12, 11490-11505.	1.4	6
132	A sensing system constructed by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification for highly sensitive miRNA detection. Analyst, The, 2022, 147, 1937-1943.	1.7	4

#	Article	IF	CITATIONS
133	Highly Sensitive Monitoring of Telomerase Activity in Living Cells Based on Rapidly Triggered Cascade Amplification Reaction. SSRN Electronic Journal, $0, \dots$	0.4	0
134	Washing-Free Detection of Cancer Cell-Derived Extracellular Vesicles Based on Droplet Digital Branched Rolling Circle Amplification. SSRN Electronic Journal, 0, , .	0.4	O
135	Recent Developments in Isothermal Amplification Methods for the Detection of Foodborne Viruses. Frontiers in Microbiology, 2022, 13, 841875.	1.5	5
136	Ultrasensitive Uracil-DNA Glycosylase Activity Assay and Its Inhibitor Screening Based on Primer Remodeling Jointly via Repair Enzyme and Polymerase. Langmuir, 2022, 38, 3868-3875.	1.6	3
138	Multimeric RNAs for efficient RNA-based therapeutics and vaccines. Journal of Controlled Release, 2022, 345, 770-785.	4.8	3
139	Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
140	Rolling Circle Amplification as a Universal Method for the Analysis of a Wide Range of Biological Targets. Russian Journal of Bioorganic Chemistry, 2021, 47, 1172-1189.	0.3	9
141	Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments?. Analytical Chemistry, 2022, 94, 349-365.	3.2	34
142	Construction of rolling circle amplification-based DNA nanostructures for biomedical applications. Biomaterials Science, 2022, 10, 3054-3061.	2.6	19
143	Isothermal nucleic acid amplification for food safety analysis. TrAC - Trends in Analytical Chemistry, 2022, 153, 116641.	5.8	43
144	Blocker-tailed PCR coupled with rolling circle amplification for fluorescent detection of emetic Bacillus cereus in milk. LWT - Food Science and Technology, 2022, 162, 113462.	2.5	2
145	Enhanced Detection of Viral RNA Species Using Fokl-Assisted Digestion of DNA Duplexes and DNA/RNA Hybrids. Analytical Chemistry, 2022, 94, 6760-6770.	3.2	2
146	Detection of SARS-CoV-2 RNA through tandem isothermal gene amplification without reverse transcription. Analytica Chimica Acta, 2022, 1212, 339909.	2.6	5
147	Isothermal amplification-mediated lateral flow biosensors for in vitro diagnosis of gastric cancer-related microRNAs. Talanta, 2022, 246, 123502.	2.9	6
148	Hierarchical self-uncloaking CRISPR-Cas13a–customized RNA nanococoons for spatial-controlled genome editing and precise cancer therapy. Science Advances, 2022, 8, eabn7382.	4.7	16
149	Recent advances in biological detection with rolling circle amplification: design strategy, biosensing mechanism, and practical applications. Analyst, The, 2022, 147, 3396-3414.	1.7	19
150	滚环扩增技术在ç"Ÿç‰©ä¼æ"Ÿå'Œç»†èƒžæ^åƒé¢†åŸŸçš"ç"究进展. Scientia Sinica Chimica, 2	2022, , .	0
151	Sensitive Detection of Staphylococcus aureus by a Colorimetric Biosensor Based on Magnetic Separation and Rolling Circle Amplification. Foods, 2022, 11, 1852.	1.9	4

#	Article	IF	Citations
152	Characterization of Mungbean yellow mosaic India virus genome with a recombinant DNA-B in Southern Peninsular India Molecular Biology Reports, 0, , .	1.0	0
153	Programmable hybridization assemble nicked displacement amplification for detecting ricin toxin. Sensors and Actuators B: Chemical, 2022, 368, 132139.	4.0	5
154	Label-Free and Homogeneous Electrochemical Biosensor for Flap Endonuclease 1 Based on the Target-Triggered Difference in Electrostatic Interaction between Molecular Indicators and Electrode Surface. Biosensors, 2022, 12, 528.	2.3	3
155	Stable nitronyl nitroxide monoradical MATMP as novel monomer of reversible addition fragmentation chain transfer (RAFT) polymerization for ultrasensitive DNA detection. Analytica Chimica Acta, 2022, 1222, 340167.	2.6	4
156	Application Perspectives of Nanomedicine in Cancer Treatment. Frontiers in Pharmacology, 0, 13, .	1.6	9
157	Isothermal Amplification Technology for Disease Diagnosis. Biosensors, 2022, 12, 677.	2.3	14
158	Efficient DNA fluorescence labeling via base excision trapping. Nature Communications, $2022,13,.$	5.8	5
159	DNA-directed coimmobilization of multiple enzymes on organicâ^inorganic hybrid DNA flowers. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
160	Highly sensitive monitoring of telomerase activity in living cells based on rapidly triggered cascade amplification reaction. Biosensors and Bioelectronics, 2022, 216, 114645.	5.3	8
161	The exploration of droplet digital branched rolling circle amplification based ultrasensitive biosensor for gastric cancer cell-derived extracellular vesicles detection. Materials Today Advances, 2022, 16, 100296.	2.5	4
162	Advances in antimicrobial resistance testing. Advances in Clinical Chemistry, 2022, , 1-68.	1.8	2
163	A universal rolling circle amplification for label-free and highly specific nucleic acid sensing. Chemical Communications, 2022, 58, 11863-11866.	2.2	4
164	"Willow Branch―DNA Self-Assembly for Cancer Dual-Target and Proliferation Inhibition. Langmuir, 2022, 38, 11778-11786.	1.6	3
165	Advancements in COVID- 19 Testing: An in-depth overview. Current Pharmaceutical Biotechnology, 2022, 23, .	0.9	0
166	Multi pathogenic microorganisms determination using DNA composites-encapsulated DNA silver nanocluster/graphene oxide-based system through rolling cycle amplification. Mikrochimica Acta, 2022, 189, .	2.5	7
167	Functional nucleic acid biosensors utilizing rolling circle amplification. Chemical Society Reviews, 2022, 51, 9009-9067.	18.7	32
168	Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharmaceutica Sinica B, 2023, 13, 916-941.	5.7	50
169	Printed microfluidic biosensors and their biomedical applications. , 2023, , 1-40.		0

#	ARTICLE	IF	CITATIONS
170	Design of supramolecular hybrid nanomaterials comprising peptide-based supramolecular nanofibers and <i>in situ</i> generated DNA nanoflowers through rolling circle amplification. Nanoscale, 2023, 15, 1024-1031.	2.8	1
171	Nucleic acid-based artificial nanocarriers for gene therapy. Journal of Materials Chemistry B, 2023, 11, 261-279.	2.9	6
172	A highly specific and flexible detection assay using collaborated actions of DNA-processing enzymes for identifying multiple gene expression signatures in breast cancer. Analyst, The, 2023, 148, 316-327.	1.7	1
173	Ultrasensitive plasmonic photothermal immunomagnetic bioassay using real-time and end-point dual-readout. Sensors and Actuators B: Chemical, 2023, 377, 133110.	4.0	3
174	Tissue-Specific Drug Delivery Platforms Based on DNA Nanoparticles. , 2022, , 1-28.		0
175	Loop-Mediated Isothermal Amplification: From Theory to Practice. Russian Journal of Bioorganic Chemistry, 2022, 48, 1159-1174.	0.3	3
176	Programmable CRISPR-Cas12a and self-recruiting crRNA assisted dual biosensing platform for simultaneous detection of lung cancer biomarkers hOGG1 and FEN1. Analytica Chimica Acta, 2023, 1240, 340748.	2.6	5
177	CRISPR/Casâ€Based MicroRNA Biosensors. Chemistry - A European Journal, 2023, 29, .	1.7	4
178	Nucleic acid and nanomaterial-assisted signal-amplified strategies in fluorescent analysis of circulating tumor cells and small extracellular vesicles. Analytical and Bioanalytical Chemistry, 2023, 415, 3769-3787.	1.9	1
179	Recent Advances in DNA Nanostructures Applied in Sensing Interfaces and Cellular Imaging. Analytical Chemistry, 2023, 95, 407-419.	3.2	7
180	A facile enzyme-assisted multiple recycling amplification strategy for ultrasensitive fluorescence detection of HIV-1 DNA. Sensors and Actuators B: Chemical, 2023, 380, 133345.	4.0	2
181	Bioorthogonal Disassembly of Hierarchical DNAzyme Nanogel for High-Performance Intracellular microRNA Imaging. Nano Letters, 2023, 23, 1386-1394.	4.5	31
182	Hydrogel-integrated sensors for food safety and quality monitoring: Fabrication strategies and emerging applications. Critical Reviews in Food Science and Nutrition, 0, , 1-20.	5. 4	3
183	DNA synthesis technologies to close the gene writing gap. Nature Reviews Chemistry, 2023, 7, 144-161.	13.8	39
184	Engineering a Ligase Binding DNA Aptamer into a Templating DNA Scaffold to Guide the Selective Synthesis of Circular DNAzymes and DNA Aptamers. Journal of the American Chemical Society, 2023, 145, 2630-2637.	6.6	14
185	Isothermal nucleic acid amplification technology in HIV detection. Analyst, The, 2023, 148, 1189-1208.	1.7	3
186	COVID-19 diagnostic approaches with an extensive focus on computed tomography in accurate diagnosis, prognosis, staging, and follow-up. Polish Journal of Radiology, 2023, 88, 53-64.	0.5	0
187	Detection of saxitoxin by a SERS aptamer sensor based on enzyme cycle amplification technology. Analyst, The, 2023, 148, 2327-2334.	1.7	2

#	Article	IF	Citations
188	Revealing an initiation inhibition of RCA and its application in nucleic acids detection. Acta Biochimica Et Biophysica Sinica, 2023 , , .	0.9	0
189	A universal and specific RNA biosensor via DNA circuit-mediated PAM-independent CRISPR/Cas12a and PolyA-rolling circle amplification. Biosensors and Bioelectronics, 2023, 226, 115139.	5.3	8
190	Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomaterialia, 2023, 160, 1-13.	4.1	14
191	Rapid and effective detection of Macrobrachium rosenbergii nodavirus using a combination of nucleic acid sequence-based amplification test and immunochromatographic strip. Journal of Invertebrate Pathology, 2023, 198, 107921.	1.5	1
192	Rolling circle transcription/G-quadruplex/QnMorpholine probe for highly selective and sensitive detection of alkaline phosphatase activity. Analytical Biochemistry, 2023, 665, 115050.	1.1	1
193	Self-Assembly of Multivalent Aptamer-Tethered DNA Monolayers Dedicated to a Fluorescence Polarization-Responsive Circular Isothermal Strand Displacement Amplification for <i>Salmonella</i> Assay. Analytical Chemistry, 2023, 95, 2570-2578.	3.2	10
194	A universal platform for one-pot detection of circulating non-coding RNA combining CRISPR-Cas12a and branched rolling circle amplification. Analytica Chimica Acta, 2023, 1246, 340896.	2.6	5
195	AutoPLP: A Padlock Probe Design Pipeline for Zoonotic Pathogens. ACS Infectious Diseases, 2023, 9, 459-469.	1.8	0
196	Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay. TrAC - Trends in Analytical Chemistry, 2023, 160, 116998.	5.8	4
199	Ultrasensitive Protein Detection Technologies for Extracellular Vesicle Measurements. Molecular and Cellular Proteomics, 2023, 22, 100557.	2.5	4
217	Tissue-Specific Drug Delivery Platforms Based on DNA Nanoparticles. , 2023, , 1527-1554.		0
218	Micro- and Nanosystems for the Detection of Hemorrhagic Fever Viruses. Lab on A Chip, 0, , .	3.1	0
221	Triple ligation-based formation of a G-quadruplex for simultaneous detection of multiple miRNAs. Analyst, The, 2023, 148, 4283-4290.	1.7	0