Monolignol ferulate conjugates are naturally incorporate

Science Advances 2, e1600393 DOI: 10.1126/sciadv.1600393

Citation Report

#	Article	IF	CITATIONS
1	Tricinâ€lignins: occurrence and quantitation of tricin in relation to phylogeny. Plant Journal, 2016, 88, 1046-1057.	2.8	118
2	Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354, 329-333.	6.0	944
3	Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in <i>Brachypodium distachyon</i> . New Phytologist, 2017, 215, 1009-1025.	3.5	108
4	Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. Plant Physiology, 2017, 174, 2072-2082.	2.3	90
5	Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility. Plant Physiology, 2017, 174, 972-985.	2.3	89
6	Characterization and Elimination of Undesirable Protein Residues in Plant Cell Wall Materials for Enhancing Lignin Analysis by Solution-State Nuclear Magnetic Resonance Spectroscopy. Biomacromolecules, 2017, 18, 4184-4195.	2.6	94
7	Bacterial catabolism of ligninâ€derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. Environmental Microbiology Reports, 2017, 9, 679-705.	1.0	218
8	Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide. ACS Catalysis, 2017, 7, 7535-7542.	5.5	198
9	Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm <i>Phoenix canariensis</i> . Plant Physiology, 2017, 175, 1058-1067.	2.3	34
10	Chemical Pulping Advantages of Zipâ€lignin Hybrid Poplar. ChemSusChem, 2017, 10, 3565-3573.	3.6	45
11	Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar. Biotechnology for Biofuels, 2017, 10, 101.	6.2	48
12	Suppression of CINNAMOYL-CoA REDUCTASE increases the level of monolignol ferulates incorporated into maize lignins. Biotechnology for Biofuels, 2017, 10, 109.	6.2	32
13	Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. Frontiers in Plant Science, 2017, 8, 1134.	1.7	18
14	Selective Fragmentation of Biorefinery Corncob Lignin into <i>p</i> â€Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst. ChemSusChem, 2018, 11, 2114-2123.	3.6	73
15	Plant cell wall sugars: sweeteners for a bioâ€based economy. Physiologia Plantarum, 2018, 164, 27-44.	2.6	14
16	Engineered Lignin in Poplar Biomass Facilitates Cu-Catalyzed Alkaline-Oxidative Pretreatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 2932-2941.	3.2	31
17	Suppression of a single <scp>BAHD</scp> gene in <i>Setaria viridis</i> causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytologist, 2018, 218, 81-93.	3.5	91
18	Reductive Cleavage Method for Quantitation of Monolignols and Lowâ€Abundance Monolignol Conjugates. ChemSusChem, 2018, 11, 1600-1605.	3.6	45

#	Article	IF	CITATIONS
19	Biotechnology for bioenergy dedicated trees: meeting future energy demands. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2018, 73, 15-32.	0.6	10
20	Maturationâ€related changes of carrot lignins. Journal of the Science of Food and Agriculture, 2018, 98, 1016-1023.	1.7	3
21	Variability in Lignin Composition and Structure in Cell Walls of Different Parts of Macaúba (<i>Acrocomia aculeata</i>) Palm Fruit. Journal of Agricultural and Food Chemistry, 2018, 66, 138-153.	2.4	70
22	Overexpression of a rice BAHD acyltransferase gene in switchgrass (Panicum virgatum L.) enhances saccharification. BMC Biotechnology, 2018, 18, 54.	1.7	38
23	Evaluation of Feruloylated and <i>p</i> -Coumaroylated Arabinosyl Units in Grass Arabinoxylans by Acidolysis in Dioxane/Methanol. Journal of Agricultural and Food Chemistry, 2018, 66, 5418-5424.	2.4	32
24	Genetic engineering of trees: progress and new horizons. In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 341-376.	0.9	47
25	Variation in energy sorghum hybrid TX08001 biomass composition and lignin chemistry during development under irrigated and non-irrigated field conditions. PLoS ONE, 2018, 13, e0195863.	1.1	24
26	Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Organic Geochemistry, 2018, 124, 247-256.	0.9	31
27	Response of cell-wall composition and RNA-seq transcriptome to methyl-jasmonate in Brachypodium distachyon callus. Planta, 2018, 248, 1213-1229.	1.6	7
28	Commelinid Monocotyledon Lignins Are Acylated by <i>p</i> -Coumarate. Plant Physiology, 2018, 177, 513-521.	2.3	51
29	Downregulation of pâ€ <i><scp>COUMAROYL ESTER</scp> 3â€<scp>HYDROXYLASE</scp></i> in rice leads to altered cell wall structures and improves biomass saccharification. Plant Journal, 2018, 95, 796-811.	2.8	65
30	OsCAldOMT1 is a bifunctional O-methyltransferase involved in the biosynthesis of tricin-lignins in rice cell walls. Scientific Reports, 2019, 9, 11597.	1.6	35
31	Inactivation of LACCASE8 and LACCASE5 genes in Brachypodium distachyon leads to severe decrease in lignin content and high increase in saccharification yield without impacting plant integrity. Biotechnology for Biofuels, 2019, 12, 181.	6.2	22
32	Mild Alkaline Pretreatment for Isolation of Native-Like Lignin and Lignin-Containing Cellulose Nanofibers (LCNF) from Crop Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 14135-14142.	3.2	72
33	Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Industrial Crops and Products, 2019, 142, 111840.	2.5	15
34	Rice Genome-Scale Network Integration Reveals Transcriptional Regulators of Grass Cell Wall Synthesis. Frontiers in Plant Science, 2019, 10, 1275.	1.7	14
35	Genomic resources for energy cane breeding in the post genomics era. Computational and Structural Biotechnology Journal, 2019, 17, 1404-1414.	1.9	38
36	Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nature Plants, 2019, 5, 225-237.	4.7	50

#	Article	IF	CITATIONS
37	Low Lignin Mutants and Reduction of Lignin Content in Grasses for Increased Utilisation of Lignocellulose. Agronomy, 2019, 9, 256.	1.3	16
38	Supercritical methanol depolymerization and hydrodeoxygenation of lignin and biomass over reduced copper porous metal oxides. Green Chemistry, 2019, 21, 2988-3005.	4.6	63
39	Silencing of a BAHD acyltransferase in sugarcane increases biomass digestibility. Biotechnology for Biofuels, 2019, 12, 111.	6.2	28
40	Radical coupling reactions of piceatannol and monolignols: A density functional theory study. Phytochemistry, 2019, 164, 12-23.	1.4	17
41	Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. Plant Physiology, 2019, 180, 1310-1321.	2.3	43
42	Lignin engineering to improve saccharification and digestibility in grasses. Current Opinion in Biotechnology, 2019, 56, 223-229.	3.3	56
43	Lignin biosynthesis and its integration into metabolism. Current Opinion in Biotechnology, 2019, 56, 230-239.	3.3	440
44	Lignin structure and its engineering. Current Opinion in Biotechnology, 2019, 56, 240-249.	3.3	533
45	Os <scp>MYB</scp> 108 lossâ€ofâ€function enriches <i>p</i> â€coumaroylated and tricin lignin units in rice cell walls. Plant Journal, 2019, 98, 975-987.	2.8	57
46	Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice. Scientific Reports, 2019, 9, 17153.	1.6	25
47	Harnessing lignin evolution for biotechnological applications. Current Opinion in Biotechnology, 2019, 56, 105-111.	3.3	71
48	Secondary cell wall biosynthesis. New Phytologist, 2019, 221, 1703-1723.	3.5	185
49	<scp>CAD</scp> 1 and <scp>CCR</scp> 2 protein complex formation in monolignol biosynthesis in <i>Populus trichocarpa</i> . New Phytologist, 2019, 222, 244-260.	3.5	43
50	Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renewable Energy, 2020, 147, 2206-2217.	4.3	38
52	High valueâ€∎dded monomer chemicals and functional bioâ€based materials derived from polymeric components of lignocellulose by organosolv fractionation. Biofuels, Bioproducts and Biorefining, 2020, 14, 371-401.	1.9	63
53	Production of <i>p</i> -Coumaric Acid from Corn GVL-Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 17427-17438.	3.2	41
54	Deciphering the Unique Structure and Acylation Pattern of <i>Posidonia oceanica</i> Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 12521-12533.	3.2	24
55	Tricin and tricinâ€lignins in Medicago versus in monocots. New Phytologist, 2020, 228, 11-14.	3.5	8

		TION REPORT	
#	Article	IF	CITATIONS
56	MYB-mediated regulation of lignin biosynthesis in grasses. Current Plant Biology, 2020, 24, 100174.	2.3	21
57	Effect of pre-acetylation of hydroxyl functional groups by choline chloride/acetic anhydride on subsequent lignin pyrolysis. Bioresource Technology, 2020, 317, 124034.	4.8	11
58	Redesigning plant cell walls for the biomass-based bioeconomy. Journal of Biological Chemistry, 2020, 295, 15144-15157.	1.6	48
59	Improved analysis of arabinoxylan-bound hydroxycinnamate conjugates in grass cell walls. Biotechnology for Biofuels, 2020, 13, 202.	6.2	14
60	Copperâ€Mediated Conversion of Complex Ethers to Esters: Enabling Biopolymer Depolymerisation under Mild Conditions. Chemistry - A European Journal, 2020, 26, 12397-12402.	1.7	8
61	Distinct deposition of ester-linked ferulic and <i>p</i> -coumaric acids to the cell wall of developing sorghum internodes. Plant Biotechnology, 2020, 37, 15-23.	0.5	9
62	Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall. ACS Sustainable Chemistry and Engineering, 2020, 8, 4997-5012.	3.2	184
63	Effect of highly selective oxypropylation of phenolic hydroxyl groups on subsequent lignin pyrolysis: Toward the lignin valorization. Energy Conversion and Management, 2020, 207, 112551.	4.4	26
64	Phenolic cross-links: building and de-constructing the plant cell wall. Natural Product Reports, 2020, 37, 919-961.	5.2	111
65	Assessing the Viability of Recovery of Hydroxycinnamic Acids from Lignocellulosic Biorefinery Alkaline Pretreatment Waste Streams. ChemSusChem, 2020, 13, 2012-2024.	3.6	54
66	Structural characterization and comparison of enzymatic and deep eutectic solvents isolated lignin from various green processes: Toward lignin valorization. Bioresource Technology, 2020, 310, 123460.	4.8	56
67	Double knockout of OsWRKY36 and OsWRKY102 boosts lignification with altering culm morphology of rice. Plant Science, 2020, 296, 110466.	1.7	21
68	Grass secondary cell walls, <i>Brachypodium distachyon</i> as a model for discovery. New Phytologist, 2020, 227, 1649-1667.	3.5	40
69	The caffeoyl-CoA O-methyltransferase gene SNP replacement in Russet Burbank potato variety enhances late blight resistance through cell wall reinforcement. Plant Cell Reports, 2021, 40, 237-254.	2.8	31
70	Guidelines for performing lignin-first biorefining. Energy and Environmental Science, 2021, 14, 262-292.	. 15.6	416
71	Rewired phenolic metabolism and improved saccharification efficiency of a <i>Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2)</i> mutant. Plant Journal, 2021, 105, 1240-1257.	2.8	13
72	Suppression of a BAHD acyltransferase decreases <i>p</i> oumaroyl on arabinoxylan and improves biomass digestibility in the model grass <i>Setaria viridis</i> . Plant Journal, 2021, 105, 136-150.	2.8	27
73	Termite Gut Microbiota Contribution to Wheat Straw Delignification in Anaerobic Bioreactors. ACS Sustainable Chemistry and Engineering, 2021, 9, 2191-2202.	3.2	33

#	Article	IF	CITATIONS
74	Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chemistry, 2021, 23, 3790-3817.	4.6	114
75	Lignin: an innovative, complex, and highly flexible plant material/component. , 2021, , 35-60.		1
76	Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study. Frontiers in Plant Science, 2021, 12, 642848.	1.7	8
78	Overexpression of a Sugarcane BAHD Acyltransferase Alters Hydroxycinnamate Content in Maize Cell Wall. Frontiers in Plant Science, 2021, 12, 626168.	1.7	11
79	Stacking AsFMT overexpression with BdPMT loss of function enhances monolignol ferulate production in BrachypodiumÂdistachyon. Plant Biotechnology Journal, 2021, 19, 1878-1886.	4.1	5
80	Degradation of ester linkages in rice straw components by Sphingobium species recovered from the sea bottom using a nonâ€secretory tannaseâ€family α/β hydrolase. Environmental Microbiology, 2021, 23, 4151-4167.	1.8	Ο
81	Microbial bioprospecting for lignocellulose degradation at a unique Greek environment. Heliyon, 2021, 7, e07122.	1.4	11
82	Precursor biosynthesis regulation of lignin, suberin and cutin. Protoplasma, 2021, 258, 1171-1178.	1.0	8
83	Genetic Engineering of Lignin Biosynthesis in Trees: Compromise between Wood Properties and Plant Viability. Russian Journal of Plant Physiology, 2021, 68, 596-612.	0.5	10
84	Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nature Plants, 2021, 7, 1288-1300.	4.7	30
85	Catalytic Hydrogenolysis of Lignin: The Influence of Minor Units and Saccharides. ChemSusChem, 2021, 14, 5186-5198.	3.6	9
86	Analysis of transcriptome profiles of two Pyrus pyrifolia cultivars reveals genes associated with stone cell development. Scientia Horticulturae, 2021, 288, 110380.	1.7	1
87	Structural and compositional changes induced by hydrothermal and organosolv pretreatments impacts enzymatic hydrolysis of a tropical forage grass grown under future climate conditions. Industrial Crops and Products, 2021, 171, 113937.	2.5	1
88	Mini Review: Transport of Hydrophobic Polymers Into the Plant Apoplast. Frontiers in Plant Science, 2020, 11, 590990.	1.7	14
89	Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants. , 2021, , 245-288.		0
91	Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stressâ€induced modifications in plant chemistry. Global Change Biology, 2018, 24, 1428-1451.	4.2	75
92	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	2.8	79
93	In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls. Plant and Cell Physiology, 2021, 62, 1813-1827.	1.5	7

#	Article	IF	CITATIONS
94	Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 2022, 73, 646-664.	2.4	21
95	Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus. Plant Physiology, 2022, 188, 208-219.	2.3	28
97	Differences in the content, composition and structure of the lignins from rind and pith of papyrus (Cyperus papyrus L.) culms. Industrial Crops and Products, 2021, 174, 114226.	2.5	12
98	Identification and characterization of a set of monocot BAHD monolignol transferases. Plant Physiology, 2022, 189, 37-48.	2.3	10
99	Crystal structure of the plant feruloyl–coenzyme A monolignol transferase provides insights into the formation of monolignol ferulate conjugates. Biochemical and Biophysical Research Communications, 2022, 594, 8-14.	1.0	4
100	Density functional theory study on the coupling and reactions of diferuloylputrescine as a lignin monomer. Phytochemistry, 2022, 197, 113122.	1.4	0
101	Unconventional lignin monomers—Extension of the lignin paradigm. Advances in Botanical Research, 2022, , 1-39.	0.5	13
102	Manipulation of Lignin Monomer Composition Combined with the Introduction of Monolignol Conjugate Biosynthesis Leads to Synergistic Changes in Lignin Structure. Plant and Cell Physiology, 2022, 63, 744-754.	1.5	12
103	A new approach to zipâ€lignin: 3,4â€dihydroxybenzoate is compatible with lignification. New Phytologist, 2022, 235, 234-246.	3.5	12
104	<i>p</i> HBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiology, 2022, 188, 1014-1027.	2.3	18
105	Deficiency in flavonoid biosynthesis genes <i>CHS</i> , <i>CHI</i> , and <i>CHIL</i> alters rice flavonoid and lignin profiles. Plant Physiology, 2022, 188, 1993-2011.	2.3	18
106	Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings. Scientific Reports, 2021, 11, 23309.	1.6	8
107	Reimagining Lignin for the Biorefinery. Plant and Cell Physiology, 2022, , .	1.5	0
116	Limiting silicon supply alters lignin content and structures of sorghum seedling cell walls. Plant Science, 2022, 321, 111325.	1.7	10
117	Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. Science Advances, 2022, 8, .	4.7	13
118	Lignin p-Hydroxybenzoylation Is Negatively Correlated With Syringyl Units in Poplar. Frontiers in Plant Science, 0, 13, .	1.7	7
119	CRISPR/Cas9 suppression of OsAT10, a rice BAHD acyltransferase, reduces p-coumaric acid incorporation into arabinoxylan without increasing saccharification. Frontiers in Plant Science, 0, 13,	1.7	4
120	The temptation from homogeneous linear catechyl lignin. Trends in Chemistry, 2022, 4, 948-961.	4.4	21

#	Article	IF	CITATIONS
121	Genome-edited rice deficient in two <i>4-COUMARATE:COENZYME A LIGASE</i> genes displays diverse lignin alterations. Plant Physiology, 2022, 190, 2155-2172.	2.3	11
122	Lignocellulose molecular assembly and deconstruction properties of lignin-altered rice mutants. Plant Physiology, 2023, 191, 70-86.	2.3	3
123	Evolution of <i>p</i> â€coumaroylated lignin in eudicots provides new tools for cell wall engineering. New Phytologist, 2023, 237, 251-264.	3.5	10
124	Outstanding questions on xylan biosynthesis. Plant Science, 2022, 325, 111476.	1.7	16
125	Biological funneling of phenolics from transgenic plants engineered to express the bacterial 3-dehydroshikimate dehydratase (qsuB) gene. Frontiers in Chemical Engineering, 0, 4, .	1.3	4
126	<i>p</i> -Coumaroylation of lignin occurs outside of commelinid monocots in the eudicot genus <i>Morus</i> (mulberry). Plant Physiology, 2023, 191, 854-861.	2.3	5
127	Lignin engineering in forest trees: From gene discovery to field trials. Plant Communications, 2022, 3, 100465.	3.6	18
128	Comprehensive expression analyses of the ABCG subfamily reveal SvABCG17 as a potential transporter of lignin monomers in the model C4 grass Setaria viridis. Journal of Plant Physiology, 2023, 280, 153900.	1.6	3
129	BAHD Company: The Ever-Expanding Roles of the BAHD Acyltransferase Gene Family in Plants. Annual Review of Plant Biology, 2023, 74, 165-194.	8.6	10
130	Correlation between Lignin–Carbohydrate Complex Content in Grass Lignins and Phenolic Aldehyde Production by Rapid Spray Ozonolysis. ACS Engineering Au, 2023, 3, 84-90.	2.3	2
131	Modification of plant cell walls with hydroxycinnamic acids by BAHD acyltransferases. Frontiers in Plant Science, 0, 13, .	1.7	9
133	Revealing structural features of lignin macromolecules from microwave-assisted carboxylic acid-based deep eutectic solvent pretreatment. Industrial Crops and Products, 2023, 194, 116342.	2.5	7
134	Rapid Biocatalytic Synthesis of Aromatic Acid CoA Thioesters by Using Microbial Aromatic Acid CoA Ligases. ChemBioChem, 2023, 24, .	1.3	0