Assessment of quality of input data used to classify ecos List methodology: The case of the central Chile hotspot

Biological Conservation 204, 378-385 DOI: 10.1016/j.biocon.2016.10.038

Citation Report

#	Article	IF	CITATIONS
1	After Chile's fires, reforest private land. Science, 2017, 356, 147-148.	12.6	18
2	Preliminary assessment of ecosystem risk based on IUCN criteria in a hierarchy of spatial domains: A case study in Southwestern China. Biological Conservation, 2017, 215, 152-161.	4.1	11
3	Assessing habitat loss and fragmentation and their effects on population viability of forest specialist birds: Linking biogeographical and population approaches. Diversity and Distributions, 2018, 24, 820-830.	4.1	22
4	Selecting and applying indicators of ecosystem collapse for risk assessments. Conservation Biology, 2018, 32, 1233-1245.	4.7	32
5	Habitat loss of a rainforest specialist pollinator fly as an indicator of conservation status of the South American Temperate Rainforests. Journal of Insect Conservation, 2018, 22, 745-755.	1.4	12
6	Operationalizing the IUCN Red List of Ecosystems in public policy. Conservation Letters, 2019, 12, e12665.	5.7	25
7	Chronicle of an Environmental Disaster: Aculeo Lake, the Collapse of the Largest Natural Freshwater Ecosystem in Central Chile. Environmental Conservation, 2019, 46, 201-204.	1.3	13
8	Rocky outcrops conserve genetic diversity and promote regeneration of a threatened relict tree in a critically endangered ecosystem. Biodiversity and Conservation, 2019, 28, 2805-2824.	2.6	9
9	Assessment of soil physical properties' statuses under different land covers within a landscape dominated by exotic industrial tree plantations in south-central Chile. Journal of Soils and Water Conservation, 2019, 74, 12-23.	1.6	17
10	Birdâ€friendly wine country through diversified vineyards. Conservation Biology, 2021, 35, 274-284.	4.7	16
11	Using Sentinel-2 and canopy height models to derive a landscape-level biomass map covering multiple vegetation types. International Journal of Applied Earth Observation and Geoinformation, 2021, 94, 102236.	2.8	15
12	The risk of rediscovery: fast population decline of the localized endemic Chilean stag beetle <i>Sclerostomulus nitidus</i> (Coleoptera: Lucanidae) suggests trade as a threat. Insect Conservation and Diversity, 2021, 14, 107-116.	3.0	11
13	Conservation status assessment of the highest forests in the world: <i>Polylepis flavipila</i> forests as a case study. Neotropical Biodiversity, 2021, 7, 160-169.	0.5	4
14	Water management or megadrought: what caused the Chilean Aculeo Lake drying?. Regional Environmental Change, 2021, 21, 1.	2.9	25
15	Consequences of land-use change and the wildfire disaster of 2017 for the central Chilean biodiversity hotspot. Regional Environmental Change, 2021, 21, 1.	2.9	9
16	Conservation planning for people and nature in a Chilean biodiversity hotspot. People and Nature, 2021, 3, 686-699.	3.7	12
17	Recovery of Chilean Mediterranean vegetation after different frequencies of fires. Forest Ecology and Management, 2021, 485, 118922.	3.2	9
18	Disentangling the effect of future land use strategies and climate change on streamflow in a Mediterranean catchment dominated by tree plantations. Journal of Hydrology, 2021, 595, 126047.	5.4	29

#	Article	IF	CITATIONS
19	Recent rapid colonization of the invasive species <i>Bagrada hilaris</i> (Heteroptera: Pentatomidae) in the collapsed ecosystem Aculeo lake, Chile. International Journal of Pest Management, 2023, 69, 241-247.	1.8	1
20	Climate exposure shows high risk and few climate refugia for Chilean native vegetation. Science of the Total Environment, 2021, 785, 147399.	8.0	10
21	Myopa nebulosa sp. nov. and Myopa bozinovici sp. nov. (Diptera: Conopidae): New thick-headed flies from a threatened biodiversity hotspot in central Chile . Zootaxa, 2020, 4780, 291-306.	0.5	2
22	Shelter, ecophysiology and conservation status of Plectostylus araucanus (Pulmonata:) Tj ETQq1 1 0.784314 rgBT Biodiversidad, 2019, 90, .	Overlock 0.4	10 Tf 50 6
23	Bees may drive the reproduction of four sympatric cacti in a vanishing coastal mediterranean-type ecosystem. PeerJ, 2019, 7, e7865.	2.0	3
24	Strengthening the Scientific Basis of Ecosystem Collapse Risk Assessments. Land, 2021, 10, 1252.	2.9	Ο
25	The vegetation of Chile and the EcoVeg approach in the context of the International Vegetation Classification project. Vegetation Classification and Survey, 0, 3, 15-28.	0.0	8
26	Tendencias en las evaluaciones de riesgo al colapso de ecosistemas terrestres y humedales. Madera Bosques, 2021, 27, .	0.2	0
27	Forest type and pH affecting the occurrence and life status of land snails in South American temperate forest. Pedobiologia, 2022, 93-94, 150824.	1.2	1
28	Snailed It! Inside the Shell: Using Augmented Reality as a Window Into Biodiversity. Frontiers in Education, 0, 7, .	2.1	1
29	Ecological niche modeling, niche overlap, and good old Rabinowitz's rarities applied to the conservation of gymnosperms in a global biodiversity hotspot. Landscape Ecology, 2022, 37, 2571-2588.	4.2	4
31	Surviving in a hostile landscape: <i>Nothofagus alessandrii</i> remnant forests threatened by mega-fires and exotic pine invasion in the coastal range of central Chile. Oryx, 0, , 1-11.	1.0	0
32	Ecosystem services of Chilean sclerophyllous forests and shrublands on the verge of collapse: A review. Journal of Arid Environments, 2023, 211, 104927.	2.4	5
33	Indicators of ecosystem degradation along an elevational gradient in the Mediterranean Andes. Ecological Indicators, 2023, 153, 110388.	6.3	1
34	The Time of Emergence (ToE) of the Andean Mediterranean sclerophyllous forest of Quillaja saponaria (Mol.) and Lithraea caustica (mol.) Hox. & Arn. Forest Ecology and Management, 2023, 544, 121169.	3.2	0
35	Protect central Chile's biodiversity. Science, 2023, 382, 165-165.	12.6	0
36	Where Forest Policy and Social Support Collide: Perceptions and Knowledge of Landholders About Forest Management in Central Chile. Human Ecology, 2023, 51, 1171-1187.	1.4	0

CITATION REPORT