Reducing Joint Damage in Concrete Pavements: Quanti

Transportation Research Record 2577, 17-24 DOI: 10.3141/2577-03

Citation Report

#	Article	IF	CITATIONS
1	The influence of carbonation on the formation of calcium oxychloride. Cement and Concrete Composites, 2016, 73, 185-191.	4.6	28
2	Evaluating the use of supplementary cementitious materials to mitigate damage in cementitious materials exposed to calcium chloride deicing salt. Cement and Concrete Composites, 2017, 81, 77-86.	4.6	33
3	Use of Fly Ash to Minimize Deicing Salt Damage in Concrete Pavements. Transportation Research Record, 2017, 2629, 24-32.	1.0	32
4	Mitigation of Calcium Oxychloride Formation in Cement Pastes Using Undensified Silica Fume. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	20
5	Phase Diagram and Volume Change of the Ca(OH)2─ CaCl2─ H2O System for Varying Ca(OH)2/CaCl2 Molar Ratios. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	26
6	Flexural strength reduction of cement pastes exposed to CaCl2 solutions. Cement and Concrete Composites, 2018, 86, 297-305.	4.6	51
7	Damage in cement pastes exposed to MgCl2 solutions. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	32
8	Role of Supplementary Cementitious Material Type in the Mitigation of Calcium Oxychloride Formation in Cementitious Pastes. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	31
9	Toward the prediction of pore volumes and freeze-thaw performance of concrete using thermodynamic modelling. Cement and Concrete Research, 2019, 124, 105820.	4.6	50
10	Reducing Damage Due to Chemical Reactions in Concrete Exposed to Sodium Chloride: Quantification of a Deleterious Chemical Phase Change Formation. MATEC Web of Conferences, 2019, 271, 07004.	0.1	3
11	Service-life of concrete in freeze-thaw environments: Critical degree of saturation and calcium oxychloride formation. Cement and Concrete Research, 2019, 122, 93-106.	4.6	65
12	The effect of using supplementary cementitious materials on damage development due to the formation of a chemical phase change in cementitious materials exposed to sodium chloride. Construction and Building Materials, 2019, 210, 685-695.	3.2	37
13	Chloride binding of cement pastes with fly ash exposed to CaCl2 solutions at 5 and 23â€Â°C. Cement and Concrete Composites, 2019, 97, 43-53.	4.6	106
14	Surface abrasion resistance of high-volume fly ash concrete modified by graphene oxide: Macro- and micro-perspectives. Construction and Building Materials, 2020, 237, 117686.	3.2	42
15	Effects of External Environments on the Fixed Elongation and Tensile Properties of the VAE Emulsion–Cement Composite Joint Sealant. Materials, 2020, 13, 3233.	1.3	4
16	Tensile and Fixed Elongation Properties of Polymer-Based Cement Flexible Composite under Water/Corrosive Solution Environment. Materials, 2020, 13, 2155.	1.3	5
17	Calcium oxychloride: A critical review of the literature surrounding the formation, deterioration, testing procedures, and recommended mitigation techniques. Cement and Concrete Composites, 2020, 113, 103663.	4.6	35
18	Synergistic effects of air content and supplementary cementitious materials in reducing damage caused by calcium oxychloride formation in concrete. Cement and Concrete Composites, 2021, 122, 104170	4.6	7

	CITATION	ILPORT	
#	Article	IF	CITATIONS
19	Using compressive strength and mass change to verify the calcium oxychloride threshold in cementitious pastes with fly ash. Construction and Building Materials, 2021, 296, 123640.	3.2	8
20	Predicting pore volume, compressive strength, pore connectivity, and formation factor in cementitious pastes containing fly ash. Cement and Concrete Composites, 2021, 122, 104113.	4.6	27
21	The Influence of Calcium Chloride on Flexural Strength of Cement-Based Materials. , 2018, , 2041-2048.		2
22	Calcium Oxychloride Formation Potential in Cementitious Pastes Exposed to Blends of Deicing Salt. ACI Materials Journal, 2017, 114, .	0.3	18
23	Measuring Volume Change Caused by Calcium Oxychloride Phase Transformation in a Ca(OH)2-CaCl2-H2O System. Advances in Civil Engineering Materials, 2017, 6, 20160065.	0.2	5
24	Extending Low-Temperature Differential Scanning Calorimetry from Paste to Mortar and Concrete to Quantify the Potential for Calcium Oxychloride Formation. Advances in Civil Engineering Materials, 2018, 7, 20170113.	0.2	1
25	Reducing detrimental sulfate-based phase formation in concrete exposed to sodium chloride using supplementary cementitious materials. Journal of Building Engineering, 2022, 45, 103639.	1.6	4
26	Effectiveness of Soy Methyl Ester-Polystyrene as a Concrete Protectant on Mitigating the Chemical Interaction between Cement Paste and Calcium Chloride. Transportation Research Record, 2022, 2676, 373-387.	1.0	6
27	A New Mixture Proportioning Method for Performance- Based Concrete. ACI Materials Journal, 2022, 119, .	0.3	3
29	Damage in cement pastes and mortars exposed to CaCl2 and low-temperature cycles. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	1
30	Durability of concretes exposed to high concentrations of CaCl2 and MgCl2. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	6
31	The influence of air voids and fluid absorption on salt-induced calcium oxychloride damage. Cement and Concrete Composites, 2022, 133, 104697.	4.6	3
32	Utilizing Nano Silica to Reduce Calcium Oxychloride Formation in Cementitious Materials. Transportation Research Record, 0, , 036119812211252.	1.0	0
33	Heat of Hydration, Shrinkage, and Flexural Strength of Portland Limestone Cement Mortar. Advances in Civil Engineering Materials, 2022, 11, 501-519.	0.2	1
34	Durability evaluation of reinforced concrete with surface treatment of soy methyl ester-polystyrene under freeze-thaw cycles and calcium chloride. Cement and Concrete Composites, 2023, 137, 104927.	4.6	9
35	Mitigating calcium oxychloride formation in cementitious paste using alternative supplementary cementitious materials. Construction and Building Materials, 2023, 377, 130756.	3.2	4