Fully Implanted Brain–Computer Interface in a Locke

New England Journal of Medicine 375, 2060-2066 DOI: 10.1056/nejmoa1608085

Citation Report

#	Article	IF	CITATIONS
1	Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Frontiers in Neuroscience, 2016, 10, 584.	2.8	121
2	Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future. Brain-Computer Interfaces, 2017, 4, 3-36.	1.8	24
3	Review: Human Intracortical Recording and Neural Decoding for Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1687-1696.	4.9	80
4	Brain–computer interface unlocks the mind of a patient with ALS. Nature Reviews Neurology, 2017, 13, 6-6.	10.1	1
5	Physiological properties of brain-machine interface input signals. Journal of Neurophysiology, 2017, 118, 1329-1343.	1.8	38
6	Neurophysiology and neural engineering: a review. Journal of Neurophysiology, 2017, 118, 1292-1309.	1.8	30
7	Minimally invasive brain computer interface for fast typing. , 2017, , .		11
8	Estimated Prevalence of the Target Population for Brain-Computer Interface Neurotechnology in the Netherlands. Neurorehabilitation and Neural Repair, 2017, 31, 677-685.	2.9	20
9	Closed-loop interaction with the cerebral cortex: a review of wireless implant technology. Brain-Computer Interfaces, 2017, 4, 146-154.	1.8	44
10	CMOS Ultralow Power Brain Signal Acquisition Front-Ends: Design and Human Testing. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1111-1122.	4.0	23
11	The impact of bullying in suicidal and selfinjurious behaviours among adolescence. European Neuropsychopharmacology, 2017, 27, S556.	0.7	0
12	Brain–Computer Interfaces and Interactive Capacity in Patients With Disorders of Consciousness. AJOB Neuroscience, 2017, 8, 141-142.	1.1	1
13	The difficult legacy of Turing's wager. Journal of Computational Neuroscience, 2017, 43, 1-4.	1.0	3
14	Editorial. Advancement in brain–machine interfaces for patients with tetraplegia: neurosurgical perspective. Neurosurgical Focus, 2017, 43, E5.	2.3	9
15	Help, hope, and hype: Ethical dimensions ofneuroprosthetics. Science, 2017, 356, 1338-1339.	12.6	83
16	Brain machine interface for useful human interaction via extreme learning machine and state machine design. , 2017, , .		8
17	Preservation of hand movement representation in the sensorimotor areas of amputees. Brain, 2017, 140, 3166-3178.	7.6	62
18	EEG-based communication system for patients with locked-in syndrome using fuzzy logic. , 2017, , .		2

# 19	ARTICLE Fully implanted brain signal recording device for communication in severe paralysis reveals feasibility of chronic home use of neuronal activity. European Neuropsychopharmacology, 2017, 27, S556.	IF 0.7	CITATIONS 2
20	Detect visual field using eye tracking and steady-state visual evoked potential. , 2017, , .		1
21	High performance communication by people with paralysis using an intracortical brain-computer interface. ELife, 2017, 6, .	6.0	367
22	Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation. Frontiers in Neuroscience, 2017, 11, 564.	2.8	63
23	Principled Approaches to Direct Brain Stimulation for Cognitive Enhancement. Frontiers in Neuroscience, 2017, 11, 650.	2.8	16
24	EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone. BioMed Research International, 2017, 2017, 1-12.	1.9	27
25	Neurobionics and the brain–computer interface: current applications and future horizons. Medical Journal of Australia, 2017, 206, 363-368.	1.7	52
26	Common Spatial Pattern with Polarity Check for reducing delay latency in detection of MRCP based BCI system. , 2017, , .		3
27	Advances in Implanted Brain–Computer Interfaces Allow for Independent Communication in a Locked-In Patient. Neurosurgery, 2017, 80, N30-N31.	1.1	1
28	2016 yearbook of neurorestoratology. Journal of Neurorestoratology, 0, Volume 5, 111-115.	2.5	11
29	Sequential Probability Ratio Testing with Power Projective Base Method Improves Decision-Making for BCI. Computational and Mathematical Methods in Medicine, 2017, 2017, 1-10.	1.3	1
30	Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing. Journal of Neural Engineering, 2018, 15, 041003.	3.5	14
31	Real-time classification of auditory sentences using evoked cortical activity in humans. Journal of Neural Engineering, 2018, 15, 036005.	3.5	32
32	Brain–Computer Interfaces for Augmentative and Alternative Communication: A Tutorial. American Journal of Speech-Language Pathology, 2018, 27, 1-12.	1.8	72
33	A review: Motor rehabilitation after stroke with control based on human intent. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 344-360.	1.8	49
34	Decoder calibration with ultra small current sample set for intracortical brain–machine interface. Journal of Neural Engineering, 2018, 15, 026019.	3.5	17
35	Rapid calibration of an intracortical brain–computer interface for people with tetraplegia. Journal of Neural Engineering, 2018, 15, 026007.	3.5	95
36	Current Researches and Future Development Trend of Intelligent Robot: A Review. International Journal of Automation and Computing, 2018, 15, 525-546.	4.5	94

#	Article	IF	CITATIONS
37	Mind Reading and Writing: The Future of Neurotechnology. Trends in Cognitive Sciences, 2018, 22, 598-610.	7.8	65
38	Brain-computer interfaces based on intracortical recordings of neural activity for restoration of movement and communication of people with paralysis. , 2018, , .		1
39	Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring. Advanced Functional Materials, 2018, 28, 1700232.	14.9	97
40	Decoding Covert Somatosensory Attention by a BCI System Calibrated With Tactile Sensation. IEEE Transactions on Biomedical Engineering, 2018, 65, 1689-1695.	4.2	17
41	Decoding spoken phonemes from sensorimotor cortex with high-density ECoG grids. NeuroImage, 2018, 180, 301-311.	4.2	89
42	ALICE: A tool for automatic localization of intra-cranial electrodes for clinical and high-density grids. Journal of Neuroscience Methods, 2018, 301, 43-51.	2.5	40
43	Effect of Implant Duration, Anatomical Location and Electrode Orientation on Bandwidth Recorded with a Chronically Implanted Endovascular Stent-Electrode Array. , 2018, 2018, 1074-1077.		1
44	Silicon Valley new focus on brain computer interface: hype or hope for new applications?. F1000Research, 2018, 7, 1327.	1.6	9
46	Long-term use of a neural prosthesis in progressive paralysis. Scientific Reports, 2018, 8, 16787.	3.3	21
47	Speaking Ability while Using an Inductive Tongue-Computer Interface for Individuals with Tetraplegia: Talking and Driving a Powered Wheelchair - a Case Study. , 2018, 2018, 2483-2486.		6
48	Neural interfaces based on amorphous silicon carbide ultramicroelectrode arrays. Bioelectronics in Medicine, 2018, 1, 185-200.	2.0	8
49	Cortical control of a tablet computer by people with paralysis. PLoS ONE, 2018, 13, e0204566.	2.5	108
50	Characterization of Stimulation Artifact Behavior in Simultaneous Electrocorticography Grid Stimulation and Recording. , 2018, 2018, 4748-4751.		6
51	Invasive Brain–Computer Interfaces for Functional Restoration. , 2018, , 379-391.		1
52	Motor Neuroprostheses. , 2018, 9, 127-148.		6
53	Decoding Steady-State Visual Evoked Potentials From Electrocorticography. Frontiers in Neuroinformatics, 2018, 12, 65.	2.5	18
54	The influence of prior pronunciations on sensorimotor cortex activity patterns during vowel production. Journal of Neural Engineering, 2018, 15, 066025.	3.5	9
55	Feasibility of identifying the ideal locations for motor intention decoding using unimodal and multimodal classification at 7T-fMRI. Scientific Reports, 2018, 8, 15556.	3.3	4

#	Article	IF	CITATIONS
56	Ethical Considerations in Ending Exploratory Brain–Computer Interface Research Studies in Locked-in Syndrome. Cambridge Quarterly of Healthcare Ethics, 2018, 27, 660-674.	0.8	11
57	Totally Implantable Bidirectional Neural Prostheses: A Flexible Platform for Innovation in Neuromodulation. Frontiers in Neuroscience, 2018, 12, 619.	2.8	27
58	Optimization of sampling rate and smoothing improves classification of high frequency power in electrocorticographic brain signals. Biomedical Physics and Engineering Express, 2018, 4, 045012.	1.2	6
59	Brain–computer interface use is a skill that user and system acquire together. PLoS Biology, 2018, 16, e2006719.	5.6	33
60	Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable. Scientific Reports, 2018, 8, 8427.	3.3	31
61	GridLoc: An automatic and unsupervised localization method for high-density ECoG grids. NeuroImage, 2018, 179, 225-234.	4.2	13
62	Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology, 2018, 91, e258-e267.	1.1	105
63	A useful communication in brain-computer interfaces. Neurology, 2018, 91, 109-110.	1.1	3
64	A Multi-Class BCI Based on Somatosensory Imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1508-1515.	4.9	21
65	EEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century. Frontiers in Human Neuroscience, 2018, 12, 14.	2.0	213
66	Decoding Inner Speech Using Electrocorticography: Progress and Challenges Toward a Speech Prosthesis. Frontiers in Neuroscience, 2018, 12, 422.	2.8	68
67	The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users. PLoS Biology, 2018, 16, e2003787.	5.6	111
68	A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface. Journal of Neurosurgery, 2019, 130, 1166-1179.	1.6	20
69	Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals. Journal of Neurophysiology, 2018, 120, 343-360.	1.8	91
70	Towards Real-Time, Continuous Decoding of Gripping Force From Deep Brain Local Field Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1460-1468.	4.9	19
71	Brain-Machine Interfaces: Powerful Tools for Clinical Treatment and Neuroscientific Investigations. Neuroscientist, 2019, 25, 139-154.	3.5	51
72	Decoding task engagement from distributed network electrophysiology in humans. Journal of Neural Engineering, 2019, 16, 056015.	3.5	22
73	Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram Recorder. Frontiers in Neuroscience, 2019, 13, 847.	2.8	19

#	Article	IF	CITATIONS
74	Stability of a chronic implanted brain-computer interface in late-stage amyotrophic lateral sclerosis. Clinical Neurophysiology, 2019, 130, 1798-1803.	1.5	49
75	Print Me An Organ! Why We Are Not There Yet. Progress in Polymer Science, 2019, 97, 101145.	24.7	192
76	Towards a Distributed, Chronically-Implantable Neural Interface. , 2019, , .		41
77	High-frequency band temporal dynamics in response to a grasp force task. Journal of Neural Engineering, 2019, 16, 056009.	3.5	11
78	Towards an intuitive communication-BCI: decoding visually imagined characters from the early visual cortex using high-field fMRI. Biomedical Physics and Engineering Express, 2019, 5, 055001.	1.2	4
79	Dipole Cancellation as an Artifact Suppression Technique in Simultaneous Electrocorticography Stimulation and Recording. , 2019, , .		6
80	Neural correlates of unstructured motor behaviors. Journal of Neural Engineering, 2019, 16, 066026.	3.5	9
81	Real-time decoding of question-and-answer speech dialogue using human cortical activity. Nature Communications, 2019, 10, 3096.	12.8	144
82	Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review. Neurosurgery, 2020, 86, E108-E117.	1.1	47
83	Transcending the brain: is there a cost to hacking the nervous system?. Brain Communications, 2019, 1, fcz015.	3.3	8
84	Classification of Articulator Movements and Movement Direction from Sensorimotor Cortex Activity. Scientific Reports, 2019, 9, 14165.	3.3	17
85	An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurology, The, 2019, 18, 1112-1122.	10.2	212
86	Bond Slip Law and Micropore Structure of Freeze-thaw Concrete. IOP Conference Series: Earth and Environmental Science, 2019, 304, 052055.	0.3	1
87	Enhancing human emotions with interoceptive technologies. Physics of Life Reviews, 2019, 31, 310-319.	2.8	22
88	Fully Passive Flexible Wireless Neural Recorder for the Acquisition of Neuropotentials from a Rat Model. ACS Sensors, 2019, 4, 3175-3185.	7.8	19
89	The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications. Advances in Physics: X, 2019, 4, 1664319.	4.1	12
90	A benchtop system to assess the feasibility of a fully independent and implantable brain-machine interface. Journal of Neural Engineering, 2019, 16, 066043.	3.5	13
91	Sensorimotor ECoG Signal Features for BCI Control: A Comparison Between People With Locked-In Syndrome and Able-Bodied Controls. Frontiers in Neuroscience, 2019, 13, 1058.	2.8	17

#	Article	IF	CITATIONS
92	New and emerging access technologies for adults with complex communication needs and severe motor impairments: State of the science. AAC: Augmentative and Alternative Communication, 2019, 35, 13-25.	1.4	52
93	Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 1148.	2.4	55
94	Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Science Robotics, 2019, 4, .	17.6	227
95	Single-paradigm and hybrid brain computing interfaces and their use by disabled patients. Journal of Neural Engineering, 2019, 16, 061001.	3.5	13
96	Biomaterials: Been There, Done That, and Evolving into the Future. Annual Review of Biomedical Engineering, 2019, 21, 171-191.	12.3	82
97	Chronic recording and electrochemical performance of amorphous silicon carbide-coated Utah electrode arrays implanted in rat motor cortex. Journal of Neural Engineering, 2019, 16, 046006.	3.5	24
98	Hemicraniectomy in Traumatic Brain Injury: A Noninvasive Platform to Investigate High Gamma Activity for Brain Machine Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1467-1472.	4.9	16
99	A CMOS MedRadio Transceiver With Supply-Modulated Power Saving Technique for an Implantable Brain–Machine Interface System. IEEE Journal of Solid-State Circuits, 2019, 54, 1541-1552.	5.4	23
100	Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain–machine interface. Journal of Neural Engineering, 2019, 16, 036011.	3.5	21
101	Using brain-computer interfaces: a scoping review of studies employing social research methods. BMC Medical Ethics, 2019, 20, 18.	2.4	40
102	The Emerging Role of Biomarkers in Adaptive Modulation of Clinical Brain Stimulation. Neurosurgery, 2019, 85, E430-E439.	1.1	14
103	Can Biological Quantum Networks Solve NPâ€Hard Problems?. Advanced Quantum Technologies, 2019, 2, 1800081.	3.9	2
104	Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nature Reviews Neurology, 2019, 15, 343-352.	10.1	132
105	Volitional control of single-electrode high gamma local field potentials by people with paralysis. Journal of Neurophysiology, 2019, 121, 1428-1450.	1.8	12
106	CMOS stimulating chips capable of wirelessly driving 473 electrodes for a cortical vision prosthesis. Journal of Neural Engineering, 2019, 16, 026025.	3.5	18
107	Towards a Modular Brain-Machine Interface for Intelligent Vehicle Systems Control $\hat{a} \in$ ' A CARLA Demonstration. , 2019, , .		0
108	Decoding Movement From Electrocorticographic Activity: A Review. Frontiers in Neuroinformatics, 2019, 13, 74.	2.5	61
109	Optimizing SSVEP-based brain-computer interface with CCA and Genetic Algorithms. , 2019, , .		2

#	Article	IF	CITATIONS
110	Demonstration of a portable intracortical brain-computer interface. Brain-Computer Interfaces, 2019, 6, 106-117.	1.8	14
111	Neural Interface: Frontiers and Applications. Advances in Experimental Medicine and Biology, 2019, , .	1.6	5
112	Discrimination of Movement-Related Cortical Potentials Exploiting Unsupervised Learned Representations From ECoGs. Frontiers in Neuroscience, 2019, 13, 1248.	2.8	1
113	Workshops of the seventh international brain-computer interface meeting: not getting lost in translation. Brain-Computer Interfaces, 2019, 6, 71-101.	1.8	8
114	Real-Time Speech Decoding from Brain Waves. Neurology Today: an Official Publication of the American Academy of Neurology, 2019, 19, 36-37.	0.0	1
115	Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain omputer Interface perspective. European Journal of Neuroscience, 2019, 50, 2755-2772.	2.6	23
116	The Potential for a Speech Brain–Computer Interface Using Chronic Electrocorticography. Neurotherapeutics, 2019, 16, 144-165.	4.4	71
117	Autoencoders for learning template spectrograms in electrocorticographic signals. Journal of Neural Engineering, 2019, 16, 016025.	3.5	5
118	Embodiment in Neuro-engineering Endeavors: Phenomenological Considerations and Practical Implications. Neuroethics, 2019, 12, 231-242.	2.8	8
119	Using High-Frequency Local Field Potentials From Multicortex to Decode Reaching and Grasping Movements in Monkey. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11, 270-280.	3.8	7
120	Medical Decision Making by Patients in the Locked-in Syndrome. Neuroethics, 2020, 13, 229-238.	2.8	12
121	Phenomenology of the Locked-In Syndrome: an Overview and Some Suggestions. Neuroethics, 2020, 13, 119-143.	2.8	10
122	Cognitive Imagery Classification of EEG Signals using CSP-based Feature Selection Method. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2020, 37, 315-326.	3.2	14
123	The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics, 2020, 13, 163-180.	2.8	50
124	A versatile robotic platform for the design of natural, three-dimensional reaching and grasping tasks in monkeys. Journal of Neural Engineering, 2020, 17, 016004.	3.5	10
125	An Energy-Efficient CMOS Dual-Mode Array Architecture for High-Density ECoG-Based Brain-Machine Interfaces. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 332-342.	4.0	16
126	Recent development of implantable and flexible nerve electrodes. Smart Materials in Medicine, 2020, 1, 131-147.	6.7	61
127	A novel multi-dimensional features fusion algorithm for the EEG signal recognition of brain's sensorimotor region activated tasks. International Journal of Intelligent Computing and Cybernetics, 2020, 13, 239-260.	2.7	10

#	Article	IF	CITATIONS
128	A Maximum Fitting-based TrAdaBoost Method for Detecting Multiple Subjects' P300 Potentials. , 2020, ,		0
129	An Implantable Neural Stimulator IC With Anodic Current Pulse Modulation Based Active Charge Balancing. IEEE Access, 2020, 8, 136449-136458.	4.2	17
130	Brain-Machine Interfaces: A Tale of Two Learners. IEEE Systems, Man, and Cybernetics Magazine, 2020, 6, 12-19.	1.4	45
131	New technologies and Amyotrophic Lateral Sclerosis – Which step forward rushed by the COVID-19 pandemic?. Journal of the Neurological Sciences, 2020, 418, 117081.	0.6	36
132	Developing Collaborative Platforms to Advance Neurotechnology and Its Translation. Neuron, 2020, 108, 286-301.	8.1	29
133	Challenges for Large-Scale Cortical Interfaces. Neuron, 2020, 108, 259-269.	8.1	51
134	Dorsolateral prefrontal cortex-based control with an implanted brain–computer interface. Scientific Reports, 2020, 10, 15448.	3.3	10
135	Increasing power efficiency. Nature Biomedical Engineering, 2020, 4, 937-938.	22.5	2
136	"Re-identifying yourself― a qualitative study of veteran views on implantable BCI for mobility and communication in ALS. Disability and Rehabilitation: Assistive Technology, 2022, 17, 807-814.	2.2	9
137	Neural signal analysis with memristor arrays towardsÂhigh-efficiency brain–machine interfaces. Nature Communications, 2020, 11, 4234.	12.8	82
138	SSVEP BCI and Eye Tracking Use by Individuals With Late-Stage ALS and Visual Impairments. Frontiers in Human Neuroscience, 2020, 14, 595890.	2.0	15
139	Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 3140-3147.	4.9	58
140	Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface. Sensors, 2020, 20, 5528.	3.8	2
141	Implantable Neuroamplifers for Electrocorticography Using Flexible and Biocompatible Technology. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900830.	1.8	0
142	Zwitterionic Polymer Coating Suppresses Microglial Encapsulation to Neural Implants In Vitro and In Vivo. Advanced Biology, 2020, 4, e1900287.	3.0	23
143	Endovascular Neuromodulation: Safety Profile and Future Directions. Frontiers in Neurology, 2020, 11, 351.	2.4	16
144	Human visual skills for brain-computer interface use: a tutorial. Disability and Rehabilitation: Assistive Technology, 2020, 15, 799-809.	2.2	6
145	Nationwide survey of 780 Japanese patients with amyotrophic lateral sclerosis: their status and expectations from brain–machine interfaces. Journal of Neurology, 2020, 267, 2932-2940.	3.6	7

ARTICLE IF CITATIONS # Classification of Facial Expressions for Intended Display of Emotions Using Brainâ€"Computer 5.3 5 146 Interfaces. Annals of Neurology, 2020, 88, 631-636. Tissue response to a chronically implantable wireless, intracortical visual prosthesis (Gennaris) Tj ETQq1 1 0.784314 rgBT /Overlock 1 The Potential of Stereotactic-EEG for Brain-Computer Interfaces: Current Progress and Future 148 2.8 79 Directions. Frontiers in Neuroscience, 2020, 14, 123. Brain-computer interfaces: Definitions and principles. Handbook of Clinical Neurology / Edited By P J 149 1.8 Vinken and G W Bruyn, 2020, 168, 15-23. Brain-computer interfaces for people with amyotrophic lateral sclerosis. Handbook of Clinical 150 1.8 10 Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 33-38. Brain-computer interfaces for consciousness assessment and communication in severely brain-injured patients. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 137-152. 1.8 Bidirectional brain-computer interfaces. Handbook of Clinical Neurology / Edited By P J Vinken and G 152 1.8 31 W Bruyn, 2020, 168, 163-181. Brain-computer interfaces for basic neuroscience. Handbook of Clinical Neurology / Edited By P J 153 1.8 Vinken and G W Bruyn, 2020, 168, 233-247. General principles of machine learning for brain-computer interfacing. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 311-328. 154 10 1.8 iEEG: Dura-lining electrodes. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 1.8 2020, 168, 263-277. A 300 Mbps 37 pJ/bit UWB-Based Transcutaneous Optical Biotelemetry Link. IEEE Transactions on 156 4.09 Biomedical Circuits and Systems, 2020, 14, 1-1. Brain-computer interfaces for communication. Handbook of Clinical Neurology / Edited By P J Vinken 1.8 and G W Bruyn, 2020, 168, 67-85. Applications of brain-computer interfaces to the control of robotic and prosthetic arms. Handbook 158 1.8 37 of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 87-99. Industrial perspectives on brain-computer interface technology. Handbook of Clinical Neurology / 159 1.8 Edited By P J Vinken and G W Bruyn, 2020, 168, 341-352. Hearing the needs of clinical users. Handbook of Clinical Neurology / Edited By P J Vinken and G W 160 1.8 16 Bruyn, 2020, 168, 353-368. Bidirectional Bioelectronic Interfaces: System Design and Circuit Implications. IEEE Solid-State 34 Circuits Magazine, 2020, 12, 30-46. Brainâ€computer interfaces for amyotrophic lateral sclerosis. Muscle and Nerve, 2020, 61, 702-707. 162 2.213 Future development of artificial organs related with cutting edge emerging technology and their regulatory assessment: PMDA's perspective. Journal of Artificial Organs, 2020, 23, 203-206.

#	Article	IF	CITATIONS
164	A Sub-\$mu\$ W Reconfigurable Front-End for Invasive Neural Recording That Exploits the Spectral Characteristics of the Wideband Neural Signal. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1426-1437.	5.4	16
165	Brain–machine interfaces. , 2020, , 1037-1045.		0
166	Human brain function and brain-computer interfaces. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 1-13.	1.8	4
167	On the Application of the Complexity Zeta Function to Modelling Complexity and Emergence in Neuro-Engineering. , 2020, , .		0
168	Neural decoding of electrocorticographic signals using dynamic mode decomposition. Journal of Neural Engineering, 2020, 17, 036009.	3.5	19
169	A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy. Journal of Neural Engineering, 2021, 18, 036007.	3.5	47
170	Electroencephalography of completely locked-in state patients with amyotrophic lateral sclerosis. Neuroscience Research, 2021, 162, 45-51.	1.9	11
171	Neuropsychological and neurophysiological aspects of brainâ€computerâ€interface (BCI) control in paralysis. Journal of Physiology, 2021, 599, 2351-2359.	2.9	45
172	Advanced Technologies, Systems, and Applications V. Lecture Notes in Networks and Systems, 2021, , .	0.7	0
173	Intraoperative mapping of executive function using electrocorticography for patients with low-grade gliomas. Acta Neurochirurgica, 2021, 163, 1299-1309.	1.7	18
174	Feature-Selection-Based Transfer Learning for Intracortical Brain–Machine Interface Decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 60-73.	4.9	5
175	Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. Journal of NeuroInterventional Surgery, 2021, 13, 102-108.	3.3	106
176	Noninvasive Brain–Machine Interfaces for Robotic Devices. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 191-214.	11.8	30
177	Mindfulness Improves Brain–Computer Interface Performance by Increasing Control Over Neural Activity in the Alpha Band. Cerebral Cortex, 2021, 31, 426-438.	2.9	33
178	Plug-and-play control of a brain–computer interface through neural map stabilization. Nature Biotechnology, 2021, 39, 326-335.	17.5	60
179	Electroencephalography and Brain–Computer Interfaces. , 2021, , 71-103.		1
180	Epidural and Transcutaneous Spinal Cord Stimulation Strategies for Motor Recovery After Spinal Cord Injury. , 2021, , 167-190.		1
181	Accurate Offline Asynchronous Detection of Individual Finger Movement From Intracranial Brain Signals Using a Novel Multiway Approach. IEEE Transactions on Biomedical Engineering, 2021, 68, 2176-2187.	4.2	3

#	Article	IF	CITATIONS
182	Typical somatomotor physiology of the hand is preserved in a patient with an amputated arm: An ECoG case study. Neurolmage: Clinical, 2021, 31, 102728.	2.7	3
183	Communication with Brain–Computer Interfaces in Medical Decision-Making. Contemporary Clinical Neuroscience, 2021, , 141-161.	0.3	1
184	Network-based brain–computer interfaces: principles and applications. Journal of Neural Engineering, 2021, 18, 011001.	3.5	27
185	Invasive BCI Approaches for Restoration of Upper Extremity Movements. , 2021, , 217-232.		1
186	A 32-Channel Time-Multiplexed Artifact-Aware Neural Recording System. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 960-977.	4.0	11
187	Functional MRI based simulations of ECoG grid configurations for optimal measurement of spatially distributed hand-gesture information. Journal of Neural Engineering, 2021, 18, 026013.	3.5	5
188	An Intracortical Implantable Brain-Computer Interface for Telemetric Real-Time Recording and Manipulation of Neuronal Circuits for Closed-Loop Intervention. Frontiers in Human Neuroscience, 2021, 15, 618626.	2.0	15
189	Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sciences, 2021, 11, 221.	2.3	53
190	Brain-Computer Interfaces for Communication: Preferences of Individuals With Locked-in Syndrome. Neurorehabilitation and Neural Repair, 2021, 35, 267-279.	2.9	16
192	Progress in Brain Computer Interface: Challenges and Opportunities. Frontiers in Systems Neuroscience, 2021, 15, 578875.	2.5	128
193	Brain connectomics applied to oncological neuroscience: from a traditional surgical strategy focusing on glioma topography to a meta-network approach. Acta Neurochirurgica, 2021, 163, 905-917.	1.7	34
194	Identification of discriminative features for decoding overt and imagined speech using stereotactic electroencephalography. , 2021, , .		3
195	Decoding overt shifts of attention in depth through pupillary and cortical frequency tagging. Journal of Neural Engineering, 2021, 18, 036008.	3.5	4
196	Mapping the Dimensions of Agency. AJOB Neuroscience, 2021, 12, 172-186.	1.1	23
197	Brain–computer interface in the context of information retrieval systems in a library. Library Hi Tech, 2022, 40, 1766-1781.	5.1	5
198	MRI ompatible and Conformal Electrocorticography Grids for Translational Research. Advanced Science, 2021, 8, 2003761.	11.2	33
199	2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE 2021). Proceedings (mdpi), 2021, 72, .	0.2	0
200	Analysis of EEG Signals for Non-technical and Non-medical Students. International Journal of Instruction, 2021, 14, 861-872.	1.3	0

#	Article	IF	CITATIONS
201	Removal of Electrocardiogram Artifacts From Local Field Potentials Recorded by Sensing-Enabled Neurostimulator. Frontiers in Neuroscience, 2021, 15, 637274.	2.8	11
202	Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in	17.5	180
203	Human Computer Interaction Feedback Based-On Data Visualization Using MVAR and NN. , 2021, , .		2
204	High-performance brain-to-text communication via handwriting. Nature, 2021, 593, 249-254.	27.8	409
205	Electroencephalogram (EEG) Based Imagined Speech Decoding and Recognition. Journal of Applied Materials and Technology, 2021, 2, 74-84.	0.5	5
206	Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports, 2021, 918, 1-133.	25.6	88
207	Regenerative medicine for neurological diseases—will regenerative neurosurgery deliver?. BMJ, The, 2021, 373, n955.	6.0	11
208	Benefits of deep learning classification of continuous noninvasive brain–computer interface control. Journal of Neural Engineering, 2021, 18, 046082.	3.5	28
209	An artificial nervous system to treat chronic stroke. Artificial Organs, 2021, 45, 804-812.	1.9	2
210	Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria. New England Journal of Medicine, 2021, 385, 217-227.	27.0	209
211	A Bidirectional Neural Interface SoC With Adaptive IIR Stimulation Artifact Cancelers. IEEE Journal of Solid-State Circuits, 2021, 56, 2142-2157.	5.4	16
212	Freedom of Speech. New England Journal of Medicine, 2021, 385, 278-279.	27.0	1
213	Recording Strategies for High Channel Count, Densely Spaced Microelectrode Arrays. Frontiers in Neuroscience, 2021, 15, 681085.	2.8	9
214	Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury. Neurosurgery Clinics of North America, 2021, 32, 407-417.	1.7	3
216	Home Use of a Percutaneous Wireless Intracortical Brain-Computer Interface by Individuals With Tetraplegia. IEEE Transactions on Biomedical Engineering, 2021, 68, 2313-2325.	4.2	83
217	Brain-Machine Interfaces. Hand Clinics, 2021, 37, 391-399.	1.0	1
218	Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes. Journal of Neural Engineering, 2021, 18, 0460d4.	3.5	11
219	Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis. Journal of Neural Engineering, 2021, 18, 0460d7.	3.5	27

#	Article	IF	CITATIONS
220	Shape Memory Polymer-Based Insertable Electrode Array Towards Minimally Invasive Subdural Implantation. IEEE Sensors Journal, 2021, 21, 17282-17289.	4.7	1
221	FMRI and intra-cranial electrocorticography recordings in the same human subjects reveals negative BOLD signal coupled with silenced neuronal activity. Brain Structure and Function, 2022, 227, 1371-1384.	2.3	10
222	Practical real-time MEG-based neural interfacing with optically pumped magnetometers. BMC Biology, 2021, 19, 158.	3.8	14
223	The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews, 2022, 102, 551-604.	28.8	32
224	Brain Computer Interfaces for Assisted Communication in Paralysis and Quality of Life. International Journal of Neural Systems, 2021, 31, 2130003.	5.2	10
225	Decoding attempted phantom hand movements from ipsilateral sensorimotor areas after amputation. Journal of Neural Engineering, 2021, 18, 056037.	3.5	0
226	Real-time synthesis of imagined speech processes from minimally invasive recordings of neural activity. Communications Biology, 2021, 4, 1055.	4.4	46
228	Closed-Loop Deep Brain Stimulation for Parkinson's Disease. , 2019, , 131-149.		1
229	Invasive Brain Machine Interface System. Advances in Experimental Medicine and Biology, 2019, 1101, 67-89.	1.6	5
231	When to include ECoG electrode properties in volume conduction models. Journal of Neural Engineering, 2020, 17, 056031.	3.5	5
232	Multi-source domain adaptation for decoder calibration of intracortical brain-machine interface. Journal of Neural Engineering, 2020, 17, 066009.	3.5	4
242	Longitudinal multimodal assessment of neurodegeneration and vascular remodeling correlated with signal degradation in chronic cortical silicon microelectrodes. Neurophotonics, 2020, 7, 1.	3.3	6
243	The current state of electrocorticography-based brain–computer interfaces. Neurosurgical Focus, 2020, 49, E2.	2.3	60
244	Implantable brain–computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury. Brain Communications, 2021, 3, fcab248.	3.3	18
245	Decoding four hand gestures with a single bipolar pair of electrocorticography electrodes. Journal of Neural Engineering, 2021, 18, .	3.5	0
246	Technologieübergreifende Herausforderungen und Fragestellungen. , 2018, , 277-305.		0
247	Analysis and Information Retrieval from Electroencephalogram for Brain–Computer Interface Using WEKA. Lecture Notes in Networks and Systems, 2019, , 129-137.	0.7	0
249	Pre-whitening and Null Projection as an Artifact Suppression Method for Electrocorticography Stimulation in Bi-Directional Brain Computer Interfaces. , 2020, 2020, 3493-3496.		0

#	Article	IF	CITATIONS
250	Neurorights in History: A Contemporary Review of José M. R. Delgado's "Physical Control of the Mind― (1969) and Elliot S. Valenstein's "Brain Control―(1973). Frontiers in Human Neuroscience, 2021, 15, 703308.	2.0	7
251	Ethical and social aspects of neural prosthetics. Progress in Biomedical Engineering, 2022, 4, 012004.	4.9	2
253	Spoken and Inner Speech-related EEG Connectivity in Different Spatial Direction. Biomedical Signal Processing and Control, 2022, 71, 103224.	5.7	9
254	Neurorestoration: Advances in human brain–computer interface using microelectrode arrays. Journal of Neurorestoratology, 2020, 8, 32-39.	2.5	4
255	EEG Recognition Based on Parallel Stacked Denoise Autoencoder and Convolutional Neural Network. Advances in Intelligent Systems and Computing, 2020, , 700-713.	0.6	0
256	Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) of Chinese speller for a patient with amyotrophic lateral sclerosis: A case report. Journal of Neurorestoratology, 2020, 8, 40-52.	2.5	14
257	A Dynamic Window SSVEP-Based Brain-Computer Interface System Using a Spatio-temporal Equalizer. Springer Briefs in Electrical and Computer Engineering, 2020, , 87-105.	0.5	0
258	Brain imaging technologies as source for Extrospection: self-formation through critical self-identification. Phenomenology and the Cognitive Sciences, 2020, 19, 729-745.	1.8	3
259	A Multimodal Neuroprosthetic Interface to Record, Modulate and Classify Electrophysiological Biomarkers Relevant to Neuropsychiatric Disorders. Frontiers in Bioengineering and Biotechnology, 2021, 9, 770274.	4.1	4
260	Implantable brain machine interfaces: first-in-human studies, technology challenges and trends. Current Opinion in Biotechnology, 2021, 72, 102-111.	6.6	59
261	A soft and stretchable bilayer electrode array with independent functional layers for the next generation of brain machine interfaces. Journal of Neural Engineering, 2020, 17, 056023.	3.5	5
262	Physical and Cognitive Therapy Enhancement Using Game-Based Learning. Lecture Notes in Networks and Systems, 2021, , 343-359.	0.7	0
263	Considering Augmentative and Alternative Communication Research for Brain-Computer Interface Practice. Assistive Technology Outcomes and Benefits, 2019, 13, 1-20.	0.0	2
264	The dorsolateral pre-frontal cortex bi-polar error-related potential in a locked-in patient implanted with a daily use brain–computer interface. Control Theory and Technology, 2021, 19, 444-454.	1.6	0
265	Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Critical Reviews in Biotechnology, 2022, 42, 1180-1212.	9.0	22
266	Neural Decoding Based on Active Learning for Intracortical Brain-Machine Interfaces. , 2020, , .		0
267	Recent advances and current trends in brainâ€computer interface research and their applications. International Journal of Developmental Neuroscience, 2022, 82, 107-123.	1.6	23
268	Brain-Computer Interface: Applications to Speech Decoding and Synthesis to Augment Communication. Neurotherapeutics, 2022, 19, 263-273.	4.4	19

# 269	ARTICLE Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings. NeuroImage, 2022, 250, 118969.	IF 4.2	CITATIONS
270	Motor BMIs Have Entered the Clinical Realm. , 2022, , 1-37.		1
271	Poststroke Cognitive Impairment Research Progress on Application of Brain-Computer Interface. BioMed Research International, 2022, 2022, 1-16.	1.9	4
272	Workshops of the eighth international brain–computer interface meeting: BCIs: the next frontier. Brain-Computer Interfaces, 2022, 9, 69-101.	1.8	4
273	Intracortical Somatosensory Stimulation to Elicit Fingertip Sensations in an Individual With Spinal Cord Injury. Neurology, 2022, 98, .	1.1	36
274	A Vision-Based System Facilitating Communication for Paralytic Patients. Lecture Notes in Electrical Engineering, 2022, , 347-358.	0.4	0
277	Recent advances in wireless epicortical and intracortical neuronal recording systems. Science China Information Sciences, 2022, 65, 1.	4.3	12
278	Evaluating the clinical benefit of brain-computer interfaces for control of a personal computer. Journal of Neural Engineering, 2022, , .	3.5	4
279	An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic. Journal of Neural Engineering, 2022, 19, 026021.	3.5	13
280	Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. Communications Biology, 2022, 5, 214.	4.4	3
281	Indicators and criteria of consciousness: ethical implications for the care of behaviourally unresponsive patients. BMC Medical Ethics, 2022, 23, 30.	2.4	11
282	Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nature Communications, 2022, 13, 1236.	12.8	54
283	Yes/No Classification of EEG data from CLIS patients. , 2021, 2021, 5727-5732.		1
284	Harnessing the Power of Artificial Intelligence in Otolaryngology and the Communication Sciences. JARO - Journal of the Association for Research in Otolaryngology, 2022, 23, 319-349.	1.8	8
285	An SSVEP-based BCI with LEDs visual stimuli using dynamic window CCA algorithm. Biomedical Signal Processing and Control, 2022, 76, 103727.	5.7	4
297	Progress in the development of a fully implantable brain–computer interface: the potential of sensing-enabled neurostimulators. National Science Review, 2022, 9, .	9.5	5
298	Design-development of an at-home modular brain–computer interface (BCI) platform in a case study of cervical spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 2022, 19, .	4.6	5
299	Perovskite nickelate ionotronics for AI and brain-machine interfaces. , 0, 1, .		0

#	Article	IF	CITATIONS
300	What is neurorepresentationalism? From neural activity and predictive processing to multi-level representations and consciousness. Behavioural Brain Research, 2022, 432, 113969.	2.2	11
301	Intracranial brain-computer interface spelling using localized visual motion response. Neurolmage, 2022, 258, 119363.	4.2	4
302	A systematic review of research on augmentative and alternative communication brain-computer interface systems for individuals with disabilities. Frontiers in Human Neuroscience, 0, 16, .	2.0	9
303	脑机接壗è"'ä¿jæ•ē°»å⊷与脑活动调控技æœ⁻. Chinese Science Bulletin, 2022, , .	0.7	0
304	Brain-machine system design and interface development based on an upper limb robotic device : —A validated application to assist in the induction recording of stroke patients. , 2022, , .		0
306	Functional Reconstruction of Denervated Muscle by Xenotransplantation of Neural Cells from Porcine to Rat. International Journal of Molecular Sciences, 2022, 23, 8773.	4.1	1
307	Towards predicting ECoG-BCI performance: assessing the potential of scalp-EEG [*] . Journal of Neural Engineering, 2022, 19, 046045.	3.5	0
308	Flexible electrodes for non-invasive brain–computer interfaces: A perspective. APL Materials, 2022, 10, .	5.1	4
309	lt's Easy asÂABC Framework forÂUser Feedback. Lecture Notes in Computer Science, 2022, , 429-441.	1.3	0
310	Methodological Recommendations for Studies on the Daily Life Implementation of Implantable Communication-Brain–Computer Interfaces for Individuals With Locked-in Syndrome. Neurorehabilitation and Neural Repair, 2022, 36, 666-677.	2.9	4
311	Finger movement and coactivation predicted from intracranial brain activity using extended Block-Term Tensor Regression. Journal of Neural Engineering, 0, , .	3.5	0
312	Artifact propagation in subdural cortical electrostimulation: Characterization and modeling. Frontiers in Neuroscience, 0, 16, .	2.8	2
314	Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis. Nature Communications, 2022, 13, .	12.8	40
315	Learning to control a BMI-driven wheelchair for people with severe tetraplegia. IScience, 2022, 25, 105418.	4.1	10
316	Towards clinical application of implantable brain–computer interfaces for people with late-stage ALS: medical and ethical considerations. Journal of Neurology, 2023, 270, 1323-1336.	3.6	11
317	The Unique and Practical Advantages of Applying A Capability Approach to Brain Computer Interface. Philosophy and Technology, 2022, 35, .	4.3	6
318	Ferromagnetic Flexible Electronics for Brainâ€Wide Selective Neural Recording. Advanced Materials, 2023, 35, .	21.0	2
319	Unsupervised adaptation of an ECoG based brain–computer interface using neural correlates of task performance. Scientific Reports, 2022, 12, .	3.3	6

#	ARTICLE	IF	CITATIONS
320	Interim Safety Profile From the Feasibility Study of the BrainGate Neural Interface System. Neurology, 2023, 100, .	1.1	11
321	Neuroprosthetics: from sensorimotor to cognitive disorders. Communications Biology, 2023, 6, .	4.4	19
322	Benchtop and bedside validation of a low-cost programmable cortical stimulator in a testbed for bi-directional brain-computer-interface research. Frontiers in Neuroscience, 0, 16, .	2.8	4
323	Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients. JAMA Neurology, 2023, 80, 270.	9.0	28
324	Brain-Computer interface control of stepping from invasive electrocorticography upper-limb motor imagery in a patient with quadriplegia. Frontiers in Human Neuroscience, 0, 16, .	2.0	1
325	Sensorimotor Rhythm-Based Brain–Computer Interfaces for Motor Tasks Used in Hand Upper Extremity Rehabilitation after Stroke: A Systematic Review. Brain Sciences, 2023, 13, 56.	2.3	4
326	Neurosurgical Considerations for the Brain Computer Interface. , 2023, , 3567-3604.		0
327	Motor BMIs Have Entered the Clinical Realm. , 2023, , 1381-1417.		0
328	Towards a Wireless Implantable Brain-Machine Interface for Locomotion Control. , 2023, , 1003-1022.		0
329	From basic sciences and engineering to epileptology: A translational approach. Epilepsia, 2023, 64, .	5.1	0
330	EEC: Origin and Measurement. , 2022, , 23-48.		2
331	Nine decades of electrocorticography: A comparison between epidural and subdural recordings. European Journal of Neuroscience, 2023, 57, 1260-1288.	2.6	1
332	Internet of Brain, Thought, Thinking, and Creation. Chinese Journal of Electronics, 2022, 31, 1025-1042.	1.5	2
333	Brain-Computer Interface. , 2023, , 223-248.		1
334	Translational opportunities and challenges of invasive electrodes for neural interfaces. Nature Biomedical Engineering, 2023, 7, 424-442.	22.5	17
335	Ethical Considerations of Endovascular Brain–Computer Interfaces. Advances in Neuroethics, 2023, , 43-63.	0.3	0
336	Deployment of an electrocorticography system with a soft robotic actuator. Science Robotics, 2023, 8, .	17.6	15
337	Walking naturally after spinal cord injury using a brain–spine interface. Nature, 2023, 618, 126-133.	27.8	68

#	Article	IF	Citations
338	Implementation of artificial intelligence and machine learning-based methods in brain–computer interaction. Computers in Biology and Medicine, 2023, 163, 107135.	7.0	1
339	Brain-Computer Interfaces. , 2023, , 343-347.		0
340	SCALO: An Accelerator-Rich Distributed System for Scalable Brain-Computer Interfacing. , 2023, , .		1
341	Cognitive Motor Dissociation: Gap Analysis and Future Directions. Neurocritical Care, 2024, 40, 81-98.	2.4	5
342	Multimodal Wireless-Powered Flexible System for Closed-Loop Neuromodulation. IEEE Sensors Journal, 2023, 23, 17366-17379.	4.7	1
343	Minding Rights: Mapping Ethical and Legal Foundations of †Neurorights'. Cambridge Quarterly of Healthcare Ethics, 2023, 32, 461-481.	0.8	11
344	Current State and Future Directions in the Therapy of ALS. Cells, 2023, 12, 1523.	4.1	9
346	Flexible In–Ga–Zn–N–O synaptic transistors for ultralow-power neuromorphic computing and EEG-based brain–computer interfaces. Materials Horizons, 2023, 10, 4317-4328.	12.2	4
347	Does one size fit all? An update on chronic ventilatory support in different respiratory illnesses. Breathe, 2023, 19, 230046.	1.3	2
348	Continuous synthesis of artificial speech sounds from human cortical surface recordings during silent speech production. Journal of Neural Engineering, 2023, 20, 046019.	3.5	0
349	Brain-Computer Interfaces in Visualized Medicine. Advances in Experimental Medicine and Biology, 2023, , 127-153.	1.6	0
350	Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models. Journal of Neural Engineering, 0, , .	3.5	1
352	Continuous shared control of a mobile robot with brain–computer interface and autonomous navigation for daily assistance. Computational and Structural Biotechnology Journal, 2023, 22, 3-16.	4.1	2
353	The digital motor output: a conceptual framework for a meaningful clinical performance metric for a motor neuroprosthesis. Journal of NeuroInterventional Surgery, 0, , jnis-2023-020316.	3.3	1
354	Wirelessly interfacing sensorâ€equipped implants and MRÂscanners for improved safety and imaging. Magnetic Resonance in Medicine, 0, , .	3.0	1
356	A review on the performance of brain-computer interface systems used for patients with locked-in and completely locked-in syndrome. Cognitive Neurodynamics, 0, , .	4.0	0
357	Using fMRI to localize target regions for implanted brain-computer interfaces in locked-in syndrome. Clinical Neurophysiology, 2023, 155, 1-15.	1.5	0
358	A high-performance neuroprosthesis for speech decoding and avatar control. Nature, 2023, 620, 1037-1046.	27.8	43

		CITATION REPORT		
#	Article		IF	Citations
359	Brain implants that enable speech pass performance milestones. Nature, 2023, 620, 954-	955.	27.8	2
360	Research hotspots and trends of brain-computer interface technology in stroke: a bibliom and visualization analysis. Frontiers in Neuroscience, 0, 17, .	etric study	2.8	7
361	Digital Alternative Communication for Individuals with Amyotrophic Lateral Sclerosis: Wh Have. Journal of Clinical Medicine, 2023, 12, 5235.	at We	2.4	1
362	Review of Neural Interfaces: Means for Establishing Brain–Machine Communication. SN Science, 2023, 4, .	Computer	3.6	0
363	Assessing focus through ear-EEG: a comparative study between conventional cap EEG and and around-the-ear EEG systems. Frontiers in Neuroscience, 0, 17, .	l mobile in-	2.8	1
364	Brainmask: an ultrasoft and moist micro-electrocorticography electrode for accurate positi and long-lasting recordings. Microsystems and Nanoengineering, 2023, 9, .	ioning	7.0	0
365	Chronic subdural electrocorticography in nonhuman primates by an implantable wireless brain-machine interfaces. Frontiers in Neuroscience, 0, 17, .	levice for	2.8	0
366	How Does Artificial Intelligence Contribute to iEEG Research?. Studies in Neuroscience, Ps and Behavioral Economics, 2023, , 761-802.	ychology	0.3	2
367	Association between lesion location and sensorimotor rhythms in stroke $\hat{a} {\in} ``$ a systematic narrative synthesis. Neurological Sciences, 0, , .	review with	1.9	0
368	Suppression of cortical electrostimulation artifacts using pre-whitening and null projectio of Neural Engineering, 2023, 20, 056018.	n. Journal	3.5	0
369	Subcortical implantation of a passive microchip in rodents $\hat{a} \in \hat{a}$ an observational proof-of-c study. Brain-Computer Interfaces, 0, , 1-10.	oncept	1.8	0
371	Power Budget of a Skull Unit in a Fully-Implantable Brain-Computer Interface: Bio-Heat Mo Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 4029-4039.	odel. IEEE	4.9	0
372	Stable Decoding from a Speech BCI Enables Control for an Individual with ALS without Re for 3 Months. Advanced Science, 2023, 10, .	calibration	11.2	1
373	Boosting brain–computer interfaces with functional electrical stimulation: potential app people with locked-in syndrome. Journal of NeuroEngineering and Rehabilitation, 2023, 20	plications in), .	4.6	0
374	Surgical Implantation of Brain Computer Interfaces. JAMA Surgery, 2024, 159, 219.		4.3	0
375	Advanced Electrode Technologies for Noninvasive Brain–Computer Interfaces. ACS Nan	o, 0, , .	14.6	0
376	It takes two (seconds): decreasing encoding time for two-choice functional near-infrared spectroscopy brain–computer interface communication. Neurophotonics, 2023, 10, .		3.3	0
378	Endovascular Brain-Computer Interfaces in Poststroke Paralysis. Stroke, 2024, 55, 474-48	3.	2.0	0

	CITATION	KEPORT	
#	Article	IF	CITATIONS
379	Feasibility of decoding visual information from EEG. Brain-Computer Interfaces, 0, , 1-28.	1.8	0
380	Technological trends in medical robotic sensing with soft electronic skin. Sensors & Diagnostics, 2024, 3, 218-237.	3.8	0
381	Dynamic decomposition graph convolutional neural network for SSVEP-based brain–computer interface. Neural Networks, 2024, 172, 106075.	5.9	0
382	Applications of Brain Computer Interface in Present Healthcare Setting. Artificial Intelligence, 0, , .	2.3	0
383	Venous Procedures. Contemporary Medical Imaging, 2023, , 583-637.	0.4	0
384	Highly Generalizable Spelling Using a Silent-Speech BCI in a Person with Severe Anarthria. Springer Briefs in Electrical and Computer Engineering, 2024, , 21-28.	0.5	0
385	Digital Bridge to Restore Voluntary Control of Leg Movements After Paralysis. Springer Briefs in Electrical and Computer Engineering, 2024, , 49-57.	0.5	0
386	Brain-computer interface paradigms and neural coding. Frontiers in Neuroscience, 0, 17, .	2.8	0
387	Update on How to Approach a Patient with Locked-In Syndrome and Their Communication Ability. Brain Sciences, 2024, 14, 92.	2.3	0
389	Decoding Single and Paired Phonemes Using 7T Functional MRI. Brain Topography, 0, , .	1.8	0
390	Mind-Controlled Optical Manipulation. ACS Photonics, 2024, 11, 1213-1220.	6.6	0
391	Mind-reading devices are revealing the brain's secrets. Nature, 2024, 626, 706-708.	27.8	0