A brain–spine interface alleviating gait deficits after a

Nature 539, 284-288 DOI: 10.1038/nature20118

Citation Report

#	Article	IF	CITATIONS
1	Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Frontiers in Neuroscience, 2016, 10, 584.	2.8	121
2	Correlation of impedance and effective electrode area of chondroitin sulphate doped PEDOT modified electrodes. Synthetic Metals, 2016, 222, 338-343.	3.9	5
3	Neural interfaces take another step forward. Nature, 2016, 539, 177-178.	27.8	17
4	Surgical, ethical, and psychosocial considerations in human head transplantation. International Journal of Surgery, 2017, 41, 190-195.	2.7	18
5	Review: Human Intracortical Recording and Neural Decoding for Brain–Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1687-1696.	4.9	80
6	An overview of online based platforms for sharing and analyzing electrophysiology data from big data perspective. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2017, 7, e1206.	6.8	9
7	Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury. Journal of Neurophysiology, 2017, 118, 2171-2180.	1.8	72
8	Neuroprosthetics: Restoring multi-joint motor control. Nature Biomedical Engineering, 2017, 1, .	22.5	7
9	A Fully Integrated Wireless SoC for Motor Function Recovery After Spinal Cord Injury. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 497-509.	4.0	55
10	Gentler alternatives to chips in the brain. Nature, 2017, 544, 416-416.	27.8	2
11	Opening the gait. Nature Reviews Neuroscience, 2017, 18, 4-4.	10.2	0
12	An engineered home environment for untethered data telemetry from nonhuman primates. Journal of Neuroscience Methods, 2017, 288, 72-81.	2.5	6
13	Nanomaterials for stimulating nerve growth. Science, 2017, 356, 1010-1011.	12.6	62
14	Towards closed-loop neuromodulation: a wirelessÂminiaturized neural implant SoC. , 2017, 10194, .		2
15	Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies. Proceedings of SPIE, 2017, , .	0.8	2
16	Neurophysiology and neural engineering: a review. Journal of Neurophysiology, 2017, 118, 1292-1309.	1.8	30
17	Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet, The, 2017, 389, 1821-1830.	13.7	632
18	Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiological Reviews, 2017, 97, 767-837.	28.8	409

		CITATION REPORT		
#	Article	IF		CITATIONS
19	The quest for miniaturized soft bioelectronic devices. Nature Biomedical Engineering, 2017, 1, .	22	2.5	103
20	Brain–Machine Interface Control Algorithms. IEEE Transactions on Neural Systems and Rehab Engineering, 2017, 25, 1725-1734.	ilitation 4.9	9	58
21	Central nervous system microstimulation: Towards selective micro-neuromodulation. Current Opinion in Biomedical Engineering, 2017, 4, 65-77.	3.4	4	12
22	In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskele Function. Scientific Reports, 2017, 7, 13465.	tal 3.	3	58
23	Stroke recovery and rehabilitation in 2016: a year in review of basic science and clinical science Stroke and Vascular Neurology, 2017, 2, 222-229.	3.5	3	15
24	Spinal cord stimulation in primary progressive freezing of gait. Movement Disorders, 2017, 32,	1336-1337. 3.9	9	11
25	A novel paraplegia model in awake behaving macaques. Journal of Neurophysiology, 2017, 118,	1800-1808. 1.8	8	6
26	Toward Bioelectronic Medicine—Neuromodulation of Small Peripheral Nerves Using Flexible N Clip. Advanced Science, 2017, 4, 1700149.	eural 11	.2	76
27	Design of miniaturized wireless power receivers for mm-sized implants. , 2017, , .			13
28	Experimental animal models of Parkinson's disease: A transition from assessing symptomatolog α-synuclein targeted disease modification. Experimental Neurology, 2017, 298, 172-179.	y to 4.1	1	45
29	Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal opportunity promotes lasting increases in motor responses. Journal of Physiology, 2017, 595, 6953-6968.	cord 2.0	9	52
30	Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking. NeuroImage, 2017, 159, 403-416.	4.5	2	148
31	Micro-Hermetic Packaging Technology for Active Implantable Neural Interfaces. , 2017, , .			7
32	Therapeutic Stimulation for Restoration of Function After Spinal Cord Injury. Physiology, 2017, 391-398.	32, 3	1	42
33	Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces. Scientific Reports, 2017, 7, 7395.	3.6	3	33
34	What can neuronal populations tell us about cognition?. Current Opinion in Neurobiology, 201 48-57.	7, 46, 4.:	2	9
35	Injecting Instructions into Premotor Cortex. Neuron, 2017, 96, 1282-1289.e4.	8.	1	23
36	Neuroplasticity and its relevance for multiple sclerosis. Neurodegenerative Disease Managemer 7, 31-33.	t, 2017, 2.:	2	5

#	Article	IF	CITATIONS
37	Changes in cortical network connectivity with long-term brain-machine interface exposure after chronic amputation. Nature Communications, 2017, 8, 1796.	12.8	19
38	Impact of the localization of dendritic calcium persistent inward current on the input-output properties of spinal motoneuron pool: a computational study. Journal of Applied Physiology, 2017, 123, 1166-1187.	2.5	5
39	Nanodevice Arrays for Peripheral Nerve Fascicle Activation Using Ultrasound Energy-Harvesting. IEEE Nanotechnology Magazine, 2017, 16, 919-930.	2.0	14
40	A sub-10mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC. , 2017, , .		21
41	Editorial. Advancement in brain–machine interfaces for patients with tetraplegia: neurosurgical perspective. Neurosurgical Focus, 2017, 43, E5.	2.3	9
42	Influence of trans-spinal magnetic stimulation in electrophysiological recordings for closed-loop rehabilitative systems. , 2017, 2017, 2518-2521.		12
43	Hybrid hermetic housings for active implantable neural device. , 2017, , .		0
44	Identifying and understanding gait deviations: critical review and perspectives. Movement and Sports Sciences - Science Et Motricite, 2017, , 77-88.	0.3	9
45	Human Locomotion in Hypogravity: From Basic Research to Clinical Applications. Frontiers in Physiology, 2017, 8, 893.	2.8	31
46	The Hypothesis of Connecting Two Spinal Cords as a Way of Sharing Information between Two Brains and Nervous Systems. Frontiers in Psychology, 2017, 08, 105.	2.1	4
47	Surgical Neurostimulation for Spinal Cord Injury. Brain Sciences, 2017, 7, 18.	2.3	41
48	Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review. Frontiers in Neurorobotics, 2017, 11, 59.	2.8	71
49	Factors Affecting Volume Changes of the Somatosensory Cortex in Patients with Spinal Cord Injury: To Be Considered for Future Neuroprosthetic Design. Frontiers in Neurology, 2017, 8, 662.	2.4	7
50	State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats. Frontiers in Neuroscience, 2017, 11, 269.	2.8	1
51	Restoration of Hindlimb Movements after Complete Spinal Cord Injury Using Brain-Controlled Functional Electrical Stimulation. Frontiers in Neuroscience, 2017, 11, 715.	2.8	16
52	Neurobionics and the brain–computer interface: current applications and future horizons. Medical Journal of Australia, 2017, 206, 363-368.	1.7	52
53	A fully implantable wireless neural interface for simultaneous recording from multiple sites of peripheral nerves in free moving animal. , 2017, , .		1
54	Neurotrophinâ€3 released from implant of tissueâ€engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. Journal of Biomedical Materials Research - Part A, 2018, 106, 2158-2170.	4.0	37

ARTICLE IF CITATIONS Overview of Recent Development on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 3.6 42 165-177. Controlled Information Transfer Through An In Vivo Nervous System. Scientific Reports, 2018, 8, 2298. 3.3 24 Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies 3.5 41 to the spinal cord. Journal of Neural Engineering, 2018, 15, 026024. A brain-spinal interface (BSI) system-on-chip (SoC) for closed-loop cortically-controlled intraspinal microstimulation. Analog Integrated Circuits and Signal Processing, 2018, 95, 1-16. Differential changes in the spinal segmental locomotor output in Hereditary Spastic Paraplegia. 1.5 20 Clinical Neurophysiology, 2018, 129, 516-525. Brain–Machine Interfaces. , 2018, , 197-218. Recent advances in neural dust: towards a neural interface platform. Current Opinion in 4.2 81 Neurobiology, 2018, 50, 64-71. Closed-loop control of trunk posture improves locomotion through the regulation of leg 3.3 proprioceptive feedback after spinal cord injury. Scientific Reports, 2018, 8, 76. Dynamic Neuroscience., 2018,,. 9 Are We Ready for a Human Head Transplant? The Obstacles That Must Be Overcome. Current Transplantation Reports, 2018, 5, 189-198. Brain-computer interfaces based on intracortical recordings of neural activity for restoration of 1 movement and communication of people with paralysis., 2018,,. Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord 14.8 228 contusion. Nature Neuroscience, 2018, 21, 576-588. Sculpting neurotransmission during synaptic development by 2D nanostructured interfaces. 3.3 28 Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2521-2532. A Materials Roadmap to Functional Neural Interface Design. Advanced Functional Materials, 2018, 28, 14.9 266 1701269. Digital implementation of Hodgkinâ€"Huxley neuron model for neurological diseases studies. Artificial 1.2 24 Life and Robotics, 2018, 23, 10-14. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomaterialia, 89 2018, 65, 283-291. An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 3.4 70 446-451. Cortical electrical stimulation in female rats with a cervical spinal cord injury to promote axonal

CITATION REPORT

outgrowth. Journal of Neuroscience Research, 2018, 96, 852-862.

#

55

57

58

59

61

63

64

65

67

69

#	Article	IF	CITATIONS
73	Distributed stimulation increases force elicited with functional electrical stimulation. Journal of Neural Engineering, 2018, 15, 026001.	3.5	16
74	Longâ€ŧerm anesthetic protocol in rats: feasibility in electrophysiology studies in visual prosthesis. Veterinary Ophthalmology, 2018, 21, 290-297.	1.0	7
75	Restoring Motor Functions After Stroke: Multiple Approaches and Opportunities. Neuroscientist, 2018, 24, 400-416.	3.5	60
76	Control of Human Motor Rehabilitation Devices. Human Physiology, 2018, 44, 686-695.	0.4	1
77	Vestibulospinal and Corticospinal Modulation of Lumbosacral Network Excitability in Human Subjects. Frontiers in Physiology, 2018, 9, 1746.	2.8	11
78	Innovations in electrical stimulation harness neural plasticity to restore motor function. Bioelectronics in Medicine, 2018, 1, 251-263.	2.0	5
79	Selective Recruitment of Arm Motoneurons in Nonhuman Primates Using Epidural Electrical Stimulation of the Cervical Spinal Cord. , 2018, 2018, 1424-1427.		10
80	Brain–Computer Interfaces. , 2018, , 341-356.		2
81	Invasive Brain–Computer Interfaces for Functional Restoration. , 2018, , 379-391.		1
82	Invasive Brain-Computer Interfaces and Neural Recordings From Humans. Handbook of Behavioral Neuroscience, 2018, 28, 527-539.	0.7	7
83	Implantable Neural Probes for Brain-Machine Interfaces ? Current Developments and Future Prospects. Experimental Neurobiology, 2018, 27, 453-471.	1.6	45
84	Insulin-like Growth Factor-1 Receptor Dictates Beneficial Effects of Treadmill Training by Regulating Survival and Migration of Neural Stem Cell Grafts in the Injured Spinal Cord. Experimental Neurobiology, 2018, 27, 489-507.	1.6	21
85	Motor Neuroprostheses. , 2018, 9, 127-148.		6
86	Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. Journal of Physical Chemistry B, 2018, 122, 10403-10423.	2.6	116
87	Is Technology for Orthostatic Hypotension Ready for Primetime?. PM and R, 2018, 10, S249-S263.	1.6	2
88	Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nature Medicine, 2018, 24, 1677-1682.	30.7	416
89	A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nature Communications, 2018, 9, 4403.	12.8	38
90	Targeted neurotechnology restores walking in humans with spinal cord injury. Nature, 2018, 563, 65-71.	27.8	708

#	Article	IF	CITATIONS
91	Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nature Neuroscience, 2018, 21, 1728-1741.	14.8	247
92	Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nature Protocols, 2018, 13, 2031-2061.	12.0	96
93	Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurology, The, 2018, 17, 905-917.	10.2	119
94	EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots. Frontiers in Human Neuroscience, 2018, 12, 312.	2.0	151
95	Using the sEMG signal representativity improvement towards upper-limb movement classification reliability. Biomedical Signal Processing and Control, 2018, 46, 182-191.	5.7	10
96	Toward advanced neural interfaces for the peripheral nervous system (PNS) and their future applications. Current Opinion in Biomedical Engineering, 2018, 6, 130-137.	3.4	34
97	Intraoperative monitoring of neuromuscular function with soft, skin-mounted wireless devices. Npj Digital Medicine, 2018, 1, .	10.9	22
99	Inhaling xenon ameliorates <scp>l</scp> â€dopaâ€induced dyskinesia in experimental parkinsonism. Movement Disorders, 2018, 33, 1632-1642.	3.9	15
100	Printed microelectrode arrays on soft materials: from PDMS to hydrogels. Npj Flexible Electronics, 2018, 2, .	10.7	95
101	Dissecting spinal cord regeneration. Nature, 2018, 557, 343-350.	27.8	224
102	Block-based robust control of stepping using intraspinal microstimulation. Journal of Neural Engineering, 2018, 15, 046026.	3.5	4
103	Now is the Critical Time for Engineered Neuroplasticity. Neurotherapeutics, 2018, 15, 628-634.	4.4	28
104	Online EEG artifact removal for BCI applications by adaptive spatial filtering. Journal of Neural Engineering, 2018, 15, 056009.	3.5	32
105	Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nature Communications, 2018, 9, 3015.	12.8	108
106	Spike detection: The first step towards an ENG-based neuroprosheses. Journal of Neuroscience Methods, 2018, 308, 294-308.	2.5	8
107	Editorial: Closed-Loop Systems for Next-Generation Neuroprostheses. Frontiers in Neuroscience, 2018, 12, 26.	2.8	27
108	Futurecasting ecological research: the rise of technoecology. Ecosphere, 2018, 9, e02163.	2.2	78
109	Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals. Journal of Neurophysiology, 2018, 120, 343-360.	1.8	91

#	Article	IF	CITATIONS
110	Rehabilitative Training in Animal Models of Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 1970-1985.	3.4	36
111	A speed-adaptive intraspinal microstimulation controller to restore weight-bearing stepping in a spinal cord hemisection model. Journal of Neural Engineering, 2018, 15, 056023.	3.5	19
112	A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance. Journal of Neuroscience Methods, 2018, 306, 103-114.	2.5	7
113	Effect of combined chondroitinase ABC and hyperbaric oxygen therapy in a rat model of spinal cord injury. Molecular Medicine Reports, 2018, 18, 25-30.	2.4	7
114	Development of the gait tracking sensor with low power consumption. , 2018, , .		0
115	Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE, 2018, 13, e0192013.	2.5	150
116	Assessing Perturbations to Neural Spiking Response Dynamics Caused By Electrical Microstimulation. , 2018, , .		0
117	Biomechanoâ€Interactive Materials and Interfaces. Advanced Materials, 2018, 30, e1800572.	21.0	93
118	Toward Functional Restoration of the Central Nervous System: A Review of Translational Neuroscience Principles. Neurosurgery, 2019, 84, 30-40.	1.1	20
119	Brain-Machine Interfaces: Powerful Tools for Clinical Treatment and Neuroscientific Investigations. Neuroscientist, 2019, 25, 139-154.	3.5	51
120	Solar Energy Harvesting. , 2019, , 409-419.		0
121	Ultrastretchable and Wireless Bioelectronics Based on Allâ€Hydrogel Microfluidics. Advanced Materials, 2019, 31, e1902783.	21.0	118
122	Viral-Mediated Optogenetic Stimulation of Peripheral Motor Nerves in Non-human Primates. Frontiers in Neuroscience, 2019, 13, 759.	2.8	11
123	Study on Electronic Determination Method of Conduction Pathway of Rat Primary Motor Cortex Nerve Signals in Spinal Cord. , 2019, , .		0
124	Differential activation of lumbar and sacral motor pools during walking at different speeds and slopes. Journal of Neurophysiology, 2019, 122, 872-887.	1.8	18
125	Neurorestorative interventions involving bioelectronic implants after spinal cord injury. Bioelectronic Medicine, 2019, 5, 10.	2.3	22
126	Thoracic Spinal Cord Hemisection Surgery and Open-Field Locomotor Assessment in the Rat. Journal of Visualized Experiments, 2019, , .	0.3	6
127	Neural interfaces by hydrogels. Extreme Mechanics Letters, 2019, 30, 100510.	4.1	51

#	Article	IF	CITATIONS
128	Perovskiteâ€Based Optoelectronic Biointerfaces for Nonâ€Biasâ€Assisted Photostimulation of Cells. Advanced Materials Interfaces, 2019, 6, 1900758.	3.7	7
129	Neurophysiological Characterization of a Non-Human Primate Model of Traumatic Spinal Cord Injury Utilizing Fine-Wire EMG Electrodes. Sensors, 2019, 19, 3303.	3.8	3
130	Lowâ€Frequency Brain Oscillations Track Motor Recovery in Human Stroke. Annals of Neurology, 2019, 86, 853-865.	5.3	39
131	Low-Dimensional Motor Cortex Dynamics Preserve Kinematics Information During Unconstrained Locomotion in Nonhuman Primates. Frontiers in Neuroscience, 2019, 13, 1046.	2.8	14
132	Remarkable hand grip steadiness in individuals with complete spinal cord injury. Experimental Brain Research, 2019, 237, 3175-3183.	1.5	7
133	An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurology, The, 2019, 18, 1112-1122.	10.2	212
134	Highly Sensitive Microstructure-Based Flexible Pressure Sensor for Quantitative Evaluation of Motor Function Recovery after Spinal Cord Injury. Sensors, 2019, 19, 4673.	3.8	10
135	A benchtop system to assess the feasibility of a fully independent and implantable brain-machine interface. Journal of Neural Engineering, 2019, 16, 066043.	3.5	13
136	Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped?. Glia, 2019, 67, 2178-2202.	4.9	58
137	Quantifying the effect of trans-spinal magnetic stimulation on spinal excitability. , 2019, , .		2
138	Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical stimulation. Biomaterials Science, 2019, 7, 4730-4737.	5.4	29
139	Spinal Cord Stimulation for Freezing of Gait: From Bench to Bedside. Frontiers in Neurology, 2019, 10, 905.	2.4	32
140	Functional organization of motor networks in the lumbosacral spinal cord of non-human primates. Scientific Reports, 2019, 9, 13539.	3.3	13
141	Bioelectronic medicine: updates, challenges and paths forward. Bioelectronic Medicine, 2019, 5, 1.	2.3	41
142	Hydrogel bioelectronics. Chemical Society Reviews, 2019, 48, 1642-1667.	38.1	1,267
143	A shape-memory and spiral light-emitting device for precise multisite stimulation of nerve bundles. Nature Communications, 2019, 10, 2790.	12.8	33
144	Spinal cord repair: advances in biology and technology. Nature Medicine, 2019, 25, 898-908.	30.7	323
145	Non-invasive, Brain-controlled Functional Electrical Stimulation for Locomotion Rehabilitation in Individuals with Paraplegia. Scientific Reports, 2019, 9, 6782.	3.3	38

#	Article	IF	CITATIONS
146	Closed-Loop Systems and In Vitro Neuronal Cultures: Overview and Applications. Advances in Neurobiology, 2019, 22, 351-387.	1.8	10
147	A Biohybrid Setup for Coupling Biological and Neuromorphic Neural Networks. Frontiers in Neuroscience, 2019, 13, 432.	2.8	24
148	The impact of modulating the blood–brain barrier on the electrophysiological and histological outcomes of intracortical electrodes. Journal of Neural Engineering, 2019, 16, 046005.	3.5	6
149	Decoding of muscle activity from the sensorimotor cortex in freely behaving monkeys. NeuroImage, 2019, 197, 512-526.	4.2	23
150	Spinal Cord Epidural Stimulation for Lower Limb Motor Function Recovery in Individuals with Motor Complete Spinal Cord Injury. Physical Medicine and Rehabilitation Clinics of North America, 2019, 30, 337-354.	1.3	36
151	Towards neural co-processors for the brain: combining decoding and encoding in brain–computer interfaces. Current Opinion in Neurobiology, 2019, 55, 142-151.	4.2	36
152	Optimized Real-Time Biomimetic Neural Network on FPGA for Bio-hybridization. Frontiers in Neuroscience, 2019, 13, 377.	2.8	33
153	Effect of anesthesia on motor responses evoked by spinal neural prostheses during intraoperative procedures. Journal of Neural Engineering, 2019, 16, 036003.	3.5	11
154	Implantable and wearable sensors. , 2019, , 489-545.		6
155	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144.		0
155 156	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144. Modeling of Brain Computer Interface-aided Training in Rehabilitation. , 2019, , .		0
155 156 157	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144. Modeling of Brain Computer Interface-aided Training in Rehabilitation. , 2019, , . The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nature Reviews Neurology, 2019, 15, 732-745.	10.1	0 0 180
155 156 157 158	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144. Modeling of Brain Computer Interface-aided Training in Rehabilitation. , 2019, , . The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nature Reviews Neurology, 2019, 15, 732-745. Comparative Study of Intraspinal Microstimulation and Epidural Spinal Cord Stimulation. , 2019, 2019, 3795-3798.	10.1	0 0 180 3
155 156 157 158 159	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144. Modeling of Brain Computer Interface-aided Training in Rehabilitation. , 2019, , . The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nature Reviews Neurology, 2019, 15, 732-745. Comparative Study of Intraspinal Microstimulation and Epidural Spinal Cord Stimulation. , 2019, 2019, 3795-3798. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Advanced Healthcare Materials, 2019, 8, e1801345.	10.1	0 0 180 3 32
155 156 157 158 159 160	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144. Modeling of Brain Computer Interface-aided Training in Rehabilitation. , 2019, , . The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nature Reviews Neurology, 2019, 15, 732-745. Comparative Study of Intraspinal Microstimulation and Epidural Spinal Cord Stimulation. , 2019, 2019, 3795-3798. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Advanced Healthcare Materials, 2019, 8, e1801345. Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation. Current Opinion in Neurology, 2019, 32, 828-835.	10.1 7.6 3.6	0 0 180 3 32 44
155 156 157 158 159 160	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144. Modeling of Brain Computer Interface-aided Training in Rehabilitation. , 2019, , . The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nature Reviews Neurology, 2019, 15, 732-745. Comparative Study of Intraspinal Microstimulation and Epidural Spinal Cord Stimulation. , 2019, 2019, 3795-3798. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Advanced Healthcare Materials, 2019, 8, e1801345. Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation. Current Opinion in Neurology, 2019, 32, 828-835. Effects of Athermal Shortwave Diathermy Treatment on Somatosensory Evoked Potentials and Motor Evoked Potentials in Rats With Spinal Cord Injury. Spine, 2019, 44, E749-E758.	10.1 7.6 3.6 2.0	0 0 180 3 32 44 7
155 156 157 158 159 160 161	RF power transmission and its considerations for ECoG implants. , 2019, , 121-144. Modeling of Brain Computer Interface-aided Training in Rehabilitation. , 2019, , . The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nature Reviews Neurology, 2019, 15, 732-745. Comparative Study of Intraspinal Microstimulation and Epidural Spinal Cord Stimulation. , 2019, 2019, 3795-3798. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Advanced Healthcare Materials, 2019, 8, e1801345. Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation. Current Opinion in Neurology, 2019, 32, 828-835. Effects of Athermal Shortwave Diathermy Treatment on Somatosensory Evoked Potentials and Motor Evoked Potentials in Rats With Spinal Cord Injury. Spine, 2019, 44, E749-E758. Induced NB-3 Limits Regenerative Potential of Serotonergic Axons after Complete Spinal Transection. Journal of Neurotrauma, 2019, 36, 436-447.	10.1 7.6 3.6 2.0 3.4	0 0 180 3 3 2 4 4 7 3

#	Article	IF	CITATIONS
164	Closed-Loop Neuromodulation in Physiological and Translational Research. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034314.	6.2	34
165	Brain-Computer Interface (BCI). , 2019, , 143-152.		1
166	Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis. Journal of Neurotrauma, 2019, 36, 1451-1460.	3.4	56
167	A walk on the wild side: a review of physiotherapy for exotics and zoo animals. Veterinary Nursing Journal, 2019, 34, 33-47.	0.0	5
168	Neurologic Medical Device Overview for Pathologists. Toxicologic Pathology, 2019, 47, 250-263.	1.8	4
169	Development of a motor and somatosensory evoked potentials-guided spinal cord Injury model in non-human primates. Journal of Neuroscience Methods, 2019, 311, 200-214.	2.5	9
170	Neurocognitive Benefits of Physiotherapy for Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 2028-2035.	3.4	30
171	Biomechatronic Applications of Brain-Computer Interfaces. , 2019, , 129-175.		6
172	Embodiment in Neuro-engineering Endeavors: Phenomenological Considerations and Practical Implications. Neuroethics, 2019, 12, 231-242.	2.8	8
173	Mymou: A low-cost, wireless touchscreen system for automated training of nonhuman primates. Behavior Research Methods, 2019, 51, 2559-2572.	4.0	16
174	The brain during free movement – What can we learn from the animal model. Brain Research, 2019, 1716, 3-15.	2.2	11
175	A versatile robotic platform for the design of natural, three-dimensional reaching and grasping tasks in monkeys. Journal of Neural Engineering, 2020, 17, 016004.	3.5	10
176	Impact of Long Term Plasticity on Information Transmission Over Neuronal Networks. IEEE Transactions on Nanobioscience, 2020, 19, 25-34.	3.3	4
177	Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review. Neurorehabilitation and Neural Repair, 2020, 34, 3-12.	2.9	79
178	A Review of Different Stimulation Methods for Functional Reconstruction and Comparison of Respiratory Function after Cervical Spinal Cord Injury. Applied Bionics and Biomechanics, 2020, 2020, 1-12.	1.1	8
179	Epidural Electrical Stimulation: A Review of Plasticity Mechanisms That Are Hypothesized to Underlie Enhanced Recovery From Spinal Cord Injury With Stimulation. Frontiers in Molecular Neuroscience, 2020, 13, 163.	2.9	32
180	Spinal cord stimulation and rehabilitation in an individual with chronic complete L1 paraplegia due to a conus medullaris injury: motor and functional outcomes at 18 months. Spinal Cord Series and Cases, 2020, 6, 96.	0.6	6
181	The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist, 2022, 28, 163-179.	3.5	16

#	Article	IF	CITATIONS
182	New Concepts on the Implementation of Motor and Cognitive Functions in the Brain: Facts and Hypotheses. Human Physiology, 2020, 46, 343-350.	0.4	1
183	Intelligent Control of a Spinal Prosthesis to Restore Walking After Neural Injury: Recent Work and Future Possibilities. Journal of Medical Robotics Research, 2020, 05, 2041003.	1.2	4
184	Spatiotemporal Maps of Proprioceptive Inputs to the Cervical Spinal Cord During Three-Dimensional Reaching and Grasping. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1668-1677.	4.9	8
186	Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 955-965.	1.8	4
187	Dorsal Column Nuclei Neural Signal Features Permit Robust Machine-Learning of Natural Tactile- and Proprioception-Dominated Stimuli. Frontiers in Systems Neuroscience, 2020, 14, 46.	2.5	2
188	A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain–machine interfaces. Nature Biomedical Engineering, 2020, 4, 973-983.	22.5	73
189	Developing Collaborative Platforms to Advance Neurotechnology and Its Translation. Neuron, 2020, 108, 286-301.	8.1	29
190	Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nature Biomedical Engineering, 2020, 4, 1010-1022.	22.5	78
191	Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network. Journal of Neural Engineering, 2020, 17, 046011.	3.5	60
192	The future of upper extremity rehabilitation robotics: research and practice. Muscle and Nerve, 2020, 61, 708-718.	2.2	22
193	"l Felt the Ballâ€â€"The Future of Spine Injury Recovery. World Neurosurgery, 2020, 140, 602-613.	1.3	1
194	Pavlovian control of intraspinal microstimulation to produce over-ground walking. Journal of Neural Engineering, 2020, 17, 036002.	3.5	12
195	A computational outlook on neurostimulation. Bioelectronic Medicine, 2020, 6, 10.	2.3	20
196	Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death and Disease, 2020, 11, 439.	6.3	56
197	Interfacing With Alpha Motor Neurons in Spinal Cord Injury Patients Receiving Trans-spinal Electrical Stimulation. Frontiers in Neurology, 2020, 11, 493.	2.4	12
198	Exoskeleton Walk Training in Paralyzed Individuals Benefits From Transcutaneous Lumbar Cord Tonic Electrical Stimulation. Frontiers in Neuroscience, 2020, 14, 416.	2.8	40
199	Asiaticoside Inhibits Neuronal Apoptosis and Promotes Functional Recovery After Spinal Cord Injury in Rats. Journal of Molecular Neuroscience, 2020, 70, 1988-1996.	2.3	13
200	Brain-computer interfaces in neurologic rehabilitation practice. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 101-116.	1.8	43

#	ARTICLE	IF	CITATIONS
201	Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications. Analog Circuits and Signal Processing Series, 2020, , .	0.3	4
202	Brain-computer interfaces for basic neuroscience. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 233-247.	1.8	2
203	Artificially induced joint movement control with musculoskeletal model-integrated iterative learning algorithm. Biomedical Signal Processing and Control, 2020, 59, 101843.	5.7	6
204	Emerging Modalities and Implantable Technologies for Neuromodulation. Cell, 2020, 181, 115-135.	28.9	152
205	Switchless Multiplexing of Graphene Active Sensor Arrays for Brain Mapping. Nano Letters, 2020, 20, 3528-3537.	9.1	42
206	A 300 Mbps 37 pJ/bit UWB-Based Transcutaneous Optical Biotelemetry Link. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1-1.	4.0	9
207	Axon regeneration. , 2020, , 201-215.		0
208	Tissue engineering and regenerative medicine in spinal cord injury repair. , 2020, , 291-332.		1
209	Spinal cord stimulation for the recovery of function following spinal cord injury. , 2020, , 487-509.		0
210	Neuroprotective effect of novel celecoxib derivatives against spinal cord injury via attenuation of COX-2, oxidative stress, apoptosis and inflammation. Bioorganic Chemistry, 2020, 101, 104044.	4.1	7
211	Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. Advanced Materials, 2020, 32, e1907478.	21.0	42
213	Efficient Wireless Power Transfer With Capacitively Segmented RF Coils. IEEE Access, 2020, 8, 24397-24415.	4.2	13
214	Accurate, Very Low Computational Complexity Spike Sorting Using Unsupervised Matched Subspace Learning. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 221-231.	4.0	13
215	A Brain to Spine Interface for Transferring Artificial Sensory Information. Scientific Reports, 2020, 10, 900.	3.3	15
216	Novel Activity Detection Algorithm to Characterize Spontaneous Stepping During Multimodal Spinal Neuromodulation After Mid-Thoracic Spinal Cord Injury in Rats. Frontiers in Systems Neuroscience, 2019, 13, 82.	2.5	2
217	Bacomics: a comprehensive cross area originating in the studies of various brain–apparatus conversations. Cognitive Neurodynamics, 2020, 14, 425-442.	4.0	11
218	Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface. Cell, 2020, 181, 763-773.e12.	28.9	94
219	Progress in Brainâ€Compatible Interfaces with Soft Nanomaterials. Advanced Materials, 2020, 32, e1907522.	21.0	29

#	Article	IF	CITATIONS
220	Electronic neural interfaces. Nature Electronics, 2020, 3, 191-200.	26.0	105
221	Direct Current Stimulation for Improved Osteogenesis of MC3T3 Cells Using Mineralized Conductive Polyaniline. ACS Biomaterials Science and Engineering, 2021, 7, 852-861.	5.2	14
222	Epidural and Transcutaneous Spinal Cord Stimulation Strategies for Motor Recovery After Spinal Cord Injury. , 2021, , 167-190.		1
223	Neuromodulation for Gait Disorders. Contemporary Clinical Neuroscience, 2021, , 485-520.	0.3	0
224	Brain-Computer-Spinal Interface Restores Upper Limb Function After Spinal Cord Injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1233-1242.	4.9	17
225	Influence of spinal cord injury on core regions of motor function. Neural Regeneration Research, 2021, 16, 567.	3.0	6
226	Ipsi- and Contralateral Oligo- and Polysynaptic Reflexes in Humans Revealed by Low-Frequency Epidural Electrical Stimulation of the Lumbar Spinal Cord. Brain Sciences, 2021, 11, 112.	2.3	5
227	Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature, 2021, 590, 308-314.	27.8	96
228	Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nature Communications, 2021, 12, 435.	12.8	92
229	Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered?. Neural Regeneration Research, 2021, 16, 405.	3.0	30
230	Restoring upper extremity function with brain-machine interfaces. International Review of Neurobiology, 2021, 159, 153-186.	2.0	0
231	Addition of angled rungs to the horizontal ladder walking task for more sensitive probing of sensorimotor changes. PLoS ONE, 2021, 16, e0246298.	2.5	7
232	Machine learning classifies predictive kinematic features in a mouse model of neurodegeneration. Scientific Reports, 2021, 11, 3950.	3.3	9
233	Repetitive Transcranial Magnetic Stimulation (rTMS) Improves the Gait Disorders of Rats Under Simulated Microgravity Conditions Associated With the Regulation of Motor Cortex. Frontiers in Physiology, 2021, 12, 587515.	2.8	6
234	Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engineering, 2023, 7, 405-423.	22.5	141
235	The Comparative Effects of Mesenchymal Stem Cell Transplantation Therapy for Spinal Cord Injury in Humans and Animal Models: A Systematic Review and Meta-Analysis. Biology, 2021, 10, 230.	2.8	18
236	How to Identify Responders and Nonresponders to Dorsal Root Ganglionâ€Stimulation Aimed at Eliciting Motor Responses in Chronic Spinal Cord Injury: Post Hoc Clinical and Neurophysiological Tests in a Case Series of Five Patients. Neuromodulation, 2021, 24, 719-728.	0.8	1
237	Simultaneous Power Feedback and Maximum Efficiency Point Tracking for Miniaturized RF Wireless Power Transfer Systems. Sensors, 2021, 21, 2023.	3.8	7

#	Article	IF	CITATIONS
238	Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury. Nature Communications, 2021, 12, 1925.	12.8	35
239	An intracortical neuroprosthesis immediately alleviates walking deficits and improves recovery of leg control after spinal cord injury. Science Translational Medicine, 2021, 13, .	12.4	32
240	The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. Advanced Science, 2021, 8, 2002693.	11.2	47
241	Identification and analysis of spinal cord injury subtypes using weighted gene co-expression network analysis. Annals of Translational Medicine, 2021, 9, 466-466.	1.7	8
243	Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. Journal of Neurotrauma, 2021, 38, 1251-1266.	3.4	14
244	The Materials Science Foundation Supporting the Microfabrication of Reliable Polyimide–Metal Neuroelectronic Interfaces. Advanced Materials Technologies, 2021, 6, 2100149.	5.8	10
245	Traumatic Spinal Cord Disorders: Current Topics and Future Directions. Seminars in Neurology, 2021, 41, 247-255.	1.4	5
246	Disease modifying treatment of spinal cord injury with directly reprogrammed neural precursor cells in non-human primates. World Journal of Stem Cells, 2021, 13, 452-469.	2.8	4
247	Posture-Transformed Monkey Phantoms Developed from a Visible Monkey. Applied Sciences (Switzerland), 2021, 11, 4430.	2.5	2
248	Swimming Exercise Promotes Post-injury Axon Regeneration and Functional Restoration through AMPK. ENeuro, 2021, 8, ENEURO.0414-20.2021.	1.9	8
249	Population Activity in Motor Cortex is Influenced by the Contexts of the Motor Behavior. , 2021, , .		2
250	Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nature Communications, 2021, 12, 3689.	12.8	38
251	Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports, 2021, 918, 1-133.	25.6	88
253	Hindlimb Somatosensory Information Influences Trunk Sensory and Motor Cortices to Support Trunk Stabilization. Cerebral Cortex, 2021, 31, 5165-5187.	2.9	4
254	From the field to the lab and back: neuroethology of primate social behavior. Current Opinion in Neurobiology, 2021, 68, 76-83.	4.2	20
255	Automation of training and testing motor and related tasks in pre-clinical behavioural and rehabilitative neuroscience. Experimental Neurology, 2021, 340, 113647.	4.1	8
256	Spinal cord regeneration: A brief overview of the present scenario and a sneak peek into the future. Biotechnology Journal, 2021, 16, e2100167.	3.5	7
257	Application of non-human primates' behavioral research in the study of spinal cord injury. Scientia Sinica Vitae, 2021, , .	0.3	0

#	Article	IF	Citations
258	A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	71
259	Importance of brain alterations in spinal cord injury. Science Progress, 2021, 104, 003685042110311.	1.9	7
260	Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury. Neurosurgery Clinics of North America, 2021, 32, 407-417.	1.7	3
261	The Natural History of Spinal Cord Injury. Neurosurgery Clinics of North America, 2021, 32, 315-321.	1.7	1
262	A Versatile Hermetically Sealed Microelectronic Implant for Peripheral Nerve Stimulation Applications. Frontiers in Neuroscience, 2021, 15, 681021.	2.8	4
263	Neurochip3: An Autonomous Multichannel Bidirectional Brain-Computer Interface for Closed-Loop Activity-Dependent Stimulation. Frontiers in Neuroscience, 2021, 15, 718465.	2.8	10
265	Compressed Sensing of Extracellular Neurophysiology Signals: A Review. Frontiers in Neuroscience, 2021, 15, 682063.	2.8	4
266	A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. Med, 2021, 2, 912-937.	4.4	16
267	The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews, 2022, 102, 551-604.	28.8	32
268	A markerless platform for ambulatory systems neuroscience. Science Robotics, 2021, 6, eabj7045.	17.6	4
269	Spinal Cord Injury-Induced Changes in Encoding and Decoding of Bipedal Walking by Motor Cortical Ensembles. Brain Sciences, 2021, 11, 1193.	2.3	1
270	Synergistic interaction between sensory inputs and propriospinal signalling underlying quadrupedal locomotion. Journal of Physiology, 2021, 599, 4477-4496.	2.9	0
271	A review of emerging neuroprotective and neuroregenerative therapies in traumatic spinal cord injury. Current Opinion in Pharmacology, 2021, 60, 331-340.	3.5	28
272	Highlights from the 30th Annual Meeting of the Society for the Neural Control of Movement. Journal of Neurophysiology, 2021, 126, 967-975.	1.8	6
273	Alterations of Spinal Epidural Stimulation-Enabled Stepping by Descending Intentional Motor Commands and Proprioceptive Inputs in Humans With Spinal Cord Injury. Frontiers in Systems Neuroscience, 2020, 14, 590231.	2.5	14
274	Cortical stimulation for somatosensory feedback: translation from nonhuman primates to clinical applications. , 2021, , 413-441.		3
275	Spinal cord stimulation for spinal cord injury patients with paralysis: To regain walking and dignity. Tzu Chi Medical Journal, 2021, 33, 29.	1.1	1
276	Brain Co-processors: Using Al to Restore and Augment Brain Function. , 2021, , 1-36.		2

#	Article	IF	CITATIONS
277	Comparative neuroanatomy of the lumbosacral spinal cord of the rat, cat, pig, monkey, and human. Scientific Reports, 2021, 11, 1955.	3.3	46
278	New developments for spinal cord stimulation. International Review of Neurobiology, 2021, 159, 129-151.	2.0	1
279	Information and Communication Theoretical Understanding and Treatment of Spinal Cord Injuries: State-of-The-Art and Research Challenges. IEEE Reviews in Biomedical Engineering, 2023, 16, 332-347.	18.0	9
280	Strategies to Improve Neural Electrode Performance. , 2020, , 173-199.		3
281	Invasive Brain Machine Interface System. Advances in Experimental Medicine and Biology, 2019, 1101, 67-89.	1.6	5
282	Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. Journal of Neurotrauma, 2020, 37, 1933-1953.	3.4	37
292	The Application of Omics Technologies to Study Axon Regeneration and CNS Repair. F1000Research, 2019, 8, 311.	1.6	11
293	State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review. Journal of Neurorestoratology, 2020, 8, 12-25.	2.5	39
294	Validation of a methodology for neuro-urological and lumbosacral stimulation studies in domestic pigs: a humanlike animal model. Journal of Neurosurgery: Spine, 2019, 30, 644-654.	1.7	4
295	Optimizing the neuron-electrode interface for chronic bioelectronic interfacing. Neurosurgical Focus, 2020, 49, E7.	2.3	8
296	Neurological functional evaluation based on accurate motions in big animals with traumatic brain injury. Neural Regeneration Research, 2019, 14, 991.	3.0	3
297	From cortex to cord: motor circuit plasticity after spinal cord injury. Neural Regeneration Research, 2019, 14, 2054.	3.0	52
298	Wireless recording from unrestrained monkeys reveals motor goal encoding beyond immediate reach in frontoparietal cortex. ELife, 2020, 9, .	6.0	35
299	Complex Electrical Stimulation Systems in Motor Function Rehabilitation after Spinal Cord Injury. Complexity, 2021, 2021, 1-16.	1.6	3
300	Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. Journal of Neurophysiology, 2021, 126, 1843-1859.	1.8	26
301	Restoring Sensorimotor Function Through Neuromodulation After Spinal Cord Injury: Progress and Remaining Challenges. Frontiers in Neuroscience, 2021, 15, 749465.	2.8	11
302	Connectomic mapping of brain-spinal cord neural networks: future directions in assessing spinal cord injury at rest. Neuroscience Research, 2021, , .	1.9	1
303	Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials, 2021, 279, 121211.	11.4	24

#	Article	IF	Citations
304	Brain implants allow paralysed monkeys to walk. Nature, 0, , .	27.8	0
305	Probing Cognitive Enhancements of Social "Resonance―– Towards a Aesthetic Community of Sensing and Making Music Together. Kairos: Journal of Philosophy & Science, 2017, 19, 93-133.	0.2	1
306	Study of real-time biomimetic CPG on FPGA: behavior and evolution. Journal of Robotics, Networking and Artificial Life, 2018, 4, 299.	0.4	2
307	Neuronal Communication Channels. , 2018, , 1-8.		0
308	Brain Machine Interface Mediated Neurorehabilitation for Gait Recovery. The Japanese Journal of Rehabilitation Medicine, 2018, 55, 761-766.	0.0	0
309	Snake Robot Controlled by Biomimetic CPGs. Journal of Robotics, Networking and Artificial Life, 2019, 5, 253.	0.4	2
310	Biologisierte Robotik und Biomechatronik. , 2019, , 203-228.		0
312	The Effect of Intraspinal Micro Stimulation With Variable Stimulating Pattern in Adult Rat With Induction of Spinal Cord Injury in the Treatment of Spinal Cord Injuries. International Clinical Neuroscience Journal, 2019, 6, 83-91.	0.1	0
315	Spectral Personas: Exploring the Constitution and Legal Standing of "Virtual Personhood― , 2020, , 21-38.		0
317	Brain–Computer Interfaces for Spinal Cord Injury Rehabilitation. Cognitive Science and Technology, 2020, , 315-328.	0.4	5
321	Motor improvements enabled by spinal cord stimulation combined with physical training after spinal cord injury: review of experimental evidence in animals and humans. Bioelectronic Medicine, 2021, 7, 16.	2.3	25
322	New Stimulation Device to Drive Multiple Transverse Intrafascicular Electrodes and Achieve Highly Selective and Rich Neural Responses. Sensors, 2021, 21, 7219.	3.8	6
325	Neuronal Communication Channels. , 2020, , 1006-1013.		0
326	Dictionary Construction for Accurate and Low-Cost Subspace Learning in Unsupervised Spike Sorting. International Journal of Simulation: Systems, Science and Technology, 0, , .	0.0	1
328	Model of Traumatic Spinal Cord Injury for Evaluating Pharmacologic Treatments in Cynomolgus Macaques (). Comparative Medicine, 2018, 68, 63-73.	1.0	3
329	Technology Integration Methods for Bi-directional Brain-computer Interfaces and XR-based Interventions. Conference Proceedings IEEE International Conference on Systems, Man, and Cybernetics, 2020, 2020, 3695-3701.	0.0	0
330	Biomedical Microtechnologies Beyond Scholarly Impact. Micromachines, 2021, 12, 1471.	2.9	7
331	Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Critical Reviews in Biotechnology, 2022, 42, 1180-1212.	9.0	22

#	Article	IF	CITATIONS
332	Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. Npj Regenerative Medicine, 2021, 6, 81.	5.2	20
333	Recent advances in recording and modulation technologies for next-generation neural interfaces. IScience, 2021, 24, 103550.	4.1	9
334	MRI metrics at the epicenter of spinal cord injury are correlated with the stepping process in rhesus monkeys. Experimental Animals, 2022, 71, 139-149.	1.1	3
335	An Approximate Electromagnetic Model for Optimizing Wireless Charging of Biomedical Implants. IEEE Transactions on Biomedical Engineering, 2022, 69, 1954-1963.	4.2	3
336	Being Outside the Decision-Loop: The Impact of Deep Brain Stimulation and Brain-Computer Interfaces on Autonomy. Analiza I Egzystencja, 2021, 56, 25-52.	0.2	0
337	A review on Virtual Reality and Augmented Reality use-cases of Brain Computer Interface based applications for smart cities. Microprocessors and Microsystems, 2022, 88, 104392.	2.8	47
338	Technology Integration Methods for Bi-directional Brain-computer Interfaces and XR-based Interventions. , 2020, 2020, 3695-3701.		0
339	Women in Neuromodulation: Innovative Contributions to Stereotactic and Functional Neurosurgery. Frontiers in Human Neuroscience, 2021, 15, 756039.	2.0	0
340	Brain–spine interfaces to reverse paralysis. National Science Review, 2022, 9, .	9.5	6
342	Targeting Sensory and Motor Integration for Recovery of Movement After CNS Injury. Frontiers in Neuroscience, 2021, 15, 791824.	2.8	9
343	Motor BMIs Have Entered the Clinical Realm. , 2022, , 1-37.		1
344	Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nature Medicine, 2022, 28, 260-271.	30.7	174
345	Translational research in spinal cord injury – What is in the future?. , 2022, , 587-602.		2
346	Emerging concepts in the clinical management of SCI for the future. , 2022, , 575-585.		0
348	Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Frontiers in Medical Technology, 2022, 4, 693438.	2.5	10
349	A secondary motor area contributing to interlimb coordination during visually guided locomotion inÂtheÂcat. Cerebral Cortex, 2022, 33, 290-315.	2.9	4
350	Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. Journal of Neural Engineering, 2022, 19, 021003.	3.5	2
351	Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods. Advanced Materials, 2022, 34, e2201129.	21.0	41

#	Article	IF	CITATIONS
352	Preclinical upper limb neurorobotic platform to assess, rehabilitate, and develop therapies. Science Robotics, 2022, 7, eabk2378.	17.6	7
353	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	12.6	230
355	Decoding Bilateral Hindlimb Kinematics From Cat Spinal Signals Using Three-Dimensional Convolutional Neural Network. Frontiers in Neuroscience, 2022, 16, 801818.	2.8	4
356	Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Research, 2022, 10, 35.	11.4	64
357	Activity dependent stimulation increases synaptic efficacy in spared pathways in an anesthetized rat model of spinal cord contusion injury. Restorative Neurology and Neuroscience, 2022, 40, 17-33.	0.7	2
359	Bayesian optimization of peripheral intraneural stimulation protocols to evoke distal limb movements. Journal of Neural Engineering, 2021, 18, 066046.	3.5	9
360	Adaptation Strategies for Personalized Gait Neuroprosthetics. Frontiers in Neurorobotics, 2021, 15, 750519.	2.8	1
361	When Spinal Neuromodulation Meets Sensorimotor Rehabilitation: Lessons Learned From Animal Models to Regain Manual Dexterity After a Spinal Cord Injury. Frontiers in Rehabilitation Sciences, 2021, 2, .	1.2	4
362	Leaving flatland: Advances in 3D behavioral measurement. Current Opinion in Neurobiology, 2022, 73, 102522.	4.2	20
374	Treadmill Training for Common Marmoset to Strengthen Corticospinal Connections After Thoracic Contusion Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2022, 16, 858562.	3.7	1
375	Gait regulation of hindlimb based on central pattern generator in rats with a spinal cord injury. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, , 095441192210953.	1.8	0
376	Transhemispheric cortex remodeling promotes forelimb recovery after spinal cord injury. JCI Insight, 2022, 7, .	5.0	4
377	A Subdural Bioelectronic Implant to Record Electrical Activity from the Spinal Cord in Freely Moving Rats. Advanced Science, 2022, 9, e2105913.	11.2	10
379	Chest-scale self-compensated epidermal electronics for standard 6-precordial-lead ECG. Npj Flexible Electronics, 2022, 6, .	10.7	5
382	Management of Acute Spinal Cord Injury: Where Have We Been? Where Are We Now? Where Are We Going?. Journal of Neurotrauma, 2022, 39, 1591-1602.	3.4	8
383	Restoration of complex movement in the paralyzed upper limb. Journal of Neural Engineering, 2022, 19, 046002.	3.5	7
385	Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nature Neuroscience, 2022, 25, 924-934.	14.8	30
386	A narrative review of cortical visual prosthesis systems: the latest progress and significance of nanotechnology for the future. Annals of Translational Medicine, 2022, 10, 716-716.	1.7	6

#	ARTICLE	IF	CITATIONS
390		21.0	28
391	Is Graphene Shortening the Path toward Spinal Cord Regeneration?. ACS Nano, 2022, 16, 13430-13467.	14.6	16
392	Case report: Ultrasound-guided multi-site electroacupuncture stimulation for a patient with spinal cord injury. Frontiers in Neurology, 0, 13, .	2.4	0
393	Chemogenetic modulation of sensory afferents induces locomotor changes and plasticity after spinal cord injury. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	4
394	A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nature Biomedical Engineering, 2023, 7, 511-519.	22.5	59
395	Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury. Experimental Neurology, 2022, 357, 114178.	4.1	13
396	Functional Contribution of Mesencephalic Locomotor Region Nuclei to Locomotor Recovery After Spinal Cord Injury. SSRN Electronic Journal, 0, , .	0.4	0
397	BioSimia, France CNRS network for nonhuman primate biomedical research in infectiology, immunology, and neuroscience. Current Research in Neurobiology, 2022, 3, 100051.	2.3	1
398	Efficient Approximation of Action Potentials with High-Order Shape Preservation in Unsupervised Spike Sorting. , 2022, , .		1
399	From real-time single to multicompartmental Hodgkin-Huxley neurons on FPGA for bio-hybrid systems. , 2022, , .		2
400	Computation of Activating Fields for Approximation of the Orientation-Specific Neural Response to Electrical Stimulation. , 2022, , .		0
401	Artificial Intelligence for Metaverse: A Framework. , 2022, 1, 54-67.		10
402	Fast inference of spinal neuromodulation for motor control using amortized neural networks. Journal of Neural Engineering, 2022, 19, 056037.	3.5	3
403	A Review of Functional Restoration From Spinal Cord Stimulation in Patients With Spinal Cord Injury. Neurospine, 2022, 19, 703-734.	2.9	12
404	Mechanically Tissueâ€Like and Highly Conductive Au Nanoparticles Embedded Elastomeric Fiber Electrodes of Brain–Machine Interfaces for Chronic In Vivo Brain Neural Recording. Advanced Functional Materials, 2022, 32, .	14.9	13
405	Non-invasive brain-spine interface: Continuous control of trans-spinal magnetic stimulation using EEG. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	4
406	Emergence of Distinct Neural Subspaces in Motor Cortical Dynamics during Volitional Adjustments of Ongoing Locomotion. Journal of Neuroscience, 2022, 42, 9142-9157.	3.6	3
407	Spinal Cord Stimulation to Enable Leg Motor Control and Walking in People with Spinal Cord Injury. , 2022, , 369-399.		3

#	Article	IF	CITATIONS
408	Robotic Gait Training in Specific Neurological Conditions: Rationale and Application. , 2022, , 145-188.		0
409	A 16-Channel Neural Recorder with 2.8 nJ/bit, 971.4 kbps sub-2.4 GHz polar transmitter. , 2022, , .		1
410	Tau seeds from patients induce progressive supranuclear palsy pathology and symptoms in primates. Brain, 2023, 146, 2524-2534.	7.6	5
411	The neurons that restore walking after paralysis. Nature, 2022, 611, 540-547.	27.8	83
412	Natural and targeted circuit reorganization after spinal cord injury. Nature Neuroscience, 2022, 25, 1584-1596.	14.8	27
413	Spinal interneurons, motor synergies, and modularity. , 2023, , 171-203.		1
414	A systematic review of computational models for the design of spinal cord stimulation therapies: from neural circuits to patientâ€specific simulations. Journal of Physiology, 2023, 601, 3103-3121.	2.9	5
415	Longitudinal interrogation of sympathetic neural circuits and hemodynamics in preclinical models. Nature Protocols, 2023, 18, 340-373.	12.0	3
416	Training with noninvasive brain–machine interface, tactile feedback, and locomotion to enhance neurological recovery in individuals with complete paraplegia: a randomized pilot study. Scientific Reports, 2022, 12, .	3.3	3
417	Research hotspots and trends for axon regeneration (2000–2021): a bibliometric study and systematic review. Inflammation and Regeneration, 2022, 42, .	3.7	2
418	Toward a fully implantable ecosystem for adaptive neuromodulation in humans: Preliminary experience with the CorTec BrainInterchange device in a canine model. Frontiers in Neuroscience, 0, 16, .	2.8	2
419	Sensory-motor coupling electrical stimulation driven by a bionic Zâ€structured triboelectric nanogenerator improves functional recovery from spinal cord injury. Nano Energy, 2023, 107, 108133.	16.0	6
420	Tuning of motor outputs produced by spinal stimulation during voluntary control of torque directions in monkeys. ELife, 0, 11, .	6.0	1
421	Home-Enclosure-Based Behavioral and Wireless Neural Recording Setup for Unrestrained Rhesus Macaques. ENeuro, 2023, 10, ENEURO.0285-22.2022.	1.9	1
422	Neuroprosthetics: from sensorimotor to cognitive disorders. Communications Biology, 2023, 6, .	4.4	19
423	A Fully Implantable and Programmable Epidural Spinal Cord Stimulation System for Rats With Spinal Cord Injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 818-828.	4.9	3
424	Modulating Brain Activity with Invasive Brain–Computer Interface: A Narrative Review. Brain Sciences, 2023, 13, 134.	2.3	6
425	Stretchable Surface Electrode Arrays Using an Alginate/PEDOT:PSS-Based Conductive Hydrogel for Conformal Brain Interfacing. Polymers, 2023, 15, 84.	4.5	3

#	Article	IF	CITATIONS
426	Brain-Machine Interfaces: From Restoring Sensorimotor Control to Augmenting Cognition. , 2023, , 1343-1380.		0
427	Motor BMIs Have Entered the Clinical Realm. , 2023, , 1381-1417.		Ο
428	Hybrid Robotics and Neuroprosthetics forÂAssociative Neurorehabilitation. , 2023, , 1755-1776.		0
429	Water-soluble conjugated polymers for bioelectronic systems. Materials Horizons, 2023, 10, 1210-1233.	12.2	16
430	Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nature Medicine, 2023, 29, 689-699.	30.7	44
431	Layer-dependent stability of intracortical recordings and neuronal cell loss. Frontiers in Neuroscience, 0, 17, .	2.8	2
432	Durable conducting polymer electrodes pursue low impedance, antifouling, and electrochemical stress tolerance. Applied Surface Science, 2023, 621, 156902.	6.1	0
433	Application of Vagus Nerve Stimulation in Spinal Cord Injury Rehabilitation. World Neurosurgery, 2023, 174, 11-24.	1.3	0
434	Advances in Spinal Cord Stimulation. Bioengineering, 2023, 10, 185.	3.5	6
435	Brain Co-processors: Using AI to Restore and Augment Brain Function. , 2023, , 1225-1260.		1
436	Quantification of early gait development: Expanding the application of Catwalk technology to an infant rhesus macaque model. Journal of Neuroscience Methods, 2023, 388, 109811.	2.5	1
437	Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	10
438	Recent progress and challenges in the treatment of spinal cord injury. Protein and Cell, 2023, 14, 635-652.	11.0	5
439	Functional contribution of mesencephalic locomotor region nuclei to locomotor recovery after spinal cord injury. Cell Reports Medicine, 2023, 4, 100946.	6.5	4
440	Neural Bypasses: Literature Review and Future Directions in Developing Artificial Neural Connections. OBM Neurobiology, 2023, 07, 1-24.	0.6	2
441	Stimulation of spinal cord according to recorded theta hippocampal rhythm during rat move on treadmill. Biomedizinische Technik, 2023, .	0.8	0
442	Intracortical Hindlimb Brain–Computer Interface Systems: A Systematic Review. IEEE Access, 2023, 11, 28119-28139.	4.2	1
443	Review of developments in sensor technology for monitoring of health-related conditions. , 2023, , .		0

~			<u> </u>	
CT	TAT	ION	REDC) R T

#	Article	IF	CITATIONS
444	Activating Endogenous Neurogenesis for Spinal Cord Injury Repair: Recent Advances and Future Prospects. Neurospine, 2023, 20, 164-180.	2.9	3
445	Restoring continuous finger function with temporarily paralyzed nonhuman primates using brain–machine interfaces. Journal of Neural Engineering, 2023, 20, 036006.	3.5	0
446	Motor Neuroprosthesis on Forelimb Function Recovery of Chronic Stroke Rats. , 2023, , .		0
447	Wearable and implantable bioelectronics as ecoâ€friendly and patientâ€friendly integrated nanoarchitectonics for nextâ€generation smart healthcare technology. EcoMat, 2023, 5, .	11.9	16
448	Deployment of an electrocorticography system with a soft robotic actuator. Science Robotics, 2023, 8, .	17.6	15
449	Walking naturally after spinal cord injury using a brain–spine interface. Nature, 2023, 618, 126-133.	27.8	68
450	Affective Brain–Computer Interfaces (aBCIs): A Tutorial. Proceedings of the IEEE, 2023, 111, 1314-1332.	21.3	5
451	The Learning Curve of People with Complete Spinal Cord Injury Using a NESs-FESs Interface in the Sitting Position: Pilot Study. Eng, 2023, 4, 1711-1722.	2.4	Ο
452	Non-human primate models and systems for gait and neurophysiological analysis. Frontiers in Neuroscience, 0, 17, .	2.8	2
453	Flexible Electrodes for Brain–Computer Interface System. Advanced Materials, 2023, 35, .	21.0	5
454	Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regeneration Research, 2023, 18, 2573-2581.	3.0	3
455	A digital bridge between brain and spinal cord restores walking after paralysis. Nature, 0, , .	27.8	0
456	Bioresorbable Insertion Aids for Brain Implantable Flexible Probes: A Comparative Study on Silk Fibroin, Alginate, and Disaccharides. Advanced NanoBiomed Research, 0, , .	3.6	0
457	Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	31
458	Challenges and Concerns to Society: The Human Locomotor System. , 2023, , 99-122.		0
459	Technology Initiatives in the Human Locomotor System. , 2023, , 199-260.		0
460	Targeted transcutaneous spinal cord stimulation promotes persistent recovery of upper limb strength and tactile sensation in spinal cord injury: a pilot study. Frontiers in Neuroscience, 0, 17, .	2.8	3
461	A digital bridge to reverse paralysis. Cell Research, 2023, 33, 892-893.	12.0	1

\sim	T A T I	ON	DEDO	DT
		ON	K F P ()	ו או
<u> </u>				

#	Article	IF	CITATIONS
462	Recent advances in the application of MXenes for neural tissue engineering and regeneration. Neural Regeneration Research, 2024, 19, 258-263.	3.0	5
463	Spinal cord stimulation for spinal cord injury – Where do we stand? A narrative review. Journal of Clinical Orthopaedics and Trauma, 2023, 43, 102210.	1.5	0
464	Brain–computer interface: trend, challenges, and threats. Brain Informatics, 2023, 10, .	3.0	3
465	Living-Neuron-Based Autogenerator. Sensors, 2023, 23, 7016.	3.8	1
466	Cortical contribution to visuomotor coordination in locomotion and reaching. Current Opinion in Neurobiology, 2023, 82, 102755.	4.2	0
467	Porcine Models of Spinal Cord Injury. Biomedicines, 2023, 11, 2202.	3.2	1
469	Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. Journal of Neural Engineering, 2023, 20, 056005.	3.5	1
470	Shed a New Light on Spinal Cord Injury-induced Permanent Paralysis with the Brain-spine Interface. Neuroscience Bulletin, 0, , .	2.9	0
471	A Frequency-Division Transceiver for Long-Range Neural Signal Recording From Multiple Subjects. IEEE Journal of Solid-State Circuits, 2024, 59, 923-934.	5.4	0
472	A Hyperflexible Electrode Array for Longâ€Term Recording and Decoding of Intraspinal Neuronal Activity. Advanced Science, 2023, 10, .	11.2	0
473	A spinal cord neuroprosthesis for locomotor deficits due to Parkinson's disease. Nature Medicine, 2023, 29, 2854-2865.	30.7	5
474	Flexible aâ€IGZO TFTâ€Based Circuit for Active Addressing in Neural Stimulation Electrode Arrays. Advanced Materials Technologies, 2023, 8, .	5.8	0
475	Convergence of Implantable Bioelectronics and Brain–Computer Interfaces. ACS Applied Electronic Materials, 2023, 5, 5777-5793.	4.3	0
476	Invasive Brain Computer Interface for Motor Restoration in Spinal Cord Injury: A Systematic Review. Neuromodulation, 2023, , .	0.8	1
477	Integrated software for multi-dimensional analysis of motion using tracking, electrophysiology, and sensor signals. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	0
479	Flexible multifunctional titania nanotube array platform for biological interfacing. MRS Bulletin, O, , ·	3.5	1
480	Decoupling brain activations of muscle-caused activations and mental intention-cause activations using the general linear model: A functional near-infrared spectroscopy study. , 2023, , .		0
481	Synergy of Nanotopography and Electrical Conductivity of PEDOT/PSS for Enhanced Neuronal Development. ACS Applied Materials & amp; Interfaces, 2023, 15, 59224-59235.	8.0	1

#	Article	IF	CITATIONS
482	Analysis of Cerebral and Muscle Activity during Control of a Corticospinal Neural Interface. Neuroscience and Behavioral Physiology, 0, , .	0.4	0
483	Digital Bridge to Restore Voluntary Control of Leg Movements After Paralysis. Springer Briefs in Electrical and Computer Engineering, 2024, , 49-57.	0.5	0
484	Dopaminergic reinforcement in the motor system: Implications for Parkinson's disease and deep brain stimulation. European Journal of Neuroscience, 2024, 59, 457-472.	2.6	0
485	The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, 2024, , 1251-1261.	0.2	0
487	Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury. Nature Communications, 2024, 15, .	12.8	0
489	Une neuroprothèse spinale contre les déficits locomoteurs de la maladie de Parkinson. Medecine/Sciences, 2024, 40, 104-106.	0.2	0
491	Role and contributions of women in revolutionizing neurosurgery. World Neurosurgery: X, 2024, 22, 100284.	1.1	0
492	High-speed and large-scale intrinsically stretchable integrated circuits. Nature, 2024, 627, 313-320.	27.8	0