Ultrafine jagged platinum nanowires enable ultrahigh n reduction reaction

Science 354, 1414-1419 DOI: 10.1126/science.aaf9050

Citation Report

#	Article	IF	CITATIONS
7	Toward sustainable fuel cells. Science, 2016, 354, 1378-1379.	12.6	384
8	The role of OH ^{â^`} in the formation of highly selective gold nanowires at extreme pH: multi-fold enhancement in the rate of the catalytic reduction reaction by gold nanowires. Physical Chemistry Chemical Physics, 2017, 19, 5077-5090.	2.8	28
9	Threeâ€Dimensional Assembly of PtNi Alloy Nanosticks with Enhanced Electrocatalytic Activity and Ultrahigh Stability for the Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 1436-1442.	3.4	8
10	A hierarchically structured PtCo nanoflakes–nanotube as an electrocatalyst for methanol oxidation. Inorganic Chemistry Frontiers, 2017, 4, 845-849.	6.0	6
11	Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2017, 2, 629-638.	17.4	443
12	Oneâ€Pot Synthesis of Dealloyed AuNi Nanodendrite as a Bifunctional Electrocatalyst for Oxygen Reduction and Borohydride Oxidation Reaction. Advanced Functional Materials, 2017, 27, 1700260.	14.9	46
13	Pt-doped α-Fe 2 O 3 photoanodes prepared by a magnetron sputtering method for photoelectrochemical water splitting. Materials Research Bulletin, 2017, 91, 214-219.	5.2	22
14	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2017, 56, 6937-6941.	13.8	1,542
15	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2017, 129, 7041-7045.	2.0	306
16	Doubling up the activity of fuel cell catalysts. National Science Review, 2017, 4, 513-514.	9.5	3
17	Tuning the branches and composition of PtCu nanodendrites through underpotential deposition of Cu towards advanced electrocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 9014-9021.	10.3	55
18	Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. Journal of Materials Chemistry A, 2017, 5, 9760-9767.	10.3	48
19	The effect of Pt/C agglomerates in electrode on PEMFC performance using 3D micro-structure lattice models. International Journal of Hydrogen Energy, 2017, 42, 12559-12566.	7.1	8
20	A review of Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Energy, 2017, 11, 268-285.	2.3	155
21	Trimetallic PtCoFe Alloy Monolayer Superlattices as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts. Small, 2017, 13, 1700250.	10.0	42
22	Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation. ACS Applied Materials & amp; Interfaces, 2017, 9, 18008-18014.	8.0	111
23	Serrated Au/Pd Core/Shell Nanowires with Jagged Edges for Boosting Liquid Fuel Electrooxidation. ChemSusChem, 2017, 10, 2375-2379.	6.8	18
24	Crystallinityâ€Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni ₃ B for Efficient Water Oxidation. Angewandte Chemie, 2017, 129, 6672-6677.	2.0	34

#	Article	IF	CITATIONS
25	Crystallinityâ€Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni ₃ B for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2017, 56, 6572-6577.	13.8	271
26	Fast Prediction of CO Binding Energy via the Local Structure Effect on PtCu Alloy Surfaces. Langmuir, 2017, 33, 8700-8706.	3.5	24
27	Raisin bread-like iron sulfides/nitrogen and sulfur dual-doped mesoporous graphitic carbon spheres: a promising electrocatalyst for the oxygen reduction reaction in alkaline and acidic media. Journal of Materials Chemistry A, 2017, 5, 11114-11123.	10.3	55
28	A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A, 2017, 5, 1808-1825.	10.3	732
29	Spiny Rhombic Dodecahedral CuPt Nanoframes with Enhanced Catalytic Performance Synthesized from Cu Nanocube Templates. Chemistry of Materials, 2017, 29, 5681-5692.	6.7	77
30	Remarkable catalytic activity of electrochemically dealloyed platinum–tellurium nanoparticles towards formic acid electro-oxidation. International Journal of Hydrogen Energy, 2017, 42, 16489-16494.	7.1	8
31	A bottom-up, template-free route to mesoporous N-doped carbons for efficient oxygen electroreduction. Journal of Materials Science, 2017, 52, 9794-9805.	3.7	7
32	Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt. Nanoscale, 2017, 9, 7745-7749.	5.6	24
33	A Ligandâ€Exchange Route to Nobel Metal Nanocrystals with a Clean Surface for Enhanced Optical and Catalytic Properties. Particle and Particle Systems Characterization, 2017, 34, 1700075.	2.3	38
34	Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance. Journal of Power Sources, 2017, 358, 76-84.	7.8	38
35	High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt ₃ Y. Advanced Materials Interfaces, 2017, 4, 1700311.	3.7	39
36	Einzelatomâ€Elektrokatalysatoren. Angewandte Chemie, 2017, 129, 14132-14148.	2.0	99
37	Singleâ€Atom Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 13944-13960.	13.8	1,040
38	Reliable computational design of biological-inorganic materials to the large nanometer scale using Interface-FF. Molecular Simulation, 2017, 43, 1394-1405.	2.0	34
39	Constructing an Atomic Layer Pt Electrocatalyst with a Concave Curved Surface for the Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 2469-2473.	3.4	7
40	Facile fabrication of PtPd alloyed worm-like nanoparticles for electrocatalytic reduction of oxygen. International Journal of Hydrogen Energy, 2017, 42, 17112-17121.	7.1	25
41	Nitrogen and Iron-Codoped Carbon Hollow Nanotubules as High-Performance Catalysts toward Oxygen Reduction Reaction: A Combined Experimental and Theoretical Study. Chemistry of Materials, 2017, 29, 5617-5628.	6.7	92
42	Simultaneous Improvements in Performance and Durability of an Octahedral PtNi _{<i>x</i>} /C Electrocatalyst for Next-Generation Fuel Cells by Continuous, Compressive, and Concave Pt Skin Layers. ACS Catalysis, 2017, 7, 4642-4654.	11.2	64

#	Article	IF	CITATIONS
43	Oxide-derived nanostructured metallic-glass electrodes for efficient electrochemical hydrogen generation. RSC Advances, 2017, 7, 27058-27064.	3.6	17
44	High activity of a Pt decorated Ni/C nanocatalyst for hydrogen oxidation. Chinese Journal of Catalysis, 2017, 38, 396-403.	14.0	11
45	Lattice Contracted Ordered Intermetallic Core-Shell PtCo@Pt Nanoparticles: Synthesis, Structure and Origin for Enhanced Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2017, 164, H331-H337.	2.9	27
46	Peptideâ€FlgA3â€Based Gold Palladium Bimetallic Nanoparticles That Catalyze the Oxygen Reduction Reaction in Alkaline Solution. ChemCatChem, 2017, 9, 2980-2987.	3.7	19
47	Synthesis of Low Pt-Based Quaternary PtPdRuTe Nanotubes with Optimized Incorporation of Pd for Enhanced Electrocatalytic Activity. Journal of the American Chemical Society, 2017, 139, 5890-5895.	13.7	212
48	Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7416-7422.	10.3	23
49	Shape controlled synthesis of porous tetrametallic PtAgBiCo nanoplates as highly active and methanol-tolerant electrocatalyst for oxygen reduction reaction. Chemical Science, 2017, 8, 4292-4298.	7.4	52
50	Intermetallic Pd ₃ Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. Journal of Materials Chemistry A, 2017, 5, 23952-23959.	10.3	78
51	A review of electrocatalyst characterization by transmission electron microscopy. Journal of Energy Chemistry, 2017, 26, 1117-1135.	12.9	32
52	Building upon the Koutecky-Levich Equation for Evaluation of Next-Generation Oxygen Reduction Reaction Catalysts. Electrochimica Acta, 2017, 255, 99-108.	5.2	63
53	Synthesis of hollow Pt–Ag nanoparticles by oxygen-assisted acid etching as electrocatalysts for the oxygen reduction reaction. RSC Advances, 2017, 7, 46916-46924.	3.6	13
54	A general synthesis of abundant metal nanoparticles functionalized mesoporous graphitized carbon. RSC Advances, 2017, 7, 50966-50972.	3.6	6
55	Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold–Iron Core–Shell Nanoparticles. Journal of the American Chemical Society, 2017, 139, 15608-15611.	13.7	191
56	Tuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt–Ni Nanoparticles by Thermal Annealing â^ Elucidating the Surface Atomic Structural and Compositional Changes. Journal of the American Chemical Society, 2017, 139, 16536-16547.	13.7	144
57	Strain-controlled electrocatalysis on multimetallic nanomaterials. Nature Reviews Materials, 2017, 2,	48.7	727
58	Ammonia Mediated One-Step Synthesis of Three-Dimensional Porous Pt _{<i>x</i>} Cu _{100–<i>x</i>} Nanochain Networks with Enhanced Electrocatalytic Activity toward Polyhydric Alcohol Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11086-11095.	6.7	28
59	Platinumâ€Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surfaceâ€Diffusionâ€Assisted, Solidâ€State Oriented Attachment. Advanced Materials, 2017, 29, 1703460.	21.0	102
60	Atomically Dispersed Copper–Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16263-16267.	2.0	53

#	Article	IF	Citations
61	Atomically Dispersed Copper–Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16047-16051.	13.8	231
62	Eutectic-directed self-templating synthesis of PtNi nanoporous nanowires with superior electrocatalytic performance towards the oxygen reduction reaction: experiment and DFT calculation. Journal of Materials Chemistry A, 2017, 5, 23651-23661.	10.3	37
63	Ternary PtNi/Pt _x Pb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions. Journal of Materials Chemistry A, 2017, 5, 18977-18983.	10.3	36
64	Nanoporous PtFe Nanoparticles Supported on N-Doped Porous Carbon Sheets Derived from Metal–Organic Frameworks as Highly Efficient and Durable Oxygen Reduction Reaction Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 32106-32113.	8.0	48
65	3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries' cathodes. Nano Energy, 2017, 40, 382-389.	16.0	153
66	From <i>Chlorella</i> to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 32168-32178.	8.0	63
67	In Situ Integration of Ultrathin PtCu Nanowires with Reduced Graphene Oxide Nanosheets for Efficient Electrocatalytic Oxygen Reduction. Chemistry - A European Journal, 2017, 23, 16871-16876.	3.3	36
68	Electrocatalysis of the Oxygen Reduction Reaction and the Formic Acid Oxidation Reaction on BN/Pd Composites Prepared Sonochemically. Journal of the Electrochemical Society, 2017, 164, H805-H811.	2.9	7
69	Recent development of efficient electrocatalysts derived from porous organic polymers for oxygen reduction reaction. Science China Chemistry, 2017, 60, 999-1006.	8.2	37
70	A bifunctional electrocatalyst of PtNi nanoparticles immobilized on three-dimensional carbon nanofiber mats for efficient and stable water splitting in both acid and basic media. Journal of Materials Science, 2017, 52, 13064-13077.	3.7	40
71	One-pot synthesis of dendritic Pt ₃ Ni nanoalloys as nonenzymatic electrochemical biosensors with high sensitivity and selectivity for dopamine detection. Nanoscale, 2017, 9, 10998-11003.	5.6	30
72	Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. Advanced Energy Materials, 2017, 7, 1700544.	19.5	593
73	Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy, 2017, 39, 582-589.	16.0	130
74	Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 9, 12231-12247.	5.6	403
75	Finely Composition-Tunable Synthesis of Ultrafine Wavy PtRu Nanowires as Effective Electrochemical Sensors for Dopamine Detection. Langmuir, 2017, 33, 8070-8075.	3.5	25
76	Synthesis of single-crystal hyperbranched rhodium nanoplates with remarkable catalytic properties. Science China Materials, 2017, 60, 685-696.	6.3	18
77	Graphene Aerogel Supported Pt Electrocatalysts for Oxygen Reduction Reaction by Supercritical Deposition. Electrochimica Acta, 2017, 250, 174-184.	5.2	50
78	Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2017, 2, 2035-2043.	17.4	174

		itation Report	
#	Article	IF	CITATIONS
79	Noble metal-free catalysts for oxygen reduction reaction. Science China Chemistry, 2017, 60, 1494-1507.	8.2	60
80	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8, 1509.	12.8	361
81	General Oriented Synthesis of Precise Carbon-Confined Nanostructures by Low-Pressure Vapor Superassembly and Controlled Pyrolysis. Nano Letters, 2017, 17, 7773-7781.	9.1	53
82	lced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nature Communications, 2017, 8, 1490.	12.8	322
83	Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 17281-17284.	13.7	1,220
84	Towards understanding ORR activity and electron-transfer pathway of M-N /C electro-catalyst in acidic media. Journal of Catalysis, 2017, 356, 229-236.	6.2	30
85	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2017, 139, 17269-17272.	13.7	556
86	Design of Ultrathin Ptâ€Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis. Small, 2017, 13, 1702156.	10.0	77
87	High-Quality and Deeply Excavated Pt ₃ Co Nanocubes as Efficient Catalysts for Liquid Fuel Electrooxidation. Chemistry of Materials, 2017, 29, 9613-9617.	6.7	67
88	Extrapolating Energetics on Clusters and Single-Crystal Surfaces to Nanoparticles by Machine-Learning Scheme. Journal of Physical Chemistry C, 2017, 121, 26397-26405.	3.1	41
89	Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction: fabrication and rotating disk electrode measurements. Electrochimica Acta, 2017, 247, 708-721.	5.2	39
90	Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells. Biosensors and Bioelectronics, 2017, 98, 350-356.	10.1	92
91	Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 1174-1180.	12.9	30
92	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	13.8	93
93	Understanding the Effects of Au Morphology on CO ₂ Electrocatalysis. Journal of Physical Chemistry C, 2018, 122, 4274-4280.	3.1	36
94	Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catalysis, 2018, 8, 3237-3256.	11.2	245
95	Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles. Nature Communications, 2018, 9, 1011.	12.8	87
96	Benchmarking high surface area electrocatalysts in a gas diffusion electrode: measurement of oxygen reduction activities under realistic conditions. Energy and Environmental Science, 2018, 11, 988-994.	30.8	147

ARTICLE IF CITATIONS Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium 97 2.0 29 Catalysts. Angewandte Chemie, 2018, 130, 4732-4736. Polydopamineâ€Derived, In Situ Nâ€Doped 3D Mesoporous Carbons for Highly Efficient Oxygen Reduction. 2.8 19 ChemNanoMat, 2018, 4, 417-422. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on 99 10.4 46 nitrogen-doped carbon for electrocatalysis. Nano Research, 2018, 11, 3469-3479. Holey Co, N-codoped graphene aerogel with in-plane pores and multiple active sites for efficient oxygen reduction. Electrochimica Acta, 2018, 269, 544-552. Epitaxial and atomically thin graphene–metal hybrid catalyst films: the dual role of graphene as the 101 support and the chemically-transparent protective cap. Energy and Environmental Science, 2018, 11, 30.8 34 1610-1616. Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 236, 359-367. 20.2 Roles of Ultrasound on Hydroxyl Radical Generation and Bauxite Desulfurization from Water 103 2.9 10 Electrolysis. Journal of the Electrochemical Society, 2018, 165, E177-E183. On-Chip in Situ Monitoring of Competitive Interfacial Anionic Chemisorption as a Descriptor for 104 11.3 29 Oxygen Reduction Kinetics. ACS Central Science, 2018, 4, 590-599. High porosity nitrogen and phosphorous Co-doped carbon nanosheets as an efficient catalyst for 105 7.1 12 oxygen reduction. International Journal of Hydrogen Energy, 2018, 43, 9749-9756. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. 3,103 Chemical Réviews, 2018, 118, 4981-5079. One-step solid state synthesis of PtCo nanocubes/graphene nanocomposites as advanced oxygen 107 6.2 29 reduction reaction electrocatalysts. Journal of Catalysis, 2018, 362, 85-93. Active learning with non-<i>ab initio</i> input features toward efficient CO₂ reduction catalysts. Chemical Science, 2018, 9, 5152-5159. Tuning defects in oxides at roomÂtemperature by lithium reduction. Nature Communications, 2018, 9, 109 12.8 428 1302. A Review on Recent Developments and Prospects for the Oxygen Reduction Reaction on Hollow Ptâ \in alloy Nanoparticles. ChemPhysChem, 2018, 19, 1552-1567. 2.1 64 â€~Painting' nanostructured metals—playing with liquid metal. Nanoscale Horizons, 2018, 3, 408-416. 111 8.0 32 Control of the Interfacial Wettability to Synthesize Highly Dispersed PtPd Nanocrystals for Efficient 14 Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2018, 13, 1119-1123. Rhâ€Based Nanocatalysts for Heterogeneous Reactions. ChemNanoMat, 2018, 4, 451-466. 113 2.8 25 Dendrite-Embedded Platinum–Nickel Multiframes as Highly Active and Durable Electrocatalyst toward 114 9.1 the Oxygen Reduction Reaction. Nano Letters, 2018, 18, 2930-2936.

#	Article	IF	CITATIONS
115	Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Research, 2018, 11, 4786-4795.	10.4	58
116	Electrochemical Observation of High Oxophilicity and its Effect on Oxygen Reduction Reaction Activity of Au Clusters Mass-Selectively Deposited on Glassy Carbon. Electrocatalysis, 2018, 9, 471-479.	3.0	5
117	Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard–Jones potential. Nature Communications, 2018, 9, 716.	12.8	121
118	Electrocatalytic performance of cubic NiS2 and hexagonal NiS for oxygen reduction reaction. Journal of Catalysis, 2018, 359, 223-232.	6.2	43
119	Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale, 2018, 10, 4670-4674.	5.6	82
120	Synergistically Enhanced Oxygen Reduction Electrocatalysis by Subsurface Atoms in Ternary PdCuNi Alloy Catalysts. Advanced Functional Materials, 2018, 28, 1707219.	14.9	58
121	Nitrogen-doped carbon nanoflower with superior ORR performance in both alkaline and acidic electrolyte and enhanced durability. International Journal of Hydrogen Energy, 2018, 43, 4311-4320.	7.1	33
122	General Synthesis of 3D Ordered Macro-/Mesoporous Materials by Templating Mesoporous Silica Confined in Opals. Chemistry of Materials, 2018, 30, 1617-1624.	6.7	44
123	Size-controllable synthesis of dendritic Pd nanocrystals as improved electrocatalysts for formic acid fuel cells' application. Journal of Saudi Chemical Society, 2018, 22, 846-854.	5.2	13
124	Dilute Au-Containing Ag Nanosponges as a Highly Active and Durable Electrocatalyst for Oxygen Reduction and Alcohol Oxidation Reactions. ACS Applied Materials & Interfaces, 2018, 10, 6276-6287.	8.0	33
125	Well-Coupled Nanohybrids Obtained by Component-Controlled Synthesis and in Situ Integration of Mn _{<i>x</i>} Pd _{<i>y</i>} Nanocrystals on Vulcan Carbon for Electrocatalytic Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 8155-8164.	8.0	20
126	Refined Structural Analysis of Connected Platinum–Iron Nanoparticle Catalysts with Enhanced Oxygen Reduction Activity. ACS Applied Energy Materials, 2018, 1, 324-330.	5.1	15
127	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	13.7	312
128	Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic Pt ₃ Ga. Journal of the American Chemical Society, 2018, 140, 2773-2776.	13.7	193
129	Selfâ€Humidified Pt Electrocatalyst Fabricated from Hydrophilic Molecules Coating with Enhanced Fuel Cell Performance. Energy Technology, 2018, 6, 1813-1819.	3.8	1
130	Highly Durable and Active Ptâ€Based Nanoscale Design forÂFuelâ€Cell Oxygenâ€Reduction Electrocatalysts. Advanced Materials, 2018, 30, e1704123.	21.0	208
131	Shape-Control of Pt–Ru Nanocrystals: Tuning Surface Structure for Enhanced Electrocatalytic Methanol Oxidation. Journal of the American Chemical Society, 2018, 140, 1142-1147.	13.7	466
132	Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 13508-13514.	3.1	16

CITATION REPORT ARTICLE IF CITATIONS Hydroxideâ€Membraneâ€Coated Pt₃Ni Nanowires as Highly Efficient Catalysts for Selective 14.9 43 Hydrogenation Reaction. Advanced Functional Materials, 2018, 28, 1705918. Three-Dimensional Macroporous Co-Embedded N-Doped Carbon Interweaving with Carbon Nanotubes 3.5 as Excellent Bifunctional Catalysts for Zn–Air Batteries. Langmuir, 2018, 34, 1992-1998. Ultra-low loading Pt-sputtered gas diffusion electrodes for oxygen reduction reaction. Journal of 2.9 21 Applied Electrochemistry, 2018, 48, 221-232. Stable Highâ€Index Faceted Pt Skin on Zigzagâ€Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. 305 Advanced Materials, 2018, 30, 1705515. Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in 10.0 7 Solution by Ag Ion Soldering. Small, 2018, 14, 1703303. Tomographic Analysis and Modeling of Polymer Electrolyte Fuel Cell Unsupported Catalyst Layers. Journal of the Electrochemical Society, 2018, 165, F7-F16. In-situ reaction-growth of PtNiX nanocrystals on supports for enhanced electrochemical catalytic oxidation of ethanol via continuous flow microfluidic process. Electrochimica Acta, 2018, 278, 5.2 10 149-155. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient 21.0 511 Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1800588. Enabling Generalized Coordination Numbers to Describe Strain Effects. ChemSusChem, 2018, 11, 6.8 57 1824-1828. Porous Pt₃Ni with enhanced activity and durability towards oxygen reduction reaction. 3.6 RSC Advances, 2018, 8, 15344-15351. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction 4.1 166 reaction. Chemical Communications, 2018, 54, 4274-4277. Unraveling the mechanisms of room-temperature catalytic degradation of indoor formaldehyde and its biocompatibility on colloidal TiO₂-supported MnO_x–CeO₂. 4.3 Environmental Science: Nano, 2018, 5, 1130-1139. Template-Free Preparation of 3D Porous Co-Doped VN Nanosheet-Assembled Microflowers with 8.0 47 Enhanced Oxygen Reduction Activity. ACS Applied Materials & amp; Interfaces, 2018, 10, 11604-11612. Platinum supported on multifunctional titanium cobalt oxide nanosheets assembles for efficient 5.2 16 oxygen reduction reaction. Electrochimica Acta, 2018, 265, 364-371. Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer 5.253 sensitivity. Electrochimica Acta, 2018, 268, 520-530. Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts. Electrochemical Energy Reviews, 2018, 1, 54-83. Stability of Highâ€Performance Ptâ€Based Catalysts for Oxygen Reduction Reactions. Advanced Materials, 21.0 179 2018, 30, e1705332.

150Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution
reactions in proton exchange membrane electrolyzer cells. Nano Energy, 2018, 47, 434-441.16.0118

133

134

135

137

139

141

142

143

145

146

147

148

#	Article	IF	CITATIONS
151	Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Research, 2018, 11, 499-510.	10.4	86
152	A hybrid catalyst of Pt/CoNiO ₂ on carbon nanotubes and its synergetic effect towards remarkable ethanol electro-oxidation in alkaline media. Sustainable Energy and Fuels, 2018, 2, 229-236.	4.9	15
153	Synthesis of ultrathin platinum nanoplates for enhanced oxygen reduction activity. Chemical Science, 2018, 9, 398-404.	7.4	85
154	Copper–Palladium Tetrapods with Sharp Tips as a Superior Catalyst for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 925-930.	3.7	14
155	A surfactant free preparation of ultradispersed surface-clean Pt catalyst with highly stable electrocatalytic performance. Journal of Physics and Chemistry of Solids, 2018, 113, 61-66.	4.0	8
156	Toward High-Performance Pt-Based Nanocatalysts for Oxygen Reduction Reaction through Organic–Inorganic Hybrid Concepts. Chemistry of Materials, 2018, 30, 2-24.	6.7	65
157	Nitrogen, Sulfur Co-doped Carbon Derived from Naphthalene-Based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction. ACS Applied Energy Materials, 2018, 1, 161-166.	5.1	36
158	Solid Synthesis of Ultrathin Palladium and Its Alloys' Nanosheets on RGO with High Catalytic Activity for Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 910-919.	11.2	56
159	Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 225, 496-503.	20.2	131
160	Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis. Small, 2018, 14, 1702259.	10.0	84
161	Atomic Vacancies Control of Pdâ€Based Catalysts for Enhanced Electrochemical Performance. Advanced Materials, 2018, 30, 1704171.	21.0	102
162	Shapeâ€Controlled Surfaceâ€Coating to Pd@Mesoporous Silica Core–Shell Nanocatalysts with High Catalytic Activity and Stability. Chemistry - an Asian Journal, 2018, 13, 31-34.	3.3	15
164	Platinum-Based Catalysts on Various Carbon Supports and Conducting Polymers for Direct Methanol Fuel Cell Applications: a Review. Nanoscale Research Letters, 2018, 13, 410.	5.7	189
165	Thickness-tunable core–shell Co@Pt nanoparticles encapsulated in sandwich-like carbon sheets as an enhanced electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 21396-21403.	10.3	23
166	Controlled synthesis of Pt nanoparticle supported TiO ₂ nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 23435-23444.	10.3	55
167	Reduced graphene oxide intercalated ZnS nanoparticles as an efficient and durable electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 19285-19293.	2.8	12
168	Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science, 2018, 362, 1276-1281.	12.6	735
169	Favorable Core/Shell Interface within Co ₂ P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters, 2018, 18, 7870-7875.	9.1	68

#	Article	IF	CITATIONS
170	Nitrogen-doped graphene aerogel with an open structure assisted by in-situ hydrothermal restructuring of ZIF-8 as excellent Pt catalyst support for methanol electro-oxidation. International Journal of Hydrogen Energy, 2018, 43, 21899-21907.	7.1	22
171	Updating Pt-Based Electrocatalysts for Practical Fuel Cells. Joule, 2018, 2, 2514-2516.	24.0	31
172	Recent Advance on Polyaniline or Polypyrrole-Derived Electrocatalysts for Oxygen Reduction Reaction. Polymers, 2018, 10, 1397.	4.5	32
173	Lowâ€Workâ€Function Silver Activating Nâ€doped Graphene as Efficient Oxygen Reduction Catalysts in Acidic Medium. ChemCatChem, 2019, 11, 1033-1038.	3.7	9
174	Controlled Synthesis of PtNi Hexapods for Enhanced Oxygen Reduction Reaction. Frontiers in Chemistry, 2018, 6, 468.	3.6	17
175	Selective Electrochemical H ₂ O ₂ Production through Twoâ€Electron Oxygen Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909.	19.5	498
176	Graphdiyne-Supported Single-Atom-Sized Fe Catalysts for the Oxygen Reduction Reaction: DFT Predictions and Experimental Validations. ACS Catalysis, 2018, 8, 10364-10374.	11.2	202
177	Turning Carbon Atoms into Highly Active Oxygen Reduction Reaction Electrocatalytic Sites in Nitrogen-Doped Graphene-Coated Co@Ag. ACS Sustainable Chemistry and Engineering, 2018, 6, 14033-14041.	6.7	10
178	Recent Advances on Electrocatalysts for PEM and AEM Fuel Cells. , 2018, , 51-89.		1
179	Assembling Highly Coordinated Pt Sites on Nanoporous Gold for Efficient Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2018, 10, 39705-39712.	8.0	23
180	Revealing the Role of Phase Structures of Bimetallic Nanocatalysts in the Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 11302-11313.	11.2	51
181	Ultrathin Pt–Ag Alloy Nanotubes with Regular Nanopores for Enhanced Electrocatalytic Activity. Chemistry of Materials, 2018, 30, 7744-7751.	6.7	35
182	Platinum Nanoparticles Dispersed on High-Surface-Area Roelike Nitrogen-Doped Mesoporous Carbon for Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 6198-6207.	5.1	12
183	Carbon Defect-Induced Reversible Carbon–Oxygen Interfaces for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 39735-39744.	8.0	45
184	One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantages into One Catalyst. Journal of the American Chemical Society, 2018, 140, 16159-16167.	13.7	160
185	Core/shell Cu/FePtCu nanoparticles with face-centered tetragonal texture: An active and stable low-Pt catalyst for enhanced oxygen reduction. Nano Energy, 2018, 54, 280-287.	16.0	22
186	Engineering porosity into trimetallic PtPdNi nanospheres for enhanced electrocatalytic oxygen reduction activity. Green Energy and Environment, 2018, 3, 352-359.	8.7	14
187	Metal–Organic Framework-Derived Co ₃ O ₄ /Au Heterostructure as a Catalyst for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 34068-34076.	8.0	35

# 188	ARTICLE Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 33737-33767.	IF 8.0	Citations 52
189	Dendritic defect-rich palladium–copper–cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nature Communications, 2018, 9, 3702.	12.8	204
190	Cobalt nanoparticles incorporated into hollow doped porous carbon capsules as a highly efficient oxygen reduction electrocatalyst. Catalysis Science and Technology, 2018, 8, 5244-5250.	4.1	17
191	Construction of Nanoreactors Combining Two-Dimensional Hexagonal Boron Nitride (h-BN) Coating with Pt/Al ₂ O ₃ Catalyst toward Efficient Catalysis for CO Oxidation. Industrial & Engineering Chemistry Research, 2018, 57, 13353-13361.	3.7	13
192	Noble Metal-Based Nanocomposites for Fuel Cells. , 2018, , .		4
193	Surface and Near-Surface Engineering of PtCo Nanowires at Atomic Scale for Enhanced Electrochemical Sensing and Catalysis. Chemistry of Materials, 2018, 30, 6660-6667.	6.7	32
194	A facile strategy for ultrasmall Pt NPs being partially-embedded in N-doped carbon nanosheet structure for efficient electrocatalysis. Science China Materials, 2018, 61, 1557-1566.	6.3	12
195	Oxygen Reduction Reaction from Water Electrolysis Intensified by Pressure and O ₂ ^{â^'} Oxidation Desulfurization. Journal of the Electrochemical Society, 2018, 165, E139-E147.	2.9	7
196	Effect of the d-Band Center on the Oxygen Reduction Reaction Activity of Electrochemically Dealloyed Ordered Intermetallic Platinum–Lead (PtPb) Nanoparticles Supported on TiO ₂ -Deposited Cup-Stacked Carbon Nanotubes. ACS Applied Nano Materials, 2018, 1, 2844-2850.	5.0	29
197	Role of Nanomorphology and Interfacial Structure of Platinum Nanoparticles in Catalyzing the Hydrogen Oxidation Reaction. ACS Catalysis, 2018, 8, 6192-6202.	11.2	21
198	Actualizing In Situ X-ray Absorption Spectroscopy Characterization of PEMFC-Cycled Pt-Electrodes. Journal of the Electrochemical Society, 2018, 165, F597-F603.	2.9	12
199	Engineering the Interfaces of Superadsorbing Grapheneâ€Based Electrodes with Gas and Electrolyte to Boost Gas Evolution and Activation Reactions. ChemSusChem, 2018, 11, 2306-2309.	6.8	24
200	Understanding Chemical Bonding in Alloys and the Representation in Atomistic Simulations. Journal of Physical Chemistry C, 2018, 122, 14996-15009.	3.1	30
201	Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 237, 228-236.	20.2	85
202	A Spatially Confined gC ₃ N ₄ –Pt Electrocatalyst with Robust Stability. ACS Applied Materials & Interfaces, 2018, 10, 21306-21312.	8.0	13
203	Molecular structure and assembly of peptide-derived nanomaterials. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 38-46.	5.9	6
204	High performance layer-by-layer Pt ₃ Ni(Pt-skin)-modified Pd/C for the oxygen reduction reaction. Chemical Science, 2018, 9, 6134-6142.	7.4	25
205	Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation. Journal of Colloid and Interface Science, 2018, 530, 189-195.	9.4	92

#	Article	IF	Citations
" 206	Facile Surfactant-Free Synthesis of Composition-Tunable Bimetallic PtCu Alloy Nanosponges for	0.9	3
200	Direct Methanol Fuel Céll Applications. Australian Journal of Chemistry, 2018, 71, 504.	0.9	0
207	Activeâ€Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence Xâ€Ray Diffraction Study. Chemistry - A European Journal, 2018, 24, 12280-12290.	3.3	17
208	Metal Surface and Interface Energy Electrocatalysis: Fundamentals, Performance Engineering, and Opportunities. CheM, 2018, 4, 2054-2083.	11.7	225
209	Tracking Metal Electrodeposition Dynamics from Nucleation and Growth of a Single Atom to a Crystalline Nanoparticle. ACS Nano, 2018, 12, 7388-7396.	14.6	74
210	Studies on an Ultrasonic Synthesis, Characterization, and Thermodynamic Analysis of New Metal Nanocatalysts Applied Directly to Alcohol Fuel Cells. Arabian Journal for Science and Engineering, 2018, 43, 6203-6209.	3.0	1
211	Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chemical Reviews, 2018, 118, 6409-6455.	47.7	711
212	Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nature Catalysis, 2018, 1, 624-630.	34.4	63
213	Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Physical Chemistry Chemical Physics, 2018, 20, 21095-21104.	2.8	54
214	Neighboring Pt Atom Sites in an Ultrathin FePt Nanosheet for the Efficient and Highly CO-Tolerant Oxygen Reduction Reaction. Nano Letters, 2018, 18, 5905-5912.	9.1	84
215	Amorphous ultra-dispersed Pt clusters supported on nitrogen functionalized carbon: A superior electrocatalyst for glycerol electrooxidation. Journal of Power Sources, 2018, 399, 357-362.	7.8	38
216	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	13.7	464
217	Palladium–Cobalt Nanowires Decorated with Jagged Appearance for Efficient Methanol Electro-oxidation. ACS Applied Materials & Interfaces, 2018, 10, 29965-29971.	8.0	40
218	PdAg@Pd core-shell nanotubes: Superior catalytic performance towards electrochemical oxidation of formic acid and methanol. Journal of Power Sources, 2018, 398, 201-208.	7.8	54
219	Structural and Electronic Stabilization of PtNi Concave Octahedral Nanoparticles by P Doping for Oxygen Reduction Reaction in Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 27009-27018.	8.0	57
220	The Subâ€Nanometer Scale as a New Focus in Nanoscience. Advanced Materials, 2018, 30, e1802031.	21.0	99
221	Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie, 2018, 130, 11852-11856.	2.0	42
222	Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie - International Edition, 2018, 57, 11678-11682.	13.8	133
223	Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nature Materials, 2018, 17, 827-833.	27.5	344

#	Article	IF	CITATIONS
224	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	38.1	222
225	Highly crumpled nanocarbons as efficient metal-free electrocatalysts for zinc–air batteries. Nanoscale, 2018, 10, 15706-15713.	5.6	21
226	Multilayered Platinum Nanotube for Oxygen Reduction in a Fuel Cell Cathode: Origin of Activity and Product Selectivity. ACS Applied Energy Materials, 2018, 1, 3890-3899.	5.1	10
227	Cobalt/Iron(Oxides) Heterostructures for Efficient Oxygen Evolution and Benzyl Alcohol Oxidation Reactions. ACS Energy Letters, 2018, 3, 1854-1860.	17.4	86
228	Cycling potential engineering surface configuration of sandwich Au@Ni@PtNiAu for superior catalytic durability. Nano Energy, 2018, 52, 22-28.	16.0	18
229	Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018, 21, 91-105.	11.9	285
230	Oxygen Reduction Reaction: Rapid Prediction of Mass Activity of Nanostructured Platinum Electrocatalysts. Journal of Physical Chemistry Letters, 2018, 9, 4463-4468.	4.6	43
231	Effects of Catalyst Processing on the Activity and Stability of Pt–Ni Nanoframe Electrocatalysts. ACS Nano, 2018, 12, 8697-8705.	14.6	80
232	Intermetallic <i>hcp</i> -PtBi/ <i>fcc</i> -Pt Core/Shell Nanoplates Enable Efficient Bifunctional Oxygen Reduction and Methanol Oxidation Electrocatalysis. ACS Catalysis, 2018, 8, 5581-5590.	11.2	153
233	Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nature Communications, 2018, 9, 1425.	12.8	356
234	NiCo-doped C-N nano-composites for cathodic catalysts of Zn-air batteries in neutral media. Electrochimica Acta, 2018, 279, 1-9.	5.2	78
236	Formation of a Tubular Assembly by Ultrathin Ti _{0.8} Co _{0.2} N Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Hydrogen–/Metal–Air Fuel Cells. ACS Catalysis, 2018, 8, 8970-8975.	11.2	147
237	Formation of Enriched Vacancies for Enhanced CO ₂ Electrocatalytic Reduction over AuCu Alloys. ACS Energy Letters, 2018, 3, 2144-2149.	17.4	88
238	Cobalt–Nitrogenâ€Đoped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2018, 130, 13371-13375.	2.0	19
239	Hollow Metal Nanocrystals with Ultrathin, Porous Walls and Wellâ€Controlled Surface Structures. Advanced Materials, 2018, 30, e1801956.	21.0	83
240	A rationally designed Fe-tetrapyridophenazine complex: a promising precursor to a single-atom Fe catalyst for an efficient oxygen reduction reaction in high-power Zn–air cells. Nanoscale, 2018, 10, 16145-16152.	5.6	37
241	Interfacial proton enrichment enhances proton-coupled electrocatalytic reactions. Journal of Materials Chemistry A, 2018, 6, 17771-17777.	10.3	29
242	Activating Transition Metal Dichalcogenides by Substitutional Nitrogenâ€Doping for Potential ORR Electrocatalysts. ChemElectroChem, 2018, 5, 4029-4035.	3.4	27

#	Article	IF	CITATIONS
243	Boosting electrocatalysis of oxygen reduction reaction through photovoltaic-driven potential manipulation strategy. Materials Today Energy, 2018, 10, 34-39.	4.7	1
244	Pt ₉ Ni Wavelike Nanowires with High Activity for Oxygen Reduction Reactions. Chemistry - A European Journal, 2018, 24, 14636-14638.	3.3	9
245	A self-supported nanoporous PtGa film as an efficient multifunctional electrocatalyst for energy conversion. Nanoscale, 2018, 10, 17070-17079.	5.6	25
246	Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation. Journal of Materials Chemistry A, 2018, 6, 17514-17518.	10.3	33
247	Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Research, 2018, 11, 6111-6140.	10.4	54
248	Programming ORR Activity of Ni/NiO <i>_x</i> @Pd Electrocatalysts via Controlling Depth of Surface-Decorated Atomic Pt Clusters. ACS Omega, 2018, 3, 8733-8744.	3.5	27
249	Vertically Aligned N-Doped Diamond/Graphite Hybrid Nanosheets Epitaxially Grown on B-Doped Diamond Films as Electrocatalysts for Oxygen Reduction Reaction in an Alkaline Medium. ACS Applied Materials & Interfaces, 2018, 10, 29866-29875.	8.0	10
250	Facile Synthesis of PtCu Alloy/Graphene Oxide Hybrids as Improved Electrocatalysts for Alkaline Fuel Cells. ACS Omega, 2018, 3, 8724-8732.	3.5	21
251	Influence of surface strain on activity and selectivity of Pd-based catalysts for the hydrogenation of acetylene: A DFT study. Chinese Journal of Catalysis, 2018, 39, 1493-1499.	14.0	19
252	Cobalt–Nitrogenâ€Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 13187-13191.	13.8	112
253	Robust synthesis of ultrathin Au–Ag nanowires as a high-surface-area, synergistic substrate for constructing efficient Pt-based catalysts. Journal of Materials Chemistry A, 2018, 6, 22161-22169.	10.3	14
254	In situ synthesis of chemically ordered primitive cubic Pt3Co nanoparticles by a spray paint drying method for hydrogen evolution reaction. Journal of Materials Science, 2018, 53, 12399-12406.	3.7	11
255	Scalable Preparation of the Chemically Ordered Pt–Fe–Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2018, 10, 22156-22166.	8.0	54
256	A general and scalable approach to produce nanoporous alloy nanowires with rugged ligaments for enhanced electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 12541-12550.	10.3	23
257	Selective Etching Induced Synthesis of Hollow Rh Nanospheres Electrocatalyst for Alcohol Oxidation Reactions. Small, 2018, 14, e1801239.	10.0	82
258	Recent developments in electrocatalyst design thrifting noble metals in fuel cells. Current Opinion in Electrochemistry, 2018, 9, 271-277.	4.8	29
259	Layered Metal–Organic Framework-Derived Metal Oxide/Carbon Nanosheet Arrays for Catalyzing the Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 1655-1661.	17.4	176
260	Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Current Opinion in Electrochemistry, 2018, 8, 135-146.	4.8	60

		CITATION RE	EPORT	
#	Article		IF	Citations
261	Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispe Hierarchically Structured Porous Carbon Framework. Angewandte Chemie, 2018, 130, 9		2.0	105
262	Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispe Hierarchically Structured Porous Carbon Framework. Angewandte Chemie - Internationa 2018, 57, 9038-9043.		13.8	467
263	Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. European Journal, 2018, 24, 16944-16963.	Chemistry - A	3.3	143
264	Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. N Today, 2019, 23, 45-56.	Materials	14.2	64
265	Synthesis of Cu-decorated PtTe nanotubes with high electrocatalytic activity for oxyger Journal of Alloys and Compounds, 2019, 770, 76-81.	ı reduction.	5.5	4
266	Tunable synthesis of multiply twinned intermetallic Pd ₃ Pb nanowire netwo efficient N ₂ to NH ₃ conversion. Journal of Materials Chemistr 20247-20253.		10.3	39
267	Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis. Acc Chemical Research, 2019, 52, 3384-3396.	ounts of	15.6	84
268	High-performance corrosion-resistant fluorine-doped tin oxide as an alternative to carbo electrodes for PEM fuel cells. Nano Energy, 2019, 65, 104008.	on support in	16.0	31
269	Polyhedron-Assembled Ternary PtCuCo Nanochains: Integrated Functions Enhance the Electrocatalytic Performance of Methanol Oxidation at Elevated Temperature. ACS App & amp; Interfaces, 2019, 11, 32282-32290.	ied Materials	8.0	36
270	Tailor-Made Pt Catalysts with Improved Oxygen Reduction Reaction Stability/Durability. 2019, 9, 8622-8645.	ACS Catalysis,	11.2	82
271	Electronic reconfiguration of Co ₂ P induced by Cu doping enhancing oxyge reaction activity in zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 2123	n reduction 2-21243.	10.3	46
272	Trimetallic palladium–copper–cobalt alloy wavy nanowires improve ethanol electro alkaline medium. Nanoscale, 2019, 11, 19448-19454.	oxidation in	5.6	29
273	Local Structural Disorder Enhances the Oxygen Reduction Reaction Activity of Carbon-S Low Pt Loading CoPt Nanocatalysts. Journal of Physical Chemistry C, 2019, 123, 19013	Supported -19021.	3.1	18
274	Platinum nanoparticles confined in imidazolium-based ionic polymer for assembling a m reactor with enhanced catalytic activity. Applied Catalysis A: General, 2019, 585, 11718		4.3	10
275	Ultrathin PdFePb nanowires: One-pot aqueous synthesis and efficient electrocatalysis for alcohol oxidation reaction. Journal of Colloid and Interface Science, 2019, 555, 276-283	or polyhydric }.	9.4	26
276	Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale, 2019, 11, 1894	46-18967.	5.6	61
277	Metal–Nonmetal One-Dimensional Electrocatalyst: AuPdP Nanowires for Ambient Nit to Ammonia. ACS Sustainable Chemistry and Engineering, 2019, 7, 15772-15777.	rogen Reduction	6.7	37
278	Recent advances in multi-scale design and construction of materials for direct methano Nano Energy, 2019, 65, 104048.	l fuel cells.	16.0	187

#	Article	IF	Citations
279	Conformational Effects of Pt-Shells on Nanostructures and Corresponding Oxygen Reduction Reaction Activity of Au-Cluster-Decorated NiOx@Pt Nanocatalysts. Nanomaterials, 2019, 9, 1003.	4.1	14
280	N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Research, 2019, 12, 2490-2497.	10.4	54
281	Promoting water dissociation performance by borinic acid for the strong-acid/base-free hydrogen evolution reaction. Chemical Communications, 2019, 55, 9821-9824.	4.1	4
282	Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis, 2019, 2, 578-589.	34.4	760
283	Monodispersed Pt3Ni Nanoparticles as a Highly Efficient Electrocatalyst for PEMFCs. Catalysts, 2019, 9, 588.	3.5	13
284	Quasi metal organic framework with highly concentrated Cr2O3 molecular clusters as the efficient catalyst for dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Applied Catalysis B: Environmental, 2019, 257, 117939.	20.2	28
285	Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy and Environmental Science, 2019, 12, 2890-2923.	30.8	317
286	Rapid precipitation-reduction synthesis of carbon-supported silver for efficient oxygen reduction reaction in alkaline solution. Journal of Solid State Electrochemistry, 2019, 23, 2601-2607.	2.5	5
287	Ternary core-shell PdM@Pt (M = Mn and Fe) nanoparticle electrocatalysts with enhanced ORR catalytic properties. Ultrasonics Sonochemistry, 2019, 58, 104673.	8.2	19
288	PtCuNi Tetrahedra Catalysts with Tailored Surfaces for Efficient Alcohol Oxidation. Nano Letters, 2019, 19, 5431-5436.	9.1	93
289	Metalâ€Free Photochemical Degradation of Ligninâ€Derived Aryl Ethers and Lignin by Autologous Radicals through Ionic Liquid Induction. ChemSusChem, 2019, 12, 4005-4013.	6.8	37
290	Pt–Co/C Cathode Catalyst Degradation in a Polymer Electrolyte Fuel Cell Investigated by an Infographic Approach Combining Three-Dimensional Spectroimaging and Unsupervised Learning. Journal of Physical Chemistry C, 2019, 123, 18844-18853.	3.1	32
291	Etching-Assisted Route to Heterophase Au Nanowires with Multiple Types of Active Surface Sites for Silane Oxidation. Nano Letters, 2019, 19, 6363-6369.	9.1	19
292	Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 4835-4863.	4.1	73
293	One-step solid-phase boronation to fabricate self-supported porous FeNiB/FeNi foam for efficient electrocatalytic oxygen evolution and overall water splitting. Journal of Materials Chemistry A, 2019, 7, 19554-19564.	10.3	68
294	Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite. IScience, 2019, 17, 1-9.	4.1	4
295	Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. Journal of Electroanalytical Chemistry, 2019, 848, 113279.	3.8	56
296	Ag2S-CoS hetero-nanowires terminated with stepped surfaces for improved oxygen evolution reaction. Catalysis Communications, 2019, 129, 105749.	3.3	12

#	Article	IF	CITATIONS
297	In Situ Formed Pt ₃ Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) Used as Efficient Catalysts for Hydrogen Evolution Reactions. Nano Letters, 2019, 19, 5102-5108.	9.1	133
298	Platinum Porous Nanosheets with High Surface Distortion and Pt Utilization for Enhanced Oxygen Reduction Catalysis. Advanced Functional Materials, 2019, 29, 1904429.	14.9	96
299	Programmable Exposure of Pt Active Facets for Efficient Oxygen Reduction. Angewandte Chemie, 2019, 131, 15995-16001.	2.0	14
300	Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie, 2019, 131, 15617-15623.	2.0	30
301	Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts. Matter, 2019, 1, 1567-1580.	10.0	82
302	Nanowire Genome: A Magic Toolbox for 1D Nanostructures. Advanced Materials, 2019, 31, e1902807.	21.0	44
303	Direct synthesis of L10-FePt nanoparticles from single-source bimetallic complex and their electrocatalytic applications in oxygen reduction and hydrogen evolution reactions. Nano Research, 2019, 12, 2954-2959.	10.4	54
304	Fe-, N-Embedded Hierarchically Porous Carbon Architectures Derived from FeTe-Trapped Zeolitic Imidazolate Frameworks as Efficient Oxygen Reduction Electrocatalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 19268-19276.	6.7	21
305	Perforated Pd Nanosheets with Crystalline/Amorphous Heterostructures as a Highly Active Robust Catalyst toward Formic Acid Oxidation. Small, 2019, 15, e1904245.	10.0	81
306	Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366, 850-856.	12.6	1,005
307	Porous carbon framework derived from N-rich hypercrosslinked polymer as the efficient metal-free electrocatalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 557, 664-672.	9.4	31
308	Programmable Exposure of Pt Active Facets for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 15848-15854.	13.8	81
309	Tungstenâ€Doped L1 ₀ â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.	13.8	150
310	Atomically Dispersed Pt on Screwâ€like Pd/Au Coreâ€shell Nanowires for Enhanced Electrocatalysis. Chemistry - A European Journal, 2020, 26, 4019-4024.	3.3	19
311	Ultrafine PtRu Dilute Alloy Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation. Chemistry - A European Journal, 2020, 26, 4025-4031.	3.3	19
312	A metal-organic framework-derived Fe–N–C electrocatalyst with highly dispersed Fe–Nx towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 27379-27389.	7.1	41
313	Nitrogen-doped graphene layers for electrochemical oxygen reduction reaction boosted by lattice strain. Journal of Catalysis, 2019, 378, 113-120.	6.2	19
314	Activity Origin and Multifunctionality of Pt-Based Intermetallic Nanostructures for Efficient Electrocatalysis. ACS Catalysis, 2019, 9, 11242-11254.	11.2	96

#	Article	IF	Citations
#	AKTICLE	IF	CITATIONS
315	Feeding difficulties in children with autism spectrum disorder: Aetiology, health impacts and psychotherapeutic interventions. Journal of Paediatrics and Child Health, 2019, 55, 1304-1308.	0.8	12
316	Improvement of Catalytic Activity of Platinum Nanoparticles Decorated Carbon Graphene Composite on Oxygen Electroreduction for Fuel Cells. Processes, 2019, 7, 586.	2.8	16
317	Recent Progress in Precious Metalâ€Free Carbonâ€Based Materials towards the Oxygen Reduction Reaction: Activity, Stability, and Antiâ€Poisoning. Chemistry - A European Journal, 2020, 26, 3973-3990.	3.3	36
318	Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Current Opinion in Electrochemistry, 2019, 18, 61-71.	4.8	111
319	Subnano Amorphous Fe-Based Clusters with High Mass Activity for Efficient Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 41432-41439.	8.0	18
320	Numerical Simulations of Seasonal Variations of Rainfall over the Island of Hawaii. Journal of Applied Meteorology and Climatology, 2019, 58, 1219-1232.	1.5	3
321	Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods. Applied Mathematics and Mechanics (English Edition), 2019, 40, 1657-1676.	3.6	14
322	Tuning Surface Structure of Pd ₃ Pb/Pt <i>_n</i> Pb Nanocrystals for Boosting the Methanol Oxidation Reaction. Advanced Science, 2019, 6, 1902249.	11.2	48
323	Unconventional p–d Hybridization Interaction in PtGa Ultrathin Nanowires Boosts Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 18083-18090.	13.7	216
324	A density functional theory study of the oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide. Progress in Reaction Kinetics and Mechanism, 2019, 44, 122-131.	2.1	6
325	Pt/Pd Single-Atom Alloys as Highly Active Electrochemical Catalysts and the Origin of Enhanced Activity. ACS Catalysis, 2019, 9, 9350-9358.	11.2	106
326	Electrochemical analysis of the porphyrazine-induced enhancement of ORR activity of Pt catalysts for the development of porphyrazine-adsorbed Pt catalysts. Journal of Electroanalytical Chemistry, 2019, 848, 113321.	3.8	11
327	Trifunctional Fishbone-like PtCo/Ir Enables High-Performance Zinc–Air Batteries to Drive the Water-Splitting Catalysis. Chemistry of Materials, 2019, 31, 8136-8144.	6.7	55
328	Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction. Nano Research, 2019, 12, 2766-2773.	10.4	48
329	Phosphorization Treatment Improves the Catalytic Activity and Durability of Platinum Catalysts toward Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 8205-8211.	6.7	24
330	Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 24830-24836.	10.3	26
331	PdMo bimetallene for oxygen reduction catalysis. Nature, 2019, 574, 81-85.	27.8	935
332	Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catalysis, 2019, 9, 10126-10141.	11.2	295

#	Article	IF	CITATIONS
333	Precisely Tuning the Number of Fe Atoms in Clusters on N-Doped Carbon toward Acidic Oxygen Reduction Reaction. CheM, 2019, 5, 2865-2878.	11.7	346
334	Direct Growth of Highly Strained Pt Islands on Branched Ni Nanoparticles for Improved Hydrogen Evolution Reaction Activity. Journal of the American Chemical Society, 2019, 141, 16202-16207.	13.7	113
335	Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation. Nature Communications, 2019, 10, 4514.	12.8	80
336	Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2019, 7, 1252-1259.	10.3	152
337	Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy and Environmental Science, 2019, 12, 492-517.	30.8	400
338	3D PtAu nanoframe superstructure as a high-performance carbon-free electrocatalyst. Nanoscale, 2019, 11, 2840-2847.	5.6	27
339	N, F-Codoped Microporous Carbon Nanofibers as Efficient Metal-Free Electrocatalysts for ORR. Nano-Micro Letters, 2019, 11, 9.	27.0	69
340	Boosting Oxygen Reduction Catalysis with Fe–N ₄ Sites Decorated Porous Carbons toward Fuel Cells. ACS Catalysis, 2019, 9, 2158-2163.	11.2	297
341	Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic Roles of Hydroxyl-Water-Cation Adducts. Journal of the American Chemical Society, 2019, 141, 3232-3239.	13.7	220
342	Multishelled Hollow Structures of Yttrium Oxide for the Highly Selective and Ultrasensitive Detection of Methanol. Small, 2019, 15, e1804688.	10.0	22
343	Synthesis and electrochemical performance of nickel–cobalt oxide/carbon nanocomposites for use in efficient oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2019, 30, 4144-4151.	2.2	11
344	The OH ^{â^'} -driven synthesis of Pt–Ni nanocatalysts with atomic segregation for alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5475-5481.	10.3	46
345	Casting Nanoporous Platinum in Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1807553.	21.0	13
346	Boosting oxygen reduction activity with low-temperature derived high-loading atomic cobalt on nitrogen-doped graphene for efficient Zn–air batteries. Chemical Communications, 2019, 55, 334-337.	4.1	35
347	Intrinsic effects of strain on low-index surfaces of platinum: roles of the five 5d orbitals. Physical Chemistry Chemical Physics, 2019, 21, 3242-3249.	2.8	23
348	Nanostructured Cobalt-Containing Carbon Supports for New Platinum Catalysts. Russian Journal of Electrochemistry, 2019, 55, 438-448.	0.9	1
349	Pt–Cu based nanocrystals as promising catalysts for various electrocatalytic reactions. Journal of Materials Chemistry A, 2019, 7, 17183-17203.	10.3	48
350	Identifying Active Sites for CO ₂ Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations. Journal of the American Chemical Society, 2019, 141, 11651-11657.	13.7	107

#	Article	IF	CITATIONS
351	Biomass derivative-based fibrous perovskite electrocatalysts with a hierarchical porous structure for oxygen reduction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 18019-18027.	7.1	8
352	Facile Synthesis of Nanoporous Ptâ€Encapsulated Ir Black as a Bifunctional Oxygen Catalyst via Modified Polyol Process at Room Temperature. ChemElectroChem, 2019, 6, 3633-3643.	3.4	19
353	Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: Effects of size on oxygen reduction reaction pathway. Journal of Power Sources, 2019, 435, 226771.	7.8	40
354	An efficient ultrathin PtFeNi Nanowire/Ionic liquid conjugate electrocatalyst. Applied Catalysis B: Environmental, 2019, 256, 117828.	20.2	40
355	New Horizons of Nonclassical Crystallization. Journal of the American Chemical Society, 2019, 141, 10120-10136.	13.7	168
356	Fe3C/C nanoparticles encapsulated in N-doped graphene aerogel: an advanced oxygen reduction reaction catalyst for fiber-shaped fuel cells. International Journal of Hydrogen Energy, 2019, 44, 18393-18402.	7.1	15
357	Ptâ€Based Nanocrystal for Electrocatalytic Oxygen Reduction. Advanced Materials, 2019, 31, e1808115.	21.0	260
358	Transformation of Metal–Organic Frameworks into Huge-Diameter Carbon Nanotubes with High Performance in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 22290-22296.	8.0	45
359	Dual-Site Cascade Oxygen Reduction Mechanism on SnO _{<i>x</i>} /Pt–Cu–Ni for Promoting Reaction Kinetics. Journal of the American Chemical Society, 2019, 141, 9463-9467.	13.7	70
360	Ordered Nanostructure Enhances Electrocatalytic Performance by Directional Micro-Electric Field. Journal of the American Chemical Society, 2019, 141, 10729-10735.	13.7	38
361	Active and stable Pt-Ceria nanowires@silica shell catalyst: Design, formation mechanism and total oxidation of CO and toluene. Applied Catalysis B: Environmental, 2019, 256, 117807.	20.2	57
362	Surface-modified Pt1Ni1–Ni(OH)2 nanoparticles with abundant Pt–Ni(OH)2 interfaces enhance electrocatalytic properties. Dalton Transactions, 2019, 48, 10313-10319.	3.3	14
363	Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Materials Today, 2019, 31, 47-68.	14.2	311
364	Insulin amyloid fibrils-templated rational self-assembly of vine-tree-like PtRh nanocatalysts for efficient methanol electrooxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 6-13.	4.7	20
365	Point-Defect-Rich Carbon Sheets as the High-Activity Catalyst Toward Oxygen Reduction and Hydrogen Evolution. Catalysts, 2019, 9, 386.	3.5	7
366	Electrospun Carbon Nanofiber Sprinkled with Co 3 O 4 as an Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium. ChemistrySelect, 2019, 4, 5160-5167.	1.5	7
367	Facile synthesis strategy of NicorePtshell electrocatalyst for oxygen reduction reaction. Journal of Energy Chemistry, 2019, 37, 192-196.	12.9	9
368	Highly Efficient Fe–N–C Electrocatalyst for Oxygen Reduction Derived from Core–Shell-Structured Fe(OH) ₃ @Zeolitic Imidazolate Framework. ACS Applied Energy Materials, 2019, 2, 3194-3203.	5.1	32

ARTICLE IF CITATIONS Optimal coordination-site exposure engineering in porous platinum for outstanding oxygen 369 7.4 20 reduction performance. Chemical Science, 2019, 10, 5589-5595. Facile synthesis of flexible Pt/NiO 1D nanohybrids with high electrical properties using electrospinning. Journal of Materials Science: Materials in Electronics, 2019, 30, 10589-10596. 370 2.2 One-nanometer-thick platinum-based nanowires with controllable surface structures. Nano 371 10.4 18 Research, 2019, 12, 1721-1726. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional 34.4 464 electrocatalysis. Nature Catalysis, 2019, 2, 495-503. Composition- and shape-controlled synthesis of the PtNi alloy nanotubes with enhanced activity and 373 7.8 19 durability toward oxygen reduction reaction. Journal of Power Sources, 2019, 429, 1-8. Facile Synthesis of Cobalt and Nitrogen Coordinated Carbon Nanotube as a High-Performance Electrocatalyst for Oxygen Reduction Reaction in Both Acidic and Alkaline Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 10951-10961. 374 6.7 Pd@Pt Coreâ€"Shell Nanodots Arrays for Efficient Electrocatalytic Oxygen Reduction. ACS Applied 375 5.0 9 Nano Materials, 2019, 2, 3695-370Ó. Anion exchange of a cationic Cd(ii)-based metalâ€"organic framework with potassium ferricyanide towards highly active Fe3C-containing Fe/N/C catalysts for oxygen reduction. Chemical Communications, 2019, 55, 6930-6933. 4.1 20 When ternary PdCuP alloys meet ultrathin nanowires: Synergic boosting of catalytic performance in ethanol electrooxidation. Applied Catalysis B: Environmental, 2019, 253, 271-277. 377 20.2 70 Comparison of Pt–Cu/C with Benchmark Pt–Co/C: Metal Dissolution and Their Surface Interactions. 378 5.1 54 ACS Applied Energy Materials, 2019, 2, 3131-3141. Improved Accelerated Stress Tests for ORR Catalysts Using a Rotating Disk Electrode. Journal of the 379 2.9 18 Electrochemical Society, 2019, 166, F3111-F3115. Single Fe Atom on Hierarchically Porous S, Nâ€Codoped Nanocarbon Derived from Porphyra Enable 380 10.0 Boosted Oxygen Catalysis for Rechargeable Znâ€Air Batteries. Small, 2019, 15, e1900307. Engineering one-dimensional and hierarchical PtFe alloy assemblies towards durable methanol 381 10.3 56 electrooxidation. Journal of Materials Chemistry A, 2019, 7, 13090-13095. On the origin of mesopore collapse in functionalized porous carbons. Carbon, 2019, 149, 743-749. 14 An Integrated Single-Electrode Method Reveals the Template Roles of Atomic Steps: Disturb Interfacial Water Networks and Thus Affect the Reactivity of Electrocatalysts. Journal of the American Chemical 383 13.7 20 Society, 2019, 141, 8516-8526. Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule, 2019, 3, 956-991. 384 24.0 197 Peptide-Assisted 2-D Assembly toward Free-Floating Ultrathin Platinum Nanoplates as Effective 385 9.1 44 Electrocatalysts. Nano Letters, 2019, 19, 3730-3736. Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Applied Catalysis B: Environmental, 2019, 253, 11-20.

#	Article	IF	CITATIONS
387	PtM (M = Co, Ni) Mesoporous Nanotubes as Bifunctional Electrocatalysts for Oxygen Reduction and Methanol Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7960-7968.	6.7	58
388	Synthesis and Characterization of High-Purity Ultrafine Platinum Particles by Chemical Refining Method. Journal of Nanomaterials, 2019, 2019, 1-8.	2.7	0
389	Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. Electrochemical Energy Reviews, 2019, 2, 252-276.	25.5	119
390	Modulating the Electronic Structure of Singleâ€Atom Catalysts on 2D Nanomaterials for Enhanced Electrocatalytic Performance. Small Methods, 2019, 3, 1800438.	8.6	88
391	Subâ€6 nm Fully Ordered <i>L</i> 1 ₀ â€Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy Materials, 2019, 9, 1803771.	19.5	127
392	Highly Dispersed and Crystalline Ta ₂ O ₅ Anchored Pt Electrocatalyst with Improved Activity and Durability Toward Oxygen Reduction: Promotion by Atomic-Scale Pt–Ta ₂ O ₅ Interactions. ACS Catalysis, 2019, 9, 3278-3288.	11.2	63
393	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	3.4	45
394	Accelerating electrochemistry with metal nanowires. Current Opinion in Electrochemistry, 2019, 16, 19-27.	4.8	28
395	Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today, 2019, 26, 164-175.	11.9	33
396	Nickel-Ion-Oriented Fabrication of Spiny PtCu Alloy Octahedral Nanoframes with Enhanced Electrocatalytic Performance. ACS Applied Energy Materials, 2019, 2, 2862-2869.	5.1	19
397	Electrochemical Dealloying-Assisted Surface-Engineered Pd-Based Bifunctional Electrocatalyst for Formic Acid Oxidation and Oxygen Reduction. ACS Applied Materials & Interfaces, 2019, 11, 14110-14119.	8.0	50
398	One-Pot Synthesis of Pt–Pd Bimetallic Nanodendrites with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 8419-8428.	6.7	37
399	Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications. Journal of Materials Chemistry A, 2019, 7, 9447-9477.	10.3	56
400	Highâ€Indexed PtNi Alloy Skin Spiraled on Pd Nanowires for Highly Efficient Oxygen Reduction Reaction Catalysis. Small, 2019, 15, e1900288.	10.0	73
401	Mechanistic Understanding of Sizeâ€Dependent Oxygen Reduction Activity and Selectivity over Pt/CNT Nanocatalysts. European Journal of Inorganic Chemistry, 2019, 2019, 3210-3217.	2.0	18
402	One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chemical Reviews, 2019, 119, 8972-9073.	47.7	240
403	The rational design of sandwich-like MnO ₂ –Pd–CeO ₂ hollow spheres with enhanced activity and stability for CO oxidation. Nanoscale, 2019, 11, 6776-6783.	5.6	15
404	Fabrication of hollow pompon-like Co ₃ O ₄ nanostructures with rich defects and high-index facet exposure for enhanced oxygen evolution catalysis. Journal of Materials Chemistry A, 2019, 7, 9059-9067.	10.3	48

#	Article	IF	CITATIONS
405	Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance. Nano Energy, 2019, 60, 111-118.	16.0	62
406	Asymmetric Multimetallic Mesoporous Nanospheres. Nano Letters, 2019, 19, 3379-3385.	9.1	76
407	Facile synthesis of polyacrylonitrile-based N/S-codoped porous carbon as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 11223-11233.	10.3	39
408	Strain Engineering Electrocatalysts for Selective CO ₂ Reduction. ACS Energy Letters, 2019, 4, 980-986.	17.4	115
409	Phase Modulating of Cu–Ni Nanowires Enables Active and Stable Electrocatalysts for the Methanol Oxidation Reaction. Chemistry - A European Journal, 2019, 25, 7218-7224.	3.3	21
410	One-Nanometer-Thick Pt ₃ Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catalysis, 2019, 9, 4488-4494.	11.2	126
411	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. CheM, 2019, 5, 1486-1511.	11.7	544
412	Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Research, 2019, 12, 1173-1179.	10.4	65
413	Effects of Pt metal loading on the atomic restructure and oxygen reduction reaction performance of Pt-cluster decorated Cu@Pd electrocatalysts. Sustainable Energy and Fuels, 2019, 3, 1668-1681.	4.9	19
414	Advanced Catalysts Derived from Compositionâ€Segregated Platinum–Nickel Nanostructures: New Opportunities and Challenges. Advanced Functional Materials, 2019, 29, 1808161.	14.9	38
415	Superwettabilityâ€Based Interfacial Chemical Reactions. Advanced Materials, 2019, 31, e1800718.	21.0	128
416	Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. Advanced Materials, 2019, 31, e1806296.	21.0	841
417	Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, e1807001.	21.0	470
418	Hollow PtNi Nanochains as Highly Efficient and Stable Oxygen Reduction Reaction Catalysts. ChemistrySelect, 2019, 4, 963-971.	1.5	6
419	Platinum Group Nanowires for Efficient Electrocatalysis. Small Methods, 2019, 3, 1800545.	8.6	53
420	Key Factors for Simultaneous Improvements of Performance and Durability of Coreâ€Shell Pt ₃ Ni/Carbon Electrocatalysts Toward Superior Polymer Electrolyte Fuel Cell. Chemical Record, 2019, 19, 1337-1353.	5.8	5
421	Recent Advances on Controlled Synthesis and Engineering of Hollow Alloyed Nanotubes for Electrocatalysis. Advanced Materials, 2019, 31, e1803503.	21.0	81
422	Polyacrylonitrile-derived nanostructured carbon materials. Progress in Polymer Science, 2019, 92, 89-134.	24.7	92

#	Article	IF	CITATIONS
423	Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO2. Nano Energy, 2019, 59, 138-145.	16.0	81
424	In situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts. Nano Energy, 2019, 59, 207-215.	16.0	54
425	Boosting Water Dissociation Kinetics on Pt–Ni Nanowires by Nâ€Induced Orbital Tuning. Advanced Materials, 2019, 31, e1807780.	21.0	167
426	Fabrication of Superior Singleâ€Atom Catalysts toward Diverse Electrochemical Reactions. Small Methods, 2019, 3, 1800497.	8.6	99
427	Trimetallic PtPdCo mesoporous nanopolyhedra with hollow cavities. Nanoscale, 2019, 11, 4781-4787.	5.6	31
428	Atomistic Origin of the Complex Morphological Evolution of Aluminum Nanoparticles during Oxidation: A Chain-like Oxide Nucleation and Growth Mechanism. ACS Nano, 2019, 13, 3005-3014.	14.6	69
429	Unusual strain effect of a Pt-based L1 ₀ face-centered tetragonal core in core/shell nanoparticles for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2019, 21, 6477-6484.	2.8	22
430	Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science, 2019, 363, 870-874.	12.6	384
431	PtFe Alloy Nanoparticles Confined on Carbon Nanotube Networks as Air Cathodes for Flexible and Wearable Energy Devices. ACS Applied Nano Materials, 2019, 2, 7870-7879.	5.0	22
432	N-Doped holey carbon materials derived from a metal-free macrocycle cucurbit[6]uril assembly as an efficient electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2019, 55, 13832-13835.	4.1	12
433	Highly stable Pt ₃ Ni nanowires tailored with trace Au for the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 26402-26409.	10.3	55
434	Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts. Chemical Communications, 2019, 55, 13928-13931.	4.1	51
435	Galvanic replacement mediated 3D porous PtCu nano-frames for enhanced ethylene glycol oxidation. Chemical Communications, 2019, 55, 14526-14529.	4.1	12
436	Reactive nanotemplates for synthesis of highly efficient electrocatalysts: beyond simple morphology transfer. Nanoscale, 2019, 11, 20392-20410.	5.6	11
437	Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). Journal of Materials Chemistry A, 2019, 7, 24583-24593.	10.3	126
438	Interfacial Engineering in PtNiCo/NiCoS Nanowires for Enhanced Electrocatalysis and Electroanalysis. Chemistry - A European Journal, 2020, 26, 4032-4038.	3.3	16
439	Transparent Conductive Layer Based on Oriented Platinum Networks. ChemistrySelect, 2019, 4, 13564-13568.	1.5	4
440	A general synthesis approach for amorphous noble metal nanosheets. Nature Communications, 2019, 10, 4855.	12.8	321

# 441	ARTICLE Nitrogen-Doped Ketjenblack Carbon Supported Co3O4 Nanoparticles as a Synergistic Electrocatalyst for Oxygen Reduction Reaction. Frontiers in Chemistry, 2019, 7, 766.	IF 3.6	CITATIONS 20
442	From Half ells to Membraneâ€Electrode Assemblies: a Comparison of Oxygen Reduction Reaction Catalyst Performance Characteristics. Fuel Cells, 2019, 19, 695-707.	2.4	8
443	Facile synthesis of jagged Au/Ir nanochains with superior electrocatalytic activity for oxygen evolution reaction. Applied Surface Science, 2019, 463, 58-65.	6.1	10
444	Nanoscale Structure Design for Highâ€Performance Ptâ€Based ORR Catalysts. Advanced Materials, 2019, 31, e1802234.	21.0	478
445	Bimodal nanoporous platinum on sacrificial nanoporous copper for catalysis of the oxygen-reduction reaction. MRS Communications, 2019, 9, 292-297.	1.8	5
446	Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO ₂ RR). Advanced Materials, 2019, 31, e1805617.	21.0	255
447	Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Research, 2019, 12, 429-436.	10.4	76
448	Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. Journal of Colloid and Interface Science, 2019, 537, 366-374.	9.4	68
449	Two-dimensional circular platinum nanodendrites toward efficient oxygen reduction reaction and methanol oxidation reaction. Electrochemistry Communications, 2019, 98, 53-57.	4.7	17
450	Carbonâ€Based Metalâ€Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019, 31, e1801526.	21.0	273
451	Multimetallic Electrocatalyst Stabilized by Atomic Ordering. Joule, 2019, 3, 9-10.	24.0	10
452	Cobalt/Molybdenum Phosphide and Oxide Heterostructures Encapsulated in N-Doped Carbon Nanocomposite for Overall Water Splitting in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 6890-6899.	8.0	91
453	Trimetallic PtPdNi-Truncated Octahedral Nanocages with a Well-Defined Mesoporous Surface for Enhanced Oxygen Reduction Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 4252-4257.	8.0	57
454	Support-free nanostructured Pt Cu electrocatalyst for the oxygen reduction reaction prepared by alternating magnetron sputtering. Journal of Power Sources, 2019, 413, 432-440.	7.8	12
455	Transforming Bulk Metals into Metallic Nanostructures: A Liquid-Metal-Assisted Top-Down Dealloying Strategy with Sustainability. ACS Sustainable Chemistry and Engineering, 2019, 7, 3274-3281.	6.7	12
456	Atomic Cobalt on Defective Bimodal Mesoporous Carbon toward Efficient Oxygen Reduction for Zinc–Air Batteries. Small Methods, 2019, 3, 1800450.	8.6	45
457	Ultrathin yet transferrable Pt- or PtRu-decorated graphene films as efficient electrocatalyst for methanol oxidation reaction. Science China Materials, 2019, 62, 273-282.	6.3	15
458	Anti-poisoned oxygen reduction by the interface modulated Pd@NiO core@shell. Nano Energy, 2019, 58, 234-243.	16.0	38

#	Article	IF	CITATIONS
459	Surfactant templated oriented 1-D nanoscale platinum and palladium systems on a modified silicon surface. Nano Structures Nano Objects, 2019, 17, 1-6.	3.5	4
460	Fully Tensile Strained Pd ₃ Pb/Pd Tetragonal Nanosheets Enhance Oxygen Reduction Catalysis. Nano Letters, 2019, 19, 1336-1342.	9.1	109
461	H2 Reduction Annealing Induced Phase Transition and Improvements on Redox Durability of Pt Cluster-Decorated Cu@Pd Electrocatalysts in Oxygen Reduction Reaction. ACS Omega, 2019, 4, 971-982.	3.5	15
462	Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nature Energy, 2019, 4, 115-122.	39.5	680
463	Effect of Surface Ni on Oxygen Reduction Reaction in Dealloyed Nanoporous Pt–Ni. Industrial & Engineering Chemistry Research, 2019, 58, 7438-7447.	3.7	9
464	Heteroatoms co-Doping (N, F) to the Porous Carbon Derived from Spent Coffee Grounds as an Effective Catalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F93-F101.	2.9	33
465	Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 2019, 3, 124-135.	24.0	326
466	Unique hierarchical flower-like PtNi alloy nanocrystals with enhanced oxygen reduction properties. Electrochimica Acta, 2019, 294, 406-412.	5.2	14
467	Design of Noble Metal Electrocatalysts on an Atomic Level. ChemElectroChem, 2019, 6, 289-303.	3.4	46
468	Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Science Bulletin, 2019, 64, 54-62.	9.0	33
469	In-Situ Grown, Passivator-Modulated Anodization Derived Synergistically Well-Mixed Ni–Fe Oxides from Ni Foam as High-Performance Oxygen Evolution Reaction Electrocatalyst. ACS Applied Energy Materials, 2019, 2, 743-753.	5.1	34
470	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. Joule, 2019, 3, 584-594.	24.0	277
471	Implanting Mo Atoms into Surface Lattice of Pt ₃ Mn Alloys Enclosed by High-Indexed Facets: Promoting Highly Active Sites for Ethylene Glycol Oxidation. ACS Catalysis, 2019, 9, 442-455.	11.2	79
472	Disentangling the Degradation Pathways of Highly Defective PtNi/C Nanostructures – An Operando Wide and Small Angle X-ray Scattering Study. ACS Catalysis, 2019, 9, 160-167.	11.2	22
473	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	2.0	34
474	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	13.8	340
475	Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA. Nano Research, 2019, 12, 211-215.	10.4	66
476	Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249.	47.7	492

#	Article	IF	CITATIONS
477	Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Energy Chemistry, 2020, 44, 106-114.	12.9	62
478	Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. Journal of Energy Chemistry, 2020, 45, 59-66.	12.9	54
479	Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Science Bulletin, 2020, 65, 97-104.	9.0	42
480	Oxygen Reduction Reactions on Single―or Fewâ€Atom Discrete Active Sites for Heterogeneous Catalysis. Advanced Energy Materials, 2020, 10, 1902084.	19.5	82
481	Intermetallic PtBi Nanoplates Boost Oxygen Reduction Catalysis with Superior Tolerance over Chemical Fuels. Advanced Science, 2020, 7, 1800178.	11.2	55
482	Optimal Design of Diode-Bridge Bidirectional Solid-State Switch Using Standard Recovery Diodes for 500-kV High-Voltage DC Breaker. IEEE Transactions on Power Electronics, 2020, 35, 1165-1170.	7.9	32
483	Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2020, 260, 118031.	20.2	73
484	N-doped hard carbon nanotubes derived from conjugated microporous polymer for electrocatalytic oxygen reduction reaction. Renewable Energy, 2020, 146, 2270-2280.	8.9	42
485	Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem, 2020, 2, 100023.	19.1	138
486	Composition Modulation of Pt-Based Nanowire Electrocatalysts Enhances Methanol Oxidation Performance. Inorganic Chemistry, 2020, 59, 1376-1382.	4.0	11
487	Tuning the surface segregation composition of a PdCo alloy by the atmosphere for increasing electrocatalytic activity. Sustainable Energy and Fuels, 2020, 4, 380-386.	4.9	13
488	NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69, 104455.	16.0	37
489	Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today, 2020, 31, 100833.	11.9	52
490	Atomic Platinum Anchored on Fe-N-C Material for High Performance Oxygen Reduction Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 165-168.	2.0	4
491	Tuning Pt-skinned PtAg nanotubes in nanoscales to efficiently modify electronic structure for boosting performance of methanol electrooxidation. Applied Catalysis B: Environmental, 2020, 265, 118606.	20.2	83
492	Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2020, 2, 78-110.	10.0	221
493	Au-Decorated CoOOH Nanoplate Hierarchical Hollow Structure for Plasmon-Enhanced Electrocatalytic Water Oxidation. ACS Applied Energy Materials, 2020, 3, 943-950.	5.1	16
494	Template-Preparation of Hollow PtNi Nanostrings as a Bifunctional Electrocatalyst for the Hydrogen Evolution and Oxygen Reduction Reactions. Journal of Nanoscience and Nanotechnology, 2020, 20, 1215-1223.	0.9	4

#	Article	IF	CITATIONS
495	Low-loading Pt nanoparticles embedded on Ni, N-doped carbon as superior electrocatalysts for oxygen reduction. Catalysis Science and Technology, 2020, 10, 65-69.	4.1	23
496	P-doped 3D graphene network supporting uniformly vertical MoS2 nanosheets for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 4043-4053.	7.1	22
497	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	47.7	794
498	Origin of High Activity and Durability of Twisty Nanowire Alloy Catalysts under Oxygen Reduction and Fuel Cell Operating Conditions. Journal of the American Chemical Society, 2020, 142, 1287-1299.	13.7	102
499	Boronâ€Induced Electronicâ€6tructure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie, 2020, 132, 4183-4189.	2.0	23
500	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 4154-4160.	13.8	221
501	Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Materials, 2020, 26, 157-164.	18.0	79
502	Disclosing Pt-Bimetallic Alloy Nanoparticle Surface Lattice Distortion with Electrochemical Probes. ACS Energy Letters, 2020, 5, 162-169.	17.4	35
503	Interfacial Engineering of W ₂ N/WC Heterostructures Derived from Solidâ€6tate Synthesis: A Highly Efficient Trifunctional Electrocatalyst for ORR, OER, and HER. Advanced Materials, 2020, 32, e1905679.	21.0	380
504	Antiperovskite Intermetallic Nanoparticles for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2020, 59, 1871-1877.	13.8	31
505	Inactive step-edge Pt atoms boost oxygen reduction reaction by activating adsorbed hydrogen atoms. Applied Surface Science, 2020, 504, 144434.	6.1	6
506	A centimeter scale self-standing two-dimensional ultra-thin mesoporous platinum nanosheet. Materials Horizons, 2020, 7, 489-494.	12.2	19
507	Evidence for interfacial geometric interactions at metal–support interfaces and their influence on the electroactivity and stability of Pt nanoparticles. Journal of Materials Chemistry A, 2020, 8, 1368-1377.	10.3	25
508	Zirconium nitride catalysts surpass platinum for oxygen reduction. Nature Materials, 2020, 19, 282-286.	27.5	293
509	Hollow PtCu octahedral nanoalloys: Efficient bifunctional electrocatalysts towards oxygen reduction reaction and methanol oxidation reaction by regulating near-surface composition. Journal of Colloid and Interface Science, 2020, 562, 244-251.	9.4	49
510	Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction. Materials Today, 2020, 35, 69-77.	14.2	45
511	Visualization Analysis of Pt and Co Species in Degraded Pt ₃ Co/C Electrocatalyst Layers of a Polymer Electrolyte Fuel Cell Using a Same-View Nano-XAFS/STEM-EDS Combination Technique. ACS Applied Materials & Interfaces, 2020, 12, 2299-2312.	8.0	8
512	Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid. Journal of Energy Chemistry, 2020, 47, 138-145.	12.9	20

#	Article	IF	CITATIONS
513	Porous Strained Pt Nanostructured Thinâ€Film Electrocatalysts via Dealloying for PEM Fuel Cells. Advanced Materials Interfaces, 2020, 7, 1901326.	3.7	19
514	Layered Metal Hydroxides and Their Derivatives: Controllable Synthesis, Chemical Exfoliation, and Electrocatalytic Applications. Advanced Energy Materials, 2020, 10, 1902535.	19.5	90
515	Strain Effect in Palladium Nanostructures as Nanozymes. Nano Letters, 2020, 20, 272-277.	9.1	85
516	Toward Promising Cathode Catalysts for Nonlithium Metal–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1901997.	19.5	102
517	Mono-disperse PdO nanoparticles prepared via microwave-assisted thermo-hydrolyzation with unexpectedly high activity for formic acid oxidation. Electrochimica Acta, 2020, 329, 135166.	5.2	11
518	CoO nanorods/C as a high performance cathode catalyst in direct borohydride fuel cell. Journal of Alloys and Compounds, 2020, 820, 153065.	5.5	15
519	Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation. Nano Research, 2020, 13, 67-71.	10.4	17
520	Antiperovskite Intermetallic Nanoparticles for Enhanced Oxygen Reduction. Angewandte Chemie, 2020, 132, 1887-1893.	2.0	4
521	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	19.5	97
522	Shape Control of Monodispersed Subâ€5 nm Pd Tetrahedrons and Laciniate Pd Nanourchins by Maneuvering the Dispersed State of Additives for Boosting ORR Performance. Small, 2020, 16, e1906026.	10.0	36
523	Perfluoro-Functionalized Conducting Polymers Enhance Electrocatalytic Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 1171-1180.	5.1	2
524	Local structure engineering for active sites in fuel cell electrocatalysts. Science China Chemistry, 2020, 63, 1543-1556.	8.2	11
525	Light-switchable catalytic activity of Cu for oxygen reduction reaction. Frontiers of Materials Science, 2020, 14, 481-487.	2.2	1
50/			
526	Synergetic Structural Transformation of Pt Electrocatalyst into Advanced 3D Architectures for Hydrogen Fuel Cells. Advanced Materials, 2020, 32, e2002210.	21.0	33
526		21.0 13.7	33 134
	Hydrogen Fuel Cells. Advanced Materials, 2020, 32, e2ó02210. Beyond Extended Surfaces: Understanding the Oxygen Reduction Reaction on Nanocatalysts. Journal		
527	 Hydrogen Fuel Cells. Advanced Materials, 2020, 32, e2Ó02210. Beyond Extended Surfaces: Understanding the Oxygen Reduction Reaction on Nanocatalysts. Journal of the American Chemical Society, 2020, 142, 17812-17827. Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER. 	13.7	134

#	Article	IF	CITATIONS
531	PtMn/PtCo alloy nanofascicles: robust electrocatalysts for electrocatalytic hydrogen evolution reaction under both acidic and alkaline conditions. Inorganic Chemistry Frontiers, 2020, 7, 4377-4386.	6.0	25
532	New Quantum Mechanics Based Methods for Multiscale Simulations with Applications to Reaction Mechanisms for Electrocatalysis. Topics in Catalysis, 2020, 63, 1658-1666.	2.8	1
533	Ordering Nanostructures Enhances Electrocatalytic Reactions. Trends in Chemistry, 2020, 2, 888-897.	8.5	10
534	Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nature Materials, 2020, 19, 1207-1214.	27.5	127
535	Size dependent oxygen reduction and methanol oxidation reactions: catalytic activities of PtCu octahedral nanocrystals. Catalysis Science and Technology, 2020, 10, 5501-5512.	4.1	18
536	Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy and Environmental Science, 2020, 13, 4921-4929.	30.8	61
537	One-pot synthesis of three-dimensional Pt nanodendrites with enhanced methanol oxidation reaction and oxygen reduction reaction activities. Nanotechnology, 2020, 31, 435403.	2.6	6
538	Building Practical Descriptors for Defect Engineering of Electrocatalytic Materials. ACS Catalysis, 2020, 10, 9046-9056.	11.2	30
539	Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS ₂ . Journal of the American Chemical Society, 2020, 142, 4298-4308.	13.7	585
540	Pyrolysis of Iron(III) porphyrin coated Pt/C toward oxygen reduction reaction in acidic medium. Progress in Natural Science: Materials International, 2020, 30, 832-838.	4.4	5
541	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. CheM, 2020, 6, 3440-3454.	11.7	231
542	Creation of a Highly Active Pt/Pd/C Core–Shell-Structured Catalyst by Synergistic Combination of Intrinsically High Activity and Surface Decoration with Melamine or Tetra-(<i>tert</i> -butyl)-tetraazaporphyrin. ACS Catalysis, 2020, 10, 14567-14580.	11.2	22
543	Dynamic Core–Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies. Accounts of Chemical Research, 2020, 53, 2913-2924.	15.6	79
544	Enhanced Oxygen Reduction Catalysis of Carbon Nanohybrids from Nitrogen-Rich Edges. Langmuir, 2020, 36, 13752-13758.	3.5	5
545	Continuous Surface Strain Tuning for NiFe-Layered Double Hydroxides Using a Multi-inlet Vortex Mixer. Industrial & Engineering Chemistry Research, 2020, 59, 19897-19906.	3.7	0
546	Electricity Generation from Ammonia in Landfill Leachate by an Alkaline Membrane Fuel Cell Based on Precious-Metal-Free Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 12817-12824.	6.7	20
547	Autogenous growth of the hierarchical V-doped NiFe layer double metal hydroxide electrodes for an enhanced overall water splitting. Dalton Transactions, 2020, 49, 11217-11225.	3.3	26
548	Addressing the sensitivity of signals from solid/liquid ambient pressure XPS (APXPS) measurement. Journal of Chemical Physics, 2020, 153, 044709.	3.0	16

#	Article	IF	Citations
 549	Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability. Journal of Power Sources, 2020, 473, 228607.	7.8	23
550	A computational evaluation of MoS ₂ -based materials for the electrocatalytic oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 14189-14197.	2.8	14
551	Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Research, 2020, 13, 3310-3314.	10.4	17
552	Reconsidering the Benchmarking Evaluation of Catalytic Activity in Oxygen Reduction Reaction. IScience, 2020, 23, 101532.	4.1	42
553	Weak Bonds Joint Effects Catalyze the Cleavage of Strong Câ^'C Bond of Ligninâ€Inspired Compounds and Lignin in Air by Ionic Liquids. ChemSusChem, 2020, 13, 5945-5953.	6.8	7
554	Anisotropic Strain Tuning of L1 ₀ Ternary Nanoparticles for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 19209-19216.	13.7	76
555	Nanoporous materials for proton exchange membrane fuel cell applications. , 2020, , 441-476.		1
556	2D hydrogenated boride as a reductant and stabilizer for <i>in situ</i> synthesis of ultrafine and surfactant-free carbon supported noble metal electrocatalysts with enhanced activity and stability. Journal of Materials Chemistry A, 2020, 8, 18856-18862.	10.3	11
557	A Review of Carbon‣upported Nonprecious Metals as Energyâ€Related Electrocatalysts. Small Methods, 2020, 4, 2000621.	8.6	76
558	Comparative Study of PtNi Nanowire Array Electrodes toward Oxygen Reduction Reaction by Half-Cell Measurement and PEMFC Test. ACS Applied Materials & Interfaces, 2020, 12, 42832-42841.	8.0	35
559	Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Science Advances, 2020, 6, .	10.3	214
560	Phase transformation of PiMoCo and their electrocatalytic activity for oxygen evolution reaction. CrystEngComm, 2020, 22, 6003-6009.	2.6	1
561	A fundamental look at electrocatalytic sulfur reduction reaction. Nature Catalysis, 2020, 3, 762-770.	34.4	455
562	Intermetallic PtCu Nanoframes as Efficient Oxygen Reduction Electrocatalysts. Nano Letters, 2020, 20, 7413-7421.	9.1	109
563	Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 23248-23256.	10.3	30
564	Selective Surface Reconstruction of a Defective Iridiumâ€Based Catalyst for Highâ€Efficiency Water Splitting. Advanced Functional Materials, 2020, 30, 2004375.	14.9	85
565	PtP ₂ nanoparticles on N,P doped carbon through a self-conversion process to core–shell Pt/PtP ₂ as an efficient and robust ORR catalyst. Journal of Materials Chemistry A, 2020, 8, 20463-20473.	10.3	36
566	Facile Room-Temperature Synthesis of a Highly Active and Robust Single-Crystal Pt Multipod Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 49510-49518.	8.0	17

#	Article	IF	CITATIONS
567	Singleâ€Atom Inâ€Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading. Advanced Functional Materials, 2020, 30, 2004310.	14.9	77
568	Ultrathin gold nanowires to enhance radiation therapy. Journal of Nanobiotechnology, 2020, 18, 131.	9.1	15
569	Carbon-Free Platinum–Iron Nanonetworks with Chemically Ordered Structures as Durable Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. ACS Applied Nano Materials, 2020, 3, 9912-9923.	5.0	11
570	Heteroatom-doped carbon interpenetrating networks: a signpost to achieve the best performance of non-PGM catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8, 18767-18777.	10.3	14
571	Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Research, 2020, 13, 3088-3097.	10.4	50
572	Biomassâ€derived nonprecious metal catalysts for oxygen reduction reaction: The demandâ€oriented engineering of active sites and structures. , 2020, 2, 561-581.		83
573	Electrocatalytic behaviour of conducting poly o-toluidine at O2 and N2 atmospheric condition. Materials Today: Proceedings, 2020, , .	1.8	0
574	Nanomanufacturing of Non-Noble Amorphous Alloys for Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 12099-12107.	5.1	14
575	Phase Segregated Pt–SnO ₂ /C Nanohybrids for Highly Efficient Oxygen Reduction Electrocatalysis. Small, 2020, 16, e2005048.	10.0	32
576	High-Index-Facet- and High-Surface-Energy Nanocrystals of Metals and Metal Oxides as Highly Efficient Catalysts. Joule, 2020, 4, 2562-2598.	24.0	136
577	Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano, 2020, 14, 14323-14354.	14.6	37
578	Engineering the surface active sites of actiniae-like hierarchical Fe3O4/Co3O4 nanoheterojunction for efficient oxygen reduction reaction. Dyes and Pigments, 2020, 180, 108439.	3.7	7
579	Ultrathin PtCo nanorod assemblies with self-optimized surface for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2020, 870, 114194.	3.8	19
580	Particle Size Effect on Platinum Dissolution: Considerations for Accelerated Stability Testing of Fuel Cell Catalysts. ACS Catalysis, 2020, 10, 6281-6290.	11.2	65
581	Controllable synthesis of Fe–N ₄ species for acidic oxygen reduction. , 2020, 2, 452-460.		50
582	Mesoporous N-doped carbon nanofibers with surface nanocavities for enhanced catalytic activity toward oxygen reduction reaction. Journal of Materials Science, 2020, 55, 11177-11187.	3.7	6
583	Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 3848-3870.	4.9	38
584	Visualization and understanding of the degradation behaviors of a PEFC Pt/C cathode electrocatalyst using a multi-analysis system combining time-resolved quick XAFS, three-dimensional XAFS-CT, and same-view nano-XAFS/STEM-EDS techniques. Physical Chemistry Chemical Physics, 2020, 22, 18919-18931.	2.8	16

#	Article	IF	CITATIONS
585	A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring. Journal of Materials Chemistry A, 2020, 8, 11695-11711.	10.3	23
586	PdPb bimetallic nanowires as electrocatalysts for enhanced ethanol electrooxidation. Science China Materials, 2020, 63, 2040-2049.	6.3	34
587	Ionic Liquid Additives for the Mitigation of Nafion Specific Adsorption on Platinum. ACS Catalysis, 2020, 10, 7691-7698.	11.2	48
588	Metalâ€Nitrogenâ€Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Advanced Science, 2020, 7, 2001069.	11.2	228
589	Temperature Effects in Polymer Electrolyte Membrane Fuel Cells. ChemElectroChem, 2020, 7, 3545-3568.	3.4	34
590	Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon. Electrochimica Acta, 2020, 353, 136542.	5.2	37
591	Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-Journal of Surface Science and Nanotechnology, 2020, 18, 81-93.	0.4	10
592	Synergistic heat treatment derived hollow-mesoporous-microporous Fe–N–C-SHT electrocatalyst for oxygen reduction reaction. Microporous and Mesoporous Materials, 2020, 305, 110382.	4.4	17
593	Stable, Active, and Methanol-Tolerant PGM-Free Surfaces in an Acidic Medium: Electron Tunneling at Play in Pt/FeNC Hybrid Catalysts for Direct Methanol Fuel Cell Cathodes. ACS Catalysis, 2020, 10, 7475-7485.	11.2	28
594	Construction of efficient Mn-N-C oxygen reduction electrocatalyst from a Mn(II)-based MOF with N-rich organic linker. Inorganic Chemistry Communication, 2020, 118, 107982.	3.9	13
595	Boosting the oxygen reduction reaction of a nonprecious metal Fe–Nx/C electrocatalyst by integrating tube-terminated edges into the basal plane of Fe- and N-codoped carbon bubbles. Journal of Alloys and Compounds, 2020, 843, 155809.	5.5	7
596	Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catalysis, 2020, 10, 4313-4318.	11.2	119
597	Strategies for Engineering Highâ€Performance PGMâ€Free Catalysts toward Oxygen Reduction and Evolution Reactions. Small Methods, 2020, 4, 2000016.	8.6	70
598	PGM-Free Fe/N/C and Ultralow Loading Pt/C Hybrid Cathode Catalysts with Enhanced Stability and Activity in PEM Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 13739-13749.	8.0	36
599	A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Research, 2020, 13, 638-645.	10.4	70
600	Graphene-Supported Single Nickel Atom Catalyst for Highly Selective and Efficient Hydrogen Peroxide Production. ACS Applied Materials & Interfaces, 2020, 12, 17519-17527.	8.0	99
601	Electricity-powered artificial root nodule. Nature Communications, 2020, 11, 1505.	12.8	19
602	Ternary heterogeneous Pt–Ni–Au nanowires with enhanced activity and stability for PEMFCs. Chemical Communications, 2020, 56, 4276-4279.	4.1	18

#	Article	IF	CITATIONS
603	Facile preparation of porous palladium nanocubes <i>via</i> a one-pot process induced by 1-hexadecyl-3-methyl imidazolium bromide for methanol electro-oxidation. New Journal of Chemistry, 2020, 44, 5556-5563.	2.8	1
604	A general carbon monoxide-assisted strategy for synthesizing one-nanometer-thick Pt-based nanowires as effective electrocatalysts. Journal of Colloid and Interface Science, 2020, 572, 170-178.	9.4	10
605	Practical Deep-Learning Representation for Fast Heterogeneous Catalyst Screening. Journal of Physical Chemistry Letters, 2020, 11, 3185-3191.	4.6	63
606	Degradation of the transition metal@Pt core–shell nanoparticle catalyst: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 9467-9476.	2.8	7
607	Defect Engineering for Fuel ell Electrocatalysts. Advanced Materials, 2020, 32, e1907879.	21.0	338
608	Gradientâ€Concentration Design of Stable Core–Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. Advanced Materials, 2020, 32, e2003493.	21.0	79
609	N-doped porous carbon nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient oxygen reduction reaction and sodium-ion storage. Carbon, 2020, 168, 12-21.	10.3	63
610	Cu dopant triggering remarkable enhancement in activity and durability of Fe-N-C electrocatalysts toward oxygen reduction. Journal of Electroanalytical Chemistry, 2020, 873, 114389.	3.8	13
611	Heterophase fcc-2H-fcc gold nanorods. Nature Communications, 2020, 11, 3293.	12.8	92
612	Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from Doped ZnO Solid Solutions. ACS Central Science, 2020, 6, 1431-1440.	11.3	69
613	Direct Synthesis of Ultrathin Pt Nanowire Arrays as Catalysts for Methanol Oxidation. Small, 2020, 16, e2001135.	10.0	28
614	The Trans Axial Ligand Effect on Oxygen Reduction. Immobilization Method May Weaken Catalyst Design for Electrocatalytic Performance. Journal of Physical Chemistry C, 2020, 124, 16324-16331.	3.1	29
615	A post-synthesis surface reconstructed carbon aerogel as an enhanced oxygen reduction reaction catalyst for zinc–air batteries. Catalysis Science and Technology, 2020, 10, 5288-5297.	4.1	8
616	The Importance of Temperature and Potential Window in Stability Evaluation of Supported Pt-Based Oxygen Reduction Reaction Electrocatalysts in Thin Film Rotating Disc Electrode Setup. Journal of the Electrochemical Society, 2020, 167, 114506.	2.9	22
617	Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Research, 2020, 13, 2691-2696.	10.4	39
618	The "electric-dipole―effect of Pt–Ni for enhanced catalytic dehydrogenation of ammonia borane. Journal of Alloys and Compounds, 2020, 844, 156253.	5.5	14
619	Nickel–cobalt bimetallic sulfide NiCo ₂ S ₄ nanostructures for a robust hydrogen evolution reaction in acidic media. RSC Advances, 2020, 10, 22196-22203.	3.6	14
620	High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. Journal of Materials Chemistry A, 2020, 8, 14844-14862.	10.3	108

#	ARTICLE Catalytic Nanoframes and Beyond. Advanced Materials, 2020, 32, e2001345.	IF 21.0	CITATIONS 57
622	Strain engineering for Janus palladium-gold bimetallic nanoparticles: Enhanced electrocatalytic performance for oxygen reduction reaction and zinc-air battery. Chemical Engineering Journal, 2020, 389, 124240.	12.7	40
623	Unveiling the size effect of Pt-on-Au nanostructures on CO and methanol electrooxidation by <i>in situ</i> electrochemical SERS. Nanoscale, 2020, 12, 5341-5346.	5.6	18
624	Structurally Modulated Graphitic Carbon Nanofiber and Heteroatom (N,F) Engineering toward Metal-Free ORR Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 11438-11449.	8.0	44
625	Molecular Design of Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2020, 10, 1903815.	19.5	295
626	The role of Pt loading on reduced graphene oxide support in the polyol synthesis of catalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 20594-20604.	7.1	11
627	Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation. Nano Energy, 2020, 71, 104623.	16.0	64
628	Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction. Journal of Power Sources, 2020, 453, 227846.	7.8	22
629	Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nature Communications, 2020, 11, 938.	12.8	238
630	Electrochemical Measurement of Intrinsic Oxygen Reduction Reaction Activity at High Current Densities as a Function of Particle Size for Pt _{4–<i>x</i>} Co _{<i>x</i>} /C (<i>x</i>) Tj E	TQq 1.2 0.7	7843614 rgBT /
631	Structural Screening and Design of Platinum Nanosamples for Oxygen Reduction. ACS Catalysis, 2020, 10, 3911-3920.	11.2	26
632	Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities. Dalton Transactions, 2020, 49, 4189-4199.	3.3	9
633	<i>In situ</i> growth of free-standing perovskite hydroxide electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2020, 8, 5919-5926.	10.3	21
634	H 2 â€induced thermal treatment significantly influences the development of a high performance lowâ€platinum coreâ€shell PtNi/C alloyed oxygen reduction catalyst. International Journal of Energy Research, 2020, 44, 4773-4783.	4.5	11
635	Evolution of composition and structure of PtRh/C in the acidic methanol electrooxidation process. Electrochemistry Communications, 2020, 113, 106690.	4.7	7
636	Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. Journal of Catalysis, 2020, 383, 164-171.	6.2	125
637	Etching high-Fe-content PtPdFe nanoparticles as efficient catalysts towards glycerol electrooxidation. New Journal of Chemistry, 2020, 44, 4604-4612.	2.8	11
638	Efficient synthesis of Pt–Co nanowires as cathode catalysts for proton exchange membrane fuel cells. RSC Advances, 2020, 10, 6287-6296.	3.6	26

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
639	High-Performance Pt–Co Nanoframes for Fuel-Cell Electrocatalysis. Nano Letters, 2020, 20, 1974-1979.	9.1	150
640	Spin Regulation on 2D Pd–Fe–Pt Nanomeshes Promotes Fuel Electrooxidations. Nano Letters, 2020, 20, 1967-1973.	9.1	67
641	Interlaced Pdâ \in Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis. Nanoscale, 2020, 12, 5368-5373.	5.6	35
642	Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule, 2020, 4, 45-68.	24.0	596
643	Gallium Oxide Nanowire with Twinning Structure and Its Photoluminescence Property. Journal of Nanoscience and Nanotechnology, 2020, 20, 2395-2401.	0.9	4
644	Tailoring N-Coordination Environment by Ligand Competitive Thermolysis Strategy for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 7270-7276.	8.0	6
645	Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. Nano Letters, 2020, 20, 1403-1409.	9.1	89
646	Atomâ€Ratioâ€Conducted Tailoring of PdAu Bimetallic Nanocrystals with Distinctive Shapes and Dimensions for Boosting the ORR Performance. Chemistry - A European Journal, 2020, 26, 4480-4488.	3.3	6
647	Lavender-Like Ga-Doped Pt ₃ Co Nanowires for Highly Stable and Active Electrocatalysis. ACS Catalysis, 2020, 10, 3018-3026.	11.2	75
648	Surface electron state engineering enhanced hydrogen evolution of hierarchical molybdenum disulfide in acidic and alkaline media. Applied Catalysis B: Environmental, 2020, 266, 118649.	20.2	55
649	Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property. Chinese Journal of Catalysis, 2020, 41, 739-755.	14.0	84
650	Fineâ€Tuning Intrinsic Strain in Pentaâ€Twinned Pt–Cu–Mn Nanoframes Boosts Oxygen Reduction Catalysis. Advanced Functional Materials, 2020, 30, 1910107.	14.9	108
651	Pt-O bond as an active site superior to PtO in hydrogen evolution reaction. Nature Communications, 2020, 11, 490.	12.8	184
652	Synthesis of Ultrathin and Composition-Tunable PdPt Porous Nanowires with Enhanced Electrocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 2901-2909.	6.7	21
653	3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance. Carbon, 2020, 161, 502-509.	10.3	66
654	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	18.8	182
655	Recent Advances on Metal Organic Framework–Derived Catalysts for Electrochemical Oxygen Reduction Reaction. ACS Symposium Series, 2020, , 231-278.	0.5	6
656	Porous carbon supported PtPd alloy nanoparticles derived from N-heterocyclic carbene bimetal complex as efficient bifunctional electrocatalysts. Electrochimica Acta, 2020, 337, 135855.	5.2	15

#	Article	IF	CITATIONS
657	Mesoscopic analyses of the impact of morphology and operating conditions on the transport resistances in a proton-exchange-membrane fuel-cell catalyst layer. Sustainable Energy and Fuels, 2020, 4, 3623-3639.	4.9	12
658	Facile synthesis of porous hollow Au nanoshells with enhanced catalytic properties towards reduction of p-nitrophenol. Inorganic Chemistry Communication, 2020, 116, 107896.	3.9	8
659	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie, 2020, 132, 18490-18504.	2.0	24
660	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie - International Edition, 2020, 59, 18334-18348.	13.8	174
661	Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Research, 2020, 13, 1472-1478.	10.4	58
662	Platinum-based anode catalyst systems for direct methanol fuel cells. , 2020, , 177-200.		1
663	Hierarchical zeolite enveloping Pd-CeO2 nanowires: An efficient adsorption/catalysis bifunctional catalyst for low temperature propane total degradation. Chemical Engineering Journal, 2020, 393, 124717.	12.7	62
664	MXene (Ti ₃ C ₂ T _{<i>x</i>/sub>) and Carbon Nanotube Hybrid-Supported Platinum Catalysts for the High-Performance Oxygen Reduction Reaction in PEMFC. ACS Applied Materials & Interfaces, 2020, 12, 19539-19546.}	8.0	67
665	Steam-Assisted Chemical Vapor Deposition of Zeolitic Imidazolate Framework. , 2020, 2, 485-491.		26
666	Tailored Crafting of Core–Shell Cobalt-Hydroxides@Polyfluoroaniline Nanostructures with Strongly Coupled Interfaces and Improved Hydrophilicity to Enable Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 6127-6133.	6.7	12
667	Feed gas exchange (startup/shutdown) effects on Pt/C cathode electrocatalysis and surface Pt-oxide behavior in polymer electrolyte fuel cells as revealed using in situ real-time XAFS and high-resolution STEM measurements. Physical Chemistry Chemical Physics, 2020, 22, 9424-9437.	2.8	2
668	Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 8195-8217.	10.3	64
669	Coâ€doped Pt Nanowire Networks with Clean Surfaces for Enhanced Oxygen Reduction Reactions. Chemistry - an Asian Journal, 2020, 15, 1736-1742.	3.3	9
670	Insights in the Oxygen Reduction Reaction: From Metallic Electrocatalysts to Diporphyrins. ACS Catalysis, 2020, 10, 5979-5989.	11.2	52
671	Ultrafine Ptâ€Based Nanowires for Advanced Catalysis. Advanced Functional Materials, 2020, 30, 2000793.	14.9	188
672	Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 Times Better than Pt. Journal of the American Chemical Society, 2020, 142, 8625-8632.	13.7	55
673	Fabrication and Applications of 3D Nanoarchitectures for Advanced Electrocatalysts and Sensors. Advanced Materials, 2020, 32, e1907500.	21.0	17
674	The Protection of Câ^'O Bond of Pine Lignin in Different Organic Solvent Systems. ChemistrySelect, 2020, 5, 3850-3858.	1.5	4

#	Article	IF	CITATIONS
675	Imprinting isolated single iron atoms onto mesoporous silica by templating with metallosurfactants. Journal of Colloid and Interface Science, 2020, 573, 193-203.	9.4	17
676	Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy, 2020, 73, 104784.	16.0	54
677	New PtMg Alloy with Durable Electrocatalytic Performance for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. ACS Energy Letters, 2020, 5, 1601-1609.	17.4	37
678	Bonding–antibonding state transition induces multiple electron modulations toward oxygen reduction reaction electrocatalysis. New Journal of Chemistry, 2020, 44, 8191-8197.	2.8	6
679	Bionic Structural Design and Electrochemical Manufacture of WC/N-Doped Carbon Hybrids as Efficient ORR Catalyst. Journal of the Electrochemical Society, 2020, 167, 064502.	2.9	9
680	Lowâ€PGM and PGMâ€Free Catalysts for Proton Exchange Membrane Fuel Cells: Stability Challenges and Material Solutions. Advanced Materials, 2021, 33, e1908232.	21.0	201
681	Recent advances in defect electrocatalysts: Preparation and characterization. Journal of Energy Chemistry, 2021, 53, 208-225.	12.9	98
682	Wellâ€Defined Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2021, 11, 2001537.	19.5	102
683	Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. Advanced Materials, 2021, 33, e2000381.	21.0	231
684	<i>In Situ</i> / <i>Operando</i> Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chemical Reviews, 2021, 121, 882-961.	47.7	358
685	Strain loading dependent optoelectronic characteristics in CdS micro/nanowires. Journal of Alloys and Compounds, 2021, 857, 157489.	5.5	2
686	Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next-Generation Electrocatalysts. Matter, 2021, 4, 195-216.	10.0	29
687	High-quality and deeply excavated PtPdNi nanocubes as efficient catalysts toward oxygen reduction reaction. Chinese Journal of Catalysis, 2021, 42, 772-780.	14.0	6
688	Non-aqueous solution synthesis of Pt-based nanostructures for fuel cell catalysts. Materials Today Energy, 2021, 19, 100616.	4.7	10
689	A Simple Route to the Synthesis of Pt Nanobars and the Mechanistic Understanding of Symmetry Reduction. Chemistry - A European Journal, 2021, 27, 2760-2766.	3.3	5
690	Nanocatalyst Design for Longâ€Term Operation of Proton/Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 2021, 11, 2003188.	19.5	89
691	Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angewandte Chemie - International Edition, 2021, 60, 6533-6538.	13.8	73
692	Synthesis of hierarchical interconnected graphene oxide for enhanced oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125719.	4.7	4

#	Article	IF	CITATIONS
693	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	14.9	86
694	Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols. Science China Materials, 2021, 64, 601-610.	6.3	17
695	Hierarchical defective palladium-silver alloy nanosheets for ethanol electrooxidation. Journal of Colloid and Interface Science, 2021, 586, 200-207.	9.4	41
696	Controllable Fabrication of Co3â~'xMnxO4 with Tunable External Co3+/Co2+ Ratio for Promoted Oxygen Reduction Reaction. Catalysis Letters, 2021, 151, 1810-1820.	2.6	8
697	Twoâ€Dimensional Transition Metal Oxides and Chalcogenides for Advanced Photocatalysis: Progress, Challenges, and Opportunities. Solar Rrl, 2021, 5, 2000403.	5.8	28
698	Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews, 2021, 121, 736-795.	47.7	269
699	Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy and Environmental Materials, 2021, 4, 307-335.	12.8	58
700	Self-supported Pt–CoO networks combining high specific activity with high surface area for oxygen reduction. Nature Materials, 2021, 20, 208-213.	27.5	139
701	Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 2021, 19, 375-439.	16.2	255
702	Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Advances, 2021, 11, 13316-13328.	3.6	36
703	Rationally constructing nitrogen–fluorine heteroatoms on porous carbon derived from pomegranate fruit peel waste towards an efficient oxygen reduction catalyst for polymer electrolyte membrane fuel cells. Sustainable Energy and Fuels, 2021, 5, 886-899.	4.9	14
704	Platinum Catalysts on Niobium Diboride Microparticles for Oxygen Reduction Reaction. Electrocatalysis, 2021, 12, 188-198.	3.0	4
705	Novel carbon structures as highly stable supports for electrocatalysts in acid media: regulating the oxygen functionalization behavior of carbon. New Journal of Chemistry, 2021, 45, 10802-10809.	2.8	2
706	Recent Advances in Electrode Design Based on One-Dimensional Nanostructure Arrays for Proton Exchange Membrane Fuel Cell Applications. Engineering, 2021, 7, 33-49.	6.7	37
707	Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions. Journal of Catalysis, 2021, 393, 303-312.	6.2	17
708	Atomically dispersed single iron sites for promoting Pt and Pt ₃ Co fuel cell catalysts: performance and durability improvements. Energy and Environmental Science, 2021, 14, 4948-4960.	30.8	168
709	Graphene-quantum-dot-composited platinum nanotube arrays as a dual efficient electrocatalyst for the oxygen reduction reaction and methanol electro-oxidation. Journal of Materials Chemistry A, 2021, 9, 9609-9615.	10.3	36
710	Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 2021, 23, 2834-2867.	9.0	96

ARTICLE IF CITATIONS Self-reconstruction mediates isolated Pt tailored nanoframes for highly efficient catalysis. Journal 711 10.3 5 of Materials Chemistry A, 2021, 9, 22501-22508. Nanoscale Pt₅Ni₃₆ design and synthesis for efficient oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 21051-21056. Enhanced performance and degradation of wastewater in microbial fuel cells using titanium dioxide 713 3.6 16 nanowire photocathodes. RSC Advances, 2021, 11, 2242-2252. Convolutional neural networks for high throughput screening of catalyst layer inks for polymer 714 electrolyte fuel cells. RSC Advances, 2021, 11, 32126-32134. Effect of an external electric field, aqueous solution and specific adsorption on segregation of Pt_{ML}/M_{ML}/Pt(111) (M = Cu, Pd, Au): a DFT study. Physical Chemistry Chemical 715 2.8 5 Physics, 2021, 23, 1584-1589. Structure-intensified PtCoRh spiral nanowires as highly active and durable electrocatalysts for methanol oxidation. Nanoscale, 2021, 13, 2632-2638. 5.6 Ultrafine Pt–Ni nanoparticles in hollow porous carbon spheres for remarkable oxygen reduction 717 3.3 10 reaction catalysis. Dalton Transactions, 2021, 50, 6811-6822. Cu-incorporated PtBi intermetallic nanofiber bundles enhance alcohol oxidation electrocatalysis 718 with high CO tolerance. Journal of Materials Chemistry A, 2021, 9, 20676-20684. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and 719 12.9 53 oxygen reduction reaction in direct ethanol fuel cell. Journal of Energy Chemistry, 2021, 52, 251-261. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells. Accounts of Chemical 15.6 Research, 2021, 54, 311-322 Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction 721 31.5 494 reactions to fuel cell vehicles. Nature Nanotechnology, 2021, 16, 140-147. Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 5578-5587. PdP/WO₃ multi-functional catalyst with high activity and stability for direct liquid fuel 723 4.9 5 cells (DLFCs). Sustainable Energy and Fuels, 2021, 5, 4758-4770. Active site engineering of atomically dispersed transition metal–heteroatom–carbon catalysts for 724 4.1 oxygen reduction. Chemical Communications, 2021, 57, 7869-7881. Modulating the Multiple Intrinsic Properties of Platinum-Iron Alloy Nanowires towards Enhancing 725 5.9 6 Collaborative Electrocatalysis. Materials Chemistry Frontiers, 0, , . Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 17832-17852. Atomic Zn Sites on N and S Codoped Biomass-Derived Graphene for a High-Efficiency Oxygen Reduction 727 5.121 Reaction in both Acidic and Alkaline Electrolytes. ACS Applied Energy Materials, 2021, 4, 2481-2488. In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction. Small, 2021, 17, e2005713.

ARTICLE IF CITATIONS # Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. 729 2.0 60 Angewandte Chemie, 2021, 133, 17976-17996. Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angewandte 9 Chemie, 2021, 133, 6607-6612. Subnanoscale Platinum by Repeated UV Irradiation: From One and Few Atoms to Clusters for the 731 8.0 10 Automotive PEMFC. ACS Applied Materials & amp; Interfaces, 2021, 13, 8395-8404. Resolving the nanoparticles' structure-property relationships at the atomic level: a study of Pt-based electrocatalysts. IScience, 2021, 24, 102102. Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 733 30.2 93 2021, 5, 256-276. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 2021, 8, nwab019. 734 Twin-Directed Deposition of Pt on Pd Icosahedral Nanocrystals for Catalysts with Enhanced Activity 735 9.1 36 and Durability toward Oxygen Reduction. Nano Letters, 2021, 21, 2248-2254. Alloying–realloying enabled high durability for Pt–Pd-3d-transition metal nanoparticle fuel cell 12.8 catalysts. Nature Communications, 2021, 12, 859. Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based coreâ€"shell electrocatalysts for 737 12.9 36 rechargeable zincâ∉ air batteries. Journal of Energy Chemistry, 2021, 53, 364-371. Ultrathin Co3O4â€"Pt core-shell nanoparticles coupled with three-dimensional graphene for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 10303-10311. Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End 739 33 13.7Simulation. Journal of the American Chemical Society, 2021, 143, 5355-5363. Straightforward synthesis of chemically ordered Pt3Co/C nanoparticles by a solid phase method for 740 2.4 oxygen-reduction reaction. lonics, 2021, 27, 2553-2560. Recent Advances on Nonprecious-Metal-Based Bifunctional Oxygen Electrocatalysts for Zincâ€"Air 741 5.1 48 Batteries. Energy & amp; Fuels, 2021, 35, 6380-6401. Largeâ€scale Synthesis of Porous Pt Nanospheres /Threeâ€dimensional Graphene Hybrid Materials as a Highly Active and Stable Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect, 2021, 6, 742 1.5 2080-2084. Three dimensional nitrogen, phosphorus and sulfur doped porous graphene as efficient bifunctional electrocatalysts for direct methanol fuel cell. International Journal of Hydrogen Energy, 2021, 46, 743 23 7.1 10247-10258. A fundamental comprehension and recent progress in advanced Ptâ€based ORR nanocatalysts. SmartMat, 744 141 2021, 2, 56-75. A model for mesoporous carbon-supported platinum catalyst/electrolyte interfaces in polymer 745 7.8 6 electrolyte fuel cells. Journal of Power Sources, 2021, 487, 229414. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane 746 21.0 Fuel Cells. Advanced Materials, 2021, 33, e2006292.

#	Article	IF	CITATIONS
747	Neodymiumâ€Doped IrO ₂ Electrocatalysts Supported on Titanium Plates for Enhanced Chlorine Evolution Reaction Performance. ChemElectroChem, 2021, 8, 1204-1210.	3.4	15
748	Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability. ACS Nano, 2021, 15, 7348-7356.	14.6	53
749	Engineering sub-nano structures with highly jagged edges on the Pt surface of Pt/C electrocatalysts to promote oxygen reduction reactions. Electrochimica Acta, 2021, 372, 137868.	5.2	3
750	Ultralong PtPd Alloyed Nanowires Anchored on Graphene for Efficient Methanol Oxidation Reaction. Chemistry - an Asian Journal, 2021, 16, 1130-1137.	3.3	21
751	A hierarchically ordered porous nitrogen-doped carbon catalyst with densely accessible Co-N active sites for efficient oxygen reduction reaction. Microporous and Mesoporous Materials, 2021, 317, 111002.	4.4	12
752	In Situ Small-Angle X-ray Scattering Studies on the Growth Mechanism of Anisotropic Platinum Nanoparticles. ACS Omega, 2021, 6, 10866-10874.	3.5	3
753	Cathode Design for Proton Exchange Membrane Fuel Cells in Automotive Applications. Automotive Innovation, 2021, 4, 144-164.	5.1	28
754	<scp>Ptâ€based</scp> Intermetallic Nanocatalysts for Promoting the Oxygen Reduction Reaction. Bulletin of the Korean Chemical Society, 2021, 42, 724-736.	1.9	17
755	Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today, 2021, 37, 101094.	11.9	93
756	Recent Advances in <scp>Ptâ€Based</scp> Ultrathin Nanowires: Synthesis and Electrocatalytic Applications ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1389-1396.	4.9	16
757	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	4.2	57
758	Electron-rich platinum electrocatalysts supported onto tin oxides for efficient oxygen reduction. Composites Communications, 2021, 24, 100603.	6.3	15
759	Ultralow platinum loading proton exchange membrane fuel cells: Performance losses and solutions. Journal of Power Sources, 2021, 490, 229515.	7.8	43
760	Stabilizing Ptâ€Based Electrocatalysts for Oxygen Reduction Reaction: Fundamental Understanding and Design Strategies. Advanced Materials, 2021, 33, e2006494.	21.0	182
761	Oleylamine Aging of PtNi Nanoparticles Giving Enhanced Functionality for the Oxygen Reduction Reaction. Nano Letters, 2021, 21, 3989-3996.	9.1	37
762	Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 6933-6941.	13.7	62
763	Surface active-site engineering in hierarchical PtNi nanocatalysts for efficient triiodide reduction reaction. Nano Research, 2021, 14, 4714-4718.	10.4	11
764	Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation. Nano Research, 2022, 15, 280-284.	10.4	19

#	Article	IF	CITATIONS
765	Electron-rich isolated Pt active sites in ultrafine PtFe3 intermetallic catalyst for efficient alkene hydrosilylation. Journal of Catalysis, 2021, 396, 351-359.	6.2	16
766	Bragg Coherent Diffraction Imaging for <i>In Situ</i> Studies in Electrocatalysis. ACS Nano, 2021, 15, 6129-6146.	14.6	24
768	Recent Advances in Nanoparticles Confined in Twoâ€Dimensional Materials as Highâ€Performance Electrocatalysts for Energyâ€Conversion Technologies. ChemCatChem, 2021, 13, 2541-2558.	3.7	4
769	Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nature Energy, 2021, 6, 614-623.	39.5	274
770	Highâ€Index Faceted PdPtCu Ultrathin Nanorings Enable Highly Active and Stable Oxygen Reduction Electrocatalysis. Small Methods, 2021, 5, e2100154.	8.6	34
771	The Critical Impacts of Ligands on Heterogeneous Nanocatalysis: A Review. ACS Catalysis, 2021, 11, 6020-6058.	11.2	169
772	Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nature Energy, 2021, 6, 475-486.	39.5	252
773	Single-atom site catalysts supported on two-dimensional materials for energy applications. Chinese Chemical Letters, 2021, 32, 3771-3781.	9.0	38
774	Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Research, 2022, 15, 677-684.	10.4	30
775	Supported Pt-Ni bimetallic nanoparticles catalyzed hydrodeoxygenation of dibenzofuran with high selectivity to bicyclohexane. Chinese Chemical Letters, 2022, 33, 234-238.	9.0	5
776	Surface/Near‣urface Structure of Highly Active and Durable Ptâ€Based Catalysts for Oxygen Reduction Reaction: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2100025.	5.8	4
777	Promoting Bifunctional Water Splitting by Modification of the Electronic Structure at the Interface of NiFe Layered Double Hydroxide and Ag. ACS Applied Materials & amp; Interfaces, 2021, 13, 26055-26063.	8.0	41
778	Co3Mo3N—An efficient multifunctional electrocatalyst. Innovation(China), 2021, 2, 100096.	9.1	26
779	Towards comprehensive understanding of proton-exchange membrane fuel cells using high energy x-rays. JPhys Energy, 2021, 3, 031003.	5.3	2
780	PdCoNi alloy nanoparticles decorated, nitrogen-doped carbon nanotubes for highly active and durable oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 411, 128527.	12.7	26
781	Compressive Strain Reduces the Hydrogen Evolution and Oxidation Reaction Activity of Platinum in Alkaline Solution. ACS Catalysis, 2021, 11, 8165-8173.	11.2	37
782	Highly Surface-Distorted Pt Superstructures for Multifunctional Electrocatalysis. Nano Letters, 2021, 21, 5075-5082.	9.1	31
783	Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction. Science Advances, 2021, 7, .	10.3	44

#	Article	IF	CITATIONS
784	Direct Integration of Strainedâ€Pt Catalysts into Protonâ€Exchangeâ€Membrane Fuel Cells with Atomic Layer Deposition. Advanced Materials, 2021, 33, e2007885.	21.0	10
785	Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nature Communications, 2021, 12, 4018.	12.8	160
786	Single Metal Atom Supported on N-Doped 2D Nitride Black Phosphorus: An Efficient Electrocatalyst for the Oxygen Evolution and Oxygen Reduction Reactions. Journal of Physical Chemistry C, 2021, 125, 12541-12550.	3.1	24
787	Switchable Binding Energy of Ionic Compounds and Application in Customizable Ligand Exchange for Colloid Nanocrystals. Journal of Physical Chemistry Letters, 2021, 12, 5271-5278.	4.6	3
788	Laser-Assisted Synthesis of Pd Aerogel with Compressive Strain for Boosting Formate and Ethanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 7837-7845.	6.7	14
789	Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals, 2021, 40, 3375-3405.	7.1	112
790	Dense Pt Nanowire Electrocatalyst for Improved Fuel Cell Performance Using a Graphitic Carbon Nitrideâ€Đecorated Hierarchical Nanocarbon Support. Small, 2021, 17, e2102288.	10.0	59
791	Pd–SnO2 heterojunction catalysts anchored on graphene sheets for enhanced oxygen reduction. Composites Communications, 2021, 25, 100703.	6.3	19
792	Ballâ€Milling Effect on Biomassâ€Derived Nanocarbon Catalysts for the Oxygen Reduction Reaction. ChemistrySelect, 2021, 6, 6019-6028.	1.5	10
793	<i>In Situ</i> X-ray Absorption Spectroscopy of PtNi-Nanowire/Vulcan XC-72R under Oxygen Reduction Reaction in Alkaline Media. ACS Omega, 2021, 6, 17203-17216.	3.5	5
794	Advanced Research Progress on Highâ€Efficient Utilization of Pt Electrocatalysts in Fuel Cells. Energy Technology, 2021, 9, 2100227.	3.8	8
795	Chitosan-derived N-self-doped Pt/C as stable electrocatalysts for the oxygen reduction. Ionics, 2021, 27, 3975-3985.	2.4	1
796	One Nanometer Ptlr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production. Journal of the American Chemical Society, 2021, 143, 10822-10827.	13.7	95
797	Highly Porous Pt ₂ Ir Alloy Nanocrystals as a Superior Catalyst with High-Efficiency C–C Bond Cleavage for Ethanol Electrooxidation. Journal of Physical Chemistry Letters, 2021, 12, 6773-6780.	4.6	17
798	Mesoporous Feâ€N x Subâ€Microspheres for Highly Efficient Electrocatalytic Oxygen Reduction Reaction. ChemCatChem, 2021, 13, 4047-4054.	3.7	5
799	Designing the next generation of proton-exchange membrane fuel cells. Nature, 2021, 595, 361-369.	27.8	1,012
800	Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core–Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. Journal of the American Chemical Society, 2021, 143, 11262-11270.	13.7	121
801	A Large-Scalable, Surfactant-Free, and Ultrastable Ru-Doped Pt ₃ Co Oxygen Reduction Catalyst. Nano Letters, 2021, 21, 6625-6632.	9.1	43

#	Article	IF	CITATIONS
802	Atomic Regulation of PGM Electrocatalysts for the Oxygen Reduction Reaction. Frontiers in Chemistry, 2021, 9, 699861.	3.6	6
803	Electrochemically Induced Strain Evolution in Pt–Ni Alloy Nanoparticles Observed by Bragg Coherent Diffraction Imaging. Nano Letters, 2021, 21, 5945-5951.	9.1	14
804	New strategy of S,N co-doping of conductive-copolymer-derived carbon nanotubes to effectively improve the dispersion of PtCu nanocrystals for boosting the electrocatalytic oxidation of methanol. Chinese Journal of Catalysis, 2021, 42, 1205-1215.	14.0	29
805	Nitrogen-doped carbon quantum dots decorated on platinum catalysts for improved oxygen reduction reaction. Applied Surface Science, 2021, 554, 149594.	6.1	23
806	Hierarchically Fractal PtPdCu Sponges and their Directed Mass- and Electron-Transfer Effects. Nano Letters, 2021, 21, 7870-7878.	9.1	47
807	Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40172-40199.	8.0	92
808	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	9.9	47
809	Advanced Atomically Dispersed Metal–Nitrogen–Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells. Advanced Energy Materials, 2021, 11, 2101222.	19.5	109
810	Nitrogen and atomic Fe dual-doped porous carbon nanocubes as superior electrocatalysts for acidic H2-O2 PEMFC and alkaline Zn-air battery. Journal of Energy Chemistry, 2021, 59, 388-395.	12.9	27
811	Unraveling electrochemical oxygen reduction mechanism on singleâ€atom catalysts by a computational investigation. International Journal of Energy Research, 2022, 46, 1032-1042.	4.5	6
812	Superfast Synthesis of Densely Packed and Ultrafine Pt–Lanthanide@KB via Solventâ€Free Microwave as Efficient Hydrogen Evolution Electrocatalysts. Small, 2021, 17, e2102879.	10.0	27
813	Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Applied Catalysis B: Environmental, 2021, 291, 120065.	20.2	114
814	Rational Design of Highly Stable and Active MXeneâ€Based Bifunctional ORR/OER Doubleâ€Atom Catalysts. Advanced Materials, 2021, 33, e2102595.	21.0	137
815	The Direct Cause of Amplified Wettability: Roughness or Surface Chemistry?. Journal of Composites Science, 2021, 5, 213.	3.0	22
816	An Examination of the Catalyst Layer Contribution to the Disparity between the Nernst Potential and Open Circuit Potential in Proton Exchange Membrane Fuel Cells. Catalysts, 2021, 11, 965.	3.5	3
817	Enhanced oxygen reduction activity with rare earth metal alloy catalysts in proton exchange membrane fuel cells. Electrochimica Acta, 2021, 387, 138454.	5.2	13
818	Perfluorocarbon nanoemulsions create a beneficial O2 microenvironment in N2-fixing biological inorganic hybrid. Chem Catalysis, 2021, 1, 704-720.	6.1	6
819	Atomic level engineering of noble metal nanocrystals for energy conversion catalysis. Journal of Energy Chemistry, 2021, 63, 604-624.	12.9	12

ARTICLE IF CITATIONS Mesoscopic modeling impacts of liquid water saturation, and platinum distribution on gas transport 820 5.2 20 resistances in a PEMFC catalyst layer. Electrochimica Acta, 2021, 388, 138659. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide 821 reduction. Chinese Chemical Letters, 2022, 33, 2259-2269. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte 822 13.8 25 Chemie - International Edition, 2022, 61, . Characterizing the defects and ferromagnetism in metal oxides: The case of magnesium oxide. 4.4 Materials Characterization, 2021, 179, 111366. Prudent Practices in <i>exâ€...situ</i> Durability Analysis Using Cyclic Voltammetry for Platinumâ€based 824 3.3 6 Electrocatalysts. Chemistry - an Asian Journal, 2021, 16, 3311-3325. 1D PtCo nanowires as catalysts for PEMFCs with low Pt loading. Science China Materials, 2022, 65, 704-711. 6.3 Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen 826 2.0 7 Reduction. Angewandte Chemie, 0, , . Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coordination 18.8 57 Chemistry Reviews, 2021, 442, 213996. One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond. Nano 829 10.4 25 Research, 2022, 15, 1087-1093. Theoretical insights for CoNxC4-x-graphene (x = 0–4) materials as high performance low-cost 3.3 electrocatalysts for oxygen reduction reactions. Applied Physics Letters, 2021, 119, . Insight into the Role and Strategies of Metal–Organic Frameworks in Direct Methanol Fuel Cells: A 831 5.118 Review. Energy & amp; Fuels, 2021, 35, 15265-15284. Ag Nanoparticle-Decorated Cu2S Nanosheets for Surface Enhanced Raman Spectroscopy Detection and 4.1 Photocatalytic Applications. Nanomaterials, 2021, 11, 2508. Engineering dual metal single-atom sites with the nitrogen-coordinated nonprecious catalyst for 833 6.1 35 oxygen reduction reaction (ORR) in acidic electrolyte. Applied Surface Science, 2022, 572, 151367. Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen 834 13.8 59 Reduction. Angewandte Chemie - International Edition, 2021, 60, 26483-26488 Atomic-Scale Design of High-Performance Pt-Based Electrocatalysts for Oxygen Reduction Reaction. 835 3.6 11 Frontiers in Chemistry, 2021, 9, 753604. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte 2.0 Chemie, 2022, 134, . Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction. 837 7.1 87 International Journal of Hydrogen Energy, 2021, 46, 31202-31215. How to appropriately assess the oxygen reduction reaction activity of platinum group metal catalysts 4.1 with rotating disk electrode. IScience, 2021, 24, 103024.

#	Article	IF	CITATIONS
839	Ultralow Pt Doped on N-based Carbon as a Promising Electrocatalyst for High-Temperature Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2021, 4, 9881-9890.	5.1	10
840	Surface lattice engineering for fine-tuned spatial configuration of nanocrystals. Nature Communications, 2021, 12, 5661.	12.8	17
841	Controlled deposition of 2D-confined Pd or Ir nano-islands on Au(1 1 1) following Cu UPD, and their HER activity. Journal of Electroanalytical Chemistry, 2021, 896, 115285.	3.8	5
842	Hydrophilicity control of laser-induced amorphous carbon-encapsulated carbon nano-onions and their application to proton exchange membrane fuel cells under low humidity. Carbon, 2021, 184, 910-922.	10.3	7
843	Sub-nanometer thin TiO2-coating on carbon support for boosting oxygen reduction activity and durability of Pt nanoparticles. Electrochimica Acta, 2021, 394, 139127.	5.2	8
844	Biomass-derived N,S co-doped 3D multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction. Environmental Research, 2021, 202, 111684.	7.5	15
845	Synthesis of a highly efficient bifunctional Co2P@N-doped carbon nanotubes electrocatalyst by GO-Induced assembly strategy for rechargeable Zn-air batteries. Journal of Alloys and Compounds, 2022, 889, 161628.	5.5	7
846	Revealing the role of mo doping in promoting oxygen reduction reaction performance of Pt3Co nanowires. Journal of Energy Chemistry, 2022, 66, 16-23.	12.9	36
847	An ultralow-loading platinum alloy efficient ORR electrocatalyst based on the surface-contracted hollow structure. Chemical Engineering Journal, 2022, 428, 131569.	12.7	22
848	Au core-PtAu alloy shell nanowires for formic acid electrolysis. Journal of Energy Chemistry, 2022, 65, 94-102.	12.9	117
849	Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (MÂ=ÂCo, Ni) nanoflowers. Journal of Colloid and Interface Science, 2022, 607, 1411-1423.	9.4	26
850	Preparation of the Catalysts. , 2021, , 183-214.		0
851	Simple and high-yield preparation of carbon-black-supported â^¼1 nm platinum nanoclusters and their oxygen reduction reactivity. Nanoscale, 2021, 13, 14679-14687.	5.6	12
852	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	30.8	198
853	PtNiFe nanoalloys with co-existence of energy-optimized active surfaces for synergistic catalysis of oxygen reduction and evolution. Journal of Materials Chemistry A, 2021, 9, 16187-16195.	10.3	9
854	Accurate simulation of surfaces and interfaces of ten FCC metals and steel using Lennard–Jones potentials. Npj Computational Materials, 2021, 7, .	8.7	28
855	Bottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCs. Cell Reports Physical Science, 2021, 2, 100297.	5.6	10
856	Turn a Weakness into a Strength: Performance Enhancement of 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) via Defect Engineering. Journal of Physical Chemistry C, 2021, 125, 2739-2747.	3.1	6

#	Article	IF	CITATIONS
857	Ultrathin IrO ₂ Nanoneedles for Electrochemical Water Oxidation. Advanced Functional Materials, 2018, 28, 1704796.	14.9	226
858	The Advanced Designs of Highâ€Performance Platinumâ€Based Electrocatalysts: Recent Progresses and Challenges. Advanced Materials Interfaces, 2018, 5, 1800486.	3.7	55
859	Boosting Both Electrocatalytic Activity and Durability of Metal Aerogels via Intrinsic Hierarchical Porosity and Continuous Conductive Network Backbone Preservation. Advanced Energy Materials, 2021, 11, 2002276.	19.5	24
860	Mnï£;N ₄ Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery. Advanced Energy Materials, 2021, 11, 2002753.	19.5	83
861	Reactivity and Catalysis by Nanoalloys. , 2020, , 267-345.		2
862	Pt nanowire/Ti3C2Tx-CNT hybrids catalysts for the high performance oxygen reduction reaction for high temperature PEMFC. International Journal of Hydrogen Energy, 2020, 45, 28190-28195.	7.1	32
863	Evaluation of ionomer coverage on Pt catalysts in polymer electrolyte membrane fuel cells by CO stripping voltammetry and its effect on oxygen reduction reaction activity. Journal of Electroanalytical Chemistry, 2020, 871, 114250.	3.8	40
864	Controlling Pt Crystal Defects on the Surface of Ni–Pt Core–Shell Nanoparticles for Active and Stable Electrocatalysts for Oxygen Reduction. ACS Applied Nano Materials, 2020, 3, 5995-6000.	5.0	15
865	Compressed Intermetallic PdCu for Enhanced Electrocatalysis. ACS Energy Letters, 2020, 5, 3672-3680.	17.4	50
866	Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts. Nature Communications, 2020, 11, 4921.	12.8	93
867	Platinum–nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 12557-12568.	10.3	45
868	Dissociative adsorption of O ₂ on strained Pt(111). Physical Chemistry Chemical Physics, 2018, 20, 17927-17933.	2.8	12
869	Ordered platinum–bismuth intermetallic clusters with Pt-skin for a highly efficient electrochemical ethanol oxidation reaction. Journal of Materials Chemistry A, 2019, 7, 5214-5220.	10.3	48
870	Tri-(Fe/F/N)-doped porous carbons as electrocatalysts for the oxygen reduction reaction in both alkaline and acidic media. Nanoscale, 2020, 12, 18826-18833.	5.6	30
871	Hollow and mesoporous lipstick-like nitrogen-doped carbon with incremented catalytic activity for oxygen reduction reaction. Nanotechnology, 2021, 32, 095401.	2.6	3
872	Quantum transport in three-dimensional metalattices of platinum featuring an unprecedentedly large surface area to volume ratio. Physical Review Materials, 2020, 4, .	2.4	3
873	Local Coordination and Ordering Engineering to Design Efficient Core-Shell Oxygen Reduction Catalysts. Journal of the Electrochemical Society, 2020, 167, 144501.	2.9	5
874	Electrodeposition of Two-Dimensional Pt Nanostructures on Highly Oriented Pyrolytic Graphite (HOPG): The Effect of Evolved Hydrogen and Chloride Ions. Nanomaterials, 2018, 8, 668.	4.1	8

ARTICLE IF CITATIONS Fast Cryomediated Dynamic Equilibrium Hydrolysates towards Grain Boundary-Enriched Platinum 875 5.7 5 Scaffolds for Efficient Methanol Oxidation. Research, 2019, 2019, 8174314. Customizable Ligand Exchange for Tailored Surface Property of Noble Metal Nanocrystals. Research, 876 5.7 2020, 2020, 2131806. Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction 877 0.2 8 Reaction. Korean Journal of Materials Research, 2018, 28, 182-188. Trimetallic PtNiCo branched nanocages as efficient and durable bifunctional electrocatalysts towards oxygen reduction and methanol oxidation reactions. Journal of Materials Chemistry A, 2021, 9, 23444-23450. A graphene-like nanoribbon for efficient bifunctional electrocatalysts. Journal of Materials 879 10.3 10 Chemistry A, 2021, 9, 26688-26697. 3D atomic imaging of low-coordinated active sites in solid-state dealloyed hierarchical nanoporous gold. Journal of Materials Chemistry A, 2021, 9, 25513-25521. 10.3 Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. 881 12.8 120 Nature Communications, 2021, 12, 5984. Advanced Cathode Electrocatalysts for Fuel Cells: Understanding, Construction, and Application of 882 26 Carbon-Based and Platinum-Based Nanomaterials. , 2021, 3, 1610-1634. Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction 883 4.1 10 reaction. IScience, 2021, 24, 103332. Catalysts for Oxygen Reduction Reaction in the Polymer Electrolyte Membrane Fuel Cells: A Brief 884 3.3 Review. Electrochem, 2021, 2, 590-603. Synthesis of Palladium–Tungsten Metallene-Constructed Sandwich-Like Nanosheets as Bifunctional 885 5.115 Catalysts for Direct Formic Acid Fuel Cells. ACS Applied Energy Materials, 2021, 4, 12336-12344. Surface unsaturated WOx activating PtNi alloy nanowires for oxygen reduction reaction. Journal of 886 9.4 Colloid and Interface Science, 2022, 607, 1928-1935. Supported, â¹/41-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. 887 3.2 10 Bulletin of the Chemical Society of Japan, 2021, 94, 2853-2870. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane 888 31.5 electrolyzers. Nature Nanotechnology, 2021, 16, 1371-1377. Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction. Nano 889 10.4 5 Research, 2022, 15, 2870-2876. Synthesis and Design of a Highly Stable Platinum Nickel Electrocatalyst for the Oxygen Reduction 14 Réaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 52681-52687. Crystal-plane-controlled restructuring and enhanced oxygen-involving performances of bifunctional 891 4.3 5 catalyst. Applied Catalysis A: General, 2021, , 118417. Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction 892 reaction in acidic medium. Chemical Engineering Journal, 2022, 431, 133237.

ARTICLE IF CITATIONS Anomalous Size Effect of Pt Ultrathin Nanowires on Oxygen Reduction Reaction. Nano Letters, 2021, 893 9.1 43 21, 9354-9360. A universal strategy for fast, scalable, and aqueous synthesis of multicomponent palladium alloy 894 8.2 ultrathin nanowires. Science China Chemistry, 2021, 64, 245-252. 895 Introduction to Materials for PEMFC Electrodes., 2022, , 242-255. 3 Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient 896 18.8 84 fuel-cell electrocatalysis. Coordination Chemistry Reviews, 2022, 450, 214244. Porous, thick nitrogen-doped carbon encapsulated large PtNi core-shell nanoparticles for oxygen 897 10.3 15 reduction reaction with extreme stability and activity. Carbon, 2022, 186, 36-45. Nanosized FeS/ZnS heterojunctions derived using zeolitic imidazolate Framework-8 (ZIF-8) for pH-universal oxygen reduction and High-efficiency Zn–air battery. Journal of Colloid and Interface 898 9.4 Science, 2022, 608, 446-458. Synthesization, characterization, and highly efficient electrocatalysis of chain-like Pt-Ni 899 0.5 4 nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 076101. Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and 900 4.1 21 atom utilization efficiency. Chemical Communications, 2021, 57, 12898-12913. Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells. Science 901 8.2 16 China Chemistry, 2021, 64, 2203-2211. Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte 104 Membrane Fuel Cells in Liquid Half- and Full-Cells. Chemical Reviews, 2021, 121, 15075-15140. Nanocatalysts for proton exchange fuel cells: design, preparation, and utilization., 2022, , 465-545. 903 3 Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy. Chinese Journal of 904 14.0 Catalysis, 2022, 43, 167-176. Trace doping of early transition metal enabled efficient and durable oxygen reduction catalysis on 905 20.2 30 Pt-based ultrathin nánowires. Applied Catalysis B: Environmental, 2022, 303, 120918. Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review. International Journal of Hydrogen Energy, 2022, 47, 1529-1542. 7.1 Graphene oxide hybrid with amineâ€terminated poly(amidoamine) dendrimers encapsulating Pt nanoparticles for electrochemical oxygen reduction reaction. Bulletin of the Korean Chemical 907 1.9 4 Society, 2022, 43, 69-72. Insights into the pH-dependent Behavior of N-Doped Carbons for the Oxygen Reduction Reaction by First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 26429-26436. 908 3.1 Assessing the Catalytic Behavior of Platinum Group Metal-Based Ultrathin Nanowires Using X-ray 909 8.0 6 Absorption Spectroscopy. ACS Applied Materials & amp; Interfaces, 2021, 13, 58253-58260. Mechanistic Understanding of Formation of Ultrathin Single-Crystalline Pt Nanowires. Journal of 3.1 Physical Chemistry C, 0, , .

#	Article	IF	Citations
911	Electrochemical two-electron O ₂ reduction reaction toward H ₂ O ₂ production: using cobalt porphyrin decorated carbon nanotubes as a nanohybrid catalyst. Journal of Materials Chemistry A, 2021, 9, 26019-26027.	10.3	55
912	The boosting of electrocatalytic CO2-to-CO transformation by using the carbon nanotubes-supported PCN-222(Fe) nanoparticles composite. Journal of Materials Science, 2022, 57, 526-537.	3.7	9
913	p–d Orbital Hybridization Induced by a Monodispersed Ga Site on a Pt ₃ Mn Nanocatalyst Boosts Ethanol Electrooxidation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	134
914	Single atom surface engineering: A new strategy to boost electrochemical activities of Pt catalysts. Nano Energy, 2022, 93, 106813.	16.0	41
915	Heterostructure Ni(OH)2/ZrO2 catalyst can achieve efficient oxygen reduction reaction. Chemical Engineering Science, 2022, 250, 117398.	3.8	4
916	Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. Materials Today Energy, 2022, 24, 100919.	4.7	6
917	Enhanced H2O2 electrosynthesis on kneading oxidized carbon nanotubes. Applied Surface Science, 2022, 580, 152293.	6.1	9
918	How do H ₂ oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques. Chemical Science, 2021, 12, 15916-15927.	7.4	5
919	Challenges of Fuel Cell Technologies for the Needs of the Energy Transition to a Zero-carbon Technology. Žurnal inženernih Nauk, 2021, 8, .	0.6	1
920	Cobaltâ€Doping Stabilized Active and Durable Subâ€2Ânm Pt Nanoclusters for Lowâ€Ptâ€Loading PEMFC Cathode. Advanced Energy Materials, 2022, 12, .	19.5	35
921	Edge-segregated ternary Pd–Pt–Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2022, 10, 3808-3817.	10.3	17
922	Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR). Chemical Research in Chinese Universities, 2022, 38, 396-401.	2.6	14
923	Surface Engineering of Carbon-Supported Platinum as a Route to Electrocatalysts with Superior Durability and Activity for PEMFC Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 5287-5297.	8.0	24
924	Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go?. Chemical Science, 2021, 13, 14-26.	7.4	45
925	Noble Metal Based Electrocatalysts for Alcohol Oxidation Reactions in Alkaline Media. Advanced Functional Materials, 2022, 32, .	14.9	70
926	Autocatalytic Surface Reductionâ€Assisted Synthesis of PtW Ultrathin Alloy Nanowires for Highly Efficient Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	19.5	40
927	p–d Orbital Hybridization Induced by a Monodispersed Ga Site on a Pt ₃ Mn Nanocatalyst Boosts Ethanol Electrooxidation. Angewandte Chemie, 2022, 134, .	2.0	19
928	<i>Operando</i> Imaging of Ce Radical Scavengers in a Practical Polymer Electrolyte Fuel Cell by 3D Fluorescence CT–XAFS and Depth-Profiling Nano-XAFS–SEM/EDS Techniques. ACS Applied Materials & Interfaces, 2022, 14, 6762-6776.	8.0	11

#	Article	IF	CITATIONS
929	Rational Design and Synthesis of Adjustable Pt and Pt-Based 3D-Nanoframeworks. ACS Applied Energy Materials, 2022, 5, 942-950.	5.1	8
930	Functional group scission-induced lattice strain in chiral macromolecular metal-organic framework arrays for electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2022, 307, 121151.	20.2	31
931	Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Science Advances, 2022, 8, eabj1584.	10.3	94
932	Enhanced methanol oxidation on PtNi nanoparticles supported on silane-modified reduced graphene oxide. International Journal of Hydrogen Energy, 2022, 47, 6638-6649.	7.1	13
933	Effectively Increasing Pt Utilization Efficiency of the Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cells through Multiparameter Optimization Guided by Machine Learning. ACS Applied Materials & Interfaces, 2022, 14, 8010-8024.	8.0	16
934	Nanoporous silver nanorods as surface-enhanced Raman scattering substrates. Biosensors and Bioelectronics, 2022, 202, 114004.	10.1	18
935	Current Trends in Platinum-Based Ternary Alloys as Promising Electrocatalysts for the Oxygen Reduction Reaction: A Mini Review. Energy & Fuels, 2022, 36, 2306-2322.	5.1	22
936	Pt nanorods oriented on Gd-doped ceria polyhedra enable superior oxygen reduction catalysis for fuel cells. Journal of Catalysis, 2022, 407, 300-311.	6.2	17
937	The Facile Deposition of Pt Nanoparticles on Reduced Graphite Oxide in Tunable Aryl Alkyl Ionic Liquids for ORR Catalysts. Molecules, 2022, 27, 1018.	3.8	6
938	Solvothermal Synthesis of Nanostructured Pt _{<i>n</i>} Ni Tetrahedrons with Enhanced Platinum Utilization and Activity toward Oxygen Reduction Electrocatalysis. Journal of Physical Chemistry C, 2021, 125, 27199-27206.	3.1	8
939	Lignin condensation inhibition and antioxidant activity improvement in a reductive ternary DES fractionation microenvironment by thiourea dioxide self-decomposition. New Journal of Chemistry, 2022, 46, 8892-8900.	2.8	3
940	Scalable Synthesis of (Pd,Cu)@Pt Core-Shell Catalyst with High Orr Activity and Durability. SSRN Electronic Journal, 0, , .	0.4	0
941	Construction of highly durable electrocatalysts by pore confinement and anchoring effect for the oxygen reduction reaction. New Journal of Chemistry, 0, , .	2.8	2
942	Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc–air batteries. Energy and Environmental Science, 2022, 15, 1573-1584.	30.8	49
943	Highâ€Temperature Confinement Synthesis of Supported Pt–Ni Nanoparticles for Efficiently Catalyzing Oxygen Reduction Reaction. Advanced Functional Materials, 2022, 32, .	14.9	27
944	Electrocatalysts for the Oxygen Reduction Reaction: From Bimetallic Platinum Alloys to Complex Solid Solutions. ChemEngineering, 2022, 6, 19.	2.4	5
945	MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Science China Materials, 2022, 65, 1453-1462.	6.3	24
946	Catalyst Electrodes with PtCu Nanowire Arrays In Situ Grown on Gas Diffusion Layers for Direct Formic Acid Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 11457-11464.	8.0	18

#	Article	IF	CITATIONS
947	Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors. Advanced Science, 2022, 9, e2106043.	11.2	36
948	F-doped carbon hollow nanospheres for efficient electrochemical oxygen reduction. Journal of Materials Science, 2022, 57, 5924-5932.	3.7	7
949	Engineering nanoporous and solid core-shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Research, 2022, 15, 6148-6155.	10.4	20
950	Ta–TiOx nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nature Energy, 2022, 7, 281-289.	39.5	93
951	Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. Small, 2022, 18, e2106279.	10.0	25
952	Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nature Catalysis, 2022, 5, 212-221.	34.4	113
953	Variation of Local Structure and Reactivity of Pt/C Catalyst for Accelerated Degradation Test of Polymer Electrolyte Fuel Cell Visualized by Operando 3D CTâ€XAFS Imaging. ChemNanoMat, 2022, 8, .	2.8	4
954	Strain Engineering: A Boosting Strategy for Photocatalysis. Advanced Materials, 2022, 34, e2200868.	21.0	82
955	Review—Recent Progress in Highly Efficient Oxygen Reduction Electrocatalysts: From Structural Engineering to Performance Optimization. Journal of the Electrochemical Society, 2022, 169, 034512.	2.9	5
956	Corrosion Chemistry of Electrocatalysts. Advanced Materials, 2022, 34, e2200840.	21.0	43
957	S-doped carbon materials: Synthesis, properties and applications. Carbon, 2022, 195, 328-340.	10.3	55
958	Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nature Communications, 2022, 13, 1189.	12.8	122
959	Special emphasis towards decorating platinum nanoparticles on carbon to boost cell performance and durability for portable hydrogen-powered fuel cell stack. International Journal of Hydrogen Energy, 2022, 47, 12684-12697.	7.1	7
960	Ni ²⁺ â€Directed Anisotropic Growth of PtCu Nested Skeleton Cubes Boosting Electroreduction of Oxygen. Advanced Science, 2022, 9, e2104927.	11.2	14
961	Understanding the Grain Boundary Behavior of Bimetallic Platinum–Cobalt Alloy Nanowires toward Oxygen Electro-Reduction. ACS Catalysis, 2022, 12, 3516-3523.	11.2	23
962	Elucidating the Correlation between ORR Polarization Curves and Kinetics at Metal–Electrolyte Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 13891-13903.	8.0	18
963	<i>In situ</i> X-ray Absorption Spectroscopy at Platinum Group Metal (PGM) and Non-PGM Electrocatalysts. Denki Kagaku, 2022, 90, 16-20.	0.0	0
964	Effect of Catalyst Ink and Formation Process on the Multiscale Structure of Catalyst Layers in PEM Fuel Cells. Applied Sciences (Switzerland), 2022, 12, 3776.	2.5	14

#	Article	IF	CITATIONS
965	Gas Diffusion Layer with a Regular Hydrophilic Structure Boosts the Power Density of Proton Exchange Membrane Fuel Cells via the Construction of Water Highways. ACS Applied Materials & Interfaces, 2022, 14, 17578-17584.	8.0	6
966	Atomic-scale understanding of oxidation mechanisms of materials by computational approaches: A review. Materials and Design, 2022, 217, 110605.	7.0	6
967	Au decorated Pd nanowires for methane oxidation to liquid C1 products. Applied Catalysis B: Environmental, 2022, 308, 121223.	20.2	20
968	Designing Nanoporous Coralâ€Like Pt Nanowires Architecture for Methanol and Ammonia Oxidation Reactions. Advanced Functional Materials, 2022, 32, .	14.9	27
969	Structural Transformation of Pt–Ni Nanowires as Oxygen Reduction Electrocatalysts to Branched Nanostructures during Potential Cycles. ACS Catalysis, 2022, 12, 259-264.	11.2	7
970	Confinement Effects in Individual Carbon Encapsulated Nonprecious Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2022, 32, .	14.9	35
972	Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	19.5	61
973	Understanding the Crucial Significance of the Temperature and Potential Window on the Stability of Carbon Supported Pt-Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. ACS Catalysis, 2022, 12, 101-115.	11.2	38
974	Enriched <i>d</i> â€Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomic‣ayered Defectâ€Rich Lithium Cobalt Oxide Nanosheets. Advanced Functional Materials, 2022, 32, .	14.9	24
975	An Effective Strategy for Template-Free Electrodeposition of Aluminum Nanowires with Highly Controllable Irregular Morphologies. Nanomaterials, 2022, 12, 1390.	4.1	1
976	Hollow-Structure Pt-Ni Nanoparticle Electrocatalysts for Oxygen Reduction Reaction. Molecules, 2022, 27, 2524.	3.8	6
977	Electrocatalytic generation of reactive species and implications in microbial inactivation. Chinese Journal of Catalysis, 2022, 43, 1399-1416.	14.0	8
978	Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chinese Journal of Catalysis, 2022, 43, 1459-1472.	14.0	95
979	Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway. Chinese Journal of Catalysis, 2022, 43, 1433-1443.	14.0	37
982	Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 697.	1.3	2
983	Highly accessible and dense surface single metal FeN ₄ active sites for promoting the oxygen reduction reaction. Energy and Environmental Science, 2022, 15, 2619-2628.	30.8	82
984	Scalable Synthesis of (Pd,Cu)@Pt Core-Shell Catalyst with High Orr Activity and Durability. SSRN Electronic Journal, 0, , .	0.4	0
985	Catalytic approaches towards highly durable proton exchange membrane fuel cells with minimized Pt use. Chemical Science, 2022, 13, 6782-6795.	7.4	11

#	Article	IF	CITATIONS
986	Finding efficient catalyst designs: A high-precision method to reveal active sites. Chem Catalysis, 2022, 2, 657-659.	6.1	0
987	Carbon-Supported Noble-Metal Nanoparticles for Catalytic Applications—A Review. Crystals, 2022, 12, 584.	2.2	18
988	Upgrading the Stateâ€ofâ€theâ€Art Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	12
989	Conductive Two-Dimensional Magnesium Metal–Organic Frameworks for High-Efficiency O ₂ Electroreduction to H ₂ O ₂ . ACS Catalysis, 2022, 12, 6092-6099.	11.2	78
990	A one-pot carbon-coating-ex-solution route to efficient Ru-MnO@C nanowire electrocatalysts with enhanced interfacial interactions. Chemical Engineering Journal, 2022, 446, 136816.	12.7	2
991	Oxygen reduction reaction measurements on platinum electrocatalysts in gas diffusion electrode half-cells: Influence of electrode preparation, measurement protocols and common pitfalls. Journal of Power Sources, 2022, 539, 231530.	7.8	5
992	Ultralow Loading Ru-Mo2c on Cnt Boosting High Durability Electrocatalyst for Oxygen Reduction Reaction. SSRN Electronic Journal, 0, , .	0.4	0
993	Activating surface atoms of high entropy oxides for enhancing oxygen evolution reaction. Chinese Chemical Letters, 2023, 34, 107571.	9.0	9
994	Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	154
995	Scalable synthesis of (Pd,Cu)@Pt core-shell catalyst with high ORR activity and durability. Journal of Electroanalytical Chemistry, 2022, 918, 116451.	3.8	9
996	A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2022, 38, 1219-1225.	2.6	7
997	Ru o Pair Sites Catalyst Boosts the Energetics for Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	2.0	12
998	Pt–Ni alloy nanobead chains catalysts embedded in UiO-67 membrane for enhanced CO2 conversion to CO. Materials Today Energy, 2022, 28, 101051.	4.7	1
999	Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Research, 2022, 15, 8056-8064.	10.4	36
1000	Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Research, 2022, 15, 7806-7839.	10.4	201
1001	Oxygen reduction reaction in hydrogen fuel cells. , 2022, , 277-303.		0
1002	Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Science and Technology of Advanced Materials, 2022, 23, 413-423.	6.1	28
1003	Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Research, 2022, 15, 7951-7958.	10.4	15

#	Article	IF	CITATIONS
1004	Interfacial synergistic effect in SnO2/PtNi nanocrystals enclosed by high-index facets for high-efficiency ethylene glycol electrooxidation. Nano Research, 2022, 15, 7877-7886.	10.4	8
1005	Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nature Catalysis, 2022, 5, 513-523.	34.4	57
1006	Stabilization of platinum catalyst surfaceâ€ŧreated by atomic layer deposition of cobalt for polymer electrolyte membrane fuel cells. International Journal of Energy Research, 0, , .	4.5	0
1007	PtCu3 nanoalloy@porous PWOx composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells. Nano Research, 2022, 15, 9010-9018.	10.4	20
1008	Gram-Scale Synthesis of Carbon-Supported Sub-5 nm PtNi Nanocrystals for Efficient Oxygen Reduction. Metals, 2022, 12, 1078.	2.3	2
1009	Recent advance on structural design of high-performance Pt-based nanocatalysts for oxygen reduction reaction. , 2022, , 100022.		4
1010	High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Research, 2022, 15, 7868-7876.	10.4	29
1011	Cotton-derived carbon fiber-supported Ni nanoparticles as nanoislands to anchor single-atom Pt for efficient catalytic reduction of 4-nitrophenol. Applied Catalysis A: General, 2022, 643, 118734.	4.3	11
1012	Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells. Applied Catalysis B: Environmental, 2022, 316, 121627.	20.2	16
1013	New challenges in oxygen reduction catalysis: a consortium retrospective to inform future research. Energy and Environmental Science, 2022, 15, 3775-3794.	30.8	19
1014	Nonâ€Precious Metalâ€Đoped Carbon Materials Derived From Porphyrinâ€Based Porous Organic Polymers for Oxygen Reduction Electrocatalysis. ChemPlusChem, 2022, 87, .	2.8	0
1015	Atomically Dispersed Pentacoordinatedâ€Zirconium Catalyst with Axial Oxygen Ligand for Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	39
1016	Atomically Dispersed Pentacoordinatedâ€Zirconium Catalyst with Axial Oxygen Ligand for Oxygen Reduction Reaction. Angewandte Chemie, 2022, 134, .	2.0	3
1017	Intermetallic PtFe Electrocatalysts for the Oxygen Reduction Reaction: Ordering Degreeâ€Dependent Performance. Small, 2022, 18, .	10.0	32
1018	Alloyed Pt–Zn Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 8282-8291.	5.1	6
1019	Lowâ€Pt NiNCâ€Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
1020	Lowâ€Pt NiNCâ€Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process. Angewandte Chemie, 2022, 134, .	2.0	1
1021	A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nature Catalysis, 2022, 5, 615-623.	34.4	62

#	Article	IF	CITATIONS
1022	Low temperature synthesis of NiO/CoO nanostructures to enhance their low temperature oxygen reduction catalysis. Micron, 2022, 161, 103326.	2.2	1
1023	<scp>Phosphorusâ€doped</scp> Pt nanowires as efficient catalysts for electrochemical hydrogen evolution and methanol oxidation reaction. Bulletin of the Korean Chemical Society, 2022, 43, 1111-1117.	1.9	8
1024	High-performance intermetallic PtCo oxygen reduction catalyst promoted by molybdenum. Applied Catalysis B: Environmental, 2022, 317, 121767.	20.2	7
1025	Synergistic effects of PtFeV alloy-decorated functionalized CNTs on performance of polymer fuel cell investigated by specially designed cathodic half-cell. Journal of Alloys and Compounds, 2022, 924, 166485.	5.5	4
1026	Highly Durable Fuel Cell Electrocatalyst with Low-Loading Pt-Co Nanoparticles Dispersed Over Single-Atom Pt-Co-N-Graphene Nanofiber. SSRN Electronic Journal, 0, , .	0.4	0
1027	Kinetic Diagnostics and Synthetic Design of Platinum Group Metal-Free Electrocatalysts for the Oxygen Reduction Reaction Using Reactivity Maps and Site Utilization Descriptors. Journal of the American Chemical Society, 2022, 144, 13487-13498.	13.7	18
1028	Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nature Nanotechnology, 2022, 17, 968-975.	31.5	114
1029	In Situ Surface Restraint-Induced Synthesis of Transition-Metal Nitride Ultrathin Nanocrystals as Ultrasensitive SERS Substrate with Ultrahigh Durability. ACS Nano, 2022, 16, 13123-13133.	14.6	16
1030	Coreâ€shell nanocatalysts with reduced platinum content toward more costâ€effective proton exchange membrane fuel cells. Nano Select, 2022, 3, 1459-1483.	3.7	2
1031	Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends in Chemistry, 2022, 4, 886-906.	8.5	63
1032	Ptâ \in "Co Electrocatalysts: Syntheses, Morphologies, and Applications. Small, 2022, 18, .	10.0	10
1033	Biomass-derived carbon fiber with atomic Mn-N4 sites for efficient electrocatalytic oxygen reduction reaction. Journal of Materials Science, 2022, 57, 15943-15953.	3.7	2
1034	A Robust Electrocatalyst for Oxygen Reduction Reaction Assembled with Pt Nanoclusters and A Melemâ€Modified Carbon Support. Energy Technology, 0, , .	3.8	2
1035	Butterfly Effect of Electron Donor from Monoatomic Cobalt in Few-Atom Platinum Clusters: Boosting Electrocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 37727-37737.	8.0	2
1036	Engineering the Electronic Structure of Active Centers in Metalloporphyrins to Boost Oxygen Reduction Reaction Activity. ChemElectroChem, 2022, 9, .	3.4	2
1037	Photocatalytic performance for palm-fiber-like SnS2 nanoflakes with full solar spectrum light response. Applied Surface Science, 2022, 605, 154642.	6.1	8
1038	Application of morphology and phase design of dealloying method in supercapacitor. Journal of Alloys and Compounds, 2022, 927, 166974.	5.5	9
1039	Electrocatalytic activity enhancement of palladium-manganese nanosheet assembled nanobuds by tuning electronic structure. Applied Surface Science, 2022, 605, 154634.	6.1	2

#	Article	IF	Citations
1040	Etching-assisted synthesis of single atom Ni-tailored Pt nanocatalyst enclosed by high-index facets for active and stable oxygen reduction catalysis. Nano Energy, 2022, 103, 107800.	16.0	13
1041	Improving the Orr Performance by Enhancing the Pt Oxidation Resistance. SSRN Electronic Journal, 0, ,	0.4	0
1042	Doped MXene combinations as highly efficient bifunctional and multifunctional catalysts for water splitting and metal–air batteries. Journal of Materials Chemistry A, 2022, 10, 22500-22511.	10.3	16
1043	Three-dimensional porous platinum–tellurium–rhodium surface/interface achieve remarkable practical fuel cell catalysis. Energy and Environmental Science, 2022, 15, 3877-3890.	30.8	32
1044	Hydrogen generation <i>via</i> ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 ŰC. Energy and Environmental Science, 2022, 15, 4190-4200.	30.8	29
1045	Photocatalytic Performance for Palm-Fiber-Like Sns2 Nanoflakes with Full Solar Spectrum Light Response. SSRN Electronic Journal, 0, , .	0.4	0
1046	Strain engineering of metal nanostructures for catalysis. , 2022, , .		0
1047	A combined TEM and SAXS study of the growth and self-assembly of ultrathin Pt nanowires. Nanotechnology, 2022, 33, 475602.	2.6	0
1048	Recent Advances in the Development of Nanocatalysts for Direct Methanol Fuel Cells. Energies, 2022, 15, 6335.	3.1	9
1049	Rhodium decorated stable platinum nickel nanowires for effective ethanol oxidation reaction. Science China Materials, 2023, 66, 679-685.	6.3	9
1050	Ultralow Loading Ru-Mo ₂ C on CNT Boosting High Durability Electrocatalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2022, 169, 096512.	2.9	0
1051	Achieving Synchronization of Electrochemical Production of Ammonia from Nitrate and Ammonia Capture by Constructing a "Twoâ€Inâ€Oneâ€IFlow Cell Electrolyzer. Advanced Energy Materials, 2022, 12, .	19.5	40
1052	Recent Progress in High Entropy Alloys for Electrocatalysts. Electrochemical Energy Reviews, 2022, 5,	25.5	45
1053	Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews, 2022, 122, 17028-17072.	47.7	45
1054	Highâ€Resolution Electron Tomography of Ultrathin Boerdijk–Coxeter–Bernal Nanowire Enabled by Superthin Metal Surface Coating. Small, 2022, 18, .	10.0	4
1055	Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. Electrochemical Energy Reviews, 2022, 5, .	25.5	23
1056	Role of heteroatom-doping in enhancing catalytic activities and the stability of single-atom catalysts for oxygen reduction and oxygen evolution reactions. Nanoscale, 2022, 14, 16286-16294.	5.6	13
1057	Enhanced Ageing Performance of Sulfonic Acid-Grafted Pt/C Catalysts. Micromachines, 2022, 13, 1825.	2.9	2

#	Article	IF	CITATIONS
1058	Defective nanomaterials for electrocatalysis oxygen reduction reaction. Frontiers in Chemistry, 0, 10,	3.6	4
1059	The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Research, 2023, 16, 4365-4380.	10.4	10
1060	Titanium Carbide/Carbon-Supported Platinum Nanoparticles Boost Oxygen Reduction Reaction for Fuel Cells. Journal of Electronic Materials, 0, , .	2.2	0
1061	Enhancing oxygen reduction reaction of Pt–Co/C nanocatalysts via synergetic effect between Pt and Co prepared by one-pot synthesis. Rare Metals, 2023, 42, 146-154.	7.1	13
1062	The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nature Catalysis, 2022, 5, 923-933.	34.4	79
1063	Mixedâ€Dimensional Pt–Ni Alloy Polyhedral Nanochains as Bifunctional Electrocatalysts for Direct Methanol Fuel Cells. Advanced Materials, 2023, 35, .	21.0	52
1064	Atomistic understanding of Pt-based medium entropy alloys for oxygen reduction electrocatalysis based on first principles. International Journal of Hydrogen Energy, 2023, 48, 160-170.	7.1	4
1065	Self-templating synthesis of Pd4S hollow nanospheres as electrocatalysts for oxygen reduction reaction. Nano Research, 0, , .	10.4	2
1066	A Review of Oneâ€Dimensional Nanomaterials as Electrode Materials for Oxygen Reduction Reaction Electrocatalysis. ChemElectroChem, 2022, 9, .	3.4	7
1067	Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal–air batteries and fuel cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
1068	PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable cathode electrocatalysts for room-temperature hydrogen fuel cells. Nano Research, 2023, 16, 2252-2258.	10.4	16
1069	Role of Ni in PtNi Alloy for Modulating the Proton–Electron Transfer of Electrocatalytic Hydrogenation Revealed by the <i>In Situ</i> Raman–Rotating Disk Electrode Method. ACS Catalysis, 2022, 12, 14062-14071.	11.2	10
1070	Highly stable and active Pt-skinned octahedral PtCu/C for oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130341.	4.7	4
1071	Improving the ORR performance by enhancing the Pt oxidation resistance. Journal of Catalysis, 2022, 416, 311-321.	6.2	13
1072	Au-Doped PtAg Nanorod Array Electrodes for Proton-Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 14979-14989.	5.1	6
1073	Coating Porous TiO ₂ Films on Carbon Nanotubes to Enhance the Durability of Ultrafine PtCo/CNT Nanocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2022, 14, 51975-51982.	8.0	10
1074	Tafel Slope Analysis from Inherent Rate Constants for Oxygen Reduction Reaction Over N-doped Carbon and Fe–N-doped Carbon Electrocatalysts. Catalysis Surveys From Asia, 2023, 27, 84-94.	2.6	3
1075	Ordered CoPt oxygen reduction catalyst with high performance and durability. Chem Catalysis, 2022, 2, 3559-3572.	6.1	13

#	Article	IF	CITATIONS
1076	Regulating the FeN ₄ Moiety by Constructing Fe–Mo Dual-Metal Atom Sites for Efficient Electrochemical Oxygen Reduction. Nano Letters, 2022, 22, 9507-9515.	9.1	65
1078	Platinum based high entropy alloy oxygen reduction electrocatalysts for proton exchange membrane fuel cells. Materials Today Nano, 2023, 21, 100282.	4.6	12
1079	Co-generation of electricity and formate in glycerol fuel cells with a bifunctional PdPtAg alloy nanowire electrocatalyst. Green Chemistry, 2022, 24, 9721-9733.	9.0	7
1080	Stability challenges of carbon-supported Pt-nanoalloys as fuel cell oxygen reduction reaction electrocatalysts. Chemical Communications, 2022, 58, 13832-13854.	4.1	12
1081	Strain engineering of electrocatalysts for hydrogen evolution reaction. Materials Horizons, 2023, 10, 340-360.	12.2	19
1082	Two-dimensional template-directed synthesis of one-dimensional kink-rich Pd3Pb nanowires for efficient oxygen reduction. Journal of Colloid and Interface Science, 2023, 634, 827-835.	9.4	3
1083	Roles of structural defects in polycrystalline platinum nanowires for enhanced oxygen reduction activity. Applied Catalysis B: Environmental, 2023, 324, 122268.	20.2	5
1084	FePO4 Supported Rh Subnano Clusters with Dual Active Sites for Efficient Hydrogenation of Quinoline under Mild Conditions. Nanoscale, 0, , .	5.6	1
1085	Design of Bimetallic PtFe-Based Reduced Graphene Oxide as Efficient Catalyst for Oxidation Reduction Reaction. Catalysts, 2022, 12, 1528.	3.5	3
1086	Pt-Based Oxygen Reduction Reaction Catalysts in Proton Exchange Membrane Fuel Cells: Controllable Preparation and Structural Design of Catalytic Layer. Nanomaterials, 2022, 12, 4173.	4.1	12
1087	Zinc Intercalated Lattice Expansion of Ultrafine Platinum–Nickel Oxygen Reduction Catalyst for PEMFC. Advanced Functional Materials, 2023, 33, .	14.9	17
1088	Template-assisted formation of atomically dispersed iron anchoring on nitrogen-doped porous carbon matrix for efficient oxygen reduction. Nano Research, 2023, 16, 4671-4677.	10.4	2
1089	Catalytic Properties of Molybdenum-Modified Platinum Nanoalloys toward Hydrogen Evolution, Oxygen Reduction Reaction, and Methanol Oxidation. ACS Applied Energy Materials, 2022, 5, 15102-15113.	5.1	2
1090	Preparation of highly dispersed FeNx active sites for oxygen reduction reaction electrocatalyst by electrospinning and complexation. Ionics, 0, , .	2.4	0
1091	The emerging coupled low-PGM and PGM-free catalysts for oxygen reduction reaction. Chem Catalysis, 2023, 3, 100484.	6.1	5
1092	Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catalysis, 2023, 13, 355-374.	11.2	10
1093	Nitrogen-Doped Carbon Sponge Derived from the Self-Assembly of a Poly(amic acid) for High Performance Oxygen Reduction Reaction. New Journal of Chemistry, 0, , .	2.8	2
1094	Platinum nanosheets synthesized via topotactic reduction of single-layer platinum oxide nanosheets for electrocatalysis. Nature Communications, 2023, 14, .	12.8	17

		CITATION REPORT		
#	Article		IF	CITATIONS
1095	Electrocatalytic performance of cobalt/nickel nanoparticles encapsulated by N-doped ca nanotubes toward the oxygen reduction reaction. Applied Surface Science, 2023, 615,		6.1	1
1096	Latticeâ€Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reacti Materials, 2023, 35, .	ion. Advanced	21.0	34
1097	Tunable Aryl Alkyl Ionic Liquid Supported Synthesis of Platinum Nanoparticles and Their Activity in the Hydrogen Evolution Reaction and in Hydrosilylation. Molecules, 2023, 28		3.8	3
1098	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66.			0
1099	Arming Ru with Oxygenâ€Vacancyâ€Enriched RuO ₂ Subâ€Nanometer Ski Bifunctionality for pHâ€Universal Overall Water Splitting. Advanced Materials, 2023, 3		21.0	61
1100	Towards ultralow platinum loading proton exchange membrane fuel cells. Energy and E Science, 2023, 16, 1466-1479.	nvironmental	30.8	43
1101	3D Porous Graphene-like Carbons Encaged Single-Atom-Based Pt for Ultralow Loading a High-Performance Fuel Cells. ACS Catalysis, 2023, 13, 1856-1862.	and	11.2	9
1102	Lowâ€Coordination Trimetallic PtFeCo Nanosaws for Practical Fuel Cells. Advanced Mat	terials, 2023, 35, .	21.0	18
1103	Candied Haws-Like Fe–N–C Catalysts with Broadened Carbon Interlayer Spacing fo Battery. ACS Applied Materials & Interfaces, 2023, 15, 953-962.	r Efficient Zinc–Air	8.0	3
1104	Nitrogen doping to accelerate the phase transition to ordered intermetallic Pt _{3<td></td><td>10.3</td><td>8</td>}		10.3	8
1105	Model Metallic Glasses for Superior Electrocatalytic Performance in a Hydrogen Oxidati ACS Applied Materials & Interfaces, 2023, 15, 6697-6707.	on Reaction.	8.0	0
1106	Oxygen reduction performance measurements: Discrepancies against benchmarks. , 20)23, 2, .		14
1107	Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and hi loading for H2O2 electrosynthesis. Nature Communications, 2023, 14, .	gh metal	12.8	42
1108	Proton exchange membrane fuel cells: Recent advances, modeling, and future trends. ,	2023, , 431-458.		1
1109	Bifunctional Ultrathin RhRu _{0.5} â€Alloy Nanowire Electrocatalysts for Hydra Water Splitting. Advanced Materials, 2023, 35, .	azineâ€Assisted	21.0	27
1110	Subnanoscale Dual-Site Pd–Pt Layers Make PdPtCu Nanocrystals CO-Tolerant Bipolar Electrocatalysts for Alcohol Fuel Cell Devices. Nano Letters, 2023, 23, 3467-3475.	Effective	9.1	10
1111	A Functionalized Heterogeneous Catalyst from Atomically Precise Pd ₁ Au< Clusters Facilitates Carbon–Carbon Bond Construction. Advanced Materials, 2023, 3		21.0	7
1112	Structurally-supported PtCuCo nanoframes as efficient bifunctional catalysts for oxyge and methanol oxidation reactions. Journal of Colloid and Interface Science, 2023, 640,	n reduction 801-808.	9.4	10

#	Article	IF	CITATIONS
1113	Microwave-assisted sequential Pt/Al attachment on FeOOH for fabrication of highly efficient hematite photoanodes: Synergistic effect of Pt/Al co-doping and Al2O3 passivation layer. Applied Surface Science, 2023, 623, 157035.	6.1	9
1114	Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction. , 2023, 2, 100131.		11
1115	Mainâ€Group <i>s</i> â€Block Element Lithium Atoms within Carbon Frameworks as Highâ€Active Sites for Electrocatalytic Reduction Reactions. Advanced Functional Materials, 2023, 33, .	14.9	4
1116	Tailoring activity of iron phthalocyanine by edge-nitrogen sites induced electronic delocalization. Applied Surface Science, 2023, 624, 157154.	6.1	1
1117	Merging Platinum Single Atoms to Achieve Ultrahigh Mass Activity and Low Hydrogen Production Cost. ACS Nano, 2023, 17, 2923-2931.	14.6	6
1118	Recent advances in the anode catalyst layer for proton exchange membrane fuel cells. Renewable and Sustainable Energy Reviews, 2023, 176, 113182.	16.4	15
1119	Single-Molecule Study on the Catalytic Role of Co–O ₂ Binding in ORR by In Situ ECSTM. Journal of Physical Chemistry C, 2023, 127, 2929-2935.	3.1	0
1120	Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys. ACS Catalysis, 2023, 13, 2735-2743.	11.2	5
1122	Tuning the Coordination Environment of Carbonâ€Based Singleâ€Atom Catalysts via Doping with Multiple Heteroatoms and Their Applications in Electrocatalysis. Advanced Materials, 2023, 35, .	21.0	27
1123	Self-Assembly of Pt3Co Superlattice as a Catalyst for Oxygen Reduction Reaction. Catalysts, 2023, 13, 406.	3.5	1
1124	First principles calculation study of single transition metal atom grafted Au25 as efficient electrocatalysts for OER and ORR. Molecular Catalysis, 2023, 540, 113030.	2.0	0
1125	Porous electrodes from self-assembled 3D jointed Pd polyhedra for direct formic acid fuel cells. Chemical Engineering Journal, 2023, 462, 142244.	12.7	12
1126	Enhanced Photothermal Steam Generation and Gold Using the Efficiency of Ultralight Gold Foam with Hierarchical Porosity. Langmuir, 2023, 39, 4190-4197.	3.5	0
1127	Nanostructured Electrocatalysts for Fuel Cell and Water Electrolysis Applications to Realize Sustainable Hydrogen Society. Journal of the Society of Powder Technology, Japan, 2023, 60, 16-24.	0.1	0
1128	Ordered PtCoFe Ternary Alloy Electrocatalyst Derived from Pre-Synthesized CoFe Hydroxide for Oxygen Reduction Reaction. Energy & Fuels, 2023, 37, 5478-5488.	5.1	1
1129	Coordination Chemistry of Large‣ized Yttrium Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Advanced Materials, 2023, 35, .	21.0	31
1130	Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule, 2023, 7, 587-602.	24.0	23
1131	Experimental observation of geometric effect on the electron diffraction of quasi-one-dimensional nanostructures. Materials Today Physics, 2023, 33, 101048.	6.0	2

#	Article	IF	CITATIONS
1132	In Situ Structure of a Mo-Doped Pt–Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization. Jacs Au, 2023, 3, 1162-1175.	7.9	7
1133	Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nature Communications, 2023, 14, .	12.8	38
1134	Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.	47.7	81
1135	Dissolvable templates to prepare Pt-based porous metallic glass for the oxygen reduction reaction. Nanoscale, 2023, 15, 6802-6811.	5.6	2
1136	Highly Stable Pt-Based Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Materials, 2023, 16, 2590.	2.9	4
1137	Periodic Assembly of Diblock Pt–Au Heteronanowires for the Methanol Oxidation Reaction. Nano Letters, 2023, 23, 2758-2763.	9.1	6
1138	Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chemical Reviews, 2023, 123, 4855-4933.	47.7	62
1139	Enhancement Mechanism of Pt/Pd-Based Catalysts for Oxygen Reduction Reaction. Nanomaterials, 2023, 13, 1275.	4.1	4
1140	Interfacial Electron Distribution of Co Nanoparticles Supported on Nâ€Đoped Mesoporous Hollow Carbon Spheres Endows Highly Efficient ORR, OER, and HER. Advanced Materials Interfaces, 2023, 10, .	3.7	3
1141	Wet-chemistry synthesis of two-dimensional Pt- and Pd-based intermetallic electrocatalysts for fuel cells. Nanoscale, 2023, 15, 8508-8531.	5.6	5
1142	Recent advances in zinc–air batteries: self-standing inorganic nanoporous metal films as air cathodes. Chemical Communications, 2023, 59, 5823-5838.	4.1	1
1143	RuO2-PdO nanowire networks with rich interfaces and defects supported on carbon toward the efficient alkaline hydrogen oxidation reaction. Journal of Energy Chemistry, 2023, 83, 255-263.	12.9	8
1144	Generation of green hydrogen using self-sustained regenerative fuel cells: Opportunities and challenges. International Journal of Hydrogen Energy, 2023, 48, 28289-28314.	7.1	25
1145	Feâ^'Ni Diatomic Sites Coupled with Pt Clusters to Boost Methanol Electrooxidation via Free Radical Relaying. ChemSusChem, 2023, 16, .	6.8	2
1146	Dealloying in Pt-based nanoalloys as a way to synthesize bimetallic nanoparticles: Atomistic simulations. Nano Structures Nano Objects, 2023, 34, 100977.	3.5	0
1147	Oxygen reduction reaction catalysts prepared by platinizing thermally activated zeolitic imidazolate frameworks. Electrochimica Acta, 2023, 459, 142550.	5.2	0
1148	High Performance Air Breathing Zinc-Air Battery with Ptâ^'Ni and Ptâ^'Co Bifunctional Electrocatalyst on N Activated Mesoporous Carbon. Journal of the Electrochemical Society, 0, , .	2.9	1
1149	Selective Peptide Binders to the Perfluorinated Sulfonic Acid Ionomer Nafion. Advanced Functional Materials, 0, , .	14.9	1

#	Article	IF	CITATIONS
1150	Engineering carbon semi-tubes supported platinum catalyst for efficient oxygen reduction electrocatalysis. IScience, 2023, 26, 106730.	4.1	8
1151	Strainâ€Regulated Pt–NiO@Ni Subâ€Micron Particles Achieving Bifunctional Electrocatalysis for Zinc–Air Battery. Small, 2023, 19, .	10.0	6
1152	Improved polyol synthesis of palladium nanorods: an efficient catalyst for the selective hydrogenation of maleic anhydride to succinic anhydride. Reaction Kinetics, Mechanisms and Catalysis, 2023, 136, 1317-1325.	1.7	1
1153	Recent progress in intermetallic nanocrystals for electrocatalysis: From binary to ternary to highâ€entropy intermetallics. SmartMat, 2023, 4, .	10.7	9
1154	p-Block-metal bismuth-based electrocatalysts featuring tunable selectivity for high-performance oxygen reduction reaction. Joule, 2023, 7, 1003-1015.	24.0	7
1155	Catalyst Development for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cell (HTâ€PEMFC) Applications. Advanced Materials, 2023, 35, .	21.0	11
1156	Strain-activated porous helical-spiny-like PtCu with exposed high-index facets for efficient alkaline hydrogen evolution. Materials Today Chemistry, 2023, 30, 101581.	3.5	0
1157	Mass transport in the cathode. , 2023, , 367-391.		0
1158	Low platinum-based electrocatalysts for fuel cells: status and prospects. , 2023, , 127-175.		0
1159	Ultrahigh-Density Double-Atom Catalyst with Spin Moment as an Activity Descriptor for the Oxygen-Reduction Reaction. Physical Review Applied, 2023, 19, .	3.8	14
1160	PtNi-W/C with Atomically Dispersed Tungsten Sites Toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices. Nano-Micro Letters, 2023, 15, .	27.0	8
1161	Modulate the metallic Sb state on ultrathin PdSb-based nanosheets for efficient formic acid electrooxidation. Journal of Colloid and Interface Science, 2023, 648, 473-480.	9.4	0
1162	Surface engineering of metallic nanocrystals via atomic structure and composition control for boosting electrocatalysis. Chemical Physics Reviews, 2023, 4, .	5.7	1
1163	Carbons as low-platinum catalyst supports and non-noble catalysts for polymer electrolyte fuel cells. Progress in Energy and Combustion Science, 2023, 98, 101101.	31.2	8
1164	Constructing inter-diffusive PtCuNi/WO3 interface to enhance the catalytic activity and stability in oxygen reduction. Tungsten, 2024, 6, 293-303.	4.8	1
1165	Interface engineering of transition metal-nitrogen-carbon by graphdiyne for boosting the oxygen reduction/evolution reactions: A computational study. Journal of Colloid and Interface Science, 2023, 649, 1-9.	9.4	6
1166	Endurance of unmanned aerial vehicles. Scientia Sinica Informationis, 2023, 53, 1233.	0.4	1
1167	Tuning the morphology of sputter-deposited platinum catalyst: From compact layers to dispersed nanoparticles. Surfaces and Interfaces. 2023, 40, 103079.	3.0	2

#	Article	IF	CITATIONS
1168	Protection Against Absorption Passivation on Platinum by a Nitrogen-Doped Carbon Shell for Enhanced Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2023, 15, 30240-30248.	8.0	3
1169	Phase engineering and surface reconstruction of CrxMnFeNi high entropy alloys for electrocatalytic water splitting. Journal of Alloys and Compounds, 2023, 960, 171039.	5.5	4
1170	Pd@PtRuNi core–shell nanowires as oxygen reduction electrocatalysts. Nanotechnology, 2023, 34, 355402.	2.6	0
1171	Micropore-induced high-performance Fe–N _{<i>x</i>} /C electrocatalysts towards the oxygen reduction reaction. CrystEngComm, 0, , .	2.6	0
1172	Cuprous sulfide intermediate assisted synthesis of PtCu ₃ intermetallic electrocatalysts in multigram scale for oxygen reduction. Inorganic Chemistry Frontiers, 2023, 10, 3359-3366.	6.0	1
1173	Effective single web–structured electrode for high membrane electrode assembly performance in polymer electrolyte membrane fuel cell. Science Advances, 2023, 9, .	10.3	5
1174	The Semi-Closed Molten Salt-Assisted One-Step Synthesis of N-P-Fe Tridoped Porous Carbon Nanotubes for an Efficient Oxygen Reduction Reaction. Catalysts, 2023, 13, 824.	3.5	1
1175	Orderingâ€Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of Highâ€Entropy Intermetallic Pt ₄ FeCoCuNi. Advanced Materials, 2023, 35, .	21.0	21
1176	High Density Single Fe Atoms on Mesoporous Nâ€Doped Carbons: Noble Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction in Acidic and Alkaline Media. Small, 2023, 19, .	10.0	8
1177	Achieving 12.0% Solar-to-Hydrogen Efficiency with a Trimetallic-Layer-Protected and Catalyzed Silicon Photoanode Coupled with an Inexpensive Silicon Solar Cell. Engineering, 2023, 25, 128-137.	6.7	1
1178	Regulating local coordination environment of Mgâ^'Co single atom catalyst for improved direct methanol fuel cell cathode. Journal of Magnesium and Alloys, 2023, 11, 1959-1969.	11.9	1
1179	Highly open one-dimensional PtNi architectures with subnanometer walls as efficient catalysts for alcohol electrooxidation. International Journal of Hydrogen Energy, 2023, 48, 33166-33172.	7.1	1
1180	Opportunities and challenges of strain engineering for advanced electrocatalyst design. Nano Research, 2023, 16, 8655-8669.	10.4	6
1181	Intrinsic and external active sites of single-atom catalysts. IScience, 2023, 26, 107275.	4.1	0
1182	Bubble-Mediated Large-Scale Hierarchical Assembly of Ultrathin Pt Nanowire Network Monolayer at Gas/Liquid Interfaces. ACS Nano, 2023, 17, 14152-14160.	14.6	0
1183	Boosting Efficient and Sustainable Alkaline Water Oxidation on W oooh‶T Pair Sites Catalyst Synthesized via Topochemical Transformation. Advanced Materials, 0, , .	21.0	1
1184	Nanoclusters as Synthons for Unit-Cell-Size Comparable One-Dimensional Nanostructures. Chemical Research in Chinese Universities, 2023, 39, 568-579.	2.6	1
1185	High Performance Anion Exchange Membranes with Confined Subâ€2â€nm Ion Channel. Advanced Functional Materials, 2023, 33, .	14.9	14

#	Article	IF	CITATIONS
1186	Palladium atomic layers coated on ultrafine gold nanowires boost oxygen reduction reaction. Journal of Colloid and Interface Science, 2023, 650, 1518-1524.	9.4	5
1187	A review: Multi-hierarchy design strategy of electrocatalysts for energy molecule conversion. Journal of Energy Chemistry, 2023, 86, 54-68.	12.9	2
1188	3D-structured electrocatalysts for improved mass-transfer in proton-exchange membrane fuel cell cathodes. Current Opinion in Electrochemistry, 2023, 41, 101353.	4.8	1
1190	P-Doping Strategy Increasing the Durability of PtCo Nanoparticles for the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 11660-11667.	6.7	5
1191	Phase-Controlled Ruthenium Nanocrystals on Colloidal Polydopamine Supports and Their Catalytic Behaviors in Aerobic Oxidation Reactions. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1192	DFT-guided design and synthesis of sea cucumber-derived N, S dual-doped porous carbon catalyst for enhanced oxygen reduction reaction and Zn-air battery performance. Journal of Materials Science, 0, , .	3.7	0
1193	Designing proton exchange membrane fuel cells with high specific power density. Journal of Materials Chemistry A, 2023, 11, 17373-17391.	10.3	4
1194	Engineering Dense Stacking Faults in Silver Nanoparticles for Boosting the Oxygen Reduction Reaction. ACS Energy Letters, 2023, 8, 3512-3519.	17.4	6
1195	Ultrathin PtNiGaSnMoRe Senary Nanowires with Partial Amorphous Structure Enable Remarkable Methanol Oxidation Electrocatalysis. Advanced Energy Materials, 2023, 13, .	19.5	3
1196	Fractal Design of Hierarchical PtPd with Enhanced Exposed Surface Atoms for Highly Catalytic Activity and Stability. Nano Letters, 2023, 23, 7371-7378.	9.1	4
1197	Twoâ€Đimensional Amorphous Iridium Oxide for Acidic Oxygen Evolution Reaction. ChemCatChem, 2023, 15, .	3.7	0
1198	Negatively charged platinum nanoparticles on dititanium oxide electride for ultra-durable electrocatalytic oxygen reduction. Energy and Environmental Science, 2023, 16, 4464-4473.	30.8	5
1199	Catalytic activity and anti-passivation of single iron atoms and atomic clusters co-stabilized on carbonized waste polystyrene plastic. Chemical Engineering Journal, 2023, 474, 145488.	12.7	1
1200	Recent Advances on PEM Fuel Cells: From Key Materials to Membrane Electrode Assembly. Electrochemical Energy Reviews, 2023, 6, .	25.5	12
1201	Direct methanol fuel cell with enhanced oxygen reduction performance enabled by CoFe alloys embedded into N-doped carbon nanofiber and bamboo-like carbon nanotube. Journal of Colloid and Interface Science, 2023, 652, 429-439.	9.4	3
1202	An overview of noncarbon support materials for membrane electrode assemblies in direct methanol fuel cells: Fundamental and applications. Materials and Design, 2023, 233, 112261.	7.0	1
1203	Advances and Regulation Strategies of the Active Moiety in Dualâ€Atom Site Catalysts for Efficient Electrocatalysis. Advanced Energy Materials, 2023, 13, .	19.5	3
1204	Selective edge etching of Pd metallene for enhanced formic acid electrooxidation. Chemical Communications, 2023, 59, 11588-11591.	4.1	1

#	Article	IF	CITATIONS
1205	Elucidation of the mechanism of melamine adsorption on Pt(111) surface <i>via</i> density functional theory calculations. Physical Chemistry Chemical Physics, 2023, 25, 23047-23057.	2.8	1
1206	Hydrogen society: from present to future. Energy and Environmental Science, 2023, 16, 4926-4943.	30.8	22
1207	Hydrophobic and Homogeneous Conductive Carbon Matrix for Highâ€Rate Nonâ€Alkaline Zincâ€Air Batteries. Small, 2023, 19, .	10.0	0
1208	Origin of High Activity and Durability of Confined Ordered Intermetallic PtCo Catalysts for the Oxygen Reduction Reaction in Rotating Disk Electrode and Fuel Cell Operating Conditions. ACS Catalysis, 2023, 13, 10988-11000.	11.2	2
1209	Retrospect and Prospect: Nanoarchitectonics of Platinumâ€Groupâ€Metalâ€Based Materials. Advanced Functional Materials, 2023, 33, .	14.9	8
1210	The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Research, 0, , .	10.4	16
1211	Structural, Ordering, and Magnetic Properties of PtNi Nanoalloys Explored by Density Functional Theory and Stability Descriptors. Journal of Physical Chemistry C, 2023, 127, 18043-18057.	3.1	1
1212	PdPt Alloy Nanoframes with Rugged Surfaces: Efficient Bifunctional Fuel Cell Catalysts in a Broad pH Range. , 2023, 5, 2384-2392.		2
1213	Electrocatalysis for Proton Exchange Membrane Fuel Cells. Green Energy and Technology, 2023, , 21-42.	0.6	0
1214	PtNi/PtIn-Skin Fishbone-Like Nanowires Boost Alkaline Hydrogen Oxidation Catalysis. ACS Nano, 2023, 17, 17779-17789.	14.6	2
1215	Effects of external physical fields on electrocatalysis. Chem Catalysis, 2023, 3, 100762.	6.1	1
1216	Assembling molybdenum-doped platinum clusters into a coral-like nanostructure for highly enhanced oxygen reduction. EScience, 2023, , 100187.	41.6	1
1217	Design of platinum nanoflower catalyst exhibiting near-ideal local coordination in a complex shape. Electrochimica Acta, 2023, 469, 143282.	5.2	0
1218	Electrochemical Dealloying of Ni-Rich Pt–Ni Nanoparticle Network for Robust Oxygen-Reduction Electrocatalysts. ACS Sustainable Chemistry and Engineering, 2023, 11, 15460-15469.	6.7	2
1219	Scale-up preparation, column chromatography-free purification of protected carbonyl-containing biomass molecules and their derivatizations. Green Chemistry, 0, , .	9.0	0
1220	Ceria tubular nanoarchitecture antioxidants achieve sustainable fuel cell devices via tuning the oxophilicity of Pt catalytic surfaces and radical scavenging. Chemical Engineering Journal, 2023, 476, 146662.	12.7	1
1221	First-principles study on the d-band center of Pt alloyed with 3d transition metals. Journal of the Korean Physical Society, 2023, 83, 964-969.	0.7	0
1222	Ultrathin RhCo alloy nanowires with defect-rich active sites for alkaline hydrogen evolution electrocatalysis. Chemical Communications, 2023, 59, 13978-13981.	4.1	1

			_
#	Article	IF	CITATIONS
1223	Cu-based mutlinary sulfide nanomaterials for photocatalytic applications. AIMS Materials Science, 2023, 10, 909-933.	1.4	0
1224	Interface-confined precise processing of Ag nanowire into AgPd-nanoparticle-sealed AgAu nanotroughs for boosting ethanol electrooxidation. Journal of Colloid and Interface Science, 2024, 654, 1331-1339.	9.4	0
1225	Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers. Green Energy and Environment, 2023, , .	8.7	3
1226	Recent progress of self-supported air electrodes for flexible Zn-air batteries. Journal of Energy Chemistry, 2024, 89, 110-136.	12.9	4
1228	Enhancing electron interaction between Pt and support for superior electrochemical performance through atomic layer deposition of tungsten oxide. Journal of Colloid and Interface Science, 2024, 654, 1272-1280.	9.4	1
1229	Synergistic effects of N-doping and mesoporous structures in block copolymer-derived three-dimensionally ordered mesoporous carbon for PEMFC. International Journal of Hydrogen Energy, 2024, 51, 747-757.	7.1	1
1230	Investigating Degradation Mechanisms in PtCo Alloy Catalysts: The Role of Co Content and a Pt-Rich Shell Using <i>Operando</i> High-Energy Resolution Fluorescence Detection X-ray Absorption Spectroscopy. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1231	Modulation of two-dimensional Pt-based intermetallic nanoplates for fuel cells. Materials Express, 2023, 13, 1813-1827.	0.5	0
1232	Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chemical Reviews, 2023, 123, 12507-12593.	47.7	9
1233	Impact of the Ionomer/Carbon Ratio and Pt Loading on the Three-Phase Boundary in a Cathodic Catalytic Layer via Coarse-Grained Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2023, 127, 21963-21970.	3.1	0
1234	Universal interface-confined strategy for trough-like AgPtM (M=Ru, Ir, Sn) nanostructures for methanol electro-oxidation. Journal of Alloys and Compounds, 2024, 972, 172803.	5.5	1
1235	Materials Strategies Tackling Interfacial Issues in Catalyst Layers of Proton Exchange Membrane Fuel Cells. Advanced Materials, 0, , .	21.0	1
1236	Potential Dominates Structural Recombination of Single Atom Mn Sites for Promoting Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
1237	Potential Dominates Structural Recombination of Single Atom Mn Sites for Promoting Oxygen Reduction Reaction. Angewandte Chemie, 2023, 135, .	2.0	0
1239	4-6 carbophene: A two-dimensional carbon material with Dirac cone and superior activity for electrochemical oxygen reduction reactions. Diamond and Related Materials, 2024, 141, 110603.	3.9	0
1240	Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts. Nano Research, 0, , .	10.4	1
1241	Powering the Future: Progress and Hurdles in Developing Proton Exchange Membrane Fuel Cell Components to Achieve Department of Energy Goals—A Systematic Review. Sustainability, 2023, 15, 15923.	3.2	2
1242	Electrocatalytic behavior of carbon quantum dots in sustainable applications: A review. Current Opinion in Electrochemistry, 2024, 43, 101436.	4.8	0

#	Article	IF	CITATIONS
1243	Direct epitaxial growth of Au nanoparticles on Pd metallene enables robust oxygen reduction electrocatalysis. Materials Today Energy, 2023, , 101471.	4.7	0
1244	Guest molecule-directed conversion of covalent organic framework into carbon with synergistic high content N dopants and defects for efficient oxygen reduction. Chemical Engineering Journal, 2023, 478, 147424.	12.7	1
1245	The Recent Progress of Oxygen Reduction Electrocatalysts Used at Fuel Cell Level. Small Methods, 0, ,	8.6	0
1246	Mechanism study of the improved catalytic activity of PEMFC catalyst layer by short-side-chain ionomer: Focusing on the ionomer/Pt interface. Chemical Engineering Journal, 2024, 479, 147787.	12.7	1
1247	A universal strategy for green and surfactant-free synthesis of noble metal nanoparticles. Chemical Communications, 2024, 60, 722-725.	4.1	1
1248	The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure–property relationships of Pt-based fuel cells electrocatalysts. Inorganic Chemistry Frontiers, 0, , .	6.0	1
1249	Atomic Sn sites supported on N-doped porous carbon for accelerating the oxygen reduction reaction. Catalysis Science and Technology, 0, , .	4.1	0
1250	Nanoscale Design for High Entropy Alloy Electrocatalysts. Small, 0, , .	10.0	0
1252	Dimension Engineering in Noble-Metal-Based Nanocatalysts. Catalysts, 2024, 14, 9.	3.5	2
1253	3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals. Nature Communications, 2023, 14, .	12.8	0
1254	Compressive Strain in Platinum–Iridium–Nickel Zigzag‣ike Nanowire Boosts Hydrogen Catalysis. Small, 0, , .	10.0	0
1255	The fabrication and application of triphase reaction interface based on superwettability for improved reaction efficiency. Journal of Materials Chemistry A, O, , .	10.3	0
1257	Lowâ€Electronegativity Mnâ€Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
1258	Lowâ€Electronegativity Mnâ€Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability. Angewandte Chemie, 2024, 136, .	2.0	0
1259	Porous PtAg Nanowires: A Highly Active Platinum Loading Electrocatalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 0, , .	5.1	0
1260	Assessing Pt and Ni dissolution mechanism and kinetics of shape-controlled oxygen reduction nanocatalysts. Electrochimica Acta, 2024, 477, 143760.	5.2	0
1261	Ultrafine Ru nanoparticles stabilized by V8C7/C for enhanced hydrogen evolution reaction at all pH. Science Bulletin, 2024, 69, 763-771.	9.0	0
1262	Recent Progress in the Application of Ion Beam Technology in the Modification and Fabrication of Nanostructured Energy Materials. ACS Nano, 2024, 18, 2578-2610.	14.6	0

#	Article	IF	CITATIONS
1263	Advanced electrochemical methods for characterization of proton exchange membrane electrocatalysts. , 2024, , 49-90.		0
1264	Improved Catalytic Properties of Fluorine-Doped La0.6Sr0.4Co0.2Fe0.8O3-δfor Air Electrode with High-Performance Metal-Air Batteries. Electronic Materials Letters, 0, , .	2.2	0
1265	Machine-learning-accelerated design of high-performance platinum intermetallic nanoparticle fuel cell cell catalysts. Nature Communications, 2024, 15, .	12.8	0
1266	A novel core-shell nanostructure of Ti-Au nanocrystal with PtNi alloy skin: Enhancing the durability for oxygen reduction reaction. Chinese Journal of Catalysis, 2024, 56, 81-87.	14.0	0
1267	Highly Dispersed Ultrasmall Highâ€Entropy Alloys Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction in Acidic Media. Small, 0, , .	10.0	0
1268	Platinum–Nickel Alloy Nanowire Electrocatalysts Transform into Pt-Skin Beads-on-Nanowires Keeping Oxygen Reduction Reaction Activity During Potential Cycling. ACS Catalysis, 2024, 14, 1750-1758.	11.2	0
1269	3D Nobleâ€Metal Nanostructures Approaching Atomic Efficiency and Atomic Density Limits. Advanced Materials, 2024, 36, .	21.0	0
1270	The design strategy of Pt-based electrocatalysts: insights from mass transport of fuel cells. Materials Today Energy, 2024, 40, 101503.	4.7	0
1271	Potential-Dependent Ionomer Rearrangement on the Pt Surface in Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2024, 16, 4637-4647.	8.0	0
1272	Tunable synthesis of highly branched Pd nanodendrites for enhanced electrocatalysis. Applied Surface Science, 2024, 654, 159534.	6.1	0
1273	Noble metal catalysts for metal-air batteries: From nano-level to atom-level. , 2024, 2, 100126.		0
1274	Grafting Ultraâ€fine Nanoalloys with Amorphous Skin Enables Highly Active and Longâ€lived Acidic Hydrogen Production. Angewandte Chemie, 2024, 136, .	2.0	0
1275	Grafting Ultraâ€fine Nanoalloys with Amorphous Skin Enables Highly Active and Longâ€lived Acidic Hydrogen Production. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1276	Preparation of Fe-BN-C catalysts derived from ZIF-8 and their performance in the oxygen reduction reaction. RSC Advances, 2024, 14, 4607-4613.	3.6	0
1277	Local structures and robust oxygen reduction performances of TiN-supported bimetallic Pt–Cu electrocatalysts for fuel cells. Catalysis Science and Technology, 2024, 14, 1501-1511.	4.1	0
1278	Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions. Chemical Communications, 2024, 60, 3129-3137.	4.1	1
1279	A Redox Flow Battery-Integrated Rechargeable H ₂ /O ₂ Fuel Cell. Journal of the American Chemical Society, 2024, 146, 5274-5282.	13.7	0
1280	General Pyrolysis for High-Loading Transition Metal Single Atoms on 2D-Nitro-Oxygeneous Carbon as Efficient ORR Electrocatalysts. ACS Applied Materials & Interfaces, 2024, 16, 10227-10237.	8.0	0

ARTICLE IF CITATIONS # Green and efficient electrolysis of seawater using carbon nanotube-based hybrid films. Nano Energy, 1281 16.0 0 2024, 123, 109356. The role of strain in oxygen evolution reaction. Journal of Energy Chemistry, 2024, 93, 322-344. Dealloyed nanoporous platinum alloy electrocatalysts. International Journal of Hydrogen Energy, 1284 7.1 0 2024, 60, 1077-1091. Site-specific reactivity of stepped Pt surfaces driven by stress release. Nature, 2024, 626, 1005-1010. Recent advances in morphology control of platinum catalysts toward oxygen reduction reaction. 1286 2.3 0 Frontiers in Energy, 0, , . Emerging non-d-block single-atom catalysis: A way stepping out of the transition metals. Materials Today Sustainability, 2024, 26, 100731. 4.1 Boosting ORR Activity in π-Rich Carbon-Supported Sub-3 nm Pt-Based Intermetallic Electrocatalysts via 1288 6.7 0 d–l€ Interaction. ACS Sustainable Chemistry and Engineering, 2024, 12, 5241-5250. High-Performance Low-Temperature Solid Oxide Fuel Cell with a Pt@C–Ni_{0.8}Co_{0.15}Al_{0.05}LiO_{2â[^]δ} Composite Cathode. Energy & Fuels, 2024, 38, 6410-6419. 1289 5.1 Superstructure-Assisted Single-Atom Catalysis on Tungsten Carbides for Bifunctional Oxygen 1290 13.7 0 Reactions. Journal of the American Chemical Society, 2024, 146, 9124-9133. Self-Sustainable Lattice Strains of Morphology-Tuned Nanowires in Electrocatalysis. ACS Catalysis, 1291 11.2 2024, 14, 4709-4718. Regulating the Electronic Synergy of Asymmetric Atomic Fe Sites with Adjacent Defects for Boosting 1292 14.9 0 Activity and Durability toward Oxygen Reduction. Advanced Functional Materials, 0, , .