Genome Sequence of a 5,310-Year-Old Maize Cob Provid Maize Domestication

Current Biology 26, 3195-3201 DOI: 10.1016/j.cub.2016.09.036

Citation Report

#	Article	IF	CITATIONS
1	Chromosome Segregation: Reconstituting the Kinetochore. Current Biology, 2016, 26, R1242-R1245.	1.8	6
2	Crop Domestication: A Sneak-Peek into the Midpoint of Maize Evolution. Current Biology, 2016, 26, R1240-R1242.	1.8	8
3	The genomic basis of adaptation in plants. Current Opinion in Plant Biology, 2017, 36, 88-94.	3.5	68
4	Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6429-6437.	3.3	68
5	Genomic innovation for crop improvement. Nature, 2017, 543, 346-354.	13.7	301
6	Co-evolution of methods and thoughts in cereal domestication studies: a tale of barley (Hordeum) Tj ETQq1 1 0.7	78 <u>43</u> 14 rg	BT ₄₂ Overloc
7	The Genetics and Genomics of Plant Domestication. BioScience, 2017, 67, 971-982.	2.2	83
8	Domestication as a model system for the extended evolutionary synthesis. Interface Focus, 2017, 7, 20160133.	1.5	119
9	Harnessing ancient genomes to study the history of human adaptation. Nature Reviews Genetics, 2017, 18, 659-674.	7.7	165
10	Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science, 2017, 357, 512-515.	6.0	169
11	High-precision chronology for Central American maize diversification from El Gigante rockshelter, Honduras. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9026-9031.	3.3	57
12	The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC Genomics, 2017, 18, 495.	1.2	73
13	Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biology, 2017, 18, 60.	3.8	142
14	Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. CigaScience, 2017, 6, 1-13.	3.3	137
15	Novel Substrates as Sources of Ancient DNA: Prospects and Hurdles. Genes, 2017, 8, 180.	1.0	44
16	Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE, 2017, 12, e0173488.	1.1	50
18	Paleogenomics: Genome-Scale Analysis of Ancient DNA and Population and Evolutionary Genomic Inferences. Population Genomics, 2018, , 323-360.	0.2	4
19	Ancient Epigenomics. Population Genomics, 2018, , 75-111.	0.2	11

TATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
20	On the origins and domestication of the olive: a review and perspectives. Annals of Botany, 2018, 121, 385-403.	1.4	147
21	Humans as niche constructors: Revisiting the concept of chronic anthropogenic disturbances in ecology. Perspectives in Ecology and Conservation, 2018, 16, 1-11.	1.0	38
23	Evolution and Adaptation in the Maize Genome. Compendium of Plant Genomes, 2018, , 319-332.	0.3	6
24	Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science, 2018, 362, 1309-1313.	6.0	172
25	Technical Advances and Challenges in Genome-Scale Analysis of Ancient DNA. Population Genomics, 2018, , 3-29.	0.2	2
26	Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Current Biology, 2018, 28, 3005-3015.e4.	1.8	116
27	An Ancient DNA Perspective on Horse Evolution. Population Genomics, 2018, , 325-351.	0.2	6
28	Genome Sequencing of Ancient Plant Remains: Findings, Uses and Potential Applications for the Study and Improvement of Modern Crops. Frontiers in Plant Science, 2018, 9, 441.	1.7	19
29	Maize domestication and gene interaction. New Phytologist, 2018, 220, 395-408.	3.5	90
30	Archaeogenomic evidence from the southwestern US points to a pre-Hispanic scarlet macaw breeding colony. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8740-8745.	3.3	20
31	Ancient plant DNA in the genomic era. Nature Plants, 2018, 4, 394-396.	4.7	54
32	A reâ€evaluation of the domestication bottleneck from archaeogenomic evidence. Evolutionary Applications, 2019, 12, 29-37.	1.5	79
33	EARLY–MIDDLE FORMATIVE PERIOD SUBSISTENCE IN THE TEOTIHUACAN VALLEY, MEXICO: PRE-HISPANIC PLANT REMAINS FROM ALTICA. Ancient Mesoamerica, 2019, 30, 339-354.	0.2	5
34	Evolutionary Insights into the Nature of Plant Domestication. Current Biology, 2019, 29, R705-R714.	1.8	204
36	Is Determinism Dead?. , 2019, , 23-49.		0
37	Incorporating New Methods I: The Stable Isotope Revolution. , 2019, , 50-74.		0
38	Incorporating New Methods III: Answering Palaeoeconomic Questions with Molecular Genetics. , 2019, , 99-122.		0
39	Integrated Case Study I: Early Farming in Central Europe. , 2019, , 137-162.		0

#	Article	IF	CITATIONS
43	Integrated Case Study II: Horse Domestication and the Origins of Pastoralism in Central Asia. , 2019, , 163-194.		0
44	Incorporating New Methods II: Residue Chemistry. , 2019, , 75-98.		Ο
45	Incorporating New Methods IV: Phytoliths and Starch Grains in the Tropics and Beyond. , 2019, , 123-136.		0
46	Palaeogenomic insights into the origins of French grapevine diversity. Nature Plants, 2019, 5, 595-603.	4.7	85
47	Phylogenetic and population structural inference from genomic ancestry maintained in presentâ€day common wheat Chinese landraces. Plant Journal, 2019, 99, 201-215.	2.8	5
48	Experimenting with domestication: Understanding macro- and micro-phenotypes and developmental plasticity in teosinte in its ancestral pleistocene and early holocene environments. Journal of Archaeological Science, 2019, 108, 104970.	1.2	9
50	Authentication and Assessment of Contamination in Ancient DNA. Methods in Molecular Biology, 2019, 1963, 163-194.	0.4	23
51	Extraction of Ancient DNA from Plant Remains. Methods in Molecular Biology, 2019, 1963, 45-55.	0.4	11
52	Genotyping by sequencing can reveal the complex mosaic genomes in gene pools resulting from reticulate evolution: a case study in diploid and polyploid citrus. Annals of Botany, 2019, 123, 1231-1251.	1.4	38
53	Wild Relatives of Maize. , 2019, , 3-39.		9
54	The Promise of Paleogenomics Beyond Our Own Species. Trends in Genetics, 2019, 35, 319-329.	2.9	55
55	Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biology, 2019, 20, 29.	3.8	58
56	A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history. Nature Plants, 2019, 5, 1120-1128.	4.7	46
57	Ancient <scp>DNA</scp> reveals the timing and persistence of organellar genetic bottlenecks over 3,000Âyears of sunflower domestication and improvement. Evolutionary Applications, 2019, 12, 38-53.	1.5	27
58	Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25618-25627.	3.3	54
59	Classification of archaic rice grains excavated at the Mojiaoshan site within the Liangzhu site complex reveals an Indica and Japonica chloroplast complex. Food Production Processing and Nutrition, 2020, 2, .	1.1	4
60	Genomic, Transcriptomic and Epigenomic Tools to Study the Domestication of Plants and Animals: A Field Guide for Beginners. Frontiers in Genetics, 2020, 11, 742.	1.1	21
61	Archaeological Central American maize genomes suggest ancient gene flow from South America. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33124-33129.	3.3	36

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
62	Early isotopic evidence for maize as a staple grain in the Americas. Science Advances, 2020, 6, eaba3245.	4.7	54
63	The relevance of gene flow with wild relatives in understanding the domestication process. Royal Society Open Science, 2020, 7, 191545.	1.1	18
64	Inference of natural selection from ancient DNA. Evolution Letters, 2020, 4, 94-108.	1.6	58
65	Ancient Plant Genomics in Archaeology, Herbaria, and the Environment. Annual Review of Plant Biology, 2020, 71, 605-629.	8.6	34
66	Modelling the prehistoric geographical distribution of the genus Meleagris. Quaternary International, 2020, 543, 8-15.	0.7	2
67	The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science and Technology, 2020, 100, 51-66.	7.8	58
68	Ancient Plant DNA as a Window Into the Cultural Heritage and Biodiversity of Our Food System. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	11
69	Wholeâ€genome resequencing reveals loci under selection during silkworm improvement. Journal of Animal Breeding and Genetics, 2021, 138, 278-290.	0.8	2
70	Genome-wide analyses reveal footprints of divergent selection and popping-related traits in CIMMYT's maize inbred lines. Journal of Experimental Botany, 2021, 72, 1307-1320.	5 2.4	11
71	Entrelaçado, a rare maize race conserved in Southwestern Amazonia. Genetic Resources and Crop Evolution, 2021, 68, 51-58.	0.8	4
72	Seed morphology uncovers 1500Âyears of vine agrobiodiversity before the advent of the Champagne wine. Scientific Reports, 2021, 11, 2305.	1.6	14
73	Predicting sample success for largeâ€scale ancient DNA studies on marine mammals. Molecular Ecology Resources, 2021, 21, 1149-1166.	2.2	6
74	Ancient DNA analysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	133
75	Ancient genomes reveal early Andean farmers selected common beans while preserving diversity. Nature Plants, 2021, 7, 123-128.	4.7	29
76	Plastome genomics in South American maize landraces: chloroplast lineages parallel the geographical structuring of nuclear gene pools. Annals of Botany, 2021, 128, 115-125.	1.4	7
77	Ancient and modern stickleback genomes reveal the demographic constraints on adaptation. Current Biology, 2021, 31, 2027-2036.e8.	1.8	33
78	Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication. Molecular Biology and Evolution, 2021, 38, 4475-4492.	3.5	14
80	Genomics-based approaches to improve abiotic stress tolerance in plants: Present status and future prospects. , 2022, , 195-219.		0

#	Article	IF	CITATIONS
85	Uncovering Signatures of DNA Methylation in Ancient Plant Remains From Patterns of Post-mortem DNA Damage. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	3
86	The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ, 2020, 8, e8225.	0.9	81
87	FrAnTK: a Frequency-based Analysis ToolKit for efficient exploration of allele sharing patterns in present-day and ancient genomic datasets. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	0
90	Mesoamerica's Archaic Period. , 2019, , 1-14.		0
91	Mesoamerica's Archaic Period. , 2020, , 7053-7066.		0
93	Isolation, Library Preparation, and Bioinformatic Analysis of Historical and Ancient Plant DNA. Current Protocols in Plant Biology, 2020, 5, e20121.	2.8	14
94	Toward an Investigation of Diversity and Cultivation of Rye (Secale cereale ssp. cereale L.) in Germany: Methodological Insights and First Results from Early Modern Plant Material. Agronomy, 2021, 11, 2451.	1.3	6
95	Emerging evidence of plant domestication as a landscape-level process. Trends in Ecology and Evolution, 2022, 37, 268-279.	4.2	31
96	Scaling up neodomestication for climate-ready crops. Current Opinion in Plant Biology, 2022, 66, 102169.	3.5	7
98	Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC Plant Biology, 2022, 22, 72.	1.6	9
99	South-to-north migration preceded the advent of intensive farming in the Maya region. Nature Communications, 2022, 13, 1530.	5.8	21
100	Maize dispersal patterns associated with different types of endosperm and migration of indigenous groups in lowland South America. Annals of Botany, 2022, 129, 737-751.	1.4	6
107	Gradual domestication of root traits in the earliest maize from Tehuacán. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110245119.	3.3	8
108	Next generation genomics: toward decoding domestication history of crops. , 2022, , 209-220.		0
109	Next-Generation Sequencing Technologies: Approaches and Applications for Crop Improvement. Springer Protocols, 2022, , 31-94.	0.1	3
112	Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nature Communications, 2022, 13, .	5.8	27
113	Genome Sequencing of up to 6,000-Year-Old <i>Citrullus</i> Seeds Reveals Use of a Bitter-Fleshed Species Prior to Watermelon Domestication. Molecular Biology and Evolution, 2022, 39, .	3.5	4
114	Insights from the genomes of 4 diploid <i>Camelina</i> spp G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4

CITATION REPORT

#	Article	IF	CITATIONS
115	Perspectives in plant evolutionary genetics: A field guide in 15 "easy steps―to modern tools in evolutionary genetics and genomics. Botanical Sciences, 0, 100, .	0.3	2
117	Maize domestication phenotypes reveal strigolactone networks coordinating grain size evolution with kernel-bearing cupule architecture. Plant Cell, 2023, 35, 1013-1037.	3.1	8
118	Peronosclerospora neglecta sp. nov.—a widespread and overlooked threat to corn (maize) production in the tropics. Mycological Progress, 2023, 22, .	0.5	1
120	Tracking population structure and phenology through time using ancient genomes from waterlogged white oak wood. Molecular Ecology, 2024, 33, .	2.0	4
121	Domestication and lowland adaptation of coastal preceramic maize from Paredones, Peru. ELife, 0, 12, .	2.8	4
126	Ancient Wheat Genomes Illuminate Domestication, Dispersal, and Diversity. Compendium of Plant Genomes, 2024, , 113-134.	0.3	0
127	Integrated OMIC Approaches for Bioenergy Crops. , 2023, , 77-84.		0