Programmable artificial phototactic microswimmer

Nature Nanotechnology 11, 1087-1092 DOI: 10.1038/nnano.2016.187

Citation Report

#	Article	IF	CITATIONS
2	Light-seeking synthetic trees. Nature Nanotechnology, 2016, 11, 1003-1004.	15.6	4
3	Light in diagnosis, therapy and surgery. Nature Biomedical Engineering, 2017, 1, .	11.6	523
4	Phototactic behavior of self-propelled micrometer-sized oil droplets in a surfactant solution. Chemical Communications, 2017, 53, 2237-2240.	2.2	28
5	Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2017, 2, .	9.9	1,018
6	Nanoconfined Atomic Layer Deposition of TiO 2 /Pt Nanotubes: Toward Ultrasmall Highly Efficient Catalytic Nanorockets. Advanced Functional Materials, 2017, 27, 1700598.	7.8	54
7	Redoxâ€Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angewandte Chemie - International Edition, 2017, 56, 7620-7624.	7.2	133
8	Photo ontrolled Waves and Active Locomotion. Chemistry - A European Journal, 2017, 23, 11181-11188.	1.7	7
9	Visible-light controlled catalytic Cu ₂ O–Au micromotors. Nanoscale, 2017, 9, 75-78.	2.8	116
10	Redoxâ€Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angewandte Chemie, 2017, 129, 7728-7732.	1.6	26
11	Self-propelling micro-nanorobots: challenges and future perspectives in nanomedicine. Nanomedicine, 2017, 12, 1363-1367.	1.7	28
12	A Silicon Nanowire as a Spectrally Tunable Lightâ€Driven Nanomotor. Advanced Materials, 2017, 29, 1701451.	11.1	122
13	Multiwavelength Light-Responsive Au/B-TiO ₂ Janus Micromotors. ACS Nano, 2017, 11, 6146-6154.	7.3	155
14	An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale, 2017, 9, 9026-9033.	2.8	63
15	Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors. ACS Applied Materials & Interfaces, 2017, 9, 22704-22712.	4.0	57
16	Colloids Can "See―the Light. CheM, 2017, 2, 17-19.	5.8	0
17	Device and programming abstractions for spatiotemporal control of active micro-particle swarms. Lab on A Chip, 2017, 17, 1442-1451.	3.1	25
18	Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nature Communications, 2017, 8, 770.	5.8	175
19	Light-driven micro/nanomotors: from fundamentals to applications. Chemical Society Reviews, 2017, 46, 6905-6926.	18.7	465

TION REI

	Сіз	CITATION REPORT	
#	Article	IF	Citations
20	Motion Manipulation of Micro―and Nanomotors. Advanced Materials, 2017, 29, 1701970.	11.1	156
21	Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Science Advances, 2017, 3, e1701160.	4.7	39
22	Rheotaxis of Bimetallic Micromotors Driven by Chemical–Acoustic Hybrid Power. ACS Nano, 2017, 1 10591-10598.	.1, 7.3	135
23	Light-driven micro- and nanomotors for environmental remediation. Environmental Science: Nano, 2017, 4, 1602-1616.	2.2	100
24	Visible-light driven Si–Au micromotors in water and organic solvents. Nanoscale, 2017, 9, 11434-11	438. 2.8	53
25	Nonlinear Self-Action of Light through Biological Suspensions. Physical Review Letters, 2017, 119, 058101.	2.9	52
26	Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control. ACS Applied Materials & Interfaces, 2017, 9, 44948-44953.	4.0	15
27	Twists and Turns of Orbiting and Spinning Metallic Microparticles Powered by Megahertz Ultrasound. ACS Nano, 2017, 11, 12668-12676.	7.3	60
28	Orthogonal navigation of multiple visible-light-driven artificial microswimmers. Nature Communications, 2017, 8, 1438.	5.8	89
29	Tuning the motility and directionality of self-propelled colloids. Scientific Reports, 2017, 7, 14891.	1.6	66
30	Internally/Externally Bubble-Propelled Photocatalytic Tubular Nanomotors for Efficient Water Cleaning. ACS Applied Materials & Interfaces, 2017, 9, 23974-23982.	4.0	40
31	Large scale micro-photometry for high resolution pH-characterization during electro-osmotic pumping and modular micro-swimming. New Journal of Physics, 2017, 19, 115014.	1.2	13
32	Magnetically guided actuation of ferromagnetic bodies on the planar surfaces: Numerical modeling and experimental verification. , 2017, , .		1
33	A light-powered shape-configurable micromachine. Materials Horizons, 2018, 5, 436-443.	6.4	20
34	Synthesis, Characterization, and Light-Induced Spatial Charge Separation in Janus Graphene Oxide. Chemistry of Materials, 2018, 30, 2084-2092.	3.2	15
35	Emergence of Pendular and Rotary Motions of a Centimeter-Sized Metallic Sheet under Stationary Photoirradiation. Journal of Physical Chemistry C, 2018, 122, 2747-2752.	1.5	7
36	Photogravitactic Microswimmers. Advanced Functional Materials, 2018, 28, 1706660.	7.8	96
37	Dynamic self-assembly of micro-nanomotor. Inorganic Chemistry Communication, 2018, 91, 8-15.	1.8	15

#	Article	IF	CITATIONS
38	Light-induced propulsion of a giant liposome driven by peptide nanofibre growth. Scientific Reports, 2018, 8, 6243.	1.6	29
39	Noncontinuous Superâ€Diffusive Dynamics of a Lightâ€Activated Nanobottle Motor. Angewandte Chemie - International Edition, 2018, 57, 6838-6842.	7.2	95
40	Noncontinuous Superâ€Diffusive Dynamics of a Lightâ€Activated Nanobottle Motor. Angewandte Chemie, 2018, 130, 6954-6958.	1.6	15
41	Magnetically driven omnidirectional artificial microswimmers. Soft Matter, 2018, 14, 3415-3422.	1.2	16
42	Preparation and Properties of Janus Heparin-Loaded Ammoniated-Hollow Mesoporous Silica Nanomotors. Journal of Physical Chemistry C, 2018, 122, 9680-9687.	1.5	17
43	Collective motion and dynamic self-assembly of colloid motors. Current Opinion in Colloid and Interface Science, 2018, 35, 51-58.	3.4	48
44	Progress toward Catalytic Micro―and Nanomotors for Biomedical and Environmental Applications. Advanced Materials, 2018, 30, e1703660.	11.1	184
45	Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano, 2018, 12, 2539-2545.	7.3	153
46	Manipulation of particles based on swirl. Japanese Journal of Applied Physics, 2018, 57, 017202.	0.8	10
47	Lightâ€Driven Janus Hollow Mesoporous TiO ₂ –Au Microswimmers. Advanced Functional Materials, 2018, 28, 1704902.	7.8	86
48	Janus Microdimer Surface Walkers Propelled by Oscillating Magnetic Fields. Advanced Functional Materials, 2018, 28, 1706066.	7.8	105
49	Laser-driven propulsion of multilayer graphene oxide flakes. Journal of Materials Chemistry C, 2018, 6, 2329-2335.	2.7	6
50	Smallâ€Scale Machines Driven by External Power Sources. Advanced Materials, 2018, 30, e1705061.	11.1	186
51	Engineering of Selfâ€Propelling Microbots and Microdevices Powered by Magnetic and Electric Fields. Advanced Functional Materials, 2018, 28, 1705953.	7.8	109
52	Fuelâ€Free Nanocapâ€Like Motors Actuated Under Visible Light. Advanced Functional Materials, 2018, 28, 1705862.	7.8	52
53	Tubular Micro/Nanomachines: From the Basics to Recent Advances. Advanced Functional Materials, 2018, 28, 1705872.	7.8	97
54	Lightâ€Ultrasound Driven Collective "Firework―Behavior of Nanomotors. Advanced Science, 2018, 5, 1800122.	5.6	81
55	Shape-Dependent Motion of Structured Photoactive Microswimmers. ACS Applied Materials & Interfaces, 2018, 10, 18050-18056.	4.0	28

#	Article	IF	CITATIONS
56	Bjerknes Forces in Motion: Longâ€Range Translational Motion and Chiral Directionality Switching in Bubbleâ€Propelled Micromotors via an Ultrasonic Pathway. Advanced Functional Materials, 2018, 28, 1702618.	7.8	41
57	Re-engineering of protein motors to understand mechanisms biasing random motion and generating collective dynamics. Current Opinion in Biotechnology, 2018, 51, 39-46.	3.3	12
58	Diffusiophoretic design of self-spinning microgears from colloidal microswimmers. Soft Matter, 2018, 14, 9577-9588.	1.2	14
59	Intelligent Micro/nanomotors with Taxis. Accounts of Chemical Research, 2018, 51, 3006-3014.	7.6	118
60	Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses. Frontiers in Bioengineering and Biotechnology, 2018, 6, 170.	2.0	86
61	A phototactic liquid micromotor. Journal of Materials Chemistry C, 2018, 6, 12234-12239.	2.7	25
62	Metal-Free Visible-Light Photoactivated C ₃ N ₄ Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and On/Off Capabilities. ACS Nano, 2018, 12, 12482-12491.	7.3	85
63	Highâ€Motility Visible Lightâ€Driven Ag/AgCl Janus Micromotors. Small, 2018, 14, e1803613.	5.2	56
64	Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads. Small, 2018, 14, e1802537.	5.2	35
65	Polygonal motion and adaptable phototaxis via flagellar beat switching in the microswimmer Euglena gracilis. Nature Physics, 2018, 14, 1216-1222.	6.5	63
66	A swarm of slippery micropropellers penetrates the vitreous body of the eye. Science Advances, 2018, 4, eaat4388.	4.7	402
67	Recent advances of light-driven micro/nanomotors: toward powerful thrust and precise control. Nanotechnology Reviews, 2018, 7, 555-581.	2.6	36
68	Light-Driven Micro/Nanomotor for Promising Biomedical Tools: Principle, Challenge, and Prospect. Accounts of Chemical Research, 2018, 51, 1957-1965.	7.6	182
69	Photocatalytic Micro/Nanomotors: From Construction to Applications. Accounts of Chemical Research, 2018, 51, 1940-1947.	7.6	130
70	A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface. Nanoscale, 2018, 10, 19673-19677.	2.8	30
71	<i>Viscotaxis</i> : Microswimmer Navigation in Viscosity Gradients. Physical Review Letters, 2018, 120, 208002.	2.9	68
72	Microfluidic preparation of flexible micro-grippers with precise delivery function. Lab on A Chip, 2018, 18, 1838-1843.	3.1	16
73	Predicting and Optimizing Microswimmer Performance from the Hydrodynamics of Its Components:	4.6	17

	CITATION RE	PORT	
#	Article	IF	CITATIONS
74	Microâ€{Nanorobots at Work in Active Drug Delivery. Advanced Functional Materials, 2018, 28, 1706100.	7.8	296
75	Programmable actuating systems based on swimming fiber robots. Carbon, 2018, 139, 241-247.	5.4	7
76	Flexible magnetic composites for light-controlled actuation and interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8119-8124.	3.3	64
77	Cu@TiO ₂ Janus microswimmers with a versatile motion mechanism. Soft Matter, 2018, 14, 6969-6973.	1.2	52
78	Cell Membrane–Camouflaged Colloid Motors for Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800056.	1.6	46
79	Light-Powered Micro/Nanomotors. Micromachines, 2018, 9, 41.	1.4	63
80	Geometry Design, Principles and Assembly of Micromotors. Micromachines, 2018, 9, 75.	1.4	53
81	Modular approach to microswimming. Soft Matter, 2018, 14, 7554-7568.	1.2	32
82	Alignment of Thermally Conducting Nanotubes Making High-Performance Light-Driving Motors. ACS Applied Materials & Interfaces, 2018, 10, 26765-26771.	4.0	24
83	Light or Thermally Powered Autonomous Rolling of an Elastomer Rod. ACS Applied Materials & Interfaces, 2018, 10, 25689-25696.	4.0	115
84	Bioinspired microrobots. Nature Reviews Materials, 2018, 3, 113-124.	23.3	472
85	Chemical/Lightâ€Powered Hybrid Micromotors with "Onâ€theâ€Fly―Optical Brakes. Angewandte Chemie - International Edition, 2018, 57, 8110-8114.	7.2	67
86	Chemical/Lightâ€Powered Hybrid Micromotors with "Onâ€ŧheâ€Fly―Optical Brakes. Angewandte Chemie, 2018, 130, 8242-8246.	1.6	34
87	Selfâ€Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie - International Edition, 2018, 57, 12463-12467.	7.2	173
88	Swarming and collective migration of micromotors under near infrared light. Applied Materials Today, 2018, 13, 45-53.	2.3	100
89	Self-Phoretic Microswimmers Propel at Speeds Dependent upon an Adjacent Surface's Physicochemical Properties. Journal of Physical Chemistry Letters, 2018, 9, 5023-5028.	2.1	18
90	Photocatalytically Powered Matchlike Nanomotor for Lightâ€Guided Active SERS Sensing. Angewandte Chemie, 2018, 130, 13294-13297.	1.6	9
91	Selfâ€Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie, 2018, 130, 12643-12647	1.6	27

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Ultra-extensible ribbon-like magnetic microswarm. Nature Communications, 2018, 9, 3	3260.	5.8	298
93	Photocatalytically Powered Matchlike Nanomotor for Lightâ€Guided Active SERS Sens Chemie - International Edition, 2018, 57, 13110-13113.	ing. Angewandte	7.2	88
94	Visible light driven catalytic gold decorated soft-oxometalate (SOM) based nanomotor pollutant remediation. Nanoscale, 2018, 10, 12713-12722.	's for organic	2.8	31
95	Fuel-Free Light-Powered TiO ₂ /Pt Janus Micromotors for Enhanced Nitroar Explosives Degradation. ACS Applied Materials & Interfaces, 2018, 10, 22427-224	omatic 1 34.	4.0	108
96	Photocatalytic TiO ₂ Micromotors for Removal of Microplastics and Suspe ACS Applied Materials & Interfaces, 2019, 11, 32937-32944.	nded Matter.	4.0	221
97	A Human Microrobot Interface Based on Acoustic Manipulation. ACS Nano, 2019, 13,	11443-11452.	7.3	58
98	Motile Artificial Chromatophores: Lightâ€Triggered Nanoparticles for Microdroplet Loc Color Change. Advanced Optical Materials, 2019, 7, 1900951.	omotion and	3.6	9
99	Visible-Light-Driven Single-Component BiVO ₄ Micromotors with the Auto for Capturing Microorganisms. ACS Nano, 2019, 13, 8135-8145.	nomous Ability	7.3	110
100	Macroscale Chemotaxis from a Swarm of Bacteriaâ€Mimicking Nanoswimmers. Angew International Edition, 2019, 58, 12200-12205.	vandte Chemie -	7.2	85
101	Macroscale Chemotaxis from a Swarm of Bacteriaâ€Mimicking Nanoswimmers. Angew 131, 12328-12333.	vandte Chemie, 2019,	1.6	19
102	Nanowire Photoelectrochemistry. Chemical Reviews, 2019, 119, 9221-9259.		23.0	158
103	Minimum damping profile of micro/nano-robot and as the carrier for drug delivery: the Journal of Physics: Conference Series, 2019, 1209, 012019.	ory study.	0.3	1
104	Target clamping and cooperative motion control of ant robots. Bioinspiration and Bior 14, 066015.	nimetics, 2019,	1.5	5
105	Light Control of Localized Photobioconvection. Physical Review Letters, 2019, 123, 15	8101.	2.9	16
106	Active particles in geometrically confined viscoelastic fluids. New Journal of Physics, 20)19, 21, 093058.	1.2	29
107	Augmented reality for the engineering of collective behaviours in microsystems. , 2019),,.		6
109	Redâ€Bloodâ€Cell Waveguide as a Living Biosensor and Micromotor. Advanced Functi 29, 1905568.	onal Materials, 2019,	7.8	50
110	Laser Controlled 65 Micrometer Long Microrobot Made of Niâ€Ti Shape Memory Alloy Materials Technologies, 2019, 4, 1900583.	. Advanced	3.0	22

#	Article	IF	CITATIONS
111	From Strong Dichroic Nanomotor to Polarotactic Microswimmer. Advanced Materials, 2019, 31, e1903329.	11.1	49
112	Enhanced ion tolerance of electrokinetic locomotion in polyelectrolyte-coated microswimmer. Nature Communications, 2019, 10, 3921.	5.8	51
113	Calligraphy/Painting Based on a Bioinspired Light-Driven Micromotor with Concentration-Dependent Motion Direction Reversal and Dynamic Swarming Behavior. ACS Applied Materials & Interfaces, 2019, 11, 40533-40542.	4.0	39
114	Phototaxis of active colloids by self-thermophoresis. Soft Matter, 2019, 15, 408-414.	1.2	21
115	Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium. Advanced Materials, 2019, 31, e1807382.	11.1	27
116	Engineering the Dynamics of Active Colloids by Targeted Design of Metal–Semiconductor Heterojunctions. Advanced Materials Interfaces, 2019, 6, 1801894.	1.9	12
117	Lightâ€Controlled Micromotors and Soft Microrobots. Advanced Optical Materials, 2019, 7, 1900370.	3.6	91
118	Tracking systems for intracranial medical devices: A review. Medical Devices & Sensors, 2019, 2, e10033.	2.7	7
119	Bioinspired Design of Lightâ€Powered Crawling, Squeezing, and Jumping Untethered Soft Robot. Advanced Materials Technologies, 2019, 4, 1900185.	3.0	144
120	Self-assembly and complex manipulation of colloidal mesoscopic particles by active thermocapillary stress. Soft Matter, 2019, 15, 4703-4713.	1.2	18
121	Water–Organic Cosolvent Effect on Nucleation of Solution-Synthesized ZnO Nanowires. ACS Omega, 2019, 4, 8299-8304.	1.6	10
122	Full Spectrum Tunable Visibleâ€Lightâ€Driven Alloy Nanomotor. Advanced Functional Materials, 2019, 29, 1901768.	7.8	29
123	Motion of Enzymeâ€Powered Microshell Motors. Chemistry - an Asian Journal, 2019, 14, 2491-2496.	1.7	15
124	Conical Hollow Microhelices with Superior Swimming Capabilities for Targeted Cargo Delivery. Advanced Materials, 2019, 31, e1808226.	11.1	89
125	Coexisting Cooperative Cognitive Micro…Nanorobots. Chemistry - an Asian Journal, 2019, 14, 2357-2368.	1.7	8
126	Theory of light-activated catalytic Janus particles. Journal of Chemical Physics, 2019, 150, 114903.	1.2	35
127	A hydrodynamic-stochastic model of chemotactic ciliated microorganisms. European Physical Journal E, 2019, 42, 20.	0.7	4
128	Fuelâ€Free Microâ€∕Nanomotors as Intelligent Therapeutic Agents. Chemistry - an Asian Journal, 2019, 14, 2325-2335.	1.7	23

#	Article	IF	CITATIONS
129	Smart Microdevices Laying "Breadcrumbs―to Find the Way Home: Chemotactic Homing TiO 2 /Pt Janus Microrobots. Chemistry - an Asian Journal, 2019, 14, 2456-2459.	1.7	9
130	Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing. ACS Applied Materials & Interfaces, 2019, 11, 13581-13588.	4.0	92
131	Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH‧peed Regulation at Ultralow Physiological H ₂ O ₂ Concentration. Advanced Functional Materials, 2019, 29, 1808900.	7.8	66
132	X-ray-Powered Micromotors. ACS Applied Materials & amp; Interfaces, 2019, 11, 15727-15732.	4.0	35
133	Near-Infrared Light-Driven Controllable Motions of Gold-Hollow-Microcone Array. ACS Applied Materials & Interfaces, 2019, 11, 15927-15935.	4.0	19
134	Self-assembly of magnetic colloids with shifted dipoles. Soft Matter, 2019, 15, 4078-4086.	1.2	16
135	Programming Hydrogen Production via Controllable Emulsification/Demulsification in a Switchable Oil–Water System. ACS Sustainable Chemistry and Engineering, 2019, 7, 7768-7776.	3.2	21
136	An electromagnetic anglerfish-shaped millirobot with wireless power generation. Biomedical Microdevices, 2019, 21, 15.	1.4	3
137	Phototropic Multiresponsive Active Nanogels. Macromolecular Rapid Communications, 2019, 40, 1900479.	2.0	2
138	Reorientation behavior in the helical motility of light-responsive spiral droplets. Nature Communications, 2019, 10, 5238.	5.8	43
139	Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field. Nanomaterials, 2019, 9, 1672.	1.9	29
141	Chemotaktische Mikro―und Nanomaschinen. Angewandte Chemie, 2019, 131, 2212-2218.	1.6	7
142	Chemotactic Micro―and Nanodevices. Angewandte Chemie - International Edition, 2019, 58, 2190-2196.	7.2	25
143	Hybrid Nanovehicles: One Machine, Two Engines. Advanced Functional Materials, 2019, 29, 1806290.	7.8	77
144	Designing Proteus: Engineering form and function for microrobotics. , 2019, , 85-108.		2
145	Multiâ€Lightâ€Responsive Quantum Dot Sensitized Hybrid Micromotors with Dualâ€Mode Propulsion. Angewandte Chemie, 2019, 131, 3160-3164.	1.6	15
146	Multiâ€Lightâ€Responsive Quantum Dot Sensitized Hybrid Micromotors with Dualâ€Mode Propulsion. Angewandte Chemie - International Edition, 2019, 58, 3128-3132.	7.2	55
147	Development of micro- and nanorobotics: A review. Science China Technological Sciences, 2019, 62, 1-20.	2.0	74

#	Article	IF	CITATIONS
148	Spindle-like porous N-doped TiO2 encapsulated (Ca,Y)F2:Yb3+,Tm3+ as the efficient photocatalyst near-infrared range. Nanotechnology, 2020, 31, 025601.	1.3	5
149	Visible-Light-Driven Water-Fueled Ecofriendly Micromotors Based on Iron Phthalocyanine for Highly Efficient Organic Pollutant Degradation. Langmuir, 2020, 36, 6930-6937.	1.6	51
150	Photocatalytic Micromotors Activated by UV to Visible Light for Environmental Remediation, Micropumps, Reversible Assembly, Transportation, and Biomimicry. Small, 2020, 16, e1903179.	5.2	77
151	Selfâ€Propelled Micro/Nanomotors for Onâ€Demand Biomedical Cargo Transportation. Small, 2020, 16, e1902464.	5.2	81
152	Tailoring Metal/TiO ₂ Interface to Influence Motion of Lightâ€Activated Janus Micromotors. Advanced Functional Materials, 2020, 30, 1908614.	7.8	65
153	Self-propelled swimmer via thickness-vibration-mode ultrasonic transducer. Smart Materials and Structures, 2020, 29, 02LT02.	1.8	12
154	Nanoscale Inorganic Motors Driven by Light: Principles, Realizations, and Opportunities. Chemical Reviews, 2020, 120, 269-287.	23.0	89
155	Synthesis of Monodispersedly Sized ZnO Nanowires from Randomly Sized Seeds. Nano Letters, 2020, 20, 599-605.	4.5	40
156	Disassembly and spreading of magnetic nanoparticle clusters on uneven surfaces. Applied Materials Today, 2020, 18, 100489.	2.3	46
157	Comparative Studies of Light-Responsive Swimmers: Janus Nanorods versus Spherical Particles. Langmuir, 2020, 36, 12504-12512.	1.6	4
158	Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Mikrochimica Acta, 2020, 187, 581.	2.5	36
159	Medical Micro/Nanorobots in Precision Medicine. Advanced Science, 2020, 7, 2002203.	5.6	197
160	From Passive Inorganic Oxides to Active Matters of Micro/Nanomotors. Advanced Functional Materials, 2020, 30, 2003195.	7.8	33
161	Magnetically powered metachronal waves induce locomotion in self-assemblies. Communications Physics, 2020, 3, .	2.0	16
162	Apparent phototaxis enabled by Brownian motion. Soft Matter, 2020, 16, 10585-10590.	1.2	15
163	Supramolecular nanomotors with "pH taxis―for active drug delivery in the tumor microenvironment. Nanoscale, 2020, 12, 22495-22501.	2.8	26
164	Multifunctional Visibleâ€Light Powered Micromotors Based on Semiconducting Sulfur―and Nitrogenâ€Containing Donor–Acceptor Polymer. Advanced Functional Materials, 2020, 30, 2002701.	7.8	42
165	Preparation of dual-drive hybrid micromotors by swelling and selective surface modification of polymeric colloids. Colloids and Interface Science Communications, 2020, 38, 100300.	2.0	4

#	Article	IF	CITATIONS
166	Graphene-Based Helical Micromotors Constructed by "Microscale Liquid Rope-Coil Effect―with Microfluidics. ACS Nano, 2020, 14, 16600-16613.	7.3	46
167	Investigation of the dynamic properties of on-chip coupled piezo/photodiodes by time-resolved atomic force and Kelvin probe microscopy. AIP Advances, 2020, 10, 105121.	0.6	3
168	Numerical analysis of the distribution of the electric field intensity of TiO2 microspheres under multidirectional UV radiation. , 2020, , .		0
169	Carbon nitride-based light-driven microswimmers with intrinsic photocharging ability. Proceedings of the United States of America, 2020, 117, 24748-24756.	3.3	51
170	Microchannels with Self-Pumping Walls. ACS Nano, 2020, 14, 13673-13680.	7.3	26
171	Feedback-controlled active brownian colloids with space-dependent rotational dynamics. Nature Communications, 2020, 11, 4223.	5.8	55
172	Anthraquinone Covalently Modified Carbon Nanotubes for Efficient and Steady Electrocatalytic H2O2 Generation. Chemical Research in Chinese Universities, 2020, 36, 1332-1338.	1.3	4
173	Multiwavelength Phototactic Micromotor with Controllable Swarming Motion for "Chemistry-on-the-Fly― ACS Applied Materials & Interfaces, 2020, 12, 41495-41505.	4.0	38
174	Electronically integrated, mass-manufactured, microscopic robots. Nature, 2020, 584, 557-561.	13.7	192
175	Opto-thermoelectric microswimmers. Light: Science and Applications, 2020, 9, 141.	7.7	47
176	Recent Advances in Microswimmers for Biomedical Applications. Micromachines, 2020, 11, 1048.	1.4	45
177	Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. Science Advances, 2020, 6, eaba1321.	4.7	65
178	Unjamming of active rotators. Soft Matter, 2020, 16, 5478-5486.	1.2	2
179	Cancer Cells Microsurgery <i>via</i> Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS Nano, 2020, 14, 8247-8256.	7.3	92
180	Drug delivery systems based on nanoparticles and related nanostructures. European Journal of Pharmaceutical Sciences, 2020, 151, 105412.	1.9	52
181	Light-powered active colloids from monodisperse and highly tunable microspheres with a thin TiO ₂ shell. Soft Matter, 2020, 16, 6082-6090.	1.2	14
182	Quantitative analysis of the gain in probability of escaping for ideal phototactic swimmers due to chaotic dynamics. Physical Review E, 2020, 101, 052617.	0.8	0
183	Photosynthesis Drives the Motion of Bioâ€nanomotors. Advanced Intelligent Systems, 2020, 2, 2000028.	3.3	11

	CHATION R	LPUKI	
#	Article	IF	CITATIONS
184	Roads to Smart Artificial Microswimmers. Advanced Intelligent Systems, 2020, 2, 1900137.	3.3	67
185	Rational Design of Reversible Redox Shuttle for Highly Efficient Light-Driven Microswimmer. ACS Nano, 2020, 14, 3272-3280.	7.3	25
186	Environment-Sensitive Intelligent Self-Reproducing Artificial Cell with a Modification-Active Lipo-Deoxyribozyme. Micromachines, 2020, 11, 606.	1.4	12
187	Medical micro/nanorobots in complex media. Chemical Society Reviews, 2020, 49, 8088-8112.	18.7	180
188	High‥ield Production of Biohybrid Microalgae for Onâ€Demand Cargo Delivery. Advanced Science, 2020, 7, 2001256.	5.6	75
189	Near-Infrared Light-Powered Janus Nanomotor Significantly Facilitates Inhibition of Amyloid-β Fibrillogenesis. ACS Applied Materials & Interfaces, 2020, 12, 12618-12628.	4.0	67
190	Modeling of an acoustically actuated artificial micro-swimmer. Bioinspiration and Biomimetics, 2020, 15, 036002.	1.5	13
191	Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. Langmuir, 2020, 36, 7066-7073.	1.6	32
192	Recent Advances in Nano―and Micromotors. Advanced Functional Materials, 2020, 30, 1908283.	7.8	149
193	Quorum-sensing active particles with discontinuous motility. Physical Review E, 2020, 101, 012601.	0.8	20
194	Acoustically powered surface-slipping mobile microrobots. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3469-3477.	3.3	188
195	Multiwavelength-Steerable Visible-Light-Driven Magnetic CoO–TiO ₂ Microswimmers. ACS Applied Materials & Interfaces, 2020, 12, 24149-24155.	4.0	35
196	Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chemical Society Reviews, 2020, 49, 3211-3230.	18.7	91
197	Biomedical Microâ€∤Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. Advanced Materials, 2021, 33, e2000512.	11.1	195
198	Nanodevices for Pharmaceutical and Biomedical Applications. Analytical Letters, 2021, 54, 98-123.	1.0	2
199	Trends in Microâ€∕Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047.	11.1	256
200	Photoelectrochemical TiO ₂ â€Auâ€Nanowireâ€Based Motor for Precise Modulation of Singleâ€Neuron Activities. Advanced Functional Materials, 2021, 31, 2008667.	7.8	37
201	Programmable topotaxis of magnetic rollers in time-varying fields. Soft Matter, 2021, 17, 1538-1547.	1.2	9

# 202	ARTICLE Unraveling the Autonomous Motion of Polymerâ€Based Catalytic Micromotors Under Chemicalâ^'Acoustic Hybrid Power. Advanced NanoBiomed Research, 2021, 1, 2000009.	IF 1.7	CITATIONS
203	Alignment and scattering of colliding active droplets. Soft Matter, 2021, 17, 365-375.	1.2	15
204	Cooperative transport by flocking phototactic micromotors. Nanoscale Advances, 2021, 3, 6157-6163.	2.2	22
205	Synchronized oscillations, traveling waves, and jammed clusters induced by steric interactions in active filament arrays. Soft Matter, 2021, 17, 1091-1104.	1.2	15
206	Magnetic matchstick micromotors with switchable motion modes. Chemical Communications, 2021, 57, 3797-3800.	2.2	15
207	NIR Light-Propelled Janus-Based Nanoplatform for Cytosolic-Fueled microRNA Imaging. ACS Applied Materials & Interfaces, 2021, 13, 3713-3721.	4.0	33
208	Visible-light-driven cuprous oxide nanomotors with surface-heterojunction-induced propulsion. Nanoscale Horizons, 2021, 6, 238-244.	4.1	23
209	The Encoding of Lightâ€Driven Micro/Nanorobots: from Single to Swarming Systems. Advanced Intelligent Systems, 2021, 3, 2000170.	3.3	31
210	Role of Micro and Nano Motors in Therapeutics and Diagnostics. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 234-249.	0.3	0
211	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
212	Programmable Phototaxis of Metal–Phenolic Particle Microswimmers. Advanced Materials, 2021, 33, e2006177.	11.1	16
213	Performance of Tubular Micromotors in Real Sewage for Water Treatment: Towards a Practical Scenario. ChemNanoMat, 2021, 7, 439-442.	1.5	7
214	Engineering motile aqueous phase-separated droplets via liposome stabilisation. Nature Communications, 2021, 12, 1673.	5.8	20
216	Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors. ACS Nano, 2021, 15, 5118-5128.	7.3	51
217	Long-ranged velocity correlations in dense systems of self-propelled particles. Europhysics Letters, 2021, 133, 60002.	0.7	29
218	Dual-responsive biohybrid neutrobots for active target delivery. Science Robotics, 2021, 6, .	9.9	227
219	Microâ€Bioâ€Chemoâ€Mechanicalâ€Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Advanced Materials, 2021, 33, e2007465.	11.1	60
220	Directional Propulsion of DNA Microspheres Based on Light-Induced Asymmetric Growth of Peptide Nanofibers. ACS Applied Bio Materials, 2021, 4, 5425-5434.	2.3	14

		CITATION REP	PORT	
#	Article		IF	CITATIONS
221	Acousticallyâ€Propelled Rodlike Liquid Metal Colloidal Motors. ChemNanoMat, 2021, 7, 1025-	1029.	1.5	9
222	Onâ€Board Mechanical Control Systems for Untethered Microrobots. Advanced Intelligent Sys 2000233.	tems, 0, ,	3.3	10
223	Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nat Communications, 2021, 12, 2077.	ure	5.8	97
224	An underwater propulsion system with (Bi,Na,Ba) (Ti, Mn)O ₃ transducer. Japanese of Applied Physics, 2021, 60, SDDD11.	Journal	0.8	8
225	Design and Control of the Micromotor Swarm Toward Smart Applications. Advanced Intelligent Systems, 2021, 3, 2100002.	2	3.3	22
226	Plasmon Induced Photocatalysts for Light-Driven Nanomotors. Micromachines, 2021, 12, 577.		1.4	4
227	Electric-field-guided 3D manipulation of liquid metal microfleas. Soft Materials, 2022, 20, 129-2	136.	0.8	5
228	Sixâ€Degreeâ€ofâ€Freedom Steerable Visibleâ€Lightâ€Driven Microsubmarines Using Water a for Explosives Decontamination. Small, 2021, 17, e2100294.	s a Fuel: Applicatior	¹ 5.2	22
229	Titania-Based Micro/Nanomotors: Design Principles, Biomimetic Collective Behavior, and Applic Trends in Chemistry, 2021, 3, 387-401.	ations.	4.4	22
230	Recent progress on motion control of swimming micro/nanorobots. View, 2021, 2, 20200113.		2.7	25
231	Cell nucleus as endogenous biological micropump. Biosensors and Bioelectronics, 2021, 182, 1	13166.	5.3	10
232	The rise of intelligent matter. Nature, 2021, 594, 345-355.		13.7	228
233	Dipoleâ€Moment Induced Phototaxis and Fuelâ€Free Propulsion of ZnO/Pt Janus Micromotors. 17, e2101388.	Small, 2021,	5.2	23
234	Selective Actuation and Tomographic Imaging of Swarming Magnetite Nanoparticles. ACS App Materials, 2021, 4, 6752-6759.	lied Nano	2.4	16
235	Dynamics of a helical swimmer crossing viscosity gradients. Physical Review Fluids, 2021, 6, .		1.0	10
236	Materials and Schemes of Multimodal Reconfigurable Micro/Nanomachines and Robots: Reviev Perspective. Advanced Materials, 2021, 33, e2101965.	<i>v</i> and	11.1	37
237	Solution‣ynthesized Multifunctional Janus Nanotree Microswimmer. Advanced Functional M 2021, 31, 2106204.	aterials,	7.8	23
238	An Acoustoâ€Microrobotic Interface with Visionâ€Feedback Control. Advanced Materials Tech 2021, 6, 2100470.	nologies,	3.0	13

#	Article	IF	CITATIONS
239	Work fluctuation relation of an active Brownian particle in a viscoelastic fluid. Physical Review E, 2021, 104, 034605.	0.8	4
240	Visible light triggered exfoliation of COF micro/nanomotors for efficient photocatalysis. Green Energy and Environment, 2023, 8, 567-578.	4.7	23
241	Engineering Nanorobots for Tumorâ€Targeting Drug Delivery: From Dynamic Control to Stimuliâ€Responsive Strategy. ChemBioChem, 2021, 22, 3369-3380.	1.3	10
242	3Dâ€Printed Lightâ€Driven Microswimmer with Builtâ€In Micromotors. Advanced Materials Technologies, 2022, 7, 2100687.	3.0	9
243	Purely viscous acoustic propulsion of bimetallic rods. Physical Review Fluids, 2021, 6, .	1.0	10
244	Liquid Optothermoelectrics: Fundamentals and Applications. Langmuir, 2021, 37, 1315-1336.	1.6	14
245	Recent progress of biomimetic motions—from microscopic micro/nanomotors to macroscopic actuators and soft robotics. RSC Advances, 2021, 11, 27406-27419.	1.7	9
246	Isotropic Hedgehog-Shaped-TiO ₂ /Functional-Multiwall-Carbon-Nanotube Micromotors with Phototactic Motility in Fuel-Free Environments. ACS Applied Materials & Interfaces, 2021, 13, 5406-5417.	4.0	23
247	3D printing of functional microrobots. Chemical Society Reviews, 2021, 50, 2794-2838.	18.7	178
248	Independent Pattern Formation of Nanorod and Nanoparticle Swarms under an Oscillating Field. ACS Nano, 2021, 15, 4429-4439.	7.3	37
251	Elastohydrodynamical instabilities of active filaments, arrays, and carpets analyzed using slender-body theory. Physical Review Fluids, 2020, 5, .	1.0	8
252	Rototaxis: Localization of active motion under rotation. Physical Review Research, 2020, 2, .	1.3	5
253	Perspective on light-induced transport of particles: from optical forces to phoretic motion. Advances in Optics and Photonics, 2019, 11, 577.	12.1	91
254	Enhanced Light-Harvesting Efficiency and Adaptation: A Review on Visible-Light-Driven Micro/Nanomotors. Research, 2020, 2020, 6821595.	2.8	19
255	Optical Energy Harvesting in Vibrate Maglev Graphite. SSRN Electronic Journal, 0, , .	0.4	0
256	Bioinspired micro/nanomotor with visible light energy–dependent forward, reverse, reciprocating, and spinning schooling motion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
257	Coreâ€Shell Structured Microâ€Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. Small, 2022, 18, e2102887.	5.2	16
258	Self-Propelled Nanojets for Fenton Catalysts Based on Halloysite with Embedded Pt and Outside-Grafted Fe ₃ O ₄ . ACS Applied Materials & Interfaces, 2021, 13, 49017-49026.	4.0	14

#	Article	IF	CITATIONS
259	Ionic Effects in Ionic Diffusiophoresis in Chemically Driven Active Colloids. Physical Review Letters, 2021, 127, 168001.	2.9	26
260	Powering and Fabrication of Small-Scale Robotics Systems. Current Robotics Reports, 2021, 2, 427-440.	5.1	7
261	A Review of Microrobot's System: Towards System Integration for Autonomous Actuation In Vivo. Micromachines, 2021, 12, 1249.	1.4	20
262	General Thermodynamic-Controlled Coating Method to Prepare Janus Mesoporous Nanomotors for Improving Tumor Penetration. ACS Applied Materials & Interfaces, 2021, 13, 51297-51311.	4.0	10
263	Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials, 2021, 279, 121201.	5.7	28
264	Fabrication of shape memory alloy based microrobot by using focused ion beam milling process and actuation using ultraviolet laser. , 2018, , .		0
266	Highly efficient visible-light-driven Cu2O@CdSe micromotors adsorbent. Applied Materials Today, 2021, 25, 101200.	2.3	10
268	3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots. International Journal of Extreme Manufacturing, 2022, 4, 015302.	6.3	34
269	Magnetically propelled soft microrobot navigating through constricted microchannels. Applied Materials Today, 2021, 25, 101237.	2.3	18
270	Optical energy harvesting in vibrate maglev graphite. Carbon, 2022, 187, 266-271.	5.4	4
271	Light-Driven Microrobots: Mechanisms and Applications. , 2022, , 91-111.		4
272	Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays. Research, 2021, 2021, 9829068.	2.8	24
273	External Fieldâ€Driven Untethered Microrobots for Targeted Cargo Delivery. Advanced Materials Technologies, 2022, 7, .	3.0	8
274	Molekulare Roboter und künstliche Proteine. , 2021, , 103-119.		0
275	Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
276	Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angewandte Chemie, 2022, 134, .	1.6	5
277	Alternating Current Electric Field Driven Topologically Defective Micro/nanomotors. Applied Materials Today, 2022, 26, 101314.	2.3	15
278	Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Science Robotics, 2022, 7, eabm1421.	9.9	52

#	Article	IF	CITATIONS
279	Nature-inspired micro/nanomotors. Nanoscale, 2022, 14, 219-238.	2.8	11
280	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7.5	35
281	Microâ€Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. Small, 2022, 18, e2106263.	5.2	20
282	Dynamics of active particles with space-dependent swim velocity. Soft Matter, 2022, 18, 1412-1422.	1.2	24
283	Visible light-regulated BiVO4-based micromotor with biomimetic â€~predator-bait' behavior. Journal of Materials Science, 2022, 57, 4092-4103.	1.7	8
284	Photochemical micromotor of eccentric core in isotropic hollow shell exhibiting multimodal motion behavior. Applied Materials Today, 2022, 26, 101371.	2.3	11
285	Powering bioanalytical applications in biomedicine with light-responsive Janus micro-/nanomotors. Mikrochimica Acta, 2022, 189, 116.	2.5	17
286	Light hybrid micro/nano-robots: From propulsion to functional signals. Nano Research, 2022, 15, 5355-5375.	5.8	12
287	Micro/Nanorobots as Active Delivery Systems for Biomedicine: From Selfâ€Propulsion to Controllable Navigation. Advanced Therapeutics, 2022, 5, .	1.6	8
288	Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Applied Materials & Interfaces, 2022, 14, 15517-15528.	4.0	14
289	Binary Phases and Crystals Assembled from Active and Passive Colloids. ACS Nano, 2022, 16, 6801-6812.	7.3	11
290	Migration of an active colloidal cell in inhomogeneous environments. Journal of Chemical Physics, 2022, 156, 134903.	1.2	1
291	Intelligent Microâ€∕Nanorobots for Cancer Theragnostic. Advanced Materials, 2022, 34, e2201051.	11.1	37
292	Liquid metal droplets enabled soft robots. Applied Materials Today, 2022, 27, 101423.	2.3	31
293	Visible-light-driven TiO2@N-Au nanorobot penetrating the vitreous. Applied Materials Today, 2022, 27, 101455.	2.3	8
294	A novel navigated doxorubicin delivery formulation to breast cancer therapy. Materials Today Advances, 2022, 14, 100235.	2.5	3
295	Bifunctional biohybrid magnetically propelled microswimmer. Chemical Engineering Journal, 2022, 439, 135490.	6.6	7
297	Micro/Nanorobots for Medical Diagnosis and Disease Treatment. Micromachines, 2022, 13, 648.	1.4	17

#	Article	IF	CITATIONS
298	Cooperative cargo transportation by a swarm of molecular machines. Science Robotics, 2022, 7, eabm0677.	9.9	28
299	Microrom: An efficient and accurate reduced order method to solve many-query problems in micro-motility Â	0.8 ysis, 0, , .	0
300	Asymmetric colloidal motors: from dissymmetric nanoarchitectural fabrication to efficient propulsion strategy. Nanoscale, 2022, 14, 7444-7459.	2.8	5
301	Magnetically Actuated Reactive Oxygen Species Scavenging Nanoâ€Robots for Targeted Treatment. Advanced Intelligent Systems, 2022, 4, .	3.3	11
302	Lightâ€Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small, 2022, 18, e2200708.	5.2	26
303	An Open Platform for Highâ€Resolution Lightâ€Based Control of Microscopic Collectives. Advanced Intelligent Systems, 2022, 4, .	3.3	4
304	Nanosized Janus AuNR-Pt Motor for Enhancing NIR-II Photoacoustic Imaging of Deep Tumor and Pt ²⁺ Ion-Based Chemotherapy. ACS Nano, 2022, 16, 7947-7960.	7.3	43
305	Spatially Controlled CO2 Conversion Kinetics in Natural Leaves for Motion Generation. Angewandte Chemie, 0, , .	1.6	0
306	Janus Droplet Formation via Thermally Induced Phase Separation: A Numerical Model with Diffusion and Convection. Langmuir, 2022, 38, 6882-6895.	1.6	17
307	Spatially Controlled CO ₂ Conversion Kinetics in Natural Leaves for Motion Generation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	2
308	A Robot Platform for Highly Efficient Pollutant Purification. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	13
309	Research progress of the engagement of inorganic nanomaterials in cancer immunotherapy. Drug Delivery, 2022, 29, 1914-1932.	2.5	9
311	Gait switching and targeted navigation of microswimmers via deep reinforcement learning. Communications Physics, 2022, 5, .	2.0	21
312	Adaptive Cu2O micromotors with pH-responsive phototaxis reversal. Chemical Engineering Journal, 2022, 448, 137689.	6.6	7
313	Optically Manipulated Neutrophils as Native Microcrafts <i>In Vivo</i> . ACS Central Science, 2022, 8, 1017-1027.	5.3	9
314	Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS Nano, 2022, 16, 10878-10889.	7.3	14
315	Magnetic microswarm for MRI contrast enhancer. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
316	Magnetic-Driven Hydrogel Microrobots Selectively Enhance Synthetic Lethality in MTAP-Deleted Osteosarcoma. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5

#	Article	IF	Citations
317	Microrobotic swarms for selective embolization. Science Advances, 2022, 8, .	4.7	39
318	Light-driven Au–ZnO nanorod motors for enhanced photocatalytic degradation of tetracycline. Nanoscale, 2022, 14, 12804-12813.	2.8	12
319	Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. Advanced Science, 2022, 9, .	5.6	28
320	Engineering shapes of active colloids for tunable dynamics. Current Opinion in Colloid and Interface Science, 2022, 61, 101608.	3.4	10
321	Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. Advanced Materials, 2023, 35, .	11.1	23
322	Colloidal Active Matter Mimics the Behavior of Biological Microorganisms—An Overview. Small, 2023, 19, .	5.2	3
323	Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS Applied Materials & Interfaces, 2022, 14, 36027-36037.	4.0	11
324	Nano/Microcarriers in Drug Delivery: Moving the Timeline to Contemporary. Current Medicinal Chemistry, 2023, 30, 2996-3023.	1.2	2
325	Optimal navigation of microswimmers in complex and noisy environments. New Journal of Physics, 2022, 24, 093037.	1.2	11
326	Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews, 2023, 123, 3944-3975.	23.0	33
327	Helical micro-swimmer: hierarchical tail design and propulsive motility. Soft Matter, 2022, 18, 6148-6156.	1.2	5
328	Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium. Journal of Materials Chemistry B, 2022, 10, 8235-8243.	2.9	8
329	Multimodal Bubble Microrobot Near an Air–Water Interface. Small, 2022, 18, .	5.2	10
330	Microscopic robots with onboard digital control. Science Robotics, 2022, 7, .	9.9	26
331	Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. Micromachines, 2022, 13, 1473.	1.4	13
332	Active particles driven by competing spatially dependent self-propulsion and external force. SciPost Physics, 2022, 13, .	1.5	8
333	Noisy pursuit and pattern formation of self-steering active particles. New Journal of Physics, 2022, 24, 093039.	1.2	8
335	Selfâ€Propelled Magnetic Dendriteâ€Shaped Microrobots for Photodynamic Prostate Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
336	Smallâ \in Scale Robotics with Tailored Wettability. Advanced Materials, 2023, 35, .		11.1	14
337	Selfâ€propelled magnetic dendriteâ€shaped microrobots for photodynamic prostate c Angewandte Chemie, 0, , .	ancer therapy.	1.6	0
338	Medical micro- and nanomotors in the body. Acta Pharmaceutica Sinica B, 2023, 13, 5	17-541.	5.7	28
339	Photothermally Modulated Magnetic Nanochains as Swarm Nanorobotics for Microrea Control. ACS Applied Nano Materials, 2023, 6, 21-33.	iction	2.4	3
340	Design and Fabrication of Untethered Light-Actuated Microbots in Fluid for Biomedica Applied Mechanics, 2022, 3, 1240-1253.	l Applications.	0.7	2
341	Photoinduced movement: how photoirradiation induced the movements of matter. Sc Technology of Advanced Materials, 2022, 23, 796-844.	ience and	2.8	1
342	Bio-inspired micro/nanomotor with visible light dependent in situ rotation and photota Materials Today, 2022, 29, 101652.	ıxis. Applied	2.3	5
343	Light-powered microrobots: Recent progress and future challenges. Optics and Lasers 2023, 161, 107380.	in Engineering,	2.0	7
344	Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from waters. Science Advances, 2022, 8, .	nonmarine	4.7	24
345	Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipul potential biomedical applications. Chemical Society Reviews, 2022, 51, 10083-10119.	ation and	18.7	42
346	Transition metal dichalcogenide micromotors with programmable photophoretic swar Journal of Materials Chemistry A, 2023, 11, 1239-1245.	ming motion.	5.2	8
347	Antimicrobial micro/nanorobotic materials design: From passive combat to active thera Science and Engineering Reports, 2023, 152, 100712.	apy. Materials	14.8	12
348	Abnormality Detection and Localization Schemes Using Molecular Communication Sys IEEE Access, 2023, 11, 1761-1792.	stems: A Survey.	2.6	7
349	Cellâ€Mimic Directional Cargo Transportation in a Visibleâ€Lightâ€Activated Colloidal System. Small, 2023, 19, .	Motor/Lipid Tube	5.2	2
350	Nanorobots for Drug Delivery, Surgery, and Biosensing. , 2023, , 15-34.			1
351	Switchable Nanostructures Triggered by Noyori-Type Organometallics. Inorganic Chem 19668-19672.	histry, 2022, 61,	1.9	0
352	Fabrication, control, and modeling of robots inspired by flagella and cilia. Bioinspiration Biomimetics, 2023, 18, 011003.	n and	1.5	2
353	Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic en Science Advances, 2022, 8, .	nvironments.	4.7	14

#	ARTICLE Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. Nano-Micro Letters, 2023,	IF	CITATIONS
355	15, . Nanorobots: An innovative approach for DNA-based cancer treatment. Journal of Drug Delivery Science and Technology, 2023, 80, 104173.	1.4	3
356	Recent Advances in One-Dimensional Micro/Nanomotors: Fabrication, Propulsion and Application. Nano-Micro Letters, 2023, 15, .	14.4	16
360	Artificial intelligence (AI) enhanced nanomotors and active matter. , 2023, , 113-144.		1
361	Smart micro- and nanorobots for water purification. , 2023, 1, 236-251.		35
362	A review on fabrication, actuation, and application of magnetic force driven, light driven and DNA nano/microrobots in modern theranostics. Molecular Systems Design and Engineering, 2023, 8, 416-430.	1.7	2
363	Light Driven ZnO/AuNP Micro/Nanomotor with Controlled Rotation and Phototaxis. ChemistrySelect, 2023, 8, .	0.7	1
364	Real-time Mode-switching of a Self-propelled Droplet Controlled by the Photosensitive Belousov–Zhabotinsky Reaction. Chemistry Letters, 2023, 52, 110-112.	0.7	2
365	Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chemical Reviews, 2023, 123, 3127-3159.	23.0	18
366	Optimal active particle navigation meets machine learning ^(a) . Europhysics Letters, 2023, 142, 17001.	0.7	8
367	A Survey for Possible Technologies of Micro/Nanomachines Used for Molecular Communication Within 6G Application Scenarios. IEEE Internet of Things Journal, 2023, 10, 11240-11263.	5.5	6
368	Photoresponsive MoS ₂ and WS ₂ microflakes as mobile biocide agents. Nanoscale, 2023, 15, 9675-9683.	2.8	1
369	Evanescent field trapping and propulsion of Janus particles along optical nanofibers. Nature Communications, 2023, 14, .	5.8	13
370	Designing Covalent Organic Frameworkâ€Based Lightâ€Driven Microswimmers toward Therapeutic Applications. Advanced Materials, 2023, 35, .	11.1	16
371	Light, Matter, Action: Shining Light on Active Matter. ACS Photonics, 2023, 10, 1188-1201.	3.2	2
376	Ultra-extensible ribbon-like magnetic microswarm. , 2023, , 49-62.		0
379	Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano, 2023, 17, 12971-12999.	7.3	13
403	Artificial Intelligence and Nanotechnology. Advances in Computational Intelligence and Robotics Book Series, 2023, , 1-24.	0.4	0

			CITATION REI	PORT	
#	Article			IF	CITATIONS
410	Al-enhanced biomedical micro/nanorobots in microfluidics. Lab on A Chip, 2024, 24, 14	19-1440.		3.1	0
412	Enzymatic micro/nanomotors in biomedicine: from single motors to swarms. Journal of Chemistry B, 2024, 12, 2711-2719.	Materials		2.9	0
417	Materials consideration for the design, fabrication and operation of microscale robots. Reviews Materials, 2024, 9, 159-172.	Nature		23.3	0
418	Optimal Navigation inÂComplex andÂNoisy Environments. Springer Theses, 2024, , 63-	90.		0.0	0