Fast charge separation in a non-fullerene organic solar

Nature Energy

1,

DOI: 10.1038/nenergy.2016.89

Citation Report

#	Article	IF	CITATIONS
1	11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature Communications, 2016, 7, 13651.	5.8	917
2	Highâ€Performance Nonâ€Fullerene Organic Solar Cells Based on a Pair of Medium Band Gap Polymer Donor and Perylene Bisimide Derivative Acceptor. Macromolecular Chemistry and Physics, 2016, 217, 2647-2653.	1.1	11
3	Non-fullerene small molecule acceptors based on perylene diimides. Journal of Materials Chemistry A, 2016, 4, 17604-17622.	5.2	281
4	Propeller-shaped small molecule acceptors containing a 9,9′-spirobifluorene core with imide-linked perylene diimides for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2016, 4, 10610-10615.	2.7	30
5	Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%. Nano Energy, 2016, 30, 312-320.	8.2	94
6	Enhancing the photovoltaic performance of binary acceptor-based conjugated polymers incorporating methyl units. RSC Advances, 2016, 6, 98071-98079.	1.7	5
7	Comparison of the Morphology Development of Polymer–Fullerene and Polymer–Polymer Solar Cells during Solution‧hearing Blade Coating. Advanced Energy Materials, 2016, 6, 1601225.	10.2	79
8	Synthesis, Self-Assembly, and Solar Cell Performance of N-Annulated Perylene Diimide Non-Fullerene Acceptors. Chemistry of Materials, 2016, 28, 7098-7109.	3.2	211
9	Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30328-30335.	4.0	26
10	A Thieno[3,4- <i>b</i>]thiophene-Based Non-fullerene Electron Acceptor for High-Performance Bulk-Heterojunction Organic Solar Cells. Journal of the American Chemical Society, 2016, 138, 15523-15526.	6.6	286
11	Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy and Environmental Science, 2016, 9, 3783-3793.	15.6	477
12	Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV. Journal of Materials Chemistry A, 2016, 4, 18043-18049.	5.2	88
13	Donor polymer design enables efficient non-fullerene organic solar cells. Nature Communications, 2016, 7, 13094.	5.8	328
14	Enhancement in Organic Photovoltaics Controlled by the Interplay between Charge-Transfer Excitons and Surface Plasmons. ACS Omega, 2016, 1, 722-729.	1.6	13
15	Limits for Recombination in a Low Energy Loss Organic Heterojunction. ACS Nano, 2016, 10, 10736-10744.	7.3	79
16	Nonfullerene Polymer Solar Cells based on a Perylene Monoimide Acceptor with a High Openâ€Circuit Voltage of 1.3 V. Advanced Functional Materials, 2017, 27, 1603892.	7.8	67
17	Realizing Small Energy Loss of 0.55 eV, High Openâ€Circuit Voltage >1 V and High Efficiency >10% in Fullereneâ€Free Polymer Solar Cells via Energy Driver. Advanced Materials, 2017, 29, 1605216.	11.1	230
18	Development of quinoxaline based polymers for photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 1858-1879.	2.7	103

#	Article	IF	CITATIONS
19	Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy and Environmental Science, 2017, 10, 546-551.	15.6	180
20	Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 1336-1343.	6.6	813
21	Small is Powerful: Recent Progress in Solutionâ€Processed Small Molecule Solar Cells. Advanced Energy Materials, 2017, 7, 1602242.	10.2	371
22	Designing Small Molecule Organic Solar Cells with High Open ircuit Voltage. ChemistrySelect, 2017, 2, 1253-1261.	0.7	12
23	Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultraâ€Narrow Band Gap. Angewandte Chemie, 2017, 129, 3091-3095.	1.6	61
24	Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultraâ€Narrow Band Gap. Angewandte Chemie - International Edition, 2017, 56, 3045-3049.	7.2	711
25	N-Annulated perylene diimide dimers: acetylene linkers as a strategy for controlling structural conformation and the impact on physical, electronic, optical and photovoltaic properties. Journal of Materials Chemistry C, 2017, 5, 2074-2083.	2.7	68
26	Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. Journal of Materials Chemistry A, 2017, 5, 4886-4893.	5.2	44
27	Small molecule carbazole-based diketopyrrolopyrroles with tetracyanobutadiene acceptor unit as a non-fullerene acceptor for bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2017, 5, 3311-3319.	5.2	51
28	Theoretical Design of Perylene Diimide Dimers with Different Linkers and Bridged Positions as Promising Non-Fullerene Acceptors for Organic Photovoltaic Cells. Journal of Physical Chemistry C, 2017, 121, 2125-2134.	1.5	50
29	Surprising Effects upon Inserting Benzene Units into a Quaterthiopheneâ€Based Dâ€A Polymer–Improving Nonâ€Fullerene Organic Solar Cells via Donor Polymer Design. Advanced Energy Materials, 2017, 7, 1602304.	10.2	57
30	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 2694-2698.	7.2	232
31	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie, 2017, 129, 2738-2742.	1.6	28
32	Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 3356-3359.	6.6	499
33	Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Physical Chemistry Chemical Physics, 2017, 19, 8069-8075.	1.3	31
34	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	11.1	629
35	Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics. Advanced Materials, 2017, 29, 1605218.	11.1	91
36	Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Materials Chemistry Frontiers, 2017, 1, 1389-1395.	3.2	173

#	Article	IF	CITATIONS
37	New developments in non-fullerene small molecule acceptors for polymer solar cells. Materials Chemistry Frontiers, 2017, 1, 1291-1303.	3.2	194
38	Efficient Nonfullerene Polymer Solar Cells Enabled by a Novel Wide Bandgap Small Molecular Acceptor. Advanced Materials, 2017, 29, 1606054.	11.1	181
39	Photoinduced Electron Transfer in Asymmetrical Perylene Diimide: Understanding the Photophysical Processes of Light-Absorbing Nonfullerene Acceptors. Journal of Physical Chemistry C, 2017, 121, 5498-5502.	1.5	14
40	Highly Efficient Parallel-Like Ternary Organic Solar Cells. Chemistry of Materials, 2017, 29, 2914-2920.	3.2	152
41	Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nature Energy, 2017, 2, .	19.8	494
42	Energy-level modulation of non-fullerene acceptors to achieve high-efficiency polymer solar cells at a diminished energy offset. Journal of Materials Chemistry A, 2017, 5, 9649-9654.	5.2	83
43	Tuning Energy Levels without Negatively Affecting Morphology: A Promising Approach to Achieving Optimal Energetic Match and Efficient Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602119.	10.2	39
44	Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell. Journal of the American Chemical Society, 2017, 139, 7302-7309.	6.6	427
45	Room temperature processed polymers for high-efficient polymer solar cells with power conversion efficiency over 9%. Nano Energy, 2017, 37, 32-39.	8.2	50
46	Fullerene-Free Organic Solar Cells with Efficiency Over 12% Based on EDTA–ZnO Hybrid Cathode Interlayer. Chemistry of Materials, 2017, 29, 4176-4180.	3.2	91
47	A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss. Journal of the American Chemical Society, 2017, 139, 6298-6301.	6.6	327
48	Anthracene-based perylene diimide electron-acceptor for fullerene-free organic solar cells. Dyes and Pigments, 2017, 143, 301-307.	2.0	14
49	Triperylene Hexaimides Based Allâ€Smallâ€Molecule Solar Cells with an Efficiency over 6% and Open Circuit Voltage of 1.04 V. Advanced Energy Materials, 2017, 7, 1601664.	10.2	57
50	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	11.1	213
51	Thieno[3,4- <i>c</i>]pyrrole-4,6(5 <i>H</i>)-dione Polymers with Optimized Energy Level Alignments for Fused-Ring Electron Acceptor Based Polymer Solar Cells. Chemistry of Materials, 2017, 29, 5636-5645.	3.2	43
52	Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 7148-7151.	6.6	2,524
53	On the energetics of bound charge-transfer states in organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 11949-11959.	5.2	23
54	Tuning the optoelectronic properties for high-efficiency (>7.5%) all small molecule and fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 14259-14269.	5.2	34

#	Article	IF	CITATIONS
55	A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy and Environmental Science, 2017, 10, 1610-1620.	15.6	272
56	Potential of Nonfullerene Small Molecules with High Photovoltaic Performance. Chemistry - an Asian Journal, 2017, 12, 2160-2171.	1.7	45
57	Fused Hexacyclic Nonfullerene Acceptor with Strong Nearâ€Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Advanced Materials, 2017, 29, 1701308.	11.1	364
58	Decreased Charge Transport Barrier and Recombination of Organic Solar Cells by Constructing Interfacial Nanojunction with Annealing-Free ZnO and Al Layers. ACS Applied Materials & Interfaces, 2017, 9, 22068-22075.	4.0	28
59	Simultaneous enhancement of the molecular planarity and the solubility of non-fullerene acceptors: effect of aliphatic side-chain substitution on the photovoltaic performance. Journal of Materials Chemistry A, 2017, 5, 7776-7783.	5.2	87
60	Ternary blends to achieve well-developed nanoscale morphology in organic bulk heterojunction solar cells. Organic Electronics, 2017, 45, 263-272.	1.4	9
61	Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on Fluorine Substituted Wide Bandgap Copolymers Without Extra Treatments. Solar Rrl, 2017, 1, 1700020.	3.1	107
62	Comparing the device physics, dynamics and morphology of polymer solar cells employing conventional PCBM and non-fullerene polymer acceptor N2200. Nano Energy, 2017, 35, 251-262.	8.2	83
63	Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Open ircuit Voltage. Advanced Materials, 2017, 29, 1700254.	11.1	363
64	Twisted terrylene dyes: synthesis and application in organic solar cells. Organic Chemistry Frontiers, 2017, 4, 811-816.	2.3	21
65	Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 4929-4934.	6.6	459
66	Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Smallâ€Bandgap Electron Acceptor. Advanced Materials, 2017, 29, 1606574.	11.1	252
67	An Allâ€Solution Processed Recombination Layer with Mild Postâ€Treatment Enabling Efficient Homoâ€Tandem Nonâ€fullerene Organic Solar Cells. Advanced Materials, 2017, 29, 1604231.	11.1	68
68	Rylene diimide and dithienocyanovinylene copolymers for polymer solar cells. Chinese Journal of Polymer Science (English Edition), 2017, 35, 230-238.	2.0	20
69	Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes and Pigments, 2017, 139, 627-634.	2.0	48
70	Molecular Engineering of Conjugated Polymers for Solar Cells: An Updated Report. Advanced Materials, 2017, 29, 1601391.	11.1	139
71	Non-planar perylenediimide acceptors with different geometrical linker units for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 1713-1723.	5.2	54
72	Highâ€Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multiâ€Length Scale Morphology and Device Performance. Advanced Energy Materials, 2017, 7, 1602000.	10.2	232

#	Article	IF	CITATIONS
73	A small molecule/fullerene binary acceptor system for high-performance polymer solar cells with enhanced light-harvesting properties and balanced carrier mobility. Journal of Materials Chemistry A, 2017, 5, 2460-2465.	5.2	33
74	Molecular electron acceptors for efficient fullerene-free organic solar cells. Physical Chemistry Chemical Physics, 2017, 19, 3440-3458.	1.3	112
75	Fullerene-free polymer solar cells processed from non-halogenated solvents in air with PCE of 4.8%. Chemical Communications, 2017, 53, 1164-1167.	2.2	57
76	Achievement of High <i>V</i> _{oc} of 1.02 V for P3HTâ€Based Organic Solar Cell Using a Benzotriazoleâ€Containing Nonâ€Fullerene Acceptor. Advanced Energy Materials, 2017, 7, 1602269.	10.2	191
77	Recent advances in wide bandgap semiconducting polymers for polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 1860-1872.	5.2	92
78	Angular-Shaped Dithienonaphthalene-Based Nonfullerene Acceptor for High-Performance Polymer Solar Cells with Large Open-Circuit Voltages and Minimal Energy Losses. Chemistry of Materials, 2017, 29, 9775-9785.	3.2	59
79	Influence of molar mass ratio, annealing temperature and cathode buffer layer on power conversion efficiency of P3HT:PC71BM based organic bulk heterojunction solar cell. Organic Electronics, 2017, 51, 428-434.	1.4	10
80	Insertion of double bond π-bridges of A–D–A acceptors for high performance near-infrared polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22588-22597.	5.2	61
81	Efficient Semitransparent Organic Solar Cells with Tunable Color enabled by an Ultralowâ€Bandgap Nonfullerene Acceptor. Advanced Materials, 2017, 29, 1703080.	11.1	325
82	Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nature Reviews Materials, 2017, 2, .	23.3	309
83	A Twisted Thieno[3,4â€ <i>b</i>]thiopheneâ€Based Electron Acceptor Featuring a 14â€Ï€â€Electron Indenoinden Core for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2017, 29, 1704510.	e _{11.1}	196
84	A random donor polymer based on an asymmetric building block to tune the morphology of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 22480-22488.	5.2	12
85	A Highly Crystalline Wide-Band-Gap Conjugated Polymer toward High-Performance As-Cast Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36061-36069.	4.0	34
86	Improved Domain Size and Purity Enables Efficient Allâ€Smallâ€Molecule Ternary Solar Cells. Advanced Materials, 2017, 29, 1703777.	11.1	94
87	Spiro-Fused Perylene Diimide Arrays. Journal of the American Chemical Society, 2017, 139, 15914-15920.	6.6	116
88	Charge Generation in Non-Fullerene Donor–Acceptor Blends for Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 18412-18422.	1.5	7
89	Two-Dimensional BDT-Based Wide Band Gap Polymer Donor for Efficient Non-Fullerene Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 19634-19641.	1.5	19
90	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 13503-13507.	7.2	468

#	Article	IF	CITATIONS
91	Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates. Advanced Energy Materials, 2017, 7, 1701561.	10.2	76
92	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie, 2017, 129, 13688-13692.	1.6	51
93	Recent development of perylene diimide-based small molecular non-fullerene acceptors in organic solar cells. Chinese Chemical Letters, 2017, 28, 2105-2115.	4.8	67
94	Design of Donor Polymers with Strong Temperature-Dependent Aggregation Property for Efficient Organic Photovoltaics. Accounts of Chemical Research, 2017, 50, 2519-2528.	7.6	222
95	Pyreneâ€Fused Perylene Diimides: New Building Blocks to Construct Nonâ€Fullerene Acceptors With Extremely High Openâ€Circuit Voltages up to 1.26 V. Solar Rrl, 2017, 1, 1700123.	3.1	24
96	Conjugated Polymers Based on Difluorobenzoxadiazole toward Practical Application of Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1702033.	10.2	39
97	Design of a Highly Crystalline Low-Band Gap Fused-Ring Electron Acceptor for High-Efficiency Solar Cells with Low Energy Loss. Chemistry of Materials, 2017, 29, 8369-8376.	3.2	180
98	The Impact of Driving Force and Temperature on the Electron Transfer in Donor–Acceptor Blend Systems. Journal of Physical Chemistry C, 2017, 121, 22739-22752.	1.5	52
99	Regulating Molecular Aggregations of Polymers via Ternary Copolymerization Strategy for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 32126-32134.	4.0	26
100	Polymer Main hain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells. Advanced Energy Materials, 2017, 7, 1700834.	10.2	80
101	Design of Hexabenzocoronene Derivatives as Non-Fullerene Acceptors in Organic Photovoltaics by Bridging Dimers and Modulating Structural Twists. Solar Rrl, 2017, 1, 1700060.	3.1	22
102	Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer. Nano Energy, 2017, 39, 454-460.	8.2	39
103	Enhancing Performance of Nonfullerene Acceptors via Side hain Conjugation Strategy. Advanced Materials, 2017, 29, 1702125.	11.1	249
104	Efficient Organic Solar Cells with Nonâ€Fullerene Acceptors. Small, 2017, 13, 1701120.	5.2	216
105	Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors. Journal of Materials Chemistry A, 2017, 5, 17230-17239.	5.2	66
106	Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nature Reviews Materials, 2017, 2, .	23.3	284
107	Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies. Advanced Energy Materials, 2017, 7, 1700855.	10.2	122
108	Highâ€Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration. Advanced Materials, 2017, 29, 1702547.	11.1	68

#	Article	IF	CITATIONS
109	New small-molecule acceptors based on hexacyclic naphthalene(cyclopentadithiophene) for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 17204-17210.	5.2	75
110	Rational design of two-dimensional PDI-based small molecular acceptor from extended indacenodithiazole core for organic solar cells. Dyes and Pigments, 2017, 147, 31-39.	2.0	14
111	High Extinction Coefficient Thieno[3,4- <i>b</i>]thiophene-Based Copolymer for Efficient Fullerene-Free Solar Cells with Large Current Density. Chemistry of Materials, 2017, 29, 6766-6771.	3.2	56
112	Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nature Communications, 2017, 8, 79.	5.8	198
113	Structural variations to a donor polymer with low energy losses. Journal of Materials Chemistry A, 2017, 5, 18618-18626.	5.2	12
114	High-performance nonfullerene polymer solar cells with open-circuit voltage over 1 V and energy loss as low as 0.54 eV. Nano Energy, 2017, 40, 20-26.	8.2	70
115	Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 28828-28837.	4.0	18
116	Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells. Physical Chemistry Chemical Physics, 2017, 19, 23990-23998.	1.3	29
117	High-Performance Porous Molybdenum Oxynitride Based Fiber Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 29699-29706.	4.0	44
118	A Threeâ€dimensional Nonâ€fullerene Small Molecule Acceptor for Solutionâ€processed Organic Solar Cells. Chinese Journal of Chemistry, 2017, 35, 1687-1692.	2.6	30
119	Tuning V _{oc} for high performance organic ternary solar cells with non-fullerene acceptor alloys. Journal of Materials Chemistry A, 2017, 5, 19697-19702.	5.2	94
120	Asymmetric indenothiophene-based non-fullerene acceptors for efficient polymer solar cells. Science China Materials, 2017, 60, 707-716.	3.5	13
121	Non-fullerene polymer solar cells with V _{OC} > 1 V based on fluorinated quinoxaline unit conjugated polymers. Journal of Materials Chemistry C, 2017, 5, 8774-8781.	2.7	29
122	A theoretical exploration of the effect of fluorine and cyano substitutions in diketopyrrolopyrrole-based polymer donor for organic solar cells. Journal of Molecular Graphics and Modelling, 2017, 77, 9-16.	1.3	12
123	Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.	3.1	21
124	Ultrafast Long-Range Charge Separation in Nonfullerene Organic Solar Cells. ACS Nano, 2017, 11, 12473-12481.	7.3	82
125	Incorporating an Electrode Modification Layer with a Vertical Phase Separated Photoactive Layer for Efficient and Stable Inverted Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 43871-43879.	4.0	23
126	Water-soluble polythiophenes as efficient charge-transport layers for the improvement of photovoltaic performance in bulk heterojunction polymeric solar cells. European Polymer Journal, 2017, 97, 378-388.	2.6	15

#	Article	IF	CITATIONS
127	Bis(naphthothiophene diimide)indacenodithiophenes as Acceptors for Organic Photovoltaics. Chemistry of Materials, 2017, 29, 9618-9622.	3.2	26
128	Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells with a Small Voltage Loss. Journal of the American Chemical Society, 2017, 139, 16092-16095.	6.6	304
129	Toward Over 15% Power Conversion Efficiency for Organic Solar Cells: Current Status and Perspectives. Small Methods, 2017, 1, 1700258.	4.6	130
130	A readily-accessible, random perylene diimide copolymer acceptor for all-polymer solar cells. Dyes and Pigments, 2017, 146, 20-26.	2.0	15
131	An Efficient, "Burn in―Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. Advanced Materials, 2017, 29, 1701156.	11.1	175
132	Energy Losses in Smallâ€Molecule Organic Photovoltaics. Advanced Energy Materials, 2017, 7, 1700237.	10.2	49
133	A stereoregular β-dicyanodistyrylbenzene (β-DCS)-based conjugated polymer for high-performance organic solar cells with small energy loss and high quantum efficiency. Journal of Materials Chemistry A, 2017, 5, 16681-16688.	5.2	23
134	Efficiency Potential of Photovoltaic Materials and Devices Unveiled by Detailed-Balance Analysis. Physical Review Applied, 2017, 7, .	1.5	252
135	Poly(3-hexylthiophene)-based non-fullerene solar cells achieve high photovoltaic performance with small energy loss. Journal of Materials Chemistry A, 2017, 5, 16573-16579.	5.2	37
136	Naphthalene diimide-based random terpolymer for efficient all-polymer solar cells with high open circuit voltage. Dyes and Pigments, 2017, 146, 169-177.	2.0	19
137	Indacenodithiophene-based D-A conjugated polymers for application in polymer solar cells. Organic Electronics, 2017, 50, 443-457.	1.4	26
138	Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering. Energy and Environmental Science, 2017, 10, 1739-1745.	15.6	285
139	Fluorinated Thiophene Units Improve Photovoltaic Device Performance of Donor–Acceptor Copolymers. Chemistry of Materials, 2017, 29, 5990-6002.	3.2	57
140	Analysis of Interfacial Layer-Induced Open-Circuit Voltage Burn-In Loss in Polymer Solar Cells on the Basis of Electroluminescence and Impedance Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 24052-24060.	4.0	10
141	Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency. Advanced Materials, 2017, 29, 1604059.	11.1	333
142	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	11.1	360
143	Donor–acceptor–acceptor (D–A–A) type 1,8-naphthalimides as non-fullerene small molecule acceptors for bulk heterojunction solar cells. Chemical Science, 2017, 8, 2017-2024.	3.7	65
144	Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells. Journal of Materials Chemistry A, 2017, 5, 8280-8286.	5.2	60

#	ARTICLE Perylene and naphthalene diimide copolymers for allâ€polymer solar cells: Effect of		IF	CITATIONS
145	perylene/naphthalene ratio. Journal of Polymer Science Part A, 2017, 55, 682-689.		2.5	19
146	Efficient Charge Transfer and Fineâ€Tuned Energy Level Alignment in a THFâ€Processed Fullerene Organic Solar Cell with 11.3% Efficiency. Advanced Materials, 2017, 29, 1604241.	â€Free	11.1	305
147	Theoretical study for tuning the HOMO level of the donor to increase the efficiency through open-circuit voltage of small molecule solar cells. , 2017, , .			0
148	Modulated structure to maximize the open-circuit voltage with moderate band-gap of small molec organic solar cells-DFT approach. , 2017, , .	cule		0
149	Organic polymeric and small molecular electron acceptors for organic solar cells. Materials Science and Engineering Reports, 2018, 124, 1-57.	е	14.8	67
150	Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIRâ€Absorbing Electro Acceptors. Advanced Materials, 2018, 30, e1706571.	on	11.1	309
151	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Ce with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	ells	11.1	172
152	Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells. Journal of Chemical Physics, 2018, 148, 084109.		1.2	17
153	Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics, 2018, 131-142.	, 12,	15.6	1,535
154	Wide Bandgap Molecular Acceptors with a Truxene Core for Efficient Nonfullerene Polymer Solar Cells: Linkage Position on Molecular Configuration and Photovoltaic Properties. Advanced Functional Materials, 2018, 28, 1707493.		7.8	83
155	Figures of Merit Guiding Research on Organic Solar Cells. Journal of Physical Chemistry C, 2018, 1 5829-5843.	22,	1.5	34
156	Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10043-10052.		4.0	24
157	Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organ solar cells. Nano Energy, 2018, 46, 81-90.	nic	8.2	129
158	Non-fullerene acceptors for large-open-circuit-voltage and high-efficiency organic solar cells. Materials Today Nano, 2018, 1, 47-59.		2.3	10
159	High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nature Energy, 2018, 3, 422-427.		19.8	462
160	A new nonfullerene acceptor based on perylene diimides for organic solar cells. Journal of Material Science: Materials in Electronics, 2018, 29, 10362-10368.	S	1.1	12
161	Constructing efficient organic photovoltaic devices with a spirobifluorene based water/alcohol-soluble cathode interlayer. New Journal of Chemistry, 2018, 42, 8960-8967.		1.4	3
162	A non-fullerene all small molecule solar cell constructed with a diketopyrrolopyrrole-based acceptor having a power conversion efficiency higher than 9% and an energy loss of 0.54 eV. Journ of Materials Chemistry A, 2018, 6, 11714-11724.	nal	5.2	49

			_
#	ARTICLE	IF	CITATIONS
163	Carrier Transport and Recombination in Efficient "Allâ€Smallâ€Molecule―Solar Cells with the Nonfullerene Acceptor IDTBR. Advanced Energy Materials, 2018, 8, 1800264.	10.2	63
164	The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design. Journal of Physical Chemistry A, 2018, 122, 3764-3771.	1.1	18
165	Lewis Acid Doping Induced Synergistic Effects on Electronic and Morphological Structure for Donor and Acceptor in Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1703672.	10.2	59
166	Significant enhancement of the photovoltaic performance of organic small molecule acceptors <i>via</i> side-chain engineering. Journal of Materials Chemistry A, 2018, 6, 7988-7996.	5.2	38
167	BODIPY–diketopyrrolopyrrole–porphyrin conjugate small molecules for use in bulk heterojunction solar cells. Journal of Materials Chemistry A, 2018, 6, 8449-8461.	5.2	45
168	A Donor Polymer Based on a Difluorinated Pentathiophene Unit Enabling Enhanced Performance for Nonfullerene Organic Solar Cells. Small Methods, 2018, 2, 1700415.	4.6	13
169	Isomeric Nâ€Annulated Perylene Diimide Dimers for Organic Solar Cells. Chemistry - an Asian Journal, 2018, 13, 918-923.	1.7	27
170	Miscibility–Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation. Advanced Energy Materials, 2018, 8, 1703058.	10.2	223
171	Evidence on Enhanced Exciton Polarizability in Donor/Acceptor Bulk Heterojunction Organic Photovoltaics. ACS Applied Materials & Interfaces, 2018, 10, 7256-7262.	4.0	6
172	Non-fullerene acceptors for organic solar cells. Nature Reviews Materials, 2018, 3, .	23.3	2,163
173	A perylenediimide dimer containing an asymmetric π-bridge and its fused derivative for fullerene-free organic solar cells. Journal of Materials Chemistry C, 2018, 6, 2580-2587.	2.7	34
174	Small Molecule Interlayers in Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702730.	10.2	60
175	The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2018, 8, 1703298.	10.2	120
176	Control of Geminate Recombination by the Material Composition and Processing Conditions in Novel Polymer: Nonfullerene Acceptor Photovoltaic Devices. Journal of Physical Chemistry A, 2018, 122, 1253-1260.	1.1	10
177	Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss. Journal of the American Chemical Society, 2018, 140, 2054-2057.	6.6	369
178	The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells. Materials Horizons, 2018, 5, 206-221.	6.4	122
179	How to determine optical gaps and voltage losses in organic photovoltaic materials. Sustainable Energy and Fuels, 2018, 2, 538-544.	2.5	199
180	Molecular Consideration for Small Molecular Acceptors Based on Ladderâ€Type Dipyran: Influences of Oâ€Functionalization and Ï€â€Bridges. Advanced Functional Materials, 2018, 28, 1705927.	7.8	49

#	ARTICLE	IF	CITATIONS
181	Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss. Journal of Materials Chemistry A, 2018, 6, 2468-2475.	5.2	145
182	Selfâ€Doping Fullerene Electrolyteâ€Based Electron Transport Layer for Allâ€Roomâ€Temperatureâ€Processed Highâ€Performance Flexible Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1705847.	7.8	54
183	The Impact of Local Morphology on Organic Donor/Acceptor Charge Transfer States. Advanced Energy Materials, 2018, 8, 1702816.	10.2	75
184	Order enables efficient electron-hole separation at an organic heterojunction with a small energy loss. Nature Communications, 2018, 9, 277.	5.8	112
185	Organic solar cells based on non-fullerene acceptors. Nature Materials, 2018, 17, 119-128.	13.3	2,315
186	Nongeminate Recombination in Organic Solar Cells. Advanced Electronic Materials, 2018, 4, 1700505.	2.6	60
187	High-efficiency and air stable fullerene-free ternary organic solar cells. Nano Energy, 2018, 45, 177-183.	8.2	193
188	Multiple Cases of Efficient Nonfullerene Ternary Organic Solar Cells Enabled by an Effective Morphology Control Method. Advanced Energy Materials, 2018, 8, 1701370.	10.2	140
189	High efficiency small molecular acceptors based on novel O-functionalized ladder-type dipyran building block. Nano Energy, 2018, 45, 10-20.	8.2	45
190	Fine-Tuning the Quasi-3D Geometry: Enabling Efficient Nonfullerene Organic Solar Cells Based on Perylene Diimides. ACS Applied Materials & Interfaces, 2018, 10, 762-768.	4.0	65
191	An Unfusedâ€Coreâ€Based Nonfullerene Acceptor Enables Highâ€Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. Advanced Materials, 2018, 30, 1705208.	11.1	380
192	Enhancing the performance of the electron acceptor ITIC-Th <i>via</i> tailoring its end groups. Materials Chemistry Frontiers, 2018, 2, 537-543.	3.2	46
193	Highâ€Performance Organic Bulkâ€Heterojunction Solar Cells Based on Multipleâ€Donor or Multipleâ€Acceptor Components. Advanced Materials, 2018, 30, 1705706.	11.1	161
194	Improve the Performance of the Allâ€Smallâ€Molecule Nonfullerene Organic Solar Cells through Enhancing the Crystallinity of Acceptors. Advanced Energy Materials, 2018, 8, 1702377.	10.2	87
195	Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent. Advanced Materials, 2018, 30, 1705485.	11.1	150
196	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313.	3.2	74
197	A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a <i>V</i> _{OC} over 1.0 V. Journal of Materials Chemistry C, 2018, 6, 1136-1142.	2.7	41
198	High performance non-fullerene polymer solar cells based on PTB7-Th as the electron donor with 10.42% efficiency. Journal of Materials Chemistry A, 2018, 6, 2549-2554.	5.2	73

#	Article	IF	CITATIONS
199	Combining Facile Synthetic Methods with Greener Processing for Efficient Polymerâ€Perylene Diimide Based Organic Solar Cells. Small Methods, 2018, 2, 1800081.	4.6	54
200	Alkylsilyl Functionalized Copolymer Donor for Annealingâ€Free High Performance Solar Cells with over 11% Efficiency: Crystallinity Induced Small Driving Force. Advanced Functional Materials, 2018, 28, 1800606.	7.8	47
201	Field-Assisted Exciton Dissociation in Highly Efficient PffBT4T-2OD:Fullerene Organic Solar Cells. Chemistry of Materials, 2018, 30, 2660-2667.	3.2	49
202	Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale, 2018, 10, 11342-11348.	2.8	76
203	A Highâ€Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push–Pull Effect of the Nonfullerene Acceptor. Advanced Materials, 2018, 30, e1707170.	11.1	351
204	What Makes a Good Solar Cell?. Advanced Energy Materials, 2018, 8, 1703385.	10.2	167
205	Molecular Engineering for Large Open-Circuit Voltage and Low Energy Loss in Around 10% Non-fullerene Organic Photovoltaics. ACS Energy Letters, 2018, 3, 1028-1035.	8.8	50
206	Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical Reviews, 2018, 118, 3447-3507.	23.0	1,371
207	Improved performance of small molecule solar cell by using oblique deposition technique and zinc phthalocyanine cathode buffer layer. RSC Advances, 2018, 8, 10999-11005.	1.7	5
208	Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 30, e1707508.	11.1	184
209	Tackling Energy Loss for High fficiency Organic Solar Cells with Integrated Multiple Strategies. Advanced Materials, 2018, 30, e1706816.	11.1	92
210	Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency f Organic Solar Cells. Advanced Materials, 2018, 30, e1707150.	or 11.1	373
211	Constructing Film Photocatalyst with Abundant Interfaces between CdS and Ni ₃ S ₂ Nanosheets for Efficient Photocatalytic Hydrogen Production. Energy Technology, 2018, 6, 2132-2138.	1.8	21
212	Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime. Joule, 2018, 2, 25-35.	11.7	440
213	Rational design of conjugated side chains for high-performance all-polymer solar cells. Molecular Systems Design and Engineering, 2018, 3, 103-112.	1.7	24
214	Influence of Donor Polymer on the Molecular Ordering of Small Molecular Acceptors in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1701674.	10.2	60
215	Charge Generation and Recombination in an Organic Solar Cell with Low Energetic Offsets. Advanced Energy Materials, 2018, 8, 1701073.	10.2	60
216	Small Molecule Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 1-43.	0.4	4

#	Article	IF	CITATIONS
217	Multifunctional Diketopyrrolopyrroleâ€Based Conjugated Polymers with Perylene Bisimide Side Chains. Macromolecular Rapid Communications, 2018, 39, e1700611.	2.0	24
218	Effects of Nonradiative Losses at Charge Transfer States and Energetic Disorder on the Open ircuit Voltage in Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1705659.	7.8	77
219	Advances in Nonâ€Fullerene Acceptor Based Ternary Organic Solar Cells. Solar Rrl, 2018, 2, 1700158.	3.1	98
220	Breaking 10% Efficiency in Semitransparent Solar Cells with Fused-Undecacyclic Electron Acceptor. Chemistry of Materials, 2018, 30, 239-245.	3.2	167
221	A High Dielectric Nâ€Type Small Molecular Acceptor Containing Oligoethyleneglycol Sideâ€Chains for Organic Solar Cells. Chinese Journal of Chemistry, 2018, 36, 199-205.	2.6	22
222	Modulation of the power conversion efficiency of organic solar cells <i>via</i> architectural variation of a promising non-fullerene acceptor. Journal of Materials Chemistry A, 2018, 6, 574-582.	5.2	13
223	Realizing Over 13% Efficiency in Greenâ€Solventâ€Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4â€Thiadiazoleâ€Based Wideâ€Bandgap Copolymers. Advanced Materials, 2018, 30, 1703973.	11.1	387
224	Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced Materials, 2018, 30, 1704904.	11.1	214
225	Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704507.	7.8	180
226	Environmentally Friendly Solventâ€Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Bladeâ€Coating Method. Advanced Materials, 2018, 30, 1704837.	11.1	173
227	Non-fullerene small molecule electron acceptors for high-performance organic solar cells. Journal of Energy Chemistry, 2018, 27, 990-1016.	7.1	12
228	Solutionâ€Processed Titanium Chelate Used as Both Electrode Modification Layer and Intermediate Layer for Efficient Inverted Tandem Polymer Solar Cells. Chinese Journal of Chemistry, 2018, 36, 194-198.	2.6	19
229	Synthesis and Application of Rylene Imide Dyes as Organic Semiconducting Materials. Chemistry - an Asian Journal, 2018, 13, 20-30.	1.7	73
230	Naphthalene and perylene diimides – better alternatives to fullerenes for organic electronics?. Chemical Communications, 2018, 54, 13763-13772.	2.2	185
231	Side chain modification on PDI-spirobifluorene-based molecular acceptors and its impact on organic solar cell performances. New Journal of Chemistry, 2018, 42, 18633-18640.	1.4	15
232	Benzyl and fluorinated benzyl side chains for perylene diimide non-fullerene acceptors. Materials Chemistry Frontiers, 2018, 2, 2272-2276.	3.2	19
233	A bright outlook on organic photoelectrochemical cells for water splitting. Journal of Materials Chemistry A, 2018, 6, 21809-21826.	5.2	53
234	High-performance ternary organic solar cells with photoresponses beyond 1000 nm. Journal of Materials Chemistry A, 2018, 6, 24210-24215.	5.2	31

#	Article	IF	CITATIONS
235	Donor polymer based on alkylthiophene side chains for efficient non-fullerene organic solar cells: insights into fluorination and side chain effects on polymer aggregation and blend morphology. Journal of Materials Chemistry A, 2018, 6, 23270-23277.	5.2	16
236	Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42444-42452.	4.0	58
237	Effects of the Number of Bromine Substitution on Photovoltaic Efficiency and Energy Loss of Benzo[1,2â€b:4,5â€b′]diselenopheneâ€based Narrowâ€Bandgap Multibrominated Nonfullerene Acceptors. Sc Rrl, 2019, 3, 1800250.	bl æ. 1	46
238	Comparison Study of Wide Bandgap Polymer (PBDB-T) and Narrow Bandgap Polymer (PBDTTT-EFT) as Donor for Perylene Diimide Based Polymer Solar Cells. Frontiers in Chemistry, 2018, 6, 613.	1.8	4
239	Non-fullerene acceptor engineering with three-dimensional thiophene/selenophene-annulated perylene diimides for high performance polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 12601-12607.	2.7	21
240	Assessing the nature of the charge-transfer electronic states in organic solar cells. Nature Communications, 2018, 9, 5295.	5.8	126
241	Optimum driving energy for achieving balanced open-circuit voltage and short-circuit current density in organic bulk heterojunction solar cells. Physical Chemistry Chemical Physics, 2018, 20, 29866-29875.	1.3	12
242	Chlorinated Wide-Bandgap Donor Polymer Enabling Annealing Free Nonfullerene Solar Cells with the Efficiency of 11.5%. Journal of Physical Chemistry Letters, 2018, 9, 6955-6962.	2.1	70
243	Establishing a microscopic model for nonfullerene organic solar cells: Self-accumulation effect of charges. Journal of Chemical Physics, 2018, 149, 194902.	1.2	4
244	A Nonfullerene Semitransparent Tandem Organic Solar Cell with 10.5% Power Conversion Efficiency. Advanced Energy Materials, 2018, 8, 1800529.	10.2	92
245	Electron Acceptors With a Truxene Core and Perylene Diimide Branches for Organic Solar Cells: The Effect of Ring-Fusion. Frontiers in Chemistry, 2018, 6, 328.	1.8	16
246	Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer. Advanced Materials, 2018, 30, e1804215.	11.1	161
247	An Analysis of the Factors Determining the Efficiency of Photocurrent Generation in Polymer:Nonfullerene Acceptor Solar Cells. Advanced Energy Materials, 2018, 8, 1801537.	10.2	22
248	Organic Solar Cell Materials toward Commercialization. Small, 2018, 14, e1801793.	5.2	253
249	Side-chain effect of perylene diimide tetramer-based non-fullerene acceptors for improving the performance of organic solar cells. Materials Chemistry Frontiers, 2018, 2, 2104-2108.	3.2	13
250	Suppression of Recombination Energy Losses by Decreasing the Energetic Offsets in Perylene Diimide-Based Nonfullerene Organic Solar Cells. ACS Energy Letters, 2018, 3, 2729-2735.	8.8	50
251	Multichloro-Substitution Strategy: Facing Low Photon Energy Loss in Nonfullerene Solar Cells. ACS Applied Energy Materials, 2018, 1, 6549-6559.	2.5	39
252	Revealing the Importance of Energetic and Entropic Contributions to the Driving Force for Charge Photogeneration. ACS Applied Materials & Interfaces, 2018, 10, 39933-39941.	4.0	12

#	Article	IF	CITATIONS
253	On the Design of Donor–Acceptor Conjugated Polymers for Photocatalytic Hydrogen Evolution Reaction: First-Principles Theory-Based Assessment. Journal of Physical Chemistry C, 2018, 122, 26876-26888.	1.5	41
254	Charge transfer dynamics at the boron subphthalocyanine chloride/C ₆₀ interface: non-adiabatic dynamics study with Libra-X. Physical Chemistry Chemical Physics, 2018, 20, 25275-25294.	1.3	20
255	Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Advanced Functional Materials, 2018, 28, 1704389.	7.8	84
256	Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells. Journal of Materials Chemistry C, 2018, 6, 11111-11117.	2.7	16
257	A ₂ –A ₁ –D–A ₁ –A ₂ Type Non-Fullerene Acceptors with 2-(1,1-Dicyanomethylene)rhodanine as the Terminal Groups for Poly(3-hexylthiophene)-Based Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 34427-34434.	۱ 4.0	52
258	Unexpectedly Slow Yet Efficient Picosecond to Nanosecond Photoinduced Hole-Transfer Occurs in a Polymer/Nonfullerene Acceptor Organic Photovoltaic Blend. ACS Energy Letters, 2018, 3, 2396-2403.	8.8	62
259	Reduced Energy Offsets and Low Energy Losses Lead to Efficient (â^¼10% at 1 sun) Ternary Organic Solar Cells. ACS Energy Letters, 2018, 3, 2418-2424.	8.8	20
260	A Simple, Smallâ€Bandgap Porphyrinâ€Based Conjugated Polymer for Application in Organic Electronics. Macromolecular Rapid Communications, 2018, 39, e1800546.	2.0	7
261	Exciton Binding Energies of Nonfullerene Small Molecule Acceptors: Implication for Exciton Dissociation Driving Forces in Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 22309-22316.	1.5	93
262	High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nature Energy, 2018, 3, 952-959.	19.8	558
263	Nonradiative Energy Losses in Bulk-Heterojunction Organic Photovoltaics. Physical Review X, 2018, 8, .	2.8	52
264	Small-Molecule Electron Acceptors for Efficient Non-fullerene Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 414.	1.8	62
265	Effects of Alkoxy and Fluorine Atom Substitution of Donor Molecules on the Morphology and Photovoltaic Performance of All Small Molecule Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 413.	1.8	19
266	Utilizing magnetic field to study the impact of intramolecular charge transfers on the open-circuit voltage of organic solar cells. Applied Physics Letters, 2018, 113, .	1.5	5
267	Understanding the effects of the energy band alignment at the donor/acceptor interface on the open circuit voltage of organic photovoltaic devices. Chemical Physics Letters, 2018, 711, 113-117.	1.2	11
268	Influence of the alkyl chain lengths in perylenetetracarboxylic diimide (PTCDI) derivatives on the photovoltaic properties of planar organic solar cells. Organic Electronics, 2018, 62, 429-433.	1.4	8
269	Efficient non-fullerene organic solar cells employing sequentially deposited donor–acceptor layers. Journal of Materials Chemistry A, 2018, 6, 18225-18233.	5.2	49
270	Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Smallâ€Molecule Acceptors. Advanced Materials, 2018, 30, e1800613.	11.1	623

#	Article	IF	CITATIONS
271	Key Tradeoffs Limiting the Performance of Organic Photovoltaics. Advanced Energy Materials, 2018, 8, 1703551.	10.2	71
272	Highly Efficient Nonfullerene Polymer Solar Cells Enabled by a Copper(I) Coordination Strategy Employing a 1,3,4â€Oxadiazoleâ€Containing Wideâ€Bandgap Copolymer Donor. Advanced Materials, 2018, 30, e1800737.	11.1	77
273	Non-fullerene acceptors end-capped with an extended conjugation group for efficient polymer solar cells. Organic Electronics, 2018, 59, 366-373.	1.4	8
274	Nonfullerene Acceptor with "Donor–Acceptor Combined π-Bridge―for Organic Photovoltaics with Large Open-Circuit Voltage. ACS Applied Materials & Interfaces, 2018, 10, 18984-18992.	4.0	33
275	Engineering the morphology <i>via</i> processing additives in multiple all-polymer solar cells for improved performance. Journal of Materials Chemistry A, 2018, 6, 10421-10432.	5.2	65
276	Understanding the influence of carboxylate substitution on the property of high-performance donor polymers in non-fullerene organic solar cells. Materials Chemistry Frontiers, 2018, 2, 1360-1365.	3.2	9
277	Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. Nature Communications, 2018, 9, 2059.	5.8	164
278	Ternary Organic Solar Cells With 12.8% Efficiency Using Two Nonfullerene Acceptors With Complementary Absorptions. Advanced Energy Materials, 2018, 8, 1800424.	10.2	90
279	Progress in Poly (3â€Hexylthiophene) Organic Solar Cells and the Influence of Its Molecular Weight on Device Performance. Advanced Energy Materials, 2018, 8, 1801001.	10.2	95
280	From PCBM-Polymer to Low-Cost and Thermally Stable C60/C70-Polymer Solar Cells: The Role of Molecular Structure, Crystallinity, and Morphology Control. ACS Applied Materials & Interfaces, 2018, 10, 24037-24045.	4.0	10
281	How to interpret absorption and fluorescence spectra of charge transfer states in an organic solar cell. Materials Horizons, 2018, 5, 837-848.	6.4	57
282	Boosting the electron mobilities of dimeric perylenediimides by simultaneously enhancing intermolecular and intramolecular electronic interactions. Journal of Materials Chemistry A, 2018, 6, 14224-14230.	5.2	21
283	A Chlorinated π-Conjugated Polymer Donor for Efficient Organic Solar Cells. Joule, 2018, 2, 1623-1634.	11.7	166
284	Bandgap Narrowing in Nonâ€Fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic Response Beyond 1000 nm. Advanced Energy Materials, 2018, 8, 1801212.	10.2	125
285	Relationship of Ionization Potential and Oxidation Potential of Organic Semiconductor Films Used in Photovoltaics. Solar Rrl, 2018, 2, 1800122.	3.1	19
286	New Thieno[3,2- <i>b</i>]thiophene-Based Acceptor: Tuning Acceptor Strength of Ladder-Type N-Type Materials to Simultaneously Achieve Enhanced <i>V</i> _{oc} and <i>J</i> _{sc} of Nonfullerene Solar Cells. ACS Energy Letters, 2018, 3, 1722-1729.	8.8	61
287	Organic Photovoltaics over Three Decades. Advanced Materials, 2018, 30, e1800388.	11.1	540
288	Developing design criteria for organic solar cells using well-absorbing non-fullerene acceptors. Communications Physics, 2018, 1, .	2.0	23

#	Article	IF	CITATIONS
289	Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors. Journal of the American Chemical Society, 2018, 140, 9140-9147.	6.6	361
290	A minimal non-radiative recombination loss for efficient non-fullerene all-small-molecule organic solar cells with a low energy loss of 0.54ÂeV and high open-circuit voltage of 1.15 V. Journal of Materials Chemistry A, 2018, 6, 13918-13924.	5.2	62
291	Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 8051-8059.	2.7	20
292	An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for As ast High Performance Binary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802324.	7.8	116
293	Ultrafast Channel II process induced by a 3-D texture with enhanced acceptor order ranges for high-performance non-fullerene polymer solar cells. Energy and Environmental Science, 2018, 11, 2569-2580.	15.6	72
294	A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Science China Chemistry, 2018, 61, 1307-1313.	4.2	210
295	Enhance the performance of polymer solar cells via extension of the flanking end groups of fused ring acceptors. Science China Chemistry, 2018, 61, 1320-1327.	4.2	22
296	Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses. Advanced Energy Materials, 2018, 8, 1801352.	10.2	319
297	<i>N</i> -Annulated perylene diimide derivatives as non-fullerene acceptors for solution-processed solar cells with an open-circuit voltage of up to 1.14 V. New Journal of Chemistry, 2018, 42, 15079-15087.	1.4	23
298	Efficient Organic Solar Cells with Extremely High Openâ€Circuit Voltages and Low Voltage Losses by Suppressing Nonradiative Recombination Losses. Advanced Energy Materials, 2018, 8, 1801699.	10.2	117
299	A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss. Journal of Materials Chemistry A, 2018, 6, 18469-18478.	5.2	40
300	Extended Conjugation Length of Nonfullerene Acceptors with Improved Planarity via Noncovalent Interactions for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1801618.	10.2	102
301	A synergetic effect of an alkyl-thiophene π-bridge and side chain modification on device performances for stable all-polymer solar cells with high PCE. Journal of Materials Chemistry C, 2018, 6, 8418-8428.	2.7	10
302	Overcoming Spaceâ€Charge Effect for Efficient Thickâ€Film Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1801609.	10.2	62
303	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	13.3	701
304	Design of Nonfullerene Acceptors with Nearâ€Infrared Light Absorption Capabilities. Advanced Energy Materials, 2018, 8, 1801209.	10.2	95
305	Nonfullerene small-molecule acceptors with perpendicular side-chains for fullerene-free solar cells. Journal of Materials Chemistry A, 2018, 6, 15433-15455.	5.2	76
306	Balancing Crystal Size in Small-Molecule Nonfullerene Solar Cells through Fine-Tuning the Film-Forming Kinetics to Fabricate Interpenetrating Network. ACS Omega, 2018, 3, 7603-7612.	1.6	12

#	Article	IF	CITATIONS
307	Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. Journal of the American Chemical Society, 2018, 140, 9996-10008.	6.6	73
308	Utilizing Benzotriazole and Indacenodithiophene Units to Construct Both Polymeric Donor and Small Molecular Acceptors to Realize Organic Solar Cells With High Open-Circuit Voltages Beyond 1.2 V. Frontiers in Chemistry, 2018, 6, 147.	1.8	20
309	Nonfullerene Acceptors for Semitransparent Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800002.	10.2	160
310	A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. Journal of the American Chemical Society, 2018, 140, 7159-7167.	6.6	654
311	Enhancing Polymer Photovoltaic Performance via Optimized Intramolecular Ester-Based Noncovalent Sulfur··À·Oxygen Interactions. Macromolecules, 2018, 51, 3874-3885.	2.2	53
312	Carboxylate substitution position influencing polymer properties and enabling non-fullerene organic solar cells with high open circuit voltage and low voltage loss. Journal of Materials Chemistry A, 2018, 6, 16874-16881.	5.2	15
313	Effects of conjugated bridges on the photovoltaic properties of ortho-functionalized perylene diimides for non-fullerene polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 13171-13178.	2.7	12
314	A resistor network simulation model for laser-scanning photo-current microscopy to quantify low conductance regions in organic thin films. Organic Electronics, 2018, 62, 474-480.	1.4	2
315	Recent advances in electron acceptors with ladder-type backbone for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 17256-17287.	5.2	54
316	Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094-1098.	6.0	2,262
317	A tetrachlorinated molecular non-fullerene acceptor for high performance near-IR absorbing organic solar cells. Journal of Materials Chemistry C, 2018, 6, 9060-9064.	2.7	17
318	Charge Transfer Dynamics and Device Performance of Environmentally Friendly Processed Nonfullerene Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 4776-4785.	2.5	28
319	Aggregation Strength Tuning in Difluorobenzoxadiazole-Based Polymeric Semiconductors for High-Performance Thick-Film Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21481-21491.	4.0	22
320	Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility. Journal of Materials Chemistry A, 2018, 6, 12484-12492.	5.2	43
321	Nearâ€Infrared Small Molecule Acceptor Enabled Highâ€Performance Nonfullerene Polymer Solar Cells with Over 13% Efficiency. Advanced Functional Materials, 2018, 28, 1803128.	7.8	78
322	A comparative study of the effects of terminal aromatic moieties in spirobifluorene core-based diketopyrrolopyrrole non-fullerene acceptors. New Journal of Chemistry, 2018, 42, 11854-11861.	1.4	6
323	Improved Charge Generation via Ultrafast Effective Holeâ€Transfer in Allâ€Polymer Photovoltaic Blends with Large Highest Occupied Molecular Orbital (HOMO) Energy Offset and Proper Crystal Orientation. Advanced Functional Materials, 2018, 28, 1801611.	7.8	27
324	Stability study of thermal cycling on organic solar cells. Journal of Materials Research, 2018, 33, 1902-1908.	1.2	15

#	Article	IF	CITATIONS
325	A Nearâ€Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells. Advanced Science, 2018, 5, 1800755.	5.6	93
326	Polymer Donors for Highâ€Performance Nonâ€Fullerene Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 4442-4453.	7.2	361
327	Ecoâ€Compatible Solventâ€Processed Organic Photovoltaic Cells with Over 16% Efficiency. Advanced Materials, 2019, 31, e1903441.	11.1	445
328	Polarons in π-conjugated ladder-type polymers: a broken symmetry density functional description. Journal of Materials Chemistry C, 2019, 7, 12876-12885.	2.7	21
329	Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 10901-10907.	2.7	19
330	Achieving Small Exciton Binding Energies in Small Molecule Acceptors for Organic Solar Cells: Effect of Molecular Packing. Journal of Physical Chemistry Letters, 2019, 10, 4888-4894.	2.1	60
331	Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4- <i>b</i>]thiophene-Based Electron Acceptors for Efficient Organic Solar Cells with Reduced Energy Losses. ACS Applied Materials & Interfaces, 2019, 11, 35193-35200.	4.0	7
332	Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nature Energy, 2019, 4, 768-775.	19.8	407
333	Imideâ€Functionalized Heteroareneâ€Based nâ€Type Terpolymers Incorporating Intramolecular Noncovalent Sulfurâ^™â^™â^™Oxygen Interactions for Additiveâ€Free Allâ€Polymer Solar Cells. Advanced Functional Materials, 2019, 29, 1903970.	7.8	53
334	16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity. Journal of Materials Chemistry A, 2019, 7, 20713-20722.	5.2	266
335	Nearâ€Infrared Nonfullerene Acceptors Based on Benzobis(thiazole) Unit for Efficient Organic Solar Cells with Low Energy Loss. Small Methods, 2019, 3, 1900531.	4.6	76
336	Interfaces in organic electronics. Nature Reviews Materials, 2019, 4, 627-650.	23.3	237
337	Reduced Nonradiative Energy Loss Caused by Aggregation of Nonfullerene Acceptor in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901823.	10.2	72
338	Cold Crystallization Temperature Correlated Phase Separation, Performance, and Stability of Polymer Solar Cells. Matter, 2019, 1, 1316-1330.	5.0	60
339	Stable P3HT: amorphous non-fullerene solar cells with a high open-circuit voltage of 1 V and efficiency of 4%. RSC Advances, 2019, 9, 20733-20741.	1.7	9
340	Effects of energy-level offset between a donor and acceptor on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18889-18897.	5.2	87
341	Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component. Nano Letters, 2019, 19, 5053-5061.	4.5	47
342	Tuning the absorption range of naphthothiophene diimide-based acceptors for organic solar cells. Dyes and Pigments, 2019, 171, 107691.	2.0	0

#	Article	IF	CITATIONS
343	Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells. Joule, 2019, 3, 1765-1781.	11.7	124
344	Facile synthesis of cactus-shaped CdS-Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance. Applied Surface Science, 2019, 492, 849-855.	3.1	25
345	Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in Ternary Polymer Solar Cells. Advanced Materials, 2019, 31, e1902302.	11.1	364
346	Investigating the Trade-Off between Device Performance and Energy Loss in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 29124-29131.	4.0	24
347	Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nature Communications, 2019, 10, 3271.	5.8	94
348	Effect of linear side-chain length on the photovoltaic performance of benzodithiophene- <i>alt</i> -dicarboxylic ester terthiophene polymers. New Journal of Chemistry, 2019, 43, 12950-12956.	1.4	9
349	Enhanced Electron Transport and Heat Transfer Boost Light Stability of Ternary Organic Photovoltaic Cells Incorporating Nonâ€Fullerene Small Molecule and Polymer Acceptors. Advanced Electronic Materials, 2019, 5, 1900497.	2.6	37
350	A Smallâ€Molecule "Charge Driver―enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13%. Advanced Materials, 2019, 31, e1900111.	11.1	92
351	A Comparative Study on Hole Transfer Inversely Correlated with Driving Force in Two Non-Fullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4110-4116.	2.1	21
352	Alkylthiazole-based semicrystalline polymer donors for fullerene-free organic solar cells. Polymer Chemistry, 2019, 10, 4314-4321.	1.9	14
353	Ladder-type high gap conjugated polymers based on indacenodithieno[3,2-b]thiophene and bithiazole for organic photovoltaics. Organic Electronics, 2019, 74, 211-217.	1.4	8
354	Exploring Overall Photoelectric Applications by Organic Materials Containing Symmetric Donor Isomers. Chemistry of Materials, 2019, 31, 8810-8819.	3.2	12
355	Understanding the High Performance of over 15% Efficiency in Singleâ€Junction Bulk Heterojunction Organic Solar Cells. Advanced Materials, 2019, 31, e1903868.	11.1	211
356	Donor Polymer Can Assist Electron Transport in Bulk Heterojunction Blends with Small Energetic Offsets. Advanced Materials, 2019, 31, e1903998.	11.1	49
357	Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule, 2019, 3, 3020-3033.	11.7	763
358	Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation. Advanced Energy Materials, 2019, 9, 1902145.	10.2	36
359	Rational Tuning of Molecular Interaction and Energy Level Alignment Enables Highâ€Performance Organic Photovoltaics. Advanced Materials, 2019, 31, e1904215.	11.1	162
360	Enhancing the Performance of a Fused-Ring Electron Acceptor by Unidirectional Extension. Journal of the American Chemical Society, 2019, 141, 19023-19031.	6.6	136

#	Article	IF	CITATIONS
361	Nonequilibrium site distribution governs charge-transfer electroluminescence at disordered organic heterointerfaces. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23416-23425.	3.3	29
362	Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1905480.	11.1	162
363	Efficient Organic Solar Cells with a High Open ircuit Voltage of 1.34 V. Chinese Journal of Chemistry, 2019, 37, 1153-1157.	2.6	20
364	Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Progress in Polymer Science, 2019, 99, 101175.	11.8	140
365	Impact of the donor polymer on recombination <i>via</i> triplet excitons in a fullerene-free organic solar cell. Physical Chemistry Chemical Physics, 2019, 21, 22999-23008.	1.3	5
366	Ambient Processable and Stable Allâ€Polymer Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1806747.	7.8	111
367	A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy and Environmental Science, 2019, 12, 3328-3337.	15.6	337
368	Ultra-narrow bandgap non-fullerene acceptors for organic solar cells with low energy loss. Materials Chemistry Frontiers, 2019, 3, 2157-2163.	3.2	19
369	Facile one-pot polymerization of a fully conjugated donor–acceptor block copolymer and its application in efficient single component polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 21280-21289.	5.2	45
370	Interchromophore Rotation-Related Ultrafast Charge Separation at Excited States in Head-to-Tail Linked Perylene Diimide Dyads. Journal of Physical Chemistry C, 2019, 123, 23306-23311.	1.5	12
371	Charge-transfer electronic states inÂorganic solar cells. Nature Reviews Materials, 2019, 4, 689-707.	23.3	229
372	A Nanoscopic View of Photoinduced Charge Transfer in Organic Nanocrystalline Heterojunctions. Journal of Physical Chemistry C, 2019, 123, 25031-25041.	1.5	2
373	Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells. IScience, 2019, 19, 883-893.	1.9	68
374	Highly Efficient Indoor Organic Solar Cells by Voltage Loss Minimization through Fine-Tuning of Polymer Structures. ACS Applied Materials & Interfaces, 2019, 11, 36905-36916.	4.0	49
375	Engineering Charge-Transfer States for Efficient, Low-Energy-Loss Organic Photovoltaics. Trends in Chemistry, 2019, 1, 815-829.	4.4	32
376	Perylene Diimide Based Organic Photovoltaics with Slot-Die Coated Active Layers from Halogen-Free Solvents in Air at Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 39010-39017.	4.0	33
377	Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells. Accounts of Chemical Research, 2019, 52, 2904-2915.	7.6	49
378	Enhancing photovoltaic performance by tuning the domain sizes of a small-molecule acceptor by side-chain-engineered polymer donors. Journal of Materials Chemistry A, 2019, 7, 3072-3082.	5.2	68

#	ARTICLE	IF	CITATIONS
379	Designing Alternative Nonâ€Fullerene Molecular Electron Acceptors for Solutionâ€Processable Organic Photovoltaics. Chemical Record, 2019, 19, 1078-1092.	2.9	9
380	Enhanced intermolecular interactions to improve twisted polymer photovoltaic performance. Science China Chemistry, 2019, 62, 370-377.	4.2	29
381	Pyrene-fused PDI based ternary solar cells: high power conversion efficiency over 10%, and improved device thermal stability. Materials Chemistry Frontiers, 2019, 3, 93-102.	3.2	27
382	15% Efficiency Tandem Organic Solar Cell Based on a Novel Highly Efficient Wideâ€Bandgap Nonfullerene Acceptor with Low Energy Loss. Advanced Energy Materials, 2019, 9, 1803657.	10.2	146
383	Progress in non-fullerene acceptor based organic solar cells. Solar Energy Materials and Solar Cells, 2019, 193, 22-65.	3.0	89
384	Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets. Journal of the American Chemical Society, 2019, 141, 3073-3082.	6.6	362
385	Designing indacenodithiophene based non-fullerene acceptors with a donor–acceptor combined bridge for organic solar cells. RSC Advances, 2019, 9, 3605-3617.	1.7	83
386	Lithium Doping of ZnO for High Efficiency and Stability Fullerene and Non-fullerene Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 1663-1675.	2.5	52
387	Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nature Communications, 2019, 10, 519.	5.8	231
388	Amino-acid ester derived perylene diimides electron acceptor materials: An efficient strategy for green-solvent-processed organic solar cells. Dyes and Pigments, 2019, 164, 384-389.	2.0	23
389	Isomerization of Perylene Diimide Based Acceptors Enabling Highâ€Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Advanced Science, 2019, 6, 1802065.	5.6	69
390	Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends. Nature Communications, 2019, 10, 398.	5.8	56
391	Tweaking the Molecular Geometry of a Tetraperylenediimide Acceptor. ACS Applied Materials & Interfaces, 2019, 11, 6970-6977.	4.0	20
392	Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 3552-3557.	5.2	58
393	Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices. Journal of Materials Chemistry C, 2019, 7, 2267-2275.	2.7	14
394	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	10.2	68
395	Morphology-Dependent Hole Transfer under Negligible HOMO Difference in Non-Fullerene Acceptor-Based Ternary Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 7208-7215.	4.0	28
396	Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10, 570.	5.8	377

#	Article	IF	CITATIONS
397	Charge-transfer state dynamics in all-polymer solar cells: formation, dissociation and decoherence. Physical Chemistry Chemical Physics, 2019, 21, 2755-2763.	1.3	5
398	A small molecule donor containing a non-fused ring core for all-small-molecule organic solar cells with high efficiency over 11%. Journal of Materials Chemistry A, 2019, 7, 3682-3690.	5.2	39
399	Efficient DPP Donor and Nonfullerene Acceptor Organic Solar Cells with High Photonâ€toâ€Current Ratio and Low Energetic Loss. Advanced Functional Materials, 2019, 29, 1902441.	7.8	43
400	Quad-rotor-shaped non-fullerene electron acceptor materials with potential to enhance the photoelectric performance of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18150-18157.	5.2	23
401	Ternary Polymer Solar Cells with High Efficiency of 14.24% by Integrating Two Well omplementary Nonfullerene Acceptors. Advanced Functional Materials, 2019, 29, 1903596.	7.8	45
402	Polymer nanocomposites for solar cells: research trends and perspectives. , 2019, , 557-600.		2
403	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energyâ€Band Engineering. Advanced Materials, 2019, 31, e1902543.	11.1	62
404	From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 23361-23377.	5.2	163
405	Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chemical Reviews, 2019, 119, 8028-8086.	23.0	566
406	Enabling Efficient Tandem Organic Photovoltaics with High Fill Factor via Reduced Charge Recombination. ACS Energy Letters, 2019, 4, 1535-1540.	8.8	18
406 407		8.8 5.8	18 1,431
	Recombination. ACS Energy Letters, 2019, 4, 1535-1540. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased		
407	Recombination. ACS Energy Letters, 2019, 4, 1535-1540. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515. Anatomy of the energetic driving force for charge generation in organic solar cells. Nature	5.8	1,431
407 408	Recombination. ACS Energy Letters, 2019, 4, 1535-1540. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515. Anatomy of the energetic driving force for charge generation in organic solar cells. Nature Communications, 2019, 10, 2520. Efficient all-polymer solar cells based on thiazole-bridged middle band-gap polymer donor: The influence of alkyl side chain on polymer-polymer miscibility and photovoltaic performance. Synthetic	5.8 5.8	1,431 95
407 408 409	 Recombination. ACS Energy Letters, 2019, 4, 1535-1540. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515. Anatomy of the energetic driving force for charge generation in organic solar cells. Nature Communications, 2019, 10, 2520. Efficient all-polymer solar cells based on thiazole-bridged middle band-gap polymer donor: The influence of alkyl side chain on polymer-polymer miscibility and photovoltaic performance. Synthetic Metals, 2019, 254, 49-55. Temperatureâ€Dependent Aggregation Donor Polymers Enable Highly Efficient Sequentially Processed Organic Photovoltaics Without the Need of Orthogonal Solvents. Advanced Functional Materials, 	5.8 5.8 2.1	1,431 95 7
407 408 409 410	Recombination. ACS Energy Letters, 2019, 4, 1535-1540. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515. Anatomy of the energetic driving force for charge generation in organic solar cells. Nature Communications, 2019, 10, 2520. Efficient all-polymer solar cells based on thiazole-bridged middle band-gap polymer donor: The influence of alkyl side chain on polymer-polymer miscibility and photovoltaic performance. Synthetic Metals, 2019, 254, 49-55. Temperatureâ€Dependent Aggregation Donor Polymers Enable Highly Efficient Sequentially Processed Organic Photovoltaics Without the Need of Orthogonal Solvents. Advanced Functional Materials, 2019, 29, 1902478. Electronic Structure Characterization of Soft Semiconductors. Advanced Materials Interfaces, 2019,	5.8 5.8 2.1 7.8	1,431 95 7 50
407 408 409 410 411	Recombination. ACS Energy Letters, 2019, 4, 1535-1540. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515. Anatomy of the energetic driving force for charge generation in organic solar cells. Nature Communications, 2019, 10, 2520. Efficient all-polymer solar cells based on thiazole-bridged middle band-gap polymer donor: The influence of alkyl side chain on polymer-polymer miscibility and photovoltaic performance. Synthetic Metals, 2019, 254, 49-55. Temperatureâ€Dependent Aggregation Donor Polymers Enable Highly Efficient Sequentially Processed Organic Photovoltaics Without the Need of Orthogonal Solvents. Advanced Functional Materials, 2019, 29, 1902478. Electronic Structure Characterization of Soft Semiconductors. Advanced Materials Interfaces, 2019, 6, 1900439. Simply planarizing nonfused perylene diimide based acceptors toward promising non-fullerene solar	 5.8 5.8 2.1 7.8 1.9 	1,431 95 7 50 3

#	Article	IF	CITATIONS
415	Origin of Photocurrent and Voltage Losses in Organic Solar Cells. Advanced Theory and Simulations, 2019, 2, 1900067.	1.3	46
416	Quantifying and Understanding Voltage Losses Due to Nonradiative Recombination in Bulk Heterojunction Organic Solar Cells with Low Energetic Offsets. Advanced Energy Materials, 2019, 9, 1901077.	10.2	69
417	New 4,5-Diaza-9,9'-spirobifluorene Derivative—A Promising Electron Acceptor for Nonfullerene Polymer Solar Cells. Doklady Chemistry, 2019, 485, 95-99.	0.2	5
418	Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity. Advanced Energy Materials, 2019, 9, 1901254.	10.2	54
419	Achieving a High Fill Factor and Stability in Perylene Diimide–Based Polymer Solar Cells Using the Molecular Lock Effect between 4,4′â€Bipyridine and a Tri(8â€hydroxyquinoline)aluminum(III) Core. Advanced Functional Materials, 2019, 29, 1902079.	7.8	33
420	A pentacyclic <i>S</i> , <i>N</i> -heteroacene based electron acceptor with strong near-infrared absorption for efficient organic solar cells. Chemical Communications, 2019, 55, 7057-7060.	2.2	20
421	Unraveling the unstable amorphous phase evolution effect on burn-in loss in polymer-fullerene solar cells. Organic Electronics, 2019, 71, 156-163.	1.4	5
422	Benzotriazole-Based Acceptor and Donors, Coupled with Chlorination, Achieve a High <i>V</i> _{OC} of 1.24 V and an Efficiency of 10.5% in Fullerene-Free Organic Solar Cells. Chemistry of Materials, 2019, 31, 3941-3947.	3.2	236
423	Local Excitation/Charge-Transfer Hybridization Simultaneously Promotes Charge Generation and Reduces Nonradiative Voltage Loss in Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 2911-2918.	2.1	73
424	Benzodithiopheneâ€Fused Perylene Bisimides as Electron Acceptors for Nonâ€Fullerene Organic Solar Cells with High Openâ€Circuit Voltage. ChemPhysChem, 2019, 20, 2696-2701.	1.0	5
425	Tuning Charge Generation Process of Rylene Imide-Based Solar Cells via Chalcogen-Atom-Annulation. Chemistry of Materials, 2019, 31, 3636-3643.	3.2	22
426	Selenide effect for oxidation stability of the organic solvent-free copper sulfide Nano-particles and its organic photodiode application. Applied Surface Science, 2019, 484, 1253-1262.	3.1	7
427	An Updated Strategy for Designing Non-Fullerene Acceptors by the Lowest Singlet and Triplet States Excitation: Influence of Periodical Substitution from O, S, and Se to Te for BAE Derivatives. Journal of Physical Chemistry C, 2019, 123, 11397-11405.	1.5	14
428	14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference. Journal of the American Chemical Society, 2019, 141, 7743-7750.	6.6	379
429	Facile Synthesis of Polycyclic Aromatic Hydrocarbon (PAH)–Based Acceptors with Fineâ€Tuned Optoelectronic Properties: Toward Efficient Additiveâ€Free Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1803976.	10.2	51
430	Multi-Sulfur-Annulated Fused Perylene Diimides for Organic Solar Cells with Low Open-Circuit Voltage Loss. ACS Applied Energy Materials, 2019, 2, 3805-3814.	2.5	31
431	Efficient Polymer Solar Cells Having High Open-Circuit Voltage and Low Energy Loss Enabled by a Main-Chain Twisted Small Molecular Acceptor. ACS Applied Materials & Interfaces, 2019, 11, 16795-16803.	4.0	26
432	Molecular Orientation of Polymer Acceptor Dominates Open-Circuit Voltage Losses in All-Polymer Solar Cells. ACS Energy Letters, 2019, 4, 1057-1064.	8.8	45

#	Article	IF	CITATIONS
433	Correlating the electron-donating core structure with morphology and performance of carbon oxygen-bridged ladder-type non-fullerene acceptor based organic solar cells. Nano Energy, 2019, 61, 318-326.	8.2	43
434	Ternary Organic Solar Cells with Small Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 1196-1203.	8.8	101
435	High open-circuit voltage organic solar cells enabled by a difluorobenzoxadiazole-based conjugated polymer donor. Science China Chemistry, 2019, 62, 829-836.	4.2	10
436	Improved photovoltaic performance of a nonfullerene acceptor based on a benzo[<i>b</i>]thiophene fused end group with extended π-conjugation. Journal of Materials Chemistry A, 2019, 7, 9822-9830.	5.2	38
437	Intramolecular π-stacked perylene-diimide acceptors for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 8136-8143.	5.2	34
438	Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. Journal of the American Chemical Society, 2019, 141, 6362-6374.	6.6	307
439	A direct comparison of monomeric <i>vs.</i> dimeric and non-annulated <i>vs. N</i> -annulated perylene diimide electron acceptors for organic photovoltaics. New Journal of Chemistry, 2019, 43, 5187-5195.	1.4	28
440	Achieving high efficiency and low voltage loss simultaneously for non-fullerene organic solar cells. Science China Chemistry, 2019, 62, 405-406.	4.2	1
441	Factors Controlling Open-Circuit Voltage Losses in Organic Solar Cells. Trends in Chemistry, 2019, 1, 49-62.	4.4	117
442	Simple Bithiophene–Rhodanineâ€Based Small Molecule Acceptor for Use in Additiveâ€Free Nonfullerene OPVs with Low Energy Loss of 0.51 eV. Advanced Energy Materials, 2019, 9, 1804021.	10.2	58
443	The role of the third component in ternary organic solar cells. Nature Reviews Materials, 2019, 4, 229-242.	23.3	370
444	Efficient Polymer Solar Cells With High Fill Factor Enabled by A Furo[3,4]pyrroleâ€4,6â€dioneâ€Based Copolymer. Solar Rrl, 2019, 3, 1900012.	3.1	17
445	A ring fused N-annulated PDI non-fullerene acceptor for high open circuit voltage solar cells processed from non-halogenated solvents. Synthetic Metals, 2019, 250, 55-62.	2.1	23
446	Visible to Nearâ€Infrared Photodetection Based on Ternary Organic Heterojunctions. Advanced Functional Materials, 2019, 29, 1808948.	7.8	95
447	A Photoexcitationâ€Induced Twisted Intramolecular Charge Shuttle. Angewandte Chemie - International Edition, 2019, 58, 7073-7077.	7.2	79
448	An efficient strategy to supervise absorption, mobility, morphology of photovoltaic molecule by inserting a D-A unit. Dyes and Pigments, 2019, 166, 515-522.	2.0	9
449	Highly fluorescent anthracene derivative as a non-fullerene acceptor in OSCs with small non-radiative energy loss of 0.22ÅeV and high PCEs of over 13%. Journal of Materials Chemistry A, 2019, 7, 10212-10216.	5.2	22
450	Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 2019, 4, 269-285.	23.3	727

ARTICLE IF CITATIONS # Impact of an electron withdrawing group on the thiophene-fused benzotriazole unit on the 451 2.0 11 photovoltaic performance of the derived polymer solar cells. Dyes and Pigments, 2019, 166, 381-389. Key Parameters Requirements for Nonâ€Fullereneâ€Based Organic Solar Cells with Power Conversion 5.6 149 Efficiency >20%. Advanced Science, 2019, 6, 1802028. Fused Benzothiadiazole: A Building Block for nâ€Type Organic Acceptor to Achieve Highâ€Performance 453 297 11.1 Organic Solar Cells. Advanced Materials, 2019, 31, e1807577. Reduced Energy Loss Enabled by a Chlorinated Thiopheneâ€Fused Endingâ€Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. Advanced Energy 454 144 Materials, 2019, 9, 1900041. A Photoexcitationâ€Induced Twisted Intramolecular Charge Shuttle. Angewandte Chemie, 2019, 131, 455 1.6 17 7147-7151. Emissive and charge-generating donor â \in acceptor interfaces for organic optoelectronics with low voltage losses. Nature Materials, 2019, 18, 459-464. 13.3 Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by 457 6.4 182 SnO₂for nonfullerene organic solar cells. Materials Horizons, 2019, 6, 1438-1443. Inverse Optical Cavity Design for Ultrabroadband Light Absorption Beyond the Conventional Limit in 10.2 24 Lowâ€Bandgap Nonfullerene Acceptor–Based Solar Cells. Advanced Energy Materials, 2019, 9, 1900463. Guiding charge transfer kinetics into cocatalyst for efficient solar water splitting. Electrochimica 459 2.6 8 Acta, 2019, 307, 43-50. Spinâ€Dependent Electron–Hole Recombination and Dissociation in Nonfullerene Acceptor ITICâ€Based 3.1 Organic Photovoltaic Systems. Solar Rrl, 2019, 3, 1900063. Towards the Organic Double Heterojunction Solar Cell. Chemical Record, 2019, 19, 1131-1141. 461 7 2.9 Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors. Science China Chemistry, 4.2 2019, 62, 897-903. Dual Sensitizer and Processing-Aid Behavior of Donor Enables Efficient Ternary Organic Solar Cells. 463 11.7 84 Joule, 2019, 3, 846-857. Black body-like radiative cooling for flexible thin-film solar cells. Solar Energy Materials and Solar 464 56 Cells, 2019, 194, 222-228. A probe into underlying factors affecting utrafast charge transfer at Donor/IDIC interface of 465 all-small-molecule nonfullerene organic solar cells. Journal of Photochemistry and Photobiology A: 2.0 11 Chemistry, 2019, 375, 1-8. A review of non-fullerene polymer solar cells: from device physics to morphology control. Reports 8.1 184 on Progress in Physics, 2019, 82, 036601. Thermal-assisted Voc increase in an indenoindene-based non-fullerene solar system. Dyes and 467 2.0 7 Pigments, 2019, 165, 18-24. Energy Loss in Organic Photovoltaics: Nonfullerene Versus Fullerene Acceptors. Physical Review 1.5 Applied, 2019, 11, .

#	Article	IF	CITATIONS
469	Photogenerated Charge Transport in Organic Electronic Materials: Experiments Confirmed by Simulations. Advanced Materials, 2019, 31, e1806004.	11.1	30
470	Tandem structure: a breakthrough in power conversion efficiency for highly efficient polymer solar cells. Sustainable Energy and Fuels, 2019, 3, 910-934.	2.5	28
471	Morphology of organic photovoltaic non-fullerene acceptors investigated by grazing incidence X-ray scattering techniques. Materials Today Nano, 2019, 5, 100030.	2.3	91
472	Carrier Dynamics and Morphology Regulated by 1,8-Diiodooctane in Chlorinated Nonfullerene Polymer Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 936-942.	2.1	15
473	Highâ€Performance Allâ€Polymer Solar Cells Enabled by an nâ€Type Polymer Based on a Fluorinated Imideâ€Functionalized Arene. Advanced Materials, 2019, 31, e1807220.	11.1	154
474	Electronic Properties and Molar Excitation Coefficient for Organic Solar Cells Materials by using TD-DFT Method. , 2019, , .		4
475	Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells. Chemistry of Materials, 2019, 31, 9729-9741.	3.2	15
476	Assessing the energy offset at the electron donor/acceptor interface in organic solar cells through radiative efficiency measurements. Energy and Environmental Science, 2019, 12, 3556-3566.	15.6	69
477	Enhanced performance of ternary organic solar cells with a wide bandgap acceptor as the third component. Journal of Materials Chemistry A, 2019, 7, 27423-27431.	5.2	23
478	Non-halogenated-solvent-processed highly efficient organic solar cells with a record open circuit voltage enabled by noncovalently locked novel polymer donors. Journal of Materials Chemistry A, 2019, 7, 27394-27402.	5.2	20
479	Comprehensive modelling study of singlet exciton diffusion in donor–acceptor dyads: when small changes in chemical structure matter. Physical Chemistry Chemical Physics, 2019, 21, 25023-25034.	1.3	14
480	High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy and Environmental Science, 2019, 12, 3225-3246.	15.6	236
481	A wrinkled structure with broadband and omnidirectional light-trapping abilities for improving the performance of organic solar cells with low defect density. Nanoscale, 2019, 11, 22467-22474.	2.8	14
482	Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. Journal of Materials Chemistry A, 2019, 7, 27632-27639.	5.2	86
483	Enhancing the efficiency of PTB7-Th:CO <i>i</i> 8DFIC-based ternary solar cells with versatile third components. Applied Physics Reviews, 2019, 6, .	5.5	20
484	A new non-fullerene acceptor based on the combination of a heptacyclic benzothiadiazole unit and a thiophene-fused end group achieving over 13% efficiency. Physical Chemistry Chemical Physics, 2019, 21, 26557-26563.	1.3	28
485	Synthesis and Optoelectronic Characterization of Perylene Diimide-Quinoline Based Small Molecules. Molecules, 2019, 24, 4406.	1.7	17
486	Investigation on voltage loss in organic triplet photovoltaic devices based on Ir complexes. Journal of Materials Chemistry C, 2019, 7, 15049-15056.	2.7	11

#	Article	IF	CITATIONS
487	Naphthalene core-based noncovalently fused-ring electron acceptors: effects of linkage positions on photovoltaic performances. Journal of Materials Chemistry C, 2019, 7, 15141-15147.	2.7	24
488	Polymer Donors for Highâ€Performance Nonâ€Fullerene Organic Solar Cells. Angewandte Chemie, 2019, 131, 4488-4499.	1.6	36
489	One step to perylene monoimides and derived alkynyl bridged photovoltaic acceptors. Dyes and Pigments, 2019, 160, 540-545.	2.0	13
490	Advances in Solutionâ€Processed Multijunction Organic Solar Cells. Advanced Materials, 2019, 31, e1806499.	11.1	146
491	The resurgence of organic photovoltaics. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 15-20.	3.2	6
492	Opto-electronic properties of non-fullerene fused-undecacyclic electron acceptors for organic solar cells. Computational Materials Science, 2019, 159, 150-159.	1.4	102
493	Recent Advances in Fullereneâ€free Polymer Solar Cells: Materials and Devices. Chinese Journal of Chemistry, 2019, 37, 207-215.	2.6	46
494	Morphology and efficiency enhancements of PTB7-Th:ITIC nonfullerene organic solar cells processed via solvent vapor annealing. Journal of Energy Chemistry, 2019, 37, 148-156.	7.1	42
495	Excitation Wavelength-Dependent Internal Quantum Efficiencies in a P3HT/Nonfullerene Acceptor Solar Cell. Journal of Physical Chemistry C, 2019, 123, 5826-5832.	1.5	6
496	Borane Incorporation in a Non-Fullerene Acceptor To Tune Steric and Electronic Properties and Improve Organic Solar Cell Performance. ACS Applied Energy Materials, 2019, 2, 1229-1240.	2.5	43
497	High lying energy of charge-transfer states and small energetic offsets enabled by fluorinated quinoxaline-based alternating polymer and alkyl-thienyl side-chain modified non-fullerene acceptor. Organic Electronics, 2019, 66, 63-69.	1.4	4
498	High-Efficiency Nonfullerene Polymer Solar Cells with Band gap and Absorption Tunable Donor/Acceptor Random Copolymers. ACS Applied Materials & Interfaces, 2019, 11, 2189-2196.	4.0	11
499	Fullerene-Free Molecular Acceptors for Organic Photovoltaics. Energy, Environment, and Sustainability, 2019, , 221-279.	0.6	2
500	High-Performance Fullerene-Free Polymer Solar Cells Featuring Efficient Photocurrent Generation from Dual Pathways and Low Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 8-16.	8.8	62
501	Absence of Charge Transfer State Enables Very Low <i>V</i> _{OC} Losses in SWCNT:Fullerene Solar Cells. Advanced Energy Materials, 2019, 9, 1801913.	10.2	25
502	The Critical Impact of Material and Process Compatibility on the Active Layer Morphology and Performance of Organic Ternary Solar Cells. Advanced Energy Materials, 2019, 9, 1802293.	10.2	35
503	Nanomorphology in A–D–A type small molecular acceptors-based bulk heterojunction polymer solar cells. Journal of Energy Chemistry, 2019, 35, 104-123.	7.1	20
504	A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Science China Chemistry, 2019, 62, 238-244.	4.2	29

#	ARTICLE Nonfullerene Smallâ€Molecule Acceptors for Organic Photovoltaics: Understanding the Impact of	IF	CITATIONS
505	Methoxy Substitution Position on Molecular Packing and Electronâ€Transfer Properties. Advanced Functional Materials, 2019, 29, 1806845.	7.8	22
506	12.5% Flexible Nonfullerene Solar Cells by Passivating the Chemical Interaction Between the Active Layer and Polymer Interfacial Layer. Advanced Materials, 2019, 31, e1806616.	11.1	151
507	Energy-Gap Law for Photocurrent Generation in Fullerene-Based Organic Solar Cells: The Case of Low-Donor-Content Blends. Journal of the American Chemical Society, 2019, 141, 2329-2341.	6.6	54
508	Steady Enhancement in Photovoltaic Properties of Fluorine Functionalized Quinoxaline-Based Narrow Bandgap Polymer. Molecules, 2019, 24, 54.	1.7	4
509	Fluorobenzotriazole (FTAZ)â€Based Polymer Donor Enables Organic Solar Cells Exceeding 12% Efficiency. Advanced Functional Materials, 2019, 29, 1808828.	7.8	61
510	Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 2019, 3, 1140-1151.	11.7	4,052
511	New indolo carbazole-based non-fullerene n-type semiconductors for organic solar cell applications. Journal of Materials Chemistry C, 2019, 7, 543-552.	2.7	26
512	Crystalline Conjugated Polymers for Organic Solar Cells: From Donor, Acceptor to Single omponent. Chemical Record, 2019, 19, 962-972.	2.9	36
513	Novel perylene diimide acceptor for nonfullerene organic solar cells. Functional Materials Letters, 2019, 12, 1950022.	0.7	3
514	The progress of non-fullerene small molecular acceptors for high efficiency polymer solar cells. Solar Energy Materials and Solar Cells, 2019, 190, 83-97.	3.0	28
515	Phthalimideâ€Based High Mobility Polymer Semiconductors for Efficient Nonfullerene Solar Cells with Power Conversion Efficiencies over 13%. Advanced Science, 2019, 6, 1801743.	5.6	45
516	Efficient Tandem Organic Photovoltaics with Tunable Rear Sub-cells. Joule, 2019, 3, 432-442.	11.7	65
517	End-chain effects of non-fullerene acceptors on polymer solar cells. Organic Electronics, 2019, 64, 1-6.	1.4	13
518	Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells. Solar Energy Materials and Solar Cells, 2019, 189, 103-117.	3.0	54
519	Efficient Polymer Solar Cells Based on Non-fullerene Acceptors with Potential Device Lifetime Approaching 10 Years. Joule, 2019, 3, 215-226.	11.7	355
520	Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chemical Society Reviews, 2019, 48, 1596-1625.	18.7	814
521	Organic solar cells: Materials and prospects of graphene for active and interfacial layers. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 261-288.	6.8	10
522	Nonfullerene acceptors with an N-annulated perylene core and two perylene diimide units for efficient organic solar cells. Dyes and Pigments, 2020, 173, 107970.	2.0	9

#	Article	IF	CITATIONS
523	Robust random forest based non-fullerene organic solar cells efficiency prediction. Organic Electronics, 2020, 76, 105465.	1.4	48
524	Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells. Nano Energy, 2020, 67, 104209.	8.2	35
525	Designing a thiophene-fused quinoxaline unit to build D–A copolymers for non-fullerene organic solar cells. Dyes and Pigments, 2020, 174, 108022.	2.0	9
526	Fabrication of optimized eco-friendly dye-sensitized solar cells by extracting pigments from low-cost native wild plants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112191.	2.0	19
527	Photoinduced electron transfer from zinc <i>meso</i> -tetraphenylporphyrin to a one-dimensional perylenediimide aggregate: Probing anion delocalization effects. Journal of Porphyrins and Phthalocyanines, 2020, 24, 143-152.	0.4	5
528	Nonlinear optoelectronic processes in organic optoelectronic devices: Triplet-triplet annihilation and singlet fission. Materials Science and Engineering Reports, 2020, 139, 100519.	14.8	50
529	A Projective Method for the Calculation of Excited-State Electronic Coupling: Isolating Charge Transfer/Recombination Processes in Organic Photovoltaics. Journal of Physical Chemistry A, 2020, 124, 591-600.	1.1	9
530	Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nature Communications, 2020, 11, 177.	5.8	360
531	Designing a near-infrared circularly polarized luminescent dye by dissymmetric spiro-fusion. Chemical Communications, 2020, 56, 912-915.	2.2	25
533	Exciton-to-Charge Dynamics Driven by the Nonuniform Polymer Packing at Donor/Acceptor Interfaces. Journal of Physical Chemistry C, 2020, 124, 1898-1906.	1.5	5
534	10 cm ² nonfullerene solar cells with efficiency over 10% using H _x MoO ₃ -assisted growth of silver electrodes with a low threshold thickness of 4 nm. Journal of Materials Chemistry A, 2020, 8, 69-76.	5.2	14
535	Exploring the Chemical Interaction between Diiodooctane and PEDOT-PSS Electrode for Metal Electrode-Free Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 3800-3805.	4.0	19
536	Atom-Varied Side Chains in Conjugated Polymers Affect Efficiencies of Photovoltaic Devices Incorporating Small Molecules. ACS Applied Polymer Materials, 2020, 2, 636-646.	2.0	23
537	Nonâ€Fullerene Organic Solar Cells Based on Benzo[1,2â€b:4,5â€b′]difuranâ€Conjugated Polymer with 14% Efficiency. Advanced Functional Materials, 2020, 30, 1906809.	7.8	41
538	Efficient ternary organic photovoltaics with two polymer donors by minimizing energy loss. Journal of Materials Chemistry A, 2020, 8, 1265-1272.	5.2	84
539	Influence of Substituent Groups on Chemical Reactivity Kinetics of Nonfullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 2307-2312.	1.5	29
540	High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. Journal of the American Chemical Society, 2020, 142, 1465-1474.	6.6	344
541	Subtle Polymer Donor and Molecular Acceptor Design Enable Efficient Polymer Solar Cells with a Very Small Energy Loss. Advanced Functional Materials, 2020, 30, 1907570.	7.8	89

#	Article	IF	CITATIONS
542	Incorporation of Hydrogen Molybdenum Bronze in Solutionâ€Processed Interconnecting Layer for Efficient Nonfullerene Tandem Organic Solar Cells. Solar Rrl, 2020, 4, 1900480.	3.1	15
543	Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation. Advanced Materials, 2020, 32, e1906324.	11.1	312
544	Photophysics, morphology and device performances correlation on non-fullerene acceptor based binary and ternary solar cells. Journal of Energy Chemistry, 2020, 47, 180-187.	7.1	21
545	A drift-diffusion simulation model for organic field effect transistors: on the importance of the Gaussian density of states and traps. Journal Physics D: Applied Physics, 2020, 53, 105102.	1.3	8
546	Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy–Porphyrin Dyad. ACS Applied Materials & Interfaces, 2020, 12, 1120-1131.	4.0	27
547	Reduced Energy Loss in Non-Fullerene Organic Solar Cells with Isomeric Donor Polymers Containing Thiazole ï€-Spacers. ACS Applied Materials & Interfaces, 2020, 12, 753-762.	4.0	34
548	Highly efficient ternary polymer solar cells based on a novel double-cabled third component with the same molecular fragments of donor and acceptor moieties. Solar Energy Materials and Solar Cells, 2020, 206, 110326.	3.0	2
549	The influence of driving force on intramolecular electron transfer: A theoretical study of subphthalocyanineâ€AzaBODIPY ₆₀ supramolecular triad. International Journal of Quantum Chemistry, 2020, 120, e26131.	1.0	4
550	Halogenation on terminal groups of ITIC based electron acceptors as an effective strategy for efficient polymer solar cells. Solar Energy, 2020, 195, 429-435.	2.9	21
551	Chalcogenâ€Fused Perylene Diimidesâ€Based Nonfullerene Acceptors for Highâ€Performance Organic Solar Cells: Insight into the Effect of O, S, and Se. Solar Rrl, 2020, 4, 1900453.	3.1	21
552	Self-Stimulated Dissociation in Non-Fullerene Organic Bulk-Heterojunction Solar Cells. Joule, 2020, 4, 2443-2457.	11.7	35
553	PDI derivatives with functional active position as non-fullerene small molecule acceptors in organic solar cells: From different core linker to various conformation. Applied Materials Today, 2020, 21, 100799.	2.3	16
554	Efficient all-polymer solar cells based on a narrow-bandgap polymer acceptor. Journal of Materials Chemistry C, 2020, 8, 16180-16187.	2.7	19
555	Charge separation boosts exciton diffusion in fused ring electron acceptors. Journal of Materials Chemistry A, 2020, 8, 23304-23312.	5.2	18
556	Recent advances of computational chemistry in organic solar cell research. Journal of Materials Chemistry C, 2020, 8, 15920-15939.	2.7	59
557	Fluorination effect of benzo[c][1,2,5]thiadiazole-alt-oligothiophene-based copolymers involving all straight flexible side chain in photovoltaic application. Optical Materials, 2020, 108, 110321.	1.7	4
558	Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. Nano Energy, 2020, 78, 105377.	8.2	68
559	Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2020, 142, 18741-18745.	6.6	288

#	Article	IF	CITATIONS
560	Indole-based A–DA′D–A type acceptor-based organic solar cells achieve efficiency over 15 % with low energy loss. Sustainable Energy and Fuels, 2020, 4, 6203-6211.	2.5	8
561	Thermally assisted charge transfer and charge separation in organic donor–acceptor solar cells. Applied Physics Letters, 2020, 117, 163301.	1.5	3
562	Polymer solar cell based on ternary active layer consists of medium bandgap polymer and two non-fullerene acceptors. Solar Energy, 2020, 207, 1427-1433.	2.9	4
563	Molecular-Level Understanding of Excited States of N-Annulated Rylene Dye for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2020, 124, 22993-23003.	1.5	12
564	Elucidating the Key Role of the Cyano (â^`C≡N) Group to Construct Environmentally Friendly Fused-Ring Electron Acceptors. Journal of Physical Chemistry C, 2020, 124, 23059-23068.	1.5	28
565	Recent advances in non-fullerene organic solar cells: from lab to fab. Chemical Communications, 2020, 56, 14337-14352.	2.2	75
566	High Voc solution-processed organic solar cells containing silicon phthalocyanine as a non-fullerene electron acceptor. Organic Electronics, 2020, 87, 105976.	1.4	22
567	A diketopyrrolopyrrole conjugated polymer based on 4,4Ê1-difluoro-2,2Ê1-bithiophene for organic thin-film transistors and organic photovoltaics. Thin Solid Films, 2020, 711, 138300.	0.8	2
568	Design of novel thiazolothiazole-based conjugated polymer for efficient fullerene and non-fullerene organic solar cells. Synthetic Metals, 2020, 268, 116508.	2.1	12
569	Nonfullerene Acceptors: A Renaissance in Organic Photovoltaics?. Advanced Energy Materials, 2020, 10, 2001788.	10.2	88
570	Effects of Bulk Heterojunction Morphology Control via Thermal Annealing on the Fill Factor of Anthracene-based Polymer Solar Cells. Macromolecular Research, 2020, 28, 820-825.	1.0	12
571	The Crystallinity Control of Polymer Donor Materials for High-Performance Organic Solar Cells. Frontiers in Chemistry, 2020, 8, 603134.	1.8	16
572	Excited-State Symmetry-Breaking Charge Separation Dynamics in Multibranched Perylene Diimide Molecules. Journal of Physical Chemistry Letters, 2020, 11, 10329-10339.	2.1	46
573	Significantly Sensitized Ternary Blend Polymer Solar Cells with a Very Small Content of the Narrow-Band Gap Third Component That Utilizes Optical Interference. Macromolecules, 2020, 53, 10623-10635.	2.2	17
574	Planar Heterojunction Organic Photodetectors Based on Fullerene and Non-fullerene Acceptor Bilayers for a Tunable Spectral Response. ACS Applied Materials & Interfaces, 2020, 12, 55064-55071.	4.0	15
575	Panchromatic Triple Organic Semiconductor Heterojunctions for Efficient Solar Cells. ACS Applied Energy Materials, 2020, 3, 12506-12516.	2.5	4
576	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. Journal of the American Chemical Society, 2020, 142, 20134-20142.	6.6	414
577	Organic Photovoltaic Cells for Indoor Applications: Opportunities and Challenges. ACS Applied Materials & Material	4.0	126

# 578	ARTICLE Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.	IF 5.8	CITATIONS
579	Quantifying <i>V</i> _{oc} loss induced by alkyl pendants of acceptors in organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12568-12577.	2.7	14
580	Thickâ€Film Low Drivingâ€Force Indoor Light Harvesters. Solar Rrl, 2020, 4, 2000291.	3.1	24
581	Allâ€Polymer Solar Cells with over 12% Efficiency and a Small Voltage Loss Enabled by a Polymer Acceptor Based on an Extended Fused Ring Core. Advanced Energy Materials, 2020, 10, 2001408.	10.2	55
582	Fast Field-Insensitive Charge Extraction Enables High Fill Factors in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 38460-38469.	4.0	8
583	Highly efficient non-fullerene organic solar cells enabled by a delayed processing method using a non-halogenated solvent. Energy and Environmental Science, 2020, 13, 4381-4388.	15.6	150
584	The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Advanced Materials, 2020, 32, e2001763.	11.1	168
585	Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Science China Chemistry, 2020, 63, 1785-1792.	4.2	32
586	Exploring Charge Dissociation in a Statistical Sample of Active-Layer Models of an Organic Solar Cell. Journal of Physical Chemistry C, 2020, 124, 18840-18846.	1.5	6
587	Ï€-Conjugated polymers and molecules enabling small photon energy loss simultaneously with high efficiency in organic photovoltaics. Journal of Materials Chemistry A, 2020, 8, 20213-20237.	5.2	34
588	Highly efficient near-infrared hybrid perovskite solar cells by integrating with a novel organic bulk-heterojunction. Nano Energy, 2020, 77, 105181.	8.2	34
589	Wide Band Gap Photovoltaic Polymer Based on Pyrrolo[3,4- <i>f</i>]benzotriazole-5,7-dione (TzBI) with Ultrahigh <i>V</i> _{OC} Beyond 1.25 V. Journal of Physical Chemistry C, 2020, 124, 19492-19498.	1.5	16
590	Highâ€Efficiency Organic Solar Cells with Wide Toleration of Active Layer Thickness. Solar Rrl, 2020, 4, 2000476.	3.1	10
591	Extended π-conjugated perylene diimide dimers toward efficient organic solar cells. Dyes and Pigments, 2020, 183, 108736.	2.0	9
592	Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy, 2020, 78, 105272.	8.2	132
594	A Fully Nonâ€fused Ring Acceptor with Planar Backbone and Nearâ€IR Absorption for High Performance Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 22714-22720.	7.2	184
595	Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 43984-43991.	4.0	19
596	A Narrowâ€Bandgap nâ€Type Polymer with an Acceptor–Acceptor Backbone Enabling Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2020, 32, e2004183.	11.1	184

CITATION REPORT ARTICLE IF CITATIONS Single-Component Non-halogen Solvent-Processed High-Performance Organic Solar Cell Module with 11.7 225 Efficiency over 14%. Joule, 2020, 4, 2004-2016. Putting Order into PM6:Y6 Solar Cells to Reduce the Langevin Recombination in 400 nm Thick Junction. 3.1 49 Solar Řrl, 2020, 4, 2000498. Solutionâ€Processed Organic Solar Cells with High Openâ€Circuit Voltage of 1.3 V and Low Nonâ€Radiative 11.1 168 Voltage Loss of 0.16 V. Advanced Materials, 2020, 32, e2002122. Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells. Journal of Materials Chemistry A, 2020, 8, 18154-18161. How to split an exciton. Nature Energy, 2020, 5, 644-645. 19.8 4 Comparison of fluorene, silafluorene and carbazole as linkers in perylene monoimide based 2.6 non-fullerene acceptors. Materials Advances, 2020, 1, 2095-2106. Orientation dependent molecular electrostatics drives efficient charge generation in homojunction 5.8 60 organic solar cells. Nature Communications, 2020, 11, 4617. A Fully Nonâ€fused Ring Acceptor with Planar Backbone and Nearâ€IR Absorption for High Performance 1.6 Polymer Solar Cells. Angewandte Chemie, 2020, 132, 22903-22909. Noncovalently Fused-Ring Electron Acceptors with <i>C</i>_{2<i>v</i>} Symmetry for Regulating the Morphology of Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 4.0 43 46220-46230. Two Compatible Polymer Donors Enabling Ternary Organic Solar Cells with a Small Nonradiative 3.1 Energy Loss and Broad Composition Tolerance. Solar Rrl, 2020, 4, 2000396. Ultrafast and Long-Range Exciton Migration through Anisotropic Coulombic Coupling in the Textured 2.1 10 Films of Fused-Ring Electron Acceptors. Journal of Physical Chemistry Letters, 2020, 11, 7908-7913. From Generation to Extraction: A Time-Resolved Investigation of Photophysical Processes in 1.5 Non-fullerene Organic Solar Cells. Journal of Physical Chemistry C, 2020, 124, 21283-21292. Sideâ€chain engineering of perylene diimide dimers: Impact on morphology and photovoltaic 1.9 8 performance. Nano Select, 2020, 1, 388-394. Hot Hydrocarbonâ€Solvent Slotâ€Die Coating Enables Highâ€Efficiency Organic Solar Cells with 11.1 139 Températureâ€Dependent Aggregation Behavior. Advanced Materials, 2020, 32, e2002302. C: 1 ^ C C

611	Miscipilitya€Controlled Phase Separation in Doublea€Cable Conjugated Polymers for Singlea€Component Organic Solar Cells with Efficiencies over 8 %. Angewandte Chemie - International Edition, 2020, 59, 21683-21692.	7.2	82
612	Miscibilityâ€Controlled Phase Separation in Doubleâ€Cable Conjugated Polymers for Singleâ€Component Organic Solar Cells with Efficiencies over 8 %. Angewandte Chemie, 2020, 132, 21867-21876.	1.6	18
613	FB-ECDA: Fragment-based Electronic Coupling Decomposition Analysis for Organic Amorphous Semiconductors. Journal of Physical Chemistry A, 2020, 124, 10624-10634.	1.1	2
614	Role of Morphology and F¶rster Resonance Energy Transfer in Ternary Blend Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 12025-12036.	2.5	17

597

599

600

601

603

604

605

607

608

#	Article	IF	CITATIONS
615	Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nature Communications, 2020, 11, 5617.	5.8	73
616	Field Effect versus Driving Force: Charge Generation in Smallâ€Molecule Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002124.	10.2	19
617	Emerging Approaches in Enhancing the Efficiency and Stability in Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002746.	10.2	124
618	Reduced Nonradiative Recombination Energy Loss Enabled Efficient Polymer Solar Cells via Tuning Alkyl Chain Positions on Pendent Benzene Units of Polymers. ACS Applied Materials & Interfaces, 2020, 12, 24184-24191.	4.0	7
619	Tailoring the molecular geometry of polyfluoride perylene diimide acceptors towards efficient organic solar cells. Journal of Materials Chemistry C, 2020, 8, 8224-8233.	2.7	24
620	Concurrent improvement in <i>J</i> _{SC} and <i>V</i> _{OC} in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy and Environmental Science, 2020, 13, 2115-2123.	15.6	164
621	Efficient charge generation at low energy losses in organic solar cells: a key issues review. Reports on Progress in Physics, 2020, 83, 082601.	8.1	43
622	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 15043-15049.	7.2	77
623	Development of Perylene-Based Non-Fullerene Acceptors through Bay-Functionalization Strategy. Materials, 2020, 13, 2148.	1.3	24
624	Asymmetric Electron Acceptors for Highâ€Efficiency and Lowâ€Energyâ€Loss Organic Photovoltaics. Advanced Materials, 2020, 32, e2001160.	11.1	246
625	Over 20% Efficient and Stable Nonâ€Fullereneâ€Based Ternary Bulkâ€Heterojunction Organic Solar Cell with WS ₂ Holeâ€Transport Layer and Graded Refractive Index Antireflection Coating. Advanced Theory and Simulations, 2020, 3, 2000047.	1.3	23
626	Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy and Environmental Science, 2020, 13, 2459-2466.	15.6	324
627	High Open-circuit Voltage and Low Voltage Loss in All-polymer Solar Cell with a Poly(coronenediimide-vinylene) Acceptor. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1157-1163.	2.0	4
628	Semitransparent Flexible Organic Solar Cells. Chemical Research in Chinese Universities, 2020, 36, 343-350.	1.3	18
629	Appropriate Molecular Interaction Enabling Perfect Balance Between Induced Crystallinity and Phase Separation for Efficient Photovoltaic Blends. ACS Applied Materials & Interfaces, 2020, 12, 26286-26292.	4.0	28
630	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie, 2020, 132, 15153-15159.	1.6	11
631	Significantly Increasing the Power Conversion Efficiency by Controlling the Orientation of Nonfullerene Small Molecular Acceptors via Side Chain Engineering. Solar Rrl, 2020, 4, 2000234.	3.1	7
632	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	11.7	344

#	Article	IF	CITATIONS
633	Hole transport layers for organic solar cells: recent progress and prospects. Journal of Materials Chemistry A, 2020, 8, 11478-11492.	5.2	99
634	Propeller-Like All-Fused Perylene Diimide Based Electron Acceptors With Chalcogen Linkage for Efficient Polymer Solar Cells. Frontiers in Chemistry, 2020, 8, 350.	1.8	6
635	Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. Joule, 2020, 4, 1248-1262.	11.7	260
636	Nonplanar Perylene Diimide-Based Small Molecule and Its Polymer as Electron Acceptors. ACS Applied Polymer Materials, 2020, 2, 2749-2755.	2.0	8
637	Roles of Acceptor Guests in Tuning the Organic Solar Cell Property Based on an Efficient Binary Material System with a Nearly Zero Hole-Transfer Driving Force. Chemistry of Materials, 2020, 32, 5182-5191.	3.2	22
638	2-Dimensional cross-shaped tetrathienonaphthalene-based ladder-type acceptor for high-efficiency organic solar cells. Journal of Materials Chemistry A, 2020, 8, 12141-12148.	5.2	14
639	Improved Performance of Ternary Solar Cells by Using BODIPY Triads. Materials, 2020, 13, 2723.	1.3	4
640	Polymerâ€Modified ZnO Nanoparticles as Electron Transport Layer for Polymerâ€Based Solar Cells. Advanced Functional Materials, 2020, 30, 2002932.	7.8	40
641	Novel benzo[1,2-b:4,5-b']difuran-based copolymer enables efficient polymer solar cells with small energy loss and high VOC. Nano Energy, 2020, 76, 104964.	8.2	51
642	Electric Field Facilitating Hole Transfer in Non-Fullerene Organic Solar Cells with a Negative HOMO Offset. Journal of Physical Chemistry C, 2020, 124, 15132-15139.	1.5	26
643	Recent advances in high-performance organic solar cells enabled by acceptor–donor–acceptor–donor–acceptor (A–DA′D–A) type acceptors. Materials Chemistry Frontiers, 2020, 4, 3487-3504.	3.2	60
644	On the understanding of energy loss and device fill factor trade-offs in non-fullerene organic solar cells with varied energy levels. Nano Energy, 2020, 75, 105032.	8.2	34
645	Unifying Charge Generation, Recombination, and Extraction in Lowâ€Offset Nonâ€Fullerene Acceptor Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001203.	10.2	74
646	Phenol red based hybrid photodiode for optical detector applications. Solid-State Electronics, 2020, 171, 107864.	0.8	13
647	Fluorination of a polymer donor through the trifluoromethyl group for high-performance polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 12149-12155.	5.2	12
648	Highâ€Performance Allâ€Polymer Solar Cells Enabled by nâ€Type Polymers with an Ultranarrow Bandgap Down to 1.28 eV. Advanced Materials, 2020, 32, e2001476.	11.1	103
649	Role of Energy Offset in Nonradiative Voltage Loss in Organic Solar Cells. Solar Rrl, 2020, 4, 2000255.	3.1	39
650	Achieving Balanced Crystallization Kinetics of Donor and Acceptor by Sequentialâ€Blade Coated Double Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2000826.	10.2	77

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
651	High-Efficiency Indoor Organic Photovoltaics with a Band-Aligned Interlayer. Joule, 2020, 4, 1486-1500.	11.7	169
652	Efficient Exciton Dissociation Enabled by the End Group Modification in Non-Fullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 7691-7698.	1.5	18
653	With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%. Materials, 2020, 13, 1324.	1.3	6
654	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie - International Edition, 2020, 59, 9004-9010.	7.2	144
655	Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Letters, 2020, 5, 1186-1197.	8.8	131
656	Bandgap Tailored Nonfullerene Acceptors for Low-Energy-Loss Near-Infrared Organic Photovoltaics. , 2020, 2, 395-402.		37
657	Pitfalls and prospects of optical spectroscopy to characterize perovskite-transport layer interfaces. Applied Physics Letters, 2020, 116, .	1.5	28
658	Nonfused Nonfullerene Acceptors with an A–D–A′–D–A Framework and a Benzothiadiazole Core for High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 16531-16540.	4.0	100
659	Molecular vibrations reduce the maximum achievable photovoltage in organic solar cells. Nature Communications, 2020, 11, 1488.	5.8	40
660	Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics. Chemical Communications, 2020, 56, 4750-4760.	2.2	94
661	Diketopyrrolopyrrole Derivatives Functionalized with Nâ€Annulated PDI and Seâ€Annulated PDI by Direct (Hetero)Arylation Methods. Asian Journal of Organic Chemistry, 2020, 9, 1291-1300.	1.3	6
662	Efficient Fusedâ€Ring Extension of A–D–Aâ€Type Nonâ€Fullerene Acceptors by a Symmetric Replicating Core Unit Strategy. Chemistry - A European Journal, 2020, 26, 12411-12417.	1.7	13
663	Functionalizing triptycene to create 3D high-performance non-fullerene acceptors. RSC Advances, 2020, 10, 12004-12012.	1.7	3
664	Shining Light on Organic Solar Cells. Solar Rrl, 2020, 4, 2000015.	3.1	22
665	Singleâ€Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials, 2020, 32, e1908205.	11.1	1,407
666	Non-fullerene small molecule acceptors with three-dimensional thiophene/selenophene-annulated perylene diimides for efficient organic solar cells. Journal of Materials Chemistry C, 2020, 8, 6749-6755.	2.7	12
667	A novel wide-bandgap small molecule donor for high efficiency all-small-molecule organic solar cells with small non-radiative energy losses. Energy and Environmental Science, 2020, 13, 1309-1317.	15.6	99
668	Significantly enhanced electron transport of a nonfullerene acceptor in a blend film with a high hole mobility polymer of high molecular weight: thick-film nonfullerene polymer solar cells showing a high fill factor. Journal of Materials Chemistry A, 2020, 8, 7765-7774.	5.2	28

#	Article	IF	CITATIONS
669	Improved performance of small molecule organic solar cells by incorporation of a glancing angle deposited donor layer. Scientific Reports, 2020, 10, 5766.	1.6	5
670	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie, 2020, 132, 9089-9095.	1.6	24
671	Interfacial engineering for organic and perovskite solar cells using molecular materials. Journal Physics D: Applied Physics, 2020, 53, 263001.	1.3	6
672	Tuning the optoelectronic properties of Benzo Thiophene (BT-CIC) based non-fullerene acceptor organic solar cell. Journal of Theoretical and Computational Chemistry, 2020, 19, 2050003.	1.8	23
673	Efficient and photostable ternary organic solar cells with a narrow band gap non-fullerene acceptor and fullerene additive. Journal of Materials Chemistry A, 2020, 8, 6682-6691.	5.2	37
674	Achieving 17.4% Efficiency of Ternary Organic Photovoltaics with Two Wellâ€Compatible Nonfullerene Acceptors for Minimizing Energy Loss. Advanced Energy Materials, 2020, 10, 2001404.	10.2	164
675	Regioisomerically Pure 1,7-Dicyanoperylene Diimide Dimer for Charge Extraction from Donors with High Electron Affinities. ACS Omega, 2020, 5, 16547-16555.	1.6	6
676	Charge Separation from an Intra-Moiety Intermediate State in the High-Performance PM6:Y6 Organic Photovoltaic Blend. Journal of the American Chemical Society, 2020, 142, 12751-12759.	6.6	228
677	Highâ€Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and Seeâ€Through Functions. Advanced Materials, 2020, 32, e2001621.	11.1	140
678	Phthalimide Polymer Donor Guests Enable over 17% Efficient Organic Solar Cells via Parallel‣ike Ternary and Quaternary Strategies. Advanced Energy Materials, 2020, 10, 2001436.	10.2	75
679	Nongeminate charge recombination in organic photovoltaics. Sustainable Energy and Fuels, 2020, 4, 4321-4351.	2.5	21
680	Bromination: An Alternative Strategy for Nonâ€Fullerene Small Molecule Acceptors. Advanced Science, 2020, 7, 1903784.	5.6	69
681	Delayed Fluorescence Emitter Enables Near 17% Efficiency Ternary Organic Solar Cells with Enhanced Storage Stability and Reduced Recombination Energy Loss. Advanced Functional Materials, 2020, 30, 1909837.	7.8	108
682	Composite Interlayer Consisting of Alcohol-Soluble Polyfluorene and Carbon Nanotubes for Efficient Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 14244-14253.	4.0	17
683	Visualizing morphological principles for efficient photocurrent generation in organic non-fullerene acceptor blends. Energy and Environmental Science, 2020, 13, 1259-1268.	15.6	53
684	Effects of 1,8-diiodooctane on ultrafast charge carrier dynamics and photovoltaic performance in organic solar cells: A comparison of PC71BM and nonfullerene acceptor IT-M. Organic Electronics, 2020, 81, 105690.	1.4	3
686	Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers. Nature Communications, 2020, 11, 833.	5.8	130
687	Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy and Environmental Science, 2020, 13, 635-645.	15.6	636

#	Article	IF	CITATIONS
688	Molecular and Energetic Order Dominate the Photocurrent Generation Process in Organic Solar Cells with Small Energetic Offsets. ACS Energy Letters, 2020, 5, 589-596.	8.8	36
689	Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 2020, 70, 104480.	8.2	52
690	Balancing charge generation and voltage loss toward efficient nonfullerene organic solar cells. Materials Today Advances, 2020, 5, 100048.	2.5	23
691	N-doping of fullerene using 1,3,5-trimethylhexahydro-1,3,5-triazine as an electron transport layer for nonfullerene organic solar cells. Sustainable Energy and Fuels, 2020, 4, 1984-1990.	2.5	6
692	Functional transformation of four-bladed rylene propellers utilizing non-metal and d ⁸ metal core shifting strategy: significant impact on photovoltaic performance and electrocatalytic hydrogen evolution activity. Journal of Materials Chemistry A, 2020, 8, 3918-3932.	5.2	9
693	Nonfullerene Ternary Organic Solar Cell with Effective Charge Transfer between Two Acceptors. Journal of Physical Chemistry Letters, 2020, 11, 927-934.	2.1	29
694	Regioselective Bayâ€Functionalization of Perylenes Toward Tailorâ€Made Synthesis of Acceptor Materials for Organic Photovoltaics. ChemPlusChem, 2020, 85, 285-293.	1.3	13
695	High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nature Photonics, 2020, 14, 300-305.	15.6	713
696	Barrierless Free Charge Generation in the Highâ€Performance PM6:Y6 Bulk Heterojunction Nonâ€Fullerene Solar Cell. Advanced Materials, 2020, 32, e1906763.	11.1	258
697	Enhanced Operating Temperature Stability of Organic Solar Cells with Metal Oxide Hole Extraction Layer. Polymers, 2020, 12, 992.	2.0	21
698	A thiophene-fused benzotriazole unit as a "π-bridge―in A-ï€-D-ï€-A type acceptor to achieve more balanced JSC and VOC for OSCs. Organic Electronics, 2020, 82, 105705.	1.4	10
699	Achieving efficient green-solvent-processed organic solar cells by employing ortho-ortho perylene diimide dimer. Organic Electronics, 2020, 83, 105732.	1.4	7
700	Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 3226-3233.	2.1	94
701	Asymmetrically noncovalently fused-ring acceptor for high-efficiency organic solar cells with reduced voltage loss and excellent thermal stability. Nano Energy, 2020, 74, 104861.	8.2	75
702	Selective UV Absorbance of Copper Chalcogenide Nanoparticles for Enhanced Illumination Durability in Perovskite Photovoltaics. ACS Sustainable Chemistry and Engineering, 2020, 8, 7617-7627.	3.2	6
703	Dâ€A Polymer with a Donor Backbone ―Acceptorâ€sideâ€chain Structure for Organic Solar Cells. Asian Journal of Organic Chemistry, 2020, 9, 1301-1308.	1.3	6
704	Energy Loss in Organic Solar Cells: Mechanisms, Strategies, and Prospects. Solar Rrl, 2020, 4, 2000130.	3.1	59
705	Fused ring non-fullerene acceptors with benzothiophene dioxide end groups and their side chain effect investigations. Dyes and Pigments, 2020, 180, 108452.	2.0	9

#	Article	IF	CITATIONS
706	Quantifying Quasiâ€Fermi Level Splitting and Open ircuit Voltage Losses in Highly Efficient Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2000649.	3.1	19
707	On the Understandings of Dielectric Constant and Its Impacts on the Photovoltaic Efficiency in Organic Solar Cells. Chinese Journal of Chemistry, 2021, 39, 381-390.	2.6	48
708	Highâ€Mobility Organic Lightâ€Emitting Semiconductors and Its Optoelectronic Devices. Small Structures, 2021, 2, 2000083.	6.9	47
709	An Alternative Approach to Simulate the Power Conversion Efficiency of Bulk Heterojunction Organic Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000597.	0.8	14
710	Recent progress in reducing voltage loss in organic photovoltaic cells. Materials Chemistry Frontiers, 2021, 5, 709-722.	3.2	41
711	Organic Solar Cells—The Path to Commercial Success. Advanced Energy Materials, 2021, 11, 2002653.	10.2	287
712	Mapping the Density of States Distribution of Organic Semiconductors by Employing Energy Resolved–Electrochemical Impedance Spectroscopy. Advanced Functional Materials, 2021, 31, 2007738.	7.8	26
713	Molecular Design of Efficient Chlorine―and Carboxylateâ€Functionalized Donor Polymers for Nonfullerene Organic Solar Cells Enabling Processing with Ecoâ€Friendly Solvent in Air. Solar Rrl, 2021, 5, 2000608.	3.1	8
714	Highly electroluminescent and stable inorganic CsPbI2Br perovskite solar cell enabled by balanced charge transfer. Chemical Engineering Journal, 2021, 417, 128053.	6.6	24
715	Carboxylate substituted pyrazine: A simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells. Nano Energy, 2021, 82, 105679.	8.2	48
716	The Path to 20% Power Conversion Efficiencies in Nonfullerene Acceptor Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003441.	10.2	154
717	Effect of Alkyl Chain Lengths of Highly Crystalline Nonfullerene Acceptors on Open-Circuit Voltage of All-Small-Molecule Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 259-267.	2.5	4
718	Understanding of the Nearly Linear Tunable Open-Circuit Voltages in Ternary Organic Solar Cells Based on Two Non-fullerene Acceptors. Journal of Physical Chemistry Letters, 2021, 12, 151-156.	2.1	14
719	Rigidly Fused Spiro onjugated π‣ystems. ChemPlusChem, 2021, 86, 36-48.	1.3	37
720	Optimizing the oxygen reduction catalytic activity of a bipyridine-based polymer through tuning the molecular weight. Journal of Materials Chemistry A, 2021, 9, 3322-3327.	5.2	6
721	Synergistic effect of incorporating intra- and inter-molecular charge transfer in nonfullerene acceptor molecules for highly-efficient organic solar cells. Journal of Materials Chemistry A, 2021, 9, 16834-16840.	5.2	15
722	Revealing Morphology Evolution in Highly Efficient Bulk Heterojunction and Pseudoâ€Planar Heterojunction Solar Cells by Additives Treatment. Advanced Energy Materials, 2021, 11, 2003390.	10.2	106
723	A History and Perspective of Nonâ€Fullerene Electron Acceptors for Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003570.	10.2	323

#	Article	IF	CITATIONS
724	A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. Journal of Materials Chemistry A, 2021, 9, 15684-15695.	5.2	142
725	Functional materials for various organic electronic devices. , 2021, , 119-165.		2
726	A ternary organic solar cell with 15.6% efficiency containing a new DPP-based acceptor. Journal of Materials Chemistry C, 2021, 9, 16272-16281.	2.7	17
727	Optically Probing Field-Dependent Charge Dynamics in Non-Fullerene Organic Photovoltaics with Small Interfacial Energy Offsets. Journal of Physical Chemistry C, 2021, 125, 1714-1722.	1.5	5
728	Achieving ultra-narrow bandgap non-halogenated non-fullerene acceptors <i>via</i> vinylene l̃€-bridges for efficient organic solar cells. Materials Advances, 2021, 2, 2132-2140.	2.6	16
729	Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2021, 39, 525-536.	2.0	39
730	Improving the performance of organic solar cells by side chain engineering of fused ring electron acceptors. Journal of Materials Chemistry C, 2021, 9, 6937-6943.	2.7	13
731	Achieving small non-radiative energy loss through synergically non-fullerene electron acceptor selection and side chain engineering in benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran polymer-based organic solar cells. Journal of Materials Chemistry A, 2021, 9, 15798-15806.	5.2	14
732	17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy and Environmental Science, 2021, 14, 5903-5910.	15.6	116
733	Reducing non-radiative recombination energy loss <i>via</i> a fluorescence intensifier for efficient and stable ternary organic solar cells. Materials Horizons, 2021, 8, 2335-2342.	6.4	11
734	Cu(<scp>ii</scp>)-Porphyrin based near-infrared molecules: synthesis, characterization and photovoltaic application. New Journal of Chemistry, 2021, 45, 1601-1608.	1.4	4
735	Organic photovoltaic electron acceptors showing aggregation-induced emission for reduced nonradiative recombination. Chemical Communications, 2021, 57, 5135-5138.	2.2	10
736	Advances in Organic Photovoltaics. Acta Chimica Sinica, 2021, 79, 257.	0.5	28
737	Introducing methoxy or fluorine substitutions on the conjugated side chain to reduce the voltage loss of organic solar cells. Journal of Materials Chemistry C, 2021, 9, 11163-11171.	2.7	10
738	A universal method for constructing high efficiency organic solar cells with stacked structures. Energy and Environmental Science, 2021, 14, 2314-2321.	15.6	75
739	Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss. Journal of Materials Chemistry A, 2021, 9, 13522-13530.	5.2	23
740	Perylene diimide based non-fullerene acceptors: top performers and an emerging class featuring N-annulation. Journal of Materials Chemistry A, 2021, 9, 6775-6789.	5.2	63
741	Design of ultra-high luminescent polymers for organic photovoltaic cells with low energy loss. Chemical Communications, 2021, 57, 9132-9135.	2.2	12

#	Article	IF	CITATIONS
742	Water soluble organic electrochromic materials. RSC Advances, 2021, 11, 5245-5264.	1.7	28
743	Planar heterojunctions for reduced non-radiative open-circuit voltage loss and enhanced stability of organic solar cells. Journal of Materials Chemistry C, 2021, 9, 11715-11721.	2.7	13
744	Structural similarity induced improvement in the performance of organic solar cells based on novel terpolymer donors. Journal of Materials Chemistry A, 2021, 9, 9238-9247.	5.2	32
745	Modifying Surface Termination of CsPbl ₃ Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2021, 31, 2009515.	7.8	62
746	Unraveling the Temperature Dependence of Exciton Dissociation and Free Charge Generation in Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2000789.	3.1	10
747	Achieving Efficient Ternary Organic Solar Cells Using Structurally Similar Nonâ€Fullerene Acceptors with Varying Flanking Side Chains. Advanced Energy Materials, 2021, 11, 2100079.	10.2	80
748	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	7.2	107
749	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	1.6	18
750	High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. Journal of the American Chemical Society, 2021, 143, 2665-2670.	6.6	245
751	Rational Design of Donor–Acceptor Based Semiconducting Copolymers with High Dielectric Constants. Journal of Physical Chemistry C, 2021, 125, 6886-6896.	1.5	8
752	A Facile Synthesized Polymer Featuring Bâ€N Covalent Bond and Small Singletâ€Triplet Gap for Highâ€Performance Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8813-8817.	7.2	97
753	An Electron Acceptor Analogue for Lowering Trap Density in Organic Solar Cells. Advanced Materials, 2021, 33, e2008134.	11.1	91
754	Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nature Communications, 2021, 12, 1772.	5.8	27
755	Minimizing the Thickness of Ethoxylated Polyethylenimine to Produce Stable Lowâ€Work Function Interface for Nonfullerene Organic Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2000094.	2.8	11
756	Effect of alkyl side chains of twisted conjugated polymer donors on photovoltaic performance. Polymer, 2021, 218, 123475.	1.8	6
757	How the Size and Density of Charge-Transfer Excitons Depend on Heterojunction's Architecture. Journal of Physical Chemistry C, 2021, 125, 5458-5474.	1.5	6
758	Mechanistic Study of Charge Separation in a Nonfullerene Organic Donor–Acceptor Blend Using Multispectral Multidimensional Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 3410-3416.	2.1	11
759	A Facile Synthesized Polymer Featuring Bâ€N Covalent Bond and Small Singletâ€Triplet Gap for Highâ€Performance Organic Solar Cells. Angewandte Chemie, 2021, 133, 8895-8899.	1.6	25

#	Article	IF	CITATIONS
760	Ternary organic solar cells based on non-fullerene acceptors: A review. Organic Electronics, 2021, 90, 106063.	1.4	62
761	Recent Developments in Organic Tandem Solar Cells toward High Efficiency. Advanced Energy and Sustainability Research, 2021, 2, 2000050.	2.8	12
762	Nonhalogenated Solvent-Processed High-Performance Indoor Photovoltaics Made of New Conjugated Terpolymers with Optimized Monomer Compositions. ACS Applied Materials & Interfaces, 2021, 13, 13487-13498.	4.0	14
763	Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells. Journal of the American Chemical Society, 2021, 143, 7599-7603.	6.6	59
764	Photocurrent-Detected 2D Electronic Spectroscopy Reveals Ultrafast Hole Transfer in Operating PM6/Y6 Organic Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 3983-3988.	2.1	26
765	Configurational Isomers Induced Significant Difference in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2021, 31, 2100877.	7.8	58
766	Hydrogenâ€Bondâ€Induced High Performance Semitransparent Ternary Organic Solar Cells with 14% Efficiency and Enhanced Stability. Advanced Optical Materials, 2021, 9, 2100064.	3.6	26
767	Double-Cable Conjugated Polymers with Pendant Rylene Diimides for Single-Component Organic Solar Cells. Accounts of Chemical Research, 2021, 54, 2227-2237.	7.6	67
768	Importance of Terminal Group Pairing of Polymer Donor and Smallâ€Molecule Acceptor in Optimizing Blend Morphology and Voltage Loss of Highâ€Performance Solar Cells. Advanced Functional Materials, 2021, 31, 2100870.	7.8	34
769	Voltage loss analysis of novel non-fullerene acceptors with chlorinated non-conjugated thienyl chains. Dyes and Pigments, 2021, 188, 109162.	2.0	10
770	Indacenodithiophene (IDT) and indacenodithienothiophene (IDTT)-based acceptors for non-fullerene organic solar cells. Synthetic Metals, 2021, 274, 116736.	2.1	12
771	Solvent Annealing Enables 15.39% Efficiency Allâ€Smallâ€Molecule Solar Cells through Improved Molecule Interconnection and Reduced Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2100800.	10.2	86
772	Tuning the Molecular Weight of <scp>Chlorine‣ubstituted</scp> Polymer Donors for Small Energy Loss ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1651-1658.	2.6	20
773	Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6, 605-613.	19.8	1,307
774	Factors That Prevent Spin-Triplet Recombination in Non-fullerene Organic Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 5045-5051.	2.1	7
775	Highly Efficient Non-Fused-Ring Electron Acceptors Enabled by the Conformational Lock and Structural Isomerization Effects. ACS Applied Materials & Interfaces, 2021, 13, 25214-25223.	4.0	30
776	Backbone regulation of a bithiazole-based wide bandgap polymer donor by introducing thiophene bridges towards efficient polymer solar cells. Organic Electronics, 2021, 92, 106130.	1.4	2
777	A comparative study of PffBT4T-2OD/EH-IDTBR and PffBT4T-2OD/PC71BM organic photovoltaic heterojunctions. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 412, 113225.	2.0	9

#	Article	IF	CITATIONS
778	Near-infrared absorbing non-fullerene acceptors with unfused D-A-D core for efficient organic solar cells. Organic Electronics, 2021, 92, 106131.	1.4	5
779	Synergistic Effect of Dielectric Property and Energy Transfer on Charge Separation in Nonâ€Fullereneâ€Based Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 15054-15062.	7.2	30
780	A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor. Joule, 2021, 5, 1231-1245.	11.7	95
781	Efficient Charge Transport Enables High Efficiency in Dilute Donor Organic Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 5039-5044.	2.1	41
782	Ï€-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV. ACS Applied Materials & Interfaces, 2021, 13, 22531-22539.	4.0	22
783	Molecular Properties and Aggregation Behavior of Small-Molecule Acceptors Calculated by Molecular Simulation. ACS Omega, 2021, 6, 14467-14475.	1.6	5
784	Push or Pull Electrons: Acetoxy and Carbomethoxy-Substituted Isomerisms in Organic Solar Cell Acceptors. Journal of Physical Chemistry Letters, 2021, 12, 4666-4673.	2.1	10
785	Synergistic Effect of Dielectric Property and Energy Transfer on Charge Separation in Nonâ€Fullereneâ€Based Solar Cells. Angewandte Chemie, 2021, 133, 15181-15189.	1.6	2
786	Wide-Band Gap Small-Molecule Donors with Diester-Terthiophene Bridged Units for High-Efficiency All-Small-Molecule Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 5868-5876.	2.5	7
787	Over 13% Efficient Organic Solar Cells Based on Lowâ€Cost Pentacyclic Aâ€DA′Dâ€Aâ€Type Nonfullerene Acceptor. Solar Rrl, 2021, 5, 2100281.	3.1	17
788	Morphology Inversion of a Nonâ€Fullerene Acceptor Via Adhesion Controlled Decalâ€Coating for Efficient Conversion and Detection in Organic Electronics. Advanced Functional Materials, 2021, 31, 2103705.	7.8	15
789	Narrowâ€Bandgap Singleâ€Component Polymer Solar Cells with Approaching 9% Efficiency. Advanced Materials, 2021, 33, e2101295.	11.1	53
790	Tricyclic or Pentacyclic D Units: Design of Dâ^'ï€â€"A-Type Copolymers for High <i>V</i> _{OC} Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2021, 13, 30756-30765.	4.0	16
791	End-Group Modifications with Bromine and Methyl in Nonfullerene Acceptors: The Effect of Isomerism. ACS Applied Materials & Interfaces, 2021, 13, 29737-29745.	4.0	10
792	An Overview of Highâ€Performance Indoor Organic Photovoltaics. ChemSusChem, 2021, 14, 3428-3448.	3.6	21
793	Pathways towards Boosting Solarâ€Driven Hydrogen Evolution of Conjugated Polymers. Small, 2021, 17, e2007576.	5.2	36
794	Non-fullerene acceptors based on multiple non-covalent interactions for low cost and air stable organic solar cells. Organic Electronics, 2021, 93, 106132.	1.4	18
795	Reducing Nonâ€Radiative Voltage Losses by Methylation of Push–Pull Molecular Donors in Organic Solar Cells. ChemSusChem, 2021, 14, 3622-3631.	3.6	4

#	Article	IF	CITATIONS
796	Morphology of Perylene Dimide based Polymer Non-Fullerene Solar Cells: Effect of Thermal Annealing. Microscopy and Microanalysis, 2021, 27, 2430-2431.	0.2	0
797	New tailored organic semiconductors thin films for optoelectronic applications. EPJ Applied Physics, 2021, 95, 10201.	0.3	16
798	Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells. Joule, 2021, 5, 1832-1844.	11.7	98
799	High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4, 2542-2552.	5.0	118
800	Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics. Nature Communications, 2021, 12, 4627.	5.8	98
801	Enhanced Charge Separation in Ternary Bulk-Heterojunction Organic Solar Cells by Fullerenes. Journal of Physical Chemistry Letters, 2021, 12, 6418-6424.	2.1	10
802	Controlling solid-state structure and film morphology in non-fullerene organic photovoltaic devices. Canadian Journal of Chemistry, 2021, 99, 921-932.	0.6	2
803	Theoretical Study on Understanding the Effects of Core Structure and Energy Level Tuning on Efficiency of Nonfullerene Acceptors in Organic Solar Cells. Advanced Theory and Simulations, 2021, 4, 2100019.	1.3	5
804	Ester-substituted copolymer-based ternary semitransparent polymer solar cells with enhanced FF and PCE. Polymer, 2021, 229, 123973.	1.8	3
805	Marcus Hole Transfer Governs Charge Generation and Device Operation in Nonfullerene Organic Solar Cells. ACS Energy Letters, 2021, 6, 2971-2981.	8.8	41
806	Recent Advances of Furan and Its Derivatives Based Semiconductor Materials for Organic Photovoltaics. Small Methods, 2021, 5, e2100493.	4.6	49
807	Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nature Communications, 2021, 12, 5093.	5.8	210
808	Fine Tuning Miscibility of Donor/Acceptor through Solid Additives Enables Allâ€Polymer Solar Cells with 15.6% Efficiency. Solar Rrl, 2021, 5, 2100549.	3.1	23
809	Symmetry-Induced Orderly Assembly Achieving High-Performance Perylene Diimide-Based Nonfullerene Organic Solar Cells. CCS Chemistry, 2021, 3, 78-84.	4.6	64
810	Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chinese Journal of Chemistry, 2021, 39, 2607-2625.	2.6	62
811	Quantification of Temperatureâ€Dependent Charge Separation and Recombination Dynamics in Nonâ€Fullerene Organic Photovoltaics. Advanced Functional Materials, 2021, 31, 2107157.	7.8	13
812	Short Excitedâ€State Lifetimes Mediate Chargeâ€Recombination Losses in Organic Solar Cell Blends with Low Chargeâ€Transfer Driving Force. Advanced Materials, 2022, 34, e2101784.	11.1	11
813	A Benzobis(thiazole)-Based Wide Bandgap Polymer Donor Enables over 15% Efficiency Organic Photovoltaics with a Flat Energetic Offset. Macromolecules, 2021, 54, 7862-7869.	2.2	17

#	Article	IF	Citations
814	Efficient tuning of small acceptor chromophores with A1-ï€-A2-ï€-A1 configuration for high efficacy of organic solar cells via end group manipulation. Journal of Saudi Chemical Society, 2021, 25, 101305.	2.4	53
815	Capture the high-efficiency non-fullerene ternary organic solar cells formula by machine-learning-assisted energy-level alignment optimization. Patterns, 2021, 2, 100333.	3.1	14
816	Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule, 2021, 5, 2408-2419.	11.7	419
817	A carbazole-based dopant-free hole-transport material for perovskite solar cells by increasing the molecular conjugation. Organic Electronics, 2021, 96, 106244.	1.4	2
818	Different Morphology Dependence for Efficient Indoor Organic Photovoltaics: The Role of the Leakage Current and Recombination Losses. ACS Applied Materials & Interfaces, 2021, 13, 44604-44614.	4.0	13
819	Charge Transfer Mechanisms Regulated by the Third Component in Ternary Organic Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 8982-8990.	2.1	17
820	Effect of fluorine atoms on optoelectronic, aggregation and dielectric constants of 2,1,3-benzothiadiazole-based alternating conjugated polymers. Dyes and Pigments, 2021, 193, 109486.	2.0	18
821	Ultrafast Fluctuations in PM6 Domains of Binary and Ternary Organic Photovoltaic Thin Films Probed with Two-Dimensional White-Light Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 8972-8979.	2.1	3
822	Enhancing the Photovoltaic Performance of Triplet Acceptors Enabled by Side hain Engineering. Solar Rrl, 2021, 5, 2100522.	3.1	12
823	18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction. Advanced Materials, 2021, 33, e2103091.	11.1	136
824	Isomerism: Minor Changes in the Bromine Substituent Positioning Lead to Notable Differences in Photovoltaic Performance. CCS Chemistry, 2021, 3, 2591-2601.	4.6	30
825	Organic Ternary Bulk Heterojunction Broadband Photodetectors Based on Nonfullerene Acceptors with a Spectral Response Range from 200 to 1050 nm. Journal of Physical Chemistry C, 2021, 125, 20676-20685.	1.5	4
826	Photodynamic Investigation on the Synergistic Effects of Aromatic Side Chains with Alkylthio Substituents in Nonfullerene Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 9913-9922.	2.5	1
827	Transparent organic photovoltaics: A strategic niche to advance commercialization. Joule, 2021, 5, 2261-2272.	11.7	44
828	Achieving 18.14% Efficiency of Ternary Organic Solar Cells with Alloyed Nonfullerene Acceptor. Small Structures, 2021, 2, 2100099.	6.9	16
829	Solution-processable infrared photodetectors: Materials, device physics, and applications. Materials Science and Engineering Reports, 2021, 146, 100643.	14.8	49
830	Fused-ring acceptors based on quinoxaline unit for highly efficient single-junction organic solar cells with low charge recombination. Organic Electronics, 2021, 98, 106282.	1.4	4
831	Prediction of non-radiative voltage losses in organic solar cells using machine learning. Solar Energy, 2021, 228, 175-186.	2.9	13

#	Article	IF	CITATIONS
832	Noncovalent interaction enables planar and efficient propeller-like perylene diimide acceptors for polymer solar cells. Chemical Engineering Journal, 2021, 426, 131910.	6.6	12
833	Optimizing side chains on different nitrogen aromatic rings achieving 17% efficiency for organic photovoltaics. Journal of Energy Chemistry, 2022, 65, 173-178.	7.1	22
834	Electronic and assembly properties of a water-soluble blue naphthalene diimide. New Journal of Chemistry, 2021, 45, 14005-14013.	1.4	2
835	Lower limits for non-radiative recombination loss in organic donor/acceptor complexes. Materials Horizons, 2022, 9, 325-333.	6.4	12
836	Organic Photovoltaics: Understanding the Preaggregation of Polymer Donors in Solution and Its Morphological Impact. Journal of the American Chemical Society, 2021, 143, 1822-1835.	6.6	39
837	Recent advances in PM6:Y6-based organic solar cells. Materials Chemistry Frontiers, 2021, 5, 3257-3280.	3.2	138
838	Highly efficient ITO-free organic solar cells with a column-patterned microcavity. Energy and Environmental Science, 2021, 14, 3010-3018.	15.6	29
839	Interfacial energetic disorder induced by the molecular packing structure at conjugated polymer-based donor/acceptor heterojunctions. Journal of Materials Chemistry C, 2021, 9, 13761-13769.	2.7	4
840	Photoactive Material for Highly Efficient and All Solutionâ€Processed Organic Photovoltaic Modules: Study on the Efficiency, Stability, and Synthetic Complexity. Solar Rrl, 2021, 5, 2000749.	3.1	29
841	Investigation analysis of optoelectronic and structural properties of cis―and transâ€structures of azo dyes: density functional theory study. Journal of Physical Organic Chemistry, 2021, 34, e4183.	0.9	6
842	Efficient ternary polymer solar cell using wide bandgap conjugated polymer donor with two nonâ€fullerene small molecule acceptors enabled power conversion efficiency of 16% with low energy loss of 0.47 eV. Nano Select, 2021, 2, 1326-1335.	1.9	2
843	Research Advances on Benzotriazole-based Organic Photovoltaic Materials. Acta Chimica Sinica, 2021, 79, 820.	0.5	10
844	Recent advances of dithienobenzodithiophene-based organic semiconductors for organic electronics. Science China Chemistry, 2021, 64, 358-384.	4.2	30
845	Molecular design towards two-dimensional electron acceptors for efficient non-fullerene solar cells. Journal of Energy Chemistry, 2020, 51, 190-198.	7.1	3
846	Hybrid Nonfused-Ring Electron Acceptors with Fullerene Pendant for High-Efficiency Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 1603-1611.	4.0	19
847	Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. Nature Communications, 2020, 11, 617.	5.8	28
848	Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nature Energy, 2018, 3, 720-731.	19.8	808
849	Aggregation of non-fullerene acceptors in organic solar cells. Journal of Materials Chemistry A, 2020, 8, 15607-15619.	5.2	99

#	Article	IF	CITATIONS
850	A privileged ternary blend enabling non-fullerene organic photovoltaics with over 14% efficiency. Journal of Materials Chemistry C, 2020, 8, 15135-15141.	2.7	4
851	Soft X-Ray Scattering Characterization of Polymer Semiconductors. , 2019, , 427-458.		9
852	Flexible and stretchable inorganic optoelectronics. Optical Materials Express, 2019, 9, 4023.	1.6	35
853	Distributions of Potential and Contact-Induced Charges in Conventional Organic Photovoltaics. Materials, 2020, 13, 2411.	1.3	4
854	Aggregation Controlled Charge Generation in Fullerene Based Bulk Heterojunction Polymer Solar Cells: Effect of Additive. Polymers, 2021, 13, 115.	2.0	6
855	Multieffect Coupled Nanogenerators. Research, 2020, 2020, 6503157.	2.8	9
856	Improving the device performance of organic solar cells with immiscible solid additives. Journal of Materials Chemistry C, 2022, 10, 2749-2756.	2.7	8
857	Designs and understanding of small molecule-based non-fullerene acceptors for realizing commercially viable organic photovoltaics. Chemical Science, 2021, 12, 14004-14023.	3.7	22
858	Slip‣tacked Jâ€Aggregate Materials for Organic Solar Cells and Photodetectors. Advanced Materials, 2022, 34, e2104678.	11.1	77
859	In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics. EScience, 2021, 1, 91-97.	25.0	79
860	Water Transfer Printing of Multilayered Nearâ€Infrared Organic Photodetectors. Advanced Optical Materials, 2022, 10, 2101837.	3.6	14
862	Gradual chlorination at different positions of D-ï€-A copolymers based on benzodithiophene and isoindigo for organic solar cells. Materials Reports Energy, 2021, 1, 100065.	1.7	3
863	Slow Relaxation of Photogenerated Charge Carriers Boosts Open-Circuit Voltage of Organic Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 9874-9881.	2.1	15
864	Triarylborane-BODIPY conjugate: An efficient non-fullerene electron acceptor for bulk heterojunction organic solar cell. Solar Energy, 2021, 230, 242-249.	2.9	8
865	Molecular Design of Highly Efficient Organic Photovoltaic Materials. , 2018, , .		0
866	Environment friendly solvent processed, fullerene-free organic solar cells with high efficiency in air. , 2018, , .		0
867	Air-Stable Optoelectronic Devices with Metal Oxide Cathodes. , 2019, , 413-422.		1
868	Photophysics in organic solar cells. , 2020, , 1-24.		0

#	Article	IF	CITATIONS
869	Fluorinated Perylene Diimide Dimer for Organic Solar Cells as Nonâ€fullerene Acceptor. Asian Journal of Organic Chemistry, 2021, 10, 3374-3379.	1.3	11
870	Beyond Conformational Control: Effects of Noncovalent Interactions on Molecular Electronic Properties of Conjugated Polymers. Jacs Au, 2021, 1, 2182-2187.	3.6	8
871	Strongly Reduced Non-Radiative Voltage Losses in Organic Solar Cells Prepared with Sequential Film Deposition. Journal of Physical Chemistry Letters, 2021, 12, 10663-10670.	2.1	8
872	Nonfused Ring Electron Acceptors with a Small Side-Chain Difference Lead to Vastly Different Power Conversion Efficiencies: Impact of Aggregation. Journal of Physical Chemistry C, 2021, 125, 23613-23621.	1.5	8
873	A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nature Energy, 2021, 6, 1045-1053.	19.8	230
874	Dithienopyrrole-based Organic Electroactive Materials and Their Photovoltaic Aspects. Current Organic Chemistry, 2020, 24, 2695-2736.	0.9	0
875	Device Physics in Organic Solar Cells and Drift-Diffusion Simulations. , 2020, , 1-36.		1
876	Charge Transfer State and Voltage Losses in Organic Solar Cells. , 2020, , 1-24.		0
877	Atomic-scale Modelling of Redox-active Organic Molecules and Polymers for Energy Applications. RSC Polymer Chemistry Series, 2020, , 93-136.	0.1	0
878	The Voltage Loss in Tin Halide Perovskite Solar Cells: Origins and Perspectives. Advanced Functional Materials, 2022, 32, 2108832.	7.8	43
879	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	7.8	18
880	Energy harvesting nanogenerators: Electrospun β-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs. Solid State Sciences, 2021, 122, 106772.	1.5	10
881	Short and long-range electron transfer compete to determine free-charge yield in organic semiconductors. Materials Horizons, 2022, 9, 312-324.	6.4	4
882	Chlorination Enabling a Low ost Benzodithiopheneâ€Based Wideâ€Bandgap Donor Polymer with an Efficiency of over 17%. Advanced Materials, 2022, 34, e2105483.	11.1	53
883	Polymer Based Functional Materials: A New Generation Photoâ€active Candidate for Electrochemical Application. Electroanalysis, 2022, 34, 773-786.	1.5	3
884	Heavyâ€Atomâ€Free Roomâ€Temperature Phosphorescent Rylene Imide for Highâ€Performing Organic Photovoltaics. Advanced Science, 2022, 9, e2103975.	5.6	12
885	Kinetics Manipulation Enables Highâ€Performance Thick Ternary Organic Solar Cells via R2R ompatible Slotâ€Die Coating. Advanced Materials, 2022, 34, e2105114.	11.1	72
886	Synchronously regulating the alkyl side-chain and regioisomer of polymerized small molecule acceptor enabling highly efficient all-polymer solar cells processed with non-halogenated solvent. Chemical Engineering Journal, 2022, 433, 133575.	6.6	22

#	Article	IF	CITATIONS
887	A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. Advanced Materials, 2022, 34, e2101833.	11.1	55
888	Spiro Compounds for Organic Light-Emitting Diodes. Accounts of Materials Research, 2021, 2, 1261-1271.	5.9	64
889	Noncovalent Conformational Locks Enabling Efficient Nonfullerene Acceptors. Solar Rrl, 2022, 6, 2100768.	3.1	13
890	Effect of Third Component on Efficiency and Stability in Ternary Organic Solar Cells: More than a Simple Superposition. Solar Rrl, 2022, 6, 2100819.	3.1	32
891	Effects of Halogenation on the Benzotriazole Unit of Non-Fullerene Acceptors in Organic Solar Cells with High Voltages. ACS Applied Materials & amp; Interfaces, 2021, 13, 58994-59005.	4.0	22
892	Developing Efficient Small Molecule Acceptors with sp ² â€Hybridized Nitrogen at Different Positions by Density Functional Theory Calculations, Molecular Dynamics Simulations and Machine Learning. Chemistry - A European Journal, 2022, 28, .	1.7	94
893	Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chemical Society Reviews, 2021, 50, 13372-13409.	18.7	10
894	Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells. Nano Energy, 2022, 93, 106846.	8.2	29
895	Recent progress in organic solar cells based on non-fullerene acceptors: materials to devices. Journal of Materials Chemistry A, 2022, 10, 3255-3295.	5.2	105
896	The Synthesis of Asymmetric Perylene Diimide Acceptors and Their Optoelectronic Properties Studies. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
897	Nanometer-scaled landscape of polymer: fullerene blends mapped with visible s-SNOM. Nanotechnology, 2022, 33, 165702.	1.3	1
898	Enhancing organic photovoltaic performance with 3D-transport dual nonfullerene acceptors. Journal of Materials Chemistry A, 2022, 10, 1948-1955.	5.2	11
899	Low nonradiative energy losses within 0.2 eV in efficient non-fullerene all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2800-2806.	2.7	9
900	Compromising Charge Generation and Recombination with Asymmetric Molecule for Highâ€Performance Binary Organic Photovoltaics with Over 18% Certified Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	62
901	Design of Nonfused Nonfullerene Acceptors Based on Pyrido- or Benzothiadiazole Cores for Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 2202-2210.	2.5	14
902	Ultrafast carrier dynamics at organic donor–acceptor interfaces—a quantum-based assessment of the hopping model. JPhys Materials, 2022, 5, 024001.	1.8	6
903	On the energy gap determination of organic optoelectronic materials: the case of porphyrin derivatives. Materials Advances, 2022, 3, 1791-1803.	2.6	21
904	The Subtle Structure Modulation of A ₂ â€A ₁ â€Dâ€A ₁ â€A ₂ Nonfullerene Acceptors Extends the Photoelectric Response for Highâ€Voltage Organic Photovoltaic Cells. Macromolecular Rapid Communications, 2022, 43, e2100810.	Туре 2.0	5

#	Article	lF	CITATIONS
905	Novel Oligomer Enables Green Solvent Processed 17.5% Ternary Organic Solar Cells: Synergistic Energy Loss Reduction and Morphology Fineâ€Tuning. Advanced Materials, 2022, 34, e2107659.	11.1	57
906	Photoinduced Charge Transfer and Recombination Dynamics in Star Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 1123-1130.	2.1	27
907	Strengthening the Intermolecular Interaction of Prototypical Semicrystalline Conjugated Polymer Enables Improved Photocurrent Generation at the Heterojunction. Macromolecular Rapid Communications, 2022, 43, e2100871.	2.0	9
908	Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency. Energy and Environmental Science, 2022, 15, 1256-1270.	15.6	21
909	Molecular Doping Increases the Semitransparent Photovoltaic Performance of Dilute Bulk Heterojunction Film with Discontinuous Polymer Donor Networks. Small Methods, 2022, 6, e2101570.	4.6	14
910	Highâ€Performance All‧mallâ€Molecule Organic Solar Cells Enabled by Regioâ€Isomerization of Noncovalently Conformational Locks. Advanced Functional Materials, 2022, 32, .	7.8	34
911	Nonâ€Radiative Recombination Energy Losses in Nonâ€Fullerene Organic Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	58
912	Perylene Diimide-Based Oligomers and Polymers for Organic Optoelectronics. Accounts of Materials Research, 2022, 3, 309-318.	5.9	58
913	Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component. Nano Research, 2022, 15, 3222-3229.	5.8	14
914	A linear 2D-conjugated polymer based on 4,8-bis(4-chloro-5-tripropylsilyl-thiophen-2-yl)benzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophene (BDT-T-SiCl) for low voltage loss organic photovoltaics. Journal of Materials Chemistry A, 2022, 10, 9869-9877.	5.2	17
915	Morphology evolution <i>via</i> solvent optimization enables all-polymer solar cells with improved efficiency and reduced voltage loss. Journal of Materials Chemistry C, 2022, 10, 6710-6716.	2.7	8
916	Spirocyclic side chain of a non-fullerene acceptor enables efficient organic solar cells with reduced recombination loss and energetic disorder. RSC Advances, 2022, 12, 6573-6582.	1.7	5
917	Progress in perylene diimides for organic solar cell applications. RSC Advances, 2022, 12, 6966-6973.	1.7	33
918	The Renaissance of Oligothiopheneâ€Based Donor–Acceptor Polymers in Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	43
919	Stoichiometric Dissolution of Defective CsPbI ₂ Br Surfaces for Inorganic Solar Cells with 17.5% Efficiency. Advanced Energy Materials, 2022, 12, .	10.2	66
920	Influence of Large Steric Hinderance Substituent Position on Conformation and Charge Transfer Process for Nonâ€Fused Ring Acceptors. Small Methods, 2022, 6, e2200007.	4.6	20
921	Solvent effects on excited-state relaxation dynamics of paddle-wheel BODIPY-Hexaoxatriphenylene conjugates: Insights from non-adiabatic dynamics simulations. Chinese Journal of Chemical Physics, 2022, 35, 117-128.	0.6	0
922	Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Research, 2023, 16, 4310-4364.	5.8	34

#	Article	IF	CITATIONS
924	Cold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 11708-11717.	4.0	11
925	Static and Dynamic Disorder of Charge Transfer States Probed by Optical Spectroscopy. Advanced Energy Materials, 2022, 12, .	10.2	7
928	Identifying correlation between the open-circuit voltage and the frontier orbital energies of non-fullerene organic solar cells based on interpretable machine-learning approaches. Solar Energy, 2022, 234, 360-367.	2.9	22
929	Revealing the Sole Impact of Acceptor's Molecular Conformation to Energy Loss and Device Performance of Organic Solar Cells through Positional Isomers. Advanced Science, 2022, 9, e2103428.	5.6	9
930	The Molecular Ordering and Doubleâ€Channel Carrier Generation of Nonfullerene Photovoltaics within Multi‣engthâ€Scale Morphology. Advanced Materials, 2022, 34, e2108317.	11.1	43
931	Insight the difference of free charge generation in two small molecular accepter organic solar cells. Solar Energy, 2022, 235, 163-169.	2.9	1
932	Effect of the Selective Halogenation of Small Molecule Acceptors on the Blend Morphology and Voltage Loss of Highâ€Performance Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	27
933	Carrier Generation Engineering toward 18% Efficiency Organic Solar Cells by Controlling Film Microstructure. Advanced Energy Materials, 2022, 12, .	10.2	25
934	Reciprocally Photovoltaic Lightâ€Emitting Diode Based on Dispersive Perovskite Nanocrystal. Small, 2022, 18, e2107145.	5.2	7
935	Ternary organic solar cells with enhanced charge transfer and stability combining the advantages of polymer acceptors and fullerene acceptors. Organic Electronics, 2022, 104, 106471.	1.4	10
936	Role of Electronic States and Their Coupling on Radiative Losses of Open-Circuit Voltage in Organic Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 60279-60287.	4.0	6
937	Photoinduced Electron Transfer and Changes in Surface Free Energy in Polythiophene-Polyviologen Bilayered Thin Films. ACS Polymers Au, 0, , .	1.7	2
938	Perylene-diimide derived organic photovoltaic materials. Science China Chemistry, 2022, 65, 462-485.	4.2	43
939	Perovskite Bifunctional Diode with High Photovoltaic and Electroluminescent Performance by Holistic Defect Passivation. Small, 2022, 18, e2105196.	5.2	9
940	Toward Highâ€Performance Semitransparent Organic Photovoltaics with Narrowâ€Bandgap Donors and Nonâ€Fullerene Acceptors. Advanced Energy Materials, 2022, 12, .	10.2	45
941	Unraveling the Chargeâ€Carrier Dynamics from the Femtosecond to the Microsecond Time Scale in Doubleâ€Cable Polymerâ€Based Singleâ€Component Organic Solar Cells. Advanced Energy Materials, 2022, 12, 2103406.	10.2	15
942	Harnessing Intramolecular Chalcogen–Chalcogen Bonding in Merocyanines for Utilization in High-Efficiency Photon-to-Current Conversion Optoelectronics. ACS Applied Materials & Interfaces, 2022, 14, 4360-4370.	4.0	4
943	Highly Efficient All-Polymer Solar Cells from a Dithieno[3,2- <i>f</i> :2′,3′- <i>h</i>]quinoxaline-Based Wide Band Gap Donor. Macromolecules, 2021, 54, 11468-11477.	2.2	19

#	Article	IF	CITATIONS
944	Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nature Communications, 2022, 13, 2046.	5.8	41
945	Engineering Non-fullerene Acceptors as a Mechanism to Control Film Morphology and Energy Loss in Organic Solar Cells. Energy & Fuels, 2022, 36, 4691-4707.	2.5	17
946	Promoting the photovoltaic performance and stability of organic solar cells by imidazole-doped PEDOT:PSS. Journal of Materials Science: Materials in Electronics, 2022, 33, 12083-12092.	1.1	2
947	Efficient Medium Bandgap Electron Acceptor Based on Diketopyrrolopyrrole and Furan for Efficient Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, , .	4.0	7
948	PTB7-Th-Based Organic Photovoltaic Cells with a High <i>V</i> _{OC} of over 1.0 V <i>via</i> Fluorination and Side Chain Engineering of Benzotriazole-Containing Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2022, 14, 18764-18772.	4.0	15
949	Perovskite–organic tandem solar cells with indium oxide interconnect. Nature, 2022, 604, 280-286.	13.7	181
950	p-nitrophenol-terminated alkyl side chain substituted polymer as high dielectric constant polymer additive enables efficient organic solar cells. Optical Materials, 2022, 127, 112347.	1.7	1
955	15.8% efficiency all-small-molecule solar cells enabled by a combination of side-chain engineering and polymer additive. Journal of Materials Chemistry A, 2022, 10, 10926-10934.	5.2	12
956	Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 0, , 1.	2.0	2
957	Downward Homogenized Crystallization for Inverted Wideâ€Bandgap Mixedâ€Halide Perovskite Solar Cells with 21% Efficiency and Suppressed Photoâ€Induced Halide Segregation. Advanced Functional Materials, 2022, 32, .	7.8	63
958	Designing High-Performance Nonfused Ring Electron Acceptors <i>via</i> Synergistically Adjusting Side Chains and Electron-Withdrawing End-Groups. ACS Applied Materials & Interfaces, 2022, 14, 21287-21294.	4.0	12
959	Graphdiyne oxide-accelerated charge carrier transfer and separation at the interface for efficient binary organic solar cells. Science China Materials, 2022, 65, 2647-2656.	3.5	4
960	Suppressing non-radiative loss via a low-cost solvent additive enables high-stable all-polymer solar cells with 16.13% efficiency. Chemical Engineering Journal, 2022, 446, 136877.	6.6	9
961	Improving Thermal and Photostability of Polymer Solar Cells by Robust Interface Engineering. Small, 2022, 18, e2107834.	5.2	8
962	Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the Efficiency of Ternary Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 23701-23708.	4.0	13
963	New wide band gap ï€-conjugated copolymers based on anthra[1,2-b: 4,3-b': 6,7-c''] trithiophene-8,12-dione for high performance non-fullerene polymer solar cells with an efficiency of 15.07 %. Polymer, 2022, 251, 124892.	1.8	6
964	Organic Photovoltaic Cells: Opportunities and Challenges. Materials Horizons, 2022, , 499-550.	0.3	1
965	Effects of energetic disorder in bulk heterojunction organic solar cells. Energy and Environmental Science, 2022, 15, 2806-2818.	15.6	57

#	Article	IF	CITATIONS
966	Re-Examining Open-Circuit Voltage in Dilute-Donor Organic Photovoltaics. Journal of Physical Chemistry C, 2022, 126, 9275-9283.	1.5	1
967	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
968	Interface Modification with Holistically Designed Push–Pull D–π–A Organic Small Molecule Facilitates Band Alignment Engineering, Efficient Defect Passivation, and Enhanced Hydrophobicity in Mixed Cation Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6783-6796.	2.5	11
969	Wide Bandgap Dâ€A Copolymer Based on BDTTz Donor and TPD Acceptor for Polymer Solar Cells Using Fullerene and Nonâ€Fullerene Acceptors. Energy Technology, 0, , .	1.8	1
970	Highly efficient ternary solar cells with reduced non-radiative energy loss and enhanced stability <i>via</i> two compatible non-fullerene acceptors. Journal of Materials Chemistry A, 2022, 10, 15605-15613.	5.2	19
971	Progress of Monomeric Perylene Diimide Derivatives As Non-Fullerene Acceptors for Organic Solar Cells. Journal of Electronic Materials, 2022, 51, 4224-4237.	1.0	7
972	Blueshifting the Absorption of a Smallâ€Molecule Donor and Using it as the Third Component to Achieve High‣fficiency Ternary Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	8
973	Bananaâ€shaped electron acceptors with an electronâ€rich core fragment and 3D packing capability. , 2023, 5, .		22
974	Conjugated polymers for solar cell applications. , 2022, , 367-401.		2
975	High-performance ternary solar cells by introducing a medium bandgap acceptor with complementary absorption, reducing energy disorder and enhancing glass transition temperature. Journal of Materials Chemistry A, 2022, 10, 17122-17131.	5.2	17
976	End-group modification of non-fullerene acceptors enables efficient organic solar cells. Journal of Materials Chemistry C, 2022, 10, 10389-10395.	2.7	8
977	Rationally regulating the terminal unit and copolymerization spacer of polymerized small-molecule acceptors for all-polymer solar cells with high open-circuit voltage over 1.10 V. Journal of Materials Chemistry A, 0, , .	5.2	6
978	An electron acceptor featuring a B–N covalent bond and small singlet–triplet gap for organic solar cells. Chemical Communications, 2022, 58, 8686-8689.	2.2	18
979	Anionâ€Induced Catalytic Reaction in a Solutionâ€Processed Molybdenum Oxide for Efficient Inverted Ternary Organic Photovoltaics. Advanced Functional Materials, 2022, 32, .	7.8	3
980	Can Isotope Effects Enable Organic Solar Cells to Achieve Smaller Non-Radiative Energy Losses and Why?. Chemistry of Materials, 2022, 34, 6009-6025.	3.2	19
981	Subtle Alignment of Organic Semiconductors at the Donor/Acceptor Heterojunction Facilitates the Photoelectric Conversion Process. Chinese Journal of Polymer Science (English Edition), 2022, 40, 951-959.	2.0	4
982	Î ³ -Ester-Functionalized 1,1-Dicyanomethylene-3-indanone End-Capped Nonfullerene Acceptors for High-Performance, Annealing-Free Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 33614-33625.	4.0	12
983	Central Unit Fluorination of Nonâ€Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency. Angewandte Chemie, 2022, 134, .	1.6	7

#	Article	IF	CITATIONS
984	Rational design of fused-ring based non-fullerene acceptors for high performance organic solar cells. Solar Energy, 2022, 242, 201-211.	2.9	8
985	Central Unit Fluorination of Nonâ€Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency. Angewandte Chemie - International Edition, 2022, 61, .	7.2	85
986	Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122, 14180-14274.	23.0	323
987	Achieving and Understanding of Highly Efficient Ternary Organic Photovoltaics: From Morphology and Energy Loss to Working Mechanism. Small Methods, 2022, 6, .	4.6	16
988	Understanding interfacial energy structures in organic solar cells using photoelectron spectroscopy: A review. Journal of Applied Physics, 2022, 132, .	1.1	3
989	Engineering the spin-exchange interaction in organic semiconductors. Nature Materials, 2022, 21, 976-978.	13.3	7
990	Over 19.2% Efficiency of Organic Solar Cells Enabled by Precisely Tuning the Charge Transfer State Via Donor Alloy Strategy. Advanced Science, 2022, 9, .	5.6	93
991	Simultaneously Enhancing Exciton/Charge Transport in Organic Solar Cells by an Organoboron Additive. Advanced Materials, 2022, 34, .	11.1	37
992	Sub-10-fs observation of bound exciton formation in organic optoelectronic devices. Nature Communications, 2022, 13, .	5.8	6
993	Managing Challenges in Organic Photovoltaics: Properties and Roles of Donor/Acceptor Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	15
994	Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today, 2022, 29, 101614.	2.3	16
995	Heterocyclic-based photoactive materials. , 2023, , 219-296.		0
996	An acceptor with an asymmetric and extended conjugated backbone for high-efficiency organic solar cells with low nonradiative energy loss. Journal of Materials Chemistry A, 2022, 10, 16714-16721.	5.2	17
997	Recent advances in benzodifuran based photovoltaic materials. Journal of Materials Chemistry C, 2022, 10, 15708-15724.	2.7	2
998	Side chain engineering of indacenodithieno[3,2- <i>b</i>]thiophene (IDTT)-based wide bandgap polymers for non-fullerene organic photovoltaics. Journal of Materials Chemistry C, 2022, 10, 14633-14642.	2.7	4
999	Fused ring A–DA′D–A (Y-series) non-fullerene acceptors: recent developments and design strategies for organic photovoltaics. Journal of Materials Chemistry A, 2022, 10, 17968-17987.	5.2	30
1000	PBDB-T-Based Binary-OSCs Achieving over 15.83% Efficiency via End-Group Functionalization and Alkyl-Chain Engineering of Quinoxaline-Containing Non-Fullerene Acceptors. ACS Applied Materials & Interfaces, 2022, 14, 41264-41274.	4.0	9
1001	Pivotal Routes for Maximizing Semitransparent Perovskite Solar Cell Performance: Photon Propagation Management and Carrier Kinetics Regulation. Advanced Materials, 2023, 35, .	11.1	11

#	Article	IF	Citations
1002	How to get high-efficiency lead chalcogenide quantum dot solar cells?. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	4
1003	Chlorinated Effects of Double-Cable Conjugated Polymers on the Photovoltaic Performance in Single-Component Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	6
1004	Enhanced Photovoltaic Performance of Benzothiadiazoleâ€Based Polymers by Controlling their Backbone Planarity for Organic Solar Cells. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	1
1005	Allâ€Polymer Solar Cells with 17% Efficiency Enabled by the "Endâ€Capped―Ternary Strategy. Advanced Science, 2022, 9, .	5.6	17
1006	Fluorine‣ubstituted Ï€â€Bridge through a Simple Method for Efficient Polymer Donor. Solar Rrl, 2022, 6,	3.1	2
1007	Organic Photovoltaic Devices. , 2022, , 131-176.		0
1008	Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Physical Chemistry Chemical Physics, 2022, 24, 27173-27183.	1.3	2
1009	Impact of Selfâ€Absorption and Cavity Effects on the Electroluminescence Spectra of Thinâ€Film Solar Cells. Solar Rrl, 0, , 2200872.	3.1	0
1010	Charge generation in organic solar cells: Journey toward 20% power conversion efficiency. Aggregate, 2022, 3, .	5.2	15
1011	Importance of structural hinderance in performance–stability equilibrium of organic photovoltaics. Nature Communications, 2022, 13, .	5.8	50
1012	Recent progress in solution-processed flexible organic photovoltaics. Npj Flexible Electronics, 2022, 6, .	5.1	11
1013	Superior aggregation, morphology and photovoltaic performance enabled by fine tuning of fused electron-deficient units in polymer donors. Journal of Energy Chemistry, 2023, 77, 19-26.	7.1	2
1014	Efficient and Stable Nonfused Ring Small Molecule Acceptors Powered by an Electron Donating Unit for Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 13861-13870.	2.5	3
1015	Reconfiguring band-edge states and charge distribution of organic semiconductor–incorporated 2D perovskites via pressure gating. Science Advances, 2022, 8, .	4.7	28
1016	Origin of Photovoltaics in Organic Solar Cells at Negligible Energy Level Offsets─An Insight of the Charge Accumulation Effect. Journal of Physical Chemistry Letters, 2022, 13, 10404-10408.	2.1	1
1017	Impact of fluorination of central thiophene linking core in thermostable perylene-diimide-based dimeric acceptors on molecular configuration and photovoltaic performance. Optical Materials, 2022, 134, 113126.	1.7	4
1019	The impact of linker on the photovoltaic performance of helical perylene diimide based non-fullerene acceptors. Dyes and Pigments, 2023, 209, 110909.	2.0	3
1020	Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors. Science China Chemistry, 2022, 65, 2604-2612.	4.2	14

#	Article	IF	CITATIONS
1021	Benzothiadiazole-based polymer donors. Nano Energy, 2023, 105, 108017.	8.2	43
1022	New Method for Preparing ZnO Layer for Efficient and Stable Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	32
1023	Atomic Optimization on Pyranâ€Fused Nonfullerene Acceptor Enables Organic Solar Cells With an Efficiency Approaching 16% and Reduced Energy Loss. Advanced Functional Materials, 2023, 33, .	7.8	10
1024	Design and synthesis of multifaceted dicyanomethylene rhodanine linked thiophene: a SnO _{<i>x</i>} –perovskite dual interface modifier facilitating enhanced device performance through improved Fermi level alignment, defect passivation and reduced energy loss. Sustainable Energy and Fuels. 2023. 7. 735-751.	2.5	2
1025	Quantum Mechanical Assessment of Optimal Photovoltaic Conditions in Organic Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 11001-11007.	2.1	0
1026	First theoretical framework for highly efficient photovoltaic parameters by structural modification with benzothiophene-incorporated acceptors in dithiophene based chromophores. Scientific Reports, 2022, 12, .	1.6	26
1027	Conjugation expansion strategy enables highly stable all-polymer solar cells. Chinese Chemical Letters, 2023, 34, 108019.	4.8	2
1028	Highâ€Efficiency and Mechanically Robust Allâ€Polymer Organic Photovoltaic Cells Enabled by Optimized Fibril Network Morphology. Advanced Materials, 2023, 35, .	11.1	38
1029	Enhanced Photodynamic of Carriers and Suppressed Charge Recombination Enable Approaching 18% Efficiency in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 54885-54894.	4.0	2
1030	Thermal Activation of PEDOT:PSS/PM6:Y7 Based Films Leads to Unprecedent High Short ircuit Current Density in Nonfullerene Organic Photovoltaics. Advanced Energy Materials, 2023, 13, .	10.2	6
1031	In Situ Optical Spectroscopy Demonstrates the Effect of Solvent Additive in the Formation of All-Polymer Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 11696-11702.	2.1	4
1032	Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nature Reviews Materials, 2023, 8, 186-201.	23.3	56
1033	Reducing Voltage Losses of Organic Solar Cells against Energetics Modifications by Thermal Stress. Journal of Physical Chemistry Letters, 2022, 13, 11974-11981.	2.1	0
1034	Alkoxy Substitution on Asymmetric Conjugated Molecule Enabling over 18% Efficiency in Ternary Organic Solar Cells by Reducing Nonradiative Voltage Loss. ACS Energy Letters, 2023, 8, 361-371.	8.8	31
1035	Simplified Y6â€Based Nonfullerene Acceptors: Inâ€Depth Study on Molecular Structure–Property Relation, Molecular Dynamics Simulation, and Charge Dynamics. Small, 2023, 19, .	5.2	7
1036	An Asymmetric Nonâ€fullerene Acceptor with Low Energy Loss and High Photovoltaic Efficiency. Chinese Journal of Chemistry, 2023, 41, 1045-1050.	2.6	6
1037	Effects of alkyl chains of benzothiadiazole-based conjugated polymers on the photovoltaic performance of non-fullerene organic solar cells. Polymer Chemistry, 2023, 14, 616-622.	1.9	5
1038	Efficient Hole Transfer from a Twisted Perylenediimide Acceptor to a Conjugated Polymer in Organic Bulk-Heterojunction Solar Cells. Materials, 2023, 16, 737.	1.3	0

#	Article	IF	CITATIONS
1039	Terminal Groups of Nonfullerene Acceptors: Design and Application. Chemistry of Materials, 2023, 35, 807-821.	3.2	11
1040	N-dopants optimize the utilization of spontaneously formed photocharges in organic solar cells. Energy and Environmental Science, 2023, 16, 653-662.	15.6	9
1041	Impacts of Metal Oxide Diffusion and Materials Design on Thermal Stabilities of Non-Fullerene Polymer Solar Cells. Journal of Materials Chemistry A, 0, , .	5.2	1
1042	Solution Processed Non-Fullerene All Small Molecules Solar Cell Using Perylene Diimide Acceptor Material. , 2022, , .		0
1043	Efficient charge transfer in WS2/WxMo1â^'xS2 heterostructure empowered by energy level hybridization. Science China Information Sciences, 2023, 66, .	2.7	2
1044	Controlling Morphology and Voltage Loss with Ternary Strategy Triggers Efficient All-Small-Molecule Organic Solar Cells. ACS Energy Letters, 2023, 8, 1058-1067.	8.8	43
1045	Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	76
1046	Highâ€Efficiency Reactive Oxygen Species Generation by Multiphase and TiO ₆ Distortionâ€Mediated Superior Piezocatalysis in Perovskite Ferroelectrics. Advanced Functional Materials, 2023, 33, .	7.8	13
1047	Exciton diffusion and dissociation in organic and quantumâ€dot solar cells. SmartMat, 2023, 4, .	6.4	12
1048	Near 0 eV HOMO offset enable high-performance nonfullerene organic solar cells with large open circuit voltage and fill factor. Journal of Materials Chemistry C, 2023, 11, 6971-6980.	2.7	1
1049	Regioisomeric Benzidineâ€Fullerenes: Tuning of the Diverse Holeâ€Distribution to Influence Charge Separation Patterns. Angewandte Chemie, 2023, 135, .	1.6	1
1050	Enhanced charge separation by interchain hole delocalization in nonfullerene acceptorâ€based bulk heterojunction materials. , 2023, 5, .		2
1051	BNâ€Bondâ€Embedded Triplet Terpolymers with Small Singlet–Triplet Energy Gaps for Suppressing Nonâ€Radiative Recombination and Improving Blend Morphology in Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	23
1052	Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy and Environmental Science, 2023, 16, 1581-1589.	15.6	44
1053	Biomassâ€Derived Materials for Interface Engineering in Organic/Perovskite Photovoltaic and Lightâ€Emitting Devices. Advanced Materials Technologies, 2023, 8, .	3.0	6
1054	Dimerized small-molecule acceptors enable efficient and stable organic solar cells. Joule, 2023, 7, 416-430.	11.7	65
1055	Fullerene and polymer/fullerene nanomaterials in industry. , 2023, , 251-261.		0
1056	Regioisomeric Benzidineâ€Fullerenes: Tuning of the Diverse Holeâ€Distribution to Influence Charge Separation Patterns. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4

#	Article	IF	Citations
1057	Spatiotemporal Mapping Uncouples Exciton Diffusion from Singlet–Singlet Annihilation in the Electron Acceptor Y6. Journal of Physical Chemistry Letters, 2023, 14, 1999-2005.	2.1	5
1058	Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science, 2023, 379, 683-690.	6.0	128
1059	Efficient perylene-diimides-based nonfullerene acceptors with triazine cores synthesized via a simple nucleophilic substitution reaction. Science China Materials, 2023, 66, 2159-2168.	3.5	5
1060	18.7% Efficiency Ternary Organic Solar Cells Using Two Non-Fullerene Acceptors with Excellent Compatibility. ACS Applied Energy Materials, 2023, 6, 3126-3134.	2.5	8
1061	What is special about Y6; the working mechanism of neat Y6 organic solar cells. Materials Horizons, 2023, 10, 1825-1834.	6.4	13
1062	Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Advanced Materials, 2023, 35, .	11.1	116
1063	Seleniumâ€Based Nonfused Electron Acceptors for Efficient Organic Photovoltaic Cells. Solar Rrl, 2023, 7, .	3.1	4
1064	3D acceptors with multiple A–D–A architectures for highly efficient organic solar cells. Energy and Environmental Science, 2023, 16, 1773-1782.	15.6	46
1065	Organic photovoltaics: The current challenges. Journal of Chemical Physics, 2023, 158, .	1.2	3
1066	Intrinsic Advantage of Fusedâ€Ring Nonfullerene Acceptorâ€Based Organic Solar Cells to Reduce Voltage Loss. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	1
1067	Voltage-dependent excitation dynamics in UV-absorbing organic photovoltaics with efficient charge transfer exciton emission. Energy and Environmental Science, 2023, 16, 1742-1751.	15.6	1
1068	Models and mechanisms of ternary organic solar cells. Nature Reviews Materials, 2023, 8, 456-471.	23.3	32
1069	Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A2-ï€2-A1-ï€1-A2 Configuration: A DFT-Based Exploration. Polymers, 2023, 15, 1508.	2.0	4
1070	Combining ZnO and Organosilica Nanodots as a Thick Cathode Interlayer for Highly Efficient and Stable Inverted Polymer Solar Cells. ACS Applied Energy Materials, 2023, 6, 3915-3923.	2.5	4
1071	N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics. Colorants, 2023, 2, 151-178.	0.9	7
1072	The Dynamics of Delocalized Excitations in Organic Solar Cells with Nonfullerene Acceptors. Journal of Physical Chemistry Letters, 2023, 14, 3031-3038.	2.1	5
1073	Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency. Energy and Environmental Science, 2023, 16, 2262-2273.	15.6	34
1074	Chlorinated Narrow Bandgap Polymer Suppresses Nonâ€Radiative Recombination Energy Loss Enabling Perylene Diimidesâ€Based Organic Solar Cells Exceeding 10% Efficiency. Small, 2023, 19, .	5.2	5

#	Article	IF	CITATIONS
1075	Driving force and nonequilibrium vibronic dynamics in charge separation of strongly bound electron–hole pairs. Communications Physics, 2023, 6, .	2.0	2
1076	Extended-Charge-Transfer Excitations in Crystalline Non-fullerene Acceptors. Electronic Structure, 0, , .	1.0	0
1077	Revealing the Role of Donor/Acceptor Interfaces in Nonfullerene-Acceptor Based Organic Solar Cells: Charge Separation versus Recombination. Journal of Physical Chemistry Letters, 2023, 14, 3811-3817.	2.1	1
1078	Comprehensive Understanding of Fluorination-Performance Relationship: The Best-Performed A-D-A-Type Acceptors. Fundamental Research, 2023, , .	1.6	3
1079	Application of Newly Designed Y‣eries Nonfullerene Acceptors for Highâ€Efficient Organic Solar Cells. Advanced Theory and Simulations, 0, , .	1.3	0
1096	The development of A-DA'D-A type nonfullerene acceptors containing non-halogenated end groups. Nano Research, 2023, 16, 12949-12961.	5.8	2
1134	Contact and Interconnect Considerations for Organic and Flexible Electronics. , 2024, , 181-202.		0
1136	Central unit hetero-di-halogenation of acceptors enables organic solar cells with 19% efficiency. Chemical Communications, 2023, 59, 13367-13370.	2.2	1
1142	Perylene-diimide for organic solar cells: current scenario and prospects in molecular geometric, functionalization, and optoelectronic properties. Journal of Materials Chemistry A, 2023, 11, 26393-26425.	5.2	0
1148	Advantages, challenges and molecular design of different material types used in organic solar cells. Nature Reviews Materials, 2024, 9, 46-62.	23.3	5
1154	Microtransfer printing techniques for optical applications. , 2024, , 177-206.		0
1160	Recent Progress in High-Performance Organic Photovoltaic Devices. , 2024, , .		0