Enhanced photovoltaic energy conversion using therma

Nature Energy

1,

DOI: 10.1038/nenergy.2016.68

Citation Report

#	Article	IF	CITATIONS
1	The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube–silicon solar cells. Beilstein Journal of Nanotechnology, 2016, 7, 1486-1491.	1.5	3
2	Design and Optimization of Thermophotovoltaic System Cavity with Mirrors. Energies, 2016, 9, 722.	1.6	4
3	Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems. Applied Physics Express, 2016, 9, 112302.	1.1	69
4	A radioisotope thermophotovoltaic converter with nanophotonic emitters and filters. International Journal of Heat and Mass Transfer, 2017, 108, 1115-1125.	2.5	28
5	Nanoporous anodic alumina photonic crystals: fundamentals, developments and perspectives. Journal of Materials Chemistry C, 2017, 5, 5581-5599.	2.7	86
6	Application of Impedance Matching for Enhanced Transmitted Power in a Thermophotovoltaic System. Physical Review Applied, 2017, 7, .	1.5	15
7	Daytime Radiative Cooling Using Near-Black Infrared Emitters. ACS Photonics, 2017, 4, 626-630.	3.2	485
8	Application of coupled mode theory on radiative heat transfer between layered Lorentz materials. Journal of Applied Physics, 2017, 121, 183101.	1.1	4
9	Van der Waals bilayer antimonene: A promising thermophotovoltaic cell material with 31% energy conversion efficiency. Nano Energy, 2017, 38, 561-568.	8.2	92
10	High photon-to-heat conversion efficiency in the wavelength region of 250–1200 nm based on a thermoelectric Bi2Te3 film structure. Scientific Reports, 2017, 7, 44614.	1.6	7
11	Specificities of the Thermal Behavior of Current and Emerging Photovoltaic Technologies. , 2017, , 105-128.		1
12	Thermophotovoltaic energy in space applications: Review and future potential. Solar Energy Materials and Solar Cells, 2017, 161, 285-296.	3.0	146
13	The size controlled synthesis of Cu ₂ S/P25 hetero junction solar-energy-materials and their applications in photocatalytic degradation of dyes. RSC Advances, 2017, 7, 50056-50063.	1.7	16
14	High-performance near-field thermophotovoltaics for waste heat recovery. Nano Energy, 2017, 41, 344-350.	8.2	115
15	High efficient and wide-angle solar absorption with a multilayered metal-dielectric film structure. Vacuum, 2017, 146, 194-199.	1.6	18
16	Near-field enhancement of thermoradiative devices. Journal of Applied Physics, 2017, 122, .	1.1	20
17	Nanoengineered devices for solar energy conversion. , 2017, , .		0
18	Thermal discrete dipole approximation for the description of thermal emission and radiative heat transfer of magneto-optical systems. Physical Review B, 2017, 95, .	1.1	57

#	Article	IF	CITATIONS
19	Bright Photon Upconversion on Composite Organic Lanthanide Molecules through Localized Thermal Radiation. Journal of Physical Chemistry Letters, 2017, 8, 5695-5699.	2.1	25
20	Numerical Study of the Wideâ€angle Polarizationâ€Independent Ultraâ€Broadband Efficient Selective Solar Absorber in the Entire Solar Spectrum. Solar Rrl, 2017, 1, 1700049.	3.1	32
21	Performance comparison between photovoltaic and thermoradiative devices. Journal of Applied Physics, 2017, 122, .	1.1	26
22	Systematic Thermalphotovoltaic Solar Cell Optimization. , 2017, , .		0
23	Simultaneous fabrication of a microcavity absorber–emitter on a Ni–W alloy film. Japanese Journal of Applied Physics, 2017, 56, 100310.	0.8	1
24	Enhancement of solar absorption by a surface-roughened metal–dielectric film structure. Japanese Journal of Applied Physics, 2017, 56, 112301.	0.8	7
25	Periodic multilayer magnetized cold plasma containing a doped semiconductor. Indian Journal of Physics, 2018, 92, 911-917.	0.9	15
26	Wavelength-selective thermal emitters using Si-rods on MgO. Applied Physics Letters, 2018, 112, .	1.5	9
27	A coherent description of thermal radiative devices and its application on the near-field negative electroluminescent cooling. Energy, 2018, 147, 177-186.	4.5	13
28	Near-field radiative thermoelectric energy converters: a review. Frontiers in Energy, 2018, 12, 5-21.	1.2	71
29	Unusual consequences of donor and acceptor doping on the thermoelectric properties of the MgAg _{0.97} Sb _{0.99} alloy. Journal of Materials Chemistry A, 2018, 6, 2600-2611.	5.2	6
30	Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems. Japanese Journal of Applied Physics, 2018, 57, 040312.	0.8	11
31	Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 212, 45-49.	1.1	38
32	Silver nanoplate aggregation based multifunctional black metal absorbers for localization, photothermic harnessing enhancement and omnidirectional light antireflection. Journal of Materials Chemistry C, 2018, 6, 989-999.	2.7	32
33	Optimization of Multilayer Optical Films with a Memetic Algorithm and Mixed Integer Programming. ACS Photonics, 2018, 5, 684-691.	3.2	103
34	A novel form-stable phase change composite with excellent thermal and electrical conductivities. Chemical Engineering Journal, 2018, 336, 342-351.	6.6	56
35	Thin Films for Enhanced Photon Recycle in Thermophotovoltaics. , 2018, , .		0
36	Wavelength-selective thermal extraction for higher efficiency and power density thermophotovoltaics. Journal of Applied Physics, 2018, 124, 183105.	1.1	6

#	Article	IF	CITATIONS
37	High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Nano Letters, 2018, 18, 7665-7673.	4.5	140
38	Magnetic field free circularly polarized thermal emission from a chiral metasurface. Physical Review B, 2018, 98, .	1.1	28
39	Hybrid Solar Absorber–Emitter by Coherenceâ€Enhanced Absorption for Improved Solar Thermophotovoltaic Conversion. Advanced Optical Materials, 2018, 6, 1800813.	3.6	33
40	Broadband selective solar absorber based on dielectric-filled anti-reflection coated film-coupled two-dimensional metallic photonic crystals. Japanese Journal of Applied Physics, 2018, 57, 110303.	0.8	6
41	Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production. Energy Conversion and Management, 2018, 176, 274-286.	4.4	57
42	Radiative Heat Transfer. ACS Photonics, 2018, 5, 3896-3915.	3.2	163
43	Thin-Film Architectures with High Spectral Selectivity for Thermophotovoltaic Cells. ACS Photonics, 2018, 5, 2748-2754.	3.2	47
44	Multilayered metal-dielectric film structure for highly efficient solar selective absorption. Materials Research Express, 2018, 5, 066428.	0.8	24
45	Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks. Optics Express, 2018, 26, 4279.	1.7	28
46	Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO ₂ trilayer-on-substrate structures. Optics Express, 2018, 26, 4346.	1.7	24
47	Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate. Optics Express, 2018, 26, A192.	1.7	27
48	Specular side reflectors for high efficiency thermal-to-optical energy conversion. Optics Express, 2018, 26, A462.	1.7	8
49	Nanophotonic control of thermal radiation for energy applications [Invited]. Optics Express, 2018, 26, 15995.	1.7	248
50	Nearâ€Infrared Superâ€Absorbing Allâ€Dielectric Metasurface Based on Singleâ€Layer Germanium Nanostructures. Laser and Photonics Reviews, 2018, 12, 1800076.	4.4	70
51	Four-layer metallodielectric emitter for spectrally selective near-field radiative transfer in nano-gap thermophotovoltaics. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217, 235-242.	1.1	13
52	Design of Optical and Radiative Properties of Surfaces. , 2018, , 1023-1068.		3
53	A Review of Tunable Wavelength Selectivity of Metamaterials in Near-Field and Far-Field Radiative Thermal Transport. Materials, 2018, 11, 862.	1.3	26
54	Pareto Optimal Spectrally Selective Emitters for Thermophotovoltaics via Weak Absorber Critical Coupling. Advanced Energy Materials, 2018, 8, 1801035.	10.2	24

#	Article	IF	CITATIONS
55	Near-Field Thermophotonic Systems for Low-Grade Waste-Heat Recovery. Nano Letters, 2018, 18, 5224-5230.	4.5	44
56	Theoretical efficiency of hybrid solar thermoelectric-photovoltaic generators. Journal of Applied Physics, 2018, 124, .	1.1	26
57	Tungsten–Carbon Nanotube Composite Photonic Crystals as Thermally Stable Spectralâ€5elective Absorbers and Emitters for Thermophotovoltaics. Advanced Energy Materials, 2018, 8, 1801471.	10.2	57
58	Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Advances, 2018, 8, 21054-21064.	1.7	35
59	Bio-inspired plasmonic leaf for enhanced light-matter interactions. Nanophotonics, 2019, 8, 1291-1298.	2.9	5
60	Perfect Light Absorption in Thin and Ultra-Thin Films and Its Applications. Progress in Optical Science and Photonics, 2019, , 3-27.	0.3	0
61	Theoretical analysis of solar thermophotovoltaic energy conversion with selective metafilm and cavity reflector. Solar Energy, 2019, 191, 623-628.	2.9	30
62	Optical Tunneling Mediated Sub-Skin-Depth High Emissivity Tungsten Radiators. Nano Letters, 2019, 19, 7093-7099.	4.5	12
63	Solar thermophotovoltaics: Progress, challenges, and opportunities. APL Materials, 2019, 7, .	2.2	61
64	Bright thermal (blackbody) emission of visible light from LnO ₂ (Ln = Pr, Tb), photoinduced by a NIR 980 nm laser. Dalton Transactions, 2019, 48, 2574-2581.	1.6	17
65	Thermophotovoltaic Energy Conversion With GaSb Lattice-Matched Ga _{<italic>x</italic>} In _{1â^'<italic>x</italic>} As _{<italic>y& Diodes. IEEE Transactions on Electron Devices, 2019, 66, 901-907.}	lt;/ ite lic&g	;t;∉sub>Sb <s< td=""></s<>
66	Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization. ACS Central Science, 2019, 5, 319-326.	5.3	121
67	Nanophotonic engineering of far-field thermal emitters. Nature Materials, 2019, 18, 920-930.	13.3	261
68	Self-sustaining thermophotonic circuits. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11596-11601.	3.3	7
69	Metamaterial emitter for thermophotovoltaics stable up to 1400 °C. Scientific Reports, 2019, 9, 7241.	1.6	64
71	Persistent energy harvesting in the harsh desert environment using a thermal resonance device: Design, testing, and analysis. Applied Energy, 2019, 235, 1514-1523.	5.1	18
72	Functional phase change composites with highly efficient electrical to thermal energy conversion. Renewable Energy, 2020, 145, 2629-2636.	4.3	42
73	Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport. Applied Energy, 2020, 257, 113969.	5.1	90

#	Article	IF	CITATIONS
74	High-Efficiency Thermophotovoltaic System That Employs an Emitter Based on a Silicon Rod-Type Photonic Crystal. ACS Photonics, 2020, 7, 80-87.	3.2	29
75	FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Progress in Materials Science, 2020, 110, 100632.	16.0	47
76	Persistent, single-polarity energy harvesting from ambient thermal fluctuations using a thermal resonance device with thermal diodes. Applied Energy, 2020, 280, 115881.	5.1	8
77	Dependence of light reflection of germanium Mie nanoresonators on their aspect ratio. Optical Materials, 2020, 109, 110466.	1.7	9
78	Ga0.84In0.16As0.14Sb0.86/InAs0.91Sb0.09 Dual-Junction Device for Thermophotovoltaic Energy Conversion. IEEE Transactions on Electron Devices, 2020, 67, 4820-4826.	1.6	2
79	Spectrally tunable nanocomposite metamaterials as near-perfect emitters for mid-infrared thermal radiation management. Physical Chemistry Chemical Physics, 2020, 22, 28012-28020.	1.3	3
80	A wavelength selective emitter design method using hyperbolic tangent level set-based shape optimization. Optics Communications, 2020, 463, 125405.	1.0	2
81	Present Efficiencies and Future Opportunities in Thermophotovoltaics. Joule, 2020, 4, 1660-1680.	11.7	127
82	The photoluminescence properties of Pr3+-Yb3+ co-doped gallo-germanate glasses and glass ceramics as energy converter. Journal of Luminescence, 2020, 226, 117512.	1.5	11
83	Near-perfect photon utilization in an air-bridge thermophotovoltaic cell. Nature, 2020, 586, 237-241.	13.7	118
84	Plasmon-Enhanced Greenhouse Selectivity for High-Temperature Solar Thermal Energy Conversion. ACS Nano, 2020, 14, 12605-12613.	7.3	29
85	Solar Thermoradiative-Photovoltaic Energy Conversion. Cell Reports Physical Science, 2020, 1, 100258.	2.8	18
86	Precision Measurements of Temperatureâ€Đependent and Nonequilibrium Thermal Emitters. Laser and Photonics Reviews, 2020, 14, 1900443.	4.4	26
87	Neutralization Reaction Assisted Chemical-Potential-Driven Ion Transport through Layered Titanium Carbides Membrane for Energy Harvesting. Nano Letters, 2020, 20, 3593-3601.	4.5	76
88	Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions. Scientific Reports, 2020, 10, 3605.	1.6	34
89	Tungsten-Coated Silicon Nanopillars as Ultra-Broadband and Thermally Robust Solar Harvesting Materials. ACS Applied Nano Materials, 2020, 3, 2430-2437.	2.4	9
90	High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter. Solar Energy, 2020, 197, 538-545.	2.9	81
91	Optimum selective emitters for efficient thermophotovoltaic conversion. Applied Physics Letters, 2020, 116, .	1.5	15

#	Article	IF	CITATIONS
92	Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light: Science and Applications, 2020, 9, 68.	7.7	70
93	Efficient Low-Cost All-Flexible Microcavity Semitransparent Polymer Solar Cells Enabled by Polymer Flexible One-Dimensional Photonic Crystals. ACS Applied Materials & Interfaces, 2020, 12, 23190-23198.	4.0	21
94	Modelling and analysis of a piezoelectric unimorph cantilever for energy harvesting application. Materials Technology, 2020, 35, 675-681.	1.5	5
95	Thermophotovoltaic energy conversion. , 2021, , 285-308.		15
96	An overview of the mathematical modelling of perovskite solar cells towards achieving highly efficient perovskite devices. International Journal of Energy Research, 2021, 45, 1496-1516.	2.2	14
97	Integrated and spectrally selective thermal emitters enabled by layered metamaterials. Nanophotonics, 2021, 10, 1285-1293.	2.9	15
98	Robust and efficient UV-reflecting one-dimensional photonic crystals enabled by organic/inorganic nanocomposite thin films for photoprotection of transparent polymers. Journal of Materials Chemistry C, 2021, 9, 4223-4232.	2.7	5
99	Down-Conversion Polymer Composite Coatings with Multipeak Absorption and Emission. Coatings, 2021, 11, 282.	1.2	1
100	Beyond the Visible: Bioinspired Infrared Adaptive Materials. Advanced Materials, 2021, 33, e2004754.	11.1	201
101	Near-field thermophotovotaic devices with surrounding non-contact reflectors for efficient photon recycling. Optics Express, 2021, 29, 11133.	1.7	10
102	Transforming heat transfer with thermal metamaterials and devices. Nature Reviews Materials, 2021, 6, 488-507.	23.3	270
103	Exceptional adaptable MWIR thermal emission for ordinary objects covered with thin VO2 film. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262, 107500.	1.1	11
104	Enhanced thermal stability of the metal/dielectric multilayer solar selective absorber by an atomic-layer-deposited Al2O3 barrier layer. Applied Surface Science, 2021, 541, 148678.	3.1	12
105	A Triple-Mode Midinfrared Modulator for Radiative Heat Management of Objects with Various Emissivity. Nano Letters, 2021, 21, 4106-4114.	4.5	36
106	Extreme Nonreciprocal Near-Field Thermal Radiation via Floquet Photonics. Physical Review Letters, 2021, 126, 204101.	2.9	15
107	GaAs solar cell performance improvement by design optimization using NSGA approach. Materials Today: Proceedings, 2021, 51, 178-178.	0.9	1
108	Ultranarrow and Wavelength-Scalable Thermal Emitters Driven by High-Order Antiferromagnetic Resonances in Dielectric Nanogratings. ACS Applied Materials & Interfaces, 2021, 13, 25306-25315.	4.0	3
109	A review of spectral controlling for renewable energy harvesting and conserving. Materials Today Physics, 2021, 18, 100388.	2.9	31

#	Article	IF	CITATIONS
110	Enhancing efficiencies of solar thermophotovoltaic cells by downconversion of high-energy photons. Journal of Renewable and Sustainable Energy, 2021, 13, .	0.8	4
111	Near-Field Thermophotovoltaic Conversion with High Electrical Power Density and Cell Efficiency above 14%. Nano Letters, 2021, 21, 4524-4529.	4.5	79
112	Review on space energy. Applied Energy, 2021, 292, 116896.	5.1	35
113	Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks. Optical Materials Express, 2021, 11, 1863.	1.6	22
114	Theory of exciton thermal radiation in semiconducting single-walled carbon nanotubes. Optics Letters, 2021, 46, 3021.	1.7	7
115	Semiconductor-based selective emitter with a sharp cutoff for thermophotovoltaic energy conversion. Optics Letters, 2021, 46, 3163.	1.7	9
116	Integrated Near-Field Thermophotovoltaic Device Overcoming Blackbody Limit. ACS Photonics, 2021, 8, 2466-2472.	3.2	26
117	Optoelectronic analysis of spectrally selective nanophotonic metafilm cell for thermophotovoltaic energy conversion. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 268, 107625.	1.1	5
118	Thermal Emissivity Measurement with Two-temperature Method. Journal of Physics: Conference Series, 2021, 2002, 012056.	0.3	0
119	Implementation of Optimal Thermal Radiation Pumps Using Adiabatically Modulated Photonic Cavities. ACS Photonics, 2021, 8, 2973-2979.	3.2	2
120	Effect of Front Electrode on the Structure and Performances of Ga _{<i>x</i> } In _{1-<i>x</i>} As _{<i>y</i>} Sb _{1-<i>y</i>} Thermophotovoltaic Cell. IEEE Transactions on Electron Devices, 2021, 68, 4989-4996.	1.6	1
121	Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies. Nano Energy, 2021, 89, 106376.	8.2	31
122	Thermodynamic bounds of work and efficiency in near-field thermoradiative systems. International Journal of Heat and Mass Transfer, 2021, 180, 121807.	2.5	0
123	Optical Properties of Solar Absorber Materials and Structures. Topics in Applied Physics, 2021, , 1-165.	0.4	2
124	Polyethylene glycol—based functional composite phase change materials with excellent electrical and thermal conductivities. International Journal of Energy Research, 2021, 45, 7675-7688.	2.2	14
125	Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2020, 2, .	1.3	73
126	Practical emitters for thermophotovoltaics: a review. Journal of Photonics for Energy, 2019, 9, 1.	0.8	85
127	Effects of narrowband transport on near-field and far-field thermophotonic conversion. Journal of Photonics for Energy, 2019, 9, 1.	0.8	12

#	Article	IF	CITATIONS
128	Tailoring thermal radiation with a hybrid metallic–dielectric (Ag/SiO_2) filter. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 251.	0.9	4
129	Design of thermophotovoltaics for tolerance of parasitic absorption. Optics Express, 2019, 27, 31757.	1.7	2
130	New insights into the thermal behavior and management of thermophotovoltaic systems. Optics Express, 2019, 27, 36340.	1.7	14
131	Spectral, spatial and polarization-selective perfect absorbers with large magnetic response for sensing and thermal emission control. Optics Express, 2019, 27, A1041.	1.7	2
132	Design and validation of a high-efficiency planar solar thermophotovoltaic system using a spectrally selective emitter. Optics Express, 2020, 28, 21869.	1.7	29
133	Thin-film perfect infrared absorbers over single- and dual-band atmospheric windows. Optics Letters, 2020, 45, 2800.	1.7	12
134	High-temperature, spectrally-selective, scalable, and flexible thin-film Si absorber and emitter. Optical Materials Express, 2020, 10, 208.	1.6	7
135	Transparent planar indium tin oxide for a thermo-photovoltaic selective emitter. Optical Materials Express, 2020, 10, 2330.	1.6	3
136	Design of Optical and Radiative Properties of Surfaces. , 2017, , 1-46.		0
137	CAVITY ABSORBER-EMITTERS FOR HIGH-TEMPERATURE SOLAR THERMOPHOTOVOLTAICS. , 2018, , .		1
138	What makes an optimum selective emitter for an efficient thermophotovoltaic system?. , 2019, , .		0
139	Front-electrode design for efficient near-field thermophotovoltaics. , 2019, , .		0
141	High-performance near-field thermophotovoltaic device with CaF ₂ /W multilayer hyperbolic metamaterial emitter. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 204203.	0.2	3
142	Consideration of temperature-dependent emissivity of selective emitters in thermophotovoltaic systems. Applied Optics, 2020, 59, 5457.	0.9	3
143	Effective photon recycling in solar thermophotovoltaics using a confined cuboid emitter. Optics Express, 2020, 28, 38567.	1.7	10
144	Ellipsoidal Optical Cavities for Enhanced Thermophotovoltaics. IEEE Journal of Photovoltaics, 2022, 12, 353-363.	1.5	3
146	SiO2 Grating-Based Photonic Structures as Ideal Narrowband Emitter for Solar Thermophotovoltaics Application. Springer Proceedings in Energy, 2020, , 29-35.	0.2	1
147	HIGH-TEMPERATURE THERMAL PHOTONICS. Annual Review of Heat Transfer, 2020, 23, 355-395.	0.3	6

#	Article	IF	CITATIONS
148	Strain-induced modulation of near-field radiative heat transfer via quasi-elliptic graphene plasmons. Journal Physics D: Applied Physics, 2020, 53, 185306.	1.3	0
149	An effective design of thermophotovoltaic metamaterial emitter for medium-temperature solar energy storage utilization. Solar Energy, 2022, 231, 194-202.	2.9	17
150	Improving the performance of solar thermophotovoltaic (STPV) cells with spectral selected absorbers and small apertured radiation shields. International Journal of Heat and Mass Transfer, 2021, 184, 122266.	2.5	2
151	Effect evaluation of micro/nano structured materials on the performance of solar thermophotovoltaic system: An analysis based on measurement data. Solar Energy, 2022, 231, 1037-1047.	2.9	14
152	Sustaining efficiency at elevated power densities in InGaAs airbridge thermophotovoltaic cells. Solar Energy Materials and Solar Cells, 2022, 236, 111523.	3.0	15
153	Improved performance of a near-field thermophotovoltaic device by a back gapped reflector. Solar Energy Materials and Solar Cells, 2022, 237, 111562.	3.0	10
154	Thermal degradation of the multilayer Mo/HfO2 emitter induced by the oxygen diffusion at high temperature in vacuum. International Journal of Heat and Mass Transfer, 2022, 185, 122425.	2.5	6
155	Coupled Tamm plasmon polaritons induced narrow bandpass filter with ultra-wide stopband. Nano Research, 2022, 15, 4563-4568.	5.8	13
156	Design and evaluation of a hybrid solar thermphotovoltaic-thermoelectric system. Solar Energy, 2022, 231, 1025-1036.	2.9	9
157	GaAs thermophotovoltaic patterned dielectric back contact devices with improved sub-bandgap reflectance. Solar Energy Materials and Solar Cells, 2022, 238, 111545.	3.0	6
158	Selective emitter materials and designs for high-temperature thermophotovoltaic applications. Solar Energy Materials and Solar Cells, 2022, 238, 111554.	3.0	23
159	A high-performance, metallodielectric 2D photonic crystal for thermophotovoltaics. Solar Energy Materials and Solar Cells, 2022, 238, 111536.	3.0	11
160	Tamm plasmon enabled narrowband thermal emitter for solar thermophotovoltaics. Solar Energy Materials and Solar Cells, 2022, 238, 111589.	3.0	15
161	A High Precision and Multifunctional Electro-Optical Conversion Efficiency Measurement System for Metamaterial-Based Thermal Emitters. Sensors, 2022, 22, 1313.	2.1	1
162	Comparison between spectrum-split conversion and thermophotovoltaic for solar energy utilization: Thermodynamic limitation and parametric analysis. Energy Conversion and Management, 2022, 255, 115331.	4.4	19
163	Zirconia-based materials in alternative energy devices - A strategy for improving material properties by optimizing the characteristics of initial powders. International Journal of Hydrogen Energy, 2022, 47, 41359-41371.	3.8	7
164	Temperature Coefficients of Quaternary Ga _{<i>x</i>} In _{1–<i>x</i>} As _{<i>y</i>} Sb _{1–<i>y</i>} Thermo Cells. IEEE Transactions on Electron Devices, 2022, 69, 2500-2507.	oh ato volta	aico
165	Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermonhotovoltaic systems. Nanoscale, 2022, 14, 6425-6436	2.8	69

#	Article	IF	CITATIONS
166	Nanostructured multilayer hyperbolic metamaterials for high efficiency and selective solar absorption. Optics Express, 2022, 30, 11504.	1.7	10
167	Refractory All-Ceramic Thermal Emitter for High-Temperature Near-Field Thermophotovoltaics. Energies, 2022, 15, 1830.	1.6	4
168	Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials, 2022, 12, 1027.	1.9	54
169	Which factor determines the optical losses in refractory tungsten thin films at high temperatures?. Applied Surface Science, 2022, 588, 152927.	3.1	5
170	Machine learning framework for quantum sampling of highly constrained, continuous optimization problems. Applied Physics Reviews, 2021, 8, .	5.5	14
171	Inverse design and realization of an optimized photonic multilayer for thermophotovoltaics. OSA Continuum, 2021, 4, 3254.	1.8	2
172	Multi-physical modelling, design optimisation and manufacturing of a composite dielectric solar absorber. Composites Part C: Open Access, 2022, , 100282.	1.5	1
173	Inverse design a patternless solar energy absorber for maximizing absorption. Solar Energy Materials and Solar Cells, 2022, 244, 111822.	3.0	10
174	Wideâ€Angle Tunable Critical Coupling in Nanophotonic Optical Coatings with Low‣oss Phase Change Material. Small, 2022, 18, .	5.2	7
175	Design and Spectral Performance of HfO ₂ -Based Multilayer Spectrally Selective Emitters Embedded with VO ₂ Nanoparticles. ACS Applied Energy Materials, 2022, 5, 8769-8780.	2.5	4
176	Optical Metasurfaces for Energy Conversion. Chemical Reviews, 2022, 122, 15082-15176.	23.0	52
177	Broadband Omnidirectional Infrared Nanophotonic Spectral Controller for Gainassb Thermophotovoltaic Cell. SSRN Electronic Journal, 0, , .	0.4	0
178	Air-Bridge Si Thermophotovoltaic Cell with High Photon Utilization. ACS Energy Letters, 2022, 7, 2388-2392.	8.8	13
179	Highly confined spectrally selective absorber-emitter for effective solar thermophotovoltaics. Solar Energy Materials and Solar Cells, 2022, 245, 111878.	3.0	6
180	Numerical modeling and performance enhancement of micro combustor powered thermophotovoltaic systems using high contrast gratings. Applied Thermal Engineering, 2022, 215, 118935.	3.0	3
181	Design of magnetic field direction's sensor based on a 1D tunable magneto-photonic crystal. Optical and Quantum Electronics, 2022, 54, .	1.5	4
182	Active control of thermal emission by graphene-nanowire coupled plasmonic metasurfaces. Physical Review B, 2022, 106, .	1.1	11
183	Broadband omnidirectional infrared nanophotonic spectral controller for GaInAsSb thermophotovoltaic cell. Solar Energy Materials and Solar Cells, 2022, 248, 111986.	3.0	5

#	Article	IF	CITATIONS
184	Nonreciprocal Solar Thermophotovoltaics. Physical Review Applied, 2022, 18, .	1.5	7
185	Surface Photonâ€Engineered Infraredâ€Black Metametal Enabled Enhancement of Heat Dissipation. Advanced Functional Materials, 2022, 32, .	7.8	2
186	Electrically driven thermal infrared metasurface with narrowband emission. Applied Physics Letters, 2022, 121, .	1.5	6
187	Nanostructured AlGaAsSb Materials for Thermophotovoltaic Solar Cells Applications. Nanomaterials, 2022, 12, 3486.	1.9	0
188	Design and analysis of electrothermal metasurfaces. Frontiers in Energy, 2023, 17, 134-140.	1.2	5
189	Multiscale Plasmonic Refractory Nanocomposites for High-Temperature Solar Photothermal Conversion. Nano Letters, 2022, 22, 8526-8533.	4.5	5
190	Metasurfaces Assisted Twisted α-MoO3 for Spinning Thermal Radiation. Micromachines, 2022, 13, 1757.	1.4	5
191	High-index-contrast photonic structures: a versatile platform for photon manipulation. Light: Science and Applications, 2022, 11, .	7.7	8
192	REWoD-based vibrational energy harvesting exploiting saline-solutions loaded PAAm hydrogels on micro-structured aluminium oxides electrodes. Applied Surface Science, 2023, 611, 155522.	3.1	1
193	Integrated silicon-based spectral reshaping intermediate structures for high performance solar thermophotovoltaics. Solar Energy, 2023, 249, 227-232.	2.9	4
194	Hole selective contacts based on transition metal oxides for c-Ge thermophotovoltaic devices. Solar Energy Materials and Solar Cells, 2023, 251, 112156.	3.0	0
195	Semitransparent thermophotovoltaics for efficient utilization of moderate temperature thermal radiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
196	Micro/Nanomaterials for Heat Transfer, Energy Storage and Conversion. Coatings, 2023, 13, 11.	1.2	4
197	A refractory metal-based photonic narrowband emitter for thermophotovoltaic energy conversion. Journal of Materials Chemistry C, 2023, 11, 1988-1994.	2.7	3
198	Spheroid-based optical cavities for tunable photon recycling and emitter temperature control in robust solar thermophotovoltaic systems. Journal of Photonics for Energy, 2023, 13, .	0.8	0
199	Investigation of MHD natural convective flow of optically thick medium-radiating CNT Casson nanofluid over an infinite flat plate with reference to Caputo fractional derivative: As an application to water purification. Journal of Magnetism and Magnetic Materials, 2023, 567, 170330.	1.0	3
200	Thermophotovoltaic energy conversion in space. , 2023, , 197-214.		0
201	Energy Harvesting: Energy Sources, Excitation Type and Conversion Mechanisms. Communications in Computer and Information Science, 2023, , 355-369.	0.4	1

#	Article	IF	CITATIONS
202	Superhydrophobic nanoparticle mixture coating for highly efficient all-day radiative cooling. Applied Thermal Engineering, 2023, 228, 120490.	3.0	3
203	Performance analysis and selective emitter design for an efficient concentrated solar thermophotovoltaic system based on cavity-structured absorber and high-bandgap cell. Thermal Science and Engineering Progress, 2023, 40, 101767.	1.3	2
204	Two-dimensional photonic crystals as selective filters for thermophotovoltaic applications. Optics Express, 2023, 31, 9186.	1.7	5
205	Soft robotics towards sustainable development goals and climate actions. Frontiers in Robotics and Al, 0, 10, .	2.0	3
206	Bayesian-optimized infrared grating for tailoring thermal emission to boost thermophotovoltaic performance. Journal of Applied Physics, 2023, 133, .	1.1	1
207	Medium-Bridge Near-Field Thermophotovoltaic System. Nanoscale and Microscale Thermophysical Engineering, 0, , 1-13.	1.4	0
208	Generation of green hydrogen using self-sustained regenerative fuel cells: Opportunities and challenges. International Journal of Hydrogen Energy, 2023, 48, 28289-28314.	3.8	25
217	Promising thermal photonic management materials for sustainable human habitat. Nano Research, 2024, 17, 112-131.	5.8	1
220	High Spectral Selectivity of Tantalum Cross-Shaped Unit Elements for STPV Systems. , 2023, , .		0
221	Impact of non-ideal confinement on photon recycling effects in a confined solar-thermophotovoltaic system. AIP Conference Proceedings, 2023, , .	0.3	0