Towards stable and commercially available perovskite a

Nature Energy

1,

DOI: 10.1038/nenergy.2016.152

Citation Report

#	Article	IF	CITATIONS
1	Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX ₃ Arrays. Nano Letters, 2016, 16, 7974-7981.	4.5	124
2	Two‣tep Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application. Advanced Functional Materials, 2017, 27, 1605654.	7.8	120
3	Effect of lead-free (CH3NH3)3Bi2I9 perovskite addition on spectrum absorption and enhanced photovoltaic performance of bismuth triiodide solar cells. Journal of Alloys and Compounds, 2017, 701, 834-840.	2.8	40
4	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
5	Do grain boundaries dominate non-radiative recombination in CH ₃ NH ₃ PbI ₃ perovskite thin films?. Physical Chemistry Chemical Physics, 2017, 19, 5043-5050.	1.3	161
6	Thermal Precursor Approach to Pristine Fullerene Film as Electron Selective Layer in Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2017, 6, M3078-M3083.	0.9	12
7	A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. Journal of Materials Chemistry A, 2017, 5, 7326-7332.	5.2	50
8	Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters, 2017, 2, 822-830.	8.8	305
9	The Steady Rise of Kesterite Solar Cells. ACS Energy Letters, 2017, 2, 776-779.	8.8	189
10	Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8, 14555.	5.8	270
11	Direct Evidence of Ion Diffusion for the Silverâ€Electrodeâ€Induced Thermal Degradation of Inverted Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602922.	10.2	277
12	Design, fabrication and application of organic power converters: Driving light-emitting electrochemical cells from the AC mains. Organic Electronics, 2017, 45, 57-64.	1.4	4
13	Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7148-7153.	4.0	203
14	Extrinsic ion migration in perovskite solar cells. Energy and Environmental Science, 2017, 10, 1234-1242.	15.6	458
15	Ab initio study of the role of oxygen and excess electrons in the degradation of CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2017, 5, 9042-9049.	5.2	71
16	Effects of Small Polar Molecules (MA ⁺ and H ₂ O) on Degradation Processes of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 14960-14966.	4.0	29
17	Lowâ€Temperature Modification of ZnO Nanoparticles Film for Electronâ€Transport Layers in Perovskite Solar Cells. ChemSusChem, 2017, 10, 2425-2430.	3.6	31
18	300% Enhancement of Carrier Mobility in Uniaxialâ€Oriented Perovskite Films Formed by Topotacticâ€Oriented Attachment. Advanced Materials, 2017, 29, 1606831.	11.1	120

#	Article	IF	CITATIONS
19	Controlled Crystal Grain Growth in Mixed Cation–Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 18739-18747.	4.0	42
20	Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602761.	10.2	193
21	Potential Improvement in Fill Factor of Lead-Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700027.	3.1	24
22	A new binaphthol based hole-transporting materials for perovskite solar cells. Tetrahedron, 2017, 73, 3398-3405.	1.0	9
23	Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700414.	10.2	190
24	Morphology and topography of perovskite solar cell films ablated and scribed with short and ultrashort laser pulses. Applied Surface Science, 2017, 416, 112-117.	3.1	29
25	Crystallinity Preservation and Ion Migration Suppression through Dual Ion Exchange Strategy for Stable Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700118.	10.2	74
26	Efficient Bulk Heterojunction CH ₃ NH ₃ PbI ₃ –TiO ₂ Solar Cells with TiO ₂ Nanoparticles at Grain Boundaries of Perovskite by Multi-Cycle-Coating Strategy. ACS Applied Materials & Interfaces, 2017, 9, 16202-16214.	4.0	18
27	Open-circuit Voltage Loss in CH ₃ NH ₃ SnI ₃ Perovskite Solar Cells. Chemistry Letters, 2017, 46, 253-256.	0.7	46
28	Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2017, 80, 1321-1344.	8.2	240
29	Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. Journal of Materials Chemistry A, 2017, 5, 13957-13965.	5.2	80
30	Hole transporting materials for mesoscopic perovskite solar cells – towards a rational design?. Journal of Materials Chemistry A, 2017, 5, 16446-16466.	5.2	141
31	Femtosecond Chargeâ€injection Dynamics at Hybrid Perovskite Interfaces. ChemPhysChem, 2017, 18, 2381-2389.	1.0	24
32	Thermal conductivity of suspended single crystal CH ₃ NH ₃ Pbl ₃ platelets at room temperature. Nanoscale, 2017, 9, 8281-8287.	2.8	20
33	Deciphering the NH ₄ PbI ₃ Intermediate Phase for Simultaneous Improvement on Nucleation and Crystal Growth of Perovskite. Advanced Functional Materials, 2017, 27, 1701804.	7.8	117
34	Spontaneous crystal coalescence enables highly efficient perovskite solar cells. Nano Energy, 2017, 39, 24-29.	8.2	62
35	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	10.2	120
36	11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nature Communications, 2017, 8, 15390.	5.8	229

#	Article	IF	CITATIONS
37	Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 19988-19997.	4.0	30
38	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	3.5	132
39	Simultaneous Monitoring of Photoinduced Absorption Signals and Short-Circuit Photocurrent during Photoexcitation in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 12624-12630.	1.5	2
40	Perspective: Theory and simulation of hybrid halide perovskites. Journal of Chemical Physics, 2017, 146, 220901.	1.2	111
41	Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting. ACS Energy Letters, 2017, 2, 1598-1613.	8.8	82
42	Inorganic Surface Engineering to Enhance Perovskite Solar Cell Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 13181-13187.	4.0	58
43	Chemical Distribution of Multiple Cation (Rb ⁺ , Cs ⁺ , MA ⁺ , and) Tj ETQqO C 29, 3589-3596.	0 rgBT /C 3.2	verlock 10 T 175
44	Enhancement of the hole conducting effect of NiO by a N ₂ blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode. Nanoscale, 2017, 9, 5475-5482.	2.8	33
45	Mixed cation hybrid lead halide perovskites with enhanced performance and stability. Journal of Materials Chemistry A, 2017, 5, 11450-11461.	5.2	153
46	Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7, 44629.	1.6	175
47	Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photonics, 2017, 4, 146-155.	3.2	19
48	Ab initio study of the role of iodine in the degradation of CH3NH3PbI3. Journal of Materials Chemistry A, 2017, 5, 23976-23986.	5.2	17
49	A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO ₂ and utilization of nanocarbon materials. Dalton Transactions, 2017, 46, 15615-15627.	1.6	20
50	Fermi level alignment by copper doping for efficient ITO/perovskite junction solar cells. Journal of Materials Chemistry A, 2017, 5, 25211-25219.	5.2	53
51	Intermediate Phase Intermolecular Exchange Triggered Defect Elimination in CH3NH3PbI3 toward Room-Temperature Fabrication of Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 40378-40385.	4.0	14
52	Imaging Energy Harvesting and Storage Systems at the Nanoscale. ACS Energy Letters, 2017, 2, 2761-2777.	8.8	39
53	Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbl ₃ perovskite phase for high-efficiency solar cells. Science Advances, 2017, 3, e1700841.	4.7	557
54	Mixed-Halide Perovskites with Stabilized Bandgaps. Nano Letters, 2017, 17, 6863-6869.	4.5	165 _

#	Article	IF	CITATIONS
55	Adjustment of Conduction Band Edge of Compact TiO ₂ Layer in Perovskite Solar Cells Through TiCl ₄ Treatment. ACS Applied Materials & Interfaces, 2017, 9, 36708-36714.	4.0	35
56	Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 2017, 1, 480-521.	11.7	748
57	Analysis of Photovoltaic Properties of a Perovskite Solar Cell: Impact of Recombination, Space Charge, Exciton, and Disorder. IEEE Journal of Photovoltaics, 2017, 7, 1681-1686.	1.5	9
58	Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells. Advanced Materials, 2017, 29, 1704149.	11.1	389
59	Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology. ACS Energy Letters, 2017, 2, 2540-2544.	8.8	64
60	Centrifugal-Coated Quasi-Two-Dimensional Perovskite CsPb ₂ Br ₅ Films for Efficient and Stable Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 5415-5421.	2.1	71
61	Solvent-Coordinated Tin Halide Complexes as Purified Precursors for Tin-Based Perovskites. ACS Omega, 2017, 2, 7016-7021.	1.6	85
62	Outstanding Performance of Holeâ€Blocking Layerâ€Free Perovskite Solar Cell Using Hierarchically Porous Fluorineâ€Doped Tin Oxide Substrate. Advanced Energy Materials, 2017, 7, 1700749.	10.2	50
63	An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells. Journal of Power Sources, 2017, 363, 317-326.	4.0	20
64	Ambient-air-solution-processed efficient and highly stable perovskite solar cells based on CH3NH3PbI3â^'xClx-NiO composite with Al2O3/NiO interfacial engineering. Nano Energy, 2017, 40, 408-417.	8.2	60
65	Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Science Advances, 2017, 3, e1700704.	4.7	288
66	Solution-Processed Short-Wave Infrared PbS Colloidal Quantum Dot/ZnO Nanowire Solar Cells Giving High Open-Circuit Voltage. ACS Energy Letters, 2017, 2, 2110-2117.	8.8	55
67	Reducing hysteresis and enhancing performance of perovskite solar cells using acetylacetonate modified TiO 2 nanoparticles as electron transport layers. Journal of Power Sources, 2017, 365, 83-91.	4.0	22
68	Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films. Joule, 2017, 1, 371-382.	11.7	442
69	Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction. ACS Applied Materials & Interfaces, 2017, 9, 35018-35029.	4.0	62
70	Enhancing Performance and Uniformity of Perovskite Solar Cells via a Solution-Processed C ₇₀ Interlayer for Interface Engineering. ACS Applied Materials & Interfaces, 2017, 9, 33810-33818.	4.0	24
71	Wearable Large‣cale Perovskite Solarâ€Power Source via Nanocellular Scaffold. Advanced Materials, 2017, 29, 1703236.	11.1	152
72	Studies on perovskite film ablation and scribing with ns-, ps- and fs-laser pulses. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	30

#	ARTICLE	IF	CITATIONS
73	Enhanced efficiency and air-stability of NiO _X -based perovskite solar cells via PCBM electron transport layer modification with Triton X-100. Nanoscale, 2017, 9, 16249-16255.	2.8	48
74	A Hybrid Perovskite Solar Cell Modified With Copper Indium Sulfide Nanocrystals to Enhance Hole Transport and Moisture Stability. Solar Rrl, 2017, 1, 1700078.	3.1	19
75	A facile deposition of large grain and phase pure α-FAPbI3 for perovskite solar cells via a flash crystallization. Materials Today Energy, 2017, 5, 293-298.	2.5	30
76	Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy and Environmental Science, 2017, 10, 1942-1949.	15.6	402
77	Discrete Iron(III) Oxide Nanoislands for Efficient and Photostable Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1702090.	7.8	79
78	Highâ€Temperature Ionic Epitaxy of Halide Perovskite Thin Film and the Hidden Carrier Dynamics. Advanced Materials, 2017, 29, 1702643.	11.1	83
79	Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700576.	10.2	240
80	Reducing greenhouse gas emissions and improving air quality: Two global challenges. Environmental Progress and Sustainable Energy, 2017, 36, 982-988.	1.3	52
81	Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602803.	10.2	147
82	Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH ₃ CH ₂ NH ₃) ₄ Pb ₃ Br _{10–<i>x</i>/sub Journal of the American Chemical Society, 2017, 139, 11956-11963.}	b xC& sub	> < \$*#%
83	Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films. Nanoscale, 2017, 9, 12005-12013.	2.8	21
84	All-inorganic inverse perovskite solar cells using zinc oxide nanocolloids on spin coated perovskite layer. Nano Convergence, 2017, 4, 18.	6.3	17
85	Efficient and Hysteresisâ€Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer. Advanced Energy Materials, 2017, 7, 1701144.	10.2	114
86	Contact Engineering: Electrode Materials for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700082.	3.1	50
87	Exciton transport in π-conjugated polymers with conjugation defects. Physical Chemistry Chemical Physics, 2017, 19, 24971-24978.	1.3	19
88	Synthetic Manipulation of Hybrid Perovskite Systems in Search of New and Enhanced Functionalities. ChemSusChem, 2017, 10, 3722-3739.	3.6	11
89	High-throughput and tunable synthesis of colloidal CsPbX ₃ perovskite nanocrystals in a heterogeneous system by microwave irradiation. Chemical Communications, 2017, 53, 9914-9917.	2.2	96
90	Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing. ACS Nano, 2017, 11, 12247-12256.	7.3	286

#	Article	IF	CITATIONS
91	Enhanced Performance of Perovskite Solar Cells with Zinc Chloride Additives. ACS Applied Materials & Interfaces, 2017, 9, 42875-42882.	4.0	104
92	Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis. Journal of Materials Chemistry A, 2017, 5, 25438-25449.	5.2	91
93	Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy: Variation with Photon Energy. Journal of Physical Chemistry C, 2017, 121, 26655-26666.	1.5	98
94	High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals. Nanoscale, 2017, 9, 18535-18545.	2.8	57
95	Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. Joule, 2017, 1, 548-562.	11.7	199
96	Insights into optoelectronic properties of anti-solvent treated perovskite films. Journal of Materials Science: Materials in Electronics, 2017, 28, 15630-15636.	1.1	8
97	Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Interfaces, 2017, 9, 30197-30246.	4.0	453
98	Bi3+-doped CH3NH3PbI3: Red-shifting absorption edge and longer charge carrier lifetime. Journal of Alloys and Compounds, 2017, 695, 555-560.	2.8	39
99	First-principles calculation for structural and optics properties of self-doped (CH <inf>3</inf> NH <inf>3</inf>) <inf>1â^'x</inf> PbI <inf>3</inf> perovskite. , 2017, , .		0
100	Towards Perovskite Silicon Tandem Solar Cells with Optimized Optical Properties. , 2017, , .		0
101	Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell Performance. Coatings, 2017, 7, 36.	1.2	11
102	[(CH ₃) ₂ NH ₂] ₇ Pb ₄ X ₁₅ (X =) Tj ET Broadband Photoluminiscent Emission. Inorganic Chemistry, 2018, 57, 3215-3222.	Qq1 1 0.7 1.9	84314 rgB 31
103	Insulated Interlayer for Efficient and Photostable Electron-Transport-Layer-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10132-10140.	4.0	32
104	Mesoporous Si Nanowire Templated Controlled Fabrication of Organometal Halide Perovskite Nanoparticles with High Photoluminescence Quantum Yield for Light-Emitting Applications. ACS Applied Nano Materials, 2018, 1, 1551-1562.	2.4	38
105	Recent Progress on the Longâ€Term Stability of Perovskite Solar Cells. Advanced Science, 2018, 5, 1700387.	5.6	348
106	Growth of Compact CH ₃ NH ₃ PbI ₃ Thin Films Governed by the Crystallization in PbI ₂ Matrix for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Matrianger (10, 8649-8658.	4.0	17
107	Effective Carrierâ€Concentration Tuning of SnO ₂ Quantum Dot Electronâ€5elective Layers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706023.	11.1	333
108	Nb-doped amorphous titanium oxide compact layer for formamidinium-based high efficiency perovskite solar cells by low-temperature fabrication. Journal of Materials Chemistry A, 2018, 6, 9583-9591.	5.2	30

		CITATION REPORT		
#	Article		IF	CITATIONS
109	The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbl ₃ for efficient carbon-based perovskite solar cells. Nanoscale, 2018, 10, 9996-10004.)r	2.8	142
110	Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. Journal of Materi Chemistry A, 2018, 6, 11063-11077.	als	5.2	183
111	High Color Rendering Index White-Light Emission from UV-Driven LEDs Based on Single Lumines Materials: Two-Dimensional Perovskites (C ₆ H ₅ C ₂ H ₄ NH ₃) _{2ACS Applied Materials & amp; Interfaces, 2018, 10, 15980-15987.}	cent >>PbBr <i>_{x<}</i>	/\$ub>	Clً ⁵ sub>4â€
112	Performance Enhancement of Perovskite Solar Cells Induced by Lead Acetate as an Additive. Sol 2018, 2, 1800066.	ar Rrl,	3.1	94
113	Searching for Photoactive Polymorphs of CsNbQ ₃ (Q = O, S, Se, Te) with Enhancec Properties and Intrinsic Thermodynamic Stabilities. Journal of Physical Chemistry C, 2018, 122, 8814-8821.	l Optical	1.5	11
114	A non-equilibrium Ti ⁴⁺ doping strategy for an efficient hematite electron transport in perovskite solar cells. Dalton Transactions, 2018, 47, 6404-6411.	layer	1.6	9
115	How SnF ₂ Impacts the Material Properties of Lead-Free Tin Perovskites. Journal of F Chemistry C, 2018, 122, 13926-13936.	Physical	1.5	179
116	Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells. Journal of Power Sources, 2018, 389, 13-19.		4.0	15
117	Interfacing Pristine C ₆₀ onto TiO ₂ for Viable Flexibility in Perovskite S Cells by a Lowâ€Temperature Allâ€Solution Process. Advanced Energy Materials, 2018, 8, 18003	olar 399.	10.2	72
118	Interfacial Passivation of the pâ€Doped Holeâ€Transporting Layer Using General Insulating Poly Highâ€Performance Inverted Perovskite Solar Cells. Small, 2018, 14, e1704007.	mers for	5.2	105
119	Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives. Bulletin of the Chemical Society of Japan, 2018, 91, 1058-1068.		2.0	84
120	Surfaces modification of MAPbI3 films with hydrophobic β-NaYF4:Yb,Er up-conversion ultrathin for improving the performance of perovskite solar cells. Applied Surface Science, 2018, 448, 14	ayers 5-153.	3.1	21
121	Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy. Nano Energy, 2018, 46, 356-364.		8.2	67
122	Recent advances in the fabrication of graphene–ZnO heterojunctions for optoelectronic devic applications. Journal of Materials Chemistry C, 2018, 6, 3815-3833.	e	2.7	85
123	Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Na Energy, 2018, 46, 45-53.	ino	8.2	46
124	Reconsidering figures of merit for performance and stability of perovskite photovoltaics. Energy Environmental Science, 2018, 11, 739-743.	and	15.6	79
125	Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers. RSC Advances, 2018, 8, 5897-5901.		1.7	34
126	Recent progress of colloidal quantum dot based solar cells. Chinese Physics B, 2018, 27, 018808	3.	0.7	16

#	Article	IF	CITATIONS
127	Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals. ACS Nano, 2018, 12, 1704-1711.	7.3	395
128	Carbon Nanoparticles in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702719.	10.2	74
129	Inorganic Perovskite Solar Cells: A Rapidly Growing Field. Solar Rrl, 2018, 2, 1700188.	3.1	193
130	Selective growth of layered perovskites for stable and efficient photovoltaics. Energy and Environmental Science, 2018, 11, 952-959.	15.6	305
131	Environment versus sustainable energy: The case of lead halide perovskite-based solar cells. MRS Energy & Sustainability, 2018, 5, 1.	1.3	59
132	In Situ Realâ€Time Study of the Dynamic Formation and Conversion Processes of Metal Halide Perovskite Films. Advanced Materials, 2018, 30, 1706401.	11.1	52
133	Lowâ€Temperature Solutionâ€Processed CuCrO ₂ Holeâ€Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702762.	10.2	137
134	A New Perspective on the Role of Aâ€Site Cations in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702898.	10.2	47
135	Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer. ACS Applied Materials & Interfaces, 2018, 10, 5511-5518.	4.0	32
136	Roomâ€Temperature Vapor Deposition of Cobalt Nitride Nanofilms for Mesoscopic and Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703114.	10.2	29
137	Subdiffraction Infrared Imaging of Mixed Cation Perovskites: Probing Local Cation Heterogeneities. ACS Energy Letters, 2018, 3, 469-475.	8.8	54
138	β-NaYF4:Yb3+, Tm3+@TiO2 core-shell nanoparticles incorporated into the mesoporous layer for high efficiency perovskite solar cells. Electrochimica Acta, 2018, 261, 14-22.	2.6	36
139	Do Capacitance Measurements Reveal Light-Induced Bulk Dielectric Changes in Photovoltaic Perovskites?. Journal of Physical Chemistry C, 2018, 122, 13450-13454.	1.5	58
140	Temperature Gradient-Induced Instability of Perovskite via Ion Transport. ACS Applied Materials & Interfaces, 2018, 10, 835-844.	4.0	15
141	Copper Iodide Based Hybrid Phosphors for Energyâ€Efficient General Lighting Technologies. Advanced Functional Materials, 2018, 28, 1705593.	7.8	184
142	Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. Journal of the American Chemical Society, 2018, 140, 1358-1364.	6.6	708
143	High throughput two-step ultrasonic spray deposited CH3NH3PbI3 thin film layer for solar cell application. Journal of Power Sources, 2018, 390, 270-277.	4.0	28
144	Composition-Dependent Degradation of Hybrid and Inorganic Lead Perovskites in Ambient Conditions. Topics in Catalysis, 2018, 61, 1201-1208.	1.3	21

#	Article	IF	CITATIONS
145	Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 11396-11404.	1.3	12
146	A one-step laser process for rapid manufacture of mesoscopic perovskite solar cells prepared under high relative humidity. Sustainable Energy and Fuels, 2018, 2, 1216-1224.	2.5	13
147	Tolerance of Perovskite Solar Cell to High-Energy Particle Irradiations in Space Environment. IScience, 2018, 2, 148-155.	1.9	156
148	Advances in Polymer-Based Photovoltaic Cells: Review of Pioneering Materials, Design, and Device Physics. , 2018, , 1-48.		1
149	Discerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells. Nano Energy, 2018, 48, 63-72.	8.2	103
150	Single Semiconductor Nanostructure Extinction Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 16443-16463.	1.5	15
151	Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 2018, 48, 117-127.	8.2	60
152	High crystallization of a multiple cation perovskite absorber for low-temperature stable ZnO solar cells with high-efficiency of over 20%. Nanoscale, 2018, 10, 7218-7227.	2.8	45
153	A novel ball milling technique for room temperature processing of TiO ₂ nanoparticles employed as the electron transport layer in perovskite solar cells and modules. Journal of Materials Chemistry A, 2018, 6, 7114-7122.	5.2	35
154	Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure. ACS Energy Letters, 2018, 3, 869-874.	8.8	77
155	Inorganic–organic halide perovskites for new photovoltaic technology. National Science Review, 2018, 5, 559-576.	4.6	49
156	Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols. Advanced Energy Materials, 2018, 8, 1701726.	10.2	28
157	Cytotoxicity, chemical stability, and surface properties of ferroelectric ceramics for biomaterials. Journal of the American Ceramic Society, 2018, 101, 440-449.	1.9	18
158	Perovskite solar cells: Materials, configurations and stability. Renewable and Sustainable Energy Reviews, 2018, 82, 2471-2489.	8.2	109
159	The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C, 2018, 6, 682-712.	2.7	172
160	Exploration of Crystallization Kinetics in Quasi Two-Dimensional Perovskite and High Performance Solar Cells. Journal of the American Chemical Society, 2018, 140, 459-465.	6.6	327
161	Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications. Chemistry - A European Journal, 2018, 24, 2305-2316.	1.7	103
162	Cost Effective Perovskite Solar Cell with Inorganic Hole- Transporting Material. , 2018, , .		0

#	Article	IF	CITATIONS
163	La-doped BaSnO ₃ electron transport layer for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 23071-23077.	5.2	37
164	General Nondestructive Passivation by 4â€Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability. Small, 2018, 14, e1803350.	5.2	82
165	Performance loss analysis and design space optimization of perovskite solar cells. Journal of Applied Physics, 2018, 124, .	1.1	21
166	Perovskite Photovoltaic Modules: Life Cycle Assessment of Pre-industrial Production Process. IScience, 2018, 9, 542-551.	1.9	51
167	Broadband Extrinsic Selfâ€Trapped Exciton Emission in Snâ€Doped 2D Leadâ€Halide Perovskites. Advanced Materials, 2019, 31, e1806385.	11.1	198
168	Rollâ€ŧoâ€Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells. Advanced Energy Materials, 2018, 8, 1801935.	10.2	189
169	Additive engineering induced perovskite crystal growth for high performance perovskite solar cells. Organic Electronics, 2018, 63, 207-215.	1.4	26
170	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7.3	201
171	The Importance of Pendant Groups on Triphenylamineâ€Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency. Advanced Energy Materials, 2018, 8, 1701209.	10.2	134
172	Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers. Advanced Energy Materials, 2018, 8, 1802474.	10.2	59
173	Influence of External Electric Fields on Photoluminescence and Charge Carrier Dynamics of ï€-Conjugated Polymer P3HT in Multilayer Films with Heterojunctions to TiO ₂ and Sb ₂ S ₃ . ACS Applied Energy Materials, 2018, 1, 6136-6151.	2.5	4
174	Scalable Ultrasonic Spray-Processing Technique for Manufacturing Large-Area CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 38042-38050.	4.0	43
175	Impact of Moisture on Photoexcited Charge Carrier Dynamics in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6312-6320.	2.1	56
176	Direct Observation of the Tunneling Phenomenon in Organometal Halide Perovskite Solar Cells and Its Influence on Hysteresis. ACS Energy Letters, 2018, 3, 2743-2749.	8.8	17
177	Scalable Fabrication of Perovskite Solar Cells to Meet Climate Targets. Joule, 2018, 2, 2464-2476.	11.7	45
178	Phase stabilization of all-inorganic perovskite materials for photovoltaics. Current Opinion in Electrochemistry, 2018, 11, 141-145.	2.5	4
179	Shape-Pure, Nearly Monodispersed CsPbBr ₃ Nanocubes Prepared Using Secondary Aliphatic Amines. Nano Letters, 2018, 18, 7822-7831.	4.5	132
180	Charting the course: A possible route to a fully renewable Swiss power system. Energy, 2018, 163, 942-955.	4.5	18

#	Article	IF	CITATIONS
181	In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nature Communications, 2018, 9, 3806.	5.8	227
182	Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr ₃ perovskite solar cells. Dalton Transactions, 2018, 47, 15283-15287.	1.6	28
183	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
184	First-principles study of anion diffusion in lead-free halide double perovskites. Physical Chemistry Chemical Physics, 2018, 20, 24339-24344.	1.3	59
185	Impact of Crystallographic Orientation Disorders on Electronic Heterogeneities in Metal Halide Perovskite Thin Films. Nano Letters, 2018, 18, 6271-6278.	4.5	22
186	Interface Engineering in nâ€iâ€p Metal Halide Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800177.	3.1	53
187	Planar inverted perovskite solar cells based on the electron transport layer of PC61BM:ITIC. Synthetic Metals, 2018, 245, 116-120.	2.1	12
188	Two-Dimensional Ruddlesden–Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15%. Journal of the American Chemical Society, 2018, 140, 11639-11646.	6.6	397
189	Fluorinated dopant-free hole-transporting material for efficient and stable perovskite solar cells with carbon cathode. Journal of Power Sources, 2018, 401, 29-36.	4.0	38
190	Two-Dimensional Halide Perovskites Incorporating Straight Chain Symmetric Diammonium Ions, (NH ₃ C _{<i>m</i>} H _{2<i>m</i>} NH ₃)(CH ₃ NH _{ (<i>m</i> = 4–9; <i>n</i> = 1–4). Journal of the American Chemical Society, 2018, 140, 12226-12238.}	3 6/s ub>)•	<sub4 <i>n≺/i</i></s
191	Perovskite Solar Cells with Inorganic Electron―and Holeâ€Transport Layers Exhibiting Longâ€Term (â‰^500) Tj e1801010.	ETQq0 0 11.1	0 rgBT /Overl 174
192	Recent progressive efforts in perovskite solar cells toward commercialization. Journal of Materials Chemistry A, 2018, 6, 12215-12236.	5.2	56
193	(C ₆ H ₅ CH ₂ NH ₃) ₂ CuBr ₄ : A Lead-Free, Highly Stable Two-Dimensional Perovskite for Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 2709-2716.	2.5	73
194	Efficient p-i-n inorganic CsPbI3 perovskite solar cell deposited using layer-by-layer vacuum deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	35
195	Improving the stability and performance of perovskite solar cells <i>via</i> off-the-shelf post-device ligand treatment. Energy and Environmental Science, 2018, 11, 2253-2262.	15.6	181
196	Organic–Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses. Advanced Materials, 2018, 30, e1704002.	11.1	205
197	New insights into the origin of hysteresis behavior in perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 16285-16293.	1.3	7
198	Defect-engineered epitaxial VO _{2±δ} in strain engineering of heterogeneous soft crystals. Science Advances, 2018, 4, eaar3679.	4.7	42

-			_		
CIT		ON	DE	DO	DT
	AL		IVE	РU	IK I

#	Article	IF	CITATIONS
199	Synthesis and characterization of new organic–inorganic hybrid compounds based on Sb, with a perovskite like structure. Polyhedron, 2018, 151, 299-305.	1.0	9
200	Influence of transparent conductive oxide layer on the inverted perovskite solar cell using PEDOT: PSS for hole transport layer. Materials Research Bulletin, 2018, 106, 433-438.	2.7	20
201	Research Direction toward Theoretical Efficiency in Perovskite Solar Cells. ACS Photonics, 2018, 5, 2970-2977.	3.2	129
202	Semiconducting Metal Oxides for High Performance Perovskite Solar Cells. , 2018, , 241-265.		4
203	Commercialization of Large-Scale Perovskite Solar Energy Technology and Scaling-Up Issues. , 2018, , 387-445.		2
204	Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode. Solar Energy Materials and Solar Cells, 2018, 185, 399-405.	3.0	111
205	Cascade charge transfer enabled by incorporating edge-enriched graphene nanoribbons for mesostructured perovskite solar cells with enhanced performance. Nano Energy, 2018, 52, 123-133.	8.2	123
206	Interfacial crosslinked quasi-2D perovskite with boosted carrier transport and enhanced stability. Journal Physics D: Applied Physics, 2018, 51, 404001.	1.3	28
207	Perovskite Nanoparticle Composite Films by Size Exclusion Lithography. Advanced Materials, 2018, 30, e1802555.	11.1	28
208	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291.		0
208 209	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291. Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326.	1.9	0 40
208 209 210	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291. Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326. Charge traps in lead-halide perovskites with different grain sizes. Japanese Journal of Applied Physics, 2018, 57, 08RE03.	1.9 0.8	0 40 4
208 209 210 211	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291. Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326. Charge traps in lead-halide perovskites with different grain sizes. Japanese Journal of Applied Physics, 2018, 57, 08RE03. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689.	1.9 0.8 19.8	0 40 4 1,856
208 209 210 211 211	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291. Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326. Charge traps in lead-halide perovskites with different grain sizes. Japanese Journal of Applied Physics, 2018, 57, 08RE03. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes. Materials, 2018, 11, 937.	1.9 0.8 19.8 1.3	0 40 4 1,856
208 209 210 211 212 213	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291. Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326. Charge traps in lead-halide perovskites with different grain sizes. Japanese Journal of Applied Physics, 2018, 57, 08RE03. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes. Materials, 2018, 11, 937. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy, 2018, 3, 648-654.	1.9 0.8 19.8 1.3	0 40 4 1,856 19
208 209 210 211 212 213 213	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291. Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326. Charge traps in lead-halide perovskites with different grain sizes. Japanese Journal of Applied Physics, 2018, 57, 08RE03. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes. Materials, 2018, 11, 937. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy, 2018, 3, 648-654. Growth of Metal Halide Perovskite, from Nanocrystal to Micron-Scale Crystal: A Review. Crystals, 2018, 8, 182.	1.9 0.8 19.8 1.3 19.8 1.0	0 40 4 1,856 19 552
208 209 210 211 212 213 213	Organic Inorganic Hybrid Perovskite Materials and Devices. , 2018, , 282-291. Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326. Charge traps in lead-halide perovskites with different grain sizes. Japanese Journal of Applied Physics, 2018, 57, 08RE03. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes. Materials, 2018, 11, 937. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy, 2018, 3, 648-654. Growth of Metal Halide Perovskite, from Nanocrystal to Micron-Scale Crystal: A Review. Crystals, 2018, 8, 182. Solution Processing of Methylammonium Lead Iodide Perovskite from ¹³ -Butyrolactone: Crystallization Mediated by Solvation Equilibrium. Chemistry of Materials, 2018, 30, 5237-5244.	1.9 0.8 19.8 1.3 19.8 1.0 3.2	0 40 4 1,856 19 552 22

#	Article	IF	CITATIONS
217	Effect of aromatic nitrogen heterocycle treatment on the performance of perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 08RE08.	0.8	3
218	Rear-Surface Passivation by Melaminium Iodide Additive for Stable and Hysteresis-less Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 25372-25383.	4.0	72
219	Facile Deposition of Nb ₂ O ₅ Thin Film as an Electron-Transporting Layer for Highly Efficient Perovskite Solar Cells. ACS Applied Nano Materials, 2018, 1, 4101-4109.	2.4	33
220	Halide perovskite photovoltaics: History, progress, and perspectives. MRS Bulletin, 2018, 43, 527-533.	1.7	15
221	Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability. Solar Energy, 2018, 171, 652-657.	2.9	56
222	Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes: A Combined Experimental and Theoretical Approach. ACS Applied Materials & Interfaces, 2018, 10, 17973-17984.	4.0	31
223	Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH ₃ NH ₃ Pbl ₃ Perovskite Devices in Ambient Atmosphere. ACS Applied Materials & Interfaces, 2018, 10, 16482-16489.	4.0	78
224	Rashba–Dresselhaus Effect in Inorganic/Organic Lead Iodide Perovskite Interfaces. ACS Energy Letters, 2018, 3, 1294-1300.	8.8	36
225	Solvothermal Synthesis of Ultrathin Cesium Lead Halide Perovskite Nanoplatelets with Tunable Lateral Sizes and Their Reversible Transformation into Cs ₄ PbBr ₆ Nanocrystals. Chemistry of Materials, 2018, 30, 3714-3721.	3.2	108
226	Evaluation of multiple cation/anion perovskite solar cells through life cycle assessment. Sustainable Energy and Fuels, 2018, 2, 1600-1609.	2.5	23
227	Extending lead-free hybrid photovoltaic materials to new structures: thiazolium, aminothiazolium and imidazolium iodobismuthates. Dalton Transactions, 2018, 47, 7050-7058.	1.6	34
228	High-efficiency large-area perovskite photovoltaic modules achieved via electrochemically assembled metal-filamentary nanoelectrodes. Science Advances, 2018, 4, eaat3604.	4.7	48
229	Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy, 2018, 53, 160-167.	8.2	83
230	Inorganic and Lead-Free AgBil ₄ Rudorffite for Stable Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 4485-4492.	2.5	58
231	Role of Surface Recombination in Halide Perovskite Nanoplatelets. ACS Applied Materials & Interfaces, 2018, 10, 31586-31593.	4.0	41
232	Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications. Small Methods, 2018, 2, 1800242.	4.6	26
233	Methylammonium iodide and its effect as an intrinsic defect in perovskite structure and device performance. Organic Electronics, 2018, 62, 304-310.	1.4	2
234	Chiral Lead Halide Perovskite Nanowires for Second-Order Nonlinear Optics. Nano Letters, 2018, 18, 5411-5417.	4.5	212

#	Article	IF	CITATIONS
235	Polar Solvent Induced Lattice Distortion of Cubic CsPbI ₃ Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. Journal of the American Chemical Society, 2018, 140, 11705-11715.	6.6	223
236	Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO ₂ as an Electron Transport Layer in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 30367-30378.	4.0	88
237	Enhanced Electroluminescence from Organic Lightâ€Emitting Diodes with an Organic–Inorganic Perovskite Host Layer. Advanced Materials, 2018, 30, e1802662.	11.1	22
238	Influence of Bulky Organoâ€Ammonium Halide Additive Choice on the Flexibility and Efficiency of Perovskite Lightâ€Emitting Devices. Advanced Functional Materials, 2018, 28, 1802060.	7.8	76
239	Low-temperature sintered SnO2 electron transport layer for efficient planar perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 13138-13147.	1.1	12
240	Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology. Joule, 2018, 2, 1437-1451.	11.7	162
241	Unique Seamlessly Bonded CNT@Graphene Hybrid Nanostructure Introduced in an Interlayer for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1800475.	7.8	44
242	Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. Journal of Power Sources, 2018, 396, 49-56.	4.0	23
243	Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells. Materials Horizons, 2018, 5, 868-873.	6.4	25
244	Colloidal Nanocrystals as a Platform for Rapid Screening of Charge Trap Passivating Molecules for Metal Halide Perovskite Thin Films. Chemistry of Materials, 2018, 30, 4515-4526.	3.2	19
245	Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A, 2018, 6, 12999-13004.	5.2	43
246	MAPbl ₃ microneedle-arrays for perovskite photovoltaic application. Nanoscale Advances, 2019, 1, 64-70.	2.2	6
247	Transition from Positive to Negative Photoconductance in Doped Hybrid Perovskite Semiconductors. Advanced Optical Materials, 2019, 7, 1900865.	3.6	47
248	Influence of Grain Size on Phase Transitions in Halide Perovskite Films. Advanced Energy Materials, 2019, 9, 1901883.	10.2	30
249	Long-term ambient air-stable cubic CsPbBr ₃ perovskite quantum dots using molecular bromine. Nanoscale Advances, 2019, 1, 3388-3391.	2.2	30
250	Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A, 2019, 7, 20390-20397.	5.2	25
251	Moisture proof hole transport layers based on CISe quantum dots for highly stable and large active area perovskite solar cells. Applied Surface Science, 2019, 496, 143610.	3.1	17
252	Grain Boundary Healing of Organic–Inorganic Halide Perovskites for Moisture Stability. Nano Letters, 2019, 19, 6498-6505.	4.5	24

#	Article	IF	CITATIONS
253	Efficient Semitransparent CsPbI ₃ Quantum Dots Photovoltaics Using a Graphene Electrode. Small Methods, 2019, 3, 1900449.	4.6	49
254	Fully-ambient-air and antisolvent-free-processed stable perovskite solar cells with perovskite-based composites and interface engineering. Nano Energy, 2019, 64, 103964.	8.2	35
255	Ion-migration and carrier-recombination inhibition by the cation-ï€ interaction in planar perovskite solar cells. Organic Electronics, 2019, 75, 105387.	1.4	17
256	Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion. Advanced Materials, 2019, 31, e1807376.	11.1	91
257	An Old Dog with New Tricks - Additions to the Cesium Lithium Chloride System: Cs3 Li2 Cl5 and the Hydrated Cs3 LiCl4 ·4H2 O. European Journal of Inorganic Chemistry, 2019, 2019, 3526-3535.	1.0	2
258	LiTFSIâ€Free Spiroâ€OMeTADâ€Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%. Advanced Energy Materials, 2019, 9, 1901519.	10.2	85
259	Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nature Communications, 2019, 10, 3008.	5.8	268
260	Molecular Engineering of the Fullereneâ€Based Electron Transport Layer Materials for Improving Ambient Stability of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900223.	3.1	20
261	High Efficiency (16.37%) of Cesium Bromide—Passivated Allâ€Inorganic CsPbl ₂ Br Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900254.	3.1	91
262	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
263	Modulating Photovoltaic Conversion Efficiency of BiFeO ₃ -Based Ferroelectric Films by the Introduction of Electron Transport Layers. ACS Applied Energy Materials, 2019, 2, 5540-5546.	2.5	29
264	Probing reversible photoluminescence alteration in CH3NH3PbBr3 colloidal quantum dots for luminescence-based gas sensing application. Journal of Colloid and Interface Science, 2019, 554, 668-673.	5.0	10
265	Carrier-gas assisted vapor deposition for highly tunable morphology of halide perovskite thin films. Sustainable Energy and Fuels, 2019, 3, 2447-2455.	2.5	12
266	Potassium ions as a kinetic controller in ionic double layers for hysteresis-free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18807-18815.	5.2	54
267	Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review. Global Challenges, 2019, 3, 1900050.	1.8	115
268	Carbon-Based Electrode Engineering Boosts the Efficiency of All Low-Temperature-Processed Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2032-2039.	8.8	79
269	Giant Humidity Effect on Hybrid Halide Perovskite Microstripes: Reversibility and Sensing Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 29821-29829.	4.0	71
270	Impact of Linking Topology on the Properties of Carbazoleâ€Based Holeâ€Transport Materials and their Application in Solidâ€State Mesoscopic Solar Cells. Solar Rrl, 2019, 3, 1900196.	3.1	17

#	Article	IF	CITATIONS
271	Inorganic CsPbl ₃ Perovskites toward Highâ€Efficiency Photovoltaics. Energy and Environmental Materials, 2019, 2, 73-78.	7.3	43
272	Additional Organic‧olventâ€Rinsing Process to Enhance Perovskite Photovoltaic Performance. Advanced Electronic Materials, 2019, 5, 1900244.	2.6	10
273	Application of a Tetraâ€TPDâ€Type Holeâ€Transporting Material Fused by a Tröger's Base Core in Perovskite SolarÂCells. Solar Rrl, 2019, 3, 1900224.	3.1	4
274	Synergistic Effect of Elevated Device Temperature and Excess Charge Carriers on the Rapid Lightâ€Induced Degradation of Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902413.	11.1	90
275	Fully low-temperature processed carbon-based perovskite solar cells using thermally evaporated cadmium sulfide as efficient electron transport layer. Organic Electronics, 2019, 74, 152-160.	1.4	14
276	Effect of PQT-12 interface layer on the performance of PCDTBT: PCBM bulk heterojunction solar cells. Materials Research Express, 2019, 6, 115514.	0.8	13
277	Graphene as charge transport layers in lead free perovskite solar cell. Materials Research Express, 2019, 6, 115611.	0.8	8
278	Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ€Infrared with a Narrowâ€Bandgap Organic Semiconductor. Advanced Materials, 2019, 31, e1904494.	11.1	71
279	A Review on Energy Band ap Engineering for Perovskite Photovoltaics. Solar Rrl, 2019, 3, 1900304.	3.1	87
280	Nanostructured Perovskite Solar Cells. Nanomaterials, 2019, 9, 1481.	1.9	19
281	Molecular engineering of a conjugated polymer as a hole transporting layer for versatile p–i–n perovskite solar cells. Materials Today Energy, 2019, 14, 100341.		19
		2.5	12
282	Large-Area Organic-Free Perovskite Solar Cells with High Thermal Stability. Journal of Physical Chemistry Letters, 2019, 10, 6382-6388.	2.5 2.1	46
282 283	Large-Area Organic-Free Perovskite Solar Cells with High Thermal Stability. Journal of Physical Chemistry Letters, 2019, 10, 6382-6388. A Tailored Nickel Oxide Holeâ€Transporting Layer to Improve the Longâ€Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900346.	2.5 2.1 3.1	46
282 283 284	Large-Area Organic-Free Perovskite Solar Cells with High Thermal Stability. Journal of Physical Chemistry Letters, 2019, 10, 6382-6388. A Tailored Nickel Oxide Holeâ€Transporting Layer to Improve the Longâ€Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900346. Growing high-quality CsPbBr ₃ by using porous CsPb ₂ Br ₅ as an intermediate: a promising light absorber in carbon-based perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 184-194.	2.5 2.1 3.1 2.5	46 30 60
282 283 284 285	Large-Area Organic-Free Perovskite Solar Cells with High Thermal Stability. Journal of Physical Chemistry Letters, 2019, 10, 6382-6388. A Tailored Nickel Oxide Holeâ€Transporting Layer to Improve the Longâ€Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900346. Growing high-quality CsPbBr ₃ by using porous CsPb ₂ Br ₅ as an intermediate: a promising light absorber in carbon-based perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 184-194. Study on the Property of Electron-Transport Layer in the Doped Formamidinium Lead Iodide Perovskite Based on DFT. ACS Omega, 2019, 4, 20024-20035.	2.5 2.1 3.1 2.5 1.6	46 30 60 17
282 283 284 285 285	Large-Area Organic-Free Perovskite Solar Cells with High Thermal Stability. Journal of Physical Chemistry Letters, 2019, 10, 6382-6388. A Tailored Nickel Oxide Holeâ€Transporting Layer to Improve the Longâ€Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900346. Growing high-quality CsPbBr ₃ by using porous CsPb ₂ Br ₅ sa an intermediate: a promising light absorber in carbon-based perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 184-194. Study on the Property of Electron-Transport Layer in the Doped Formamidinium Lead Iodide Perovskite Based on DFT. ACS Omega, 2019, 4, 20024-20035. Analysis of highly efficient perovskite solar cells with inorganic hole transport material. Chinese Physics B, 2019, 28, 128801.	 2.5 2.1 3.1 2.5 1.6 0.7 	46 30 60 17 10
282 283 284 285 285 286	Large-Area Organic-Free Perovskite Solar Cells with High Thermal Stability. Journal of Physical Chemistry Letters, 2019, 10, 6382-6388. A Tailored Nickel Oxide Holeâ€Transporting Layer to Improve the Longâ€Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900346. Growing high-quality CsPbBr ₃ by using porous CsPb ₂ Br ₅ as an intermediate: a promising light absorber in carbon-based perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 184-194. Study on the Property of Electron-Transport Layer in the Doped Formamidinium Lead Iodide Perovskite Based on DFT. ACS Omega, 2019, 4, 20024-20035. Analysis of highly efficient perovskite solar cells with inorganic hole transport material. Chinese Physics B, 2019, 28, 128801. Widely Tunable, Room Temperature, Single-Mode Lasing Operation from Mixed-Halide Perovskite Thin Films. ACS Photonics, 2019, 6, 3331-3337.	2.5 2.1 3.1 2.5 1.6 0.7 3.2	 46 30 60 17 10 31

#	Article	IF	CITATIONS
289	Toward a New Energy Era: Selfâ€Driven Integrated Systems Based on Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900320.	3.1	9
290	A thermally stable, barium-stabilized α-CsPbI ₃ perovskite for optoelectronic devices. Journal of Materials Chemistry A, 2019, 7, 21740-21746.	5.2	37
291	High-Performance Planar-Type Ultraviolet Photodetector Based on High-Quality CH ₃ NH ₃ PbCl ₃ Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 34144-34150.	4.0	71
292	Sulfur-fused perylene diimide electron transport layers allow >400 h operational lifetime of methylammonium lead iodide photovoltaics. Journal of Materials Chemistry C, 2019, 7, 11126-11133.	2.7	6
293	Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden–Popper Perovskites. ACS Energy Letters, 2019, 4, 2386-2392.	8.8	38
294	Spontaneous low-temperature crystallization of α-FAPbI3 for highly efficient perovskite solar cells. Science Bulletin, 2019, 64, 1608-1616.	4.3	58
295	Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nature Communications, 2019, 10, 4145.	5.8	93
296	Skillfully deflecting the question: a small amount of piperazine-1,4-diium iodide radically enhances the thermal stability of CsPbI ₃ perovskite. Journal of Materials Chemistry C, 2019, 7, 11757-11763.	2.7	32
297	Controlled Redox of Lithium-Ion Endohedral Fullerene for Efficient and Stable Metal Electrode-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 16553-16558.	6.6	61
298	Graphite-N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 37796-37803.	4.0	61
299	Morphology control of perovskite in green antisolvent system for MAPbI3-based solar cells with over 20% efficiency. Solar Energy Materials and Solar Cells, 2019, 203, 110197.	3.0	25
300	Large metal halide perovskite crystals for field-effect transistor applications. Applied Physics Letters, 2019, 115, .	1.5	34
301	Nacre-inspired crystallization and elastic "brick-and-mortar―structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987.	15.6	114
302	Advances in modelling and simulation of halide perovskites for solar cell applications. JPhys Energy, 2019, 1, 022001.	2.3	53
303	Mixed phononic and non-phononic transport in hybrid lead halide perovskites: glass-crystal duality, dynamical disorder, and anharmonicity. Energy and Environmental Science, 2019, 12, 216-229.	15.6	51
304	<i>Ab initio</i> study of the dynamics of electron trapping and detrapping processes in the CH ₃ NH ₃ PbI ₃ perovskite. Journal of Materials Chemistry A, 2019, 7, 2135-2147.	5.2	25
305	All-inorganic lead-free perovskites for optoelectronic applications. Materials Chemistry Frontiers, 2019, 3, 365-375.	3.2	133
306	Smart perovskite-based technologies for building integration:. , 2019, , 441-466.		1

#	Article	IF	CITATIONS
307	TiO2-B as an electron transporting material for highly efficient perovskite solar cells. Journal of Power Sources, 2019, 415, 8-14.	4.0	33
308	Realizing a highly luminescent perovskite thin film by controlling the grain size and crystallinity through solvent vapour annealing. Nanoscale, 2019, 11, 5861-5867.	2.8	25
309	Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy, 2019, 4, 585-593.	19.8	327
310	Lead-free low-dimensional tin halide perovskites with functional organic spacers: breaking the charge-transport bottleneck. Journal of Materials Chemistry A, 2019, 7, 16742-16747.	5.2	24
311	Discrete SnO 2 Nanoparticleâ€Modified Poly(3,4â€Ethylenedioxythiophene):Poly(Styrenesulfonate) for Efficient Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900162.	3.1	13
312	An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy and Environmental Science, 2019, 12, 2192-2199.	15.6	542
313	Toward air-stable field-effect transistors with a tin iodide-based hybrid perovskite semiconductor. Journal of Applied Physics, 2019, 125, .	1.1	23
314	Beyond efficiency: phenothiazine, a new commercially viable substituent for hole transport materials in perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 8593-8598.	2.7	15
315	Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Letters, 2019, 4, 1862-1871.	8.8	125
316	Perovskite solar cell towards lower toxicity: a theoretical study of physical lead reduction strategy. Science Bulletin, 2019, 64, 1255-1261.	4.3	54
317	Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infrared. Physical Chemistry Chemical Physics, 2019, 21, 14663-14670.	1.3	27
318	Stabilizing the black phase of cesium lead halide inorganic perovskite for efficient solar cells. Science China Chemistry, 2019, 62, 810-821.	4.2	40
319	Cesium Decreases Defect Density and Enhances Optoelectronic Properties of Mixed MA _{1–<i>x</i>} Cs <i>_x</i> PbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 14969-14975.	1.5	30
320	Memristors with organicâ€inorganic halide perovskites. InformaÄnÃ-Materiály, 2019, 1, 183-210.	8.5	111
321	Fabrication and characterization of perovskite solar cells with ZnGa ₂ O ₄ mixed TiO ₂ photoelectrode. Japanese Journal of Applied Physics, 2019, 58, SDDE15.	0.8	4
322	Interfacial engineering of front-contact with finely tuned polymer interlayers for high-performance large-area flexible perovskite solar cells. Nano Energy, 2019, 62, 734-744.	8.2	36
323	Role of Compositional Tuning on Thermoelectric Parameters of Hybrid Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 14928-14933.	1.5	37
324	Screening Links Transport and Recombination Mechanisms in Lead Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 15827-15833.	1.5	7

#	Article	IF	CITATIONS
325	Layered Germanium Hybrid Perovskite Bromides: Insights from Experiments and Firstâ€Principles Calculations. Advanced Functional Materials, 2019, 29, 1903528.	7.8	26
326	Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019, 48, 3842-3867.	18.7	1,257
327	Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 2019, 31, e1901242.	11.1	210
328	Photostability of MAPbI ₃ Perovskite Solar Cells by Incorporating Black Phosphorus. Solar Rrl, 2019, 3, 1900197.	3.1	53
329	Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy, 2019, 63, 103828.	8.2	124
330	Highly efficient and stable inverted perovskite solar cells using down-shifting quantum dots as a light management layer and moisture-assisted film growth. Journal of Materials Chemistry A, 2019, 7, 14753-14760.	5.2	67
331	Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411.	3.2	82
332	Computational Screening of Indirect-Gap Semiconductors for Potential Photovoltaic Absorbers. Chemistry of Materials, 2019, 31, 4072-4080.	3.2	31
333	Niobium Incorporation into CsPbI ₂ Br for Stable and Efficient All-Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 19994-20003.	4.0	106
335	Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasiâ€2D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900221.	7.8	144
336	Fabrication, device performance, and MPPT for flexible dye-sensitized solar panel based on gel-polymer phthaloylchitosan based electrolyte and nanocluster CoS2 counter electrode. Materials Science for Energy Technologies, 2019, 2, 319-328.	1.0	9
337	Carrier lifetimes of >1 1ै1⁄4s in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364, 475-479.	6.0	781
338	<i>In situ</i> investigation of light soaking in organolead halide perovskite films. APL Materials, 2019, 7, .	2.2	23
339	Perovskite Solar Cells Based on Oligotriarylamine Hexaarylbenzene as Hole-Transporting Materials. Organic Letters, 2019, 21, 3261-3264.	2.4	12
340	Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7%. IScience, 2019, 15, 156-164.	1.9	81
341	A Copper Coordination Polymer with Matching Energy Level for Modifying Hole Transport Layers to Improve the Performance of Perovskite Solar Cells. ChemSusChem, 2019, 12, 2763-2772.	3.6	17
342	Solutionâ€Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for Highâ€Performance Solar Cells. Advanced Materials, 2019, 31, e1807689.	11.1	185
343	A Purified, Solventâ€Intercalated Precursor Complex for Wideâ€Processâ€Window Fabrication of Efficient Perovskite Solar Cells and Modules. Angewandte Chemie, 2019, 131, 9489-9493.	1.6	5

#	Article	IF	CITATIONS
344	A Purified, Solventâ€Intercalated Precursor Complex for Wideâ€Processâ€Window Fabrication of Efficient Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2019, 58, 9389-9393.	7.2	46
345	Humidityâ€Tolerant Rollâ€toâ€Roll Fabrication of Perovskite Solar Cells via Polymerâ€Additiveâ€Assisted Hot Slot Die Deposition. Advanced Functional Materials, 2019, 29, 1809194.	7.8	93
346	Fusing Nanowires into Thin Films: Fabrication of Gradedâ€Heterojunction Perovskite Solar Cells with Enhanced Performance. Advanced Energy Materials, 2019, 9, 1900243.	10.2	45
347	High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core-shell upconversion nanoparticles. Journal of Power Sources, 2019, 426, 178-187.	4.0	65
348	Sealing the domain boundaries and defects passivation by Poly(acrylic acid) for scalable blading of efficient perovskite solar cells. Journal of Power Sources, 2019, 426, 188-196.	4.0	29
349	Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 13491-13498.	4.0	71
350	High-performance inverted planar perovskite solar cells based on solution-processed rubidium-doped nickel oxide hole-transporting layer. Organic Electronics, 2019, 69, 34-41.	1.4	24
351	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, 2019, 10, 1112.	5.8	185
352	Chemical stability and instability of inorganic halide perovskites. Energy and Environmental Science, 2019, 12, 1495-1511.	15.6	510
353	Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental Stability. Journal of the American Chemical Society, 2019, 141, 5518-5534.	6.6	193
355	High-efficiency perovskite solar cell based on TiO2 nanorod arrays under natural ambient conditions: Solvent effect. Ceramics International, 2019, 45, 12353-12359.	2.3	7
356	Sub-sized monovalent alkaline cations enhanced electrical stability for over 17% hysteresis-free planar perovskite solar mini-module. Electrochimica Acta, 2019, 306, 635-642.	2.6	9
357	Hazard potential of perovskite solar cell technology for potential implementation of "safe-by-design― approach. Scientific Reports, 2019, 9, 4242.	1.6	53
358	Narrow optical gap ferroelectric Bi ₂ ZnTiO ₆ thin films deposited by RF sputtering. Journal of Materials Chemistry A, 2019, 7, 10696-10701.	5.2	8
359	Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach. Energy, 2019, 175, 1259-1270.	4.5	57
360	A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nature Communications, 2019, 10, 1161.	5.8	225
361	Solution Processed Nb ₂ O ₅ Electrodes for High Efficient Ultraviolet Light Stable Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 7421-7429.	3.2	41
362	Fast Charge Diffusion in MAPb(I _{1–<i>x</i>} Br <i>_x</i>) ₃ Films for High-Efficiency Solar Cells Revealed by Ultrafast Time-Resolved Reflectivity. Journal of Physical Chemistry A, 2019, 123, 2674-2678.	1.1	6

#	Article	IF	CITATIONS
363	Performance enhancement of AgBi ₂ I ₇ solar cells by modulating a solvent-mediated adduct and tuning remnant Bil ₃ in one-step crystallization. Chemical Communications, 2019, 55, 4031-4034.	2.2	54
364	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
365	Ultrafast carrier dynamics of metal halide perovskite nanocrystals and perovskite-composites. Nanoscale, 2019, 11, 9796-9818.	2.8	76
366	Advances in Polymer-Based Photovoltaic Cells: Review of Pioneering Materials, Design, and Device Physics. , 2019, , 1055-1101.		3
367	Research activities on perovskite solar cells in China. Science China Chemistry, 2019, 62, 822-828.	4.2	22
368	Strong Cathodoluminescence and Fast Photoresponse from Embedded CH3NH3PbBr3 Nanoparticles Exhibiting High Ambient Stability. ACS Applied Materials & Interfaces, 2019, 11, 14917-14931.	4.0	31
369	A partially-planarised hole-transporting quart- <i>p</i> -phenylene for perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 4332-4335.	2.7	6
370	Morphology control towards a greener, non-halogenated solvent system processed CH ₃ NH ₃ PbI ₃ film for high performance perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 6004-6011.	2.7	10
371	On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis. Advanced Materials, 2019, 31, e1805214.	11.1	351
372	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
373	Enhanced Crystallization and Optimized Morphology of Perovskites Through Doping an Indiumâ€Based Metal–Organic Assembly: Achieving Significant Solar Cell Efficiency Enhancements. Energy Technology, 2019, 7, 1900027.	1.8	8
374	Cu ₂ ZnSnS ₄ Quantum Dots as Hole Transport Material for Enhanced Charge Extraction and Stability in Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800354.	3.1	34
375	Insight into the Interfacial Elastic Contact in Stacking Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1900157.	1.9	9
376	Pushing PbS/Metalâ€Halideâ€Perovskite Core/Epitaxialâ€Ligandâ€Shell Nanocrystal Photodetectors beyond 3 µm Wavelength. Advanced Functional Materials, 2019, 29, 1807964.	7.8	35
377	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 119, 3036-3103.	23.0	2,009
378	A Scalable Methylamine Gas Healing Strategy for Highâ€Efficiency Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 5587-5591.	7.2	121
379	A Scalable Methylamine Gas Healing Strategy for Highâ€Efficiency Inorganic Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 5643-5647.	1.6	19
380	Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer. Nature Communications, 2019, 10, 878.	5.8	115

	Сіта	tion Report	
#	ARTICLE A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	IF 7.8	CITATIONS 835
382	Strategies for Modifying TiO ₂ Based Electron Transport Layers to Boost Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 4586-4618.	3.2	83
383	Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 19700-19707.	6.6	119
384	Light Intensity-dependent Variation in Defect Contributions to Charge Transport and Recombination in a Planar MAPbI3 Perovskite Solar Cell. Scientific Reports, 2019, 9, 19846.	1.6	45
385	Low-Cost and Flexible Anti-Reflection Films Constructed From Nano Multi-Layers of TiO ₂ and SiO ₂ for Perovskite Solar Cells. IEEE Access, 2019, 7, 176394-176403.	2.6	9
386	Direct emission from quartet excited states triggered by upconversion phenomena in solid-phase synthesized fluorescent lead-free organic–inorganic hybrid compounds. Journal of Materials Chemistry A, 2019, 7, 26504-26512.	5.2	35
387	A Review on Energy Bandâ€Gap Engineering for Perovskite Photovoltaics. Solar Rrl, 2019, 3, 1970116.	3.1	36
388	Perovskite Solar Cell: Research Direction for Next 10 Years. ACS Energy Letters, 2019, 4, 2983-2985.	8.8	27
389	Solvothermal synthesis of Mn-doped CsPbCl ₃ perovskite nanocrystals with tunable morphology and their size-dependent optical properties. RSC Advances, 2019, 9, 39315-39322.	1.7	16
390	Exploring wide bandgap metal oxides for perovskite solar cells. APL Materials, 2019, 7, .	2.2	54
391	Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zrâ€MOF Heterojunction Including Bilayer and Hybrid Structures. Advanced Science, 2019, 6, 1801715.	5.6	159
392	Excess Cesium Iodide Induces Spinodal Decomposition of CsPbI ₂ Br Perovskite Films. Journal of Physical Chemistry Letters, 2019, 10, 194-199.	2.1	69
393	Fabrications and Applications of ZnO Nanomaterials in Flexible Functional Devices-A Review. Critical Reviews in Analytical Chemistry, 2019, 49, 336-349.	1.8	78
394	Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice. Advanced Materials, 2019, 31, e1802697.	11.1	37
395	Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Journal of the American Chemical Society, 2019, 141, 1171-1190.	6.6	999
396	Dimethyl Sulfoxide Solvent Engineering for High Quality Cationâ€Anionâ€Mixed Hybrid and High Efficier Perovskite Solar Cells. Energy Technology, 2019, 7, 346-351.	1.8	3
397	Reduced ion migration and enhanced photoresponse in cuboid crystals of methylammonium lead iodide perovskite. Journal Physics D: Applied Physics, 2019, 52, 054001.	1.3	14
398	Evaluating the environmental impact of the lead species in perovskite solar cells via environmental-fate modeling. Journal of Industrial and Engineering Chemistry, 2019, 70, 453-461.	2.9	22

#	Article	IF	CITATIONS
399	Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Journal of Colloid and Interface Science, 2019, 539, 619-633.	5.0	43
400	Semimetallicity and Negative Differential Resistance from Hybrid Halide Perovskite Nanowires. Advanced Functional Materials, 2019, 29, 1807620.	7.8	15
401	Band Gap Tuning of Solution-Processed Ferroelectric Perovskite BiFe _{1–<i>x</i>} Co _{<i>x</i>} O ₃ Thin Films. Chemistry of Materials, 2019, 31, 947-954.	3.2	69
402	Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy, 2019, 58, 138-146.	8.2	38
403	Enhanced Open-Circuit Voltage of Cs-Containing FAPbI ₃ Perovskite Solar Cells by the Formation of a Seed Layer through a Vapor-Assisted Solution Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 3404-3413.	3.2	14
404	Highly stable hole-conductor-free perovskite solar cells based upon ammonium chloride and a carbon electrode. Journal of Colloid and Interface Science, 2019, 540, 315-321.	5.0	22
405	Stable, color-tunable 2D SCN-based perovskites: revealing the critical influence of an asymmetric pseudo-halide on constituent ions. Nanoscale, 2019, 11, 2608-2616.	2.8	22
406	The Relation of Phaseâ€Transition Effects and Thermal Stability of Planar Perovskite Solar Cells. Advanced Science, 2019, 6, 1801079.	5.6	28
407	Optically tuned and large-grained bromine doped CH3NH3PbI3 perovskite thin films via aerosol-assisted chemical vapour deposition. Materials Chemistry and Physics, 2019, 223, 157-163.	2.0	5
408	From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy and Environmental Science, 2019, 12, 518-549.	15.6	269
409	High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO–ZnS Electron Transport Layer. Journal of the American Chemical Society, 2019, 141, 541-547.	6.6	189
410	Phosphomolybdic acid as an efficient hole injection material in perovskite optoelectronic devices. Dalton Transactions, 2019, 48, 30-34.	1.6	13
411	Stability Enhancement in Perovskite Solar Cells with Perovskite/Silver–Graphene Composites in the Active Layer. ACS Energy Letters, 2019, 4, 235-241.	8.8	61
412	Recent Advances in Flexible Inorganic Light Emitting Diodes: From Materials Design to Integrated Opticelectronic Platforms. Advanced Optical Materials, 2019, 7, 1800936.	3.6	75
413	Achieving Self-Balancing by Design in Photovoltaic Energy Storage Systems. IEEE Transactions on Control Systems Technology, 2019, 27, 1151-1164.	3.2	5
414	Integrated Perovskite/Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2020, 32, e1805843.	11.1	61
415	Perovskite Solar Cells: Can We Go Organicâ€Free, Leadâ€Free, and Dopantâ€Free?. Advanced Energy Materials, 2020, 10, 1902500.	10.2	198
416	Highly Efficient (110) Orientated FAâ€MA Mixed Cation Perovskite Solar Cells via Functionalized Carbon Nanotube and Methylammonium Chloride Additive. Small Methods, 2020, 4, 1900511.	4.6	25

#	Article	IF	CITATIONS
417	Strategies Toward Extending the Nearâ€Infrared Photovoltaic Response of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900280.	3.1	13
418	A photo-crosslinkable bis-triarylamine side-chain polymer as a hole-transport material for stable perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 190-198.	2.5	22
419	Aâ€Site Management for Highly Crystalline Perovskites. Advanced Materials, 2020, 32, e1904702.	11.1	62
420	Constructing "hillocks―like random-textured absorber for efficient planar perovskite solar cells. Chemical Engineering Journal, 2020, 387, 124091.	6.6	12
421	AgBiS ₂ as a low-cost and eco-friendly all-inorganic photovoltaic material: nanoscale morphology–property relationship. Nanoscale Advances, 2020, 2, 770-776.	2.2	15
422	Aurivillius Halide Perovskite: A New Family of Two-Dimensional Materials for Optoelectronic Applications. Journal of Physical Chemistry C, 2020, 124, 1788-1793.	1.5	13
423	Water, a Green Solvent for Fabrication of High-Quality CsPbBr ₃ Films for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 5925-5931.	4.0	67
424	Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 1792-1800.	6.6	39
425	All-Inorganic Perovskite Solar Cells: Energetics, Key Challenges, and Strategies toward Commercialization. ACS Energy Letters, 2020, 5, 290-320.	8.8	183
426	Rashba Band Splitting in CH ₃ NH ₃ PbI ₃ : An Insight from Spin-Polarized Scanning Tunneling Spectroscopy. Nano Letters, 2020, 20, 292-299.	4.5	18
427	Carbon Counter Electrodes in Dye‧ensitized and Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1906451.	7.8	74
428	Wideâ€Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1903085.	10.2	49
429	Ultraflexible Corrugated Monocrystalline Silicon Solar Cells with High Efficiency (19%), Improved Thermal Performance, and Reliability Using Low-Cost Laser Patterning. ACS Applied Materials & Interfaces, 2020, 12, 2269-2275.	4.0	20
430	Performance improvement of fully ambient air fabricated perovskite solar cells in an anti-solvent process using TiO2 hollow spheres. Journal of Colloid and Interface Science, 2020, 562, 125-132.	5.0	16
431	Carbon nanomaterials with sp or/and sp hybridization in energy conversion and storage applications: A review. Energy Storage Materials, 2020, 26, 349-370.	9.5	55
432	Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31, 152001.	1.3	24
433	Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762.	10.2	50
434	Stabilizing the MAPbI3 perovksite via the in-situ formed lead sulfide layer for efficient and robust solar cells. Journal of Energy Chemistry, 2020, 47, 62-65.	7.1	30

#	Article	IF	CITATIONS
435	Additives in metal halide perovskite films and their applications in solar cells. Journal of Energy Chemistry, 2020, 46, 215-228.	7.1	64
436	Research Direction toward Scalable, Stable, and High Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903106.	10.2	193
437	Interface Engineering of Cubic Zinc Metatitanate as an Excellent Electron Transport Material for Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900533.	3.1	12
438	The Race for Lowest Costs of Electricity Production: Techno-Economic Analysis of Silicon, Perovskite and Tandem Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 1632-1641.	1.5	62
439	Tuning the Thermoelectric Performance of Hybrid Tin Perovskites by Air Treatment. Advanced Energy and Sustainability Research, 2020, 1, 2000033.	2.8	20
440	Multiple Passivation of Electronic Defects for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000481.	3.1	20
441	Historical Analysis of Highâ€Efficiency, Largeâ€Area Solar Cells: Toward Upscaling of Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002202.	11.1	103
442	Dopant-Free Hole-Transport Materials with Germanium Compounds Bearing Pseudohalide and Chalcogenide Moieties for Perovskite Solar Cells. Inorganic Chemistry, 2020, 59, 15154-15166.	1.9	2
443	Chemical Robotics Enabled Exploration of Stability in Multicomponent Lead Halide Perovskites via Machine Learning. ACS Energy Letters, 2020, 5, 3426-3436.	8.8	66
444	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5, 870-880.	19.8	497
445	Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2728-2736.	8.8	114
446	Roomâ€Temperatureâ€Processed Fullerene/TiO ₂ Nanocomposite Electron Transporting Layer for Highâ€Efficiency Rigid and Flexible Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000247.	3.1	18
447	The Possible Side Reaction in the Annealing Process of Perovskite Layers. ACS Applied Materials & Interfaces, 2020, 12, 35043-35048.	4.0	10
448	Theoretical study on photoelectric properties of FAPbI ₃ doped with Ge. Materials Research Express, 2020, 7, 116201.	0.8	10
449	Advances in perovskite photodetectors. InformaÄnÃ-Materiály, 2020, 2, 1247-1256.	8.5	107
450	Molecular Interaction Regulates the Performance and Longevity of Defect Passivation for Metal Halide Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 20071-20079.	6.6	145
451	Green energy by recoverable triple-oxide mesostructured perovskite photovoltaics. Proceedings of the United States of America, 2020, 117, 31010-31017.	3.3	8
452	Stabilizing γ sPbI ₃ Perovskite via Phenylethylammonium for Efficient Solar Cells with Open ircuit Voltage over 1.3ÂV. Small, 2020, 16, e2005246.	5.2	67

#	Article	IF	CITATIONS
453	Enhancing the Efficiency and Stability of Triple-Cation Perovskite Solar Cells by Eliminating Excess PbI ₂ from the Perovskite/Hole Transport Layer Interface. ACS Applied Materials & Interfaces, 2020, 12, 54824-54832.	4.0	56
454	The race for the best silicon bottom cell: Efficiency and cost evaluation of perovskite–silicon tandem solar cells. Progress in Photovoltaics: Research and Applications, 2021, 29, 744-759.	4.4	57
455	Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate. Scientific Reports, 2020, 10, 18699.	1.6	28
456	Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 52643-52651.	4.0	25
457	Self-Elimination of Intrinsic Defects Improves the Low-Temperature Performance of Perovskite Photovoltaics. Joule, 2020, 4, 1961-1976.	11.7	152
458	Sustainable lead management in halide perovskite solar cells. Nature Sustainability, 2020, 3, 1044-1051.	11.5	87
459	First-principles investigation of structural modification, fine band gap engineering, and optical response of La1â^'xBaxGaO3 for optoelectronic applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	8
460	Formamidinium Haloplumbate Intermediates: The Missing Link in a Chain of Hybrid Perovskites Crystallization. Chemistry of Materials, 2020, 32, 7739-7745.	3.2	35
461	Inorganic perovskite solar cells based on carbon electrodes. Nano Energy, 2020, 77, 105160.	8.2	48
462	Molecular Engineering of Hexaazatriphenylene Derivatives toward More Efficient Electron-Transporting Materials for Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 38222-38231.	4.0	16
463	Denatured M13 Bacteriophageâ€Templated Perovskite Solar Cells Exhibiting High Efficiency. Advanced Science, 2020, 7, 2000782.	5.6	31
464	A thin film (<200 nm) perovskite solar cell with 18% efficiency. Journal of Materials Chemistry A, 2020, 8, 17420-17428.	5.2	14
465	Two-Dimensional Cs ₂ Pb(SCN) ₂ Br ₂ -Based Photomemory Devices Showing a Photoinduced Recovery Behavior and an Unusual Fully Optically Driven Memory Behavior. ACS Applied Materials & Interfaces, 2020, 12, 36398-36408.	4.0	39
466	Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2742-2786.	8.8	307
467	Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells. Sustainable Materials and Technologies, 2020, 26, e00210.	1.7	18
468	Toward Greener Solution Processing of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 13126-13138.	3.2	41
469	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	1.1	91
470	Role of Individual Bands in the Unusual Temperature-Dependent Band Gap of Methylammonium Lead Iodide. Journal of Physical Chemistry C, 2020, 124, 19841-19848.	1.5	7

#	Article	IF	CITATIONS
471	Defects and Their Passivation in Hybrid Halide Perovskites toward Solar Cell Applications. Solar Rrl, 2020, 4, 2000505.	3.1	47
472	The <i>J</i> – <i>V</i> Hysteresis Behavior and Solutions in Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000586.	3.1	27
473	High-Efficiency and Stable Inverted Planar Perovskite Solar Cells with Pulsed Laser Deposited Cu-Doped NiO _{<i>x</i>} Hole-Transport Layers. ACS Applied Materials & Interfaces, 2020, 12, 50684-50691.	4.0	33
474	A study on optoelectronic performance of perovskite solar cell under different stress testing conditions. Optical Materials, 2020, 109, 110377.	1.7	8
475	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	4.6	63
476	Physicochemical approaches for optimization of perovskite solar cell performance. Russian Chemical Bulletin, 2020, 69, 1245-1252.	0.4	9
477	Improving Efficiency and Stability of Carbonâ€Based Perovskite Solar Cells by a Multifunctional Triple‣ayer System: Antireflective, UVâ€Protective, Superhydrophobic, and Selfâ€Cleaning. Solar Rrl, 2020, 4, 2000491.	3.1	12
478	A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy and Environmental Science, 2020, 13, 4334-4343.	15.6	147
479	Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites. Advanced Materials, 2020, 32, e2002585.	11.1	151
480	Conformational and Compositional Tuning of Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 17681-17692.	6.6	83
481	High performance flexible memristors based on a lead free AgBil ₄ perovskite with an ultralow operating voltage. Journal of Materials Chemistry C, 2020, 8, 14155-14163.	2.7	29
482	Unraveling the Photogenerated Electron Localization on the Defect-Free CH3NH3PbI3(001) Surfaces: Understanding and Implications from a First-Principles Study. Journal of Physical Chemistry Letters, 2020, 11, 8041-8047.	2.1	6
483	Efficient Naphthalene Imide-Based Interface Engineering Materials for Enhancing Perovskite Photovoltaic Performance and Stability. ACS Applied Materials & Interfaces, 2020, 12, 42348-42356.	4.0	16
484	Titanium Dioxide in Chromogenic Devices: Synthesis, Toxicological Issues, and Fabrication Methods. Applied Sciences (Switzerland), 2020, 10, 8896.	1.3	1
485	Perovskite Puzzle for Revolutionary Functional Materials. Frontiers in Chemistry, 2020, 8, 550625.	1.8	5
486	A review: crystal growth for high-performance all-inorganic perovskite solar cells. Energy and Environmental Science, 2020, 13, 1971-1996.	15.6	156
487	Direct observation of surface polarization at hybrid perovskite/Au interfaces by dark transient experiments. Applied Physics Letters, 2020, 116, 183503.	1.5	11
488	A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices and Microstructures, 2020, 143, 106549.	1.4	90

#	Article	IF	CITATIONS
489	Carbon nanotubes to outperform metal electrodes in perovskite solar cells <i>via</i> dopant engineering and hole-selectivity enhancement. Journal of Materials Chemistry A, 2020, 8, 11141-11147.	5.2	51
490	Complexes of BiCl ₃ with hydrazone derived ligands: a Möbius-like discrete metal chelate <i>versus</i> a salt-like porous polymeric structure. New Journal of Chemistry, 2020, 44, 9429-9437.	1.4	5
491	Study on the properties of perovskite materials under light and different temperatures and electric fields based on DFT. RSC Advances, 2020, 10, 20960-20971.	1.7	8
492	Formamidinium-Based Perovskite Solar Cells with Enhanced Moisture Stability and Performance via Confined Pressure Annealing. Journal of Physical Chemistry C, 2020, 124, 12249-12258.	1.5	23
493	Characterizing the Efficiency of Perovskite Solar Cells and Light-Emitting Diodes. Joule, 2020, 4, 1206-1235.	11.7	53
494	Efficient Surface Passivation and Electron Transport Enable Low Temperature-Processed Inverted Perovskite Solar Cells with Efficiency over 20%. ACS Sustainable Chemistry and Engineering, 2020, 8, 8848-8856.	3.2	9
495	Photosupercapacitors: A perspective of planar and flexible dual functioning devices. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e377.	1.9	4
496	Silver and copper nanowire films as cost-effective and robust transparent electrode in energy harvesting through photovoltaic: A review. Materials Today Communications, 2020, 24, 101317.	0.9	22
497	Heat capacity and thermodynamic functions of di-,tri- and tetramethylammonium lead iodide perovskites from 289 to 473â€K. Thermochimica Acta, 2020, 687, 178583.	1.2	3
498	Cs ₄ PbI ₆ â€Mediated Synthesis of Thermodynamically Stable FA _{0.15} Cs _{0.85} PbI ₃ Perovskite Solar Cells. Advanced Materials, 2020, 32, e2001054.	11.1	41
499	Recent Advances in Perovskiteâ€Based Buildingâ€Integrated Photovoltaics. Advanced Materials, 2020, 32, e2000631.	11.1	80
500	2â€Thiopheneformamidiniumâ€Based 2D Ruddlesden–Popper Perovskite Solar Cells with Efficiency of 16.72% and Negligible Hysteresis. Advanced Energy Materials, 2020, 10, 2000694.	10.2	102
501	Exploring the impact of fractional-order capacitive behavior on the hysteresis effects of perovskite solar cells: A theoretical perspective. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105371.	1.7	17
502	Stable and luminescent halide perovskite fabricated in water. Light: Science and Applications, 2020, 9, 106.	7.7	18
503	Negative photoconductivity in Cs ₄ PbBr ₆ single crystal. Physical Chemistry Chemical Physics, 2020, 22, 14276-14283.	1.3	18
504	Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 1910004.	7.8	101
505	Facile and noninvasive passivation, doping and chemical tuning of macroscopic hybrid perovskite crystals. PLoS ONE, 2020, 15, e0230540.	1.1	9
506	Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Research, 2020, 13, 932-938.	5.8	11

#	Article	IF	CITATIONS
507	Correlation of Spatiotemporal Dynamics of Polarization and Charge Transport in Blended Hybrid Organic–Inorganic Perovskites on Macro- and Nanoscales. ACS Applied Materials & Interfaces, 2020, 12, 15380-15388.	4.0	5
508	A perovskite solar cell owing very high stabilities and power conversion efficiencies. Solar Energy, 2020, 201, 541-546.	2.9	11
509	Efficient All-Inorganic Perovskite Light-Emitting Diodes with Improved Operation Stability. ACS Applied Materials & Interfaces, 2020, 12, 18084-18090.	4.0	54
510	Efficient Perovskite Solar Cells Based on CdSe/ZnS Quantum Dots Electron Transporting Layer with Superior UV Stability. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000062.	1.2	11
511	Halogen–NH ₂ ⁺ Interaction, Temperature-Induced Phase Transition, and Ordering in (NH ₂ CHNH ₂)PbX ₃ (X = Cl, Br, I) Hybrid Perovskites. Journal of Physical Chemistry C, 2020, 124, 8479-8487.	1.5	32
512	UV degradation of the interface between perovskites and the electron transport layer. RSC Advances, 2020, 10, 11551-11556.	1.7	24
513	Compositional Engineering for Compact Perovskite Absorber Fabrication Toward Efficient Photovoltaics. IEEE Journal of Photovoltaics, 2020, 10, 765-770.	1.5	1
514	Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. Journal of Materials Chemistry A, 2020, 8, 7309-7316.	5.2	28
515	Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light: Science and Applications, 2020, 9, 31.	7.7	372
516	Anomalous 3D nanoscale photoconduction in hybrid perovskite semiconductors revealed by tomographic atomic force microscopy. Nature Communications, 2020, 11, 3308.	5.8	53
517	Insights of Hysteresis Behaviors in Perovskite Solar Cells from a Mixed Drift-Diffusion Model Coupled with Recombination. Photonics, 2020, 7, 47.	0.9	13
518	2-Terminal CICS-perovskite tandem cells: A layer by layer exploration. Solar Energy, 2020, 207, 270-288.	2.9	44
519	Correlated Electrical and Chemical Nanoscale Properties in Potassiumâ€Passivated, Triple ation Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000515.	1.9	4
520	The Synergism of DMSO and Diethyl Ether for Highly Reproducible and Efficient MA _{0.5} FA _{0.5} PbI ₃ Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2001300.	10.2	33
521	Organicâ€5altâ€Assisted Crystal Growth and Orientation of Quasiâ€2D Ruddlesden–Popper Perovskites for Solar Cells with Efficiency over 19%. Advanced Materials, 2020, 32, e2001470.	11.1	162
522	Exploration of Electrochemical Reactions at Organic–Inorganic Halide Perovskite Interfaces via Machine Learning in In Situ Timeâ€ofâ€Flight Secondary Ion Mass Spectrometry. Advanced Functional Materials, 2020, 30, 2001995.	7.8	30
523	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	11.1	148
524	Thermal stability of CH3NH3PbIxCl3-x versus [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 perovskite films by X-ray photoelectron spectroscopy. Applied Surface Science, 2020, 513, 145596.	3.1	13

	Сіта	tion Report	
#	ARTICLE	IF	CITATIONS
525	Performance of low-cost mixed cationic carbon-based solar cells prepared through compositional engineering under ambient conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392, 112437.	2.0	7
526	Boosted hole extraction in all-inorganic CsPbBr3 perovskite solar cells by interface engineering using MoO2/N-doped carbon nanospheres composite. Solar Energy Materials and Solar Cells, 2020, 209, 110460.	3.0	27
527	Heterogeneous Supersaturation in Mixed Perovskites. Advanced Science, 2020, 7, 1903166.	5.6	13
528	Enhancing Device Performance in Quasi-2D Perovskite ((BA) ₂ (MA) ₃ Pb ₄ I ₁₃) Solar Cells Using PbCl ₂ Additives. ACS Applied Materials & Interfaces, 2020, 12, 11190-11196.	4.0	35
529	Impact of SnF ₂ Addition on the Chemical and Electronic Surface Structure of CsSnBr ₃ . ACS Applied Materials & amp; Interfaces, 2020, 12, 12353-12361.	4.0	35
530	Potential environmental risk of solar cells: Current knowledge and future challenges. Journal of Hazardous Materials, 2020, 392, 122297.	6.5	82
531	Correlating Hysteresis and Stability with Organic Cation Composition in the Two-Step Solution-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10588-10596.	4.0	27
532	Pb dimerization greatly accelerates charge losses in MAPbI3: Time-domain ab initio analysis. Journal of Chemical Physics, 2020, 152, 064707.	1.2	12
533	Ag/In leadâ€free double perovskites. EcoMat, 2020, 2, e12017.	6.8	16
534	Performance enhancement of mesoscopic perovskite solar cells with GQDs-doped TiO2 electron transport layer. Solar Energy Materials and Solar Cells, 2020, 208, 110407.	3.0	34
535	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
536	Materials chemistry and engineering in metal halide perovskite lasers. Chemical Society Reviews, 2020, 49, 951-982.	18.7	263
537	Development of Dopantâ€Free Organic Hole Transporting Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903326.	10.2	202
538	Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies. Matter and Radiation at Extremes, 2020, 5, .	1.5	58
539	New Transparent Magnetic Semiconductor NixCu1–xI which Can Perform as Either P-type or N-type an Success in the P–N Homojunction Diode. ACS Applied Materials & Interfaces, 2020, 12, 6048-605	id 4.0	8
540	Synergistic effect of additives on 2D perovskite film towards efficient and stable solar cell. Chemical Engineering Journal, 2020, 389, 124266.	6.6	50
541	Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 22992-23001.	4.0	38
542	Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580, 614-620.	13.7	284

#	Article	IF	CITATIONS
543	Promoting the Efficiency and Stability of CsPblBr ₂ -Based All-Inorganic Perovskite Solar Cells through a Functional Cu ²⁺ Doping Strategy. ACS Applied Materials & Interfaces, 2020, 12, 23984-23994.	4.0	68
544	Interface passivation treatment by halogenated low-dimensional perovskites for high-performance and stable perovskite photovoltaics. Nano Energy, 2020, 73, 104753.	8.2	57
545	Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets. ACS Energy Letters, 2020, 5, 1380-1385.	8.8	48
546	Heterogeneous Cation–Lattice Interaction and Dynamics in Triple-Cation Perovskites Revealed by Infrared Vibrational Nanoscopy. ACS Energy Letters, 2020, 5, 1636-1643.	8.8	27
547	The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices. Energies, 2020, 13, 1929.	1.6	26
548	Domain Wall Conduction in Calcium-Modified Lead Titanate for Polarization Tunable Photovoltaic Devices. Cell Reports Physical Science, 2020, 1, 100043.	2.8	4
549	Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Advanced Science, 2020, 7, 1903389.	5.6	129
550	Relaxing the Goldschmidt Tolerance Factor: Sizable Incorporation of the Guanidinium Cation into a Two-Dimensional Ruddlesden–Popper Perovskite. Chemistry of Materials, 2020, 32, 4024-4037.	3.2	28
551	Perovskite: Name Puzzle and Germanâ€Russian Odyssey of Discovery. Helvetica Chimica Acta, 2020, 103, e2000061.	1.0	51
552	Amphoteric imidazole doping induced large-grained perovskite with reduced defect density for high performance inverted solar cells. Solar Energy Materials and Solar Cells, 2020, 212, 110553.	3.0	25
553	Hybrid Fullerene-Based Electron Transport Layers Improving the Thermal Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 20733-20740.	4.0	39
554	Organic Cation Alloying on Intralayer A and Interlayer A' sites in 2D Hybrid Dion–Jacobson Lead Bromide Perovskites (A')(A)Pb ₂ Br ₇ . Journal of the American Chemical Society, 2020, 142, 8342-8351.	6.6	64
555	Interfacial engineering revolutionizers: perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 251-279.	6.8	35
556	All Electrospray Printing of Carbonâ€Based Costâ€Effective Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2006803.	7.8	26
557	Glycineâ€Functionalized CsPbBr ₃ Nanocrystals for Efficient Visibleâ€Light Photocatalysis of CO ₂ Reduction. Chemistry - A European Journal, 2021, 27, 2305-2309.	1.7	32
558	Environmental impacts of solar energy systems: A review. Science of the Total Environment, 2021, 754, 141989.	3.9	373
559	P-type doping in internally photoemitted hot carrier solar cells. Journal of Cleaner Production, 2021, 278, 124168.	4.6	2
560	Effect of organic cation composition and halogen atom type on 2D-layered organic–inorganic hybrids for luminescent solar concentrator. Journal of Materials Science: Materials in Electronics, 2021, 32, 12939-12950.	1.1	7

ARTICLE IF CITATIONS Highly-dispersible reduced graphene oxide/polymer nanocomposites as efficient hole-transporting 561 3.8 10 materials for perovskite solar cells. Composites Science and Technology, 2021, 201, 108548. Highly efficient and stable perovskite solar cells produced by maximizing additive engineering. 2.5 Sustainable Energy and Fuels, 2021, 5, 469-477. Conjugated polyelectrolyte doped perovskite films with enhanced photovoltaic performance and 563 6.6 8 stability. Chemical Engineering Journal, 2021, 417, 128068. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and 564 4.0 characterization. Journal of Power Sources, 2021, 485, 229313. Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting. Nano 565 8.2 56 Energy, 2021, 82, 105693. Doping in Semiconductor Oxidesâ€Based Electron Transport Materials for Perovskite Solar Cells 3.1 Application. Solar Rrl, 2021, 5, 2000605. Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via <scp>scaps</scp> simulation. Journal of Vacuum Science and Technology 567 0.6 75 B:Nanotechnology and Microelectronics, 2021, 39, . Improving the Performance of Carbon-Based Perovskite Solar Modules (70 cm2) by Incorporating 2.5 9 Cesium Halide in Mesoporous TiO2. ACS Applied Energy Materials, 2021, 4, 249-258. Highâ€throughput computational design of halide perovskites and beyond for optoelectronics. Wiley 569 6.2 16 Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1500. Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chemical Society 570 18.7 Reviews, 2021, 50, 2696-2736. Optical properties of fully inorganic core/gradient-shell CdSe/CdZnS nanocrystals at the ensemble 571 1.3 6 and single-nanocrystal levels. Physical Chemistry Chemical Physics, 2021, 23, 22750-22759. Reliability of 3D Cs₂M⁺M<sup>3+</sub>K₆ type absorbers for perovskite solar cells: assessing the figures of merit. Journal of Materials Chemistry A, 2021, 9, 5.2 . 17701-17719 Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy and Environmental 573 15.6 255 Science, 2021, 14, 5161-5190. TiO2 oxides for chromogenic devices and dielectric mirrors., 2021, , 483-505. 574 Spinâ€"Orbit Coupling Accelerates the Photoinduced Interfacial Electron Transfer in a Fullerene-Based 575 2.1 21 Perovskite Heterojunction. Journal of Physical Chemistry Letters, 2021, 12, 1131-1137. A facile new modified method for the preparation of a new cerium-doped lanthanium cuperate 576 1.4 perovskite energy storage system using nanotechnology. New Journal of Chemistry, 2021, 45, 8506-8515. Morphological improvement of CH3NH3PbI3 films using blended solvents for perovskite solar cells. 577 1.2 8 Korean Journal of Chemical Engineering, 2021, 38, 187-194. Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of 578 5.8 94 >21% and improved stability towards humidity. Nature Communications, 2021, 12, 52.

#	Article	IF	CITATIONS
579	High-Performance Perovskite Solar Cells Based on NaCsWO ₃ @ NaYF ₄ @NaYF ₄ :Yb,Er Upconversion Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 2674-2684.	4.0	60
580	Understanding liquefaction in halide perovskites upon methylamine gas exposure. RSC Advances, 2021, 11, 20423-20428.	1.7	1
581	M13 bacteriophage-templated gold nanowires as stretchable electrodes in perovskite solar cells. Materials Advances, 2021, 2, 488-496.	2.6	10
582	Highly stable and efficient perovskite solar cells passivated by a functional amorphous layer. Journal of Materials Chemistry A, 2021, 9, 21708-21715.	5.2	13
583	Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chemistry of Materials, 2021, 33, 1540-1570.	3.2	65
584	3D structure–property correlations of electronic and energy materials by tomographic atomic force microscopy. Applied Physics Letters, 2021, 118, .	1.5	11
585	Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition. ACS Energy Letters, 2021, 6, 827-836.	8.8	81
586	Atomistic Simulations of MAPbl Pm-3m Using First-Principles Calculations. IOP Conference Series: Earth and Environmental Science, 2021, 655, 012062.	0.2	0
587	Silver Bismuth Iodide Nanomaterials as Lead-Free Perovskite for Visible Light Photodetection. ACS Applied Nano Materials, 2021, 4, 1252-1259.	2.4	17
588	Ambient-Air-Stable Lead-Free CsSnI ₃ Solar Cells with Greater than 7.5% Efficiency. Journal of the American Chemical Society, 2021, 143, 4319-4328.	6.6	105
589	Commercial Carbon-Based all-Inorganic Perovskite Solar Cells with a High Efficiency of 13.81%: Interface Engineering and Photovoltaic Performance. ACS Applied Energy Materials, 2021, 4, 3255-3264.	2.5	12
590	Stabilization of 3-D trigonal phase in guanidinium (C(NH2)3) lead triiodide (GAPbI3) films. Applied Surface Science, 2021, 542, 148575.	3.1	12
591	Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals, 2021, 11, 295.	1.0	23
592	Acid Dissociation Constant: A Criterion for Selecting Passivation Agents in Perovskite Solar Cells. ACS Energy Letters, 0, , 1612-1621.	8.8	99
593	Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 11741-11754.	4.0	45
594	Employ ionic liquid to stabilize black-phase formamidinium perovskites. Science China Chemistry, 2021, 64, 1263-1264.	4.2	1
595	Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381-385.	13.7	2,095
596	Mechanically Robust and Flexible Perovskite Solar Cells via a Printable and Gelatinous Interface. ACS Applied Materials & amp; Interfaces, 2021, 13, 19959-19969.	4.0	39

#	Article	IF	CITATIONS
597	Inâ€Depth Comparative Study of Cathode Interfacial Layer for Stable Inverted Perovskite Solar Cell. ChemSusChem, 2021, 14, 2393-2400.	3.6	3
598	Ionic Liquid-Assisted MAPbI ₃ Nanoparticle-Seeded Growth for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 21194-21206.	4.0	47
599	Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 2021, 32, 282001.	1.3	26
600	Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technology, 2021, 9, 2000901.	1.8	33
601	Chemical Insights into Interfacial Effects in Inorganic Nanomaterials. Advanced Materials, 2021, 33, e2006159.	11.1	22
602	Durable Defect Passivation of the Grain Surface in Perovskite Solar Cells with π-Conjugated Sulfamic Acid Additives. ACS Applied Materials & Interfaces, 2021, 13, 26013-26022.	4.0	35
603	Interfacial stabilization for inverted perovskite solar cells with long-term stability. Science Bulletin, 2021, 66, 991-1002.	4.3	45
604	Amino-Deliquescence and Amino-Efflorescence of Methylammonium Lead Iodide. Chemistry of Materials, 2021, 33, 3814-3822.	3.2	3
605	Fabrication of Porous Lead Bromide Films by Introducing Indium Tribromide for Efficient Inorganic CsPbBr3 Perovskite Solar Cells. Nanomaterials, 2021, 11, 1253.	1.9	8
606	A Study of Interfacial Electronic Structure at the CuPc/CsPbI2Br Interface. Crystals, 2021, 11, 547.	1.0	2
607	The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chemical Engineering Journal, 2021, 411, 128461.	6.6	70
608	The selection strategy of ammonium-group organic salts in vapor deposited perovskites: From dimension regulation to passivation. Nano Energy, 2021, 84, 105893.	8.2	19
609	Multiple-Noncovalent-Interaction-Stabilized Layered Dion–Jacobson Perovskite for Efficient Solar Cells. Nano Letters, 2021, 21, 5788-5797.	4.5	59
610	Plasma Oxidized Ti ₃ C ₂ T _{<i>x</i>} MXene as Electron Transport Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 32495-32502.	4.0	41
611	In-situ fluorinated 2D/3D invert perovskite film solar cell with enhanced ambient stability. Solar Energy, 2021, 221, 583-590.	2.9	7
612	Reducing Defects in Organic-Lead Halide Perovskite Film by Delayed Thermal Annealing Combined with KI/I2 for Efficient Perovskite Solar Cells. Nanomaterials, 2021, 11, 1607.	1.9	6
613	Sublethal toxicity of PbI2 in perovskite solar cells to fish embryos (Danio rerio and Oryzias latipes): Deformity and growth inhibition. Science of the Total Environment, 2021, 771, 145388.	3.9	17
614	Transition of the NiO _{<i>x</i>} Buffer Layer from a p-Type Semiconductor to an Insulator for Operation of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5452-5465.	2.5	11

#	Article	IF	Citations
615	Fluoroethylamine Engineering for Effective Passivation to Attain 23.4% Efficiency Perovskite Solar Cells with Superior Stability. Advanced Energy Materials, 2021, 11, 2101454.	10.2	49
616	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
617	Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission. Advanced Photonics, 2021, 3, .	6.2	47
618	Organic Photovoltaics: Where Are We Headed?. Solar Rrl, 2021, 5, 2100167.	3.1	18
619	Sub- and supersolidus phase relations of formamidinium-cesium polyiodides. Mendeleev Communications, 2021, 31, 451-453.	0.6	1
620	Lithographically Patterning Hybrid Perovskite Single Crystals by Surface-Engineered Amino-Deliquescence/Efflorescence. ACS Photonics, 2021, 8, 2329-2336.	3.2	4
621	Spontaneous Formation of Upper Gradient 2D Structure for Efficient and Stable Quasiâ€2D Perovskites. Advanced Materials, 2021, 33, e2101823.	11.1	36
622	Controlling the Defect Density of Perovskite Films by MXene/SnO ₂ Hybrid Electron Transport Layers for Efficient and Stable Photovoltaics. Journal of Physical Chemistry C, 2021, 125, 15210-15222.	1.5	34
623	Enhancing charge transport performance of perovskite solar cells by using reduced graphene oxide-cysteine/nanogold hybrid material in the active layer. FlatChem, 2021, 28, 100254.	2.8	12
624	Unraveling the surface state of photovoltaic perovskite thin film. Matter, 2021, 4, 2417-2428.	5.0	22
625	Lead acetate precursors for preparing CsPbI3 light harvester layers of inorganic perovskite solar cells. Solar Energy, 2021, 222, 212-218.	2.9	8
626	Incorporation of Two-Dimensional WSe ₂ into MAPbI ₃ Perovskite for Efficient and Stable Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 6883-6888.	2.1	12
627	Regulation of the order–disorder phase transition in a Cs ₂ NaFeCl ₆ double perovskite towards reversible thermochromic application. Journal of Semiconductors, 2021, 42, 072202.	2.0	15
628	Decisive Role of Elevated Mobility in X55 and X60 Hole Transport Layers for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7681-7690.	2.5	2
629	Characterization of perovskite solar cells with a solution-processed two-stage SnO ₂ electron transport layer. Molecular Crystals and Liquid Crystals, 2022, 735, 75-83.	0.4	2
630	Halogenâ€Bonded Holeâ€Transport Material Suppresses Charge Recombination and Enhances Stability of Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101553.	10.2	44
631	Simultaneously Enhancing Efficiency and Stability of Perovskite Solar Cells Through Crystal Cross‣inking Using Fluorophenylboronic Acid. Small, 2021, 17, e2102090.	5.2	15
632	Band-Gap-Engineered Transparent Perovskite Solar Modules to Combine Photovoltaics with Photosynthesis. ACS Applied Materials & amp; Interfaces, 2021, 13, 39230-39238.	4.0	8

#	Article	IF	CITATIONS
633	Comparative toxicity of potential leachates from perovskite and silicon solar cells in aquatic ecosystems. Aquatic Toxicology, 2021, 237, 105900.	1.9	10
634	Crystalâ€ 6 izeâ€ i nduced Band Gap Tuning in Perovskite Films. Angewandte Chemie - International Edition, 2021, 60, 21368-21376.	7.2	28
635	Recent progress of flexible perovskite solar cells. Nano Today, 2021, 39, 101155.	6.2	61
636	Crystalâ€6izeâ€Induced Band Gap Tuning in Perovskite Films. Angewandte Chemie, 2021, 133, 21538-21546.	1.6	10
637	MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing. Research, 2021, 2021, 9765106.	2.8	8
638	Properties of the mesoporous perovskite solar cell by plasma surface activation with a titanium dioxide electrode. Molecular Crystals and Liquid Crystals, 2022, 735, 84-92.	0.4	1
639	Theoretical Study on the Contacting Interface-Dependent Band Alignments of CsPbBr ₃ @MoS ₂ van der Waals Heterojunctions: Spin–Orbit Coupling Does Matter. Journal of Physical Chemistry C, 2021, 125, 21678-21688.	1.5	4
640	The Trapped Charges at Grain Boundaries in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2107125.	7.8	47
641	Electrical Switching of Optical Gain in Perovskite Semiconductor Nanocrystals. Nano Letters, 2021, 21, 7831-7838.	4.5	10
642	Atmospheric stable and flexible Sn-based perovskite solar cells via a bio-inspired antioxidative crystal template. Journal of Energy Chemistry, 2022, 66, 612-618.	7.1	10
643	Materials and Methods for Highâ€Efficiency Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100455.	3.1	51
644	Genetic Manipulation of M13 Bacteriophage for Enhancing the Efficiency of Virusâ€Inoculated Perovskite Solar Cells with a Certified Efficiency of 22.3%. Advanced Energy Materials, 2021, 11, 2101221.	10.2	20
645	Additive-Assisted Defect Passivation for Minimization of Open-Circuit Voltage Loss and Improved Perovskite Solar Cell Performance. ACS Applied Energy Materials, 2021, 4, 10468-10476.	2.5	21
646	Low-Temperature-Processed Transparent Electrodes Based on Compact and Mesoporous Titanium Oxide Layers for Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 5318-5330.	2.5	5
647	A highly responsive hybrid photodetector based on all-inorganic 2D heterojunction consisting of Cs2Pb(SCN)2Br2 and MoS2. Chemical Engineering Journal, 2021, 422, 130112.	6.6	12
648	Absorber layer optimisation of copper antimony sulfide thin film photovoltaics using numerical simulation. Superlattices and Microstructures, 2021, 158, 107029.	1.4	2
649	Ultrafast photo-induced carrier dynamics of FAPbI3-MAPbBr3 perovskite films fabricated with additives and a hole transport material. Chemical Physics Letters, 2021, 784, 139100.	1.2	4
650	Side-chain tailoring of benzodithiophene derivatives as hole-transporting materials for stable perovskite solar cells. Dyes and Pigments, 2021, 195, 109718.	2.0	3

#	Article	IF	CITATIONS
651	Mie-resonant mesoporous electron transport layer for highly efficient perovskite solar cells. Nano Energy, 2021, 89, 106484.	8.2	18
652	Suppression of Sn2+/Sn4+ oxidation in tin-based perovskite solar cells with graphene-tin quantum dots composites in active layer. Nano Energy, 2021, 90, 106495.	8.2	48
653	Methylammonium- and bromide-free perovskites enable efficient and stable photovoltaics. Journal of Energy Chemistry, 2021, 63, 12-24.	7.1	1
654	Defect passivation and interface modification by tetra-n-octadecyl ammonium bromide for efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 429, 132426.	6.6	24
655	Is machine learning redefining the perovskite solar cells?. Journal of Energy Chemistry, 2022, 66, 74-90.	7.1	27
656	Spectral response and quantum efficiency evaluation of solar cells: a review. , 2021, , 525-566.		3
657	High-throughput computational search for high carrier lifetime, defect-tolerant solar absorbers. Energy and Environmental Science, 2021, 14, 5057-5073.	15.6	23
658	Efficient surface passivation of perovskite films by a post-treatment method with a minimal dose. Journal of Materials Chemistry A, 2021, 9, 3441-3450.	5.2	60
659	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
660	Electronâ€Beamâ€Related Studies of Halide Perovskites: Challenges and Opportunities. Advanced Energy Materials, 2020, 10, 1903191.	10.2	53
661	Perovskite Photovoltaics: From Laboratory to Industry. Springer Series in Optical Sciences, 2020, , 219-255.	0.5	9
662	Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker. Solar Energy Materials and Solar Cells, 2018, 176, 30-35.	3.0	16
663	On-device lead sequestration for perovskite solar cells. Nature, 2020, 578, 555-558.	13.7	284
664	High-performance perovskite photodetectors based on CH ₃ NH ₃ PbBr ₃ quantum dot/TiO ₂ heterojunction. Nanotechnology, 2021, 32, 085201.	1.3	13
665	Temporally decoherent and spatially coherent vibrations in metal halide perovskites. Physical Review B, 2020, 102, .	1.1	7
666	DFT study of the electronic properties and the cubic to tetragonal phase transition in RbCaF3. Physical Review Materials, 2018, 2, .	0.9	13
668	Charge Transfer in Mixed-Phase TiO2 Photoelectrodes for Perovskite Solar Cells. Sustainability, 2020, 12, 788.	1.6	14
669	Self-powered ultraviolet–visible–near infrared perovskite/silicon hybrid photodetectors based on a novel Si/SnO ₂ /MAPbI ₃ /MoO ₃ heterostructure. Applied Physics Express, 2020, 13, 121001.	1.1	14

#	Article	IF	CITATIONS
670	On the origin of spatially dependent electronic excited-state dynamics in mixed hybrid perovskite thin films. Lithuanian Journal of Physics, 2019, 58, .	0.1	2
671	Regulating the crystalline phase of intermediate films enables FA _{1â^'<i>x</i>} MA _{<i>x</i>} PbI ₃ perovskite solar cells with efficiency over 22%. Journal of Materials Chemistry A, 2021, 9, 24064-24070.	5.2	20
672	Construction of an Iodine Diffusion Barrier Using Network Structure Silicone Resin for Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 8138-8146.	4.0	11
673	Organic additives in all-inorganic perovskite solar cells and modules: from moisture endurance to enhanced efficiency and operational stability. Journal of Energy Chemistry, 2022, 67, 361-390.	7.1	21
674	Machine learning for high-throughput experimental exploration of metal halide perovskites. Joule, 2021, 5, 2797-2822.	11.7	44
675	Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics. Journal Physics D: Applied Physics, 2022, 55, 113002.	1.3	17
676	Simulating the Performance of a Formamidinium Based Mixed Cation Lead Halide Perovskite Solar Cell. Materials, 2021, 14, 6341.	1.3	19
677	Flexible perovskite solar cells: Materials and devices. Journal of Semiconductors, 2021, 42, 101606.	2.0	12
678	Over 21% Efficiency Stable 2D Perovskite Solar Cells. Advanced Materials, 2022, 34, e2107211.	11.1	160
679	Strategies for improving performance, lifetime, and stability in light-emitting diodes using liquid medium. Chemical Physics Reviews, 2021, 2, .	2.6	6
680	Effect of Sublimation Temperature on the Photovoltaic Properties of Amorphous Carbon Thin Films from Fullerene. Journal of Solar Energy Research Updates, 0, 5, .	0.0	2
681	Recent progress of ion migration in organometal halide perovskite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158801.	0.2	11
682	Research progress of solution processed all-inorganic perovskite solar cell. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158806.	0.2	4
683	Counter Electrode Materials for Organic-Inorganic Perovskite Solar Cells. , 2019, , 165-225.		2
684	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.3	1
685	Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultra-thin 2D layer. , 2020, , .		4
686	Organic Salt-Assisted Growth and Orientation of Two-Dimensional Ruddlesden-Popper Perovskites for Efficient Solar Cells. , 2020, , .		0
687	On-device lead-absorbing tapes for sustainable perovskite solar cells. Nature Sustainability, 2021, 4, 1038-1041.	11.5	53

#	Article	IF	CITATIONS
688	Perovskite-based solar cells fabricated from TiO2 nanoparticles hybridized with biomaterials from mollusc and diatoms. Chemosphere, 2022, 291, 132692.	4.2	7
689	Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 219.	7.7	30
690	Multifunctional passivation agents for improving efficiency and stability of perovskite solar cells: Synergy of methyl and carbonyl groups. Applied Surface Science, 2022, 575, 151740.	3.1	13
691	Progress in Perovskite Solar Cells towards Commercialization—A Review. Materials, 2021, 14, 6569.	1.3	10
692	Enhancing the performance and stability of carbon-based CsPbI2Br perovskite solar cells via tetrabutylammonium iodide surface passivation. Solar Energy, 2021, 230, 666-674.	2.9	9
693	Reconstruction of the (EMIm) <i>_x</i> MA _{1â€"<i>x</i>} Pb[(BF ₄) <i>_x</i> 1â€ Interlayer for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 727-733.	" <i>x</i> < 4.0	/syb>]
694	Nonlinear dynamic investigation of the perovskite solar cell with GPLR-FGP stiffeners under blast impact. International Journal of Mechanical Sciences, 2022, 213, 106866.	3.6	19
695	Sn-based quasi-two-dimensional organic–inorganic hybrid halide perovskite for high-performance photodetectors. Applied Physics Letters, 2021, 119, .	1.5	11
696	Ionic liquids for advanced materials. Materials Today Nano, 2022, 17, 100159.	2.3	69
697	Extended X-ray absorption fine structure (EXAFS) of FAPbI3 for understanding local structure-stability relation in perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 549-554.	7.1	16
698	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
699	Lead-Sealed Stretchable Underwater Perovskite-Based Optoelectronics <i>via</i> Self-Recovering Polymeric Nanomaterials. ACS Nano, 2021, 15, 20127-20135.	7.3	8
700	A Phenanthrocarbazoleâ€Based Dopantâ€Free Holeâ€Transport Polymer with Noncovalent Conformational Locking for Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	47
701	Restricting lithium-ion migration via Lewis base groups in hole transporting materials for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133534.	6.6	13
702	High-Throughput Study of Antisolvents on the Stability of Multicomponent Metal Halide Perovskites through Robotics-Based Synthesis and Machine Learning Approaches. Journal of the American Chemical Society, 2021, 143, 19945-19955.	6.6	35
703	Phenanthrocarbazoleâ€Based Dopantâ€Free Holeâ€Transport Polymer with Noncovalently Conformational Locking for Efficient Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	3
704	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	28
705	Highly Planar Benzodipyrroleâ€Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100667.	3.1	11

#	Article	IF	CITATIONS
706	The roles of black phosphorus in performance enhancement of halide perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 672-683.	7.1	6
707	Continuous-Flow Synthesis of Perovskite Particles for Optical Application. Journal of Physics: Conference Series, 2021, 2015, 012072.	0.3	0
708	Self-assembled donor-acceptor hole contacts for inverted perovskite solar cells with an efficiency approaching 22%: The impact of anchoring groups. Journal of Energy Chemistry, 2022, 68, 87-95.	7.1	28
709	Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden–Popper Perovskites for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, , .	4.0	6
710	Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. Journal of Hazardous Materials, 2022, 426, 127848.	6.5	100
711	Stabilization Techniques of Lead Halide Perovskite for Photovoltaic Applications. Solar Rrl, 2022, 6, .	3.1	8
712	Csl Enhanced Buried Interface for Efficient and UVâ€Robust Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2103151.	10.2	91
713	Epitaxial Growth of Quasi-intrinsic CsPbBr ₃ Film on a SrTiO ₃ Substrate by Pulsed Laser Deposition. ACS Applied Electronic Materials, 2021, 3, 5592-5600.	2.0	7
714	Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation. Optical Materials, 2022, 123, 111839.	1.7	70
715	Upconversion graphene quantum dots incorporation in performance enhancement of p-i-n perovskite solar cells. Journal of Environmental Chemical Engineering, 2021, 9, 106898.	3.3	2
716	Fabrication and Evaluation of Two-Junction Carbon Thin Film Photovoltaic Devices. Journal of Solar Energy Research Updates, 0, 5, .	0.0	0
717	Multiple bonding effects of 1-methanesulfonyl-piperazine on the two-step processed perovskite towards efficient and stable solar cells. Nano Energy, 2022, 93, 106856.	8.2	20
718	Synergistic stabilization of CsPbI3 inorganic perovskite via 1D capping and secondary growth. Journal of Energy Chemistry, 2022, 68, 387-392.	7.1	16
719	Corrugation Enabled Ultraflexible Monocrystalline Silicon Solar Cells with Interdigitated Back Contacts. , 2020, , .		0
720	Ion migration mechanism in all-inorganic Ruddlesden–Popper lead halide perovskites by first-principles calculations. Physical Chemistry Chemical Physics, 2021, 24, 403-410.	1.3	7
721	Progress and challenges on scaling up of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6, 243-266.	2.5	59
722	Research progress of atomic layer deposition technology to improve the long-term stability of perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 819-839.	2.7	13
723	A comparative study of mixed halide perovskite thin film preparation by three- and two-step electrodeposition techniques. Optical Materials, 2022, 123, 111909.	1.7	4

#	Article	IF	CITATIONS
724	Large-area perovskite solar cells employing spiro-Naph hole transport material. Nature Photonics, 2022, 16, 119-125.	15.6	123
726	Fabrication of 2D perovskite (PMA)2PbI4 crystal and Cu ion implantation improved x-ray detector. Applied Physics Letters, 2022, 120, .	1.5	23
727	Organic spacer engineering in 2D/3D hybrid perovskites for efficient and stable solar cells. New Journal of Chemistry, 2022, 46, 2837-2845.	1.4	6
728	Comparison of the Electrochemical Behavior of Iodide Ion in Hydrophobic/Hydrophilic Ionic Liquids. Journal of the Electrochemical Society, 2022, 169, 026521.	1.3	0
729	Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites. Chemistry of Materials, 2022, 34, 1121-1131.	3.2	13
730	Suppressed charge carrier trap states and double photon absorption in substitutional Ta-doped TiO2-NT array. Nano Today, 2022, 43, 101407.	6.2	3
731	Analysis of Lightâ€Enhanced Capacitance Dispersion in Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	11
732	Light-Emitting Diodes Based on Two-Dimensional Nanoplatelets. Energy Material Advances, 2022, 2022, .	4.7	26
733	Sustainable development of perovskite solar cells: keeping a balance between toxicity and efficiency. Journal of Materials Chemistry A, 2022, 10, 8159-8171.	5.2	19
734	A multifunctional ligand for defect passivation of perovskite film realizes air-stable perovskite solar cells with efficiencies exceeding 20%. Sustainable Energy and Fuels, 2022, 6, 1950-1958.	2.5	6
735	Doping MAPbBr ₃ hybrid perovskites with CdSe/CdZnS quantum dots: from emissive thin films to hybrid single-photon sources. Nanoscale, 2022, 14, 5769-5781.	2.8	5
736	Difluorobenzylamine Treatment of Organolead Halide Perovskite Boosts the High Efficiency and Stability of Photovoltaic Cells. ACS Applied Materials & Interfaces, 2022, 14, 11388-11397.	4.0	11
737	Natural material from carnauba wax to enhance the moisture stability for high-efficiency Perovskite solar cells. , 2022, , .		0
738	Sustainable Green Process for Environmentally Viable Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1154-1177.	8.8	43
739	Hydrophobic Graphene Quantum Dots for Defect Passivation and Enhanced Moisture Stability of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	11
740	Spatiotemporally Correlated Imaging of Interfacial Defects and Photocurrents in High Efficiency Tripleâ€Cation Mixedâ€Halide Perovskites. Small, 2022, 18, e2200523.	5.2	5
741	In-Depth Chemical and Optoelectronic Analysis of Triple-Cation Perovskite Thin Films by Combining XPS Profiling and PL Imaging. ACS Applied Materials & Interfaces, 2022, 14, 34228-34237.	4.0	13
742	A General Lowâ€Temperature Strategy to Prepare Highâ€Quality Metal Sulfides Chargeâ€Transporting Layers for Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5

#	Article	IF	CITATIONS
743	Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by Vacuum Deposition. ACS Energy Letters, 2022, 7, 1355-1363.	8.8	24
744	Insights from scalable fabrication to operational stability and industrial opportunities for perovskite solar cells and modules. Cell Reports Physical Science, 2022, 3, 100827.	2.8	16
745	Investigation of the role of back contact work function for hole transporting layer free perovskite solar cells applications. Optik, 2022, 256, 168749.	1.4	19
746	Narrow Bandgap Metal Halide Perovskites: Synthesis, Characterization, and Optoelectronic Applications. Advanced Optical Materials, 2022, 10, .	3.6	7
747	Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. Chemical Engineering Journal, 2022, 442, 136267.	6.6	9
748	Progress on the stability and encapsulation techniques of perovskite solar cells. Organic Electronics, 2022, 106, 106515.	1.4	22
749	Solubility of Hybrid Halide Perovskites in DMF and DMSO. Molecules, 2021, 26, 7541.	1.7	15
750	Introducing Postmetalation Metal–Organic Framework to Control Perovskite Crystal Growth for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 60125-60134.	4.0	11
751	Millimeterâ€Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Rollâ€ŧoâ€Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	36
752	Ternary Phase Diagrams of MAI–PbI ₂ –DMF and MAI–PbI ₂ –DMSO Systems. Journal of Physical Chemistry C, 2022, 126, 169-173.	1.5	6
753	Synthetic Approaches Targeting Metal-Free Perovskite [HMDABCO](NH ₄)I ₃ Thin Films. Crystal Growth and Design, 2022, 22, 406-413.	1.4	3
754	Homogeneously Miscible Fullerene inducing Vertical Gradient in Perovskite Thinâ€Film toward Highly Efficient Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	28
755	Silicon Dioxide Nanoparticles Increase the Incidence Depth of Short-Wavelength Light in Active Layer for High-Performance Perovskite Solar Cells. Journal of Physical Chemistry C, 2022, 126, 7400-7409.	1.5	1
756	Enhanced Efficiency of Semitransparent Perovskite Solar Cells via Double-Sided Sandwich Evaporation Technique for Four Terminal Perovskite-Silicon Tandem Application. Nanomaterials, 2022, 12, 1569.	1.9	6
757	Universal control strategy for anomalous ionic-electronic phenomenology in perovskite solar cells efficiency measurements. Materials Today Energy, 2022, 27, 101031.	2.5	4
758	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
759	Stability ascent in perovskite solar cells employing star poly(3-hexylthiophene)/quantum dot nanostructures. Organic Electronics, 2022, 108, 106547.	1.4	1
760	Simulation and fabrication of all-inorganic antimony halide perovskite-like material based Pb-free perovskite solar cells. Optical Materials, 2022, 128, 112374.	1.7	16

#	Article	IF	CITATIONS
761	Recent development in MOFs for perovskite-based solar cells. , 2022, , 507-534.		1
762	Numerical simulation and fabrication of Pb-free perovskite solar cells (FTO/TiO2/Cs3Bi2I9/spiro-MeOTAD/Au). Optical Materials, 2022, 128, 112458.	1.7	18
763	Zinc Oxide: A Fascinating Material for Photovoltaic Applications. Materials Horizons, 2022, , 173-241.	0.3	2
764	Nonlinear dynamic instability of the perovskite solar cell under biaxial mechanical impacts. Engineering Failure Analysis, 2022, 139, 106444.	1.8	11
765	X-ray diffraction of photovoltaic perovskites: Principles and applications. Applied Physics Reviews, 2022, 9, .	5.5	28
766	Long term stability assessment of perovskite solar cell via recycling of metal contacts under ambient conditions. Materials Letters, 2022, 322, 132490.	1.3	4
767	Effect of thickness on photovoltaic properties of amorphous carbon/fullerene junction. AIMS Materials Science, 2022, 9, 446-454.	0.7	1
768	Degradation conceptualization of an innovative perovskite solar cell fabricated using SnO2 and P3HT as electron and hole transport layers. New Journal of Chemistry, 0, , .	1.4	1
769	Solvate phases crystallizing from hybrid halide perovskite solutions: Chemical classification and structural relations. Mendeleev Communications, 2022, 32, 311-314.	0.6	7
770	Antiperovskite Sr ₃ MN and Ba ₃ MN (MÂ=ÂSb or Bi) as promising photovoltaic absorbers for thinâ€film solar cells: A firstâ€principles study. Journal of the American Ceramic Society, 2022, 105, 5807-5816.	1.9	6
771	DFT and TD-DFT studies of 1,3,5-Tris (dipheny1amino) benzene derivatives based hole transport materials: application for perovskite solar cells. Optical and Quantum Electronics, 2022, 54, .	1.5	8
772	Processing of Lead Halide Perovskite Thin Films Studied with In-Situ Real-Time X-ray Scattering. ACS Applied Materials & Interfaces, 2022, 14, 26315-26326.	4.0	5
773	Geometrically nonlinear dynamic analysis of the stiffened perovskite solar cell subjected to biaxial velocity impacts. Nonlinear Dynamics, 2022, 110, 281-311.	2.7	8
774	Zwitterionâ€Functionalized SnO ₂ Substrate Induced Sequential Deposition of Blackâ€Phase FAPbl ₃ with Rearranged Pbl ₂ Residue. Advanced Materials, 2022, 34, .	11.1	75
775	In-situ photoisomerization of azobenzene to inhibit ion-migration for stable high-efficiency perovskite solar cells. Journal of Energy Chemistry, 2022, 73, 556-564.	7.1	7
777	Universal Bifacial Stamping Approach Enabling Reverseâ€Graded Ruddlesdenâ€Popper 2D Perovskite Solar Cells. Small, 2022, 18,	5.2	6
778	Numerical simulation of bilayer perovskite quantum dot solar cell with 18.55% efficiency. Optical and Quantum Electronics, 2022, 54, .	1.5	7
779	Property degradation of mixed-cation perovskite films and solar cells irradiated with protons. Nuclear Instruments & Methods in Physics Research B, 2022, 526, 29-35.	0.6	5

#	Article	IF	CITATIONS
780	Perovskite solar cells for building integrated photovoltaicsâꀔglazing applications. Joule, 2022, 6, 1446-1474.	11.7	39
781	Flexible resistive switching device based on air-stable lead-free Cu3Sb16 perovskite film for nonvolatile memory application. Applied Physics Letters, 2022, 120, .	1.5	6
782	Doubleâ€ S ide Interface Engineering Synergistically Boosts the Efficiency of Inorganic CsPbIBr ₂ Perovskite Solar Cells Over 12%. Advanced Optical Materials, 2022, 10, .	3.6	16
783	Solution Processable Direct Bandgap Copperâ€Silverâ€Bismuth Iodide Photovoltaics: Compositional Control of Dimensionality and Optoelectronic Properties. Advanced Energy Materials, 2022, 12, .	10.2	17
784	Facile and Stable Fluorene Based Organic Hole Transporting Materials for Efficient Perovskite Solar Cells. Macromolecular Research, 2022, 30, 745-750.	1.0	7
785	Energyâ€Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
786	Energyâ€Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angewandte Chemie, 2022, 134, .	1.6	5
787	Successive Solution–Liquid–Vapor Conversion of Metallic Lead Films for Highly Efficient Perovskite Solar Cells. Russian Journal of Inorganic Chemistry, 2022, 67, 992-996.	0.3	4
788	Progress and challenges of halide perovskite-based solar cell- a brief review. Materials Science in Semiconductor Processing, 2022, 150, 106953.	1.9	22
789	High-efficient hole-transport-material-free carbon-based all-inorganic perovskite solar cells using Cs-doped TiO2 nanorods array as the electron transport layer. Journal of Alloys and Compounds, 2022, 922, 166186.	2.8	5
790	Systematic Microwave-Assisted Postsynthesis of Mn-Doped Cesium Lead Halide Perovskites with Improved Color-Tunable Luminescence and Stability. Nanomaterials, 2022, 12, 2535.	1.9	3
791	Bandgap Engineering of Cesium Lead Halide Perovskite CsPbBr ₃ through Cu Doping. Advanced Theory and Simulations, 2022, 5, .	1.3	5
792	Improved Perovskite Structural Stability by Halogen Bond from Excessive Lead Iodide via Numerical Simulation. Crystals, 2022, 12, 1073.	1.0	1
793	Synthesis, photophysical properties and DFT studies of pyrrolo[1,2â€ <i>a</i>]quinoxaline hosted novel hole transporting molecules for perovskite solar cell (PSC). Journal of Physical Organic Chemistry, 2022, 35, .	0.9	2
794	Simultaneous Chemical Crosslinking of SnO ₂ and Perovskite for Highâ€Performance Planar Perovskite Solar Cells with Minimized Lead Leakage. Solar Rrl, 2022, 6, .	3.1	13
795	Progress of Solution-Processed Metal Oxides as Charge Transport Layers towards Efficient and Stable Perovskite Solar Cells and Modules. Materials Today Nano, 2022, , 100252.	2.3	2
796	Coordination modulated passivation for stable organic-inorganic perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138740.	6.6	12
797	Enhanced Phase Stability of Compressive Strain-Induced Perovskite Crystals. ACS Applied Materials & Interfaces, 2022, 14, 39996-40004.	4.0	6

#	Article	IF	CITATIONS
798	Low temperature preparation of W-doped In2O3 transparent electrodes for p-i-n structured perovskite solar cells. Journal of Alloys and Compounds, 2022, 926, 166827.	2.8	4
799	Optoelectronic properties and ion diffusion mechanism in 2D perovskites Cs3BX5 (BÂ=ÂGe, Sn, and Pb; X) Tj ETG	2q1 1 0.78 1.2	34314 rgBT
800	Solution-processed next generation thin film solar cells for indoor light applications. Energy Advances, 2022, 1, 761-792.	1.4	15
801	Lead-free AgBil ₄ perovskite artificial synapses for a tactile sensory neuron system with information preprocessing function. Materials Advances, 2022, 3, 7248-7256.	2.6	10
802	Metal oxide charge transporting layers for stable high-performance perovskite solar cells. CrystEngComm, 2022, 24, 7229-7249.	1.3	2
803	"Breathing―organic cation to stabilize multiple structures in low-dimensional Ge-, Sn-, and Pb-based hybrid iodide perovskites. Inorganic Chemistry Frontiers, 2022, 9, 4892-4898.	3.0	3
804	Governing PbI ₆ octahedral frameworks for high-stability perovskite solar modules. Energy and Environmental Science, 2022, 15, 4404-4413.	15.6	14
805	Encapsulation against Extrinsic Degradation Factors and Stability Testing of Perovskite Solar Cells. , 0, , .		Ο
806	Configurable Organic Charge Carriers toward Stable Perovskite Photovoltaics. Chemical Reviews, 2022, 122, 14954-14986.	23.0	26
807	Shapeâ€Controlled NaTaO ₃ by Fluxâ€Mediated Synthesis. Advanced Functional Materials, 0, , 2206641.	7.8	2
808	Single-Crystal Hybrid Lead Halide Perovskites: Growth, Properties, and Device Integration for Solar Cell Application. Crystal Growth and Design, 2022, 22, 6338-6362.	1.4	7
809	Bottomâ€Up Templated and Oriented Crystallization for Inverted Tripleâ€Cation Perovskite Solar Cells with Stabilized Nickelâ€Oxide Interface. Small, 2022, 18, .	5.2	20
810	Numerical Simulation of NH3(CH2)2NH3MnCl4 Based Pb-Free Perovskite Solar Cells Via SCAPS-1D. Nanomaterials, 2022, 12, 3407.	1.9	5
811	Grain Boundary Passivation Using D131 Organic Dye Molecule for Efficient and Thermally Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 13825-13834.	3.2	12
812	Dopantâ€Free Bithiopheneâ€Imideâ€Based Polymeric Holeâ€Transporting Materials for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	37
813	Improving the efficiency and stability of perovskite solar cell through tetrabutylammonium hexafluorophosphate post-treatment assisted top surface defect passivation. Solar Energy Materials and Solar Cells, 2022, 248, 112011.	3.0	4
814	Understanding the efficiency enhancement of perovskite solar cells with NaGdF4: Er3+/Yb3+ nanorods. Solar Energy Materials and Solar Cells, 2022, 248, 112029.	3.0	4
815	Polarization suppresses local photocurrent in triple-cation mixed-halide perovskite. Journal of Applied Physics, 2022, 132, .	1.1	2

#	Article	IF	CITATIONS
816	Photovoltaic performance of mixed cation K _{0.005} MA _{0.995} PbI ₃ â€based perovskite solar module. , 2023, 2, .		4
817	Flexible kesterite thin-film solar cells under stress. Npj Flexible Electronics, 2022, 6, .	5.1	15
818	Defect control based on interfacial passivation via post-treatment of 1-ethylpyridine hydrobromide for achieving efficient and stable perovskite solar cells. Applied Surface Science, 2023, 608, 155042.	3.1	2
819	An illustrative understanding on strengthening in stability and efficiency of perovskite solar cells: Utilization of the perovskite-constructed polymer hybrid system of PHQACI-CN inclusion. Journal of Materials Chemistry C, 0, , .	2.7	0
820	Eu3+ doped CsPbCl2Br1 nanocrystals glass for enhanced the ultraviolet response of Si photodetectors. Journal of Luminescence, 2023, 254, 119530.	1.5	3
821	Onset of vacancy-mediated high activation energy leads to large ionic conductivity in two-dimensional layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> Cs</mml:mi> <mml balide="" materials_2022_6<="" perovebite_physical="" review="" ruddlesden_popper="" td=""><td>:mn>29/mr</td><td>nl:mn></td></mml></mml:msub></mml:mrow></mml:math>	:mn>29/mr	nl:mn>
822	Photovoltaic windows cut energy use and CO2 emissions by 40% in highly glazed buildings. One Earth, 2022, 5, 1271-1285.	3.6	12
823	Decoupling excitons behavior of two-dimensional Ruddlesden-Popper PEA2PbI4 nanosheets. Journal of Alloys and Compounds, 2023, 936, 168312.	2.8	3
824	Interfacial fluorinated polymer layer enabling highly stable, fast response, high-performance self-powered PEA2PbBr4 ultraviolet photodetector. Synthetic Metals, 2023, 293, 117261.	2.1	0
825	Deep-level transient spectroscopy of the charged defects in p-i-n perovskite solar cells induced by light-soaking. Optical Materials: X, 2022, 16, 100218.	0.3	3
826	Anomalous Rashba Effect Driven by Polar and Nonpolar Modes in the Ferroelectric Superlattice. Journal of Physical Chemistry C, 2022, 126, 20620-20626.	1.5	2
827	Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	10
828	Cinnamate-Functionalized Cellulose Nanocrystals as Interfacial Layers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 1348-1357.	4.0	3
829	Theoretical and Experimental Study of Methyl Ammonium Antimony Iodide-Based Lead-Free Perovskite Solar Cells. Energies, 2023, 16, 236.	1.6	0
830	Photothermally induced, reversible phase transition in methylammonium lead triiodide. Matter, 2023, 6, 460-474.	5.0	3
831	Tunable resonance of a graphene-perovskite terahertz metasurface. Nanoscale Advances, 2023, 5, 756-766.	2.2	2
832	Spiro-OMeTAD versus PTAA for single-walled carbon nanotubes electrode in perovskite solar cells. Carbon, 2023, 205, 321-327.	5.4	6
833	Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles. Joule, 2023, 7, 183-200.	11.7	7

#	Article	IF	CITATIONS
834	Development of Cu-based ternary nanocrystalline chalcogenides using mechanical alloying and their characterization. Journal of Materials Research, 0, , .	1.2	0
835	Nonlinear dynamic analysis of the perovskite solar cell under blast impacts based on the modified strain gradient theory. Acta Mechanica, 0, , .	1.1	0
836	Stability of perovskite solar cells: issues and prospects. RSC Advances, 2023, 13, 1787-1810.	1.7	65
837	Twenty-Two Percent Efficient Pb-Free All-Perovskite Tandem Solar Cells Using SCAPS-1D. Nanomaterials, 2023, 13, 96.	1.9	5
838	Green and cost-effective morter grinding synthesis of bismuth-doped halide perovskites as efficient absorber materials. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	4
839	A Comprehensive Analysis of Ecoâ€Friendly Cs ₂ SnI ₆ Based Tin Halide Perovskite Solar Cell through Device Modeling. Advanced Theory and Simulations, 2023, 6, .	1.3	11
840	Well-organized SnO2 inverse opal monolayer as structured electron transport layer for high-efficiency perovskite solar cells. Applied Physics Letters, 2023, 122, .	1.5	3
841	Perovskite and organic bulk heterojunction integrated solar cells: a mini review. Journal of the Korean Physical Society, 2023, 82, 229-235.	0.3	0
842	Strategies for Optimizing the Morphology of CsSnI3 Perovskite Solar Cells. Crystals, 2023, 13, 410.	1.0	2
843	Mechanochemical Synthesis of Leadâ€Free Perovskiteâ€Like MA ₃ Bi ₂ I ₉ for Photoâ€Catalytic Hydrogen Production. Chemistry - A European Journal, 2023, 29, .	1.7	3
844	Less Is More: Simplified Fluorene-Based Dopant-Free Hole Transport Materials Promote the Long-Term Ambient Stability of Perovskite Solar Cells. Chemistry of Materials, 2023, 35, 2975-2987.	3.2	4
845	Highly Stable Perovskite Solar Cells by Reducing Residual <scp>Waterâ€Induced</scp> Decomposition of Perovskite. Chinese Journal of Chemistry, 2023, 41, 1594-1602.	2.6	1
846	Building optimistic perovskite-polymer composite solar cells: Feasible involvement of a BLP inclusion to efficiently stable perovskite films. Materials Science in Semiconductor Processing, 2023, 160, 107409.	1.9	0
847	Three- and two-dimensional mixed metal halide perovskites for high-performance photovoltaics. Organic Electronics, 2023, 118, 106796.	1.4	0
848	Constructing a Surface Multi-cationic Heterojunction for CsPbI _{1.5} Br _{1.5} Perovskite Solar Cells with Efficiency beyond 14%. Journal of Physical Chemistry Letters, 2023, 14, 1140-1147.	2.1	3
849	Inhibited Crack Development by Compressive Strain in Perovskite Solar Cells with Improved Mechanical Stability. Advanced Materials, 2023, 35, .	11.1	18
850	Interfacial modification of in-situ polymerized AMPS/NiFe2O4 quantum dots for efficient and air-stable CsPbBr3 perovskite solar cells. Chemical Engineering Journal, 2023, 461, 141943.	6.6	5
851	One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nature Communications, 2023, 14, .	5.8	74

#	Article	IF	CITATIONS
852	Highâ€Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications. Small Methods, 2023, 7, .	4.6	14
853	Recent progress on the use of graphene-based nanomaterials in perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 6659-6687.	5.2	7
854	Concurrent Top and Buried Surface Optimization for Flexible Perovskite Solar Cells with High Efficiency and Stability. Advanced Functional Materials, 2023, 33, .	7.8	11
855	Halide-chalcogenide hetero-structure for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 462, 142214.	6.6	2
856	Dual passivation effects of ionic liquids enable efficient and stable perovskite solar cells. Journal of Chemical Physics, 2023, 158, 134706.	1.2	0
857	Native point defects in antiperovskite Ba ₃ SbN: a promising semiconductor for photovoltaics. Physical Chemistry Chemical Physics, 2023, 25, 9800-9806.	1.3	2
858	Highly Improved Photocurrent Density and Efficiency of Perovskite Solar Cells via Inclined Fluorine Sputtering Process. Advanced Functional Materials, 2023, 33, .	7.8	2
859	Snâ€Based Selfâ€Powered Ultrafast Perovskite Photodetectors with Highly Crystalline Order for Flexible Imaging Applications. Advanced Functional Materials, 2023, 33, .	7.8	14
860	Lowâ€Threshold, External avityâ€Free Flexible Perovskite Lasers. Advanced Functional Materials, 2023, 33,	7.8	2
861	Upcycled synthesis and extraction of carbonâ€encapsulated iron carbide nanoparticles for gap Plasmon applications in perovskite solar cells. EcoMat, 0, , .	6.8	1
862	Ambientâ€Airâ€Stable Inverted Perovskite Solar Cells by Carbazole Analog Tailored Perovskite Thin Films. Solar Rrl, 2023, 7, .	3.1	2
863	Role of Ionic Liquids in Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	5
864	Optimal Enhancement of Power Conversion Efficiency of Monolithic Perovskite Solar Cells by Effect of Methylammonium (MAI). Journal of Nano Research, 0, 77, 135-143.	0.8	1
865	Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite solar cell based on CsGeI3. Materials Today: Proceedings, 2023, , .	0.9	2
866	Myth behind Metastable and Stable <i>n</i> -Hexylammonium Bromide-Based Low-Dimensional Perovskites. Journal of the American Chemical Society, 2023, 145, 8209-8217.	6.6	8
867	Numerical Simulation and Experimental Study of Methyl Ammonium Bismuth Iodide Absorber Layer Based Lead Free Perovskite Solar Cells. Chemistry - A European Journal, 2023, 29, .	1.7	5
871	Surface Passivation of FAPbI ₃ -Rich Perovskite with Cesium Iodide Outperforms Bulk Incorporation. ACS Energy Letters, 2023, 8, 2456-2462.	8.8	14
883	Lead immobilization for environmentally sustainable perovskite solar cells. Nature, 2023, 617, 687-695.	13.7	25

#	Article	IF	CITATIONS
885	The enhanced operational stability of perovskite solar cell through low-temperature processed NiO hole transporting layer and GPE passivation. AIP Conference Proceedings, 2023, , .	0.3	0
888	Can we make color switchable photovoltaic windows?. Chemical Science, 2023, 14, 7828-7841.	3.7	1
931	The impact of moisture on the stability and degradation of perovskites in solar cells. Materials Advances, 2024, 5, 2200-2217.	2.6	0