Polymer-templated nucleation and crystal growth of perficiency greater than \hat{A} 21%

Nature Energy

1,

DOI: 10.1038/nenergy.2016.142

Citation Report

#	Article	IF	CITATIONS
1	Characterization and Photovoltaic Properties of BiFeO3 Thin Films. Coatings, 2016, 6, 68.	1.2	17
2	D-A-ï€-A Motif Quinoxaline-Based Sensitizers with High Molar Extinction Coefficient for Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 31016-31024.	4.0	46
3	Turning a disadvantage into an advantage: synthesizing high-quality organometallic halide perovskite nanosheet arrays for humidity sensors. Journal of Materials Chemistry C, 2017, 5, 2504-2508.	2.7	74
4	Tailoring interface of lead-halide perovskite solar cells. Nano Research, 2017, 10, 1471-1497.	5.8	39
5	Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 3667-3676.	4.0	98
6	Allâ€Vacuumâ€Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11%. Advanced Materials, 2017, 29, 1605290.	11.1	321
7	Cu(II) Complexes as p-Type Dopants in Efficient Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 497-503.	8.8	77
8	Two‣tep Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application. Advanced Functional Materials, 2017, 27, 1605654.	7.8	120
9	Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance. Nanoscale, 2017, 9, 2569-2578.	2.8	27
10	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
11	Improved Reproducibility for Perovskite Solar Cells with 1 cm ² Active Area by a Modified Two-Step Process. ACS Applied Materials & amp; Interfaces, 2017, 9, 5974-5981.	4.0	41
12	Atomistic Origins of Surface Defects in CH ₃ NH ₃ PbBr ₃ Perovskite and Their Electronic Structures. ACS Nano, 2017, 11, 2060-2065.	7.3	123
13	2,9,16,23-Tetrakis(7-coumarinoxy-4-methyl)- metallophthalocyanines -based hole transporting material for mixed-perovskite solar cells. Synthetic Metals, 2017, 226, 1-6.	2.1	20
14	Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6064-6071.	4.0	33
15	Facile Face-Down Annealing Triggered Remarkable Texture Development in CH ₃ NH ₃ Pbl ₃ Films for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6104-6113.	4.0	67
16	Chemical Vapor Deposition of Perovskites for Photovoltaic Application. Advanced Materials Interfaces, 2017, 4, 1600970.	1.9	46
17	Carbonâ€Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market?. Advanced Materials, 2017, 29, 1603994.	11.1	261
18	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	5.2	378

#	ARTICLE	IF	CITATIONS
19	Elucidating the effect of the lead iodide complexation degree behind the morphology and performance of perovskite solar cells. Nanoscale, 2017, 9, 3889-3897.	2.8	26
20	Scalable Ligand-Mediated Transport Synthesis of Organic–Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics. ACS Nano, 2017, 11, 2689-2696.	7.3	62
21	The detailed balance limit of perovskite/silicon and perovskite/CdTe tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600955.	0.8	44
22	Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 164, 87-92.	3.0	76
23	Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters, 2017, 2, 822-830.	8.8	305
24	Isomerâ€Pure Bisâ€PCBMâ€Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced Materials, 2017, 29, 1606806.	11.1	320
25	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	19.8	634
26	Enhanced Photovoltaic Performance of Mesoscopic Perovskite Solar Cells by Controlling the Interaction between CH ₃ NH ₃ Pbl ₃ Films and CsPbX ₃ Perovskite Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 4239-4245.	1.5	42
27	The rapid evolution of highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 710-727.	15.6	942
28	Transferrable optimization of spray-coated Pbl ₂ films for perovskite solar cell fabrication. Journal of Materials Chemistry A, 2017, 5, 5709-5718.	5.2	54
29	The Functions of Fullerenes in Hybrid Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 782-794.	8.8	217
30	Improved air stability of perovskite hybrid solar cells via blending poly(dimethylsiloxane)–urea copolymers. Journal of Materials Chemistry A, 2017, 5, 5486-5494.	5.2	49
31	Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.	8.2	345
32	Crystallographic orientation propagation in metal halide perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 7796-7800.	5.2	57
33	PbI2 heterogeneous-cap-induced crystallization for an efficient CH3NH3PbI3 layer in perovskite solar cells. Chemical Communications, 2017, 53, 5032-5035.	2.2	20
34	Development of electron and hole selective contact materials for perovskite solar cells. Chinese Chemical Letters, 2017, 28, 1144-1152.	4.8	20
35	Cost-effective sustainable-engineering of CH3NH3PbI3 perovskite solar cells through slicing and restacking of 2D layers. Nano Energy, 2017, 36, 295-302.	8.2	30
36	Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606774.	11.1	318

#	Article	IF	CITATIONS
37	High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy. Chemical Physics Letters, 2017, 683, 211-215.	1.2	31
38	In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chemical Communications, 2017, 53, 5231-5234.	2.2	78
39	Ni-doped α-Fe 2 O 3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability. Nano Energy, 2017, 38, 193-200.	8.2	75
40	Effect of ultraviolet absorptivity and waterproofness of poly(3,4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. Journal of Power Sources, 2017, 358, 29-38.	4.0	30
41	Potential Improvement in Fill Factor of Lead-Halide Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700027.	3.1	24
42	A Perylenediimide Tetramerâ€Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell. Solar Rrl, 2017, 1, 1700046.	3.1	28
43	A new binaphthol based hole-transporting materials for perovskite solar cells. Tetrahedron, 2017, 73, 3398-3405.	1.0	9
44	Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700414.	10.2	190
45	MgO Nanoparticle Modified Anode for Highly Efficient SnO ₂ â€Based Planar Perovskite Solar Cells. Advanced Science, 2017, 4, 1700031.	5.6	175
46	Molecular engineering to enhance perovskite solar cell performance: Incorporation of benzothiadiazole as core unit for low cost hole transport materials. Dyes and Pigments, 2017, 143, 356-360.	2.0	33
47	Enhanced light absorption of thin perovskite solar cells using textured substrates. Solar Energy Materials and Solar Cells, 2017, 168, 214-220.	3.0	50
48	Solution-processed vanadium oxide thin film as the hole extraction layer for efficient hysteresis-free perovskite hybrid solar cells. Organic Electronics, 2017, 47, 85-93.	1.4	29
49	Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 165-171.	3.0	70
50	Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air. Journal of Materials Chemistry A, 2017, 5, 13448-13456.	5.2	96
51	Self-encapsulated semi-transparent perovskite solar cells with water-soaked stability and metal-free electrode. Organic Electronics, 2017, 48, 308-313.	1.4	18
52	Efficient bifacial semitransparent perovskite solar cells with silver thin film electrode. Solar Energy Materials and Solar Cells, 2017, 170, 278-286.	3.0	55
53	Rapid Crystallization of All-Inorganic CsPbBr3 Perovskite for High-Brightness Light-Emitting Diodes. ACS Omega, 2017, 2, 2757-2764.	1.6	28
54	In Situ Observation of Crystallization of Methylammonium Lead Iodide Perovskite from Microdroplets, Small 2017, 13, 1604125	5.2	39

#	Article	IF	CITATIONS
55	Thermal conductivity of suspended single crystal CH ₃ NH ₃ PbI ₃ platelets at room temperature. Nanoscale, 2017, 9, 8281-8287.	2.8	20
56	Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices. Advanced Materials, 2017, 29, 1606491.	11.1	174
57	Composition Engineering in Doctorâ€Blading of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700302.	10.2	239
58	Diammonium and Monoammonium Mixedâ€Organicâ€Cation Perovskites for High Performance Solar Cells with Improved Stability. Advanced Energy Materials, 2017, 7, 1700444.	10.2	121
59	Enhancing the c-TiO2 based perovskite solar cell performance via modification by a serial of boronic acid derivative self-assembled monolayers. Applied Surface Science, 2017, 423, 521-527.	3.1	22
60	Deciphering the NH ₄ PbI ₃ Intermediate Phase for Simultaneous Improvement on Nucleation and Crystal Growth of Perovskite. Advanced Functional Materials, 2017, 27, 1701804.	7.8	117
61	Novel dopant-free metallophthalocyanines based hole transporting materials for perovskite solar cells: The effect of core metal on photovoltaic performance. Solar Energy, 2017, 155, 121-129.	2.9	40
62	Spiroâ€Phenylpyrazoleâ€9,9′â€Thioxanthene Analogues as Holeâ€Transporting Materials for Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700823.	10.2	74
63	PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance. Solar Energy Materials and Solar Cells, 2017, 170, 178-186.	3.0	45
64	Magnetic Field-Assisted Perovskite Film Preparation for Enhanced Performance of Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 21756-21762.	4.0	27
65	Accurate and fast evaluation of perovskite solar cells with least hysteresis. Applied Physics Express, 2017, 10, 076601.	1.1	12
66	Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy and Environmental Science, 2017, 10, 1530-1539.	15.6	311
67	Pin-Hole Free Perovskite Film for Solar Cells Application Prepared by Controlled Two-Step Spin-Coating Method. IOP Conference Series: Materials Science and Engineering, 2017, 196, 012037.	0.3	31
68	Crystallization Kinetics and Morphology Control of Formamidinium–Cesium Mixed ation Lead Mixedâ€Halide Perovskite via Tunability of the Colloidal Precursor Solution. Advanced Materials, 2017, 29, 1607039.	11.1	263
69	Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Letters, 2017, 2, 1539-1548.	8.8	928
70	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	3.5	132
71	Inverse-architecture perovskite solar cells with 5,6,11,12-tetraphenylnaphthacene as a hole conductor. RSC Advances, 2017, 7, 29944-29952.	1.7	16
72	Ternary oxide BaSnO3 nanoparticles as an efficient electron-transporting layer for planar perovskite solar cells. Journal of Alloys and Compounds, 2017, 722, 196-206.	2.8	32

#	Article	IF	CITATIONS
73	Highâ€Efficiency Solutionâ€Processed Inorganic Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1700579.	11.1	193
74	An annealing-free aqueous-processed anatase TiO ₂ compact layer for efficient planar heterojunction perovskite solar cells. Chemical Communications, 2017, 53, 10882-10885.	2.2	31
75	Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 14129-14135.	4.0	9
76	Performance Enhancement of Triâ€Cation and Dualâ€Anion Mixed Perovskite Solar Cells by Au@SiO ₂ Nanoparticles. Advanced Functional Materials, 2017, 27, 1606545.	7.8	52
77	A critical review on tin halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11518-11549.	5.2	463
78	Small Molecule–Polymer Composite Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13240-13246.	4.0	62
79	Enhanced optoelectronic quality of perovskite films with excess CH ₃ NH ₃ I for high-efficiency solar cells in ambient air. Nanotechnology, 2017, 28, 205401.	1.3	18
80	Perovskite hybrid solar cells with a fullerene derivative electron extraction layer. Journal of Materials Chemistry C, 2017, 5, 4190-4197.	2.7	24
81	Enhancement of the hole conducting effect of NiO by a N ₂ blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode. Nanoscale, 2017, 9, 5475-5482.	2.8	33
82	A transparent poly(3,4-ethylenedioxylenethiophene):poly(styrene sulfonate) cathode for low temperature processed, metal-oxide free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 6974-6980.	5.2	60
83	Mixed cation hybrid lead halide perovskites with enhanced performance and stability. Journal of Materials Chemistry A, 2017, 5, 11450-11461.	5.2	153
84	The Rise of Highly Efficient and Stable Perovskite Solar Cells. Accounts of Chemical Research, 2017, 50, 487-491.	7.6	282
85	Sequential Introduction of Cations Deriving Largeâ€Grain Cs <i>_x</i> FA _{1â^'} <i>_x</i> PbI ₃ Thin Film for Planar Hybrid Solar Cells: Insight into Phaseâ€6egregation and Thermalâ€Healing Behavior. Small, 2017, 13, 1603225.	5.2	69
86	Enhanced Charge Carrier Transport and Device Performance Through Dual-Cesium Doping in Mixed-Cation Perovskite Solar Cells with Near Unity Free Carrier Ratios. ACS Applied Materials & Interfaces, 2017, 9, 2358-2368.	4.0	28
87	Improved photovoltaic performance from high quality perovskite thin film grown with the assistance of PC71BM. Chinese Journal of Polymer Science (English Edition), 2017, 35, 309-316.	2.0	16
88	Mixed-Organic-Cation (FA) _{<i>x</i>} (MA) _{1<i>–x</i>} Pbl ₃ Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process. ACS Applied Materials & Interfaces, 2017, 9, 2449-2458.	4.0	98
89	Twoâ€Dimensional Single‣ayer Organic–Inorganic Hybrid Perovskite Semiconductors. Advanced Energy Materials, 2017, 7, 1601731.	10.2	93
90	Annealing-free perovskite films based on solvent engineering for efficient solar cells. Journal of Materials Chemistry C, 2017, 5, 842-847.	2.7	63

#	Article	IF	CITATIONS
91	Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Solar Energy Materials and Solar Cells, 2017, 161, 338-346.	3.0	49
92	Overcoming the Limitations of Sputtered Nickel Oxide for Highâ€Efficiency and Largeâ€Area Perovskite Solar Cells. Advanced Science, 2017, 4, 1700463.	5.6	168
93	A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO ₂ and utilization of nanocarbon materials. Dalton Transactions, 2017, 46, 15615-15627.	1.6	20
94	Synergistic effect of caprolactam as lewis base and interface engineering for efficient and stable planar perovskite solar cells. Nano Energy, 2017, 42, 222-231.	8.2	38
95	A simple and dopant-free hole-transporting material based on (2-ethylhexyl)-9 <i>H</i> -carbazole for efficient planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 12752-12757.	2.7	37
96	Efficiency enhancement in inverted planar perovskite solar cells by synergetic effect of sulfated graphene oxide (sGO) and PEDOT:PSS as hole transporting layer. RSC Advances, 2017, 7, 50410-50419.	1.7	21
97	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	5.2	40
98	Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36070-36081.	4.0	39
99	Component-controllable Synthesis of Stable Planar-structure Perovskite CH ₃ NH ₃ Pb(I _{1â^} <i>_x</i> Br <i>_x</i>) _{3Thin Films. Chemistry Letters, 2017, 46, 1683-1686.}	ıb 0. 7	2
100	Stabilizing the Ag Electrode and Reducing <i>J</i> – <i>V</i> Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36338-36349.	4.0	129
101	Impact of halide stoichiometry on structure-tuned formation of CH3NH3PbX3â^'aYa hybrid perovskites. Solar Energy, 2017, 158, 367-379.	2.9	10
102	Dopant-free and low-cost molecular "bee―hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 11429-11435.	2.7	40
103	Planarâ€ 5 tructure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 2017, 29, 1703852.	11.1	1,003
104	Postsurface Selenization for High Performance Sb ₂ S ₃ Planar Thin Film Solar Cells. ACS Photonics, 2017, 4, 2862-2870.	3.2	109
105	Growth, characterization, and thin film transistor application of CH ₃ NH ₃ PbI ₃ perovskite on polymeric gate dielectric layers. RSC Advances, 2017, 7, 49353-49360.	1.7	27
106	Development of Dopant-Free Donor–Acceptor-type Hole Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 39511-39518.	4.0	42
107	Radical polymers as interfacial layers in inverted hybrid perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 23831-23839.	5.2	44
108	Energetic Barriers to Interfacial Charge Transfer and Ion Movement in Perovskite Solar Cells. ChemPhysChem, 2017, 18, 3047-3055.	1.0	10

# 109	ARTICLE Solution-Processed Short-Wave Infrared PbS Colloidal Quantum Dot/ZnO Nanowire Solar Cells Giving High Open-Circuit Voltage. ACS Energy Letters, 2017, 2, 2110-2117.	IF 8.8	Citations
110	Simulations of 3-dimensional ferroelectric domains in perovskite solar cells based on MAPbIs. , 2017, , .		0
111	Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Solar Energy Materials and Solar Cells, 2017, 172, 341-346.	3.0	408
112	Understanding the Photovoltaic Performance of Perovskite–Spirobifluorene Solar Cells. ChemPhysChem, 2017, 18, 3030-3038.	1.0	12
113	Fabrication of perovskite solar cells using sputter-processed CH ₃ NH ₃ PbI ₃ films. Applied Physics Express, 2017, 10, 094101.	1.1	19
114	Solvothermal Synthesis of Hierarchical TiO2 Microstructures with High Crystallinity and Superior Light Scattering for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 32026-32033.	4.0	42
115	Pressure-induced dramatic changes in organic–inorganic halide perovskites. Chemical Science, 2017, 8, 6764-6776.	3.7	74
116	Improved performance of mesoscopic perovskite solar cell using an accelerated crystalline formation method. Journal of Power Sources, 2017, 365, 169-178.	4.0	17
117	Enhanced Electronic Properties of SnO ₂ <i>via</i> Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano, 2017, 11, 9176-9182.	7.3	302
118	Tailoring nucleation and grain growth by changing the precursor phase ratio for efficient organic lead halide perovskite optoelectronic devices. Journal of Materials Chemistry C, 2017, 5, 10114-10121.	2.7	18
119	Rational Design of Solution-Processed Ti–Fe–O Ternary Oxides for Efficient Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells with Suppressed Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 34833-34843.	4.0	21
120	Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 2017, 41, 469-475.	8.2	232
121	Flexibly assembled and readily detachable photovoltaics. Energy and Environmental Science, 2017, 10, 2117-2123.	15.6	17
122	Highly Efficient and Stable Planar Perovskite Solar Cells With Large cale Manufacture of Eâ€Beam Evaporated SnO ₂ Toward Commercialization. Solar Rrl, 2017, 1, 1700118.	3.1	75
123	A Cytop Insulating Tunneling Layer for Efficient Perovskite Solar Cells. Small Methods, 2017, 1, 1700244.	4.6	42
124	Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains. ACS Applied Materials & Interfaces, 2017, 9, 35200-35208.	4.0	137
125	Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance. Advanced Functional Materials, 2017, 27, 1703061.	7.8	175
126	C ₆₀ additive-assisted crystallization in CH ₃ NH ₃ Pb _{0.75} Sn _{0.25} I ₃ perovskite solar cells with high stability and efficiency. Nanoscale, 2017, 9, 13967-13975.	2.8	71

#	Article	IF	CITATIONS
127	A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017, 550, 92-95.	13.7	618
128	A gradient engineered hole-transporting material for monolithic series-type large-area perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21161-21168.	5.2	35
129	Laserâ€Induced Localized Growth of Methylammonium Lead Halide Perovskite Nano―and Microcrystals on Substrates. Advanced Functional Materials, 2017, 27, 1701613.	7.8	38
130	Improved efficiency and shortâ€ŧerm stability of the planar heterojunction perovskite solar cells with a polyelectrolyte layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700281.	0.8	3
131	A facile deposition of large grain and phase pure α-FAPbI3 for perovskite solar cells via a flash crystallization. Materials Today Energy, 2017, 5, 293-298.	2.5	30
132	Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy and Environmental Science, 2017, 10, 1942-1949.	15.6	402
133	Facile synthesis of organic–inorganic hybrid perovskite CH3NH3PbI3 microcrystals. Journal of Alloys and Compounds, 2017, 725, 270-274.	2.8	15
134	Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells. Organic Electronics, 2017, 50, 33-42.	1.4	23
135	Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700576.	10.2	240
136	4â€ <i>Tert</i> â€butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700683.	10.2	115
137	Stabilizing and scaling up carbon-based perovskite solar cells. Journal of Materials Research, 2017, 32, 3011-3020.	1.2	30
138	Charge Injection, Carriers Recombination and HOMO Energy Level Relationship in Perovskite Solar Cells. Scientific Reports, 2017, 7, 6101.	1.6	93
139	Polymer assisted growth of high-quality perovskite films by Lewis acid-base adduct for efficient planar-heterojunction solar cells. Materials Research Bulletin, 2017, 95, 216-222.	2.7	9
140	Paintable Carbonâ€Based Perovskite Solar Cells with Engineered Perovskite/Carbon Interface Using Carbon Nanotubes Dripping Method. Small, 2017, 13, 1701225.	5.2	91
141	Enhancing the crystallinity of HC(NH2)2PbI3 film by incorporating methylammonium halide intermediate for efficient and stable perovskite solar cells. Nano Energy, 2017, 40, 248-257.	8.2	72
142	Perovskite-based photodetectors: materials and devices. Chemical Society Reviews, 2017, 46, 5204-5236.	18.7	709
143	A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells. Nano Energy, 2017, 40, 155-162.	8.2	147
144	One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells. Nano Energy, 2017, 40, 163-169.	8.2	89

#	Article	IF	CITATIONS
145	Small molecule-driven directional movement enabling pin-hole free perovskite film via fast solution engineering. Nanoscale, 2017, 9, 15778-15785.	2.8	2
146	Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. Journal of Materials Chemistry A, 2017, 5, 19091-19097.	5.2	55
147	Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy, 2017, 40, 195-202.	8.2	419
148	Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr ₃ Films. Journal of Physical Chemistry Letters, 2017, 8, 4148-4154.	2.1	145
149	A solution-processable copper(<scp>ii</scp>) phthalocyanine derivative as a dopant-free hole-transporting material for efficient and stable carbon counter electrode-based perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 17862-17866.	5.2	67
150	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	10.2	276
151	Exciton transport in π-conjugated polymers with conjugation defects. Physical Chemistry Chemical Physics, 2017, 19, 24971-24978.	1.3	19
152	Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews, 2017, 117, 10940-11024.	23.0	266
153	Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1978-1984.	8.8	130
154	Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS. ACS Applied Materials & Interfaces, 2017, 9, 43902-43909.	4.0	149
155	Effect of Low Temperature on Charge Transport in Operational Planar and Mesoporous Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 42769-42778.	4.0	4
156	Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles. Journal of Materials Chemistry A, 2017, 5, 25485-25493.	5.2	41
157	Highly Efficient Porphyrinâ€Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor. Advanced Materials, 2017, 29, 1703980.	11.1	176
158	Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis. Journal of Materials Chemistry A, 2017, 5, 25438-25449.	5.2	91
159	Performances Enhancement in Perovskite Solar Cells by Incorporating Plasmonic Au NRs@SiO ₂ at Absorber/HTL Interface. Solar Rrl, 2017, 1, 1700151.	3.1	21
160	Promises and challenges of perovskite solar cells. Science, 2017, 358, 739-744.	6.0	1,510
161	Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. Joule, 2017, 1, 548-562.	11.7	199
162	Low ost Perovskite Solar Cells Employing Dimethoxydiphenylamine‣ubstituted Bistricyclic Aromatic Enes as Hole Transport Materials. ChemSusChem, 2017, 10, 3825-3832.	3.6	37

# 163	ARTICLE Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy and Environmental Science, 2017, 10, 1792-1800.	IF 15.6	CITATIONS 381
164	Silicotungstate, a Potential Electron Transporting Layer for Low-Temperature Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25257-25264.	4.0	12
165	Substrate effects on photoluminescence and low temperature phase transition of methylammonium lead iodide hybrid perovskite thin films. Applied Physics Letters, 2017, 111, .	1.5	14
166	Combined solvent and vapor treatment to prepare high quality perovskite films under high relative humidity. Electrochimica Acta, 2017, 246, 990-996.	2.6	11
167	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e395.	3.8	17
168	Reducing Pb concentration in α-CsPbI3 based perovskite solar cell materials via alkaline-earth metal doping: A DFT computational study. Ceramics International, 2017, 43, 13101-13112.	2.3	28
169	High-temperature shaping perovskite film crystallization for solar cell fast preparation. Solar Energy Materials and Solar Cells, 2017, 160, 60-66.	3.0	27
170	Efficient, Stable, Dopantâ€Free Holeâ€Transport Material with a Triphenylamine Core for CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Energy Technology, 2017, 5, 1173-1178.	1.8	25
171	Investigation of Triphenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells. ACS Omega, 2017, 2, 9231-9240.	1.6	19
172	Importance of PbI ₂ morphology in two-step deposition of CH ₃ NH ₃ PbI ₃ for high-performance perovskite solar cells. Chinese Physics B, 2017, 26, 128801.	0.7	12
173	Improved perovskite morphology and crystallinity using porous PbI2 layers for efficient planar heterojunction solar cells. Applied Physics Letters, 2017, 111, .	1.5	13
174	Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate) (PMMA). Coatings, 2017, 7, 115.	1.2	8
175	Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation. Materials, 2017, 10, 837.	1.3	30
176	Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells. Crystals, 2017, 7, 291.	1.0	144
177	Semitransparent and flexible perovskite solar cell with high visible transmittance based on ultrathin metallic electrodes. Optics Letters, 2017, 42, 1958.	1.7	32
178	Perovskite Solar Cells Fabricated by Using an Environmental Friendly Aprotic Polar Additive of 1,3-Dimethyl-2-imidazolidinone. Nanoscale Research Letters, 2017, 12, 632.	3.1	19
179	Suppressing defects through thiadiazole derivatives that modulate CH ₃ NH ₃ PbI ₃ crystal growth for highly stable perovskite solar cells under dark conditions. Journal of Materials Chemistry A, 2018, 6, 4971-4980.	5.2	95
180	A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination. Journal of Materials Chemistry A, 2018, 6, 5566-5573.	5.2	35

#	Article	IF	CITATIONS
181	Recent Progress on the Longâ€Term Stability of Perovskite Solar Cells. Advanced Science, 2018, 5, 1700387.	5.6	348
182	Analytical Modeling of Organic–Inorganic CH ₃ NH ₃ PbI ₃ Perovskite Resistive Switching and its Application for Neuromorphic Recognition. Advanced Theory and Simulations, 2018, 1, 1700035.	1.3	35
183	Effective Carrierâ€Concentration Tuning of SnO ₂ Quantum Dot Electron‣elective Layers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706023.	11.1	333
184	Organic/inorganic self-doping controlled crystallization and electronic properties of mixed perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 6319-6326.	5.2	28
185	Bending Durable and Recyclable Mesostructured Perovskite Solar Cells Based on Superaligned ZnO Nanorod Electrode. Solar Rrl, 2018, 2, 1700194.	3.1	25
186	Effects of CuBr addition to CH3NH3PbI3(Cl) perovskite photovoltaic devices. AIP Conference Proceedings, 2018, , .	0.3	7
187	Key parameters of two typical intercalation reactions to prepare hybrid inorganic–organic perovskite films. Chinese Physics B, 2018, 27, 018807.	0.7	0
188	Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 14039-14063.	1.5	171
189	Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition. Organic Electronics, 2018, 57, 60-67.	1.4	16
190	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
191	Processing Dependent Influence of the Hole Transport Layer Ionization Energy on Methylammonium Lead Iodide Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2018, 10, 15548-15557.	4.0	17
192	Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Lowâ€Temperatureâ€Processed Planarâ€Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800138.	10.2	186
193	Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability. CheM, 2018, 4, 1404-1415.	5.8	165
194	Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 2018, 9, 1607.	5.8	309
195	The synergistic effect of non-stoichiometry and Sb-doping on air-stable α-CsPbI ₃ for efficient carbon-based perovskite solar cells. Nanoscale, 2018, 10, 9996-10004.	2.8	142
196	Controlled surface decomposition derived passivation and energy-level alignment behaviors for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9397-9401.	5.2	20
197	Introducing optically polarizable molecules into perovskite solar cells by simultaneously enhanced spin–orbital coupling, suppressed non-radiative recombination and improved transport balance towards enhancing photovoltaic actions. Journal of Materials Chemistry C, 2018, 6, 6164-6171.	2.7	18
198	Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA) ₂ Pbl ₄ . Nanoscale, 2018, 10, 8677-8688.	2.8	169

#	Article	IF	CITATIONS
199	Improving the stability and decreasing the trap state density of mixed-cation perovskite solar cells through compositional engineering. Sustainable Energy and Fuels, 2018, 2, 1332-1341.	2.5	36
200	A Biopolymer Heparin Sodium Interlayer Anchoring TiO ₂ and MAPbI ₃ Enhances Trap Passivation and Device Stability in Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706924.	11.1	199
201	Adamantanes Enhance the Photovoltaic Performance and Operational Stability of Perovskite Solar Cells by Effective Mitigation of Interfacial Defect States. Advanced Energy Materials, 2018, 8, 1800275.	10.2	106
202	Performance Enhancement of Perovskite Solar Cells Induced by Lead Acetate as an Additive. Solar Rrl, 2018, 2, 1800066.	3.1	94
203	Molecular Engineering of D–Dâ^'π–A-Based Organic Sensitizers for Enhanced Dye-Sensitized Solar Cell Performance. ACS Omega, 2018, 3, 3819-3829.	1.6	32
204	Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors with High Detectivity. Journal of Physical Chemistry Letters, 2018, 9, 2043-2048.	2.1	123
205	Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nature Communications, 2018, 9, 1336.	5.8	323
206	Interfacial Passivation of the pâ€Doped Holeâ€Transporting Layer Using General Insulating Polymers for Highâ€Performance Inverted Perovskite Solar Cells. Small, 2018, 14, e1704007.	5.2	105
207	Organic–inorganic hybrid perovskite quantum dots for light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 4831-4841.	2.7	62
208	Self-powered, broadband perovskite photodetector based on ZnO microspheres as scaffold layer. Applied Surface Science, 2018, 448, 23-29.	3.1	34
209	Surfaces modification of MAPbI3 films with hydrophobic β-NaYF4:Yb,Er up-conversion ultrathin layers for improving the performance of perovskite solar cells. Applied Surface Science, 2018, 448, 145-153.	3.1	21
210	Molecular Engineering Using an Anthanthrone Dye for Lowâ€Cost Hole Transport Materials: A Strategy for Dopantâ€Free, Highâ€Efficiency, and Stable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703007.	10.2	154
211	Simply designed carbazole-based hole transporting materials for efficient perovskite solar cells. Organic Electronics, 2018, 56, 27-30.	1.4	28
212	Fabricating Highâ€Efficient Blade oated Perovskite Solar Cells under Ambient Condition Using Lead Acetate Trihydrate. Solar Rrl, 2018, 2, 1700214.	3.1	29
213	Photocharge accumulation and recombination in perovskite solar cells regarding device performance and stability. Applied Physics Letters, 2018, 112, 053904.	1.5	20
214	Stable and Efficient Organoâ€Metal Halide Hybrid Perovskite Solar Cells via π onjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Advanced Materials, 2018, 30, e1706126.	11.1	241
215	Ligandâ€Free, Highly Dispersed NiO _x Nanocrystal for Efficient, Stable, Lowâ€Temperature Processable Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800004.	3.1	58
216	On the growth of CH 3 NH 3 PbI 3-x Cl x single crystal and characterization. Physica B: Condensed Matter, 2018, 537, 7-11.	1.3	7

#	Article	IF	CITATIONS
217	Efficient Planar-Heterojunction Perovskite Solar Cells Fabricated by High-Throughput Sheath-Gas-Assisted Electrospray. ACS Applied Materials & Interfaces, 2018, 10, 7281-7288.	4.0	9
218	Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers. RSC Advances, 2018, 8, 5897-5901.	1.7	34
219	Effects of Spin–Orbit Coupling on Nonequilibrium Quantum Transport Properties of Hybrid Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 4150-4155.	1.5	8
220	Facile surface modification of CH ₃ NH ₃ PbI ₃ films leading to simultaneously improved efficiency and stability of inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 6255-6264.	5.2	34
221	Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material. Nano-Micro Letters, 2018, 10, 34.	14.4	105
222	Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells. ACS Omega, 2018, 3, 1117-1125.	1.6	42
223	Manipulation of the crystallization of perovskite films induced by a rotating magnetic field during blade coating in air. Journal of Materials Chemistry A, 2018, 6, 3986-3995.	5.2	13
224	Highly Bendable Flexible Perovskite Solar Cells on a Nanoscale Surface Oxide Layer of Titanium Metal Plates. ACS Applied Materials & Interfaces, 2018, 10, 4697-4704.	4.0	45
225	Flash Infrared Annealing for Antisolventâ€Free Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702915.	10.2	106
226	Inorganic Perovskite Solar Cells: A Rapidly Growing Field. Solar Rrl, 2018, 2, 1700188.	3.1	193
227	Interfacial engineering <i>via</i> inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 3435-3443.	5.2	30
228	Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications, 2018, 9, 570.	5.8	763
229	Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8, 1070.	1.6	144
230	In Situ Realâ€īime Study of the Dynamic Formation and Conversion Processes of Metal Halide Perovskite Films. Advanced Materials, 2018, 30, 1706401.	11.1	52
231	Diffractionâ€Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping. Advanced Energy Materials, 2018, 8, 1702960.	10.2	119
232	New Strategy for Two‣tep Sequential Deposition: Incorporation of Hydrophilic Fullerene in Second Precursor for Highâ€Performance pâ€iâ€n Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703054.	10.2	124
233	Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbI ₃) _{0.88} (CsPbBr ₃) _{0.12} /CuSCN Interface. Advanced Energy Materials, 2018, 8, 1702714.	10.2	253
234	A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Efficiency and Longevity. Advanced Functional Materials, 2018, 28, 1706377.	7.8	134

#	Article	IF	CITATIONS
235	Simultaneous Improvement in Efficiency and Stability of Lowâ€Temperatureâ€Processed Perovskite Solar Cells by Interfacial Control. Advanced Energy Materials, 2018, 8, 1702934.	10.2	84
236	Roomâ€Temperature Vapor Deposition of Cobalt Nitride Nanofilms for Mesoscopic and Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703114.	10.2	29
237	3D–2D–0D Interface Profiling for Record Efficiency Allâ€Inorganic CsPbBrI ₂ Perovskite Solar Cells with Superior Stability. Advanced Energy Materials, 2018, 8, 1703246.	10.2	301
238	Fabrication and characterization of perovskite solar cells added with MnCl2, YCl3 or poly(methyl) Tj ETQq1 1 0.7	84314 rgB 0.3	T jOverlock 1
239	Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance. ACS Applied Materials & Interfaces, 2018, 10, 1909-1916.	4.0	115
240	Forming Intermediate Phase on the Surface of PbI ₂ Precursor Films by Short-Time DMSO Treatment for High-Efficiency Planar Perovskite Solar Cells via Vapor-Assisted Solution Process. ACS Applied Materials & Interfaces, 2018, 10, 1781-1791.	4.0	41
241	Efficient and stable CH 3 NH 3 PbI 3-x (SCN) x planar perovskite solar cells fabricated in ambient air with low-temperature process. Journal of Power Sources, 2018, 377, 52-58.	4.0	53
242	Achieving the high phase purity of CH3NH3PbI3 film by two-step solution processable crystal engineering. Journal of Materials Science and Technology, 2018, 34, 1405-1411.	5.6	12
243	Do Capacitance Measurements Reveal Light-Induced Bulk Dielectric Changes in Photovoltaic Perovskites?. Journal of Physical Chemistry C, 2018, 122, 13450-13454.	1.5	58
244	Incorporating C ₆₀ as Nucleation Sites Optimizing PbI ₂ Films To Achieve Perovskite Solar Cells Showing Excellent Efficiency and Stability via Vapor-Assisted Deposition Method. ACS Applied Materials & Interfaces, 2018, 10, 2603-2611.	4.0	27
245	Oriented Grains with Preferred Lowâ€Angle Grain Boundaries in Halide Perovskite Films by Pressureâ€Induced Crystallization. Advanced Energy Materials, 2018, 8, 1702369.	10.2	74
246	Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. Journal of Materials Chemistry A, 2018, 6, 2122-2128.	5.2	163
247	Electronâ€Transportâ€Layerâ€Assisted Crystallization of Perovskite Films for Highâ€Efficiency Planar Heterojunction Solar Cells. Advanced Functional Materials, 2018, 28, 1706317.	7.8	77
248	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	3.1	31
249	Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers. Electrochimica Acta, 2018, 261, 445-453.	2.6	46
250	Highly Stable and Luminescent Perovskite–Polymer Composites from a Convenient and Universal Strategy. ACS Applied Materials & Interfaces, 2018, 10, 4971-4980.	4.0	176
251	Highâ€Performance Singleâ€Crystalline Perovskite Thinâ€Film Photodetector. Advanced Materials, 2018, 30, 1704333.	11.1	225
252	Excitations Partition into Two Distinct Populations in Bulk Perovskites. Advanced Optical Materials, 2018, 6, 1700975.	3.6	8

#	Article	IF	CITATIONS
253	Incorporating 4- <i>tert</i> -Butylpyridine in an Antisolvent: A Facile Approach to Obtain Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 3602-3608.	4.0	56
254	Fabry–Pérot Oscillation and Room Temperature Lasing in Perovskite Cubeâ€Corner Pyramid Cavities. Small, 2018, 14, 1703136.	5.2	61
255	Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. ACS Energy Letters, 2018, 3, 322-328.	8.8	143
256	Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability. Journal of Power Sources, 2018, 378, 483-490.	4.0	51
257	Progress in hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 650-672.	7.1	90
258	Alignment of Cascaded Band-Gap via PCBM/ZnO Hybrid Interlayers for Efficient Perovskite Photovoltaic Cells. Macromolecular Research, 2018, 26, 472-476.	1.0	16
259	Spontaneous Synthesis of Highly Crystalline TiO ₂ Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 17195-17202.	4.0	11
260	A Lewis Baseâ€Assisted Passivation Strategy Towards Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800055.	3.1	83
261	Low-Temperature Soft-Cover-Assisted Hydrolysis Deposition of Large-Scale TiO2 Layer for Efficient Perovskite Solar Modules. Nano-Micro Letters, 2018, 10, 49.	14.4	14
262	µâ€Graphene Crosslinked CsPbl ₃ Quantum Dots for High Efficiency Solar Cells with Much Improved Stability. Advanced Energy Materials, 2018, 8, 1800007.	10.2	198
263	Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800177.	10.2	106
264	Substituting Cs for MA on the surface of MAPbI3 perovskite: A first-principles study. Computational Materials Science, 2018, 150, 411-417.	1.4	18
265	Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Materials Today Energy, 2018, 9, 1-10.	2.5	48
266	Effects of annealing on CH ₃ NH ₃ PbI ₃ (Cl) perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2018, 126, 56-60.	0.5	32
267	The effect of SrI ₂ substitution on perovskite film formation and its photovoltaic properties <i>via</i> two different deposition methods. Inorganic Chemistry Frontiers, 2018, 5, 1354-1364.	3.0	15
268	Enhanced photovoltaic performance and reduced hysteresis in perovskite-ICBA-based solar cells. Organic Electronics, 2018, 58, 6-11.	1.4	20
269	Secondary crystal growth for efficient planar perovskite solar cells in ambient atmosphere. Organic Electronics, 2018, 58, 119-125.	1.4	3
270	Surface Fluorination of ALD TiO ₂ Electron Transport LayerÂfor Efficient Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701456.	1.9	27

#	Article	IF	CITATIONS
271	Enormously improved CH3NH3PbI3 film surface for environmentally stable planar perovskite solar cells with PCE exceeding 19.9%. Nano Energy, 2018, 48, 10-19.	8.2	61
272	N-Type Doping of Fullerenes for Planar Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 875-882.	8.8	66
273	Highly (100)-oriented CH ₃ NH ₃ PbI ₃ (Cl) perovskite solar cells prepared with NH ₄ Cl using an air blow method. RSC Advances, 2018, 8, 10389-10395.	1.7	63
274	Temperature effect on the internal conversion dynamics following different stimulated absorptions in a conjugated polymer. Organic Electronics, 2018, 56, 201-207.	1.4	3
275	Lead-free, air-stable hybrid organic–inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage. Nanoscale, 2018, 10, 8578-8584.	2.8	136
276	Zinc ion as effective film morphology controller in perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 1093-1100.	2.5	55
277	Natural Random Nanotexturing of the Au Interface for Light Backscattering Enhanced Performance in Perovskite Solar Cells. ACS Photonics, 2018, 5, 2243-2250.	3.2	39
278	A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10835-10841.	4.0	28
279	Highlyâ€Stable Organoâ€Lead Halide Perovskites Synthesized Through Green Selfâ€Assembly Process. Solar Rrl, 2018, 2, 1800052.	3.1	56
280	Correlation of ETL in perovskite light-emitting diodes and the ultra-long rise time in time-resolved electroluminescence. Materials Science in Semiconductor Processing, 2018, 80, 131-136.	1.9	2
281	A novel ball milling technique for room temperature processing of TiO ₂ nanoparticles employed as the electron transport layer in perovskite solar cells and modules. Journal of Materials Chemistry A, 2018, 6, 7114-7122.	5.2	35
282	Stable Highâ€Performance Perovskite Solar Cells via Grain Boundary Passivation. Advanced Materials, 2018, 30, e1706576.	11.1	665
283	Fusedâ€Ring Electron Acceptor ITICâ€Th: A Novel Stabilizer for Halide Perovskite Precursor Solution. Advanced Energy Materials, 2018, 8, 1703399.	10.2	112
284	Distinctive electroluminescence characteristics behind efficient mesoscopic perovskite solar cell. Materials Science in Semiconductor Processing, 2018, 80, 174-178.	1.9	4
285	Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. Nano Letters, 2018, 18, 2459-2466.	4.5	114
286	Low-temperature SnO ₂ -modified TiO ₂ yields record efficiency for normal planar perovskite solar modules. Journal of Materials Chemistry A, 2018, 6, 10233-10242.	5.2	75
287	Perowskitâ€Solarzellen: atomare Ebene, Schichtqualitäund LeistungsfŤigkeit der Zellen. Angewandte Chemie, 2018, 130, 2582-2598.	1.6	37
288	Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte Chemie - International Edition, 2018, 57, 2554-2569.	7.2	413

CITATION REPO	RT

#	Article	IF	Citations
289	Highâ€Efficiency Lowâ€Temperature ZnO Based Perovskite Solar Cells Based on Highly Polar, Nonwetting Selfâ€Assembled Molecular Layers. Advanced Energy Materials, 2018, 8, 1701683.	10.2	144
290	The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation. Applied Surface Science, 2018, 428, 140-147.	3.1	39
291	Anomalous Chargeâ€Extraction Behavior for Grapheneâ€Oxide (GO) and Reduced Grapheneâ€Oxide (rGO) Films as Efficient pâ€Contact Layers for Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701640.	10.2	87
292	Perovskite solar cells: Materials, configurations and stability. Renewable and Sustainable Energy Reviews, 2018, 82, 2471-2489.	8.2	109
293	PEDOT:PSS-CrO3 composite hole-transporting layer for high-performance p-i-n structure perovskite solar cells. Organic Electronics, 2018, 54, 9-13.	1.4	14
294	Direct Correlation of Excitonics with Efficiency in a Core–Shell Quantum Dot Solar Cell. Chemistry - A European Journal, 2018, 24, 2418-2425.	1.7	19
295	Pseudohalideâ€Induced Recrystallization Engineering for CH ₃ NH ₃ PbI ₃ Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1704836.	7.8	112
296	A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chemical Physics Letters, 2018, 692, 44-49.	1.2	40
297	Deep insights into the advancements and applications of perovskite based photovoltaic cells. Journal of Energy Chemistry, 2018, 27, 753-763.	7.1	1
298	Thermally stable propanethiol–ligand exchanged Ag nanoparticles for enhanced dispersion in perovskite solar cells via an effective incorporation method. Journal of Industrial and Engineering Chemistry, 2018, 61, 71-77.	2.9	8
299	Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport. Nanotechnology, 2018, 29, 065401.	1.3	25
300	Heterojunction Engineering for High Efficiency Cesium Formamidinium Double ation Lead Halide Perovskite Solar Cells. ChemSusChem, 2018, 11, 837-842.	3.6	61
301	Adding Nonconnected Monomers to Manage the Layering Crystallization of Polymers on Athermal Substrate. Macromolecular Theory and Simulations, 2018, 27, 1700068.	0.6	0
302	Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2. Applied Surface Science, 2018, 436, 596-602.	3.1	55
303	Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt. Science China Chemistry, 2018, 61, 172-179.	4.2	20
304	Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability. Organic Electronics, 2018, 53, 249-255.	1.4	35
305	Inorganic Holeâ€Transporting Materials for Perovskite Solar Cells. Small Methods, 2018, 2, 1700280.	4.6	141
306	Compositional Engineering To Improve the Stability of Lead Halide Perovskites: A Comparative Study of Cationic and Anionic Dopants. ACS Applied Energy Materials, 2018, 1, 181-190.	2.5	29

ARTICLE IF CITATIONS Replacing Pbl₂ by MAPbl₃ to Realize Large Grain Size and Reduced Hysteresis 307 3.1 12 for Highly Efficient Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700147. High performance hole transport material free perovskite solar cells from a low pure PbI2 source 1.4 9 using a facile solid-gas reaction process. Organic Electronics, 2018, 53, 221-226. High-performance dopant-free conjugated small molecule-based hole-transport materials for 309 8.2 124 perovskite solar cells. Nano Energy, 2018, 44, 191-198. Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar 2.5 cells. Sustainable Energy and Fuels, 2018, 2, 294-302. Pinhole-free mixed perovskite film for bending durable mixed perovskite solar cells. Solar Energy 311 3.0 26 Materials and Solar Cells, 2018, 175, 111-117. Congeneric Incorporation of CsPbBr₃ Nanocrystals in a Hybrid Perovskite Heterojunction for Photovoltaic Efficiency Enhancement. ACS Energy Letters, 2018, 3, 30-38. 8.8 Semiconductor-Based Liquid-Junction Photoelectrochemical Solar Cells. Lecture Notes in Quantum 313 0.3 0 Chemistry II, 2018, , 161-240. Aqueousâ€Containing Precursor Solutions for Efficient Perovskite Solar Cells. Advanced Science, 2018, 314 5.6 66 5, 1700484. Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and 315 8.2 70 stability of planar solar cells. Nano Energy, 2018, 43, 383-392. The role of grain boundaries in perovskite solar cells. Materials Today Energy, 2018, 7, 149-160. 2.5 209 Design and Optimization of Perovskite Solar Cell with Thin ZnO Insulator Layer as Electron 317 8 Transport. , 2018, , . Photo-induced dual passivation <i>via</i> Usanovich acidâ€"base on surface defects of 1.3 methylammonium lead triiodide perovskite. Physical Chemistry Chemical Physics, 2018, 20, 28068-28074. Synergic effects of upconversion nanoparticles NaYbF₄:Ho³⁺ and 319 ZrO₂ enhanced the efficiency in hole-conductor-free perovskite solar cells. Nanoscale, 2.8 35 2018, 10, 22003-22011. First-principles characterization of two-dimensional (CH₃(CH₂)₃NH₃)₂(CH₃NH₃)<sub>nâ^1 perovskite. Journal of Materials Chemistry A, 2018, 6, 24389-24396. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient 321 15.6 274 and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 3480-3490. Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells. Energy and Environmental Science, 2018, 11, 3310-3320. Improvement of Perovskite Solar Cell Efficiency through PLA Additive Induced Boundary Passivation : 323 0 With Application of Machine Learning in Crystal Image Analysis., 2018,,. TiO₂/SnO₂ Nanocomposites as Electron Transporting Layer for Efficiency 324 Enhancement in Planar CH₃NH₃Pbl₃-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6936-6944.

#	Article	IF	CITATIONS
325	Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21%. Journal of the American Chemical Society, 2018, 140, 17255-17262.	6.6	235
326	Copper Incorporation in Organicâ€Inorganic Hybrid Halide Perovskite Solar Cells. ChemistrySelect, 2018, 3, 12198-12204.	0.7	16
327	Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 44501-44510.	4.0	73
328	Metallophthalocyanine-Based Molecular Dipole Layer as a Universal and Versatile Approach to Realize Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42397-42405.	4.0	20
329	Orthogonal Lithography for Halide Perovskite Optoelectronic Nanodevices. ACS Nano, 2019, 13, 1168-1176.	7.3	90
330	Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Applied Physics Reviews, 2018, 5, .	5.5	175
331	Effects of Decaphenylcyclopentasilane Addition on Photovoltaic Properties of Perovskite Solar Cells. Coatings, 2018, 8, 461.	1.2	15
332	Fabrication and Characterization of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Added with Polysilanes. International Journal of Photoenergy, 2018, 2018, 1-7.	1.4	27
333	Dual interfacial modification engineering with p-type NiO nanocrystals for preparing efficient planar perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 13034-13042.	2.7	37
334	Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite. Journal of Materials Chemistry C, 2018, 6, 11707-11713.	2.7	14
336	Boosting the Stability of Perovskite Solar Cells through a Dopantâ€Free Tetraphenylbenzidineâ€Based Hole Transporting Material. ChemistrySelect, 2018, 3, 13032-13037.	0.7	6
337	Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Functional Materials, 2018, 28, 1803753.	7.8	145
338	Diboronâ€Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805085.	11.1	128
339	High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells. Small, 2018, 14, e1802738.	5.2	193
340	High-performance light-emitting diode with poly(ethylene oxide) passivated quasi two dimensional perovskite emitting layer. Organic Electronics, 2018, 63, 216-221.	1.4	22
341	Polymer assist crystallization and passivation for enhancements of open-circuit voltage and stability in tin-halide perovskite solar cells. Journal Physics D: Applied Physics, 2018, 51, 475102.	1.3	38
342	Metallic tin substitution of organic lead perovskite films for efficient solar cells. Journal of Materials Chemistry A, 2018, 6, 20224-20232.	5.2	24
343	Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale, 2018, 10, 20587-20598.	2.8	58

#	Article	IF	CITATIONS
344	Highâ€Performance Flexible Perovskite Solar Cells with Effective Interfacial Optimization Processed at Low Temperatures. ChemSusChem, 2018, 11, 4131-4138.	3.6	21
345	Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362, 449-453.	6.0	816
346	Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nature Communications, 2018, 9, 4482.	5.8	266
347	Multiple Roles of a Non-fullerene Acceptor Contribute Synergistically for High-Efficiency Ternary Organic Photovoltaics. Joule, 2018, 2, 2154-2166.	11.7	85
348	Defect Passivation of CsPbIBr ₂ Perovskites for High-Performance Solar Cells with Large Open-Circuit Voltage of 1.28 V. ACS Applied Energy Materials, 2018, 1, 5872-5878.	2.5	62
349	Phase Pure 2D Perovskite for Highâ€Performance 2D–3D Heterostructured Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805323.	11.1	244
350	Graphdiyne as a Host Active Material for Perovskite Solar Cell Application. Nano Letters, 2018, 18, 6941-6947.	4.5	110
351	Photostability and Photodegradation Processes in Colloidal CsPbI ₃ Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2018, 10, 39222-39227.	4.0	116
352	Understanding the Role of Lithium Doping in Reducing Nonradiative Loss in Lead Halide Perovskites. Advanced Science, 2018, 5, 1800736.	5.6	59
353	High-Performance Fused Ring Electron Acceptor–Perovskite Hybrid. Journal of the American Chemical Society, 2018, 140, 14938-14944.	6.6	71
354	Efficient composition tuning via cation exchange and improved reproducibility of photovoltaic performance in FA MA1-PbI3 planar heterojunction solar cells fabricated by a two-step dynamic spin-coating process. Nano Energy, 2018, 54, 251-263.	8.2	32
355	Composition and Interface Engineering for Efficient and Thermally Stable Pb–Sn Mixed Lowâ€Bandgap Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1804603.	7.8	87
356	Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2018, 30, e1803428.	11.1	296
357	Control of π–π Stacking of Dithienopyrrole-Based, Hole-Transporting Materials via Lateral Substituents for High-Efficiency Perovskite Solar Cells. ACS Photonics, 2018, 5, 4694-4701.	3.2	21
358	HPbl ₃ as a Bifunctional Additive for Morphology Control and Grain Boundary Passivation toward Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 38985-38993.	4.0	16
359	Highâ€Performance Flexible Perovskite Solar Cells Enabled by Lowâ€Temperature ALDâ€Assisted Surface Passivation. Advanced Optical Materials, 2018, 6, 1801153.	3.6	33
360	A Universal Doubleâ€ s ide Passivation for High Openâ€Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 2018, 8, 1801208.	10.2	387
361	Covering effect of conductive glass: a facile route to tailor the grain growth of hybrid perovskites for highly efficient solar cells. Journal of Materials Chemistry A, 2018, 6, 20289-20296.	5.2	10

#	Article	IF	CITATIONS
363	Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis. Electrochimica Acta, 2018, 288, 115-125.	2.6	40
364	In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nature Communications, 2018, 9, 3806.	5.8	227
365	Recent advances of low-dimensional materials in lasing applications. FlatChem, 2018, 10, 22-38.	2.8	14
366	Highly efficient and humidity stable perovskite solar cells achieved by introducing perovskite-like metal formate material as the nanocrystal scaffold. Journal of Power Sources, 2018, 402, 229-236.	4.0	7
367	Dual interfacial modifications by conjugated small-molecules and lanthanides doping for full functional perovskite solar cells. Nano Energy, 2018, 53, 849-862.	8.2	59
368	All-Nanoparticle SnO ₂ /TiO ₂ Electron-Transporting Layers Processed at Low Temperature for Efficient Thin-Film Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	8
369	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907.	13.3	351
370	UV Treatment of Low-Temperature Processed SnO2 Electron Transport Layers for Planar Perovskite Solar Cells. Nanoscale Research Letters, 2018, 13, 216.	3.1	17
371	Efficient and Ambientâ€Airâ€Stable Solar Cell with Highly Oriented 2D@3D Perovskites. Advanced Functional Materials, 2018, 28, 1801654.	7.8	98
372	CsPbCl ₃ â€Driven Lowâ€Trapâ€Density Perovskite Grain Growth for >20% Solar Cell Efficiency. Advanced Science, 2018, 5, 1800474.	5.6	65
373	17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer. Nano Energy, 2018, 50, 201-211.	8.2	148
374	Thermal-evaporated selenium as a hole-transporting material for planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 130-135.	3.0	22
375	Perovskite Solar Cells with Inorganic Electron―and Holeâ€Transport Layers Exhibiting Longâ€Term (â‰^500) Tj e1801010.	ETQq0 0 (11.1	0 rgBT /Overl 174
376	Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energy and Environmental Science, 2018, 11, 2188-2197.	15.6	162
377	Environmentally stable perovskite film for active material of high stability solid state solar cells. Journal of Physics: Conference Series, 2018, 1013, 012176.	0.3	0
378	Di‣piroâ€Based Holeâ€Transporting Materials for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800809.	10.2	79
379	Dimethyl-sulfoxide-assisted improvement in the crystallization of lead-acetate-based perovskites for high-performance solar cells. Journal of Materials Chemistry C, 2018, 6, 6705-6713.	2.7	35
380	Improving the stability and performance of perovskite solar cells <i>via</i> off-the-shelf post-device ligand treatment. Energy and Environmental Science, 2018, 11, 2253-2262.	15.6	181

#	Article	IF	CITATIONS
381	An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. Journal of Materials Chemistry C, 2018, 6, 6988-6995.	2.7	54
382	Growth of CH ₃ NH ₃ PbI ₃ Perovskite on Stainless Steel Substrate Layered by ZnO Nanoparticles Using One-Step Spin Coating Route. Journal of Physics: Conference Series, 2018, 1011, 012011.	0.3	3
383	Improved Stability of Interfacial Energy-Level Alignment in Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 18964-18973.	4.0	22
384	An Overview of Hybrid Organic–Inorganic Metal Halide Perovskite Solar Cells. , 2018, , 233-254.		19
385	Fullerene derivative as an additive for highly efficient printable mesoscopic perovskite solar cells. Organic Electronics, 2018, 62, 653-659.	1.4	10
386	Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy and Environmental Science, 2018, 11, 2609-2619.	15.6	276
387	Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy, 2018, 51, 408-424.	8.2	145
388	Efficient Perovskite Solar Cells with Reduced Photocurrent Hysteresis through Tuned Crystallinity of Hybrid Perovskite Thin Films. ACS Omega, 2018, 3, 7069-7076.	1.6	8
389	Highly Sensitive Terahertz Thin-Film Total Internal Reflection Spectroscopy Reveals in Situ Photoinduced Structural Changes in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry C, 2018, 122, 17552-17558.	1.5	21
390	High-performance planar perovskite solar cells based on low-temperature solution-processed well-crystalline SnO2 nanorods electron-transporting layers. Chemical Engineering Journal, 2018, 351, 391-398.	6.6	35
391	Balancing transformation and dissolution–crystallization for pure phase CH3NH3PbI3 growth and its effect on photovoltaic performance in planar-structure perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 464-470.	3.0	15
392	Low toxicity antisolvent synthesis of composition-tunable luminescent all-inorganic perovskite nanocrystals. Ceramics International, 2018, 44, 18123-18128.	2.3	14
393	Ultrahigh open-circuit voltage for high performance mixed-cation perovskite solar cells using acetate anions. Journal of Materials Chemistry A, 2018, 6, 14387-14391.	5.2	18
394	Precisely Controlling the Grain Sizes with an Ammonium Hypophosphite Additive for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1802320.	7.8	65
395	A Facile Preparative Route of Nanoscale Perovskites over Mesoporous Metal Oxide Films and Their Applications to Photosensitizers and Light Emitters. Advanced Functional Materials, 2018, 28, 1803801.	7.8	17
396	Ultrasensitive Perovskite Photodetectors by Co Partially Substituted Hybrid Perovskite. ACS Sustainable Chemistry and Engineering, 2018, 6, 12055-12060.	3.2	18
397	Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 21746-21754.	1.3	40
398	Large-grain CH3NH3PbI3 film by incorporation of urea in one-step solution process. Superlattices and Microstructures, 2018, 123, 218-225.	1.4	2

ARTICLE IF CITATIONS PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells. Journal 399 5.2 162 of Materials Chemistry A, 2018, 6, 16583-16589. Organic Inorganic Hybrid Perovskite Materials and Devices., 2018, , 282-291. 401 Electronâ€Transport Materials in Perovskite Solar Cells. Small Methods, 2018, 2, 1800082. 4.6 136 Engineered Nanomaterials for Renewable Energy., 2018, , 829-845. Design of Coneâ€Shaped Hole Transporting Material Organic Structures for Perovskite Solar Cells 403 0.7 4 Applications. ChemistrySelect, 2018, 3, 8159-8166. All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy, 2018, 52, 211-238. 404 8.2 A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy 405 5.2 40 loss. Journal of Materials Chemistry A, 2018, 6, 18469-18478. Additive-assisted one-step formed perovskite/hole conducting materials graded heterojunction for 406 5.0 efficient perovskite solar cells. Journal of Colloid and Interface Science, 2018, 532, 182-189. Enhanced efficiency and stability of fully air-processed TiO2 nanorods array based perovskite solar 407 2.9 22 cell using commercial available CuSCN and carbon. Solar Energy, 2018, 173, 7-16. 408 Basics of Crystallization Process Applied in Drug Exploration., 2018, , 67-103. 1 Identifying an Optimum Perovskite Solar Cell Structure by Kinetic Analysis: Planar, Mesoporous Based, 409 2.5 36 or Extremely Thin Absorber Structure. ACS Applied Energy Materials, 2018, 1, 3722-3732. Towards large-area perovskite solar cells: the influence of compact and mesoporous TiO₂ 0.8 electron transport layers. Materials Research Express, 2018, 5, 085506. Lead-less mesoscopic perovskite solar cells with enhanced photovoltaic performance by strontium 411 2.3 19 chloride substitution. Ceramics International, 2018, 44, 18863-18870. Achieving high-performance thick-film perovskite solar cells with electron transporting Bingel fullerenes. Journal of Materials Chemistry A, 2018, 6, 15495-15503. 5.2 Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents 413 5.253 for solar cells. Journal of Materials Chemistry A, 2018, 6, 15386-15394. Enhanced stability of perovskite solar cells using hydrophobic organic fluoropolymer. Applied 414 14 Physics Letters, 2018, 113, . Effect of PbI2 solution on air-preparation of perovskite solar cells for enhanced performance. Applied 415 3.124 Surface Science, 2018, 458, 172-182. Triazatetrabenzcorrole (TBC) as efficient dopant-free hole transporting materials for organo metal halide perovskite solar cells. Dyes and Pigments, 2018, 159, 600-603.

#	Article	IF	CITATIONS
417	All low-temperature processed carbon-based planar heterojunction perovskite solar cells employing Mg-doped rutile TiO2 as electron transport layer. Electrochimica Acta, 2018, 283, 1115-1124.	2.6	46
418	Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. Journal of Physical Chemistry Letters, 2018, 9, 2707-2713.	2.1	124
419	Enhanced stability and optoelectronic properties of MAPbI ₃ films by a cationic surface-active agent for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 10825-10834.	5.2	81
420	Low-Temperature Solution-Processed ZnSe Electron Transport Layer for Efficient Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Photostability. ACS Nano, 2018, 12, 5605-5614.	7.3	89
421	Enhanced performance of planar perovskite solar cells based on low-temperature processed TiO2 electron transport layer modified by Li2SiO3. Journal of Power Sources, 2018, 392, 1-7.	4.0	9
422	Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH ₃ NH ₃ Pbl ₃ Perovskite Devices in Ambient Atmosphere. ACS Applied Materials & Interfaces, 2018, 10, 16482-16489.	4.0	78
423	Accelerated electron extraction and improved UV stability of TiO2 based perovskite solar cells by SnO2 based surface passivation. Organic Electronics, 2018, 59, 184-189.	1.4	45
424	Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 18787-18795.	4.0	107
425	Conversion of metal-organic halide perovskite from PbI2 precursor films grown by hot-wall method. MATEC Web of Conferences, 2018, 192, 01031.	0.1	0
426	Influence of anti-solvents on CH3NH3PbI3 films surface morphology for fabricating efficient and stable inverted planar perovskite solar cells. Thin Solid Films, 2018, 663, 105-115.	0.8	11
427	Structuring of Organic Solvents at Solid Interfaces and Ramifications for Antimalarial Adsorption on β-Hematin Crystals. ACS Applied Materials & amp; Interfaces, 2018, 10, 29288-29298.	4.0	6
428	Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018, 12, 528-533.	15.6	371
429	Efficient and Stable Nonfullereneâ€Graded Heterojunction Inverted Perovskite Solar Cells with Inorganic Ga ₂ O ₃ Tunneling Protective Nanolayer. Advanced Functional Materials, 2018, 28, 1804128.	7.8	76
430	FA _{0.88} Cs _{0.12} PbI _{3â^²} <i>_x</i> (PF ₆) <i>_{xInterlayer Formed by Ion Exchange Reaction between Perovskite and Hole Transporting Layer for Improving Photovoltaic Performance and Stability. Advanced Materials, 2018, 30, e1801948.}</i>	ub> 11.1	214
431	Regulating the electron transporting properties of indacenodithiophene derivatives for perovskite solar cells with PCEs up to 19.51%. Journal of Materials Chemistry A, 2018, 6, 18044-18049.	5.2	26
432	Anchoring Fullerene onto Perovskite Film via Grafting Pyridine toward Enhanced Electron Transport in High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 32471-32482.	4.0	73
433	Polymer-assisted room-temperature synthesis of highly luminescent perovskite nanocrystals with superior water resistance for WLED. Materials Letters, 2018, 232, 138-141.	1.3	12
434	Performance enhancement of perovskite solar cells through interfacial engineering: Water-soluble fullerenol C60(OH)16 as interfacial modification layer. Organic Electronics, 2018, 62, 327-334.	1.4	5

#	Article	IF	CITATIONS
435	Enhanced Photovoltaic Performance of Perovskite Solar Cells by Tuning Alkaline Earth Metal-Doped Perovskite-Structured Absorber and Metal-Doped TiO ₂ Hole Blocking Layer. ACS Applied Energy Materials, 2018, 1, 4849-4859.	2.5	13
436	Modulate Molecular Interaction between Hole Extraction Polymers and Lead Ions toward Hysteresisâ€Free and Efficient Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800090.	1.9	18
437	Polystyrene with a methoxytriphenylamine-conjugated-thiophene moiety side-chain as a dopant-free hole-transporting material for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13123-13132.	5.2	29
438	Grainâ€Boundary "Patches―by In Situ Conversion to Enhance Perovskite Solar Cells Stability. Advanced Materials, 2018, 30, e1800544.	11.1	224
439	8â€Hydroquinolatolithium as a Highly Effective Solutionâ€Processable Cathode Interfacial Material in Inverted Perovskite Solar Cells with an Efficiency Over 19%. Solar Rrl, 2018, 2, 1800084.	3.1	6
440	Interface State-Induced Negative Differential Resistance Observed in Hybrid Perovskite Resistive Switching Memory. ACS Applied Materials & Interfaces, 2018, 10, 21755-21763.	4.0	74
441	Improved performance and stability of perovskite solar cells by incorporating gamma-aminobutyric acid in CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2018, 6, 12370-12379.	5.2	14
442	Influence of Polymer Additives on the Efficiency and Stability of Ambientâ€Air Solutionâ€Processed Planar Perovskite Solar Cells. Energy Technology, 2018, 6, 2380-2386.	1.8	42
443	Insights in Perovskite Solar Cell Fabrication: Unraveling the Hidden Challenges of Each Layer. IEEE Journal of Photovoltaics, 2018, 8, 1029-1038.	1.5	5
444	Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9, 2225.	5.8	526
445	CH ₃ NH ₃ PbBr ₃ Quantum Dot-Induced Nucleation for High Performance Perovskite Light-Emitting Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 22320-22328.	4.0	32
446	Low-bandgap mixed tin–lead iodide perovskite with large grains for high performance solar cells. Journal of Materials Chemistry A, 2018, 6, 13090-13095.	5.2	47
447	Porphyrin Dimers as Hole-Transporting Layers for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1620-1626.	8.8	62
448	Ultrathin Hole Extraction Layer for Efficient Inverted Perovskite Solar Cells. ACS Omega, 2018, 3, 6339-6345.	1.6	5
449	Introduction of Graphene Nanofibers into the Perovskite Layer of Perovskite Solar Cells. ChemSusChem, 2018, 11, 2921-2929.	3.6	17
450	Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. Electronic Materials Letters, 2018, 14, 657-668.	1.0	17
451	BODIPY-Based Conjugated Polymers for Use as Dopant-Free Hole Transporting Materials for Durable Perovskite Solar Cells: Selective Tuning of HOMO/LUMO Levels. ACS Applied Materials & Interfaces, 2018, 10, 23254-23262.	4.0	49
452	Enhanced Performance and Stability of Planar Perovskite Solar Cells by Interfacial Engineering using Fluorinated Aliphatic Amines. ACS Applied Energy Materials, 2019, 2, 6230-6236.	2.5	18

ARTICLE IF CITATIONS Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and 453 8.8 157 Stable Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2192-2200. Organic-Inorganic Hybrid Perovskites for Solar Cells Applications. Engineering Materials, 2019, , 454 0.3 89-101. Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable 455 11.1 366 Planar Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902902. Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and 456 4.0 24 stability. Journal of Power Sources, 2019, 438, 226987. Enhanced long-term stability of perovskite solar cells by passivating grain boundary with 457 5.2 31 polydimethylsiloxane (PDMŚ). Journal of Materials Chemistry A, 2019, 7, 20832-20839. Melanin–Perovskite Composites for Photothermal Conversion. Advanced Energy Materials, 2019, 9, 10.2 1901753. Highly Luminescent and Water-Resistant CsPbBr₃â€"CsPb₂Br₅ 459 Perovskite Nanocrystals Coordinated with Partially Hydrolyzed Poly(methyl methacrylate) and 7.3 110 Polyethylenimine. ACS Nano, 2019, 13, 10386-10396. Sodium Ion Modifying In Situ Fabricated CsPbBr₃ Nanoparticles for Efficient Perovskite 460 3.6 59 Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900747. Laserâ€Generated Nanocrystals in Perovskite: Universal Embedding of Ligandâ€Free and Subâ€10 nm 461 Nanocrystals in Solutionâ€Processed Metal Halide Perovskite Films for Effectively Modulated 10.2 42 Optoeléctronic Performance. Advanced Energy Materials, 2019, 9, 1901341. Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4, 8.8 462 2147-2167. Efficient Passivation with Lead Pyridineâ€2â€Carboxylic for Highâ€Performance and Stable Perovskite Solar 463 10.2 147 Cells. Advanced Energy Materials, 2019, 9, 1901852. A Butterflyâ€Inspired Hierarchical Lightâ€Trapping Structure towards a Highâ€Performance Polarizationâ€Sensitive Perovskite Photodetector. Angewandte Chemie - International Edition, 2019, 58, 464 16456-16462. Fullerene Derivative-Modified SnO₂ Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21%. ACS Applied Materials & amp; Interfaces, 2019, 11, 465 4.0 73 33825-33834. Defect passivation by alcohol-soluble small molecules for efficient p–i–n planar perovskite solar 5.2 58 cells with high open-circuit voltage. Journal of Materials Chemistry A, 2019, 7, 21140-21148. A dithieno[3,2-b:2â€²,3â€²-d]pyrrole-cored four-arm hole transporting material for over 19% efficiency 467 2.7 23 dopant-free perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 9455-9459. Effects of guanidinium addition to perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2019, 127, 491-497 A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step 469 5.228 coating at room temperature. Journal of Materials Chemistry A, 2019, 7, 18275-18284. 470 Review of Stability Enhancement for Formamidiniumâ€Based Perovskites. Solar Rrl, 2019, 3, 1900215. 3.1

#	Article	IF	Citations
" 471	Dithieno[3,2â€b:2′,3′â€d]pyrrolâ€Cored Hole Transport Material Enabling Over 21% Efficiency Dopantâ€F		114
771	Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1904300.	7.0	114
472	The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy and Environmental Science, 2019, 12, 2778-2788.	15.6	570
473	Heterogeneity at multiple length scales in halide perovskite semiconductors. Nature Reviews Materials, 2019, 4, 573-587.	23.3	200
474	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
475	A High Mobility Conjugated Polymer Enables Air and Thermally Stable CsPbI ₂ Br Perovskite Solar Cells with an Efficiency Exceeding 15%. Advanced Materials Technologies, 2019, 4, 1900311.	3.0	59
476	A dopant-free twisted organic small-molecule hole transport material for inverted planar perovskite solar cells with enhanced efficiency and operational stability. Nano Energy, 2019, 64, 103946.	8.2	49
477	Μethylammonium Chloride: A Key Additive for Highly Efficient, Stable, and Upâ€Scalable Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 79-92.	7.3	79
478	Recent Progress in Highâ€efficiency Planarâ€structure Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 93-106.	7.3	45
479	Optimisation of annealing temperature for low temperature processed inverted structure Caesium Formamidinium Lead Triiodide perovskite solar cells. Materials Science in Semiconductor Processing, 2019, 102, 104580.	1.9	17
480	Stable power output (PCE>19%) of planar perovskite solar cells with PbCl2 modification at the interface of SnO2/CH3NH3Pbl3. Organic Electronics, 2019, 74, 52-58.	1.4	10
481	Power Conversion Efficiency Enhancement of Low-Bandgap Mixed Pb–Sn Perovskite Solar Cells by Improved Interfacial Charge Transfer. ACS Energy Letters, 2019, 4, 1784-1790.	8.8	76
482	Additional Organicâ€Solventâ€Rinsing Process to Enhance Perovskite Photovoltaic Performance. Advanced Electronic Materials, 2019, 5, 1900244.	2.6	10
483	Vitrification Transformation of Poly(Ethylene Oxide) Activating Interface Passivation for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900134.	3.1	43
484	Planar starburst hole-transporting materials for highly efficient perovskite solar cells. Nano Energy, 2019, 63, 103865.	8.2	34
485	Adduct phases induced controlled crystallization for mixed-cation perovskite solar cells with efficiency over 21%. Nano Energy, 2019, 63, 103867.	8.2	48
486	Waterâ€Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer. Advanced Functional Materials, 2019, 29, 1902629.	7.8	89
487	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976.	11.7	222
488	An Interlayer with Strong Pb-Cl Bond Delivers Ultraviolet-Filter-Free, Efficient, and Photostable Perovskite Solar Cells. IScience, 2019, 21, 217-227.	1.9	43

#	Article	IF	CITATIONS
489	Solutionâ€Processed Laminated Perovskite Layers for Highâ€Performance Solar Cells. Advanced Functional Materials, 2019, 29, 1903330.	7.8	10
490	Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Advanced Materials, 2019, 31, e1902762.	11.1	422
491	Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ€Infrared with a Narrowâ€Bandgap Organic Semiconductor. Advanced Materials, 2019, 31, e1904494.	11.1	71
492	Cesium Lead Inorganic Solar Cell with Efficiency beyond 18% via Reduced Charge Recombination. Advanced Materials, 2019, 31, e1905143.	11.1	202
493	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	10.2	89
494	Dopantâ€Free Hole Transporting Molecules for Highly Efficient Perovskite Photovoltaic with Strong Interfacial Interaction. Solar Rrl, 2019, 3, 1900319.	3.1	20
495	Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS Applied Materials & amp; Interfaces, 2019, 11, 40163-40171.	4.0	17
496	Role of Moisture in the Preparation of Efficient Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 17691-17696.	3.2	20
497	Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells. Nature Communications, 2019, 10, 4686.	5.8	105
498	Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902740.	10.2	209
499	Engineering Halide Perovskite Crystals through Precursor Chemistry. Small, 2019, 15, e1903613.	5.2	82
500	Controlling Homogenous Spherulitic Crystallization for Highâ€Efficiency Planar Perovskite Solar Cells Fabricated under Ambient Highâ€Humidity Conditions. Small, 2019, 15, e1904422.	5.2	30
501	Morphology control of organic halide perovskites by adding BiFeO3 nanostructures for efficient solar cell. Scientific Reports, 2019, 9, 15441.	1.6	13
502	Lowâ€Cost and Highly Efficient Carbonâ€Based Perovskite Solar Cells Exhibiting Excellent Longâ€Term Operational and UV Stability. Small, 2019, 15, e1904746.	5.2	83
503	Interfacial Passivation for Perovskite Solar Cells: The Effects of the Functional Group in Phenethylammonium Iodide. ACS Energy Letters, 2019, 4, 2913-2921.	8.8	176
504	Hydrothermal Synthesis of Tunable Oliveâ€Like Ni _{0.8} Co _{0.1} Mn _{0.1} CO ₃ and its Transformation to LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Liâ€lon Batteries, ChemElectroChem, 2019. 6, 5661-5670.	1.7	13
505	Induced charge transfer bridge by non-fullerene surface treatment for high-performance perovskite solar cells. Applied Physics Letters, 2019, 115, .	1.5	4
506	Mechanism of Pbl ₂ in Situ Passivated Perovskite Films for Enhancing the Performance of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 44101-44108.	4.0	100

#	Article	IF	CITATIONS
507	Reducing Defects in Perovskite Solar Cells with White Light Illumination-Assisted Synthesis. ACS Energy Letters, 2019, 4, 2821-2829.	8.8	29
508	Semi-Transparent Perovskite Solar Cells with ITO Directly Sputtered on Spiro-OMeTAD for Tandem Applications. ACS Applied Materials & Interfaces, 2019, 11, 45796-45804.	4.0	63
509	Functional Macromoleculeâ€Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. Advanced Materials, 2019, 31, e1902733.	11.1	25
510	Spray oated Colloidal Perovskite Quantum Dot Films for Highly Efficient Solar Cells. Advanced Functional Materials, 2019, 29, 1906615.	7.8	100
511	Antiâ€Oxidizing Radical Polymerâ€Incorporated Perovskite Layers and their Photovoltaic Characteristics in Solar Cells. ChemSusChem, 2019, 12, 5207-5212.	3.6	20
512	Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2019, 31, e1903691.	11.1	125
513	Optical Simulation and Investigation of the Effect of Hysteresis on the Perovskite Solar Cells. Nano, 2019, 14, 1950127.	0.5	15
514	Fabrication and characterization of all-inorganic halide perovskite CsPbBr3 films via the two–step sol–gel process: Impact of annealing temperature. Journal of Alloys and Compounds, 2019, 810, 151943.	2.8	11
515	Spontaneous Interface Ion Exchange: Passivating Surface Defects of Perovskite Solar Cells with Enhanced Photovoltage. Advanced Energy Materials, 2019, 9, 1902142.	10.2	63
516	A Butterflyâ€Inspired Hierarchical Lightâ€Trapping Structure towards a Highâ€Performance Polarizationâ€Sensitive Perovskite Photodetector. Angewandte Chemie, 2019, 131, 16608-16614.	1.6	26
517	Study of perovskite (CH3NH3)xCs1-xPbBr3 films with nanometer crystallites fabricated via two-step sol-gel process: Impact of CH3NH3+ molar content on microstructure and optical properties. Journal of Alloys and Compounds, 2019, 810, 151947.	2.8	5
518	Enhanced efficiency and thermal stability of mesoscopic perovskite solar cells by adding PC70BM acceptor. Solar Energy Materials and Solar Cells, 2019, 202, 110130.	3.0	23
519	The Central Role of Ligand Conjugation for Properties of Coordination Complexes as Hole-Transport Materials in Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 6768-6779.	2.5	11
520	Enhanced photovoltaic properties of perovskite solar cells by the addition of cellulose derivatives to MAPbI3 based photoactive layer. Cellulose, 2019, 26, 9229-9239.	2.4	18
521	Interfacial Bonding and Electronic Structure between Copper Thiocyanate and Hybrid Organohalide Lead Perovskites for Photovoltaic Application. Journal of Physical Chemistry Letters, 2019, 10, 5609-5616.	2.1	4
522	Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonances. Nanoscale, 2019, 11, 17800-17806.	2.8	16
523	Barium acetate as an additive for high performance perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 11411-11418.	2.7	7
524	Highly efficient and stable perovskite solar cells <i>via</i> bilateral passivation layers. Journal of Materials Chemistry A, 2019, 7, 21730-21739.	5.2	56

#	Article	IF	CITATIONS
525	Enhanced Switching Ratio and Long-Term Stability of Flexible RRAM by Anchoring Polyvinylammonium on Perovskite Grains. ACS Applied Materials & amp; Interfaces, 2019, 11, 35914-35923.	4.0	65
526	Facile-Effective Hole-Transporting Materials Based on Dibenzo[<i>a</i> , <i>c</i>]carbazole: The Key Role of Linkage Position to Photovoltaic Performance of Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2514-2521.	8.8	59
527	Perovskite Pattern Formation by Chemical Vapor Deposition Using Photolithographically Defined Templates. Chemistry of Materials, 2019, 31, 8212-8221.	3.2	48
528	Ionic selective contact controls the charge accumulation for efficient and intrinsic stable planar homo-junction perovskite solar cells. Nano Energy, 2019, 66, 104098.	8.2	31
529	Deconstruction-assisted perovskite formation for sequential solution processing of Cs0.15(MA0.7FA0.3)0.85PbI3 solar cells. Solar Energy Materials and Solar Cells, 2019, 203, 110200.	3.0	8
530	Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, 2019, 737, 136822.	1.2	44
531	Boosting Photovoltaic Properties and Intrinsic Stability for MA-Based Perovskite Solar Cells by Incorporating 1,1,1-Trimethylhydrazinium Cation. ACS Applied Materials & Interfaces, 2019, 11, 38779-38788.	4.0	6
532	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	2.5	9
533	Morphology control of perovskite in green antisolvent system for MAPbI3-based solar cells with over 20% efficiency. Solar Energy Materials and Solar Cells, 2019, 203, 110197.	3.0	25
534	Rapid large-grain (>100‴μ4m) formation of organic-inorganic perovskite thin films via shear deposition for photovoltaic application. Solar Energy, 2019, 191, 629-636.	2.9	10
535	Morphology stability of polymethylmethacrylate nanospheres formed in water–acetone dispersion medium. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	5
536	Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews, 2019, 48, 2011-2038.	18.7	526
537	Nacre-inspired crystallization and elastic "brick-and-mortar―structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987.	15.6	114
538	Energy level-modulated non-fullerene small molecule acceptors for improved <i>V</i> _{OC} and efficiency of inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 3336-3343.	5.2	29
539	Pyridine-functionalized fullerene additive enabling coordination interactions with CH ₃ NH ₃ PbI ₃ perovskite towards highly efficient bulk heterojunction solar cells. Journal of Materials Chemistry A, 2019, 7, 2754-2763.	5.2	83
540	Reliable Measurement of Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803231.	11.1	62
541	Perfection of Perovskite Grain Boundary Passivation by Euâ€Porphyrin Complex for Overallâ€Stable Perovskite Solar Cells. Advanced Science, 2019, 6, 1802040.	5.6	65
542	Potassium-intercalated rubrene as a dual-functional passivation agent for high efficiency perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 1824-1834.	5.2	59

ARTICLE IF CITATIONS # Surface & amp; grain boundary co-passivation by fluorocarbon based bifunctional molecules for 543 5.2 141 perovskite solar cells with efficiency over 21%. Journal of Materials Chemistry A, 2019, 7, 2497-2506. Atomic layer deposition for efficient and stable perovskite solar cells. Chemical Communications, 544 2.2 2019, 55, 2403-2416. Fabrication and characterization of perovskite solar cells added with zinc phthalocyanine to active 545 0.3 3 layer. AIP Conference Proceedings, 2019, , . High performance printable perovskite solar cells based on Cs0.1FA0.9PbI3 in mesoporous scaffolds. 546 4.0 34 Journal of Power Sources, 2019, 415, 105-111. Band Alignment Strategy for Printable Triple Mesoscopic Perovskite Solar Cells with Enhanced 547 2.5 38 Photovoltage. ACS Applied Energy Materials, 2019, 2, 2034-2042. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nature Communications, 2019, 10, 520. 5.8 Understanding the Formation of Vertical Orientation in Two-dimensional Metal Halide Perovskite 549 3.2 93 Thin Films. Chemistry of Materials, 2019, 31, 1336-1343. Spontaneous grain polymerization for efficient and stable perovskite solar cells. Nano Energy, 2019, 8.2 64 58,825-833. 551 The Applications of Polymers in Solar Cells: A Review. Polymers, 2019, 11, 143. 2.0 146 Ethanolâ€Precipitable, Silicaâ€Passivated Perovskite Nanocrystals Incorporated into Polystyrene 1.6 Microspheres for Longâ€Term Storage and Reusage. Angewandte Chemie, 2019, 131, 2825-2829. Morphological and compositional progress in halide perovskite solar cells. Chemical 553 2.2 136 Communications, 2019, 55, 1192-1200. Bifacial stamping for high efficiency perovskite solar cells. Energy and Environmental Science, 2019, 554 15.6 12, 308-321. High open circuit voltages in pin-type perovskite solar cells through strontium addition. Sustainable 555 2.5 57 Energy and Fuels, 2019, 3, 550-563. Structure and chemical stability in perovskite–polymer hybrid photovoltaic materials. Journal of Materials Chemistry A, 2019, 7, 1687-1699. 5.2 Scalable and efficient perovskite solar cells prepared by grooved roller coating. Journal of Materials 557 5.29 Chemistry A, 2019, 7, 1870-1877. Effects of substrate temperature on the crystallization process and properties of mixed-ion 5.2 24 perovskite layers. Journal of Materials Chemistry A, 2019, 7, 2804-2811. Optimizing solution-processed C60 electron transport layer in planar perovskite solar cells by 559 interfacial modification with solid-state ionic-liquids. Journal of Solid State Chemistry, 2019, 276, 1.4 26 302-308. Trap-State Passivation by Nonvolatile Small Molecules with Carboxylic Acid Groups for Efficient 1.5 Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 14223-14228.

#	Article	IF	Citations
561	Amphiphilic Fullerenes Employed to Improve the Quality of Perovskite Films and the Stability of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 24782-24788.	4.0	55
562	Efficient and Stable Planar nâ€iâ€p Perovskite Solar Cells with Negligible Hysteresis through Solutionâ€Processed Cu ₂ 0 Nanocubes as a Lowâ€Cost Holeâ€Transport Material. ChemSusChem, 2019, 12, 3808-3816.	3.6	45
563	Exploring low-temperature processed a-WOx/SnO2 hybrid electron transporting layer for perovskite solar cells with efficiency >20.5%. Nano Energy, 2019, 63, 103825.	8.2	49
564	Pyridine-Functionalized Fullerene Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 23982-23989.	4.0	40
565	Efficient and Stable Perovskite Solar Cell Achieved with Bifunctional Interfacial Layers. ACS Applied Materials & amp; Interfaces, 2019, 11, 25218-25226.	4.0	23
566	An Excellent Modifier: Carbon Quantum Dots for Highly Efficient Carbonâ€Electrodeâ€Based Methylammonium Lead Iodide Solar Cells. Solar Rrl, 2019, 3, 1900146.	3.1	27
567	14.1% CsPbI ₃ Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation. Advanced Energy Materials, 2019, 9, 1900721.	10.2	254
568	A review of new approaches to analytical methods to determine the structure and morphology of polymers. TrAC - Trends in Analytical Chemistry, 2019, 118, 470-476.	5.8	17
569	Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Science Advances, 2019, 5, eaaw2543.	4.7	524
570	Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier. Solar Energy, 2019, 188, 239-246.	2.9	24
571	Defect site engineering for charge recombination and stability via polymer surfactant incorporation with an ultra-small amount in perovskite solar cells. Organic Electronics, 2019, 73, 87-93.	1.4	14
572	Molecular design of D-Ï€-D-typed hole-transporting materials for perovskite solar cells based on the Ï€-conjugated cores. Synthetic Metals, 2019, 254, 34-41.	2.1	18
573	Synthesis of CsPbBr ₃ perovskite nanocrystals with the sole ligand of protonated (3-aminopropyl)triethoxysilane. Journal of Materials Chemistry C, 2019, 7, 7201-7206.	2.7	27
574	Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes. Applied Surface Science, 2019, 488, 586-592.	3.1	30
575	Impact of 9â€(4â€methoxyphenyl) Carbazole and Benzodithiophene Cores on Performance and Stability for Perovskite Solar Cells Based on Dopantâ€Free Holeâ€Transporting Materials. Solar Rrl, 2019, 3, 1900202.	3.1	28
576	Solution-phase synthesis of CsPbl ₃ nanowire clusters <i>via</i> polymer-induced anisotropic growth and self-assembly. Chemical Communications, 2019, 55, 8266-8269.	2.2	6
577	Dopantâ€Free Holeâ€Transporting Layer Based on Isomerâ€Pure Tetraâ€Butylâ€Substituted Zinc(II) Phthalocyanine for Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900119.	3.1	12
578	Patterned Wettability Surface for Competitionâ€Driving Largeâ€Grained Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900838.	10.2	44

		CITATION REPORT		
#	Article		IF	CITATIONS
579	Defect and Contact Passivation for Perovskite Solar Cells. Advanced Materials, 2019, 31,	e1900428.	11.1	445
580	Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411.	:-Based	3.2	82
581	High performance and stable perovskite solar cells using vanadic oxide as a dopant for sp Journal of Materials Chemistry A, 2019, 7, 13256-13264.	piro-OMeTAD.	5.2	81
582	Polyelemental, Multicomponent Perovskite Semiconductor Libraries through Combinator Screening. Advanced Energy Materials, 2019, 9, 1803754.	rial	10.2	73
583	An atomistic mechanism for the degradation of perovskite solar cells by trapped charge. 2019, 11, 11369-11378.	Nanoscale,	2.8	45
584	Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskit Journal of Materials Chemistry A, 2019, 7, 14136-14144.	e solar cells.	5.2	40
585	Application of Machine Learning in Perovskite Solar Cell Crystal Size Distribution Analysis Advances, 2019, 4, 793-800.	, MRS	0.5	11
586	Star-shaped molecule with planar triazine core and perylene diimide branches as an n-typ bulk-heterojunction perovskite solar cells. Dyes and Pigments, 2019, 170, 107562.	e additive for	2.0	18
587	Cost-effective dopant-free star-shaped oligo-aryl amines for high performance perovskite Journal of Materials Chemistry A, 2019, 7, 14209-14221.	solar cells.	5.2	37
588	Engineering the underlying surface to manipulate the growth of 2D perovskites for highly solar cells. Journal of Materials Chemistry A, 2019, 7, 14027-14032.	y efficient	5.2	46
589	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019	, 31, e1807095.	11.1	94
590	Grain boundary regulation of flexible perovskite solar cells via a polymer alloy additive. Of Electronics, 2019, 70, 205-210.	rganic	1.4	19
591	Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface and carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 12236-12243.	₂ of CuSCN	5.2	91
592	Controlling the Morphology of Organic–Inorganic Hybrid Perovskites through Dual Additive-Mediated Crystallization for Solar Cell Applications. ACS Applied Materials & 2019, 11, 17452-17458.); Interfaces,	4.0	19
593	Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis plana solar cells. Solar Energy, 2019, 185, 508-515.	r perovskite	2.9	47
594	Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perc cells. Journal of Materials Chemistry A, 2019, 7, 12987-12992.	ovskite solar	5.2	57
595	SnS Quantum Dots as Hole Transporter of Perovskite Solar Cells. ACS Applied Energy Ma 2, 3822-3829.	terials, 2019,	2.5	26
596	Self-Seeding Growth for Perovskite Solar Cells with Enhanced Stability. Joule, 2019, 3, 14	52-1463.	11.7	120

#	Article	IF	CITATIONS
597	Organic bulk-heterojunction injected perovskite films for highly efficient solar cells. Journal of Materials Chemistry C, 2019, 7, 6391-6397.	2.7	9
598	Conjugated Polymer–Assisted Grain Boundary Passivation for Efficient Inverted Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1808855.	7.8	133
599	Humidityâ€Tolerant Rollâ€toâ€Roll Fabrication of Perovskite Solar Cells via Polymerâ€Additiveâ€Assisted Hot Slot Die Deposition. Advanced Functional Materials, 2019, 29, 1809194.	7.8	93
600	Fusing Nanowires into Thin Films: Fabrication of Gradedâ€Heterojunction Perovskite Solar Cells with Enhanced Performance. Advanced Energy Materials, 2019, 9, 1900243.	10.2	45
601	The impact at polar solvent treatment on p-contact layers (PEDOT:PSS or NiOx) of hybrid perovskite solar cells. Organic Electronics, 2019, 73, 273-278.	1.4	5
602	Reverseâ€Graded 2D Ruddlesden–Popper Perovskites for Efficient Airâ€Stable Solar Cells. Advanced Energy Materials, 2019, 9, 1900612.	10.2	69
603	Electronic Structure of Nonionic Surfactant-Modified PEDOT:PSS and Its Application in Perovskite Solar Cells with Reduced Interface Recombination. ACS Applied Materials & Interfaces, 2019, 11, 17028-17034.	4.0	30
604	Steering the crystallization of perovskites for high-performance solar cells in ambient air. Journal of Materials Chemistry A, 2019, 7, 12166-12175.	5.2	65
605	Improved performance of perovskite solar cells through using (FA)x(MA)1-xPbI3 optical absorber layer. Optoelectronics Letters, 2019, 15, 117-121.	0.4	13
606	Nanomaterials for Polymer and Perovskite Light-Emitting Diodes. , 2019, , 371-421.		0
607	Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule, 2019, 3, 1464-1477.	11.7	448
608	Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells. Frontiers of Optoelectronics, 2019, 12, 344-351.	1.9	26
609	Highly Crystalline Perovskite-Based Photovoltaics via Two-Dimensional Liquid Cage Annealing Strategy. Journal of the American Chemical Society, 2019, 141, 5808-5814.	6.6	29
610	Effect of Br content on phase stability and performance of H ₂ N=CHNH ₂ Pb(l _{1â^'<i>x</i>} Br <i> _x </i>) ₃ perovskite thin films. Nanotechnology, 2019, 30, 165402.	1.3	11
611	Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 5781-5787.	6.6	585
612	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society, 2019, 141, 5972-5979.	6.6	274
613	Highâ€Performance Perovskite Solar Cells with Excellent Humidity and Thermo‣tability via Fluorinated Perylenediimide. Advanced Energy Materials, 2019, 9, 1900198.	10.2	205
614	Defects Passivation With Dithienobenzodithiopheneâ€based π onjugated Polymer for Enhanced Performance of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900029.	3.1	74

#	Article	IF	CITATIONS
615	Perovskite and Conjugated Polymer Wrapped Semiconducting Carbon Nanotube Hybrid Films for High-Performance Transistors and Phototransistors. ACS Nano, 2019, 13, 3971-3981.	7.3	151
616	Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Science Advances, 2019, 5, eaav8925.	4.7	388
617	Similar or different: the same Spiro-core but different alkyl chains with apparently improved device performance of perovskite solar cells. Science China Chemistry, 2019, 62, 739-745.	4.2	27
618	High-efficiency perovskite solar cell based on TiO2 nanorod arrays under natural ambient conditions: Solvent effect. Ceramics International, 2019, 45, 12353-12359.	2.3	7
619	Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. Journal of Power Sources, 2019, 422, 138-144.	4.0	37
620	Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511-515.	13.7	1,867
621	20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy and Environmental Science, 2019, 12, 1622-1633.	15.6	193
622	Controllable switching properties in an individual CH3NH3PbI3 micro/nanowire-based transistor for gate voltage and illumination dual-driving non-volatile memory. Journal of Materials Chemistry C, 2019, 7, 4259-4266.	2.7	18
623	Efficient methylammonium lead trihalide perovskite solar cells with chloroformamidinium chloride (Cl-FACl) as an additive. Journal of Materials Chemistry A, 2019, 7, 8078-8084.	5.2	62
624	Enhanced efficacy of defect passivation and charge extraction for efficient perovskite photovoltaics with a small open circuit voltage loss. Journal of Materials Chemistry A, 2019, 7, 9025-9033.	5.2	71
625	Solution Processed Nb ₂ O ₅ Electrodes for High Efficient Ultraviolet Light Stable Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 7421-7429.	3.2	41
626	Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells. RSC Advances, 2019, 9, 7984-7991.	1.7	25
627	Current progress in interfacial engineering of carbon-based perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 8690-8699.	5.2	84
628	Compositionâ€Controlled Synthesis of Hybrid Perovskite Nanoparticles by Ionic Metathesis: Bandgap Engineering Studies from Experiments and Theoretical Calculations. Chemistry - A European Journal, 2019, 25, 9892-9901.	1.7	18
629	Accelerated hole-extraction in carbon-electrode based planar perovskite solar cells by moisture-assisted post-annealing. Applied Physics Letters, 2019, 114, .	1.5	42
630	Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites. Advanced Materials, 2019, 31, e1807628.	11.1	64
631	Phenothiazine Functionalized Multifunctional Aâ~π–Dâ~π–Dâ^π–A-Type Hole-Transporting Materials via Sequential C–H Arylation Approach for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 14011-14022.	4.0	51
632	Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency. Journal of the American Chemical Society, 2019, 141, 6345-6351.	6.6	149

#	Article	IF	CITATIONS
633	Planar Perovskite Solar Cells with High Efficiency and Fill Factor Obtained Using Two-Step Growth Process. ACS Applied Materials & Interfaces, 2019, 11, 15680-15687.	4.0	18
634	Enhanced Electronic Quality of Perovskite via a Novel C ₆₀ o-Quinodimethane Bisadducts toward Efficient and Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 8579-8586.	3.2	12
635	Modeling the edge effect for measuring the performance of mesoscopic solar cells with shading masks. Journal of Materials Chemistry A, 2019, 7, 10942-10948.	5.2	11
636	Enhanced performance of perovskite solar cells by the incorporation of the luminescent small molecule DBP: perovskite absorption spectrum modification and interface engineering. Journal of Materials Chemistry C, 2019, 7, 5686-5694.	2.7	28
637	Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 387-403.	2.4	17
638	Hole Transport Materials Based on 6,12â€Dihydroindeno[1,2â€b]fluorine with Different Periphery Groups: A New Strategy for Dopantâ€Free Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1901296.	7.8	45
639	Novel Surface Passivation for Stable FA _{0.85} MA _{0.15} Pbl ₃ Perovskite Solar Cells with 21.6% Efficiency. Solar Rrl, 2019, 3, 1900072.	3.1	64
640	Effects of poly(methyl methacrylate) addition to perovskite photovoltaic devices. AlP Conference Proceedings, 2019, , .	0.3	14
641	Indepth Studies on Working Mechanism of Plasmon-Enhanced Inverted Perovskite Solar Cells Incorporated with Ag@SiO ₂ Core–Shell Nanocubes. ACS Applied Energy Materials, 2019, 2, 3605-3613.	2.5	18
642	Pinhole-free TiO ₂ /Ag _(O) /ZnO configuration for flexible perovskite solar cells with ultralow optoelectrical loss. RSC Advances, 2019, 9, 9160-9170.	1.7	25
643	Additive Effect of Formamidinium Chloride in Methylammonium Lead Halide Compound-Based Perovskite Solar Cells. Journal of Electronic Materials, 2019, 48, 3900-3907.	1.0	22
644	Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization. Journal of Energy Chemistry, 2019, 38, 207-213.	7.1	27
645	Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13, 460-466.	15.6	3,458
646	Semiconductive Polymer-Doped PEDOT with High Work Function, Conductivity, Reversible Dispersion, and Application in Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 8206-8214.	3.2	25
647	Light trapping effect of textured FTO in perovskite solar cells. IOP Conference Series: Materials Science and Engineering, 0, 479, 012046.	0.3	5
648	Metal halide perovskite photodetectors: Material features and device engineering. Chinese Physics B, 2019, 28, 018502.	0.7	18
649	Comparative analysis of burn-in photo-degradation in non-fullerene COi8DFIC acceptor based high-efficiency ternary organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1085-1096.	3.2	31
650	Nanophotonic enhancement and improved electron extraction in perovskite solar cells using near-horizontally aligned TiO2 nanorods. Journal of Power Sources, 2019, 417, 176-187.	4.0	17

	_
CITAT	DEDODT
CHAL	Report

#	Article	IF	CITATIONS
651	Transparent Sn-doped In2O3 electrodes with a nanoporous surface for enhancing the performance of perovskite solar cells. Journal of Power Sources, 2019, 418, 152-161.	4.0	17
652	High-Performance Inverted Perovskite Solar Cells Using Doped Poly(triarylamine) as the Hole Transport Layer. ACS Applied Energy Materials, 2019, 2, 1932-1942.	2.5	52
653	Pbl ₂ Initiated Cross-Linking and Integration of a Polymer Matrix with Perovskite Films: 1000 h Operational Devices under Ambient Humidity and Atmosphere and with Direct Solar Illumination. ACS Applied Energy Materials, 2019, 2, 2214-2222.	2.5	28
654	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	10.2	224
655	Manipulating the Phase Distributions and Carrier Transfers in Hybrid Quasiâ€Twoâ€Dimensional Perovskite Films. Solar Rrl, 2019, 3, 1800359.	3.1	46
656	Lowâ€Bandgap Mixed Tinâ€Lead Perovskites and Their Applications in Allâ€Perovskite Tandem Solar Cells. Advanced Functional Materials, 2019, 29, 1808801.	7.8	133
657	Causes and Solutions of Recombination in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803019.	11.1	422
658	Lowâ€Temperature In Situ Amino Functionalization of TiO ₂ Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells. Advanced Materials, 2019, 31, e1806095.	11.1	194
659	Amino acid salt-driven planar hybrid perovskite solar cells with enhanced humidity stability. Nano Energy, 2019, 59, 481-491.	8.2	82
660	Formamidinium Incorporation into Compact Lead Iodide for Low Band Gap Perovskite Solar Cells with Open-Circuit Voltage Approaching the Radiative Limit. ACS Applied Materials & Interfaces, 2019, 11, 9083-9092.	4.0	9
661	Understanding the Impact of Bismuth Heterovalent Doping on the Structural and Photophysical Properties of CH ₃ NH ₃ PbBr ₃ Halide Perovskite Crystals with Nearâ€IR Photoluminescence. Chemistry - A European Journal, 2019, 25, 5480-5488.	1.7	42
662	21.7% efficiency achieved in planar n–i–p perovskite solar cells <i>via</i> interface engineering with water-soluble 2D TiS ₂ . Journal of Materials Chemistry A, 2019, 7, 6213-6219.	5.2	87
663	A promising europium-based down conversion material: organic–inorganic perovskite solar cells with high photovoltaic performance and UV-light stability. Journal of Materials Chemistry A, 2019, 7, 6467-6474.	5.2	43
664	Waterâ€Soluble Triazolium Ionicâ€Liquidâ€Induced Surface Selfâ€Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900417.	7.8	145
665	Halide perovskite based on hydrophobic ionic liquid for stability improving and its application in high-efficient photovoltaic cell. Electrochimica Acta, 2019, 303, 133-139.	2.6	38
666	In Situ Backâ€Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1807435.	11.1	143
667	Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells. Nano Energy, 2019, 59, 91-101.	8.2	100
668	High absorption perovskite solar cell with optical coupling structure. Optics Communications, 2019, 443, 262-267.	1.0	18

#	Article	IF	CITATIONS
669	Efficient and Stable Perovskite Solar Cell with TiO <inf>2</inf> Thin Insulator Layer as Electron Transport. , 2019, , .		4
670	Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 2019, 119, 3036-3103.	23.0	2,009
671	Ultracompact, Well-Packed Perovskite Flat Crystals: Preparation and Application in Planar Solar Cells with High Efficiency and Humidity Tolerance. ACS Applied Materials & Interfaces, 2019, 11, 11283-11291.	4.0	12
672	Minimalist Design of Efficient, Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 12460-12466.	4.0	9
673	Metal chalcogenide quantum dot-sensitized 1D-based semiconducting heterostructures for optical-related applications. Energy and Environmental Science, 2019, 12, 1454-1494.	15.6	19
674	Efficient and carbon-based hole transport layer-free CsPbI ₂ Br planar perovskite solar cells using PMMA modification. Journal of Materials Chemistry C, 2019, 7, 3852-3861.	2.7	102
675	Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 10012-10020.	4.0	70
676	Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4977-4987.	5.2	143
677	Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF ₄ ^{â^'} Anion Substitutions. Advanced Functional Materials, 2019, 29, 1808833.	7.8	104
678	Stability Improvement of Perovskite Solar Cells for Application of CuInS ₂ Quantum Dot-Modified TiO ₂ Nanoarrays. ACS Omega, 2019, 4, 3432-3438.	1.6	19
679	Charge carrier recombination dynamics in a bi-cationic perovskite solar cell. Physical Chemistry Chemical Physics, 2019, 21, 5409-5415.	1.3	20
680	Features of the Temperature Dependences of the Photoconductivity of Organometallic CH3NH3PbI3 Perovskite Films. Semiconductors, 2019, 53, 1597-1602.	0.2	2
681	Degradation Mechanism Identified for the Fullerene and Non-fullerene based Organic Solar Cells under Ambient Condition. , 2019, , .		0
682	Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH4SCN. Nanoscale Research Letters, 2019, 14, 304.	3.1	14
683	Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019, 366, 1509-1513.	6.0	846
684	A sandwich-like electron transport layer to assist highly efficient planar perovskite solar cells. Nanoscale, 2019, 11, 21917-21926.	2.8	31
685	Enhanced perovskite crystallization by the polyvinylpyrrolidone additive for high efficiency solar cells. Sustainable Energy and Fuels, 2019, 3, 3448-3454.	2.5	12
686	Efficient and Stable Low-Bandgap Perovskite Solar Cells Enabled by a CsPbBr ₃ -Cluster Assisted Bottom-up Crystallization Approach. Journal of the American Chemical Society, 2019, 141, 20537-20546.	6.6	79

#	Article	IF	CITATIONS
687	Integration of NiO Layer as Hole Transport Material in Perovskite Solar Cells. , 2019, , .		0
688	Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell. Energy and Environmental Science, 2019, 12, 3502-3507.	15.6	90
689	Hierarchy of interfacial passivation in inverted perovskite solar cells. Chemical Communications, 2019, 55, 14996-14999.	2.2	4
690	Two low-dimensional metal halides: ionothermal synthesis, photoluminescence, and nonlinear optical properties. Dalton Transactions, 2019, 48, 17451-17455.	1.6	13
691	Highly Efficient and Stable Inorganic Perovskite Quantum Dots by Embedding into a Polymer Matrix. ChemNanoMat, 2019, 5, 346-351.	1.5	38
692	Polystyrene enhanced crystallization of perovskites towards high performance solar cells. Nanoscale Advances, 2019, 1, 76-85.	2.2	15
693	Core-shell structure of ZnO@TiO2 nanorod arrays as electron transport layer for perovskite solar cell with enhanced efficiency and stability. Applied Surface Science, 2019, 464, 301-310.	3.1	47
694	Enhancing violet photoluminescence of 2D perovskite thin films via swift cation doping and grain size reduction. Applied Physics Express, 2019, 12, 015506.	1.1	8
695	High-Performance and Stable Mesoporous Perovskite Solar Cells via Well-Crystallized FA0.85MA0.15Pb(I0.8Br0.2)3. ACS Applied Materials & Interfaces, 2019, 11, 2989-2996.	4.0	26
696	Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. ACS Applied Materials & amp; Interfaces, 2019, 11, 3044-3052.	4.0	147
697	Fabrication of Perovskite Films with Long Carrier Lifetime for Efficient Perovskite Solar Cells from Low-Toxicity 1-Ethyl-2-Pyrrolidone. ACS Applied Energy Materials, 2019, 2, 320-327.	2.5	4
698	Vanadium Oxide Post-Treatment for Enhanced Photovoltage of Printable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 2619-2625.	3.2	36
699	Low-Temperature Stable α-Phase Inorganic Perovskite Compounds via Crystal Cross-Linking. Journal of Physical Chemistry Letters, 2019, 10, 200-205.	2.1	57
700	Mazeâ€Like Halide Perovskite Films for Efficient Electron Transport Layerâ€Free Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800268.	3.1	49
701	Toward Long-Term Stability: Single-Crystal Alloys of Cesium-Containing Mixed Cation and Mixed Halide Perovskite. Journal of the American Chemical Society, 2019, 141, 1665-1671.	6.6	141
702	Perovskite solar cells based on chlorophyll hole transporters: Dependence of aggregation and photovoltaic performance on aliphatic chains at C17-propionate residue. Dyes and Pigments, 2019, 162, 763-770.	2.0	18
703	The roles of acetylacetone additives in enhancing perovskite solar cell performance. Materials Research Express, 2019, 6, 025512.	0.8	4
704	Melamine Hydroiodide Functionalized MAPbI ₃ Perovskite with Enhanced Photovoltaic Performance and Stability in Ambient Atmosphere. Solar Rrl, 2019, 3, 1800275.	3.1	18

#	Article	IF	CITATIONS
705	Doubleâ€Sideâ€Passivated Perovskite Solar Cells with Ultraâ€low Potential Loss. Solar Rrl, 2019, 3, 1800296.	3.1	89
706	Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy, 2019, 56, 733-740.	8.2	201
707	Ethanolâ€Precipitable, Silicaâ€Passivated Perovskite Nanocrystals Incorporated into Polystyrene Microspheres for Longâ€Term Storage and Reusage. Angewandte Chemie - International Edition, 2019, 58, 2799-2803.	7.2	29
708	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Materials Today Energy, 2019, 12, 70-94.	2.5	67
709	Enhanced Open-Circuit Voltage of Cs-Containing FAPbI ₃ Perovskite Solar Cells by the Formation of a Seed Layer through a Vapor-Assisted Solution Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 3404-3413.	3.2	14
710	Highly efficient inverted planar perovskite solar cells from TiO2 nanoparticles modified interfaces between NiO hole transport layers and conductive glasses. Journal of Materials Science: Materials in Electronics, 2019, 30, 529-536.	1.1	5
711	Passivation of the grain boundaries of CH ₃ NH ₃ PbI ₃ using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability. Nanoscale, 2019, 11, 115-124.	2.8	164
712	Hydrophobic polythiophene hole-transport layers to address the moisture-induced decomposition problem of perovskite solar cells. Canadian Journal of Chemistry, 2019, 97, 435-441.	0.6	8
713	An ionic compensation strategy for high-performance mesoporous perovskite solar cells: healing defects with tri-iodide ions in a solvent vapor annealing process. Journal of Materials Chemistry A, 2019, 7, 353-362.	5.2	28
714	3,4-Dihydroxybenzhydrazide as an additive to improve the morphology of perovskite films for efficient and stable perovskite solar cells. Organic Electronics, 2019, 66, 47-52.	1.4	9
715	Hollow rice grain-shaped TiO2 nanostructures for high-efficiency and large-area perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 191, 389-398.	3.0	10
716	Nanoscale Lead(II) Iodide-sensitized Solar Cell. Chemistry Letters, 2019, 48, 144-147.	0.7	1
717	Low temperature Zn-doped TiO2 as electron transport layer for 19% efficient planar perovskite solar cells. Applied Surface Science, 2019, 471, 28-35.	3.1	38
718	High quality perovskite film solar cell using methanol as additive with 19.5% power conversion efficiency. Electrochimica Acta, 2019, 293, 356-363.	2.6	38
719	Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells. Electrochimica Acta, 2019, 293, 211-219.	2.6	56
720	Emerging Organic and Organic/Inorganic Hybrid Photovoltaic Devices for Specialty Applications: Lowâ€Levelâ€Lighting Energy Conversion and Biomedical Treatment. Advanced Optical Materials, 2019, 7, 1800662.	3.6	69
721	Stipulating Low Production Cost Solar Cells All Set to Retail…!. Chemical Record, 2019, 19, 661-674.	2.9	22
722	Boosting the performance and stability of perovskite solar cells with phthalocyanine-based dopant-free hole transporting materials through core metal and peripheral groups engineering.	1.4	24

#	Article	IF	Citations
" 723	Dissolution and recrystallization of perovskite induced by N-methyl-2-pyrrolidone in a closed steam annealing method. Journal of Energy Chemistry, 2019, 30, 78-83.	7.1	16
724	Graphdiyne-Doped P3CT-K as an Efficient Hole-Transport Layer for MAPbl ₃ Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 2626-2631.	4.0	61
725	Optical Design in Perovskite Solar Cells. Small Methods, 2020, 4, 1900150.	4.6	32
726	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
727	Progress of Surface Science Studies on ABX ₃ â€Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902726.	10.2	87
728	Tradeâ€Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6‣ensitized Nonfullerene Ternary Organic Solar Cells. Energy Technology, 2020, 8, 1900924.	1.8	32
729	Interfacial Bridge Using a <i>cis</i> â€Fulleropyrrolidine for Efficient Planar Perovskite Solar Cells with Enhanced Stability. Small Methods, 2020, 4, 1900476.	4.6	65
730	A Review on Reducing Grain Boundaries and Morphological Improvement of Perovskite Solar Cells from Methodology and Materialâ€Based Perspectives. Small Methods, 2020, 4, 1900569.	4.6	56
731	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	8.2	81
732	lodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency >21.3 %. Nano Energy, 2020, 67, 104224.	8.2	46
733	Verringerung schÃ d licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€Solarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	1.6	16
734	Pbâ€Site Doping of Lead Halide Perovskites for Efficient Solar Cells. Solar Rrl, 2020, 4, 1900227.	3.1	8
735	Influence of Lewis base HMPA on the properties of efficient planar MAPbI3 solar cells fabricated by one-step process assisted by Lewis acid-base adduct approach. Chemical Engineering Journal, 2020, 380, 122436.	6.6	24
736	Strategies Toward Extending the Nearâ€Infrared Photovoltaic Response of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900280.	3.1	13
737	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	7.2	334
738	A photo-crosslinkable bis-triarylamine side-chain polymer as a hole-transport material for stable perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 190-198.	2.5	22
739	Efficient and stable planar perovskite solar cells with a PEDOT:PSS/SrGO hole interfacial layer. Journal of Alloys and Compounds, 2020, 812, 152091.	2.8	49
740	Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation. Journal of Alloys and Compounds, 2020, 818, 152903.	2.8	58

#	Article	IF	CITATIONS
741	Modified HTL-induced efficiency enhancement for inverted perovskite solar cells. Organic Electronics, 2020, 78, 105557.	1.4	13
742	Additive Engineering for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902579.	10.2	477
743	Twoâ€ŧerminal Perovskite silicon tandem solar cells with a highâ€Bandgap Perovskite absorber enabling voltages over 1.8ÂV. Progress in Photovoltaics: Research and Applications, 2020, 28, 99-110.	4.4	63
744	Molecularly imprinted polymers and PEG double engineered perovskite: an efficient platform for constructing aqueous solution feasible photoelectrochemical sensor. Sensors and Actuators B: Chemical, 2020, 304, 127321.	4.0	30
745	Highly Efficient and Stable Perovskite Solar Cells Using an Effective Chelateâ€Assisted Defect Passivation Strategy. ChemSusChem, 2020, 13, 412-418.	3.6	4
746	MAPbI3/agarose photoactive composite for highly stable unencapsulated perovskite solar cells in humid environment. Nano Energy, 2020, 67, 104246.	8.2	36
747	Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46, 8-15.	7.1	89
748	High performance perovskites solar cells by hybrid perovskites co-crystallized with poly(ethylene) Tj ETQq1 1 0.78	4314 rgBT 8.2	- Overlock
749	Defectâ€Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900529.	3.1	40
750	Systematic optimization of perovskite solar cells via green solvent systems. Chemical Engineering Journal, 2020, 387, 123966.	6.6	21
751	Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. Chemical Society Reviews, 2020, 49, 354-381.	18.7	125
752	Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy and Environmental Science, 2020, 13, 1222-1230.	15.6	114
753	It's a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7, 397-410.	6.4	345
754	Effects of methylamine doping on the stability of triple cation (FA _{0.95â^{~;}x} MA _x Cs _{0.05})PbI ₃ single crystal perovskites. Nanoscale Advances, 2020, 2, 332-339.	2.2	8
755	Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 1578-1603.	5.2	112
756	Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 2105-2113.	5.2	67
757	Formamidine-assisted fast crystallization to fabricate formamidinium-based perovskite films for high-efficiency and stable solar cells. Journal of Materials Chemistry C, 2020, 8, 1642-1648.	2.7	20
758	Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900485.	3.1	29

#	Article	IF	CITATIONS
759	Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1904347.	11.1	172
760	Rapid Layerâ€&pecific Annealing Enabled by Ultraviolet LED with Estimation of Crystallization Energy for Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902898.	10.2	8
761	New Strategies for Defect Passivation in Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903090.	10.2	237
762	Low-temperature solution-combustion-processed Zn-Doped Nb2O5 as an electron transport layer for efficient and stable perovskite solar cells. Journal of Power Sources, 2020, 448, 227419.	4.0	19
763	Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. Journal of Materials Chemistry A, 2020, 8, 2760-2768.	5.2	85
764	Fabrication of pyramidal (111) MAPbBr ₃ film with low surface defect density using homogeneous quantum-dot seeds. Nanoscale, 2020, 12, 1366-1373.	2.8	4
765	Application of a new π-conjugated ladder-like polymer in enhancing the stability and efficiency of perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 1417-1424.	5.2	32
766	Chlorineâ€modified SnO ₂ electron transport layer for highâ€efficiency perovskite solar cells. InformaÄnÃ-Materiály, 2020, 2, 401-408.	8.5	48
767	High efficiency perovskite solar cells with tailorable surface wettability by surfactant. Journal of Power Sources, 2020, 448, 227584.	4.0	36
768	Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers. Applied Surface Science, 2020, 507, 145099.	3.1	66
769	Ag diffusion effect on the crystal structure, band structure, and optical property of α-CsPbI3 perovskite materials. Physica B: Condensed Matter, 2020, 579, 411917.	1.3	0
770	Hexylammonium Iodide Derived Two-Dimensional Perovskite as Interfacial Passivation Layer in Efficient Two-Dimensional/Three-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 698-705.	4.0	36
771	Achieving Reproducible and High-Efficiency (>21%) Perovskite Solar Cells with a Presynthesized FAPbI ₃ Powder. ACS Energy Letters, 2020, 5, 360-366.	8.8	139
772	Stable Efficient Methylammonium Lead Iodide Thin Film Photodetectors with Highly Oriented Millimeter-Sized Crystal Grains. ACS Photonics, 2020, 7, 57-67.	3.2	9
773	Incorporation of Nickel Ions to Enhance Integrity and Stability of Perovskite Crystal Lattice for High-Performance Planar Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 904-913.	4.0	13
774	Simultaneous Contact and Grainâ€Boundary Passivation in Planar Perovskite Solar Cells Using SnO ₂ â€KCl Composite Electron Transport Layer. Advanced Energy Materials, 2020, 10, 1903083.	10.2	323
775	Bandgap tuning and compositional exchange for lead halide perovskite materials. , 2020, , 1-22.		9
776	Efficient flexible perovskite solar cells based on a polymer additive. Flexible and Printed Electronics, 2020, 5, 014001.	1.5	25

#	Article	IF	CITATIONS
777	Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762.	10.2	50
778	Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy and Environmental Science, 2020, 13, 1187-1196.	15.6	129
779	Unveiling the guest effect of N-butylammonium iodide towards efficient and stable 2D-3D perovskite solar cells through sequential deposition process. Chemical Engineering Journal, 2020, 391, 123589.	6.6	34
780	Additives in metal halide perovskite films and their applications in solar cells. Journal of Energy Chemistry, 2020, 46, 215-228.	7.1	64
781	Ethylenediamine chlorides additive assisting formation of high-quality formamidinium-caesium perovskite film with low trap density for efficient solar cells. Journal of Power Sources, 2020, 449, 227484.	4.0	14
782	Crystallographic orientation and layer impurities in two-dimensional metal halide perovskite thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 010801.	0.9	19
783	Polysilane-Inserted Methylammonium Lead Iodide Perovskite Solar Cells Doped with Formamidinium and Potassium. Energies, 2020, 13, 4776.	1.6	32
784	A data review on certified perovskite solar cells efficiency and I-V metrics: Insights into materials selection and process scaling up. Solar Energy, 2020, 209, 21-29.	2.9	5
785	Thiophene Terminated Fullerene Derivatives for Interfacial Modification toward High Efficiency MAPbI ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9824-9832.	2.5	12
786	Room Temperature Formation of Semiconductor Grade α-FAPbI3 Films for Efficient Perovskite Solar Cells. Cell Reports Physical Science, 2020, 1, 100205.	2.8	18
787	Compositional Engineering Study of Lead-Free Hybrid Perovskites for Solar Cell Applications. ACS Applied Materials & Interfaces, 2020, 12, 49636-49647.	4.0	31
788	Recent Progress of Organic Solar Cells with Insulating Polymers. Solar Rrl, 2020, 4, 2000539.	3.1	24
789	Investigation of strain behavior and carrier mobility of organic–inorganic hybrid perovskites: (C ₄ H ₉ NH ₃) ₂ Gel ₄ and (C ₄ H ₉ NH ₃) ₂ SnI ₄ . Nanoscale, 2020, 12, 22551-22563.	2.8	5
790	Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5068-5079.	15.6	121
791	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	11.7	137
792	Morphology Evolution of a Highâ€Efficiency PSC by Modulating the Vapor Process. Small, 2020, 16, e2003582.	5.2	15
793	Defect and interface engineering of highly efficient La2NiMnO6 planar perovskite solar cell: A theoretical study. Optical Materials, 2020, 108, 110453.	1.7	13
794	Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy and Environmental Science, 2020, 13, 4057-4086.	15.6	241

			_
#	ARTICLE	IF	CITATIONS
795	Boosting optoelectronic performance of MAPbI3 perovskite solar cells via ethylammonium chloride additive engineering. Science China Materials, 2020, 63, 2477-2486.	3.5	25
796	Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACl) additive. Journal of Materials Chemistry A, 2020, 8, 17756-17764.	5.2	38
797	Highâ€Efficiency Nonfullerene Organic Solar Cells Enabled by Atomic Layer Deposited Zirconiumâ€Doped Zinc Oxide. Solar Rrl, 2020, 4, 2000241.	3.1	18
798	Unexpected bowing band evolution in an all-inorganic CsSn _{1â^'x} Pb _x Br ₃ perovskite. RSC Advances, 2020, 10, 26407-26413.	1.7	4
799	Resistive Switching in Nonperovskite-Phase CsPbI ₃ Film-Based Memory Devices. ACS Applied Materials & Interfaces, 2020, 12, 9409-9420.	4.0	27
800	Interdiffusion Stomatal Movement in Efficient Multiple-Cation-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 35105-35112.	4.0	8
801	Diethylammonium lodide Assisted Grain Growth with Subâ€Grain Cluster to Passivate Grain Boundary for CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Energy Technology, 2020, 8, 2000412.	1.8	11
802	Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq1 1 0.784314 rg	gBަOverli	ock 10 Tf 5
803	Low-voltage room-temperature electrochemical deposition of perovskite films for solar cell devices. Solar Energy, 2020, 212, 275-281.	2.9	6
804	Stabilizing γ sPbl ₃ Perovskite via Phenylethylammonium for Efficient Solar Cells with Open ircuit Voltage over 1.3ÂV. Small, 2020, 16, e2005246.	5.2	67
805	Optimal intermediate adducts regulate low-temperature CsPbI ₂ Br crystallization for efficient inverted all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 25336-25344.	5.2	27
806	Functionalized CNTs as Effective Additives to Improve the Efficiency of Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 11674-11680.	2.5	19
807	Potassium iodide reduces the stability of triple-cation perovskite solar cells. RSC Advances, 2020, 10, 40341-40350.	1.7	27
808	Applications of Selfâ€Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability. Advanced Energy Materials, 2020, 10, 2002989.	10.2	117
809	The Future of Perovskite Photovoltaics—Thermal Evaporation or Solution Processing?. Advanced Energy Materials, 2020, 10, 2003073.	10.2	135
810	Chlorobenzene-Mediated Control of Crystallization in Perovskite Films for High-Performance Solar Cells. ACS Applied Energy Materials, 2020, 3, 12291-12297.	2.5	12
811	Atomic Model for Alkali Metal Passivation of Point Defects at Perovskite Grain Boundaries. ACS Energy Letters, 2020, 5, 3813-3820.	8.8	47
812	Suppressing Defectsâ€Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Advanced Materials, 2020, 32, e2003965.	11.1	123

#	Article	IF	CITATIONS
813	Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building's skin: A comprehensive review. Journal of Cleaner Production, 2020, 276, 123343.	4.6	172
814	Multifunctional molecules of surfactant to support enhanced efficiency and stability for perovskite solar cells. Journal of Materials Science, 2020, 55, 14761-14772.	1.7	15
815	Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Applied Energy Materials, 2020, 3, 7231-7238.	2.5	19
816	Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific Defects. Solar Rrl, 2020, 4, 2000308.	3.1	31
817	Artemisinin (ART)-Induced "perovskite/perovskite―bilayer structured photovoltaics. Nano Energy, 2020, 78, 105133.	8.2	30
818	Photoinduced Dynamics of Charge Carriers in Metal Halide Perovskites from an Atomistic Perspective. Journal of Physical Chemistry Letters, 2020, 11, 7066-7082.	2.1	41
819	Effects of the methylammonium ion substitution by 5-ammoniumvaleric acid in lead trihalide perovskite solar cells: a combined experimental and theoretical investigation. New Journal of Chemistry, 2020, 44, 14642-14649.	1.4	4
820	Denatured M13 Bacteriophageâ€Templated Perovskite Solar Cells Exhibiting High Efficiency. Advanced Science, 2020, 7, 2000782.	5.6	31
821	Ink Engineering of Inkjet Printing Perovskite. ACS Applied Materials & Interfaces, 2020, 12, 39082-39091.	4.0	85
822	Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Convergence, 2020, 7, 25.	6.3	33
823	Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2742-2786.	8.8	307
824	A temperature gradient-induced directional growth of a perovskite film. Journal of Materials Chemistry A, 2020, 8, 17019-17024.	5.2	7
825	An Efficient and Stable Perovskite Solar Cell with Suppressed Defects by Employing Dithizone as a Lead Indicator. Angewandte Chemie, 2020, 132, 21593-21597.	1.6	1
826	An Efficient and Stable Perovskite Solar Cell with Suppressed Defects by Employing Dithizone as a Lead Indicator. Angewandte Chemie - International Edition, 2020, 59, 21409-21413.	7.2	33
827	Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells. Sustainable Materials and Technologies, 2020, 26, e00210.	1.7	18
828	Additive engineering of 4, 4′-Bis (N-carbazolyl)-1, 1′-biphenyl (CBP) molecules for defects passivation and moisture stability of hybrid perovskite layer. Solar Energy, 2020, 211, 1084-1091.	2.9	6
829	Improving the performances of CsPbBr3 solar cells fabricated in ambient condition. Journal of Materials Science: Materials in Electronics, 2020, 31, 21154-21167.	1.1	18
830	Alternating Vinylarene–Carbon Monoxide Copolymers: Simple and Efficient Nonconjugated Luminescent Macromolecules. Macromolecules, 2020, 53, 9337-9344.	2.2	30

#	Article	IF	CITATIONS
831	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	4.6	63
832	An Efficient Trap Passivator for Perovskite Solar Cells: Poly(propylene glycol) bis(2-aminopropyl) Tj ETQq1 1 0.784	4314 rgBT 14.4gBT	/Qyerlock 10
833	The Application of Graphene Derivatives in Perovskite Solar Cells. Small Methods, 2020, 4, 2000507.	4.6	35
834	N-Substituted Phenothiazines as Environmentally Friendly Hole-Transporting Materials for Low-Cost and Highly Stable Halide Perovskite Solar Cells. ACS Omega, 2020, 5, 23334-23342.	1.6	9
835	Multifunctional Polymerâ€Regulated SnO ₂ Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials, 2020, 32, e2003990.	11.1	208
836	Self-doping synthesis of trivalent Ni ₂ O ₃ as a hole transport layer for high fill factor and efficient inverted perovskite solar cells. Dalton Transactions, 2020, 49, 14243-14250.	1.6	20
837	A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy and Environmental Science, 2020, 13, 4334-4343.	15.6	147
838	Toward Seeâ€Through Optoelectronics: Transparent Lightâ€Emitting Diodes and Solar Cells. Advanced Optical Materials, 2020, 8, 2001122.	3.6	35
839	Heteroleptic Tin-Antimony Sulfoiodide for Stable and Lead-free Solar Cells. Matter, 2020, 3, 1701-1713.	5.0	29
840	Interface and grain boundary passivation for efficient and stable perovskite solar cells: the effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanoscale Horizons, 2020, 5, 1574-1585.	4.1	30
841	Grain Boundary Defect Passivation of Triple Cation Mixed Halide Perovskite with Hydrazine-Based Aromatic lodide for Efficiency Improvement. ACS Applied Materials & Interfaces, 2020, 12, 41312-41322.	4.0	45
842	Antisolvents in Perovskite Solar Cells: Importance, Issues, and Alternatives. Advanced Materials Interfaces, 2020, 7, 2000950.	1.9	94
843	Examining the Interfacial Defect Passivation with Chlorinated Organic Salt for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000358.	3.1	19
844	Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO ₂ and SnO ₂ . Journal of Materials Chemistry A, 2020, 8, 19768-19787.	5.2	60
845	Interface passivation strategy improves the efficiency and stability of organic–inorganic hybrid metal halide perovskite solar cells. Journal of Materials Research, 2020, 35, 2166-2189.	1.2	4
846	Defect Tolerance and Intolerance in Metalâ€Halide Perovskites. Advanced Energy Materials, 2020, 10, 2001959.	10.2	85
847	Dual Coordination of Ti and Pb Using Bilinkable Ligands Improves Perovskite Solar Cell Performance and Stability. Advanced Functional Materials, 2020, 30, 2005155.	7.8	33
848	Flexible Lead Bromide Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9817-9823.	2.5	17

#	Article	IF	CITATIONS
849	Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews, 2020, 49, 8235-8286.	18.7	371
850	Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45045-45055.	4.0	24
851	Solution-Processed Quasi-Two-Dimensional/Nanoscrystals Perovskite Composite Film Enhances the Efficiency and Stability of Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 39720-39729.	4.0	11
852	Additive Modulated Perovskite Microstructures for High Performance Photodetectors. Micromachines, 2020, 11, 1090.	1.4	6
853	Performance Promotion through Dual-Interface Engineering of CuSCN Layers in Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 27977-27984.	1.5	12
854	Anisotropic Performance of High-Quality MAPbBr ₃ Single-Crystal Wafers. ACS Applied Materials & Interfaces, 2020, 12, 51616-51627.	4.0	20
855	A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films. Materials, 2020, 13, 4851.	1.3	38
856	Deep insights into interface engineering by buffer layer for efficient perovskite solar cells: a first-principles study. Science China Materials, 2020, 63, 1588-1596.	3.5	10
857	SiO ₂ nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells*. Chinese Physics B, 2020, 29, 078401.	0.7	6
858	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	11.1	69
859	Improved Crystallization and Stability of Mixed-Cation Tin Iodide for Lead-Free Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5415-5426.	2.5	18
860	Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells. Science China Chemistry, 2020, 63, 987-996.	4.2	42
861	Stabilization of Highly Efficient and Stable Phaseâ€Pure FAPbI ₃ Perovskite Solar Cells by Molecularly Tailored 2Dâ€Overlayers. Angewandte Chemie - International Edition, 2020, 59, 15688-15694.	7.2	201
862	Metal Oxide Compact Electron Transport Layer Modification for Efficient and Stable Perovskite Solar Cells. Materials, 2020, 13, 2207.	1.3	42
863	Balance between Energy Transfer and Exciton Separation in Ternary Organic Solar Cells with Two Conjugated Polymer Donors. ACS Applied Energy Materials, 2020, 3, 5792-5803.	2.5	27
864	Enhanced thermal stability of inverted perovskite solar cells by interface modification and additive strategy. RSC Advances, 2020, 10, 18400-18406.	1.7	15
865	Ionic liquid doped organic hole transporting material for efficient and stable perovskite solar cells. Physica B: Condensed Matter, 2020, 586, 412124.	1.3	18
866	PEG Modified CsPbIBr ₂ Perovskite Film for Efficient and Stable Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000537.	1.9	60

#	Article	IF	CITATIONS
867	Stabilization of Highly Efficient and Stable Phaseâ€Pure FAPbI ₃ Perovskite Solar Cells by Molecularly Tailored 2Dâ€Overlayers. Angewandte Chemie, 2020, 132, 15818-15824.	1.6	17
868	Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy, 2020, 75, 104892.	8.2	99
869	Stretchable Perovskite Solar Cells with Recoverable Performance. Angewandte Chemie - International Edition, 2020, 59, 16602-16608.	7.2	122
870	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	10.1	22
871	High-Performance Perovskite Solar Cells by One-Step Self-Assembled Perovskite-Polymer Thin Films. ACS Applied Energy Materials, 2020, 3, 5902-5912.	2.5	23
872	Stretchable Perovskite Solar Cells with Recoverable Performance. Angewandte Chemie, 2020, 132, 16745.	1.6	8
873	Crucial Effect of Ti–H Species Generated in the Visible-Light-Driven Transformations: Slowed-Down Proton-Coupled Electron Transfer. Journal of Physical Chemistry Letters, 2020, 11, 3941-3946.	2.1	6
874	Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12201-12225.	5.2	149
875	Double Barriers for Moisture Degradation: Assembly of Hydrolysable Hydrophobic Molecules for Stable Perovskite Solar Cells with High Open ircuit Voltage. Advanced Functional Materials, 2020, 30, 2002639.	7.8	61
876	Identifying the functional groups effect on passivating perovskite solar cells. Science Bulletin, 2020, 65, 1726-1734.	4.3	52
877	Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 2020, 11, 3016.	5.8	173
878	Influence of precursor concentration on printable mesoscopic perovskite solar cells. Frontiers of Optoelectronics, 2020, 13, 256-264.	1.9	11
879	High-Power and Flexible Indoor Solar Cells via Controlled Growth of Perovskite Using a Greener Antisolvent. ACS Applied Energy Materials, 2020, 3, 6995-7003.	2.5	44
880	Design of wave-optical structured substrates for ultra-thin perovskite solar cells. Applied Materials Today, 2020, 20, 100720.	2.3	34
881	On the Origin of the Ideality Factor in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000502.	10.2	175
882	Postâ€Treatment of Mesoporous Scaffolds for Enhanced Photovoltage of Tripleâ€Mesoscopic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000185.	3.1	22
883	Photon recycling in halide perovskite solar cells for higher efficiencies. MRS Bulletin, 2020, 45, 439-448.	1.7	20
884	Post-treatment techniques for high-performance perovskite solar cells. MRS Bulletin, 2020, 45, 431-438.	1.7	11

#	Article	IF	CITATIONS
885	Boosting perovskite nanomorphology and charge transport properties <i>via</i> a functional D–̀-A organic layer at the absorber/hole transporter interface. Nanoscale, 2020, 12, 15137-15149.	2.8	21
886	Influence of polytetrafluoroethylene (PTFE) on photovoltaic performance and perovskite solar cell stability. Sustainable Energy and Fuels, 2020, 4, 4257-4263.	2.5	13
887	Stable Perovskite Solar Cells Enabled by Simultaneous Surface and Bulk Defects Passivation. Solar Rrl, 2020, 4, 2000224.	3.1	9
888	Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. Coordination Chemistry Reviews, 2020, 420, 213408.	9.5	51
889	Tin–Lead Alloying for Efficient and Stable All-Inorganic Perovskite Solar Cells. Chemistry of Materials, 2020, 32, 2782-2794.	3.2	58
890	High-stability fluorescent perovskites embedded in PbBrOH triggered by imidazole derivatives in water. Journal of Materials Chemistry C, 2020, 8, 5594-5599.	2.7	24
891	Boosting Efficiency and Stability of Planar Inverted (FAPbI 3) x (MAPbBr 3) 1â^' x Solar Cells via FAPbI 3 and MAPbBr 3 Crystal Powders. Solar Rrl, 2020, 4, 2000091.	3.1	19
892	Grain Growth of MAPbI ₃ via Diethylammonium Bromide Induced Grain Mergence. ACS Applied Materials & Interfaces, 2020, 12, 16707-16714.	4.0	10
893	Enhanced Efficiency and Stability of Inverted Planar Perovskite Solar Cells With Piperazine as an Efficient Dopant Into PCBM. IEEE Journal of Photovoltaics, 2020, 10, 811-817.	1.5	7
894	Perovskite Solution Aging: What Happened and How to Inhibit?. CheM, 2020, 6, 1369-1378.	5.8	112
895	Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO2 quantum dot electron transport layer. Materials Today Physics, 2020, 13, 100204.	2.9	35
896	Recent Advances in Improving Phase Stability of Perovskite Solar Cells. Small Methods, 2020, 4, 1900877.	4.6	74
897	A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 6349-6359.	5.2	28
898	A Polymerizationâ€Assisted Grain Growth Strategy for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1907769.	11.1	161
899	Room-Temperature-Processed ZrO ₂ Interlayer toward Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3328-3336.	2.5	7
900	One-pot synthesis of CsPbBr3/Cs4PbBr6 perovskite composite. Optik, 2020, 208, 164579.	1.4	17
901	Stabilized and Operational PbI ₂ Precursor Ink for Large-Scale Perovskite Solar Cells via Two-Step Blade-Coating. Journal of Physical Chemistry C, 2020, 124, 8129-8139.	1.5	23
902	Synthesis of a side-chain hole transporting polymer through Mitsunobu post-functionalization for efficient inverted perovskite solar cells. Polymer Chemistry, 2020, 11, 2883-2888.	1.9	5

#	Article	IF	CITATIONS
903	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2000082.	3.1	79
904	Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells. RSC Advances, 2020, 10, 12298-12303.	1.7	44
905	Efficient perovskite solar cells <i>via</i> surface passivation by a multifunctional small organic ionic compound. Journal of Materials Chemistry A, 2020, 8, 8313-8322.	5.2	68
906	Synthesis of Highly-Oriented Black CsPbl ₃ Microstructures for High-Performance Solar Cells. Chemistry of Materials, 2020, 32, 3235-3244.	3.2	23
907	Spontaneously Selfâ€Assembly of a 2D/3D Heterostructure Enhances the Efficiency and Stability in Printed Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000173.	10.2	126
908	Regulated Crystallization of Efficient and Stable Tin-Based Perovskite Solar Cells via a Self-Sealing Polymer. ACS Applied Materials & Interfaces, 2020, 12, 14049-14056.	4.0	95
909	Electronic structures, spectroscopic properties, and thermodynamic characterization of sodium- or potassium-incorporated CH3NH3PbI3 by first-principles calculation. Journal of Materials Science, 2020, 55, 9728-9738.	1.7	18
910	Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49, 1653-1687.	18.7	364
911	αâ€CsPbI ₃ Bilayers via One‣tep Deposition for Efficient and Stable Allâ€Inorganic Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002632.	11.1	70
913	Passivating Charged Defects with 1,6-Hexamethylenediamine To Realize Efficient and Stable Tin-Based Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 16289-16299.	1.5	29
914	Improved photoemission and stability of 2D organic-inorganic lead iodide perovskite films by polymer passivation. Nanotechnology, 2020, 31, 42LT01.	1.3	14
915	Tunable electronic properties of TiO2 nanocrystals by in situ dopamine functionalization for planar perovskite solar cells. Electrochimica Acta, 2020, 354, 136720.	2.6	12
916	Highâ€Performance and Reliable Leadâ€Free Layeredâ€Perovskite Transistors. Advanced Materials, 2020, 32, e2002717.	11.1	86
917	Front-Contact Passivation of PIN MAPbI ₃ Solar Cells with Superior Device Performances. ACS Applied Energy Materials, 2020, 3, 6344-6351.	2.5	15
918	Efficient Bidentate Molecules Passivation Strategy for Highâ€Performance and Stable Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000268.	3.1	21
919	Perovskite nanogels: synthesis, properties, and applications. Journal of Materials Chemistry C, 2020, 8, 12355-12379.	2.7	7
920	Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells. IScience, 2020, 23, 101359.	1.9	105
921	High-efficiency and UV-stable flexible perovskite solar cells enabled by an alkaloid-doped C ₆₀ electron transport layer. Journal of Materials Chemistry C, 2020, 8, 10401-10407.	2.7	9

#	Article	IF	CITATIONS
922	Organic Nâ€Type Molecule: Managing the Electronic States of Bulk Perovskite for Highâ€Performance Photovoltaics. Advanced Functional Materials, 2020, 30, 2001788.	7.8	49
923	Inverted devices are catching up. Nature Energy, 2020, 5, 123-124.	19.8	14
924	From Distortion to Disconnection: Linear Alkyl Diammonium Cations Tune Structure and Photoluminescence of Lead Bromide Perovskites. Advanced Optical Materials, 2020, 8, 1902051.	3.6	30
925	Defect Control Strategy by Bifunctional Thioacetamide at Low Temperature for Highly Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12883-12891.	4.0	24
926	Over 1Âμm electron-hole diffusion lengths in CsPbI2Br for high efficient solar cells. Journal of Power Sources, 2020, 454, 227913.	4.0	31
927	Modifying Mesoporous TiO2 by Ammonium Sulfonate Boosts Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12696-12705.	4.0	32
928	Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science, 2020, 13, 1154-1186.	15.6	420
929	Efficient Perovskite Solar Cells by Reducing Interfaceâ€Mediated Recombination: a Bulky Amine Approach. Advanced Energy Materials, 2020, 10, 2000197.	10.2	198
930	Impact of peripheral groups on novel asymmetric phthalocyanine-based hole-transporting materials for perovskite solar cells. Dyes and Pigments, 2020, 177, 108301.	2.0	8
931	Polymer interface engineering enabling high-performance perovskite solar cells with improved fill factors of over 82%. Journal of Materials Chemistry C, 2020, 8, 5467-5475.	2.7	25
932	Thermal Stability and Performance Enhancement of Perovskite Solar Cells Through Oxalic Acid-Induced Perovskite Formation. ACS Applied Energy Materials, 2020, 3, 2432-2439.	2.5	55
933	Highâ€Performance CsPbl <i>_x</i> Br _{3â€} <i>_x</i> Allâ€Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation. Advanced Functional Materials, 2020, 30, 2000457.	7.8	118
934	From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials, 2020, 10, 1904054.	10.2	256
935	Heterogeneous Supersaturation in Mixed Perovskites. Advanced Science, 2020, 7, 1903166.	5.6	13
936	A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy, 2020, 198, 665-688.	2.9	321
937	Interfacial and structural modifications in perovskite solar cells. Nanoscale, 2020, 12, 5719-5745.	2.8	39
938	Pb dimerization greatly accelerates charge losses in MAPbI3: Time-domain ab initio analysis. Journal of Chemical Physics, 2020, 152, 064707.	1.2	12
939	Molecularly engineered hole-transport material for low-cost perovskite solar cells. Chemical Science, 2020, 11, 2429-2439.	3.7	29

#	Article	IF	CITATIONS
940	How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?. Materials Science and Engineering Reports, 2020, 140, 100545.	14.8	67
941	Microstructural and Nanostructural Evolution of Light Harvester Perovskite Thin Film under the Influence of Ultrasonic Vibrations. ACS Omega, 2020, 5, 808-821.	1.6	5
942	Acetic Acid Assisted Crystallization Strategy for High Efficiency and Longâ€Term Stable Perovskite Solar Cell. Advanced Science, 2020, 7, 1903368.	5.6	85
943	Effective Management of Nucleation and Crystallization Processes in Perovskite Formation via Facile Control of Antisolvent Temperature. ACS Applied Energy Materials, 2020, 3, 1506-1514.	2.5	34
944	Triple cation perovskite doped with the small molecule F4TCNQ for highly efficient stable photodetectors. Journal of Materials Chemistry C, 2020, 8, 2880-2887.	2.7	24
945	Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy and Environmental Science, 2020, 13, 685-743.	15.6	340
946	In Situ Observation of Vapor-Assisted 2D–3D Heterostructure Formation for Stable and Efficient Perovskite Solar Cells. Nano Letters, 2020, 20, 1296-1304.	4.5	65
947	Interface Engineering of Airâ€Stable nâ€Doping Fullereneâ€Modified TiO ₂ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901964.	1.9	32
948	Efficient CsPbBr ₃ Inorganic Perovskite Light-Emitting Diodes via Lewis Acid–Base Reaction with Organic Small Molecule mCP. ACS Applied Electronic Materials, 2020, 2, 597-603.	2.0	5
949	Dual-Protection Strategy for High-Efficiency and Stable CsPbl ₂ Br Inorganic Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 676-684.	8.8	119
950	Roomâ€Temperature Partial Conversion of αâ€FAPbI ₃ Perovskite Phase via PbI ₂ Solvation Enables Highâ€Performance Solar Cells. Advanced Functional Materials, 2020, 30, 1907442.	7.8	41
951	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	19.8	894
952	Superior Textured Film and Process Tolerance Enabled by Intermediateâ€State Engineering for Highâ€Efficiency Perovskite Solar Cells. Advanced Science, 2020, 7, 1903009.	5.6	22
953	The Air Effect in the Burnâ€in Thermal Degradation of Nonfullerene Organic Solar Cells. Energy Technology, 2020, 8, 1901401.	1.8	20
954	Boosting Photovoltaic Performance and Stability of Super-Halogen-Substituted Perovskite Solar Cells by Simultaneous Methylammonium Immobilization and Vacancy Compensation. ACS Applied Materials & Interfaces, 2020, 12, 8249-8259.	4.0	19
955	Efficient Nanorod Array Perovskite Solar Cells: A Suitable Structure for High Strontium Substitution in Nature. ACS Applied Materials & amp; Interfaces, 2020, 12, 10515-10526.	4.0	9
956	Grain Boundary and Interface Passivation with Core–Shell Au@CdS Nanospheres for Highâ€Efficiency Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908408.	7.8	78
957	High Performance Planar Structure Perovskite Solar Cells Using a Solvent Dripping Treatment on Hole Transporting Layer. Coatings, 2020, 10, 127.	1.2	9

#	Article	IF	CITATIONS
958	Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy, 2020, 74, 104842.	8.2	63
959	Polyaromatic Nanotweezers on Semiconducting Carbon Nanotubes for the Growth and Interfacing of Lead Halide Perovskite Crystal Grains in Solar Cells. Chemistry of Materials, 2020, 32, 5125-5133.	3.2	45
960	Phenylhydrazinium Iodide for Surface Passivation and Defects Suppression in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000778.	7.8	103
961	Low-Temperature Aging Provides 22% Efficient Bromine-Free and Passivation Layer-Free Planar Perovskite Solar Cells. Nano-Micro Letters, 2020, 12, 84.	14.4	33
962	Electronic Coordination Effect of the Regulator on Perovskite Crystal Growth and Its High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19439-19446.	4.0	14
963	Interface energy level alignment and improved film quality with a hydrophilic polymer interlayer to improve the device efficiency and stability of all-inorganic halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 6743-6748.	2.7	12
964	Recent Progress on Interface Engineering for Highâ€Performance, Stable Perovskites Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000118.	1.9	34
965	Nitrogen-doped CQDs to enhance the power conversion efficiency of perovskite solar cells via surface passivation. Journal of Alloys and Compounds, 2020, 832, 154897.	2.8	19
966	Highly luminescent and stable CH3NH3PbBr3 quantum dots with 91.7% photoluminescence quantum yield: Role of guanidinium bromide dopants. Journal of Alloys and Compounds, 2020, 832, 154990.	2.8	13
967	17% efficient perovskite solar mini-module <i>via</i> hexamethylphosphoramide (HMPA)-adduct-based large-area D-bar coating. Journal of Materials Chemistry A, 2020, 8, 9345-9354.	5.2	44
968	CoCl2 as film morphology controller for efficient planar CsPbIBr2 perovskite solar cells. Electrochimica Acta, 2020, 349, 136162.	2.6	15
969	Efficient planar heterojunction perovskite solar cells with enhanced FTO/SnO2 interface electronic coupling. Journal of Alloys and Compounds, 2020, 831, 154717.	2.8	28
970	Comparison of effects of ZnO and TiO2 compact layer on performance of perovskite solar cells. Journal of Solid State Chemistry, 2020, 287, 121387.	1.4	16
971	Amphoteric imidazole doping induced large-grained perovskite with reduced defect density for high performance inverted solar cells. Solar Energy Materials and Solar Cells, 2020, 212, 110553.	3.0	25
972	UV-Stable and Highly Efficient Perovskite Solar Cells by Employing Wide Band gap NaTaO ₃ as an Electron-Transporting Layer. ACS Applied Materials & Interfaces, 2020, 12, 21772-21778.	4.0	10
973	Ligandâ€Modulated Excess PbI ₂ Nanosheets for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000865.	11.1	136
974	Biopolymer passivation for high-performance perovskite solar cells by blade coating. Journal of Energy Chemistry, 2021, 54, 45-52.	7.1	29
975	Multifunctional dopamine-assisted preparation of efficient and stable perovskite solar cells. Journal of Energy Chemistry, 2021, 54, 291-300.	7.1	42

#	Article	IF	CITATIONS
976	Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells. Advanced Materials, 2021, 33, e1905245.	11.1	30
977	Improved interfacial property by small molecule ethanediamine for high performance inverted planar perovskite solar cells. Journal of Energy Chemistry, 2021, 54, 467-474.	7.1	12
978	All Electrospray Printing of Carbonâ€Based Costâ€Effective Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2006803.	7.8	26
979	Efficient and stable perovskite solar cells via shortwave infrared polymer passivation. Solar Energy Materials and Solar Cells, 2021, 220, 110862.	3.0	18
980	A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 450-457.	3.2	11
981	Perovskite Passivation Strategies for Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, .	3.1	23
982	Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Science Bulletin, 2021, 66, 527-535.	4.3	54
983	A solution-processed nanoscale COF-like material towards optoelectronic applications. Science China Chemistry, 2021, 64, 82-91.	4.2	38
984	Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%. Journal of Power Sources, 2021, 481, 229160.	4.0	43
985	Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021, 6, 38-45.	19.8	342
986	Unravelling the theoretical window to fabricate high performance inorganic perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 219-229.	2.5	19
987	Suppressing Ion Migration across Perovskite Grain Boundaries by Polymer Additives. Advanced Functional Materials, 2021, 31, 2006802.	7.8	66
988	Excellent quinoline additive in perovskite toward to efficient and stable perovskite solar cells. Journal of Power Sources, 2021, 481, 228857.	4.0	43
989	Effects of guanidinium cations on structural, optoelectronic and photovoltaic properties of perovskites. Journal of Energy Chemistry, 2021, 58, 48-54.	7.1	21
990	Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar cells with cross-linked grain encapsulation. Journal of Energy Chemistry, 2021, 56, 455-462.	7.1	31
991	Hollow TiO2 spheres as mesoporous layer for better efficiency and stability of perovskite solar cells. Journal of Alloys and Compounds, 2021, 866, 158079.	2.8	9
992	Uncovering the unusual effect of halogenation on crystal packing in an azzaacee-based electron transporting material. Materials Chemistry and Physics, 2021, 259, 124060.	2.0	2
993	Grain size control for high-performance formamidinium-based perovskite solar cells <i>via</i> suppressing heterogenous nucleation. Journal of Materials Chemistry C, 2021, 9, 208-213.	2.7	26

#	Article	IF	CITATIONS
994	The dual-defect passivation role of lithium bromide doping in reducing the nonradiative loss in CsPbX ₃ (X = Br and I) quantum dots. Inorganic Chemistry Frontiers, 2021, 8, 658-668.	3.0	15
995	Light Stability Enhancement of Perovskite Solar Cells Using <i>1H</i> , <i>1H</i> , <i>2H</i> , <i>2H</i> â€Perfluorooctyltriethoxysilane Passivation. Solar Rrl, 2021, 5, 2000650.	3.1	7
996	Polymer-modified CsPbI2Br films for all-inorganic planar perovskite solar cells with improved performance. Surfaces and Interfaces, 2021, 22, 100809.	1.5	13
997	Facile and low-cost synthesis of a novel dopant-free hole transporting material that rivals Spiro-OMeTAD for high efficiency perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 199-211.	2.5	29
998	Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers. Advanced Materials, 2021, 33, e2005570.	11.1	171
999	Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110870.	3.0	12
1000	Dual Defectâ€Passivation Using Phthalocyanine for Enhanced Efficiency and Stability of Perovskite Solar Cells. Small, 2021, 17, e2005216.	5.2	40
1001	Conjugated polyelectrolyte doped perovskite films with enhanced photovoltaic performance and stability. Chemical Engineering Journal, 2021, 417, 128068.	6.6	8
1002	Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency. Joule, 2021, 5, 467-480.	11.7	245
1003	Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. Journal of Materials Chemistry A, 2021, 9, 1574-1582.	5.2	126
1004	Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. Nano Energy, 2021, 82, 105701.	8.2	68
1005	Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2919-2927.	5.2	74
1006	Crown Etherâ€Assisted Growth and Scaling Up of FACsPbI ₃ Films for Efficient and Stable Perovskite Solar Modules. Advanced Functional Materials, 2021, 31, 2008760.	7.8	50
1007	Progress in efficiency and stability of hybrid perovskite photovoltaic devices in high reactive environments. , 2021, , 239-257.		3
1008	A synchronous defect passivation strategy for constructing high-performance and stable planar perovskite solar cells. Chemical Engineering Journal, 2021, 413, 127387.	6.6	40
1009	Quasi three-dimensional lead iodide perovskite using pyridine-2,5-diamine and 4,4′-bipyridine with tunable electronic structure, carrier transport, optical absorption properties. Journal of Alloys and Compounds, 2021, 856, 157391.	2.8	1
1010	Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. Chemical Engineering Journal, 2021, 420, 127599.	6.6	37
1011	Highly efficient and stable perovskite solar cells with strong hydrophobic barrier via introducing poly(vinylidene fluoride) additive. Journal of Energy Chemistry, 2021, 57, 593-600.	7.1	30

ARTICLE IF CITATIONS Reducing Open ircuit Voltage Deficit in Perovskite Solar Cells via Surface Passivation with 1012 15 4.6 Phenylhydroxylammonium Halide Salts. Small Methods, 2021, 5, e2000441. SMART Perovskite Growth: Enabling a Larger Range of Process Conditions. ACS Energy Letters, 2021, 6, 8.8 650-658. Research progress of metal halide perovskite nanometer optoelectronic materials. Wuli Xuebao/Acta 1014 0.2 2 Physica Sinica, 2021, 70, 087303. Organic Inorganic Perovskites: A Low-Cost-Efficient Photovoltaic Material., 0,,. Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society 1016 18.7 96 Reviews, 2021, 50, 11870-11965. High-performance photovoltaic application of the 2D all-inorganic Ruddlesden–Popper perovskite heterostructure Cs₂Pbl₂Cl₂/MAPbl₃. Physical 1.3 Chemistry Chemical Physics, 2021, 23, 23703-23710. Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chemical Society 1018 18.7 90 Reviews, 2021, 50, 2696-2736. Scalable perovskite coating <i>via</i> anti-solvent-free Lewis acidâ€"base adduct engineering for 1019 5.2 58 efficient perovskite solar modules. Journal of Materials Chemistry A, 2021, 9, 3018-3028. Passivation of triple cation perovskites using guanidinium iodide in inverted solar cells for improved open-circuit voltage and stability. Sustainable Energy and Fuels, 2021, 5, 2486-2493. 1020 2.5 5 Recent progress on defect passivation in perovskites for solar cell application. Materials Science for 1.0 Energy Technologies, 2021, 4, 282-289. Efficient all-inorganic perovskite light-emitting diodes enabled by manipulating the crystal 1022 5.2 24 orientation. Journal of Materials Chemistry A, 2021, 9, 11064-11072. Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for 15.6 29 high-performánce perovskite solar cells. Energy and Environmental Science, 2021, 14, 3532-3541. Recent progress in tailoring the properties of inorganic CsPbX₃ perovskites with functional organic compounds: a route to enhanced efficiency and operational stability in 1024 2.7 6 CsPbX₃-based photovoltaics. Journal of Materials Chemistry C, 2021, 9, 9377-9399. Achieving environment-friendly production of CsPbBr₃ films for efficient solar cells 4.6 28 <i>via</i> precursor engineering. Green Chemistry, 2021, 23, 2104-2112. The regulatory effect of triphenylphosphine oxide on perovskites for morphological and radiative 1026 2.7 2 improvement. Journal of Materials Chemistry C, 2021, 9, 6399-6403. Dye-Sensitized and Perovskite Solar Cells: Theory and Applications., 2021, , 558-594. 1027 Triethyl phosphate in an antisolvent: a novel approach to fabricate high-efficiency and stable 1028 3.24 perovskite solar cells under ambient air conditions. Materials Chemistry Frontiers, 0, , . Passivation and process engineering approaches of halide perovskite films for high efficiency and 1029 170 stability perovskite solar cells. Energy and Environmental Science, 2021, 14, 2906-2953.

# 1030	ARTICLE Rapid hybrid perovskite film crystallization from solution. Chemical Society Reviews, 2021, 50, 7108-7131.	IF 18.7	CITATIONS
1031	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	15.6	76
1032	Efficient and stable perovskite solar cells based on a quasi-point-contact and rear-reflection structure with 22.5% efficiency. Journal of Materials Chemistry A, 2021, 9, 14877-14887.	5.2	8
1033	Eco-friendly antisolvent enabled inverted MAPbI ₃ perovskite solar cells with fill factors over 84%. Green Chemistry, 2021, 23, 3633-3641.	4.6	22
1034	Molecular Devices. , 2021, , 206-240.		2
1035	Cesium Doping for Performance Improvement of Lead(II)-acetate-Based Perovskite Solar Cells. Materials, 2021, 14, 363.	1.3	5
1036	A polymeric bis(di- <i>p</i> -anisylamino)fluorene hole-transport material for stable n-i-p perovskite solar cells. New Journal of Chemistry, 2021, 45, 15017-15021.	1.4	3
1037	Star-polymer multidentate-cross-linking strategy for superior operational stability of inverted perovskite solar cells at high efficiency. Energy and Environmental Science, 2021, 14, 5406-5415.	15.6	88
1038	Selective Defect Passivation and Topographical Control of 4â€Dimethylaminopyridine at Grain Boundary for Efficient and Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003382.	10.2	82
1039	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	2.7	2
1040	Highâ€Quality Ruddlesden–Popper Perovskite Film Formation for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2002582.	11.1	182
1041	Boosting the performance of MA-free inverted perovskite solar cells <i>via</i> multifunctional ion liquid. Journal of Materials Chemistry A, 2021, 9, 12746-12754.	5.2	44
1042	Underestimated effect of the polymer encapsulation process on the photoluminescence of perovskite revealed by in situ single-particle detection. Optics Express, 2021, 29, 1851.	1.7	7
1043	Manipulation of Perovskite Crystallization Kinetics via Lewis Base Additives. Advanced Functional Materials, 2021, 31, 2009425.	7.8	61
1044	Highly stable and efficient cathode-buffer-layer-free inverted perovskite solar cells. Nanoscale, 2021, 13, 5652-5659.	2.8	7
1045	Perovskite solar cells. , 2021, , 249-281.		5
1046	Manipulating the Crystallization Kinetics by Additive Engineering toward Highâ€Efficient Photovoltaic Performance. Advanced Functional Materials, 2021, 31, 2009103.	7.8	20
1047	Highly stable and efficient perovskite solar cells passivated by a functional amorphous layer. Journal of Materials Chemistry A, 2021, 9, 21708-21715.	5.2	13

#	Article	IF	CITATIONS
1048	Tuning the Interfacial Dipole Moment of Spacer Cations for Charge Extraction in Efficient and Ultrastable Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 1256-1268.	1.5	56
1049	Zinc-methacrylate passivation enables an efficient and stable perovskite nanocrystal-polymer composite for LED applications. Journal of Materials Chemistry C, 2021, 9, 2873-2881.	2.7	19
1050	Efficient defect passivation with niacin for high-performance and stable perovskite solar cells. Journal of Materials Chemistry C, O, , .	2.7	10
1051	Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. Journal of Materials Chemistry A, 2021, 9, 16281-16338.	5.2	28
1052	Emergent materials and concepts for solar cell applications. , 2021, , 37-70.		1
1053	Merocyanine with Hole-Transporting Ability and Efficient Defect Passivation Effect for Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 869-876.	8.8	64
1054	Tautomeric Molecule Acts as a "Sunscreen―for Metal Halide Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 8755-8759.	1.6	7
1055	Tautomeric Molecule Acts as a "Sunscreen―for Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8673-8677.	7.2	67
1056	Ambient sunlight-driven photothermal methanol dehydrogenation for syngas production with 32.9 % solar-to-hydrogen conversion efficiency. IScience, 2021, 24, 102056.	1.9	12
1057	Mechanically robust and self-healable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100320.	2.8	29
1058	Stability and optical enhancement of perovskite materials by nanocomposite PMMA sandwich structure in an open air environment. Journal of Materials Science: Materials in Electronics, 2021, 32, 7106-7122.	1.1	4
1059	Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 2021, 371, 636-640.	6.0	184
1060	Enhanced Efficiency and Mechanical Robustness of Flexible Perovskite Solar Cells by Using HPbI ₃ Additive. Solar Rrl, 2021, 5, 2000821.	3.1	29
1061	Advances in Metal Halide Perovskite Film Preparation: The Role of Antiâ€Solvent Treatment. Small Methods, 2021, 5, e2100046.	4.6	39
1062	Twoâ€Dimensional Metal–Organic Frameworksâ€Based Grain Termination Strategy Enables Highâ€Efficiency Perovskite Photovoltaics with Enhanced Moisture and Thermal Stability. Advanced Functional Materials, 2021, 31, 2010368.	7.8	51
1063	Potassium Thiocyanateâ€Assisted Enhancement of Slotâ€Dieâ€Coated Perovskite Films for Highâ€Performance Solar Cells. Small Science, 2021, 1, 2000044.	5.8	26
1064	Stable CsPbI ₃ -Mesoporous Alumina Composite Thin Film at Ambient Condition: Preparation, Characterization, and Study of Ultrafast Charge-Transfer Dynamics. Journal of Physical Chemistry C, 2021, 125, 3285-3294.	1.5	7
1065	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	7.2	107

ATION

#	Article	IF	CITATIONS
1066	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	1.6	18
1067	Factors influencing the nucleation and crystal growth of solution-processed organic lead halide perovskites: a review. Journal Physics D: Applied Physics, 2021, 54, 163001.	1.3	35
1068	Manipulating SnO ₂ Growth for Efficient Electron Transport in Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100128.	1.9	33
1069	Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.	3.2	28
1070	Effect of wettability of substrate on metal halide perovskite growth. Applied Surface Science, 2021, 541, 148559.	3.1	18
1071	Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals, 2021, 11, 295.	1.0	23
1072	Trifluoromethylphenylacetic Acid as In Situ Accelerant of Ostwald Ripening for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100040.	3.1	11
1073	Precise Nucleation Regulation and Defect Passivation for Highly Efficient and Stable Carbon-Based CsPbl ₂ Br Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3508-3517.	2.5	12
1074	Synergistic Effect of Lewis Base Polymers and Graphene in Enhancing the Efficiency of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 3928-3936.	2.5	25
1075	Role and Contribution of Polymeric Additives in Perovskite Solar Cells: Crystal Growth Templates and Grain Boundary Passivators. Solar Rrl, 2021, 5, 2000783.	3.1	35
1076	Localized Electron Density Engineering for Stabilized B-γ CsSnI ₃ -Based Perovskite Solar Cells with Efficiencies >10%. ACS Energy Letters, 0, , 1480-1489.	8.8	125
1077	Duallyâ€Passivated Perovskite Solar Cells with Reduced Voltage Loss and Increased Super Oxide Resistance. Angewandte Chemie, 2021, 133, 8384-8393.	1.6	66
1078	Bulk Passivation and Interfacial Passivation for Perovskite Solar Cells: Which One is More Effective?. Advanced Materials Interfaces, 2021, 8, 2002078.	1.9	34
1079	Compositional and Interfacial Engineering Yield High-Performance and Stable p-i-n Perovskite Solar Cells and Mini-Modules. ACS Applied Materials & Interfaces, 2021, 13, 13022-13033.	4.0	69
1080	Colorful Efficient Moiréâ€Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008091.	11.1	37
1082	Moisture‶riggered Selfâ€Healing Flexible Perovskite Photodetectors with Excellent Mechanical Stability. Advanced Materials, 2021, 33, e2100625.	11.1	63
1083	Duallyâ€Passivated Perovskite Solar Cells with Reduced Voltage Loss and Increased Super Oxide Resistance. Angewandte Chemie - International Edition, 2021, 60, 8303-8312.	7.2	90
1084	High stability of photovoltaic cells with phenethylammonium iodide-passivated perovskite layers and printable copper phthalocyanine-modified carbon electrodes. Nanotechnology, 2021, 32, 225701.	1.3	4

#	Article	IF	CITATIONS
1085	Efficient strategies to improve the performance of 6,12-dihydroindeno[1,2-b]fluorine core based hole transport materials. Solar Energy, 2021, 217, 93-104.	2.9	5
1086	Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering. Journal of the American Chemical Society, 2021, 143, 3911-3917.	6.6	114
1087	Bi-Directional functionalization of urea-complexed SnO2 for efficient planar perovskite solar cells. Applied Surface Science, 2021, 546, 148711.	3.1	21
1088	The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nano Energy, 2021, 82, 105731.	8.2	79
1089	Environment-friendly antisolvent tert-amyl alcohol modified hybrid perovskite photodetector with high responsivity. Photonics Research, 2021, 9, 781.	3.4	13
1090	Surface Modification of PEDOT:PSS for Enhanced Performance of Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 4408-4415.	2.5	21
1091	METHODS TO DETERMINE CRYSTAL LATTICE PARAMETERS OF OPAL-LIKE STRUCTURES. Journal of Structural Chemistry, 2021, 62, 641-650.	0.3	1
1092	A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbl ₃ . Science Advances, 2021, 7, .	4.7	49
1093	Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy, 2021, 82, 105712.	8.2	64
1094	Highly flexible and stable perovskite/microbead hybrid photodetectors with improved interfacial light trapping. Applied Surface Science, 2021, 544, 148850.	3.1	11
1095	Tailoring the Interface in FAPbI ₃ Planar Perovskite Solar Cells by Imidazoleâ€Grapheneâ€Quantumâ€Dots. Advanced Functional Materials, 2021, 31, 2101438.	7.8	51
1096	Stability Assessment of p-i-n Perovskite Photovoltaic Mini-Modules Utilizing Different Top Metal Electrodes. Micromachines, 2021, 12, 423.	1.4	3
1097	Gradient 1D/3D Perovskite Bilayer using 4â€ <i>tert</i> â€Butylpyridinium Cation for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000791.	3.1	10
1098	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si63.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">(<mml:mi mathvariant="normal">BA</mml:mi><mml:mo) 0.784314="" 1="" etqq1="" rgbt<="" td="" tj=""><td>/ðverlock</td><td>10 Tf 50 2</td></mml:mo)></mml:mo </mml:mrow></mml:msub></mml:mrow>	/ðverlock	10 Tf 50 2
1099	mathvariant="normal">MAGe <mml:mrow><mml:mn>2</mml:mn></mml:mrow> Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 2021, 32, 282001.	1.3	nl:msub> <n 26</n
1100	Bottomâ€Up Quasiâ€Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving Highâ€Efficiency Solar Cells via Template â€Guided Crystallization. Advanced Materials, 2021, 33, e2100009.	11.1	44
1101	Preparation of Low Grain Boundary Perovskite Crystals with Excellent Performance: The Inhibition of Ammonium Iodide. ACS Omega, 2021, 6, 12858-12865.	1.6	5
1102	Dual–Functionalâ€Polymer Dopant–Passivant Boosted Electron Transport Layer for Highâ€Performance Inverted Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100236.	3.1	5

#	Article	IF	CITATIONS
1103	Metalâ€Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies. Advanced Energy Materials, 2021, 11, 2100784.	10.2	35
1104	A Review of Integrated Systems Based on Perovskite Solar Cells and Energy Storage Units: Fundamental, Progresses, Challenges, and Perspectives. Advanced Science, 2021, 8, 2100552.	5.6	19
1105	Synergistic Defect Passivation for Highly Efficient and Stable Perovskite Solar Cells Using Sodium Dodecyl Benzene Sulfonate. ACS Applied Energy Materials, 2021, 4, 4910-4918.	2.5	14
1106	Efficient (>20 %) and Stable Allâ€Inorganic Cesium Lead Triiodide Solar Cell Enabled by Thiocyanate Molten Salts. Angewandte Chemie - International Edition, 2021, 60, 13436-13443.	7.2	166
1107	Thermal stability enhancement of perovskite MAPbI3 film at high temperature (150 ŰC) by PMMA encapsulation. Journal of Materials Science: Materials in Electronics, 2021, 32, 14885-14900.	1.1	13
1108	Impact of A-Site Cations on Fluorescence Quenching in Organic–Inorganic Hybrid Perovskite Materials. Journal of Physical Chemistry C, 2021, 125, 11524-11531.	1.5	3
1109	Strain-relaxed tetragonal MAPbI3 results in efficient mesoporous solar cells. Nano Energy, 2021, 83, 105788.	8.2	29
1110	Efficient and photostable CsPbI ₂ Br solar cells realized by adding PMMA. Journal of Semiconductors, 2021, 42, 050501.	2.0	12
1111	Efficient (>20 %) and Stable Allâ€inorganic Cesium Lead Triiodide Solar Cell Enabled by Thiocyanate Molten Salts. Angewandte Chemie, 2021, 133, 13548-13555.	1.6	15
1112	Photonic crystals for perovskiteâ€based optoelectronic applications. Nano Select, 2022, 3, 39-50.	1.9	4
1113	Drop-coating produces efficient CsPbI ₂ Br solar cells. Journal of Semiconductors, 2021, 42, 050502.	2.0	13
1114	Improved stability and efficiency of perovskite via a simple solid diffusion method. Materials Today Physics, 2021, 18, 100374.	2.9	19
1115	Effects of Polysilane Addition to Chlorobenzene and High Temperature Annealing on CH3NH3PbI3 Perovskite Photovoltaic Devices. Coatings, 2021, 11, 665.	1.2	27
1116	Efficient and Stable Perovskite Solar Cells Using Bathocuproine Bilateral-Modified Perovskite Layers. ACS Applied Materials & Interfaces, 2021, 13, 24747-24755.	4.0	22
1117	Fluorinated Oligomer Wrapped Perovskite Crystals for Inverted MAPbI ₃ Solar Cells with 21% Efficiency and Enhanced Stability. ACS Applied Materials & Interfaces, 2021, 13, 26093-26101.	4.0	18
1118	Water Stable Haloplumbate Modulation for Efficient and Stable Hybrid Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101082.	10.2	21
1119	Lead–halide perovskites for next-generation self-powered photodetectors: a comprehensive review. Photonics Research, 2021, 9, 968.	3.4	52
1120	Effect of crystallization on the photovoltaic parameters and stability of perovskite solar cells. Polyhedron, 2021, 199, 115089.	1.0	4

#	Article	IF	CITATIONS
1121	Enhanced efficiency and stability of perovskite solar cell by adding polymer mixture in perovskite photoactive layer. Journal of Alloys and Compounds, 2021, 864, 158793.	2.8	33
1122	Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 4882-4901.	2.1	21
1123	The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chemical Engineering Journal, 2021, 411, 128461.	6.6	70
1124	Phenyl Ethylammonium Iodide introduction into inverted triple cation perovskite solar cells for improved VOC and stability. Organic Electronics, 2021, 93, 106121.	1.4	3
1125	Reducing Defects Density and Enhancing Hole Extraction for Efficient Perovskite Solar Cells Enabled by Ï€â€₽b 2+ Interactions. Angewandte Chemie, 2021, 133, 17496-17501.	1.6	6
1126	Air-stable and low threshold amplified spontaneous emission via CsBr aqueous solution processed all-inorganic CsPbBr3 perovskite films. Applied Physics Letters, 2021, 118, .	1.5	7
1127	Surface Reconstruction Engineering with Synergistic Effect of Mixedâ€Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102902.	7.8	57
1128	Physical Passivation of Grain Boundaries and Defects in Perovskite Solar Cells by an Isolating Thin Polymer. ACS Energy Letters, 2021, 6, 2626-2634.	8.8	81
1129	Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2005888.	11.1	108
1130	Perovskite Solar Cells with Front Surface Gradient. Advanced Energy Materials, 2021, 11, 2101080.	10.2	11
1131	Toward high-performance p-type, tin-based perovskite thin film transistors. Applied Physics Letters, 2021, 118, .	1.5	3
1132	Reducing Defects Density and Enhancing Hole Extraction for Efficient Perovskite Solar Cells Enabled by Ï€â€₽b ²⁺ Interactions. Angewandte Chemie - International Edition, 2021, 60, 17356-17361.	7.2	51
1133	Two-dimensional perovskites for photovoltaics. Materials Today Nano, 2021, 14, 100117.	2.3	27
1134	Reduced Defects and Enhanced Performance of (FAPbl ₃) _{0.97} (MAPbBr ₃) _{0.03} -Based Perovskite Solar Cells by Trimesic Acid Additives. ACS Omega, 2021, 6, 16151-16158.	1.6	7
1135	Octylammonium Sulfate Decoration Enhancing the Moisture Durability of Quasiâ€2D Perovskite Film for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100442.	1.9	9
1136	Molecular designing of triphenylamine-based hole-transporting materials for perovskite solar cells. Solar Energy, 2021, 221, 536-544.	2.9	19
1137	Multifunctional Crosslinkingâ€Enabled Strainâ€Regulating Crystallization for Stable, Efficient αâ€FAPbI ₃ â€Based Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008487.	11.1	106
1138	p-Type Polymers for Templated Crystallization of Perovskite Films and Interface Optimization for High Performance Solar Cells. Crystals, 2021, 11, 654.	1.0	0

#	Article	IF	CITATIONS
1139	Grain Boundary Perfection Enabled by Pyridinic Nitrogen Doped Graphdiyne in Hybrid Perovskite. Advanced Functional Materials, 2021, 31, 2104633.	7.8	27
1140	Tailored Key Parameters of Perovskite for High-Performance Photovoltaics. Accounts of Materials Research, 2021, 2, 447-457.	5.9	5
1141	Electron-Beam Irradiation Induced Regulation of Surface Defects in Lead Halide Perovskite Thin Films. Research, 2021, 2021, 9797058.	2.8	9
1142	Zinc ions doped cesium lead bromide perovskite nanocrystals with enhanced efficiency and stability for white light-emitting diodes. Journal of Alloys and Compounds, 2021, 866, 158969.	2.8	20
1143	PMMA passivated CsPbI2Br perovskite film for highly efficient and stable solar cells. Journal of Physics and Chemistry of Solids, 2021, 153, 110000.	1.9	23
1144	Perovskite Solar Cells with Polyaniline Hole Transport Layers Surpassing a 20% Power Conversion Efficiency. Chemistry of Materials, 2021, 33, 4679-4687.	3.2	34
1145	Green antisolvent additive engineering to improve the performance of perovskite solar cells. Journal of Energy Chemistry, 2022, 66, 1-8.	7.1	42
1146	Aerosol Assisted Solvent Treatment: A Universal Method for Performance and Stability Enhancements in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101420.	10.2	21
1147	Perovskite (PEA)2Pb(I1-xBrx)4 single crystal thin films for improving optoelectronic performances. Optical Materials, 2021, 117, 111074.	1.7	6
1148	Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chemical Reviews, 2021, 121, 12112-12180.	23.0	70
1149	Large-Area Periodic Organic–Inorganic Hybrid Perovskite Nanopyramid Arrays for High-Performance Photodetector and Image Sensor Applications. , 2021, 3, 1189-1196.		23
1150	Improving Thermal Stability of Perovskite Solar Cells by Suppressing Ion Migration Using Copolymer Grain Encapsulation. Chemistry of Materials, 2021, 33, 6120-6135.	3.2	22
1151	A Sodium Chloride Modification of SnO ₂ Electron Transport Layers to Enhance the Performance of Perovskite Solar Cells. ACS Omega, 2021, 6, 17880-17889.	1.6	29
1152	Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2100295.	3.1	58
1153	Conjugated Polyelectrolyte-Passivated Stable Perovskite Solar Cells for Efficiency Beyond 20%. Chemistry of Materials, 2021, 33, 5709-5717.	3.2	33
1154	Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Science Advances, 2021, 7, .	4.7	195
1155	Highâ€Performance Stable Perovskite Solar Cell via Defect Passivation With Constructing Tunable Graphitic Carbon Nitride. Solar Rrl, 2021, 5, 2100257.	3.1	9
1156	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	2.0	75

#	Article	IF	CITATIONS
1157	Defect Passivation Effect of Chemical Groups on Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34161-34170.	4.0	33
1158	Dopantâ€Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angewandte Chemie, 2021, 133, 20652-20660.	1.6	6
1159	Polymerâ€Based Antiâ€Solvent Engineering to Fabricate Stable and Efficient Tripleâ€Cation Perovskite Solar Cells. ChemistrySelect, 2021, 6, 7254-7261.	0.7	14
1160	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 20600-20605.	1.6	11
1161	Selective Passivation of Grain Boundaries via Incorporation of a Fluidic Small Molecule in Perovskite Solar Absorbers. ACS Applied Energy Materials, 2021, 4, 10059-10068.	2.5	3
1162	Fundamental Flaw in the Current Construction of the TiO ₂ Electron Transport Layer of Perovskite Solar Cells and Its Elimination. ACS Applied Materials & Interfaces, 2021, 13, 39371-39378.	4.0	11
1163	Perovskite Passivation with a Bifunctional Molecule 1,2â€Benzisothiazolinâ€3â€One for Efficient and Stable Planar Solar Cells. Solar Rrl, 2021, 5, 2100472.	3.1	5
1164	Application of Polymers as a Tool in Crystallization—A Review. Polymers, 2021, 13, 2695.	2.0	11
1165	Cost-Effective High-Performance Charge-Carrier-Transport-Layer-Free Perovskite Solar Cells Achieved by Suppressing Ion Migration. ACS Energy Letters, 2021, 6, 3044-3052.	8.8	65
1166	Two-Dimensional Materials for Perovskite Solar Cells with Enhanced Efficiency and Stability. , 2021, 3, 1402-1416.		21
1167	NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nature Reviews Chemistry, 2021, 5, 624-645.	13.8	73
1168	Double-site defect passivation of perovskite film via fullerene additive engineering toward highly efficient and stable bulk heterojunction solar cells. Nano Today, 2021, 39, 101164.	6.2	33
1169	Role of PMMA to make MAPbI3 grain boundary heat-resistant. Applied Surface Science, 2021, 558, 149852.	3.1	7
1170	Enhanced One-Photon and Two-Photon Amplified Spontaneous Emissions of CsPbBr3 Thin Films by Insulating Polymer Coating. Nano, 0, , 2150110.	0.5	0
1171	Dopantâ€Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2021, 60, 20489-20497.	7.2	56
1172	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 20437-20442.	7.2	66
1173	A Lewis base and boundary passivation bifunctional additive for high performance lead-free layered-perovskite transistors and phototransistors. Materials Today Energy, 2021, 21, 100722.	2.5	15
1174	Grain Boundary Defects Passivated with <i>tert</i> Butyl Methacrylate for High-Efficiency Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11298-11305.	2.5	8

#	Article	IF	Citations
1175	Interface passivation engineering for hybrid perovskite solar cells. Materials Reports Energy, 2021, 1, 100060.	1.7	19
1176	Ultrafast and stable planar photodetector based on SnS2 nanosheets/perovskite structure. Scientific Reports, 2021, 11, 19353.	1.6	19
1177	Carboxyl functional group-assisted defects passivation strategy for efficient air-processed perovskite solar cells with excellent ambient stability. Solar Energy Materials and Solar Cells, 2021, 230, 111242.	3.0	23
1178	Effective additive for enhancing the performance of Sb2S3 planar thin film solar cells. Journal of Materiomics, 2021, 7, 1074-1082.	2.8	10
1179	Ï€â€Conjugated Small Molecules Modified SnO ₂ Layer for Perovskite Solar Cells with over 23% Efficiency. Advanced Energy Materials, 2021, 11, 2101416.	10.2	84
1180	NH3+-Functionalized PAMAM Dendrimers Enhancing Power Conversion Efficiency and Stability of Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 6414-6425.	1.0	2
1181	Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells. Solar Energy, 2021, 225, 1001-1008.	2.9	13
1182	MAAc Ionic Liquid-Assisted Defect Passivation for Efficient and Stable CsPbIBr ₂ Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 10584-10592.	2.5	13
1183	Efficient and Stable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface. ACS Energy Letters, 2021, 6, 3614-3623.	8.8	113
1184	Organic Matrix Assisted Lowâ€temperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie, 2022, 134, .	1.6	3
1185	New Carbon Nitride C ₃ N ₃ Additive for Improving Cationic Defects of Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	12
1186	Additive engineering for stable halide perovskite solar cells. Journal of Energy Chemistry, 2021, 60, 599-634.	7.1	59
1187	Polymerization stabilized black-phase FAPbI3 perovskite solar cells retain 100% of initial efficiency over 100Âdays. Chemical Engineering Journal, 2021, 419, 129482.	6.6	21
1188	Air fabrication of SnO2 based planar perovskite solar cells with an efficiency approaching 20%: Synergistic passivation of multi-defects by choline chloride. Ceramics International, 2022, 48, 212-223.	2.3	6
1189	Simple Method of Dual Passivation with Efficiency Beyond 20% for Fabricating Perovskite Solar Cells in the Full Ambient Air. ACS Sustainable Chemistry and Engineering, 2021, 9, 13010-13020.	3.2	9
1190	Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage. Advanced Energy Materials, 2021, 11, 2102281.	10.2	58
1191	Genetic Manipulation of M13 Bacteriophage for Enhancing the Efficiency of Virusâ€inoculated Perovskite Solar Cells with a Certified Efficiency of 22.3%. Advanced Energy Materials, 2021, 11, 2101221.	10.2	20
1192	Multiple-Function Surface Engineering of SnO ₂ Nanoparticles to Achieve Efficient Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 9142-9148.	2.1	19

#	Article	IF	CITATIONS
1193	Organicâ€Inorganic Perovskite Films and Efficient Planar Heterojunction Solar Cells by Magnetron Sputtering. Advanced Science, 2021, 8, e2102081.	5.6	19
1194	Effective lewis base additive with S-donor for efficient and stable CsPbI2Br based perovskite solar cells. Chemical Engineering Journal, 2021, 420, 129931.	6.6	49
1195	Interfacial engineering designed on CuSCN for highly efficient and stable carbon-based perovskite solar cells. Materials Today Energy, 2021, 21, 100801.	2.5	5
1196	Binary Additive Engineering Enables Efficient Perovskite Solar Cells via Spray-Coating in Air. ACS Applied Energy Materials, 2021, 4, 11496-11504.	2.5	8
1197	Polymerized Hybrid Perovskites with Enhanced Stability, Flexibility, and Lattice Rigidity. Advanced Materials, 2021, 33, e2104842.	11.1	45
1198	Synergistic Effect of NiO and Spiro-OMeTAD for Hole Transfer in Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 6512-6517.	1.0	5
1199	Emission Wavelength Tuning via Competing Lattice Expansion and Octahedral Tilting for Efficient Red Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2106691.	7.8	23
1200	Organic Matrix Assisted Lowâ€temperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
1201	Laser fabricated carbon quantum dots in anti-solvent for highly efficient carbon-based perovskite solar cells. Journal of Colloid and Interface Science, 2021, 600, 691-700.	5.0	20
1202	Polyvinylpyrrolidone/polyvinyl alcohol blends modification on light absorbing layer to improve the efficiency and stability of perovskite solar cells. Materials Science in Semiconductor Processing, 2021, 133, 105941.	1.9	10
1203	Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chemical Engineering Journal, 2021, 422, 130572.	6.6	47
1204	Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy, 2021, 89, 106370.	8.2	63
1205	New strategy for improving the perovskite solar cells' open-circuit voltage: Cation substitution of hole transport layer. Optical Materials, 2021, 121, 111262.	1.7	2
1206	Mixed solvent atmosphere induces the surface termination state transition of perovskite to achieve matched energy level alignment. Chemical Engineering Journal, 2021, 424, 130508.	6.6	5
1207	Upgraded antisolvent engineering enables 2D@3D quasi core-shell perovskite for achieving stable and 21.6% efficiency solar cells. Journal of Materials Science and Technology, 2021, 92, 21-30.	5.6	4
1208	Prediction of optoelectronic features and efficiency for CuMX2 (M=Ga, In; X=S, Se) semiconductors using mbj+U approximation. Current Applied Physics, 2021, 32, 11-23.	1.1	1
1209	Bifunctional green cellulose derivatives employed for high efficiency and stable perovskite solar cells under ambient environment. Journal of Alloys and Compounds, 2021, 886, 161247.	2.8	11
1210	Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells. Renewable and Sustainable Energy Reviews, 2021, 152, 111689.	8.2	12

#	Article	IF	CITATIONS
1211	Ionic additive engineering for stable planar perovskite solar cells with efficiency >22%. Chemical Engineering Journal, 2021, 426, 130841.	6.6	33
1212	Passivation agent with dipole moment for surface modification towards efficient and stable perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 55-61.	7.1	17
1213	Laser induced anti-solvent carbon quantum dots in defect passivation for effective perovskite solar cells. Journal of Alloys and Compounds, 2021, 889, 161561.	2.8	10
1214	Lead fixation by spider web-like porphyrin polymer for stable and clean perovskite solar cells. Chemical Engineering Journal, 2022, 429, 132405.	6.6	15
1215	A design strategy of additive molecule for PSCs: Anchoring intrinsic properties of functional groups by suppressing long-range conjugation effect. Chemical Engineering Journal, 2022, 427, 131676.	6.6	8
1216	Enlarging grain sizes for efficient perovskite solar cells by methylamine chloride assisted recrystallization. Journal of Energy Chemistry, 2022, 65, 55-61.	7.1	15
1217	Improved open-circuit voltage of CsPbI3 quantum dot solar cells by PMMA interlayer. Journal of Alloys and Compounds, 2022, 891, 161985.	2.8	6
1218	A strategic review on processing routes towards scalable fabrication of perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 538-560.	7.1	33
1219	A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology. Journal of Materials Chemistry A, 2021, 9, 26650-26668.	5.2	6
1220	Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. Journal of Materials Chemistry A, 2021, 9, 4781-4788.	5.2	21
1221	Ambipolar transport in two-dimensional Sn-based perovskite field-effect transistors using an aliphatic polymer-assisted method. Journal of Materials Chemistry A, 2021, 9, 22842-22853.	5.2	11
1222	Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. Energy and Environmental Science, O, , .	15.6	62
1223	Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. Journal of Materials Chemistry A, 2021, 9, 4589-4625.	5.2	149
1224	Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy and Environmental Science, 2021, 14, 2419-2428.	15.6	152
1225	Highly Efficient and Tunable Emission of Leadâ€Free Manganese Halides toward White Lightâ€Emitting Diode and Xâ€Ray Scintillation Applications. Advanced Functional Materials, 2021, 31, 2009973.	7.8	160
1226	Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammoniumâ€Based Additives. Advanced Materials, 2018, 30, 1703670.	11.1	132
1227	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
1228	Controlling Crystal Growth via an Autonomously Longitudinal Scaffold for Planar Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000617.	11.1	118

#	Article	IF	CITATIONS
1229	Highâ€Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability. Advanced Energy Materials, 2018, 8, 1800438.	10.2	118
1230	Electronâ€Beamâ€Related Studies of Halide Perovskites: Challenges and Opportunities. Advanced Energy Materials, 2020, 10, 1903191.	10.2	53
1231	Soft Templateâ€Controlled Growth of Highâ€Quality CsPbl ₃ Films for Efficient and Stable Solar Cells. Advanced Energy Materials, 2020, 10, 1903751.	10.2	82
1232	Crystallization Control of Methylammoniumâ€Free Perovskite in Twoâ€Step Deposited Printable Tripleâ€Mesoscopic Solar Cells. Solar Rrl, 2020, 4, 2000455.	3.1	24
1233	A universal tactic of using Lewis-base polymer-CNTs composites as additives for high performance cm2-sized and flexible perovskite solar cells. Science China Chemistry, 2021, 64, 281-292.	4.2	12
1234	Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances. Journal of Power Sources, 2020, 451, 227825.	4.0	44
1235	Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells. Nano Energy, 2020, 75, 104940.	8.2	15
1236	Enhancing Chemical Stability and Suppressing Ion Migration in CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells <i>via</i> Direct Backbone Attachment of Polyesters on Grain Boundaries. Chemistry of Materials, 2020, 32, 5104-5117.	3.2	64
1237	High-Performance Layered Perovskite Transistors and Phototransistors by Binary Solvent Engineering. Chemistry of Materials, 2021, 33, 1174-1181.	3.2	29
1238	Performance Enhancement of All-Inorganic Perovskite Quantum Dots (CsPbX ₃) by UV-NIR Laser Irradiation. Journal of Physical Chemistry C, 2019, 123, 4502-4511.	1.5	29
1239	Burn-In Degradation Mechanism Identified for Small Molecular Acceptor-Based High-Efficiency Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 27433-27442.	4.0	38
1240	Modified Antisolvent Method for Improving the Performance and Stability of Triple-Cation Perovskite Solar Cells. ACS Omega, 2021, 6, 172-179.	1.6	14
1241	Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nature Energy, 2019, 4, 150-159.	19.8	383
1242	Interface modification effects using a halide-free lead source for perovskite solar cells. Sustainable Energy and Fuels, 2017, 1, 1358-1365.	2.5	3
1243	Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage. Journal of Materials Chemistry A, 2017, 5, 12158-12167.	5.2	54
1244	Application of small molecules based on a dithienogermole core in bulk heterojunction organic solar cells and perovskite solar cells. Materials Chemistry Frontiers, 2020, 4, 2168-2175.	3.2	8
1245	Photovoltaics. EPJ Web of Conferences, 2020, 246, 00005.	0.1	8
1246	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102

#	Article	IF	CITATIONS
1247	Defect passivation with novel silicone copolymers for efficient perovskite light-emitting diodes. Journal Physics D: Applied Physics, 2021, 54, 074005.	1.3	2
1248	Temporally decoherent and spatially coherent vibrations in metal halide perovskites. Physical Review B, 2020, 102, .	1.1	7
1249	Air-stable perovskite photovoltaic cells with low temperature deposited NiOx as an efficient hole-transporting material. Optical Materials Express, 2020, 10, 1801.	1.6	19
1250	Research progress in large-area perovskite solar cells. Photonics Research, 2020, 8, A1.	3.4	37
1251	Radiation-pressure-induced photoluminescence enhancement of all-inorganic perovskite CsPbBr ₃ quantum dots. Photonics Research, 2019, 7, 837.	3.4	17
1252	Crystal structures of perovskite halide compounds used for solar cells. Reviews on Advanced Materials Science, 2020, 59, 264-305.	1.4	80
1253	All-in-One Deposition to Synergistically Manipulate Perovskite Growth for High-Performance Solar Cell. Research, 2020, 2020, 2763409.	2.8	30
1254	Fabrication of Perovskite-Type Photovoltaic Devices with Polysilane Hole Transport Layers. Materials Sciences and Applications, 2017, 08, 209-222.	0.3	4
1255	Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 158801.	0.2	3
1256	Regulating the crystalline phase of intermediate films enables FA _{1â^'<i>x</i>} MA _{<i>x</i>} PbI ₃ perovskite solar cells with efficiency over 22%. Journal of Materials Chemistry A, 2021, 9, 24064-24070.	5.2	20
1257	Crystallization control <i>via</i> a molecular needle knitting strategy for the enhanced emission efficiency and stability of CsPbBr ₃ films. Journal of Materials Chemistry C, 2021, 9, 15967-15976.	2.7	6
1258	High-performance perovskite memristor by integrating a tip-shape contact. Journal of Materials Chemistry C, 2021, 9, 15435-15444.	2.7	14
1259	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society Reviews, 2021, 50, 12915-12984.	18.7	15
1260	Organic additives in all-inorganic perovskite solar cells and modules: from moisture endurance to enhanced efficiency and operational stability. Journal of Energy Chemistry, 2022, 67, 361-390.	7.1	21
1261	Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture. ACS Energy Letters, 2021, 6, 3916-3923.	8.8	115
1262	A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 043001.	1.3	9
1263	Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells. Applied Physics Letters, 2021, 119, .	1.5	11
1264	Solution processed AgSbS2 film for efficient planar heterojunction solar cells. Applied Physics Letters, 2021, 119, .	1.5	13

#	Article	IF	CITATIONS
1265	Hydrophobic Fluorinated Conjugated Polymer as a Multifunctional Interlayer for High-Performance Perovskite Solar Cells. ACS Photonics, 2021, 8, 3185-3192.	3.2	17
1266	An Embedding 2D/3D Heterostructure Enables Highâ€Performance FAâ€Alloyed Flexible Perovskite Solar Cells with Efficiency over 20%. Advanced Science, 2021, 8, e2101856.	5.6	57
1267	Reformation of thiophene-functionalized phthalocyanine isomers for defect passivation to achieve stable and efficient perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 263-275.	7.1	28
1268	Electrode metallization for scaled perovskite/silicon tandem solar cells: Challenges and opportunities. Progress in Photovoltaics: Research and Applications, 2023, 31, 429-442.	4.4	18
1269	A new and simple method for simulation of lattice mismatch on the optical properties of solar cells: A combination of DFT and FDTD simulations. Solar Energy, 2021, 230, 166-176.	2.9	5
1270	Impact of Electron Transport Layers (ETLs) and Hole Transport Layer (HTLs) on Perovskite Solar Cells Performance. , 2019, , 227-246.		1
1271	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.3	1
1272	Silicon heterojunction-based tandem solar cells: past, status, and future prospects. Nanophotonics, 2021, 10, 2001-2022.	2.9	21
1273	Strategies for Large cale Fabrication of Perovskite Films for Solar Cells. Solar Rrl, 2022, 6, 2100683.	3.1	10
1274	Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 219.	7.7	30
1275	Hole Transport Bilayer for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 72-80.	2.5	14
1276	The Promise of Perovskite Solar Cells. , 2022, , 388-404.		3
1277	Suppressing the defects in cesium-based perovskites <i>via</i> polymeric interlayer assisted crystallization control. Journal of Materials Chemistry A, 2021, 9, 26149-26158.	5.2	6
1278	Improved reproducibility of carbon-based cesium/formamidinium perovskite solar cells via double antisolvent drippings in adduct approach. Organic Electronics, 2022, 100, 106362.	1.4	9
1279	Hydrophobic π-conjugated organic small molecule as a multi-functional interface material enables efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 430, 133065.	6.6	15
1280	In-Situ polymerization of PEDOT in perovskite Thin films for efficient and stable photovoltaics. Chemical Engineering Journal, 2022, 430, 133109.	6.6	7
1281	Bromine Doing for Performance Enhancement of Lead-Free Bismuth-Based Perovskite Solar Cells. Material Sciences, 2020, 10, 697-704.	0.0	0
1282	Construction of a gradient-type 2D/3D perovskite structure for subsurface passivation and energy-level alignment of an MAPbI ₃ film. Journal of Materials Chemistry A, 2021, 9, 26086-26094	5.2	12

#	Article	IF	CITATIONS
1283	A tailored spacer molecule in 2D/3D heterojunction for ultralow-voltage-loss and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 26829-26838.	5.2	10
1284	Research progress of wide bandgap perovskite materials and solar cells. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 207401.	0.2	2
1288	Homologous Bromides Treatment for Improving the Openâ€Circuit Voltage of Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106280.	11.1	26
1289	Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Lowâ€Cost Carbon Electrodes for Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, 2101148.	3.0	14
1290	High-performance perovskite photodetector with the additive of antisolvent to improve the quality of the perovskite films. , 2020, , .		0
1291	Enhanced photovoltaic performance of SnO2 based flexible perovskite solar cells via introducing interfacial dipolar layer and defect passivation. Journal of Power Sources, 2022, 519, 230814.	4.0	8
1292	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
1293	Interface Chelation Induced by Pyridineâ€Based Polymer for Efficient and Durable Airâ€Processed Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	10
1294	Dopant Free Triphenylamineâ€Based Hole Transport Materials with Excellent Photovoltaic Properties for Highâ€Performance Perovskite Solar Cells. Energy Technology, 2022, 10, 2100838.	1.8	34
1295	Improved crystallinity and self-healing effects in perovskite solar cells via functional incorporation of polyvinylpyrrolidone. Journal of Energy Chemistry, 2022, 68, 12-18.	7.1	31
1296	Interface Chelation Induced by Pyridineâ€Based Polymer for Efficient and Durable Airâ€Processed Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, e202112673.	7.2	33
1297	The Chemical Design in High-Performance Lead Halide Perovskite: Additive vs Dopant?. Journal of Physical Chemistry Letters, 2021, 12, 11636-11644.	2.1	13
1299	Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: a brief review. Materials Today Sustainability, 2022, 17, 100090.	1.9	20
1300	Bathochromic-Shifted Emissions by Postfunctionalization of Nonconjugated Polyketones. ACS Applied Materials & Interfaces, 2021, 13, 59288-59297.	4.0	14
1301	Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science and Applications, 2021, 10, 239.	7.7	40
1302	Suppressing Interfacial Shunt Loss via Functional Polymer for Performance Improvement of Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100791.	3.1	22
1303	High efficiency perovskite solar cells using DC sputtered compact TiO ₂ electron transport layer. EPJ Photovoltaics, 2021, 12, 8.	0.8	4
1304	Crystallization kinetics modulation and defect suppression of all-inorganic CsPbX ₃ perovskite films. Energy and Environmental Science, 2022, 15, 413-438.	15.6	53

#	Article	IF	CITATIONS
1305	Design of dopant-free small molecular hole transport materials for perovskite solar cells: a viewpoint from defect passivation. Journal of Materials Chemistry A, 2022, 10, 1150-1178.	5.2	44
1306	Multistrategy Toward Highly Efficient and Stable CsPbI ₂ Br Perovskite Solar Cells Based on Dopantâ€Free Poly(3â€Hexylthiophene). Solar Rrl, 2022, 6, .	3.1	16
1307	Interface modification by formamidine acetate for efficient perovskite solar cells. Solar Energy, 2022, 232, 304-311.	2.9	9
1308	Fabrication of stable perovskite solar cells with efficiency over 20% in open air using <i>in situ</i> polymerized bi-functional additives. Journal of Materials Chemistry A, 2022, 10, 3688-3697.	5.2	16
1309	Hydrogen Tetrachloroaurate-Modulated PEDOT:PSS film assembled with conductive NPB buffer layer for High-Performance planar perovskite solar cells. Chemical Engineering Journal, 2022, 432, 134358.	6.6	5
1310	A holistic sunscreen interface strategy to effectively improve the performance of perovskite solar cells and prevent lead leakage. Chemical Engineering Journal, 2022, 433, 134566.	6.6	20
1311	Development of Polysilane-Inserted Perovskite Solar Cells. Materials Proceedings, 2021, 4, 51.	0.2	0
1312	Perovskite Nanocomposite Layers Engineering for Efficient and Stable Solar Cells. Journal of Nano Research, 0, 71, 71-109.	0.8	4
1313	Methylthiophene terminated D–π–D molecular semiconductors as multifunctional interfacial materials for high performance perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 1862-1869.	2.7	4
1314	Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chemical Science, 2022, 13, 2167-2183.	3.7	37
1315	1,8â€Octanediamine Dihydroiodideâ€Mediated Grain Boundary and Interface Passivation in Two‣tepâ€Processed Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6
1316	Simultaneously Mitigating Anion and Cation Defects Both in Bulk and Interface for Highâ€Effective Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	2
1317	Fabrication and characterization of CH ₃ NH ₃ PbI ₃ solar cells with added guanidinium and inserted with decaphenylpentasilane. Japanese Journal of Applied Physics, 2022, 61, SB1024.	0.8	23
1318	High Quality Inkjet Printedâ€Emissive Nanocrystalline Perovskite CsPbBr ₃ Layers for Color Conversion Layer and LEDs Applications. Advanced Materials Technologies, 2022, 7, .	3.0	18
1319	A highâ€efficiency and stable perovskite solar cell fabricated in ambient air using a polyaniline passivation layer. Scientific Reports, 2022, 12, 697.	1.6	26
1320	Unveiling the effect of amino acids on the crystallization pathways of methylammonium lead iodide perovskites. Journal of Energy Chemistry, 2022, 69, 253-260.	7.1	10
1321	A review on two-dimensional (2D) perovskite material-based solar cells to enhance the power conversion efficiency. Dalton Transactions, 2022, 51, 797-816.	1.6	20
1323	Deeper Insight into the Role of Organic Ammonium Cations in Reducing Surface Defects of the Perovskite Film. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27

#	Article	IF	CITATIONS
1324	Deeper Insight into the Role of Organic Ammonium Cations in Reducing Surface Defects of the Perovskite Film. Angewandte Chemie, 2022, 134, .	1.6	4
1325	Organometal halide perovskite photovoltaics. , 2022, , 273-317.		1
1326	Several Triazine-Based Small Molecules Assisted in the Preparation of High-Performance and Stable Perovskite Solar Cells by Trap Passivation and Heterojunction Engineering. ACS Applied Materials & Interfaces, 2022, 14, 6625-6637.	4.0	32
1327	Amidinium additives for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 3506-3512.	5.2	11
1328	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2022, 375, 71-76.	6.0	216
1329	Challenges for Thermally Stable Spiro-MeOTAD toward the Market Entry of Highly Efficient Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 34220-34227.	4.0	17
1330	Stabilizing all-inorganic CsPbI ₃ perovskite films with polyacrylonitrile for photovoltaic solar cells. Energy Advances, 2022, 1, 62-66.	1.4	4
1331	Multifunctional Compoundâ€Regulated SnO ₂ for Highâ€Efficiency and Stable Perovskite Solar Cells under Ambient Air. ChemElectroChem, 2022, 9, .	1.7	6
1332	Amplified Spontaneous Emission with a Low Threshold from Quasiâ€2D Perovskite Films via Phase Engineering and Surface Passivation. Advanced Optical Materials, 2022, 10, .	3.6	15
1333	Influence of nitrogen atmosphere one-step heating assisted the solution processing of Kesterite Cu2ZnSnS4 as hole extraction on the efficacy of the inverted perovskite solar cells. Optical Materials, 2022, 124, 111998.	1.7	8
1334	Review on efficiency improvement effort of perovskite solar cell. Solar Energy, 2022, 233, 421-434.	2.9	74
1335	Polymerâ€Assisted Phase Stable γ sPbl ₃ Perovskite Film for Selfâ€Powered and Ultrafast Photodiodes. Advanced Materials Interfaces, 2022, 9, .	1.9	1
1336	The joint effect of spin–orbit coupling and atomistic disorder on bandgap evolution in inorganic CsSn1â^'xPbxl3 mixed perovskite. Journal of Applied Physics, 2022, 131, 055107.	1.1	1
1337	Grainâ€Boundariesâ€Engineering via Laser Manufactured Laâ€Doped BaSnO ₃ Nanocrystals with Tailored Surface States Enabling Perovskite Solar Cells with Efficiency of 23.74%. Advanced Functional Materials, 2022, 32, 2112388.	7.8	16
1338	Surface passivation for enhancing photovoltaic performance of carbon-based CsPbI3 perovskite solar cells. Journal of Solid State Chemistry, 2022, 308, 122891.	1.4	15
1339	Enhanced resistive switching behavior of CH3NH3Pbl3 based resistive random access memory by nickel doping. Vacuum, 2022, 198, 110862.	1.6	16
1340	Flexible hybrid perovskite nanofiber for all-inorganic perovskite solar cells. Materials Research Bulletin, 2022, 149, 111747.	2.7	11
1341	Inhibiting Ion Migration by Guanidinium Cation Doping for Efficient Perovskite Solar Cells with Enhanced Operational Stability. Solar Rrl, 2022, 6, .	3.1	5

#	Article	IF	CITATIONS
1342	Improving Hole Transport and Extraction by Interface Engineering in Perovskite Solar Cells. Energy Technology, 0, , 2101002.	1.8	1
1343	Slot-die processed perovskite solar cells: effects of solvent and temperature on device performances. Semiconductor Science and Technology, 2022, 37, 045007.	1.0	5
1344	Natural Chlorophyll Derivative Assisted Defect Passivation and Hole Extraction for MAPbI ₃ Perovskite Solar Cells with Efficiency Exceeding 20%. ACS Applied Energy Materials, 2022, 5, 1390-1396.	2.5	5
1345	Spacer Engineering of Thiophene-Based Two-Dimensional/Three-Dimensional Hybrid Perovskites for Stable and Efficient Solar Cells. Journal of Physical Chemistry C, 2022, 126, 3351-3358.	1.5	9
1346	Antiseptic Povidone–Iodine Heals the Grain Boundary of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 8984-8991.	4.0	28
1347	Highâ€Polarizability Organic Ferroelectric Materials Doping for Enhancing the Builtâ€In Electric Field of Perovskite Solar Cells Realizing Efficiency over 24%. Advanced Materials, 2022, 34, e2110482.	11.1	65
1348	Postâ€Treatment Passivation by Quaternary Ammonium Chloride Zwitterion for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
1349	Cooperative effects of Dopant-Free Hole-Transporting materials and polycarbonate film for sustainable perovskite solar cells. Chemical Engineering Journal, 2022, 437, 135197.	6.6	13
1350	Synergistic effect of surface active agent in defect passivation by for ambient air-synthesized halide perovskite solar cells. Journal of Power Sources, 2022, 524, 231038.	4.0	5
1351	1Â+Â1 > 2: Dual strategies of quinolinic acid passivation and DMF solvent annealing for high-performance inverted perovskite solar cell. Chemical Engineering Journal, 2022, 435, 135107.	6.6	14
1352	Surfaceâ€Anchored Acetylcholine Regulates Bandâ€Edge States and Suppresses Ion Migration in a 21%â€Efficient Quadrupleâ€Cation Perovskite Solar Cell. Small, 2022, 18, e2105184.	5.2	30
1353	1+1>2: Dual Strategies of Quinolinic Acid Passivation and Dmf Solvent Annealing for High-Performance Inverted Perovskite Solar Cell. SSRN Electronic Journal, 0, , .	0.4	0
1354	Alkali Additives Enable Efficient Large Area (>55 cm ²) Slotâ€Die Coated Perovskite Solar Modules. Advanced Functional Materials, 2022, 32, .	7.8	39
1355	High-Performance Blue Quasi-2D Perovskite Light-Emitting Diodes via Balanced Carrier Confinement and Transfer. Nano-Micro Letters, 2022, 14, 66.	14.4	34
1356	Ultraviolet Photocatalytic Degradation of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	16
1357	Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method. Science Bulletin, 2022, 67, 794-802.	4.3	13
1358	Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systems. ACS Applied Energy Materials, 2022, 5, 3156-3165.	2.5	2
1359	Acetylammonium chloride as an additive for crystallization control and defect passivation in MAPbl ₃ based perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 265501.	1.3	7

#	Article	IF	CITATIONS
1360	Protonâ€ŧransferâ€induced in situ defect passivation for highly efficient wideâ€bandgap inverted perovskite solar cells. InformaÄnÃ-Materiály, 2022, 4, .	8.5	27
1361	Synchronous Passivation of Defects with Low Formation Energies via Terdentate Anchoring Enabling High Performance Perovskite Solar Cells with Efficiency over 24%. Advanced Functional Materials, 2022, 32, .	7.8	52
1362	Enhanced Thermal Stability of Planar Perovskite Solar Cells Through Triphenylphosphine Interface Passivation. ChemSusChem, 2022, , .	3.6	9
1363	Efficient and stable TiO2 nanorod array structured perovskite solar cells in air: Co-passivation and synergistic mechanism. Ceramics International, 2022, 48, 17950-17959.	2.3	9
1364	Simple-Structured Low-Cost Dopant-Free Hole-Transporting Polymers for High-Stability CsPbI ₂ Br Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 13400-13409.	4.0	5
1365	Seedâ€Assisted Growth of Methylammoniumâ€Free Perovskite for Efficient Inverted Perovskite Solar Cells. Small Methods, 2022, 6, e2200048.	4.6	9
1366	Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics. ACS Energy Letters, 2022, 7, 1246-1254.	8.8	12
1367	Synergetic Effect on Enhanced Photovoltaic Performance of Spray-Coated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment. ACS Applied Energy Materials, 2022, 5, 4149-4158.	2.5	10
1368	Highâ€Efficiency Airâ€Processed Siâ€Based Perovskite Lightâ€Emitting Devices via PMMAâ€TBAPF ₆ Coâ€Doping. Advanced Optical Materials, 2022, 10, .	3.6	9
1369	Guanidinium Thiocyanate Additive Engineering for High-Performance CsPblBr ₂ Solar Cells with an Efficiency of 10.90%. ACS Applied Energy Materials, 2022, 5, 3110-3118.	2.5	8
1370	A universal ionic liquid solvent for non-halide lead sources in perovskite solar cells. Journal of Energy Chemistry, 2022, 71, 445-451.	7.1	8
1371	Attributes of High-Performance Electron Transport Layers for Perovskite Solar Cells on Flexible PET versus on Glass. ACS Applied Energy Materials, 2022, 5, 4096-4107.	2.5	22
1372	Role of Terminal Group Position in Triphenylamine-Based Self-Assembled Hole-Selective Molecules in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 17461-17469.	4.0	15
1373	Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 99.	14.4	43
1374	Doping of Sn-based two-dimensional perovskite semiconductor for high-performance field-effect transistors and thermoelectric devices. IScience, 2022, 25, 104109.	1.9	15
1375	Perovskite films passivated by poly[(R)-3-hydroxybutyric acid] for improved photovoltaic performance. Organic Electronics, 2022, 104, 106487.	1.4	3
1376	Correlation between molecular configuration and charge transfer dynamics in highly efficient organic solar cells. Journal of Power Sources, 2022, 532, 231351.	4.0	4
1377	Enhanced performance of hole-conductor free carbon-based perovskite solar cells through polyvinylidene fluoride as additive. Materials Today Communications, 2022, 31, 103446.	0.9	3

#	Article	IF	CITATIONS
1378	Engineering intrinsic flexibility in polycrystalline perovskite film by grain boundary stitching for high mechanical endurance. Nano Energy, 2022, 96, 107058.	8.2	16
1379	Excess polymer-assisted crystal growth method for high-performance perovskite photodetectors. Journal of Alloys and Compounds, 2022, 908, 164482.	2.8	9
1380	Dual Functions of Performance Improvement and Lead Leakage Mitigation of Perovskite Solar Cells Enabled by Phenylbenzimidazole Sulfonic Acid. Small Methods, 2022, 6, e2101257.	4.6	22
1381	On the role of carboxylated polythiophene in defect passivation of CsPbI ₂ Br surface for efficient and stable <scp>allâ€inorganic</scp> perovskite solar cells. International Journal of Energy Research, 2022, 46, 6012-6021.	2.2	13
1382	Lead Leakage Preventable Fullereneâ€Porphyrin Dyad for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	62
1383	Carbon Quantum Dot-Passivated Perovskite/Carbon Electrodes for Stable Solar Cells. ACS Applied Nano Materials, 2021, 4, 13339-13351.	2.4	13
1384	Polyacrylonitrileâ€Coordinated Perovskite Solar Cell with Openâ€Circuit Voltage Exceeding 1.23â€V. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
1385	Monolithic Lead Halide Perovskite Photoelectrochemical Cell with 9.16% Applied Bias Photon-to-Current Efficiency. ACS Energy Letters, 2022, 7, 320-327.	8.8	19
1386	Beyond the Phase Segregation: Probing the Irreversible Phase Reconstruction of Mixedâ€Halide Perovskites. Advanced Science, 2022, 9, e2103948.	5.6	17
1387	Polyacrylonitrileâ€Coordinated Perovskite Solar Cell with Open ircuit Voltage Exceeding 1.23â€V. Angewandte Chemie, 2022, 134, .	1.6	18
1388	Engineering the Hole Extraction Interface Enables Singleâ€Crystal MAPbI ₃ Perovskite Solar Cells with Efficiency Exceeding 22% and Superior Indoor Response. Advanced Energy Materials, 2022, 12, .	10.2	87
1389	Flexible perovskite nanosheet-based photodetectors for ultraviolet communication applications. Applied Physics Letters, 2021, 119, .	1.5	11
1390	Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	78
1391	lonicâ€Liquidâ€Perovskite Capping Layer for Stable 24.33%â€Efficient Solar Cell. Advanced Energy Materials, 2022, 12, .	10.2	80
1392	Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineering. ACS Applied Materials & Interfaces, 2021, 13, 58640-58651.	4.0	2
1393	Two dimensional MXenes for highly stable and efficient perovskite solar cells. , 2022, , 485-507.		3
1394	Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 11254-11267.	5.2	11
1396	Perovskite fiber-shaped optoelectronic devices for wearable applications. Journal of Materials Chemistry C, 2022, 10, 6957-6991.	2.7	18

#	Article	IF	CITATIONS
1397	Homogeneously Miscible Fullerene inducing Vertical Gradient in Perovskite Thinâ€Film toward Highly Efficient Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	28
1398	In Situ Threeâ€Dimensional Observation of Perovskite Crystallization Revealed by Twoâ€Photon Fluorescence Imaging. Advanced Optical Materials, 0, , 2200089.	3.6	3
1399	Highly Orientational Order Perovskite Induced by In situâ€generated 1D Perovskitoid for Efficient and Stable Printable Photovoltaics. Small, 2022, 18, e2200130.	5.2	10
1400	Environmentalâ€Friendly Polymer for Efficient and Stable Inverted Perovskite Solar Cells with Mitigating Lead Leakage. Advanced Functional Materials, 2022, 32, .	7.8	59
1401	Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective. Advanced Energy Materials, 2022, 12, .	10.2	87
1402	Thermally-stable and highly-efficient bi-layered NiOx-based inverted planar perovskite solar cells by employing a p-type organic semiconductor. Chemical Engineering Journal, 2022, 443, 136405.	6.6	15
1403	Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. Advanced Materials, 2022, 34, e2202301.	11.1	57
1404	CH ₃ NH ₃ ⁺ and Pb Immobilization Through PbI ₂ Binding by Organic Molecule Doping for Homogeneous Organometal Halide Perovskite Films. Journal of Materials Chemistry A, 0, , .	5.2	1
1405	Recent developments in perovskite-based precursor inks for scalable architectures of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6, 2879-2900.	2.5	19
1406	Effects of guanidinium addition to CH ₃ NH ₃ PbI <sub& perovskite solar cells inserted with decaphenylpentasilane. , 0, , .</sub& 	amp;gt;38	amp;lt;/sub8
1407	Multifunctional Polymer Capping Frameworks Enable High-Efficiency and Stable All-Inorganic Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6432-6441.	2.5	12
1408	Stabilizing α-phase FAPbI ₃ solar cells. Journal of Semiconductors, 2022, 43, 040202.	2.0	5
1409	Hydrogen Bonds in Precursor Solution: The Origin of the Anomalous J–V Curves in Perovskite Solar Cells. Crystals, 2022, 12, 610.	1.0	1
1410	Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable <scp>MAPbI₃</scp> â€Based Inverted Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	6
1411	Cesium trifluoroacetate induced synergistic effects of grain growth and defect passivation on high-performance perovskite solar cells. Chemical Engineering Journal, 2022, 446, 136936.	6.6	12
1412	Enhancing performance of organic-inorganic perovskite solar cells using super halogen additive. Organic Electronics, 2022, 108, 106548.	1.4	5
1413	Improving the Stability and Efficiency of Perovskite Solar Cells by a Bidentate Anilinium Salt. Jacs Au, 2022, 2, 1306-1312.	3.6	11
1414	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	5.5	19

#	Article	IF	CITATIONS
1415	Synthesis of highly luminescent CsPbBr3@Cs4PbBr6 nanocrystals via ligand-assisted reaction. Optical Materials, 2022, 128, 112444.	1.7	9
1416	Disulfide bond containing self-healing fullerene derivatized polyurethane as additive for achieving efficient and stable perovskite solar cells. Carbon, 2022, 196, 213-219.	5.4	17
1417	A multifunctional interlayer for highly stable and efficient perovskite solar cells based on pristine poly(3- hexylthiophene). Chemical Engineering Journal, 2022, 444, 136644.	6.6	17
1418	Hole transporting layer engineering via a zwitterionic polysquaraine toward efficient inverted perovskite solar cells. Chemical Engineering Journal, 2022, 445, 136760.	6.6	15
1419	Realization of ultra-flat perovskite films with surprisingly large-grain distribution using high-pressure cooking. Chemical Engineering Journal, 2022, 445, 136803.	6.6	8
1420	Recent development in MOFs for perovskite-based solar cells. , 2022, , 507-534.		1
1421	Quaternary ammonium halide-containing cellulose derivatives for defect passivation in MAPbI ₃ -based perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3349-3362.	2.5	7
1422	A Dualâ€Ligand Strategy to Regulate the Nucleation and Growth of Lead Chromate Photoanodes for Photoelectrochemical Water Splitting. Advanced Materials, 2022, 34, e2110610.	11.1	14
1423	A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization. Frontiers in Chemistry, 2022, 10, 802890.	1.8	14
1424	High e fficiency perovskite solar cells with PTAA hole transport layer enabled by PMMA:F4-TCNQ buried interface layer. Journal of Materials Chemistry C, 2022, 10, 9714-9722.	2.7	8
1428	Refined GFN1-xTB Parameters for Engineering Phase-Stable CsPbX ₃ Perovskites. Journal of Physical Chemistry C, 2022, 126, 9587-9596.	1.5	2
1429	Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells. Nano Research, 2022, 15, 7139-7153.	5.8	12
1430	Over 24% efficient MA-free CsxFA1â^'xPbX3 perovskite solar cells. Joule, 2022, 6, 1344-1356.	11.7	58
1431	Interface Modification with Holistically Designed Push–Pull D–π–A Organic Small Molecule Facilitates Band Alignment Engineering, Efficient Defect Passivation, and Enhanced Hydrophobicity in Mixed Cation Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6783-6796.	2.5	11
1432	Trap State Passivation by Barbital Additive toward Efficient Perovskite Solar Cells with 22.65% Efficiency. Energy Technology, 0, , .	1.8	1
1433	Topâ€Contactsâ€Interface Engineering for Highâ€Performance Perovskite Solar Cell With Reducing Lead Leakage. Solar Rrl, 2022, 6, .	3.1	8
1434	Phase transformation barrier modulation of CsPbI3 films via PbI3â^' complex for efficient all-inorganic perovskite photovoltaics. Nano Energy, 2022, 99, 107388.	8.2	9
1436	The high open-circuit voltage of perovskite solar cells: a review. Energy and Environmental Science, 2022, 15, 3171-3222.	15.6	181

#	Article	IF	CITATIONS
1437	Perovskite Phase Analysis by SEM Facilitating Efficient Quasiâ€2D Perovskite Lightâ€Emitting Device Designs. Advanced Optical Materials, 2022, 10, .	3.6	6
1438	Polymerâ€Assisted Crystal Growth Regulation and Defect Passivation for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	30
1439	Filamentous crystal growth in organic liquids and selection of crystal morphology. Scientific Reports, 2022, 12, .	1.6	1
1440	Molecular Doping Enabling Mobility Boosting of 2D Sn ²⁺ â€Based Perovskites. Advanced Functional Materials, 2022, 32, .	7.8	18
1441	Facile Exfoliation of the Perovskite Thin Film for Visualizing the Buried Interfaces in Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 7458-7465.	2.5	15
1442	Bifunctional Passivation for Efficient and Stable Low-Temperature Processed All-Inorganic CsPbIBr2 Perovskite Solar Cells. Surfaces and Interfaces, 2022, 32, 102097.	1.5	1
1443	A novel strategy to improve the flame retardancy and electrical conductivity of polymethyl methacrylate by controlling the configuration of phosphorus-containing polyaniline@needle coke with magnetic field. Chemical Engineering Journal, 2022, 448, 137642.	6.6	4
1444	An internal encapsulating layer for efficient, stable, repairable and low-lead-leakage perovskite solar cells. Energy and Environmental Science, 2022, 15, 3891-3900.	15.6	32
1445	Suppression of Sn ²⁺ oxidation and formation of large-size crystal grains with multifunctional chloride salt for perovskite solar cell applications. Journal of Materials Chemistry C, 0, , .	2.7	5
1446	Physical mechanism of perovskite solar cell based on double electron transport layer. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 208802.	0.2	1
1447	Modulating the Electron Transporting Properties of Subphthalocyanines for Inverted Perovskite Solar Cells. Frontiers in Chemistry, 0, 10, .	1.8	5
1448	Bulk Defect Suppression of Micrometer-Thick Perovskite Single Crystals Enables Stable Photovoltaics. , 2022, 4, 1332-1340.		17
1449	Sustainable Pb Management in Perovskite Solar Cells toward Ecoâ€Friendly Development. Advanced Energy Materials, 2022, 12, .	10.2	38
1450	Controlling Phase Transition toward Future Low-Cost and Eco-friendly Printing of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 6503-6513.	2.1	9
1451	Improving the performance of perovskite solar cells via addition of poly(3-dodecylthiophene)-grafted multi-walled carbon nanotubes. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	1
1452	Interfacial Dipole poly(2-ethyl-2-oxazoline) Modification Triggers Simultaneous Band Alignment and Passivation for Air-Stable Perovskite Solar Cells. Polymers, 2022, 14, 2748.	2.0	2
1453	Optical properties of CsFAMA-based perovskite film and its application in the inverted solar cells with poly(methyl methacrylate) passivation layer. Optical Materials Express, 2022, 12, 3262.	1.6	5
1454	3D Networkâ€Assisted Crystallization for Fully Printed Perovskite Solar Cells with Superior Irradiation Stability. Advanced Functional Materials, 2022, 32, .	7.8	8

#	Article	IF	CITATIONS
1455	Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics. Nano Energy, 2022, 101, 107579.	8.2	46
1456	Investigation of carrier transport behavior for cubic CH3NH3SnX3 and CH3NH3PbX3 (X=Br and I) using Boltzmann transport equation. Computational Materials Science, 2022, 213, 111609.	1.4	4
1457	A biomineralization-inspired strategy of self-encapsulation for perovskite solar cells. Nano Energy, 2022, 101, 107575.	8.2	10
1458	Progress and challenges of halide perovskite-based solar cell- a brief review. Materials Science in Semiconductor Processing, 2022, 150, 106953.	1.9	22
1459	Controllable Heterogenous Seedingâ€Induced Crystallization for Highâ€Efficiency FAPbI ₃ â€Based Perovskite Solar Cells Over 24%. Advanced Materials, 2022, 34, .	11.1	52
1460	Small Molecule-Induced Modulation of Grain Crystallization and Ion Migration Leads to High-Performance MAPbI ₃ Mini-Modules. ACS Applied Energy Materials, 2022, 5, 9471-9478.	2.5	3
1461	Effects of polyethylene oxide particles on the photo-physical properties and stability of FA-rich perovskite solar cells. Scientific Reports, 2022, 12, .	1.6	8
1462	TiO ₂ /SnO ₂ electron transport double layers with ultrathin SnO ₂ for efficient planar perovskite solar cells. Chinese Physics B, 2022, 31, 118802.	0.7	2
1463	Electrochemically Prepared Polyaniline as an Alternative to Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) for Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 9351-9360.	2.5	2
1464	Inactive (PbI ₂) ₂ RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377, 531-534.	6.0	623
1465	Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy, 2022, 244, 516-535.	2.9	76
1466	Spontaneous Hybrid Crossâ€Linked Network Induced by Multifunctional Copolymer toward Mechanically Resilient Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	28
1467	Recent Advances in CsPb <i>X</i> ₃ Perovskite Solar Cells: Focus on Crystallization Characteristics and Controlling Strategies. Advanced Energy Materials, 2023, 13, .	10.2	27
1468	Multifunctional tyrosine modified SnO ₂ to improve the performance of perovskite solar cells. Applied Physics Letters, 2022, 121, 073501.	1.5	5
1469	A Universal Method of Perovskite Surface Passivation for CsPbX ₃ Solar Cells with <i>V</i> _{OC} over 90% of the Sâ€Q limit. Advanced Functional Materials, 2022, 32, .	7.8	35
1470	Constructing 2D passivation layer on perovskites based on 3-chlorobenzylamine enables efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2022, 926, 166891.	2.8	10
1471	Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers. Journal of Renewable Materials, 2023, 11, 61-77.	1.1	1
1472	Enhancement in power conversion efficiency and stability of perovskite solar cell by reducing trap states using trichloroacetic acid additive in anti-solvent. Surfaces and Interfaces, 2022, 34, 102341.	1.5	3

#	Article	IF	Citations
1473	Surface passivation of perovskite with organic hole transport materials for highly efficient and stable perovskite solar cells. Materials Today Advances, 2022, 16, 100300.	2.5	8
1474	Grain size enlargement and controlled crystal growth by formamidinium chloride additive-added γ-CsPbl2Br thin films for stable inorganic perovskite solar cells. Materials Today Chemistry, 2022, 26, 101118.	1.7	7
1475	Simultaneous achievement of defect passivation and carrier transport promotion by using emerald salt for methylammonium-free perovskite solar cells. Chemical Science, 2022, 13, 10512-10522.	3.7	8
1476	Passivation of PEA+ to CsPbI3 (110) Surface States: From the First Principles Calculations. Journal of Renewable Materials, 2022, .	1.1	2
1477	Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 18762-18772.	5.2	17
1478	Deep defect passivation and shallow vacancy repair <i>via</i> an ionic silicone polymer toward highly stable inverted perovskite solar cells. Energy and Environmental Science, 2022, 15, 4414-4424.	15.6	35
1479	The Versatility of Polymers in Perovskite Solar Cells. Journal of Materials Chemistry C, 0, , .	2.7	2
1480	Structural and compositional properties of 2D CH ₃ NH ₃ Pbl ₃ hybrid halide perovskite: a DFT study. RSC Advances, 2022, 12, 25924-25931.	1.7	11
1481	BODIPY Dyes in Solar Energy. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 119-142.	0.4	0
1482	Fabrication of triple cation perovskite solar cells using different post-spin coating anti-solvent treatments. Journal of Materials Science: Materials in Electronics, 2022, 33, 21161-21171.	1.1	0
1483	Regulating the Crystallization Kinetics and Lattice Strain of Lead-Free Perovskites with Perovskite Quantum Dots. ACS Energy Letters, 2022, 7, 3251-3259.	8.8	11
1484	Polyethylene Glycol Dodecyl Ether as Interfacial Modifier for Improving Efficiency of Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	1
1485	Bilayer metal halide perovskite for efficient and stable solar cells and modules. Materials Futures, 2022, 1, 042102.	3.1	19
1486	Preparation of ultra-high efficiency perovskite cells by conversion of Pbl ₂ . Chinese Science Bulletin, 2022, , .	0.4	0
1487	Methylammonium lead iodide/poly(methyl methacrylate) nanocomposite films for photocatalytic applications. Materials Chemistry and Physics, 2023, 293, 126811.	2.0	10
1488	Modulating preferred crystal orientation for efficient and stable perovskite solar cells—From progress to perspectives. InformaÄnÃ-Materiály, 2022, 4, .	8.5	18
1489	Surface Chelation Enabled by Polymer-Doping for Self-Healable Perovskite Solar Cells. Nanomaterials, 2022, 12, 3125.	1.9	3
1490	Improvement of Openâ€Circuit Voltage Deficit via Preâ€Treated NH ₄ ⁺ Ion Modification of Interface between SnO ₂ and Perovskite Solar Cells. Small, 2022, 18, .	5.2	8

#	Article	IF	CITATIONS
1492	The Growth Dynamics of Organic–Inorganic Metal Halide Perovskite Films. Journal of the American Chemical Society, 2022, 144, 17848-17856.	6.6	9
1493	Recent advances of interface engineering in inverted perovskite solar cells. Chinese Physics B, 2022, 31, 107307.	0.7	3
1494	Defect Passivation via Isoxazole Doping in Perovskite Solar Cells. ACS Omega, 2022, 7, 34278-34285.	1.6	2
1495	Perovskites: Emergence of highly efficient thirdâ€generation solar cells. International Journal of Energy Research, 2022, 46, 21856-21883.	2.2	13
1496	Spiroâ€OMeTADâ€Based Hole Transport Layer Engineering toward Stable Perovskite Solar Cells. Small Methods, 2022, 6, .	4.6	21
1497	Grain Boundary Passivation Using D131 Organic Dye Molecule for Efficient and Thermally Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 13825-13834.	3.2	12
1498	Organic Additive Engineering to Grow Highâ€Quality Inorganic CsPbX ₃ Perovskite Films for Efficient and Stable Solar Cells. Solar Rrl, 2022, 6, .	3.1	7
1499	In-situ surface patch-passivation via phosphorus oxygen bond for efficient PbS colloidal quantum dot infrared solar cells. Solar Energy Materials and Solar Cells, 2022, 248, 112040.	3.0	2
1500	Ionic and poly(ionic liquid)s as perovskite passivating molecules for improved solar cell performances. Journal of Materials Chemistry C, 2022, 10, 16583-16591.	2.7	6
1501	Carbonized polymer dots enhanced stability and flexibility of quasi-2D perovskite photodetector. Light: Science and Applications, 2022, 11, .	7.7	12
1502	Evaluation of the Passivation Effects of PEDOT:PSS on Inverted Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	26
1503	Preparation of Perovskite Solar Cells in the Air: Degradation Mechanism and Prospects on <scp>Largeâ€Area</scp> Fabrication ^{â€} . Chinese Journal of Chemistry, 2023, 41, 599-617.	2.6	11
1504	Surface Characterization of the Solutionâ€Processed Organic–Inorganic Hybrid Perovskite Thin Films. Small, 0, , 2204271.	5.2	1
1505	Hybrid Block Copolymer/Perovskite Heterointerfaces for Efficient Solar Cells. Advanced Materials, 2023, 35, .	11.1	14
1506	Synergistic modification of benzimidazole and bromohexyl for highly efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 453, 139698.	6.6	10
1507	An illustrative understanding on strengthening in stability and efficiency of perovskite solar cells: Utilization of the perovskite-constructed polymer hybrid system of PHQACI-CN inclusion. Journal of Materials Chemistry C, 0, , .	2.7	0
1508	Phase Rearrangement for Minimal Exciton Loss in Quasi-2D Perovskite toward Efficient Deep-Blue LEDs via Halide Post-treatment. Journal of Materials Chemistry C, 0, , .	2.7	1
1509	Optimization of tin oxide-based electron transport layer for perovskite solar cells. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2019, 36, 392-397.	0.1	0

#	Article	IF	CITATIONS
1510	Multifunctional Polymer as an Interfacial Layer for Efficient and Stable Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	2
1511	Correlating the perovskite/polymer multi-mode reactions with deep-level traps in perovskite solar cells. Joule, 2022, 6, 2849-2868.	11.7	29
1512	Construction of a Highly Anisotropic Supramolecular Assembly Assisted by a Dimensional Confinement Space: Toward Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 52262-52269.	4.0	0
1513	A Multifunctional Polymer as an Interfacial Layer for Efficient and Stable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
1514	Enhanced molecular interaction by polymer additive for efficient and stable flexible perovskite solar cells. Journal of Materials Science, 2022, 57, 20654-20671.	1.7	2
1516	Anisotropy growth of perovskite crystal induced by layered double hydroxide for efficiency enhancement of solar cell. Electrochimica Acta, 2023, 438, 141586.	2.6	1
1517	Design and synthesis of multifaceted dicyanomethylene rhodanine linked thiophene: a SnO _{<i>x</i>} –perovskite dual interface modifier facilitating enhanced device performance through improved Fermi level alignment, defect passivation and reduced energy loss. Sustainable Energy and Fuels, 2023, 7, 735-751.	2.5	2
1518	Experimentally informed structure optimization of amorphous TiO ₂ films grown by atomic layer deposition. Nanoscale, 0, , .	2.8	1
1519	Functionalized polymer modified buried interface for enhanced efficiency and stability of perovskite solar cells. Nanoscale, 2023, 15, 2054-2060.	2.8	6
1520	Chemical approaches for electronic doping in photovoltaic materials beyond crystalline silicon. Chemical Society Reviews, 2022, 51, 10016-10063.	18.7	11
1521	Efficient and Moistureâ€Stable Inverted Perovskite Solar Cells via nâ€Type Smallâ€Moleculeâ€Assisted Surface Treatment. Advanced Science, 2023, 10, .	5.6	16
1522	Dual-Functional 3-Acetyl-2,5-dimethylthiophene Additive-Assisted Crystallization Control and Trap State Passivation for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 14701-14711.	2.5	4
1523	Theoretical Study of Superhigh-Efficiency Janus WSSe/β-Te Non-Perovskite Heterojunction Solar Cells. ACS Applied Energy Materials, 2022, 5, 15316-15325.	2.5	4
1524	Recent advances in polymer and perovskite based third-generation solar cell devices. Materials Today: Proceedings, 2023, 74, 533-539.	0.9	0
1525	Nucleation Regulation and Anchoring of Halide Ions in Allâ€Inorganic Perovskite Solar Cells Assisted by CuInSe ₂ Quantum Dots. Advanced Functional Materials, 2023, 33, .	7.8	4
1526	Over 24% Efficient Poly(vinylidene fluoride) (PVDF)â€Coordinated Perovskite Solar Cells with a Photovoltage up to 1.22ÂV. Advanced Functional Materials, 2023, 33, .	7.8	32
1527	In-situ organic-inorganic ferroelectric layer growth for efficient perovskite solar cells with high photovoltage. Nano Energy, 2023, 107, 108114.	8.2	10
1528	Enhancing the Performance of Perovskite Solar Cells by 4â€Chloroâ€1,8â€Naphthalic Anhydride for Surface Passivation. Advanced Materials Interfaces, 0, , 2201809.	1.9	1

#	Article	IF	CITATIONS
1529	Synthesis of MAPbBr ₃ â€Polymer Composite Films by Photolysis of DMF: Toward Transparent and Flexible Optical Physical Unclonable Functions (PUFs) with Hierarchical Multilevel Complexity. Advanced Materials, 2023, 35, .	11.1	8
1530	Recent Advances on Nanocrystals Embedding for High Performance Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	6
1531	Tailoring Two-Dimensional Ruddlesden–Popper Perovskite via 1D Perovskitoid Enables Efficient and Stable Solar Cells. ACS Energy Letters, 2023, 8, 637-646.	8.8	7
1532	Enabling Efficient Blueâ€Emissive Circularly Polarized Luminescence by In Situ Crafting of Chiral Quasiâ€2D Perovskite Nanosheets within Polymer Nanofibers. Advanced Functional Materials, 2023, 33, .	7.8	16
1533	The current state of the art in internal additive materials and quantum dots for improving efficiency and stability against humidity in perovskite solar cells. Heliyon, 2022, 8, e11878.	1.4	2
1534	Stability and efficiency improvement of perovskite solar cells by surface hydroxyl defect passivation of SnO ₂ layer with 4-fluorothiophenol. Journal of Materials Chemistry A, 2023, 11, 3673-3681.	5.2	10
1535	Correlation between hysteresis dynamics and inductance in hybrid perovskite solar cells: studying the dependency on ETL/perovskite interfaces. Nanoscale, 2023, 15, 2152-2161.	2.8	4
1536	Aniline Sulfonic Acid Induced Uniform Perovskite Film for Large cale Photovoltaics. Advanced Energy Materials, 2023, 13, .	10.2	6
1537	High-quality perovskite films prepared by nucleus epitaxial growth for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 3599-3607.	5.2	12
1538	Seeding Agents in Metal Halide Perovskite Solar Cells: From Material to Mechanism. ChemSusChem, 2023, 16, .	3.6	6
1539	Performance enhancement strategies of fibrous solar cells for wearable hybrid energy systems. Journal of Materials Chemistry A, 2023, 11, 3210-3244.	5.2	5
1540	Green antisolvent-mediators stabilize perovskites for efficient NiOx-based inverted solar cells with Voc approaching 1.2ÂV. Chemical Engineering Journal, 2023, 457, 141204.	6.6	13
1541	Perovskite-quantum dot hybrid solar cells: a multi-win strategy for high performance and stability. Journal of Materials Chemistry A, 2023, 11, 4487-4509.	5.2	6
1542	Defect-Stabilized Tin-Based Perovskite Solar Cells Enabled by Multifunctional Molecular Additives. Chemistry of Materials, 2023, 35, 1148-1158.	3.2	8
1543	Multiple Function Synchronous Optimization by PbS Quantum Dots for Highly Stable Planar Perovskite Solar Cells with Efficiency Exceeding 23%. Advanced Functional Materials, 2023, 33, .	7.8	6
1544	Synergistic Defect Passivation by the Treatment of Ionic Liquids for Efficient and Stable Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	3
1545	Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science, 2023, 379, 288-294.	6.0	59
1546	An effective modulation of bulk perovskite by V ₂ CT _{<i>x</i>} nanosheets for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 5015-5026.	5.2	1

#	Article	IF	Citations
1547	Polymer-based nano-inks for solar cells. , 2023, , 359-388.		0
1548	Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation. Journal of Alloys and Compounds, 2023, 942, 169084.	2.8	7
1549	Crystal structures for flexible photovoltaic application. , 2023, , 493-525.		0
1550	Halide perovskites and high-pressure technologies: a fruitful encounter. Materials Chemistry Frontiers, 2023, 7, 2102-2119.	3.2	2
1551	Mxene regulates the stress of perovskite and improves interface contact for high-efficiency carbon-based all-inorganic solar cells. Chemical Engineering Journal, 2023, 461, 141895.	6.6	19
1552	Interface Regulation for Efficient and Stable Perovskite Solar Cells through Potassium Citrate Molecules. Chemistry - A European Journal, 2023, 29, .	1.7	1
1553	Inorganic Perovskite Surface Reconfiguration for Stable Inverted Solar Cells with 20.38% Efficiency and Its Application in Tandem Devices. Advanced Materials, 2023, 35, .	11.1	15
1554	Crystallinity Regulation and Defects Passivation for Efficient and Stable Perovskite Solar Cells Using Fully Conjugated Porous Aromatic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1555	Building optimistic perovskite-polymer composite solar cells: Feasible involvement of a BLP inclusion to efficiently stable perovskite films. Materials Science in Semiconductor Processing, 2023, 160, 107409.	1.9	0
1556	Optimization of Sn-based perovskite solar cells with the antisolvent doped by acetaldoxime. Organic Electronics, 2023, 119, 106809.	1.4	0
1557	Retina-inspired narrowband perovskite sensor array for panchromatic imaging. Science Advances, 2023, 9, .	4.7	3
1558	Recent advances of two-dimensional material additives in hybrid perovskite solar cells. Nanotechnology, 2023, 34, 172001.	1.3	5
1559	Simultaneous defect passivation and energy level modulation by multifunctional phthalocyanine for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 459, 141573.	6.6	7
1560	Dual-interface modification strategy via tautomeric UV absorber for efficient and UV stable planar perovskite solar cells. Organic Electronics, 2023, 115, 106762.	1.4	1
1561	A Polymer Strategy toward Highâ€Performance Multifunctional Perovskite Optoelectronics: From Polymer Matrix to Device Applications. Advanced Optical Materials, 2023, 11, .	3.6	4
1562	A Theoretical Study to Investigate the Impact of Bilayer Interfacial Modification in Perovskite Solar Cell. Energy Technology, 2023, 11, .	1.8	12
1563	Dual-side interfacial passivation of FAPbI3 perovskite film by Naphthylmethylammonium iodide for highly efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 460, 141788.	6.6	17
1564	Pbl ₆ Octahedra Stabilization Strategy Based on Ï€â€Ï€ Stacking Small Molecule Toward Highly Efficient and Stable Perovskite Solar Cells, Advanced Energy Materials, 2023, 13	10.2	24

		CITATION REPORT		
#	Article		IF	Citations
1565	Systematic investigation of metal dopants and mechanism for the SnO ₂ e transport layer in perovskite solar cells. Physical Chemistry Chemical Physics, 2023, 25,		1.3	3
1566	Liquidâ€State Dithiocarbonateâ€Based Polymeric Additives with Monodispersity Rende Solar Cells with Exceptionally High Certified Photocurrent and Fill Factor. Advanced Ene Materials, 2023, 13, .		10.2	13
1567	3D Polydentate Complexing Agents for Passivating Defects and Modulating Crystallinit Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	y for	7.8	13
1568	Terpyridine-zinc(<scp>ii</scp>) coordination nanosheets as modulators of perovskite of to enhance solar cell efficiency. Journal of Materials Chemistry A, 2023, 11, 7077-7084	rystallization	5.2	0
1569	Passivation Engineering Using Ultrahydrophobic Donor–π–Acceptor Organic Dye Learning Insights for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2023, 7, .	with Machine	3.1	4
1570	Multifunctional Green Solvent for Efficient Perovskite Solar Cells. Electronic Materials L 2023, 19, 462-470.	etters,	1.0	4
1571	Zwitterionic Ionic Liquid as Additive for Highâ€Performance FAPbI ₃ Perove with Negligible Hysteresis. Solar Rrl, 2023, 7, .	skite Solar Cells	3.1	6
1572	Oligo(ethylene glycol)-incorporated hole transporting polymers for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 6615-6624.	inverted	5.2	3
1573	Improved Crystallization of Lead Halide Perovskite in Twoâ€Step Growth Method by Pc "Slowâ€Release Effect― Small Methods, 2023, 7, .	lymerâ€Assisted	4.6	9
1574	Pure Chloride 2D/3D Heterostructure Passivation for Efficient and Stable Perovskite So Advanced Energy and Sustainability Research, 2023, 4, .	lar Cells.	2.8	2
1575	Interactions of Pyridineâ€Based Organic Cations as Structureâ€Determining Factors in Compounds <i>A</i> _x Pb(II) _y Br _z . European Jour Chemistry, 2023, 26, .	Perovskiteâ€Related nal of Inorganic	1.0	1
1576	Suppressed Voltage Deficit and Degradation of Perovskite Solar Cells by Regulating the Mineralization of Lead Iodide. Small, 2023, 19, .		5.2	7
1577	A Polymer Defect Passivator for Efficient Holeâ€Conductorâ€Free Printable Mesoscopio Cells. Advanced Functional Materials, 2023, 33, .	: Perovskite Solar	7.8	14
1578	Fabrication of Exfoliated BiOCl-Based PMMA Nanocomposite with Enhanced Structural Properties. Brazilian Journal of Physics, 2023, 53, .	and Thermal	0.7	1
1579	Improved Thermal Stability and Film Uniformity of Halide Perovskite by Confinement Ef Polymer Chains of Polyvinyl Pyrrolidone. Small, 2023, 19, .	fect brought by	5.2	6
1580	Molecular exchange and passivation at interface afford high-performing perovskite sola efficiency over 24%. Journal of Energy Chemistry, 2023, 82, 219-227.	r cells with	7.1	7
1581	Upcycled synthesis and extraction of carbonâ $\in\!\!e$ ncapsulated iron carbide nanoparticles applications in perovskite solar cells. EcoMat, 0, , .	for gap Plasmon	6.8	1
1582	Enantiomerically Pure Fullerenes as a Means to Enhance the Performance of Perovskite Advanced Energy Materials, 2023, 13, .	Solar Cells.	10.2	8

#	Article	IF	CITATIONS
1583	An Overview of Lead, Tin, and Mixed Tin–Leadâ€Based ABI ₃ Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	12
1584	Surface Defect Suppression for High Color Purity Lightâ€Emitting Diode of Freeâ€Standing Singleâ€Crystal Perovskite Film. Advanced Functional Materials, 2023, 33, .	7.8	4
1585	In situ growth of perovskite single-crystal thin films with low trap density. Cell Reports Physical Science, 2023, 4, 101363.	2.8	4
1586	Perovskite Materials for Photovoltaics: A Review. EPJ Applied Physics, 0, , .	0.3	0
1587	Crystallinity Regulation and Defects Passivation for Efficient and Stable Perovskite Solar Cells Using Fully Conjugated Porous Aromatic Frameworks. Angewandte Chemie, 0, , .	1.6	0
1588	Effective Approaches for Perovskite Solar Cells; Recent Advances and Perspectives. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0
1589	A facile surface trap passivation of perovskite absorber enabled by tetrabenzocorrolazine dye for efficient and stable planar perovskite solar cells. Dyes and Pigments, 2023, 216, 111333.	2.0	4
1593	A Review on Interface Engineering of MXenes for Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	16
1600	钙钛矿åå±,å≇é~³ç"µæ±ä,电è•ä¼è³⁄4"ææ−™çš"ç"究进展. Science China Materials, 2023, 66, 2107-2127.	3.5	1
1607	Precursor Solution Aging: A Universal Strategy Modulating Crystallization of Two-Dimensional Tin Halide Perovskite Films. ACS Energy Letters, 2023, 8, 3088-3094.	8.8	4
1628	Tailoring passivators for highly efficient and stable perovskite solar cells. Nature Reviews Chemistry, 2023, 7, 632-652.	13.8	36
1633	Long-term operating stability in perovskite photovoltaics. Nature Reviews Materials, 2023, 8, 569-586.	23.3	31
1640	Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation. Energy and Environmental Science, 2023, 16, 4251-4279.	15.6	1
1642	Three-dimensional lead iodide perovskites based on complex ions. Materials Advances, 0, , .	2.6	0
1646	Incorporation of functional polymers into metal halide perovskite thin-films: from interactions in solution to crystallization. Materials Advances, 2023, 4, 4294-4316.	2.6	1
1673	Perovskite Solar Cells. , 2023, , 131-164.		0
1681	Additive effect on hot carrier cooling in a hybrid perovskite. Chemical Communications, 0, , .	2.2	0
1706	The impact of moisture on the stability and degradation of perovskites in solar cells. Materials Advances, 2024, 5, 2200-2217.	2.6	0

ARTICLE

IF CITATIONS