Advances in understanding mechanisms underpinning

Nature Energy

1,

DOI: 10.1038/nenergy.2016.128

Citation Report

#	Article	IF	CITATIONS
1	A critical review of macroscopic modeling studies on LiÂO2 and Li–air batteries using organic electrolyte: Challenges and opportunities. Journal of Power Sources, 2016, 332, 420-446.	4.0	60
2	Hierarchically porous Pd/NiO nanomembranes as cathode catalysts in Li-O2 batteries. Nano Energy, 2016, 30, 69-76.	8.2	34
3	Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry, 2016, 25, 967-984.	7.1	409
4	Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Liâ^O ₂ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6014-6021.	4.0	52
5	Status and prospects of polymer electrolytes for solid-state Li–O ₂ (air) batteries. Energy and Environmental Science, 2017, 10, 860-884.	15.6	211
6	The importance of solvent selection in Li–O ₂ cells. Chemical Communications, 2017, 53, 3269-3272.	2.2	26
7	Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium–Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602674.	10.2	129
8	Hybrid Na–air flow batteries using an acidic catholyte: effect of the catholyte pH on the cell performance. Journal of Materials Chemistry A, 2017, 5, 11592-11600.	5.2	24
9	Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li–O ₂ Batteries: A Consideration for the Characterization of Lithium Superoxide. Journal of Physical Chemistry Letters, 2017, 8, 1169-1174.	2.1	110
10	Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries. Nature Communications, 2017, 8, 14308.	5.8	104
11	Twoâ€Dimensional Metal Oxide Nanomaterials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2017, 29, 1700176.	11.1	317
12	Mesoporous Co-CoO/N-CNR nanostructures as high-performance air cathode for lithium-oxygen batteries. Journal of Power Sources, 2017, 354, 48-56.	4.0	32
13	Oxygen Reduction Reaction in Highly Concentrated Electrolyte Solutions of Lithium Bis(trifluoromethanesulfonyl)amide/Dimethyl Sulfoxide. Journal of Physical Chemistry C, 2017, 121, 9162-9172.	1.5	70
14	Designer interphases for the lithium-oxygen electrochemical cell. Science Advances, 2017, 3, e1602809.	4.7	84
15	A Practical Highâ€Energy Cathode for Sodiumâ€Ion Batteries Based on Uniform P2â€Na _{0.7} CoO ₂ Microspheres. Angewandte Chemie - International Edition, 2017, 56, 5801-5805.	7.2	197
16	Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design. Nano Energy, 2017, 36, 68-75.	8.2	93
17	Reaction chemistry in rechargeable Li–O ₂ batteries. Chemical Society Reviews, 2017, 46, 2873-2888.	18.7	314
18	An Advanced Separator for Li–O ₂ Batteries: Maximizing the Effect of Redox Mediators. Advanced Energy Materials, 2017, 7, 1602417.	10.2	100

#	Article	IF	CITATIONS
19	Insights into dimethyl sulfoxide decomposition in Li-O 2 battery: Understanding carbon dioxide evolution. Electrochemistry Communications, 2017, 80, 16-19.	2.3	22
20	Phenolâ€Catalyzed Discharge in the Aprotic Lithiumâ€Oxygen Battery. Angewandte Chemie - International Edition, 2017, 56, 6539-6543.	7.2	55
21	Phenol atalyzed Discharge in the Aprotic Lithiumâ€Oxygen Battery. Angewandte Chemie, 2017, 129, 6639-6643.	1.6	24
22	Emerging 3Dâ€Printed Electrochemical Energy Storage Devices: A Critical Review. Advanced Energy Materials, 2017, 7, 1700127.	10.2	300
23	A Practical Highâ€Energy Cathode for Sodiumâ€Ion Batteries Based on Uniform P2â€Na _{0.7} CoO ₂ Microspheres. Angewandte Chemie, 2017, 129, 5895-5899.	1.6	25
24	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters, 2017, 2, 1385-1394.	8.8	314
25	Objectively Evaluating the Cathode Performance of Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602938.	10.2	33
26	Full Performance Nanoporous Graphene Based Liâ€O ₂ Batteries through Solution Phase Oxygen Reduction and Redoxâ€Additive Mediated Li ₂ O ₂ Oxidation. Advanced Energy Materials, 2017, 7, 1601933.	10.2	65
27	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	5.2	50
28	Understanding oxygen electrochemistry in aprotic Li O2 batteries. Green Energy and Environment, 2017, 2, 186-203.	4.7	59
29	Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Liâ°'O ₂ Batteries. Angewandte Chemie - International Edition, 2017, 56, 8505-8509.	7.2	90
30	Sodium Peroxide Dihydrate or Sodium Superoxide: The Importance of the Cell Configuration for Sodium–Oxygen Batteries. Small Methods, 2017, 1, 1700102.	4.6	34
31	On the incompatibility of lithium–O ₂ battery technology with CO ₂ . Chemical Science, 2017, 8, 6117-6122.	3.7	30
32	Breathable Carbonâ€Free Electrode: Black TiO ₂ with Hierarchically Ordered Porous Structure for Stable Li–O ₂ Battery. Advanced Energy Materials, 2017, 7, 1700814.	10.2	65
33	The impact of solvent properties on the performance of oxygen reduction and evolution in mixed tetraglyme-dimethyl sulfoxide electrolytes for Li-O2 batteries: Mechanism and stability. Electrochimica Acta, 2017, 245, 967-980.	2.6	23
34	Design Strategies toward Advanced MOFâ€Derived Electrocatalysts for Energyâ€Conversion Reactions. Advanced Energy Materials, 2017, 7, 1700518.	10.2	539
35	Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Liâ^'O 2 Batteries. Angewandte Chemie, 2017, 129, 8625-8629.	1.6	11
36	Polydopamine-Derived Nitrogen-Doped Graphitic Carbon for a Bifunctional Oxygen Electrode in a Non-Aqueous Li-O ₂ Battery. Journal of the Electrochemical Society, 2017, 164, A1595-A1600.	1.3	17

#	Article	IF	CITATIONS
37	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 9126-9130.	7.2	154
38	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie, 2017, 129, 9254-9258.	1.6	22
39	Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy. Nature Nanotechnology, 2017, 12, 535-539.	15.6	160
40	Bonding interactions in Li/Na oxides, peroxides and superoxides and their implication to the performance of the Li/Na-air batteries. Solid State Ionics, 2017, 303, 24-28.	1.3	3
41	Mechanistic Evolution of Aprotic Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602934.	10.2	130
42	Three-dimensionally branched carbon nanowebs as air-cathode for redox-mediated Li-O2 batteries. Carbon, 2017, 118, 114-119.	5.4	29
43	Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nature Energy, 2017, 2, .	19.8	328
44	One-pot surface engineering of battery electrode materials with metallic SWCNT-enriched, ivy-like conductive nanonets. Journal of Materials Chemistry A, 2017, 5, 12103-12112.	5.2	7
45	Exploring Solvent Stability against Nucleophilic Attack by Solvated LiO ₂ ^{â^'} in an Aprotic Li-O ₂ Battery. Journal of the Electrochemical Society, 2017, 164, A284-A289.	1.3	14
46	A Viewpoint on Heterogeneous Electrocatalysis and Redox Mediation in Nonaqueous Li-O ₂ Batteries. ACS Catalysis, 2017, 7, 772-778.	5.5	82
47	Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions. Applied Energy, 2017, 187, 706-716.	5.1	22
48	Understanding LiOH Chemistry in a Ruthenium atalyzed Li–O ₂ Battery. Angewandte Chemie, 2017, 129, 16273-16278.	1.6	24
49	Cell Concepts of Metal–Sulfur Batteries (MetalÂ=ÂLi, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications. Topics in Current Chemistry, 2017, 375, 81.	3.0	51
50	An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability. Nano Energy, 2017, 41, 535-542.	8.2	71
51	Mapping a stable solvent structure landscape for aprotic Li–air battery organic electrolytes. Journal of Materials Chemistry A, 2017, 5, 23987-23998.	5.2	33
52	Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2525-2530.	8.8	30
53	Anion-Dependent Potential Precycling Effects on Lithium Deposition/Dissolution Reaction Studied by an Electrochemical Quartz Crystal Microbalance. Journal of Physical Chemistry Letters, 2017, 8, 5203-5208.	2.1	10
54	Porous Perovskite La _{0.6} Sr _{0.4} Co _{0.8} Mn _{0.2} O ₃ Nanofibers Loaded with RuO ₂ Nanosheets as an Efficient and Durable Bifunctional Catalyst for Rechargeable Li–O ₂ Batteries ACS Catalysis 2017 7 7737-7747	5.5	102

#	Article	IF	CITATIONS
55	Singlet Oxygen during Cycling of the Aprotic Sodium–O ₂ Battery. Angewandte Chemie - International Edition, 2017, 56, 15728-15732.	7.2	99
56	Singulettâ€Sauerstoff in der aprotischen Natriumâ€O ₂ â€Batterie. Angewandte Chemie, 2017, 129, 15934-15938.	1.6	14
57	Probing the reaction interface in Li–O2 batteries using electrochemical impedance spectroscopy: dual roles of Li2O2. Chemical Communications, 2017, 53, 11418-11421.	2.2	23
58	A Rational Design of Highâ€Performance Sandwichâ€Structured Quasisolid State Li–O ₂ Battery with Redox Mediator. Advanced Materials Interfaces, 2017, 4, 1700693.	1.9	34
59	A platinum catalyst deposited on a zirconia support for the design of lithium–oxygen batteries with enhanced cycling ability. Chemical Communications, 2017, 53, 11767-11770.	2.2	9
60	Lithium–oxygen batteries: At a crossroads?. Current Opinion in Electrochemistry, 2017, 6, 100-107.	2.5	28
61	Bifunctional Redox Mediator Supported by an Anionic Surfactant for Long-Cycle Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2659-2666.	8.8	42
62	Understanding LiOH Chemistry in a Rutheniumâ€Catalyzed Li–O ₂ Battery. Angewandte Chemie - International Edition, 2017, 56, 16057-16062.	7.2	78
63	Synergistic Integration of Soluble Catalysts with Carbon-Free Electrodes for Li–O ₂ Batteries. ACS Catalysis, 2017, 7, 8192-8199.	5.5	21
64	Effects of oxygen partial pressure on Li-air battery performance. Journal of Power Sources, 2017, 364, 280-287.	4.0	23
65	Li–O ₂ Cell with LiI(3-hydroxypropionitrile) ₂ as a Redox Mediator: Insight into the Working Mechanism of I [–] during Charge in Anhydrous Systems. Journal of Physical Chemistry Letters, 2017, 8, 4218-4225.	2.1	35
66	Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Journal of the American Chemical Society, 2017, 139, 11550-11558.	6.6	398
67	Lithium cell-assisted low-overpotential Li–O ₂ batteries by in situ discharge activation. Chemical Communications, 2017, 53, 10568-10571.	2.2	5
68	Recent advances in understanding of the mechanism and control of Li ₂ O ₂ formation in aprotic Li–O ₂ batteries. Chemical Society Reviews, 2017, 46, 6046-6072.	18.7	314
69	Positive role of oxygen vacancy in electrochemical performance of CoMn 2 O 4 cathodes for Li-O 2 batteries. Journal of Power Sources, 2017, 365, 134-147.	4.0	84
70	Growth of NaO ₂ in Highly Efficient Na–O ₂ Batteries Revealed by Synchrotron In Operando X-ray Diffraction. ACS Energy Letters, 2017, 2, 2440-2444.	8.8	23
71	Recent Progress in Electrocatalyst for Liâ€O ₂ Batteries. Advanced Energy Materials, 2017, 7, 1700875.	10.2	235
72	Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, 1, 394-406.	11.7	202

#	Article	IF	CITATIONS
73	Direct Observations of the Formation and Redoxâ€Mediatorâ€Assisted Decomposition of Li ₂ O ₂ in a Liquidâ€Cell Li–O ₂ Microbattery by Scanning Transmission Electron Microscopy. Advanced Materials, 2017, 29, 1702752.	11.1	41
74	Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy and Environmental Science, 2017, 10, 2056-2080.	15.6	477
75	Nanodiamonds suppress the growth of lithium dendrites. Nature Communications, 2017, 8, 336.	5.8	327
76	An Outlook on Lithium Ion Battery Technology. ACS Central Science, 2017, 3, 1063-1069.	5.3	997
77	Highâ€Performance Lithiumâ€Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt. Advanced Science, 2017, 4, 1700235.	5.6	43
78	Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte. Small, 2017, 13, 1701025.	5.2	103
79	Unraveling the Complex Role of Iodide Additives in Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 1869-1878.	8.8	102
80	A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nature Energy, 2017, 2, .	19.8	238
81	Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 2017, 117, 10121-10211.	23.0	1,157
82	Perspective—The Correct Assessment of Standard Potentials of Reference Electrodes in Non-Aqueous Solution. Journal of the Electrochemical Society, 2017, 164, A2295-A2297.	1.3	42
83	Optimized Bicompartment Two Solution Cells for Effective and Stable Operation of Li–O ₂ Batteries. Advanced Energy Materials, 2017, 7, 1701232.	10.2	61
84	An aluminum – ionic liquid interface sustaining a durable Al-air battery. Journal of Power Sources, 2017, 364, 110-120.	4.0	48
85	In Situ Surface-Enhanced Infrared Spectroscopy to Identify Oxygen Reduction Products in Nonaqueous Metal–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 19657-19667.	1.5	42
86	Achieving highly stable Li–O ₂ battery operation by designing a carbon nitride-based cathode towards a stable reaction interface. Journal of Materials Chemistry A, 2017, 5, 18207-18213.	5.2	14
87	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
88	MoS ₂ @VS ₂ Nanocomposite as a Superior Hybrid Anode Material. ACS Applied Materials & Interfaces, 2017, 9, 29942-29949.	4.0	74
89	An InÂVivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal. Joule, 2017, 1, 871-886.	11.7	271
90	Co ₃ O ₄ functionalized porous carbon nanotube oxygen-cathodes to promote Li ₂ O ₂ surface growth for improved cycling stability of Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 25501-25508.	5.2	31

#	Article	IF	CITATIONS
91	Controversial Topics on Lithium Superoxide in Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2756-2760.	8.8	46
92	Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode. Physical Chemistry Chemical Physics, 2017, 19, 30861-30873.	1.3	65
93	Advances in modeling and simulation of Li–air batteries. Progress in Energy and Combustion Science, 2017, 62, 155-189.	15.8	68
94	A Highâ€Performance Li–O ₂ Battery with a Strongly Solvating Hexamethylphosphoramide Electrolyte and a LiPONâ€Protected Lithium Anode. Advanced Materials, 2017, 29, 1701568.	11.1	146
95	True performance metrics in beyond-intercalation batteries. Nature Energy, 2017, 2, .	19.8	73
96	Electrode/Electrolyte Interface in the Li–O ₂ Battery: Insight from Molecular Dynamics Study. Journal of Physical Chemistry C, 2017, 121, 14463-14469.	1.5	34
97	Li ₂ O ₂ as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chemical Communications, 2017, 53, 8324-8327.	2.2	65
98	Iron–Air Battery Operating at High Temperature. Energy Technology, 2017, 5, 670-680.	1.8	18
99	Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 2017, 4, 54-70.	4.6	128
100	Yolk–shell Co ₂ CrO ₄ nanospheres as highly active catalysts for Li–O ₂ batteries: understanding the electrocatalytic mechanism. Journal of Materials Chemistry A, 2017, 5, 544-553.	5.2	30
101	Nanostructured porous graphene and its composites for energy storage applications. Nano Convergence, 2017, 4, 29.	6.3	33
102	Recent Progress of Battery Materials. Materia Japan, 2017, 56, 135-139.	0.1	Ο
103	Studies of Lithium-Oxygen Battery Electrodes by Energy- Dependent Full-Field Transmission Soft X-Ray Microscopy. , 2017, , .		2
104	Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Advanced Sustainable Systems, 2018, 2, 1700183.	2.7	46
105	Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nature Communications, 2018, 9, 767.	5.8	93
106	The evolution of selenium cathodes: from infusion melts to particle synthesis. Sustainable Energy and Fuels, 2018, 2, 759-762.	2.5	3
107	A High-Capacity Lithium–Gas Battery Based on Sulfur Fluoride Conversion. Journal of Physical Chemistry C, 2018, 122, 7128-7138.	1.5	23
108	Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nature Energy, 2018, 3, 310-316.	19.8	413

#	Article	IF	CITATIONS
109	Enhanced Lithium Oxygen Battery Using a Glyme Electrolyte and Carbon Nanotubes. ACS Applied Materials & Interfaces, 2018, 10, 16367-16375.	4.0	21
110	Elektrochemische Oxidation von Lithiumcarbonat generiert Singulettâ€Sauerstoff. Angewandte Chemie, 2018, 130, 5627-5631.	1.6	13
111	Nature inspired cathodes using high-density carbon papers with an eddy current effect for high-rate performance lithium–air batteries. Journal of Materials Chemistry A, 2018, 6, 9550-9560.	5.2	16
112	Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 7762-7769.	5.2	131
113	Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nature Communications, 2018, 9, 1339.	5.8	265
114	Strongly Coupled Carbon Nanosheets/Molybdenum Carbide Nanocluster Hollow Nanospheres for Highâ€Performance Aprotic Li–O ₂ Battery. Small, 2018, 14, e1704366.	5.2	39
115	Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134.	1.6	25
116	Facile and scalable carbon- and binder-free electrode materials for ultra-stable and highly improved Li–O ₂ batteries. Chemical Communications, 2018, 54, 2858-2861.	2.2	12
117	Confined organometallic Au1N single-site as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2018, 46, 110-116.	8.2	77
118	Rational design of protective In2O3 layer-coated carbon nanopaper membrane: Toward stable cathode for long-cycle Li-O2 batteries. Nano Energy, 2018, 46, 193-202.	8.2	58
119	Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries. Nature Communications, 2018, 9, 680.	5.8	85
120	Elektrolytadditive für Lithiummetallanoden und wiederaufladbare Lithiummetallbatterien: Fortschritte und Perspektiven. Angewandte Chemie, 2018, 130, 15220-15246.	1.6	54
121	Preparation of graphene hollow spheres from vacuum residue of ultra-heavy oil as an effective oxygen electrode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 4040-4047.	5.2	18
122	Three-Dimensional Nanofibrous Air Electrode Assembled With Carbon Nanotubes-Bridged Hollow Fe ₂ O ₃ Nanoparticles for High-Performance Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 6531-6540.	4.0	55
123	Carbonaceous catholyte for high energy density semi-solid Li/O2 flow battery. Carbon, 2018, 130, 749-757.	5.4	19
124	The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O ₂ Batteries. Journal of the American Chemical Society, 2018, 140, 1428-1437.	6.6	88
125	Tailoring Sodium Anodes for Stable Sodium–Oxygen Batteries. Advanced Functional Materials, 2018, 28, 1706374.	7.8	63
126	Critically Examining the Role of Nanocatalysts in Li–O ₂ Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. ACS Energy Letters, 2018, 3, 592-597	8.8	82

#	Article	IF	CITATIONS
127	Advances in Manganeseâ€Based Oxides Cathodic Electrocatalysts for Li–Air Batteries. Advanced Functional Materials, 2018, 28, 1704973.	7.8	120
128	Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie - International Edition, 2018, 57, 15002-15027.	7.2	551
129	Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Materials, 2018, 13, 29-48.	9.5	84
130	Design Principles of Functional Polymer Separators for Highâ€Energy, Metalâ€Based Batteries. Small, 2018, 14, e1703001.	5.2	155
131	Clean Electrocatalysis in a Li ₂ O ₂ Redox-Based Li–O ₂ Battery Built with a Hydrate-Melt Electrolyte. ACS Catalysis, 2018, 8, 1082-1089.	5.5	23
132	Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. Energy Storage Materials, 2018, 13, 49-56.	9.5	71
133	A lithium-ion oxygen battery with a Si anode lithiated <i>in situ</i> by a Li ₃ N-containing cathode. Chemical Communications, 2018, 54, 1069-1072.	2.2	23
134	A combined approach for high-performance Li–O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor–promoter. APL Materials, 2018, 6, .	2.2	12
135	Quantifying Total Superoxide, Peroxide, and Carbonaceous Compounds in Metal–O ₂ Batteries and the Solid Electrolyte Interphase. ACS Energy Letters, 2018, 3, 170-176.	8.8	24
136	Li Salt Anion Effect on O ₂ Solubility in an Li–O ₂ Battery. Journal of Physical Chemistry C, 2018, 122, 1913-1920.	1.5	15
137	Hierarchically Designed 3D Holey C ₂ N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries. ACS Nano, 2018, 12, 596-608.	7.3	159
138	Revealing the Reaction Mechanism of Na–O ₂ Batteries using Environmental Transmission Electron Microscopy. ACS Energy Letters, 2018, 3, 393-399.	8.8	30
139	A Highly Active Oxygen Evolution Catalyst for Lithium-Oxygen Batteries Enabled by High-Surface-Energy Facets. Joule, 2018, 2, 1511-1521.	11.7	59
140	Graphene Nanoplatelet-Polysulfone Composite Cathodes for High-Power Aluminum Rechargeable Batteries. Electrochemistry, 2018, 86, 72-76.	0.6	11
141	Porous MnO as efficient catalyst towards the decomposition of Li2CO3 in ambient Li-air batteries. Electrochimica Acta, 2018, 280, 308-314.	2.6	27
142	Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries. Nano Energy, 2018, 49, 338-345.	8.2	59
143	3D hierarchical Co/CoO/C nanocomposites with mesoporous microsheets grown on nickel foam as cathodes for Li-O2 batteries. Journal of Alloys and Compounds, 2018, 749, 378-384.	2.8	18
144	Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 13552-13561.	4.0	95

#	Article	IF	CITATIONS
145	An Open‧tructured Matrix as Oxygen Cathode with High Catalytic Activity and Large Li ₂ O ₂ Accommodations for Lithium–Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1800089.	10.2	88
146	Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen. Angewandte Chemie - International Edition, 2018, 57, 5529-5533.	7.2	204
147	High capacity surface route discharge at the potassium-O2 electrode. Journal of Electroanalytical Chemistry, 2018, 819, 542-546.	1.9	21
148	Functional and stability orientation synthesis of materials and structures in aprotic Li–O ₂ batteries. Chemical Society Reviews, 2018, 47, 2921-3004.	18.7	282
149	Transient High-Power Output of Aprotic Li-O2Batteries Based on Cathode Capacitance Behavior. Journal of the Electrochemical Society, 2018, 165, A757-A763.	1.3	1
150	Understanding Ion Pairing in High-Salt Concentration Electrolytes Using Classical Molecular Dynamics Simulations and Its Implications for Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry C, 2018, 122, 8094-8101.	1.5	20
151	Fluorinated Aryl Sulfonimide Tagged (FAST) salts: modular synthesis and structure–property relationships for battery applications. Energy and Environmental Science, 2018, 11, 1326-1334.	15.6	26
152	Towards Synergistic Electrode–Electrolyte Design Principles for Nonaqueous Li–O\$\$_2\$\$ batteries. Topics in Current Chemistry, 2018, 376, 11.	3.0	5
153	Inâ€Situ Incorporation Strategy for Bimetallic FeCoâ€Doped Carbon as Highly Efficient Bifunctional Oxygen Electrocatalysts. ChemElectroChem, 2018, 5, 1401-1406.	1.7	33
154	Fe ₂ O ₃ Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic LiO ₂ Batteries. Advanced Energy Materials, 2018, 8, 1703513.	10.2	43
155	Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy, 2018, 47, 427-433.	8.2	47
156	Hydrogen transfer and quinone/hydroquinone transitions in graphene-based materials. Carbon, 2018, 126, 443-451.	5.4	14
157	The Longâ€Term Stability of KO ₂ in Kâ€O ₂ Batteries. Angewandte Chemie - International Edition, 2018, 57, 1227-1231.	7.2	55
158	Enhanced electrocatalytic performance of Fe-TiO2/N-doped graphene cathodes for rechargeable Li-O2 batteries. Journal of Solid State Electrochemistry, 2018, 22, 909-917.	1.2	14
159	The Longâ€Term Stability of KO ₂ in Kâ€O ₂ Batteries. Angewandte Chemie, 2018, 130, 1241-1245.	1.6	30
160	Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O ₂ Batteries. ACS Nano, 2018, 12, 128-139.	7.3	230
161	Highâ€Capacity and Highâ€Rate Discharging of a Coenzyme Q ₁₀ â€Catalyzed Li–O ₂ Battery. Advanced Materials, 2018, 30, 1705571.	11.1	100
162	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 992-996.	7.2	178

#	Article	IF	CITATIONS
163	Li ₂ CO ₃ : Die Achillesferse von Lithium‣uftâ€Batterien. Angewandte Chemie, 2018, 130, 3936-3949.	1.6	20
164	An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O2 design for Li-O2 battery. Energy Storage Materials, 2018, 12, 176-182.	9.5	41
165	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie, 2018, 130, 1004-1008.	1.6	55
166	Achilles' Heel of Lithium–Air Batteries: Lithium Carbonate. Angewandte Chemie - International Edition, 2018, 57, 3874-3886.	7.2	186
167	New Electrode and Electrolyte Configurations for Lithiumâ€Oxygen Battery. Chemistry - A European Journal, 2018, 24, 3178-3185.	1.7	12
168	NiO nanosheets anchored on honeycomb porous carbon derived from wheat husk for symmetric supercapacitor with high performance. Journal of Alloys and Compounds, 2018, 735, 1722-1729.	2.8	63
169	Dynamic oxygen shield eliminates cathode degradation in lithium–oxygen batteries. Energy and Environmental Science, 2018, 11, 3500-3510.	15.6	38
170	Synergistic oxygen reduction of dual redox catalysts boosting the power of lithium–air battery. Physical Chemistry Chemical Physics, 2018, 20, 27930-27936.	1.3	19
171	Extending cycling life of lithium–oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method. Journal of Materials Chemistry A, 2018, 6, 21458-21467.	5.2	23
172	Fast and Simultaneous Determination of Gas Diffusivities and Solubilities in Liquids Employing a Thin-Layer Cell Coupled to a Mass Spectrometer, Part I: Setup and Methodology. Analytical Chemistry, 2018, 90, 14145-14149.	3.2	9
173	Minimizing the Abnormal High-Potential Discharge Process Related to Redox Mediators in Lithium–Oxygen Batteries. Journal of Physical Chemistry Letters, 2018, 9, 6761-6766.	2.1	10
174	The Fate of Water at the Electrochemical Interfaces: Electrochemical Behavior of Free Water Versus Coordinating Water. Journal of Physical Chemistry Letters, 2018, 9, 6683-6688.	2.1	105
175	Origin of the Overpotential for the Oxygen Evolution Reaction on a Well-Defined Graphene Electrode Probed by in Situ Sum Frequency Generation Vibrational Spectroscopy. Journal of the American Chemical Society, 2018, 140, 15568-15571.	6.6	64
176	Atomic-Thick TiO ₂ (B) Nanosheets Decorated with Ultrafine Co ₃ O ₄ Nanocrystals As a Highly Efficient Catalyst for Lithium–Oxygen Battery. ACS Applied Materials & Interfaces, 2018, 10, 41398-41406.	4.0	37
177	Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime. NPG Asia Materials, 2018, 10, 1037-1045.	3.8	35
178	Making Li2O2 Different in Solution. CheM, 2018, 4, 2730-2731.	5.8	3
179	Applications of Conventional Vibrational Spectroscopic Methods for Batteries Beyond Liâ€Ion. Small Methods, 2018, 2, 1700332.	4.6	33
180	Metallic MoS ₂ nanosheets: multifunctional electrocatalyst for the ORR, OER and Li–O ₂ batteries. Nanoscale, 2018, 10, 22549-22559.	2.8	93

#	Article	IF	CITATIONS
181	A Solvent-Controlled Oxidation Mechanism of Li2O2 in Lithium-Oxygen Batteries. Joule, 2018, 2, 2364-2380.	11.7	139
182	Enhanced Cycling Performance of Li–O ₂ Battery by Using a Li ₃ PO ₄ -Protected Lithium Anode in DMSO-Based Electrolyte. ACS Applied Energy Materials, 2018, 1, 5511-5517.	2.5	20
183	Controlling Reversible Expansion of Li2O2 Formation and Decomposition by Modifying Electrolyte in Li-O2 Batteries. CheM, 2018, 4, 2685-2698.	5.8	49
184	Size effects of micro-pattern on lithium metal surface on the electrochemical performance of lithium metal secondary batteries. Journal of Power Sources, 2018, 408, 136-142.	4.0	20
185	Diffusivity and Solubility of Oxygen in Solvents for Metal/Oxygen Batteries: A Combined Theoretical and Experimental Study. Journal of the Electrochemical Society, 2018, 165, A3095-A3099.	1.3	24
186	Hybrid Li-Ion and Li-O2 Battery Enabled by Oxyhalogen-Sulfur Electrochemistry. Joule, 2018, 2, 2381-2392.	11.7	14
187	From Ionic Liquids to Solvate Ionic Liquids: Challenges and Opportunities for Next Generation Battery Electrolytes. Bulletin of the Chemical Society of Japan, 2018, 91, 1660-1682.	2.0	85
188	WS ₂ –Graphite Dual-Ion Batteries. Nano Letters, 2018, 18, 7155-7164.	4.5	88
189	Vertically-aligned graphene nanowalls grown via plasma-enhanced chemical vapor deposition as a binder-free cathode in Li–O ₂ batteries. Nanotechnology, 2018, 29, 505401.	1.3	8
191	Promoting Solution Discharge of Li–O ₂ Batteries with Immobilized Redox Mediators. Journal of Physical Chemistry Letters, 2018, 9, 5915-5920.	2.1	33
192	Synergistic Effect of CuGeO ₃ /Graphene Composites for Efficient Oxygen–Electrode Electrocatalysts in Li–O ₂ Batteries. Advanced Energy Materials, 2018, 8, 1801930.	10.2	37
193	A perfluorocarbon–silicone oil oxygen–selective membrane for ambient operation of aprotic Li–air batteries. Electrochemistry Communications, 2018, 96, 93-97.	2.3	25
196	Mixed Lithium Oxynitride/Oxysulfide as an Interphase Protective Layer To Stabilize Lithium Anodes for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39695-39704.	4.0	35
197	Ion Pairing Limits Crystal Growth in Metal–Oxygen Batteries. ACS Energy Letters, 2018, 3, 2342-2348.	8.8	15
198	Honeycomb-like Ni3S2 supported on Ni foam as high performance free-standing cathode for lithium oxygen batteries. Electrochimica Acta, 2018, 290, 657-665.	2.6	41
199	Three-Dimensional Interconnected Network Architecture with Homogeneously Dispersed Carbon Nanotubes and Layered MoS ₂ as a Highly Efficient Cathode Catalyst for Lithium–Oxygen Battery. ACS Applied Materials & Interfaces, 2018, 10, 34077-34086.	4.0	72
200	Viable Synthesis of Porous MnCo ₂ 0 ₄ /Graphene Composite by Sonochemical Grafting: A Highâ€Rateâ€Capable Oxygen Cathode for Li–O ₂ Batteries. Chemistry - A European Journal, 2018, 24, 17303-17310.	1.7	16
201	Potassium Superoxide: A Unique Alternative for Metal–Air Batteries. Accounts of Chemical Research, 2018, 51, 2335-2343	7.6	99

#	Article	IF	Citations
202	Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O ₂ Batteries: Recent Progress and Perspective. Advanced Energy Materials, 2018, 8, 1800348.	10.2	137
203	NiCo ₂ O ₄ /MnO ₂ core/shell arrays as a binder-free catalytic cathode for high-performance lithium–oxygen cells. Inorganic Chemistry Frontiers, 2018, 5, 1707-1713.	3.0	21
204	PdNi alloy decorated 3D hierarchicallyÂN, S co-doped macro–mesoporous carbon composites as efficient free-standing and binder-free catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 10856-10867.	5.2	47
205	Role of asymmetry in the physiochemical and electrochemical behaviors of perfluorinated sulfonimide anions for lithium batteries: A DFT study. Electrochimica Acta, 2018, 280, 290-299.	2.6	26
206	Recent Advances on Sodium–Oxygen Batteries: A Chemical Perspective. Accounts of Chemical Research, 2018, 51, 1532-1540.	7.6	51
207	Unveiling the Complex Effects of H ₂ O on Discharge–Recharge Behaviors of Aprotic Lithium–O ₂ Batteries. Journal of Physical Chemistry Letters, 2018, 9, 3333-3339.	2.1	60
208	Elucidating the Impact of Sodium Salt Concentration on the Cathode–Electrolyte Interface of Na–Air Batteries. Journal of Physical Chemistry C, 2018, 122, 15276-15286.	1.5	25
209	Rechargeable Al–CO ₂ Batteries for Reversible Utilization of CO ₂ . Advanced Materials, 2018, 30, e1801152.	11.1	96
210	Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energyâ€Related Applications. Small Methods, 2018, 2, 1800071.	4.6	285
211	CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li-O2 batteries. Chemical Engineering Journal, 2018, 349, 235-240.	6.6	38
212	Discharge Li-O2 batteries with intermittent current. Journal of Power Sources, 2018, 394, 50-56.	4.0	13
213	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	11.1	163
214	A lithium ion/oxygen hybrid battery with high energy and high power. Chemical Communications, 2018, 54, 8112-8115.	2.2	3
215	From synthesis to applications: Metal–organic frameworks for an environmentally sustainable future. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 47-56.	3.2	33
216	Introduction to Batteries. SpringerBriefs in Applied Sciences and Technology, 2018, , 1-8.	0.2	7
217	Revealing the Chemical Mechanism of NaO ₂ Decomposition by In Situ Raman Imaging. Chemistry of Materials, 2018, 30, 5156-5160.	3.2	23
218	A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries. Nano Energy, 2018, 51, 83-90.	8.2	54
219	Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable Na–O ₂ batteries. Energy and Environmental Science, 2018, 11, 2833-2838.	15.6	33

ARTICLE IF CITATIONS Graphene Oxide Sieving Membrane for Improved Cycle Life in Highâ€Efficiency Redoxâ€Mediated 220 5.2 30 Liâ∉"O₂ batteries. Small, 2018, 14, e1801456. $\label{eq:mesoporous} MnCo₂S₄ nanosheet arrays as an efficient catalyst for Liâ€"O₂ batteries. Nanoscale, 2018, 10, 15588-15599.$ 221 2.8 A new thin layer cell for battery related DEMS-experiments: the activity of redox mediators in the 222 1.3 24 Li–O2 cell. Physical Chemistry Chemical Physics, 2018, 20, 21447-21456. Threeâ€Dimensional Flowerâ€Like MoS₂@Carbon Nanotube Composites with Interconnected Porous Networks and High Catalytic Activity as Cathode for Lithiumâ€Oxygen Batteries. ChemElectroChem, 2018, 5, 2816-2824. Flexible, Flameâ€Resistant, and Dendriteâ€Impermeable Gelâ€Polymer Electrolyte for Li–O₂/Air 224 5.2 113 Batteries Workable Under Hurdle Conditions. Small, 2018, 14, e1801798. Tuning NaO₂ Cube Sizes by Controlling Na⁺ and Solvent Activity in Naâ€"O₂ Batteries. Journal of Physical Chemistry C, 2018, 122, 18316-18328. 1.5 Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and Promising 226 186 GeCl₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711. Progress and Future Perspectives on Li(Na)â€"CO₂ Batteries. Advanced Sustainable Systems, 2.7 54 2018, 2, 1800060. Fabrication of perovskite-based porous nanotubes as efficient bifunctional catalyst and application in 228 5.2 23 hybrid lithium–oxygen batteries. Journal of Materials Chemistry A, 2018, 6, 16943-16949. Review of electrical energy storage technologies, materials and systems: challenges and prospects 229 15.6 1,467 for large-scale grid storage. Energy and Environmental Science, 2018, 11, 2696-2767. Thermodynamic and Kinetic Limitations for Peroxide and Superoxide Formation in Na–O₂ 230 2.1 16 Batteries. Journal of Physical Chemistry Letters, 2018, 9, 4413-4419. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. Journal 4.0 of Power Sources, 2018, 396, 782-790. Binary Mixtures of Highly Concentrated Tetraglyme and Hydrofluoroether as a Stable and Nonflammable Electrolyte for Li–O₂ Batteries. ACS Applied Materials & Interfaces, 232 4.0 44 2018, 10, 26312-26319. SnS₂/TiO₂ nanohybrids chemically bonded on nitrogen-doped graphene for lithium–sulfur batteries: synergy of vacancy defects and heterostructures. Nanoscale, 2018, 10, 15505-15512. 2.8 116 Benchmarking Semiempirical Methods To Compute Electrochemical Formal Potentials. Journal of 234 1.1 15 Physical Chemistry A, 2018, 122, 6809-6818. A Synergistic Catalytic Mechanism for Oxygen Evolution Reaction in Aprotic Li–O₂ Battery. ACS Catalysis, 2018, 8, 7983-7990. High-Performance Na–O₂ Batteries Enabled by Oriented NaO₂ Nanowires as 236 4.5 33 Discharge Products. Nano Letters, 2018, 18, 3934-3942. Determining the Facile Routes for Oxygen Evolution Reaction by <i>In Situ</i> Probing of Li–O₂ Cells with Conformal Li₂O₂ Films. Journal of the American 6.6 64 Chemical Society, 2018, 140, 6190-6193.

#	Article	IF	CITATIONS
238	New Opportunities for Air Cathode Batteries; in-Situ Neutron Diffraction Measurements. Frontiers in Energy Research, 2018, 6, .	1.2	5
239	A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science, 2018, 361, 777-781.	6.0	356
240	Effects of Polymer Coatings on Electrodeposited Lithium Metal. Journal of the American Chemical Society, 2018, 140, 11735-11744.	6.6	307
241	Review—A Comparative Evaluation of Redox Mediators for Li-O ₂ Batteries: A Critical Review. Journal of the Electrochemical Society, 2018, 165, A2274-A2293.	1.3	63
242	Probing the Reaction Interface in Li–Oxygen Batteries Using Dynamic Electrochemical Impedance Spectroscopy: Discharge–Charge Asymmetry in Reaction Sites and Electronic Conductivity. Journal of Physical Chemistry Letters, 2018, 9, 3403-3408.	2.1	24
243	Effects of the Electrode Wettability on the Deep Discharge Capacity of Li–O ₂ Batteries. ACS Omega, 2018, 3, 6006-6012.	1.6	27
244	Recent progress in hierarchically structured O2-cathodes for Li-O2 batteries. Chemical Engineering Journal, 2018, 352, 972-995.	6.6	57
245	Disproportionation of Sodium Superoxide in Metal–Air Batteries. Angewandte Chemie, 2018, 130, 10054-10058.	1.6	14
246	Nanoarchitectured CNTs-Grafted Graphene Foam with Hierarchical Pores as a Binder-Free Cathode for Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2018, 165, A1741-A1745.	1.3	7
247	Disproportionation of Sodium Superoxide in Metal–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 9906-9910.	7.2	38
248	Long-life Li–CO2 cells with ultrafine IrO2-decorated few-layered δ-MnO2 enabling amorphous Li2CO3 growth. Energy Storage Materials, 2019, 18, 405-413.	9.5	73
249	Electrochemical Polishing of Lithium Metal Surface for Highly Demanding Solidâ€Electrolyte Interphase. ChemElectroChem, 2019, 6, 181-188.	1.7	30
250	Macroporous carbon nanofiber decorated with platinum nanorods as free-standing cathodes for high-performance Li–O2 batteries. Carbon, 2019, 154, 448-456.	5.4	10
251	All solid-state lithium–oxygen batteries with MOF-derived nickel cobaltate nanoflake arrays as high-performance oxygen cathodes. Chemical Communications, 2019, 55, 10689-10692.	2.2	16
252	Defect regulation of heterogeneous nickel-based oxides via interfacial engineering for long-life lithium-oxygen batteries. Electrochimica Acta, 2019, 321, 134716.	2.6	16
253	Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 9914-9922.	5.5	33
254	Electrocatalysts for Lithium–Air Batteries: Current Status and Challenges. ACS Sustainable Chemistry and Engineering, 2019, 7, 14288-14320.	3.2	42
255	Liâ€Breathing Air Batteries Catalyzed by MnNiFe/Laserâ€Induced Graphene Catalysts. Advanced Materials Interfaces, 2019, 6, 1901035.	1.9	26

#	Article	IF	CITATIONS
256	Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Research, 2019, 12, 2543-2548.	5.8	31
257	Stable Multimetallic Nanoparticles for Oxygen Electrocatalysis. Nano Letters, 2019, 19, 5149-5158.	4.5	94
258	Porous NiO nanofibers as an efficient electrocatalyst towards long cycling life rechargeable Li–CO2 batteries. Electrochimica Acta, 2019, 319, 958-965.	2.6	36
259	An Unsuitable Li–O ₂ Battery Electrolyte Made Suitable with the Use of Redox Mediators. Journal of Physical Chemistry C, 2019, 123, 20241-20250.	1.5	9
260	Recent advances and challenges in divalent and multivalent metal electrodes for metal–air batteries. Journal of Materials Chemistry A, 2019, 7, 18183-18208.	5.2	139
261	Biomimetic Superoxide Disproportionation Catalyst for Anti-Aging Lithium–Oxygen Batteries. ACS Nano, 2019, 13, 9190-9197.	7.3	29
262	Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium–Oxygen Batteries. Angewandte Chemie, 2019, 131, 12683-12687.	1.6	22
263	Vanadium(III) Acetylacetonate as an Efficient Soluble Catalyst for Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 12553-12557.	7.2	53
264	Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 27906-27912.	4.0	24
265	Urchin-like Ni@N-doped carbon composites with Ni nanoparticles encapsulated in N-doped carbon nantubes as high-efficient electrocatalyst for oxygen evolution reaction. Journal of Solid State Chemistry, 2019, 278, 120843.	1.4	17
266	Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O ₂ batteries. Energy and Environmental Science, 2019, 12, 2559-2568.	15.6	122
267	Mesoporous Mn2O3 rods as a highly efficient catalyst for Li-O2 battery. Journal of Power Sources, 2019, 435, 226833.	4.0	29
268	Nitrogenâ€doped Porous Carbon Obtained from Silk Cocoon for High Performance Liâ€O 2 Batteries. ChemistrySelect, 2019, 4, 7602-7608.	0.7	2
269	Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A Review. Materials, 2019, 12, 2134.	1.3	46
270	Computational study on catalytic performance of BC3 and NC3 nanosheets as cathode electrocatalysts for nonaqueous Li–O2 batteries. Journal of Power Sources, 2019, 436, 226845.	4.0	24
271	An integrated bifunctional catalyst of metal-sulfide/perovskite oxide for lithium-oxygen batteries. Journal of Power Sources, 2019, 437, 226908.	4.0	23
272	Tuning Li ₂ O ₂ Formation Routes by Facet Engineering of MnO ₂ Cathode Catalysts. Journal of the American Chemical Society, 2019, 141, 12832-12838.	6.6	107
273	Nonprecious Metal Catalysts for Tuning Discharge Product Distribution at Solid–Solid Interfaces of Aprotic Li–O ₂ Batteries. Chemistry of Materials, 2019, 31, 7300-7310.	3.2	25

#	Article	IF	CITATIONS
274	Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry, 2019, 2, .	2.0	610
275	H2O self-trapping air cathode of Li–O2 battery enabling low charge potential operating in dry system. Nano Energy, 2019, 64, 103945.	8.2	23
276	Heteroatom-Induced Electronic Structure Modulation of Vertically Oriented Oxygen Vacancy-Rich NiFe Layered Double Oxide Nanoflakes To Boost Bifunctional Catalytic Activity in Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2019, 11, 29868-29878.	4.0	38
277	Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/Nâ€rCO Heterostructures for Efficient Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901806.	10.2	101
278	A Self-Recoverable LiTi2(PO4)3/O2 Hybrid Cathode for Lithium- Oxygen Batteries with High Power Performance. International Journal of Electrochemical Science, 2019, , 4974-4985.	0.5	0
279	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1, 100003.	10.1	146
280	Advanced Hybrid Electrolyte Li-O2 Battery Realized by Dual Superlyophobic Membrane. Joule, 2019, 3, 2986-3001.	11.7	56
281	Electrolyte Effects on the Electrocatalytic Performance of Iridiumâ€Based Nanoparticles for Oxygen Evolution in Rotating Disc Electrodes. ChemPhysChem, 2019, 20, 2956-2963.	1.0	44
282	From Bench-Scale to Prototype: Case Study on a Nickel Hydroxide—Activated Carbon Hybrid Energy Storage Device. Batteries, 2019, 5, 65.	2.1	2
283	Governing Role of Solvent on Discharge Activity in Lithium–CO ₂ Batteries. Journal of Physical Chemistry Letters, 2019, 10, 6679-6687.	2.1	23
284	Porous nanocubes La0.9Co0.8Ni0.2O3â^'x as efficient catalyst for Li-O2 batteries. Electrochimica Acta, 2019, 327, 135017.	2.6	15
285	A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies. Journal of Energy Storage, 2019, 26, 101022.	3.9	40
286	Ambient lithium–air battery enabled by a versatile oxygen electrode based on boron carbide supported ruthenium. International Journal of Hydrogen Energy, 2019, 44, 31153-31159.	3.8	4
287	<i>In Situ</i> Formed Ir ₃ Li Nanoparticles as Active Cathode Material in Li–Oxygen Batteries. Journal of Physical Chemistry A, 2019, 123, 10047-10056.	1.1	11
288	Efficient Li–CO ₂ Batteries with Molybdenum Disulfide Nanosheets on Carbon Nanotubes as a Catalyst. ACS Applied Energy Materials, 2019, 2, 8685-8694.	2.5	40
289	Singlet Oxygen Formation during the Oxygen Reduction Reaction in DMSO LiTFSI on Lithium Air Battery Carbon Electrodes. ChemistrySelect, 2019, 4, 12304-12307.	0.7	24
290	Silver-Intermediated Perovskite La _{0.9} FeO _{3â^'δ} toward High-Performance Cathode Catalysts for Nonaqueous Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 11743-11752.	5.5	46
291	A Review of Carbon-Based Materials for Safe Lithium Metal Anodes. Frontiers in Chemistry, 2019, 7, 721.	1.8	30

#	Article	IF	CITATIONS
292	Photoâ€energy Conversion and Storage in an Aprotic Liâ€O ₂ Battery. Angewandte Chemie, 2019, 131, 19197-19202.	1.6	44
293	Photoâ€energy Conversion and Storage in an Aprotic Liâ€O ₂ Battery. Angewandte Chemie - International Edition, 2019, 58, 19021-19026.	7.2	94
294	Insights into the Transport Properties of Electrolyte Solutions in a Hierarchical Carbon Electrode by Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 27273-27285.	1.5	11
295	Inside the electrode: Looking at cycling products in Li/O2 batteries. Journal of Power Sources, 2019, 414, 130-140.	4.0	28
296	Communication—Solvate Ionic Liquid Incorporating Lithium Nitrate as a Redox Mediator for Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2019, 166, A3391-A3393.	1.3	3
297	Three-Dimensional Nitrogen-Doped Hollow Carbon Fiber with a Micro-Scale Diameter as a Binder-Free Oxygen Electrode for Li-O ₂ Batteries. Journal of the Electrochemical Society, 2019, 166, A3425-A3431.	1.3	4
298	Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped Carbon Cathodes in Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34997-35004.	4.0	19
299	Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li-O2 batteries. Journal of Catalysis, 2019, 377, 534-542.	3.1	95
300	Materials Design for Rechargeable Metal-Air Batteries. Matter, 2019, 1, 565-595.	5.0	383
301	In Situ Coupling of Colloidal Silica and Li Salt Anion toward Stable Li Anode for Long-Cycle-Life Li-O2 Batteries. Matter, 2019, 1, 881-892.	5.0	33
302	A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustainable Energy and Fuels, 2019, 3, 3279-3309.	2.5	83
303	In situ surface-enhanced Raman spectroscopy in Li–O2 battery research. Current Opinion in Electrochemistry, 2019, 17, 174-183.	2.5	30
304	Design strategies toward catalytic materials and cathode structures for emerging Li–CO ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 21605-21633.	5.2	75
305	Dynamic Lithium Distribution upon Dendrite Growth and Shorting Revealed by Operando Neutron Imaging. ACS Energy Letters, 2019, 4, 2402-2408.	8.8	65
306	Solid-state polymer electrolytes for high-performance lithium metal batteries. Nature Communications, 2019, 10, 4398.	5.8	137
307	Recent advances in understanding Li–CO ₂ electrochemistry. Energy and Environmental Science, 2019, 12, 887-922.	15.6	215
308	Graphitic carbon nitride based materials for electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 901-924.	5.2	178
309	Ultrathin carbon-coated FeS ₂ nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6, 459-464.	3.0	21

#	Article	IF	CITATIONS
310	Carbide composite nanowire as bifunctional electrocatalyst for lithium oxygen batteries. Electrochimica Acta, 2019, 300, 186-192.	2.6	17
311	Transparent Conducting Oxides as Cathodes in Li–O ₂ Batteries: A First Principles Computational Investigation. Journal of Physical Chemistry C, 2019, 123, 4623-4631.	1.5	2
312	Bifunctional Oxygen Electrocatalysts for Lithiumâ ´'Oxygen Batteries. Batteries and Supercaps, 2019, 2, 311-325.	2.4	22
313	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	10.2	68
314	K–O ₂ electrochemistry: achieving highly reversible peroxide formation. Physical Chemistry Chemical Physics, 2019, 21, 4286-4294.	1.3	17
315	A Li–O ₂ battery cathode with vertical mass/charge transfer pathways. Journal of Materials Chemistry A, 2019, 7, 3000-3005.	5.2	14
316	Three-dimensional CoNi2S4 nanorod arrays anchored on carbon textiles as an integrated cathode for high-rate and long-life Lithiumâ^'Oxygen battery. Electrochimica Acta, 2019, 301, 69-79.	2.6	34
317	Trifunctional Selfâ€6upporting Cobaltâ€Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Advanced Materials, 2019, 31, e1808043.	11.1	290
318	A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nature Communications, 2019, 10, 602.	5.8	138
319	An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li–O ₂ batteries. Nanoscale, 2019, 11, 2855-2862.	2.8	26
320	Evaluating chemical bonding in dioxides for the development of metal–oxygen batteries: vibrational spectroscopic trends of dioxygenyls, dioxygen, superoxides and peroxides. Physical Chemistry Chemical Physics, 2019, 21, 1552-1563.	1.3	22
321	Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 2019, 21, 464-473.	9.5	34
322	Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous Li–O ₂ battery. Journal of Materials Chemistry A, 2019, 7, 17261-17265.	5.2	34
323	Lithium–oxygen batteries with triplex Li ⁺ -selective solid membranes. Chemical Communications, 2019, 55, 7643-7646.	2.2	7
324	Safe Lithiumâ€Metal Anodes for Liâ^'O ₂ Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection. Batteries and Supercaps, 2019, 2, 638-658.	2.4	67
325	Oxygen Redox Reaction in Ionic Liquid and Ionic Liquid-like Based Electrolytes: A Scanning Electrochemical Microscopy Study. Journal of Physical Chemistry Letters, 2019, 10, 3333-3338.	2.1	4
326	The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation. Journal of Materials Chemistry A, 2019, 7, 14882-14894.	5.2	45
327	Ultrathin Porous NiCo ₂ O ₄ Nanosheets for Lithium–Oxygen Batteries: An Excellent Performance Deriving from an Enhanced Solution Mechanism. ACS Applied Energy Materials, 2019, 2, 4215-4223.	2.5	18

#	Article	IF	CITATIONS
328	Recent Progress on Catalysts for the Positive Electrode of Aprotic Lithium-Oxygen Batteries â€. Inorganics, 2019, 7, 69.	1.2	8
329	Robust Design of Dualâ€Phasic Carbon Cathode for Lithium–Oxygen Batteries. Advanced Functional Materials, 2019, 29, 1902915.	7.8	34
330	Effect of nitrogen-containing polymer wrapped around carbon nanotubes for Li–O2 battery cathode. Polymer Journal, 2019, 51, 921-927.	1.3	4
331	Effect of Cation Size on Solvation and Association with Superoxide Anion in Aprotic Solvents. ChemPhysChem, 2019, 20, 1960-1966.	1.0	8
333	Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O ₂ Battery by Liquid-Phase Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 8047-8052.	6.6	54
334	Lithium-air batteries: Challenges coexist with opportunities. APL Materials, 2019, 7, .	2.2	47
335	On the importance of ion pair formation and the effect of water in potassium–oxygen batteries. Electrochimica Acta, 2019, 313, 223-234.	2.6	9
336	MoCl ₅ as a dual-function redox mediator for Li–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 14239-14243.	5.2	23
337	Two-dimensional spinel CuCo2S4 nanosheets as high efficiency cathode catalyst for lithium-oxygen batteries. Journal of Alloys and Compounds, 2019, 798, 560-567.	2.8	21
338	High-Performance Li-CO2 Batteries with α-MnO2/CNT Cathodes. Journal of Electronic Materials, 2019, 48, 4653-4659.	1.0	27
339	A functionalized membrane for lithium–oxygen batteries to suppress the shuttle effect of redox mediators. Journal of Materials Chemistry A, 2019, 7, 14260-14270.	5.2	40
340	Highâ€Capacity and Longâ€Cycle Lifetime Liâ^'CO ₂ /O ₂ Battery Based on Dandelionâ€like NiCo ₂ O ₄ Hollow Microspheres. ChemCatChem, 2019, 11, 3117-3124.	1.8	23
341	Controlling Fluorideâ€Forming Reactions for Improved Rate Capability in Lithiumâ€Perfluorinated Gas Conversion Batteries. Advanced Energy Materials, 2019, 9, 1900393.	10.2	17
342	DABCOnium: Ein effizienter und Hochspannungsâ€stabiler Singulettâ€Sauerstoffâ€Löscher für Metallâ€O 2 â€Zellen. Angewandte Chemie, 2019, 131, 6605-6609.	1.6	10
343	Golden Palladium Zinc Ordered Intermetallics as Oxygen Reduction Electrocatalysts. ACS Nano, 2019, 13, 5968-5974.	7.3	83
344	Experimental Studies of Carbon Electrodes With Various Surface Area for Li–O2 Batteries. Journal of Electrochemical Energy Conversion and Storage, 2019, 16, .	1.1	7
345	Strategies Toward Stable Nonaqueous Alkali Metal–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1900464.	10.2	35
346	Redox Mediators: A Solution for Advanced Lithium–Oxygen Batteries. Trends in Chemistry, 2019, 1, 349-360.	4.4	50

#	Article	IF	CITATIONS
347	Electron microscopy and its role in advanced lithium-ion battery research. Sustainable Energy and Fuels, 2019, 3, 1623-1646.	2.5	25
348	In situ AFM visualization of Li–O ₂ battery discharge products during redox cycling in an atmospherically controlled sample cell. Beilstein Journal of Nanotechnology, 2019, 10, 930-940.	1.5	8
349	Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries. Annual Review of Analytical Chemistry, 2019, 12, 323-346.	2.8	39
350	Boosting the cycling stability of Li Si alloy microparticles through electroless copper deposition. Chemical Engineering Journal, 2019, 370, 1019-1026.	6.6	14
351	S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction. Journal of Solid State Chemistry, 2019, 275, 167-173.	1.4	24
352	Ultrafine Ru/RuO _x Nanoparticles Uniformly Anchored on Carbon Nanotubes as Cathode Electrocatalyst for Lithiumâ€Oxygen Batteries. ChemistrySelect, 2019, 4, 4593-4597.	0.7	11
353	Ultrathin Co ₃ O ₄ Nanosheets with Edge-Enriched {111} Planes as Efficient Catalysts for Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 3773-3782.	5.5	76
354	Thousands of cycles. Nature Materials, 2019, 18, 301-302.	13.3	4
355	Isotopic Labeling Reveals Active Reaction Interfaces for Electrochemical Oxidation of Lithium Peroxide. Angewandte Chemie - International Edition, 2019, 58, 6962-6966.	7.2	37
356	Trimethylsilyl Azide (TMSN ₃) Enhanced Li–O ₂ Battery Electrolytes. ACS Applied Energy Materials, 2019, 2, 2662-2671.	2.5	6
357	Isotopic Labeling Reveals Active Reaction Interfaces for Electrochemical Oxidation of Lithium Peroxide. Angewandte Chemie, 2019, 131, 7036-7040.	1.6	33
358	Promoting Surface-Mediated Oxygen Reduction Reaction of Solid Catalysts in Metal–O ₂ Batteries by Capturing Superoxide Species. Journal of the American Chemical Society, 2019, 141, 6263-6270.	6.6	69
359	Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen. Nature Communications, 2019, 10, 1380.	5.8	72
360	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	2.4	45
361	Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries. Journal of Materials Chemistry A, 2019, 7, 11613-11650.	5.2	60
362	Advanced cathode materials and efficient electrolytes for rechargeable batteries: practical challenges and future perspectives. Journal of Materials Chemistry A, 2019, 7, 10159-10173.	5.2	37
363	Glyme-based electrolytes for lithium metal batteries using insertion electrodes: An electrochemical study. Electrochimica Acta, 2019, 306, 85-95.	2.6	14
364	A dendrite-free Li plating host towards high utilization of Li metal anode in Li–O2 battery. Science Bulletin, 2019, 64, 478-484.	4.3	19

#	Article	IF	CITATIONS
365	Polysulfide-driven low charge overpotential for aprotic lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 8777-8784.	5.2	3
367	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	5.2	199
368	Redox mediators: a shuttle to efficacy in metal–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 8746-8764.	5.2	54
369	DABCOnium: An Efficient and Highâ€Voltage Stable Singlet Oxygen Quencher for Metal–O ₂ Cells. Angewandte Chemie - International Edition, 2019, 58, 6535-6539.	7.2	72
370	A Heavily Surface-Doped Polymer with the Bifunctional Catalytic Mechanism in Li-O2 Batteries. IScience, 2019, 14, 312-322.	1.9	11
371	Easily Decomposed Discharge Products Induced by Cathode Construction for Highly Energy-Efficient Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14803-14809.	4.0	20
372	An efficient, bifunctional catalyst for lithium–oxygen batteries obtained through tuning the exterior Co ²⁺ /Co ³⁺ ratio of CoO _x on N-doped carbon nanofibers. Catalysis Science and Technology, 2019, 9, 1998-2007.	2.1	26
373	Relieving the "Sudden Death―of Li–O ₂ Batteries by Grafting an Antifouling Film on Cathode Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 14753-14758.	4.0	15
374	Synthesis of morphology controllable free-standing Co3O4 nanostructures and their catalytic activity for Li O2 cells. Electrochimica Acta, 2019, 307, 232-240.	2.6	9
375	Lewis acidity controlled heme catalyst for lithium-oxygen battery. Energy Storage Materials, 2019, 19, 16-23.	9.5	10
376	Redox catalysts for aprotic Li-O2 batteries: Toward a redox flow system. Nano Materials Science, 2019, 1, 173-183.	3.9	10
377	Superwettabilityâ€Based Interfacial Chemical Reactions. Advanced Materials, 2019, 31, e1800718.	11.1	128
378	Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions. Advanced Materials, 2019, 31, e1804587.	11.1	254
379	Reaction mechanisms of the oxygen reduction and evolution reactions in aprotic solvents for Li–O2 batteries. Current Opinion in Electrochemistry, 2019, 14, 151-156.	2.5	21
380	Unraveling the Formation Mechanism of Solid–Liquid Electrolyte Interphases on LiPON Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 9539-9547.	4.0	29
381	Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. Journal of Alloys and Compounds, 2019, 787, 9-16.	2.8	80
382	A high-rate and long-life organic–oxygen battery. Nature Materials, 2019, 18, 390-396.	13.3	110
383	A comparative kinetic study of redox mediators for high-power lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 6491-6498.	5.2	27

#	Article	IF	CITATIONS
384	Verification for trihalide ions as redox mediators in Li-O2 batteries. Energy Storage Materials, 2019, 19, 148-153.	9.5	25
385	A 1000†Wh kgâ^'1 Li–Air battery: Cell design and performance. Journal of Power Sources, 2019, 419, 112-113	8.4.0	32
386	Li-O2 Cell-Scale Energy Densities. Joule, 2019, 3, 321-323.	11.7	7
387	Graphene–Graphite Polyurethane Composite Based Highâ€Energy Density Flexible Supercapacitors. Advanced Science, 2019, 6, 1802251.	5.6	87
388	Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. Nature Communications, 2019, 10, 5810.	5.8	80
389	LiTFSI Concentration Optimization in TEGDME Solvent for Lithium–Oxygen Batteries. ACS Omega, 2019, 4, 20708-20714.	1.6	27
390	Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox. Nature Chemistry, 2019, 11, 1133-1138.	6.6	31
391	Real-Time Imaging of the Electrochemical Process in Na–O ₂ Nanobatteries Using Pt@CNT and Pt _{0.8} Ir _{0.2} @CNT Air Cathodes. ACS Nano, 2019, 13, 14399-14407.	7.3	16
392	Formation of toroidal Li ₂ O ₂ in non-aqueous Li–O ₂ batteries with Mo ₂ CT _x MXene/CNT composite. RSC Advances, 2019, 9, 41120-41125.	1.7	16
393	Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 3092-3096.	7.2	122
394	A Stable Lithium–Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether. Angewandte Chemie - International Edition, 2019, 58, 2345-2349.	7.2	42
395	A Stable Lithium–Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether. Angewandte Chemie, 2019, 131, 2367-2371.	1.6	29
396	Bimetal/Metal Oxide Encapsulated in Graphitic Nitrogen Doped Mesoporous Carbon Networks for Enhanced Oxygen Electrocatalysis. ChemElectroChem, 2019, 6, 1485-1491.	1.7	22
397	Highly reversible Li-O2 battery induced by modulating local electronic structure via synergistic interfacial interaction between ruthenium nanoparticles and hierarchically porous carbon. Nano Energy, 2019, 57, 166-175.	8.2	73
398	Use of Polarization Curves and Impedance Analyses to Optimize the "Triple-Phase Boundary―in K–O2 Batteries. ACS Applied Materials & Interfaces, 2019, 11, 2925-2934.	4.0	10
399	Effect of Defects and Solvents on Silicene Cathode of Nonaqueous Lithium–Oxygen Batteries: A Theoretical Investigation. Journal of Physical Chemistry C, 2019, 123, 205-213.	1.5	85
400	Lithiophilic 3D Nanoporous Nitrogenâ€Doped Graphene for Dendriteâ€Free and Ultrahighâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1805334.	11.1	254
401	Promoting Li–O ₂ Batteries With Redox Mediators. ChemSusChem, 2019, 12, 104-114.	3.6	47

#	Article	IF	CITATIONS
402	Defect Chemistry in Discharge Products of Li–O ₂ Batteries. Small Methods, 2019, 3, 1800358.	4.6	34
403	Ball-flower-like carbon microspheres via a three-dimensional replication strategy as a high-capacity cathode in lithium–oxygen batteries. Science China Materials, 2019, 62, 633-644.	3.5	10
404	Layered perovskite oxide PrBaCo2O5+δas a potential cathode for lithium–oxygen batteries: High-performance bi-functional electrocatalysts. Materials Letters, 2019, 237, 200-203.	1.3	7
405	Enhanced cycling performance of rechargeable Li–O2 batteries via LiOH formation and decomposition using high-performance MOF-74@CNTs hybrid catalysts. Energy Storage Materials, 2019, 17, 167-177.	9.5	52
406	Oxygen selective membrane based on perfluoropolyether for Li-Air battery with long cycle life. Energy Storage Materials, 2019, 20, 307-314.	9.5	42
407	Understanding LiOH Formation in a Li-O ₂ Battery with Lil and H ₂ O Additives. ACS Catalysis, 2019, 9, 66-77.	5.5	57
408	A convenient and efficient mass-production strategy to fabricate sustainable cathodes for lithium–oxygen batteries: Sucrose-derived active carbon coating technology. Electrochimica Acta, 2019, 297, 529-538.	2.6	1
409	High-Energy-Density Li-O2 Battery at Cell Scale with Folded Cell Structure. Joule, 2019, 3, 542-556.	11.7	49
410	New Insights Related to Rechargeable Lithium Batteries: Li Metal Anodes, Ni Rich LiNi _x Co _y Mn _z O ₂ Cathodes and Beyond Them. Journal of the Electrochemical Society, 2019, 166, A5265-A5274.	1.3	38
411	Metal–Sulfur Batteries: Overview and Research Methods. ACS Energy Letters, 2019, 4, 436-446.	8.8	108
412	Solvent-Dependent Oxidizing Power of Lil Redox Couples for Li-O2 Batteries. Joule, 2019, 3, 1106-1126.	11.7	82
413	Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 3124-3128.	1.6	8
414	Porous Fe–N–C Catalysts for Rechargeable Zinc–Air Batteries from an Iron-Imidazolate Coordination Polymer. ACS Sustainable Chemistry and Engineering, 2019, 7, 4030-4036.	3.2	20
415	High-performance rechargeable Li-CO2/O2 battery with Ru/N-doped CNT catalyst. Chemical Engineering Journal, 2019, 363, 224-233.	6.6	58
416	Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nature Communications, 2019, 10, 188.	5.8	203
417	Recent Advances in Metalâ€Organic Framework Derivatives as Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 272-289.	2.4	121
418	Conjugated Cobalt Polyphthalocyanine as the Elastic and Reprocessable Catalyst for Flexible Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e1805484.	11.1	112
419	NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O ₂ Battery with a Single-Ion-Conducting Separator. ACS Applied Materials & Interfaces, 2019, 11, 4908-4914.	4.0	14

#	Article	IF	CITATIONS
420	Application of RGO/CNT nanocomposite as cathode material in lithium-air battery. Journal of Electroanalytical Chemistry, 2019, 832, 165-173.	1.9	16
421	Flat Monolayer Graphene Cathodes for Li–Oxygen Microbatteries. ACS Applied Materials & Interfaces, 2019, 11, 489-498.	4.0	12
422	Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst. Nano Letters, 2019, 19, 530-537.	4.5	210
423	Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 499-510.	4.0	27
424	Biomass-derived 3D hierarchical N-doped porous carbon anchoring cobalt-iron phosphide nanodots as bifunctional electrocatalysts for Li O2 batteries. Journal of Power Sources, 2019, 412, 433-441.	4.0	23
425	Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal–Air Batteries. Advanced Materials, 2019, 31, e1803800.	11.1	208
426	A Critical Review on Functionalization of Air athodes for Nonaqueous Li–O ₂ Batteries. Advanced Functional Materials, 2020, 30, 1808303.	7.8	132
427	Electrolytes for Rechargeable Lithium–Air Batteries. Angewandte Chemie - International Edition, 2020, 59, 2974-2997.	7.2	187
428	Elektrolyte für wiederaufladbare Lithium‣uftâ€Batterien. Angewandte Chemie, 2020, 132, 2994-3019.	1.6	18
429	Long-life lithium-O2 battery achieved by integrating quasi-solid electrolyte and highly active Pt3Co nanowires catalyst. Energy Storage Materials, 2020, 24, 707-713.	9.5	28
430	Atomic‣ayerâ€Deposited Amorphous MoS ₂ for Durable and Flexible Li–O ₂ Batteries. Small Methods, 2020, 4, 1900274.	4.6	52
431	Metal-organic frameworks and their derivatives for Li–air batteries. Chinese Chemical Letters, 2020, 31, 635-642.	4.8	32
432	Interface-engineered metallic 1T-MoS2 nanosheet array induced via palladium doping enabling catalysis enhancement for lithium–oxygen battery. Chemical Engineering Journal, 2020, 382, 122854.	6.6	52
433	Metalâ€Organic Frameworkâ€Templated Hollow Co ₃ O ₄ /C with Controllable Oxygen Vacancies for Efficient Oxygen Evolution Reaction. ChemNanoMat, 2020, 6, 107-112.	1.5	13
434	Failure analysis of pouch-type Li–O2 batteries with superior energy density. Journal of Energy Chemistry, 2020, 45, 74-82.	7.1	33
435	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
436	Controllable and stable organometallic redox mediators for lithium oxygen batteries. Materials Horizons, 2020, 7, 214-222.	6.4	15
437	Tuning oxygen non-stoichiometric surface via defect engineering to promote the catalysis activity of Co3O4 in Li-O2 batteries. Chemical Engineering Journal, 2020, 381, 122678.	6.6	68

		REPORT	
#	Article	IF	CITATIONS
438	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	13.1	98
439	The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte. Joule, 2020, 4, 101-108.	11.7	81
440	Electrochemical Oxidation of Li ₂ O ₂ Surface-Doped with Li ₂ CO ₃ . ACS Applied Materials & Interfaces, 2020, 12, 6627-6632.	4.0	11
441	Cycling Performance and Kinetic Mechanism Analysis of a Li Metal Anode in Series-Concentrated Ether Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 8366-8375.	4.0	29
442	Relating Catalysis between Fuel Cell and Metal-Air Batteries. Matter, 2020, 2, 32-49.	5.0	112
443	The importance of anode protection towards lithium oxygen batteries. Journal of Materials Chemistry A, 2020, 8, 3563-3573.	5.2	65
444	Electrode Degradation in Lithium-Ion Batteries. ACS Nano, 2020, 14, 1243-1295.	7.3	484
445	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232.	18.7	522
446	Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. Journal of Colloid and Interface Science, 2020, 564, 28-36.	5.0	72
447	Highly efficient water splitting driven by zinc-air batteries with a single catalyst incorporating rich active species. Applied Catalysis B: Environmental, 2020, 263, 118139.	10.8	38
448	Improved lithium-O2 battery performance enabled by catalysts of yolk-shell Fe3O4@C mixed with Pt-Ru nanoparticles. Applied Surface Science, 2020, 507, 145103.	3.1	4
449	Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Materials, 2020, 27, 478-505.	9.5	221
450	Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode. Chemical Engineering Journal, 2020, 392, 123691.	6.6	42
451	Hybrid architecture design enhances the areal capacity and cycling life of low-overpotential nanoarray oxygen electrode for lithium–oxygen batteries. Journal of Energy Chemistry, 2020, 46, 248-255.	7.1	11
452	Current status and future perspectives of lithium metal batteries. Journal of Power Sources, 2020, 480, 228803.	4.0	109
453	Advances in the chemistry and applications of alkali-metal–gas batteries. Nature Reviews Chemistry, 2020, 4, 566-583.	13.8	70
454	Toward Reversible and Moisture-Tolerant Aprotic Lithium-Air Batteries. Joule, 2020, 4, 2501-2520.	11.7	37
455	Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2020, 59, 22978-22982.	7.2	29

#	Article	IF	CITATIONS
456	a€œSoft on rigida€•nanohybrid as the self-supporting multifunctional cathode electrocatalyst for high-performance lithium-polysulfide batteries. Nano Energy, 2020, 78, 105293.	8.2	36
457	N-Doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn–air battery. Journal of Materials Chemistry A, 2020, 8, 21189-21198.	5.2	63
458	Highâ€Capacity and Stable Liâ€O ₂ Batteries Enabled by a Trifunctional Soluble Redox Mediator. Angewandte Chemie - International Edition, 2020, 59, 19311-19319.	7.2	62
459	Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. Energy and Environmental Science, 2020, 13, 2870-2877.	15.6	60
460	Positive Electrode Passivation by Side Discharge Products in Li–O ₂ Batteries. Langmuir, 2020, 36, 8716-8722.	1.6	9
461	A renaissance of <i>N</i> , <i>N</i> -dimethylacetamide-based electrolytes to promote the cycling stability of Li–O ₂ batteries. Energy and Environmental Science, 2020, 13, 3075-3081.	15.6	68
462	Superoxide Anion Disproportionation Induced by Li ⁺ and H ⁺ : Pathways to ¹ O ₂ Release in Liâ^O ₂ Batteries. ChemPhysChem, 2020, 21, 2060-2067.	1.0	16
463	Porous Titanium Oxide Microspheres as Promising Catalyst for Lithium–Oxygen Batteries. Energy Technology, 2020, 8, 1901257.	1.8	6
464	Accessing Lithium–Oxygen Battery Discharge Products in Their Native Environments via Transmission Electron Microscopy Grid Electrode. ACS Applied Energy Materials, 2020, 3, 9509-9515.	2.5	6
465	Free-Standing Carbon Nanofibers Protected by a Thin Metallic Iridium Layer for Extended Life-Cycle Li–Oxygen Batteries. ACS Applied Materials & Interfaces, 2020, 12, 55756-55765.	4.0	16
466	Charge Transport Properties of Lithium Superoxide in Li–O ₂ Batteries. ACS Applied Energy Materials, 2020, 3, 12575-12583.	2.5	17
467	Accelerating the Oxygen Reduction Reaction and Oxygen Evolution Reaction Activities of N and P Co-Doped Porous Activated Carbon for Li-O2 Batteries. Catalysts, 2020, 10, 1316.	1.6	17
468	Characterization of An Oxygen Evolution Reaction Redox Mediator for Li-O2 Battery by In-Situ Differential Electrochemical Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2020, 48, e20165-e20171.	0.9	3
469	Co ₃ O ₄ -Catalyzed LiOH Chemistry in Li–O ₂ Batteries. ACS Energy Letters, 2020, 5, 3681-3691.	8.8	37
470	An electrochemical investigation of oxygen adsorption on Pt single crystal electrodes in a non-aqueous Li+ electrolyte. Electrochemistry Communications, 2020, 119, 106814.	2.3	6
471	The mechanism of Li2O2-film formation and reoxidation – Influence of electrode roughness and single crystal surface structure. Journal of Electroanalytical Chemistry, 2020, 875, 114560.	1.9	3
472	In Situ Designing a Gradient Li ⁺ Capture and Quasiâ€&pontaneous Diffusion Anode Protection Layer toward Longâ€Life Liâ^'O ₂ Batteries. Advanced Materials, 2020, 32, e2004157.	11.1	114
473	Utilizing a Photocatalysis Process to Achieve a Cathode with Low Charging Overpotential and High Cycling Durability for a Liâ€O ₂ Battery. Angewandte Chemie, 2020, 132, 21095-21099.	1.6	14

#	Article	IF	CITATIONS
474	High apacity and Stable Liâ€O ₂ Batteries Enabled by a Trifunctional Soluble Redox Mediator. Angewandte Chemie, 2020, 132, 19473-19481.	1.6	28
475	Thermally reduced mesoporous manganese MOF @reduced graphene oxide nanocomposite as bifunctional electrocatalyst for oxygen reduction and evolution. RSC Advances, 2020, 10, 27728-27742.	1.7	27
476	Unraveling the Effect of Singlet Oxygen on Metal-O2 Batteries: Strategies Toward Deactivation. Frontiers in Chemistry, 2020, 8, 605.	1.8	12
477	A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. Energy Storage Materials, 2020, 32, 458-464.	9.5	35
478	Stable Electrochemical Li Plating/Stripping Behavior by Anchoring MXene Layers on Three-Dimensional Conductive Skeletons. ACS Applied Materials & Interfaces, 2020, 12, 37967-37976.	4.0	33
479	Enzymeâ€Inspired Roomâ€Temperature Lithium–Oxygen Chemistry via Reversible Cleavage and Formation of Dioxygen Bonds. Angewandte Chemie - International Edition, 2020, 59, 17856-17863.	7.2	20
480	Structural Design of Oxygen Reduction Redox Mediators (ORRMs) Based on Anthraquinone (AQ) for the Li–O ₂ Battery. ACS Catalysis, 2020, 10, 9790-9803.	5.5	20
481	Utilizing a Photocatalysis Process to Achieve a Cathode with Low Charging Overpotential and High Cycling Durability for a Liâ€O ₂ Battery. Angewandte Chemie - International Edition, 2020, 59, 20909-20913.	7.2	39
482	Recent Progress of Flexible Lithium–Air/O ₂ Battery. Advanced Materials Technologies, 2020, 5, .	3.0	20
483	Porous Materials Applied in Nonaqueous Li–O ₂ Batteries: Status and Perspectives. Advanced Materials, 2020, 32, e2002559.	11.1	115
484	Ultrafine, high-loading and oxygen-deficient cerium oxide embedded on mesoporous carbon nanosheets for superior lithium–oxygen batteries. Nano Energy, 2020, 71, 104570.	8.2	28
485	Efficient separation of photoexcited carriers in a g-C ₃ N ₄ -decorated WO ₃ nanowire array heterojunction as the cathode of a rechargeable Li–O ₂ battery. Nanoscale, 2020, 12, 18742-18749.	2.8	32
486	Highly Reversible O ₂ Conversions by Coupling LiO ₂ Intermediate through a Dualâ€6ite Catalyst in Liâ€O ₂ Batteries. Advanced Energy Materials, 2020, 10, 2001592.	10.2	33
487	Evaluating Solid-Electrolyte Interphases for Lithium and Lithium-free Anodes from Nanoindentation Features. CheM, 2020, 6, 2728-2745.	5.8	44
488	RuO _{2â^'x} decorated CoSnO ₃ nanoboxes as a high performance cathode catalyst for Li–CO ₂ batteries. Chemical Communications, 2020, 56, 11693-11696.	2.2	23
489	Effects of Temperature on Amine-Mediated CO ₂ Capture and Conversion in Li Cells. Journal of Physical Chemistry C, 2020, 124, 18877-18885.	1.5	4
490	Lithium and Stannum Hybrid Anodes for Flexible Wireâ€īype Lithium–Oxygen Batteries. Small Structures, 2020, 1, 2000015.	6.9	26
491	Exploiting Selfâ€Healing in Lithium Batteries: Strategies for Nextâ€Generation Energy Storage Devices. Advanced Energy Materials, 2020, 10, 2002815.	10.2	38

			2
#	ARTICLE	IF	CITATIONS
492	Recent Advances in Nanostructured Transition Metal Carbide- and Nitride-Based Cathode Electrocatalysts for Li–O2 Batteries (LOBs): A Brief Review. Nanomaterials, 2020, 10, 2106.	1.9	14
493	Effect of the thickness of single-walled carbon nanotube electrodes on the discharge properties of Li–air batteries. Journal of Electroanalytical Chemistry, 2020, 878, 114603.	1.9	9
494	Ru Single Atoms on N-Doped Carbon by Spatial Confinement and Ionic Substitution Strategies for High-Performance Li–O ₂ Batteries. Journal of the American Chemical Society, 2020, 142, 16776-16786.	6.6	230
495	Dualâ€Functioning Molecular Carrier of Superoxide Radicals for Stable and Efficient Lithium–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1904187.	10.2	20
496	Challenges and Strategy on Parasitic Reaction for Highâ€Performance Nonaqueous Lithium–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 2001789.	10.2	62
497	Enzymeâ€Inspired Roomâ€Temperature Lithium–Oxygen Chemistry via Reversible Cleavage and Formation of Dioxygen Bonds. Angewandte Chemie, 2020, 132, 18012-18019.	1.6	4
498	<i>In Situ</i> Electrochemical Study of Na–O ₂ /CO ₂ Batteries in an Environmental Transmission Electron Microscope. ACS Nano, 2020, 14, 13232-13245.	7.3	27
499	Phosphazene-derived stable and robust artificial SEI for protecting lithium anodes of Li–O ₂ batteries. Chemical Communications, 2020, 56, 12566-12569.	2.2	10
500	The Formation of the Solid/Liquid Electrolyte Interphase (SLEI) on NASICONâ€Type Glass Ceramics and LiPON. Advanced Materials Interfaces, 2020, 7, 2000380.	1.9	23
501	Sustainable Liâ€lon Batteries: Chemistry and Recycling. Advanced Energy Materials, 2021, 11, 2003456.	10.2	157
502	Redox-Mediated Polymer Catalyst for Lithium-Air Batteries with High Round-Trip Efficiency. Catalysts, 2020, 10, 1479.	1.6	2
503	A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. Journal of the American Chemical Society, 2020, 142, 21393-21403.	6.6	65
504	Surface and catalyst driven singlet oxygen formation in Li-O2 cells. Electrochimica Acta, 2020, 362, 137175.	2.6	10
505	Kinetically Stable Oxide Overlayers on Mo ₃ P Nanoparticles Enabling Lithium–Air Batteries with Low Overpotentials and Long Cycle Life. Advanced Materials, 2020, 32, e2004028.	11.1	42
506	Leveraging Cation Identity to Engineer Solid Electrolyte Interphases for Rechargeable Lithium Metal Anodes. Cell Reports Physical Science, 2020, 1, 100239.	2.8	11
507	Probing the electrode–solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy. Journal of Chemical Physics, 2020, 153, 170902.	1.2	27
508	Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie, 2020, 132, 23178-23182.	1.6	8
510	Side by Side Battery Technologies with Lithiumâ€lon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127

#	Article	IF	CITATIONS
511	Tuning the electronic band structure of Mott–Schottky heterojunctions modified with surface sulfur vacancy achieves an oxygen electrode with high catalytic activity for lithium–oxygen batteries. Journal of Materials Chemistry A, 2020, 8, 11337-11345.	5.2	38
512	From Sodium–Oxygen to Sodium–Air Battery: Enabled by Sodium Peroxide Dihydrate. Nano Letters, 2020, 20, 4681-4686.	4.5	31
513	Revealing <i>In Situ</i> Li Metal Anode Surface Evolution upon Exposure to CO ₂ Using Ambient Pressure X-Ray Photoelectron Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 26607-26613.	4.0	21
514	Shuttling Induced Starvation of Redox Mediators in High Areal Capacity Rechargeable Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2020, 167, 080522.	1.3	7
515	Optimized Electrolyte with High Electrochemical Stability and Oxygen Solubility for Lithium–Oxygen and Lithium–Air Batteries. ACS Energy Letters, 2020, 5, 2182-2190.	8.8	45
516	Reliable liquid electrolytes for lithium metal batteries. Energy Storage Materials, 2020, 30, 113-129.	9.5	92
517	Battery cost modeling: A review and directions for future research. Renewable and Sustainable Energy Reviews, 2020, 127, 109872.	8.2	75
519	Ni3Se2/NiSe2 heterostructure nanoforests as an efficient bifunctional electrocatalyst for high-capacity and long-life Li–O2 batteries. Journal of Power Sources, 2020, 468, 228308.	4.0	38
520	Formation of Nanocrystalline Cobalt Oxide-Decorated Graphene for Secondary Lithium-Air Battery and Its Catalytic Performance in Concentrated Alkaline Solutions. Nanomaterials, 2020, 10, 1122.	1.9	1
521	A Comparative Study of Redox Mediators for Improved Performance of Li–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 2000201.	10.2	32
522	Dissociation of (Li2O2)0,+ on graphene and boron-doped graphene: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2020, 22, 14216-14224.	1.3	11
523	A highly efficient biomass based electrocatalyst for cathodic performance of lithium–oxygen batteries: Yeast derived hydrothermal carbon. Electrochimica Acta, 2020, 349, 136411.	2.6	13
524	Superoxide-Based K–O ₂ Batteries: Highly Reversible Oxygen Redox Solves Challenges in Air Electrodes. Journal of the American Chemical Society, 2020, 142, 11629-11640.	6.6	49
525	Ultrathin RuRh Alloy Nanosheets Enable High-Performance Lithium-CO2 Battery. Matter, 2020, 2, 1494-1508.	5.0	91
526	From Liquid- to Solid-State Batteries: Ion Transfer Kinetics of Heteroionic Interfaces. Electrochemical Energy Reviews, 2020, 3, 221-238.	13.1	117
527	Nonaqueous Lithium–Oxygen batteries: Reaction mechanism and critical open questions. Energy Storage Materials, 2020, 28, 235-246.	9.5	103
528	Effects of Atmospheric Gases on Li Metal Cyclability and Solid-Electrolyte Interphase Formation. ACS Energy Letters, 2020, 5, 1088-1094.	8.8	29
529	Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie - International Edition, 2020, 59, 9011-9017.	7.2	164

#	Article	IF	CITATIONS
530	Spinel Zinc Cobalt Oxide (ZnCo ₂ O ₄) Porous Nanorods as a Cathode Material for Highly Durable Li–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17353-17363.	4.0	37
531	Critical Factors Controlling Superoxide Reactions in Lithium–Oxygen Batteries. ACS Energy Letters, 2020, 5, 1355-1363.	8.8	37
532	Rationally Designed Three-Dimensional N-Doped Graphene Architecture Mounted with Ru Nanoclusters as a High-Performance Air Cathode for Lithium–Oxygen Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 6109-6117.	3.2	28
533	Multiscale Lithium-Battery Modeling from Materials to Cells. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 277-310.	3.3	25
534	Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie, 2020, 132, 9096-9102.	1.6	42
535	Basic knowledge in battery research bridging the gap between academia and industry. Materials Horizons, 2020, 7, 1937-1954.	6.4	94
536	Sodium–Oxygen Batteries: Recent Developments and Remaining Challenges. Trends in Chemistry, 2020, 2, 241-253.	4.4	26
537	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	23.0	593
538	Three-Dimensional Carbon-Supported MoS2 With Sulfur Defects as Oxygen Electrodes for Li-O2 Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	9
539	Optimal cobalt oxide (Co3O4): Graphene (GR) ratio in Co3O4/GR as air cathode catalyst for air-breathing hybrid electrolyte lithium-air battery. Journal of Power Sources, 2020, 471, 228373.	4.0	20
540	In Situ Spectroscopic Investigations of Electrochemical Oxygen Reduction and Evolution Reactions in Cyclic Carbonate Electrolyte Solutions. Journal of Physical Chemistry C, 2020, 124, 15781-15792.	1.5	16
541	Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Research, 2020, 13, 2356-2364.	5.8	27
542	Two-Component Electrolyte Solutions with Dipolar Cations on a Charged Electrode: Theory and Computer Simulations. Journal of Physical Chemistry C, 2020, 124, 16308-16314.	1.5	15
543	Advanced Characterization Techniques for Identifying the Key Active Sites of Gasâ€Involved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	7.8	19
544	Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31, 382-400.	9.5	74
545	Understanding Reaction Pathways in High Dielectric Electrolytes Using β-Mo ₂ C as a Catalyst for Li–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 32633-32641.	4.0	22
546	Utilizing Latent Multiâ€Redox Activity of pâ€Type Organic Cathode Materials toward High Energy Density Lithiumâ€Organic Batteries. Advanced Energy Materials, 2020, 10, 2001635.	10.2	47
547	Predicting the chemical reactivity of organic materials using a machine-learning approach. Chemical Science, 2020, 11, 7813-7822.	3.7	32

#	Article	IF	CITATIONS
548	Inhibition of Discharge Side Reactions by Promoting Solution-Mediated Oxygen Reduction Reaction with Stable Quinone in Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10607-10615.	4.0	23
549	A Safe Organic Oxygen Battery Built with Liâ€Based Liquid Anode and MOFs Separator. Advanced Energy Materials, 2020, 10, 1903953.	10.2	33
550	Metal–organic framework-derived MnO/CoMn2O4@N–C nanorods with nanoparticle interstitial decoration in core@shell structure as improved bifunctional electrocatalytic cathodes for Li–O2 batteries. Electrochimica Acta, 2020, 338, 135809.	2.6	29
551	Heterostructured NiS ₂ /ZnIn ₂ S ₄ Realizing Toroid-like Li ₂ O ₂ Deposition in Lithium–Oxygen Batteries with Low-Donor-Number Solvents. ACS Nano, 2020, 14, 3490-3499.	7.3	113
552	Perchlorate Based "Oversaturated Gel Electrolyte―for an Aqueous Rechargeable Hybrid Zn–Li Battery. ACS Applied Energy Materials, 2020, 3, 2526-2536.	2.5	31
553	A 3D free-standing Co doped Ni ₂ P nanowire oxygen electrode for stable and long-life lithium–oxygen batteries. Nanoscale, 2020, 12, 6785-6794.	2.8	30
554	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li–O ₂ Batteries: Cell Performances and Operando STEM Observations. Nano Letters, 2020, 20, 2183-2190.	4.5	11
555	Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews, 2020, 120, 6558-6625.	23.0	356
556	Solvent- and Anion-Dependent Li ⁺ –O ₂ [–] Coupling Strength and Implications on the Thermodynamics and Kinetics of Li–O ₂ Batteries. Journal of Physical Chemistry C, 2020, 124, 4953-4967.	1.5	29
557	Hierarchically Porous MoS ₂ –Carbon Hollow Rhomboids for Superior Performance of the Anode of Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10402-10409.	4.0	36
558	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49, 1569-1614.	18.7	1,326
559	A low-overpotential sodium/fluorinated graphene battery based on silver nanoparticles as catalyst. Journal of Colloid and Interface Science, 2020, 565, 70-76.	5.0	9
560	Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule, 2020, 4, 45-68.	11.7	596
561	Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Materials Horizons, 2020, 7, 1246-1278.	6.4	46
562	Powering wearable bioelectronic devices. , 2020, , 89-132.		7
563	Computational Insights into Li _{<i>x</i>} O _{<i>y</i>} Formation, Nucleation, and Adsorption on Carbon Nanotube Electrodes in Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2020, 11, 2195-2202.	2.1	8
564	Interfacial integration and roll forming of quasi-solid-state Li–O2 battery through solidification and gelation of ionic liquid. Journal of Power Sources, 2020, 463, 228179.	4.0	20
565	Li–air Battery with a Superhydrophobic Li-Protective Layer. ACS Applied Materials & Interfaces, 2020, 12, 23010-23016.	4.0	33

#	Article	IF	Citations
566	Superassembly of Porous Fe _{tet} (NiFe) _{oct} O Frameworks with Stable Octahedron and Multistage Structure for Superior Lithium–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1904262.	10.2	55
567	Lithium Metal Interface Modification for Highâ€Energy Batteries: Approaches and Characterization. Batteries and Supercaps, 2020, 3, 828-859.	2.4	38
568	A robust cathode of RuO2 nH2O clusters anchored on the carbon nanofibers for ultralong-life lithium-oxygen batteries. Journal of Power Sources, 2020, 463, 228161.	4.0	9
569	LiOH Formation from Lithium Peroxide Clusters and the Role of Iodide Additive. Journal of Physical Chemistry C, 2020, 124, 10280-10287.	1.5	4
570	Heterojunction-Composited Architecture for Li–O ₂ Batteries with Low Overpotential and Long-Term Cyclability. ACS Applied Energy Materials, 2020, 3, 3789-3797.	2.5	9
571	A Mixed Lithiumâ€ion Conductive Li ₂ S/Li ₂ Se Protection Layer for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2001607.	7.8	158
572	Confining Li2O2 in tortuous pores of mesoporous cathodes to facilitate low charge overpotentials for Li-O2 batteries. Journal of Energy Chemistry, 2021, 55, 55-61.	7.1	16
573	Recent progress and prospects of Li-CO2 batteries: Mechanisms, catalysts and electrolytes. Energy Storage Materials, 2021, 34, 148-170.	9.5	88
574	Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources, 2021, 482, 228872.	4.0	169
575	Singlet Oxygen in Lithiumâ^'Oxygen Batteries. Batteries and Supercaps, 2021, 4, 286-293.	2.4	13
576	Thermochemically regenerative flow batteries for solar electricity generation and storage. , 2021, , 35-56.		0
577	A design of Nafion-coated bilayered quasi-solid electrolyte for lithium-O2 batteries with high performance. Chinese Journal of Chemical Engineering, 2021, 34, 208-216.	1.7	2
578	Li-O <mml:math <br="" display="inline" id="d1e1665" xmins:mml="http://www.w3.org/1998/Math/MathML">altimg="si4.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> batteries for high specific power applications: A multiphysics simulation study for a single discharge. Journal of Power Sources,	4.0	10
579	2021, 484, 229261. Metal-organic framework-derived porous carbon templates for catalysis. , 2021, , 73-121.		0
580	Fe-modified Co2(OH)3Cl microspheres for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 803-814.	5.0	16
581	Enhancing bifunctional electrocatalysts of hollow Co3O4 nanorods with oxygen vacancies towards ORR and OER for Li–O2 batteries. Electrochimica Acta, 2021, 367, 137490.	2.6	49
582	Resolving the cathode passivation of lithium–oxygen batteries with an amination SiO2/TiO2 functional separator. Journal of Power Sources, 2021, 483, 229180.	4.0	6
583	Oxygen vacancy-rich black TiO2 nanoparticles as a highly efficient catalyst for Li–O2 batteries. Ceramics International, 2021, 47, 6965-6971.	2.3	9

#	Article	IF	Citations
584	Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy and Environmental Science, 2021, 14, 1794-1834.	15.6	45
585	Research Progress and Future Perspectives on Rechargeable Naâ€O ₂ and Naâ€CO ₂ Batteries. Energy and Environmental Materials, 2021, 4, 158-177.	7.3	25
586	Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat, 2021, 3, e12066.	6.8	69
587	Promises and Challenges of Next-Generation "Beyond Li-ion―Batteries for Electric Vehicles and Grid Decarbonization. Chemical Reviews, 2021, 121, 1623-1669.	23.0	769
588	Tuning the structure and morphology of Li2O2 by controlling the crystallinity of catalysts for Li-O2 batteries. Chemical Engineering Journal, 2021, 409, 128145.	6.6	45
589	Tuning NaO2 formation and decomposition routes with nitrogen-doped nanofibers for low overpotential Na-O2 batteries. Nano Energy, 2021, 81, 105529.	8.2	19
590	Chloride Ion as Redox Mediator in Reducing Charge Overpotential of Aprotic Lithiumâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 232-239.	2.4	15
591	Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li–Air Batteries. Small, 2021, 17, e1903854.	5.2	45
592	Well-dispersed Pt/RuO ₂ -decorated mesoporous N-doped carbon as a hybrid electrocatalyst for Li–O ₂ batteries. RSC Advances, 2021, 11, 12209-12217.	1.7	10
593	Ultralong cycling and wide temperature range of lithium metal batteries enabled by solid polymer electrolytes interpenetrated with a poly(liquid crystal) network. Journal of Materials Chemistry A, 2021, 9, 6232-6241.	5.2	33
594	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 21419-21436.	1.3	32
595	A 3D fiber skeleton reinforced PEO-based polymer electrolyte for high rate and ultra-long cycle all-solid-state batteries. Journal of Materials Chemistry A, 2021, 9, 21057-21070.	5.2	26
596	Semiconducting Metal–Organic Polymer Nanosheets for a Photoinvolved Li–O ₂ Battery under Visible Light. Journal of the American Chemical Society, 2021, 143, 1941-1947.	6.6	124
597	Theoretical evidence of water serving as a promoter for lithium superoxide disproportionation in Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2021, 23, 10440-10447.	1.3	1
598	Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6, 123-134.	19.8	612
599	Aprotic Alkali Metal–O ₂ Batteries: Role of Cathode Surface-Mediated Processes and Heterogeneous Electrocatalysis. ACS Energy Letters, 2021, 6, 665-674.	8.8	8
600	Electrospun ZIF-derived cavity porous carbon nanofibers as a freestanding cathode for lithium–oxygen batteries with ultralow overpotential. Nanoscale, 2021, 13, 16477-16486.	2.8	10
601	Investigation on the Kinetic Property of Redox Mediators. Springer Theses, 2021, , 27-44.	0.0	0

#	Article	IF	CITATIONS
602	High-Rate Long Cycle-Life Li-Air Battery Aided by Bifunctional InX ₃ (X = I and Br) Redox Mediators. ACS Applied Materials & Interfaces, 2021, 13, 4915-4922.	4.0	17
603	Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 21695-21702.	5.2	18
604	A four-electron Zn-12 aqueous battery enabled by reversible Iâ^'/I2/I+ conversion. Nature Communications, 2021, 12, 170.	5.8	144
605	Performance evaluation of carbon/PrBaCo2O5+δ composite electrodes for Li–O2 batteries. International Journal of Hydrogen Energy, 2021, 46, 8539-8548.	3.8	2
606	Computational Investigations of the Lithium Superoxide Dimer Rearrangement on Noisy Quantum Devices. Journal of Physical Chemistry A, 2021, 125, 1827-1836.	1.1	37
607	Probing and Interpreting the Porosity and Tortuosity Evolution of Li-O ₂ Cathodes on Discharge through a Combined Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2021, 125, 4955-4967.	1.5	11
608	Deep Cycling for High apacity Liâ€Ion Batteries. Advanced Materials, 2021, 33, e2004998.	11.1	43
609	Failure mode of thick cathodes for Li-ion batteries: Variation of state-of-charge along the electrode thickness direction. Electrochimica Acta, 2021, 370, 137743.	2.6	30
610	Free-standing nitrogen doped graphene/Co(OH)2 composite films with superior catalytic activity for aprotic lithium-oxygen batteries. Chinese Chemical Letters, 2021, 32, 594-597.	4.8	3
611	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	1.3	158
612	Fabrication of Highly Monodisperse and Small-Grain Platinum Hole–Cylinder Nanoparticles as a Cathode Catalyst for Li–O ₂ Batteries. ACS Applied Energy Materials, 2021, 4, 2514-2521.	2.5	3
613	In situ small-angle X-ray scattering reveals solution phase discharge of Li–O ₂ batteries with weakly solvating electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
614	Seed Layer Formation on Carbon Electrodes to Control Li ₂ O ₂ Discharge Products for Practical Li–O ₂ Batteries with High Energy Density and Reversibility. ACS Applied Materials & Interfaces, 2021, 13, 13200-13211.	4.0	13
615	Unraveling the Control Mechanism of Carbon Nanotubes on the Oxygen Reduction Reaction and Product Growth Behavior in Lithium–Air Batteries. ACS Applied Energy Materials, 2021, 4, 2148-2157.	2.5	6
616	Impact of Cathodic Electric Double Layer Composition on the Performance of Aprotic Li-O2 Batteries. Journal of the Electrochemical Society, 2021, 168, 030520.	1.3	9
617	Simultaneous synthesis of graphite-like and amorphous carbon materials via solution plasma and their evaluation as additive materials forÂcathodeÂin Li–O2 battery. Scientific Reports, 2021, 11, 6261.	1.6	7
618	Carbon Decorated Ni(OH) ₂ Nanoflakes on Ni Foam as a Binder-Free Cathode for Lithium–Oxygen Batteries. Journal of the Electrochemical Society, 2021, 168, 030523.	1.3	2
619	Urchin-like core-shell TiO2/α-MnO2 nanostructures as an active catalyst for rechargeable lithium-oxygen battery. Advanced Powder Technology, 2021, 32, 895-907.	2.0	5

#	Article	IF	CITATIONS
620	On the Solvation of Redox Mediators and Implications for their Reactivity in Li-Air Batteries. Journal of the Electrochemical Society, 2021, 168, 030529.	1.3	5
621	Rapid Interfacial Exchange of Li Ions Dictates High Coulombic Efficiency in Li Metal Anodes. ACS Energy Letters, 0, , 1162-1169.	8.8	41
622	Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nature Chemistry, 2021, 13, 465-471.	6.6	41
623	A dismutase-biomimetic bifunctional mobile catalyst for anti-aging lithium–oxygen batteries. Journal of Power Sources, 2021, 492, 229633.	4.0	10
624	Cobalt-doped oxygen-deficient titanium dioxide coated by carbon layer as high-performance sulfur host for Li/S batteries. Journal of Alloys and Compounds, 2021, 861, 157969.	2.8	18
625	Surface plasmon mediates the visible light–responsive lithium–oxygen battery with Au nanoparticles on defective carbon nitride. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	74
626	Function-convertible metal-organic crystal derived from liquid-solid interfacial reaction for lithium-sulfur batteries. Journal of Power Sources, 2021, 491, 229593.	4.0	7
627	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie, 2021, 133, 13123-13130.	1.6	4
628	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie - International Edition, 2021, 60, 13013-13020.	7.2	25
629	Synergized Multimetal Oxides with Amorphous/Crystalline Heterostructure as Efficient Electrocatalysts for Lithium–Oxygen Batteries. Advanced Energy Materials, 2021, 11, 2100110.	10.2	72
630	Monodispersed Ruthenium Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for an Efficient Lithium–Oxygen Battery. ACS Applied Materials & Interfaces, 2021, 13, 19915-19926.	4.0	17
631	Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O ₂ Batteries. Advanced Functional Materials, 2021, 31, 2010627.	7.8	16
632	Revealing the Local Cathodic Interfacial Chemism Inconsistency in a Practical Large-Sized Li–O2 Model Battery with High Energy Density to Underpin Its Key Cyclic Constraints. ACS Applied Materials & Interfaces, 2021, 13, 23853-23865.	4.0	3
633	Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12, 2608.	5.8	242
634	Metal–CO ₂ Electrochemistry: From CO ₂ Recycling to Energy Storage. Advanced Energy Materials, 2021, 11, 2100667.	10.2	65
635	Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021, 15, 7946-7974.	7.3	102
636	Understanding the Effect of Solid Electrocatalysts on Achieving Highly Energyâ€Efficient Lithium–Oxygen Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100045.	2.8	2
637	NiFe2O4/SiO2 nanostructures as a potential electrode material for high rated supercapacitors. Ceramics International, 2021, 47, 12557-12566.	2.3	38

#	Article	IF	CITATIONS
638	Waste Biomass Derived Active Carbon as Cost-Effective and Environment-Friendly Cathode Material for Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2021, 168, 050542.	1.3	2
639	Transformation of wheat husk to 3D activated carbon/NiCo2S4 frameworks for high-rate asymmetrical supercapacitors. Journal of Energy Storage, 2021, 37, 102477.	3.9	29
640	Cesium Lead Bromide Perovskite-Based Lithium–Oxygen Batteries. Nano Letters, 2021, 21, 4861-4867.	4.5	39
641	Critical CO ₂ Concentration for Practical Lithium–Air Batteries. Journal of Physical Chemistry Letters, 2021, 12, 4799-4804.	2.1	6
642	Effect of Heat-Treatment Temperature of Carbon Gels on Cathode Performance of Lithium-Air Batteries. Journal of Chemical Engineering of Japan, 2021, 54, 213-218.	0.3	3
643	Driving Oxygen Electrochemistry in Lithium–Oxygen Battery by Local Surface Plasmon Resonance. ACS Applied Materials & Interfaces, 2021, 13, 26123-26133.	4.0	17
644	Enhanced Electrochemical Performance of Aprotic Liâ€CO ₂ Batteries with a Rutheniumâ€Complexâ€Based Mobile Catalyst. Angewandte Chemie - International Edition, 2021, 60, 16404-16408.	7.2	53
645	Enhanced Electrochemical Performance of Aprotic Li O ₂ Batteries with a Ruthenium omplexâ€Based Mobile Catalyst. Angewandte Chemie, 2021, 133, 16540-16544.	1.6	4
646	The Potassium–Air Battery: Far from a Practical Reality?. Accounts of Materials Research, 2021, 2, 515-525.	5.9	17
647	Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling. Journal of Alloys and Compounds, 2021, 865, 158748.	2.8	27
648	Aluminum-air batteries: A review of alloys, electrolytes and design. Journal of Power Sources, 2021, 498, 229762.	4.0	74
649	An ultrahigh power Li–O2 battery. Materials Today Communications, 2021, 27, 102412.	0.9	1
650	Magnesium alloys as anodes for neutral aqueous magnesium-air batteries. Journal of Magnesium and Alloys, 2021, 9, 1861-1883.	5.5	66
651	A volatile redox mediator boosts the long-cycle performance of lithium-oxygen batteries. Energy Storage Materials, 2021, 38, 571-580.	9.5	14
652	Chimerism of Carbon by Ruthenium Induces Gradient Catalysis. Advanced Functional Materials, 2021, 31, 2104011.	7.8	10
653	Enabling a Stable High-Power Lithium-Bromine Flow Battery Using Task-Specific Ionic Liquids. Journal of the Electrochemical Society, 2021, 168, 070542.	1.3	8
654	Novel core-shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy, 2021, 85, 105987.	8.2	89
656	Facile synthesized TiO2 with excellent electrochemical performances for lithium-oxygen batteries. Journal of Crystal Growth, 2021, 565, 126160.	0.7	0

#	Article	IF	CITATIONS
657	Rational reconfiguration of a gradient redox mediator with in-situ fabricated gel electrolyte for Li–air batteries. Chemical Engineering Journal, 2021, 416, 129016.	6.6	9
658	Local Strong Solvation Electrolyte Tradeâ€Off between Capacity and Cycle Life of Liâ€O ₂ Batteries. Advanced Functional Materials, 2021, 31, 2101831.	7.8	13
659	Singlet Oxygen in Electrochemical Cells: A Critical Review of Literature and Theory. Chemical Reviews, 2021, 121, 12445-12464.	23.0	48
660	A review on powertrain subsystems and charging technology in battery electric vehicles: Current and future trends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236, 479-496.	1.1	2
661	Metal-organic frameworks-derived hollow dodecahedral carbon combined with FeNx moieties and ruthenium nanoparticles as cathode electrocatalyst for lithium oxygen batteries. Journal of Colloid and Interface Science, 2021, 596, 1-11.	5.0	13
662	Oxygen electrochemistry in Liâ€O ₂ batteries probed by in situ surfaceâ€enhanced Raman spectroscopy. SusMat, 2021, 1, 345-358.	7.8	31
663	Reactive pathways toward parasitic release of singlet oxygen in metal-air batteries. Npj Computational Materials, 2021, 7, .	3.5	14
664	Sodium fluorideâ€rich solid electrolyte interphase for sodium–metal and sodium–oxygen batteries. Bulletin of the Korean Chemical Society, 2021, 42, 1519-1523.	1.0	13
665	Understanding the Effect of Doping on the Charging Performance of Li–O2 Batteries: The Role of Hole Polarons and Lithium Vacancies. Journal of Physical Chemistry C, 2021, 125, 19156-19163.	1.5	3
666	Integrated Carbon Nanotube/MoO ₃ Core/Shell Arrays as Freestanding Air Cathodes for Flexible Li–CO ₂ Batteries. Energy Technology, 2021, 9, 2100547.	1.8	11
667	Conversion of Co-Mn-Al hydrotalcites in highly active spinel-type catalysts for peroxide decomposition. Catalysis Today, 2022, 397-399, 365-374.	2.2	3
668	One step "growth to spinning―of biaxially multilayered CNT web electrode for long cycling Li–O2 batteries. Carbon, 2021, 182, 318-326.	5.4	7
669	Strategies to suppress the shuttle effect of redox mediators in lithium-oxygen batteries. Journal of Energy Chemistry, 2021, 60, 135-149.	7.1	12
670	Direct chemical synthesis of interlaced NiMn-LDH nanosheets on LSTN perovskite decorated Ni foam for high-performance supercapacitors. Surface and Coatings Technology, 2021, 421, 127455.	2.2	17
671	Electronic properties of Ir3Li and ultra-nanocrystalline lithium superoxide formation. Nano Energy, 2021, 90, 106549.	8.2	3
672	High Performance Air Breathing Flexible Lithium–Air Battery. Small, 2021, 17, e2102072.	5.2	21
673	Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Research, 2021, 14, 4512-4519.	5.8	40
674	Graphene-based hybrid aerogels for energy and environmental applications. Chemical Engineering Journal, 2021, 420, 129700.	6.6	49

#	Article	IF	Citations
675	Satisfying both sides: Novel low-cost soluble redox mediator ethoxyquin for high capacity and low overpotential Li-O2 batteries. Energy Storage Materials, 2021, 40, 159-165.	9.5	24
676	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
677	Status and Challenges of Cathode Materials for Roomâ€īemperature Sodium–Sulfur Batteries. Small Science, 2021, 1, 2100059.	5.8	28
678	One-step sonochemical synthesis of NiMn-LDH for supercapacitors and overall water splitting. Journal of Materials Science, 2021, 56, 18636-18649.	1.7	36
679	Understanding Lithium-Mediated Oxygen Reactions at the Au DMSO interface: Are We There?. Journal of Physical Chemistry C, 2021, 125, 20762-20771.	1.5	7
680	Advances in Organic Ionic Materials Based on Ionic Liquids and Polymers. Bulletin of the Chemical Society of Japan, 2021, 94, 2739-2769.	2.0	10
681	Effect of Nitrogen Dopant Forms of Biochar Cathode on the Discharge Mechanism of Li-O ₂ Battery. Journal of the Electrochemical Society, 2021, 168, 090517.	1.3	2
682	Optimization of hydrogen evolution reaction catalytic activity of Ti2CO2 via surface engineering with an isolated fluorine effect: An ab-initio density functional theory study. Applied Surface Science, 2021, 562, 150149.	3.1	4
683	Partial Disproportionation Gallium-Oxygen Reaction Boosts Lithium-Oxygen Batteries. Energy Storage Materials, 2021, 41, 475-484.	9.5	12
684	Two-dimensional Mo-based compounds for the Li-O2 batteries: Catalytic performance and electronic structure studies. Energy Storage Materials, 2021, 41, 650-655.	9.5	35
685	An ultra-stable anode material for high/low-temperature workable super-fast charging sodium-ion batteries. Chemical Engineering Journal, 2021, 422, 130054.	6.6	36
686	In-situ characterization of discharge products of lithium-oxygen battery using Flow Electrochemical Atomic Force Microscopy. Ultramicroscopy, 2021, 230, 113369.	0.8	4
687	Localized surface plasmon resonance enhanced electrochemical kinetics and product selectivity in aprotic Li–O2 batteries. Energy Storage Materials, 2021, 42, 618-627.	9.5	17
688	Active site synergy of the mixed-phase cobalt diselenides with slight lattice distortion for highly reversible and stable lithium oxygen batteries. Journal of Materials Science and Technology, 2021, 92, 159-170.	5.6	1
689	Effect of TiC surface oxide overlayer on the control of Li O behavior in lithium-oxygen batteries: Implications for cathode catalyst design. Applied Surface Science, 2021, 567, 150785.	3.1	1
690	Catalytic redox mediators for non-aqueous Li-O2 battery. Energy Storage Materials, 2021, 43, 97-119.	9.5	24
691	Dispersion hydrophobic electrolyte enables lithium-oxygen battery enduring saturated water vapor. Journal of Energy Chemistry, 2022, 64, 511-519.	7.1	7
692	Effect of Ce content on performance of AZ31 magnesium alloy anode in air battery. Journal of Alloys and Compounds, 2022, 891, 161914.	2.8	16

		LPORT	
#	Article	IF	CITATIONS
693	Dendrite-free lithium anode achieved under lean-electrolyte condition through the modification of separators with F-functionalized Ti3C2 nanosheets. Journal of Energy Chemistry, 2022, 66, 366-373.	7.1	21
694	Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium–oxygen batteries. Journal of Materials Chemistry A, 2021, 9, 10747-10757.	5.2	31
695	A review of rechargeable aprotic lithium–oxygen batteries based on theoretical and computational investigations. Journal of Materials Chemistry A, 2021, 9, 8160-8194.	5.2	34
696	Integrating a metal framework with Co-confined carbon nanotubes as trifunctional electrocatalysts to boost electron and mass transfer approaching practical applications. Nanoscale, 2021, 13, 12651-12658.	2.8	2
697	Secondary lithium and other alkali-air batteries. , 2021, , 125-156.		0
698	Characterising Non-aqueous Metal–Air Batteries Using NMR Spectroscopy. New Developments in NMR, 2021, , 412-432.	0.1	0
699	Bioinspired Redox Mediator in Lithium–Oxygen Batteries. ACS Catalysis, 2021, 11, 1833-1840.	5.5	11
700	Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A, 2021, 9, 4415-4453.	5.2	67
701	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	11.1	23
702	3D Hollow αâ€MnO ₂ Framework as an Efficient Electrocatalyst for Lithium–Oxygen Batteries. Small, 2019, 15, e1804958.	5.2	82
703	Multi-dimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting. Science China Materials, 2021, 64, 1127-1138.	3.5	44
704	Realizing the growth of nano-network Li2O2 film on defect-rich holey Co9S8 nanosheets for Li-O2 battery. Chemical Engineering Journal, 2020, 396, 125228.	6.6	20
705	Lithium Peroxide Growth in Li–O2 Batteries via Chemical Disproportionation and Electrochemical Mechanisms: A Potential-Dependent Ab Initio Study with Implicit Solvation. Journal of Physical Chemistry C, 2021, 125, 436-445.	1.5	8
706	Understanding and suppressing side reactions in Li–air batteries. Materials Chemistry Frontiers, 2017, 1, 2495-2510.	3.2	59
707	Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy and Environmental Science, 2020, 13, 1933-1970.	15.6	121
708	Graphene quantum dots as a highly efficient electrocatalyst for lithium–oxygen batteries. Journal of Materials Chemistry A, 2020, 8, 22356-22368.	5.2	20
709	Recent advances in solid state lithium–oxygen batteries: electrolytes and multi-functions. Nano Futures, 2020, 4, 032005.	1.0	5
710	Modelling and understanding battery materials with machine-learning-driven atomistic simulations. JPhys Energy, 2020, 2, 041003.	2.3	51

#	Article	IF	CITATIONS
711	A Modeling Study of Discharging Li-O2 Batteries With Various Electrolyte Concentrations. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	1.1	3
712	A Hybrid Na//K ⁺ -Containing Electrolyte//O ₂ Battery with High Rechargeability and Cycle Stability. Research, 2019, 2019, 1-9.	2.8	13
713	Improving the Performance of Zn-Air Batteries with N-Doped Electroexfoliated Graphene. Materials, 2020, 13, 2115.	1.3	13
714	A Hybrid Na//K ⁺ -Containing Electrolyte//O ₂ Battery with High Rechargeability and Cycle Stability. Research, 2019, 2019, 6180615.	2.8	21
715	3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures. Journal of Materials Chemistry A, 2021, 9, 25237-25257.	5.2	50
716	First-Principles Computational and Experimental Investigation of Molten-Salt Electrolytes: Implications for Li–O2 Battery. Journal of Physical Chemistry C, 2021, 125, 3698-3705.	1.5	1
717	Understanding the Catalytic Activity of the Preferred Nitrogen Configuration on the Carbon Nanotube Surface and Its Implications for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2021, 125, 22570-22580.	1.5	5
718	MnCo ₂ S ₄ â€CoS _{1.097} Heterostructure Nanotubes as High Efficiency Cathode Catalysts for Stable and Longâ€Life Lithiumâ€Oxygen Batteries Under High Current Conditions. Advanced Science, 2021, 8, e2103302.	5.6	42
719	Mechanistic Study of the Li–Air Battery with a Co3O4 Cathode and Dimethyl Sulfoxide Electrolyte. Journal of Physical Chemistry C, 2021, 125, 21873-21881.	1.5	9
720	Recent progress in the function of redox mediators on the electrode/electrolyte interfaces of lithium–oxygen batteries. Functional Materials Letters, 2021, 14, .	0.7	1
721	Electrolyte decomposition and solid electrolyte interphase revealed by mass spectrometry. Electrochimica Acta, 2021, 399, 139362.	2.6	24
722	Controlling to Expand Reversibly Li2O2-formation/decomposition by Modifying Electrolyte in Lithium-oxygen Batteries. SSRN Electronic Journal, 0, , .	0.4	0
723	Rechargeable Lithium Metal Batteries. , 2019, , 147-203.		0
724	Designer Interphases for the Lithium-Oxygen Electrochemical Cell. Springer Theses, 2019, , 137-161.	0.0	0
725	Advanced Coupling of Energy Storage and Photovoltaics. , 2019, , 317-350.		0
726	Solid Polymer Interphases for Lithium Metal Batteries. Springer Theses, 2019, , 183-198.	0.0	0
727	First-principles study of reduction mechanism of oxygen molecule using nitrogen doped graphene as cathode material for lithium air batteries. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 128801.	0.2	3
728	Lewisâ€Acidic PtIr Multipods Enable Highâ€Performance Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2021, 60, 26592-26598.	7.2	72

#	Article	IF	CITATIONS
729	Suppressing Singlet Oxygen Formation during the Charge Process of Li-O ₂ Batteries with a Co ₃ O ₄ Solid Catalyst Revealed by Operando Electron Paramagnetic Resonance. Journal of Physical Chemistry Letters, 2021, 12, 10346-10352.	2.1	10
730	Lewisâ€Acidic PtIr Multipods Enable Highâ€Performance Li–O ₂ Batteries. Angewandte Chemie, 2021, 133, 26796-26802.	1.6	6
731	Nature-inspired Three-dimensional Au/Spinach as a Binder-free and Self-standing Cathode for High-performance Li-O2 Batteries. Chemical Research in Chinese Universities, 2022, 38, 200-208.	1.3	7
732	Rational Design of Metal–Organic <scp>Frameworkâ€Based</scp> Materials for Advanced Lïi£¿S Batteries. Bulletin of the Korean Chemical Society, 2021, 42, 148-158.	1.0	25
733	Waste Sawdust-Derived Nanoporous Carbon as a Positive Electrode for Lithium-Ion Storage. Macromolecular Research, 2020, 28, 1204-1210.	1.0	4
734	A free-standing 3D porous all-ceramic cathode for high capacity, long cycle life Li–O ₂ batteries. Chemical Communications, 2021, 57, 12792-12795.	2.2	1
735	Activating MoS ₂ Nanoflakes via Sulfur Defect Engineering Wrapped on CNTs for Stable and Efficient Liâ€O ₂ Batteries. Advanced Functional Materials, 2022, 32, 2108153.	7.8	74
736	In Situ Stress Measurements on Thin Film Au Positive Electrode during the First Discharge of Li-O ₂ Batteries. Journal of the Electrochemical Society, 2021, 168, 110551.	1.3	4
737	Li ₂ O ₂ Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li–O ₂ Batteries. Small Methods, 2022, 6, e2101280.	4.6	39
738	Recent Advances in Flexible Zn–Air Batteries: Materials for Electrodes and Electrolytes. Small Methods, 2022, 6, e2101116.	4.6	21
739	Real-Time Monitoring of Surface Effects on the Oxygen Reduction Reaction Mechanism for Aprotic Na–O ₂ Batteries. Journal of the American Chemical Society, 2021, 143, 20049-20054.	6.6	11
740	Heterostructure interface effect on the ORR/OER kinetics of Ag–PrBa _{0.5} Sr _{0.5} Co ₂ O _{5+δ} for highâ€efficiency Li–O ₂ battery. Journal of the American Ceramic Society, 2022, 105, 2690-2701.	1.9	7
741	Progress and Prospects in Redox Mediators for Highly Reversible Lithium–Oxygen Batteries: A Minireview. Energy & Fuels, 2021, 35, 19302-19319.	2.5	10
742	Recent Advances in Metal–Gas Batteries with Carbonâ€Based Nonprecious Metal Catalysts. Small, 2022, 18, e2103747.	5.2	10
743	Nanomaterials for alkali metal/oxygen batteries. Frontiers of Nanoscience, 2021, 19, 199-227.	0.3	0
744	True Reaction Sites on Discharge in Li–O ₂ Batteries. Journal of the American Chemical Society, 2022, 144, 807-815.	6.6	43
745	Defect-rich boron doped carbon nanotubes as an electrocatalyst for hybrid Li–air batteries. Catalysis Science and Technology, 2022, 12, 332-338.	2.1	9
746	A gradient topology host for a dendrite-free lithium metal anode. Nano Energy, 2022, 94, 106937.	8.2	41

#	Article	IF	CITATIONS
747	A review on nanofiber reinforced aerogels for energy storage and conversion applications. Journal of Energy Storage, 2022, 46, 103927.	3.9	39
748	Towards practically accessible aprotic Li-air batteries: Progress and challenges related to oxygen-permeable membranes and cathodes. Energy Storage Materials, 2022, 45, 869-902.	9.5	32
749	Advanced interfacial engineering of oxygen-enriched Fe Sn1â^'OSe nanostructures for efficient overall water splitting and flexible zinc-air batteries. Applied Catalysis B: Environmental, 2022, 305, 120924.	10.8	33
750	Redox Mediator with the Function of Intramolecularly Disproportionating Superoxide Intermediate Enabled Highâ€Performance Li–O ₂ Batteries. Advanced Energy Materials, 2022, 12, .	10.2	16
751	Positive Feedback Mechanism to Increase the Charging Voltage of Li–O ₂ Batteries. Journal of the American Chemical Society, 2022, 144, 1296-1305.	6.6	12
752	A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Science Advances, 2022, 8, eabm1899.	4.7	26
753	Microstructure Characterization and Battery Performance Comparison of MOF-235 and TiO2-P25 Materials. Crystals, 2022, 12, 152.	1.0	7
754	A Direct View on Li-Ion Transport and Li-Metal Plating in Inorganic and Hybrid Solid-State Electrolytes. Accounts of Chemical Research, 2022, 55, 333-344.	7.6	25
755	Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li–O ₂ batteries. Chemical Science, 2022, 13, 2841-2856.	3.7	20
756	Decomposition pathway and stabilization of ether-based electrolytes in the discharge process of Li-O2 battery. Journal of Energy Chemistry, 2022, 69, 516-523.	7.1	20
757	<i>In situ</i> TEM visualization of single atom catalysis in solid-state Na–O ₂ nanobatteries. Journal of Materials Chemistry A, 2022, 10, 6096-6106.	5.2	6
758	Tunable Redox Mediators for Li–O ₂ Batteries Based on Interhalide Complexes. ACS Applied Materials & Interfaces, 2022, 14, 6689-6701.	4.0	5
759	Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes. Journal of the Electrochemical Society, 2022, 169, 010511.	1.3	2
760	Revisiting Solvent-Dependent Roles of the Electrolyte Counteranion in Li–O ₂ Batteries upon CO ₂ Incorporation. ACS Applied Energy Materials, 2022, 5, 2150-2160.	2.5	4
761	Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery. Joule, 2022, 6, 185-192.	11.7	41
762	Beyond Li-Ion Batteries: Future of Sustainable Large Scale Energy Storage System. , 2022, , .		0
763	Glyme-based electrolytes: suitable solutions for next-generation lithium batteries. Green Chemistry, 2022, 24, 1021-1048.	4.6	28
764	Interfacial Electron Redistribution of Hydrangeaâ€like NiO@Ni ₂ P Heterogeneous Microspheres with Dualâ€Phase Synergy for Highâ€Performance Lithium–Oxygen Battery. Small, 2022, 18, e2106707.	5.2	27

#	Article	IF	CITATIONS
765	Nonvolatile and Nonflammable Sulfolane-Based Electrolyte Achieving Effective and Safe Operation of the Li–O ₂ Battery in Open O ₂ Environment. Nano Letters, 2022, 22, 815-821.	4.5	16
766	Spinâ€State Manipulation of Twoâ€Dimensional Metal–Organic Framework with Enhanced Metal–Oxygen Covalency for Lithiumâ€Oxygen Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	65
767	Spinâ€State Manipulation of Twoâ€Dimensional Metal–Organic Framework with Enhanced Metal–Oxygen Covalency for Lithiumâ€Oxygen Batteries. Angewandte Chemie, 2022, 134, .	1.6	5
768	Co ₃ O ₄ nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li ₂ O ₂ for smart lithium–oxygen batteries. Inorganic Chemistry Frontiers, 2022, 9, 1115-1124.	3.0	76
769	Oxygen Vacancyâ€Mediated Growth of Amorphous Discharge Products toward an Ultrawide Band Lightâ€Assisted Li–O ₂ Batteries. Advanced Materials, 2022, 34, e2107826.	11.1	51
770	Rationalizing the effect of surface electronic structure on oxygen electrocatalyst for high performance lithium-oxygen battery. Electrochimica Acta, 2022, 407, 139891.	2.6	3
771	Shifting Target Reaction from Oxygen Reduction to Superoxide Disproportionation by Tuning Isomeric Configuration of Quinone Derivative as Redox Mediator for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 9066-9072.	4.0	5
772	Unraveling the Unstable Nature of Tetraglyme-Based Electrolytes toward Superoxide and the Inhibitory Effect of Lithium Ions by Using In Situ Vibrational Spectroscopies. Journal of Physical Chemistry C, 2022, 126, 2980-2989.	1.5	10
773	Ironâ€phosphate glassâ€ceramic anodes for lithiumâ€ion batteries. International Journal of Applied Glass Science, 2022, 13, 420-428.	1.0	3
774	New Magnetic Resonance and Computational Methods to Study Crossover Reactions in Li-Air and Redox Flow Batteries Using TEMPO. Journal of Physical Chemistry C, 2021, 125, 27520-27533.	1.5	9
775	Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multiâ€Modal and Multiâ€6cale Standardized Experimental Workflow. Advanced Energy Materials, 2022, 12, .	10.2	17
776	Mildly Oxidized MXene (Ti ₃ C ₂ , Nb ₂ C, and V ₂ C) Electrocatalyst via a Generic Strategy Enables Longevous Li–O ₂ Battery under a High Rate. ACS Nano, 2021, 15, 19640-19650.	7.3	42
777	Mof-Derived Cose@Porous Carbon Polyhedra/Cnts as a Bifunctional Catalyst to Enhance the Performance of Li-O2 Batteries. SSRN Electronic Journal, 0, , .	0.4	0
778	A Chiral Salen-Co(â;) Complex as Soluble Redox Mediator for Promoting the Electrochemical Performance of Li-O ₂ Batteries. SSRN Electronic Journal, 0, , .	0.4	0
779	First-Order or Second-Order? Disproportionation of Lithium Superoxide in Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2022, 13, 2033-2038.	2.1	8
780	A Highâ€Performance Solidâ€State Na–CO ₂ Battery with Poly(Vinylidene) Tj ETQq1 1 0.784314 r Electrolyte. Energy and Environmental Materials, 2023, 6, .	gBT /Over 7.3	lock 10 Tf 50 7
781	Sacrificial Co-solvent Electrolyte to Construct a Stable Solid Electrolyte Interphase in Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10327-10336.	4.0	6
782	3D Continuously Porous Graphene for Energy Applications. Advanced Materials, 2022, 34, e2108750.	11.1	53

#	Article	IF	CITATIONS
783	<i>In Situ</i> Grazing Incidence Surface X-ray Diffraction Study of Li ₂ O Ultra-thin Film Formation on Li and Its Effect of Suppressing Dendrite Formation during Charging and Discharging. Chemistry Letters, 2022, 51, 552-555.	0.7	1
784	Challenges and prospects of lithium–CO ₂ batteries. , 2022, 1, e9120001.		99
785	Engineering e _g Orbital Occupancy of Pt with Au Alloying Enables Reversible Liâ~'O ₂ Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	46
786	Three Birds with One Stone: An Integrated Cathode–Electrolyte Structure for Highâ€Performance Solidâ€State Lithium–Oxygen Batteries. Small, 2022, 18, e2107833.	5.2	11
787	Engineering e _g Orbital Occupancy of Pt with Au Alloying Enables Reversible Liâ^'O ₂ Batteries. Angewandte Chemie, 2022, 134, .	1.6	11
788	Introducing Metal–Organic Nanotubes to Derive Highâ€Đensity Bimetal Alloy Nanoparticles Supported on Nanorods for Lithium–Oxygen Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	5
789	Photoactive nanomaterials enabled integrated photo-rechargeable batteries. Nanophotonics, 2022, 11, 1443-1484.	2.9	9
790	Comparative Study of the Electrochemical Performance of Different Separators in Aprotic Li–O ₂ Batteries. Energy & Fuels, 2022, 36, 4609-4615.	2.5	2
791	In Operando Closed-cell Transmission Electron Microscopy for Rechargeable Battery Characterization: Scientific Breakthroughs and Practical Limitations. Nano Energy, 2022, 96, 107083.	8.2	7
792	Critical Void Dimension of Carbon Frameworks to Accommodate Insoluble Products of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 492-501.	4.0	1
793	Lithium superoxide encapsulated in a benzoquinone anion matrix. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	1
794	CoS ₂ Nanoparticles Anchored on MoS ₂ Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li ₂ O ₂ Heteroepitaxial Growth for Rechargeable Liâ€O ₂ Batteries. Small, 2022, 18, e2105752.	5.2	20
795	Toward <scp>highâ€performance lithiumâ€oxygen</scp> batteries with cobaltâ€based transition metal oxide catalysts: Advanced strategies and mechanical insights. InformaÄnÃ-Materiály, 2022, 4, .	8.5	29
796	Understanding the Role of Lithium Iodide in Lithium–Oxygen Batteries. Advanced Materials, 2022, 34, e2106148.	11.1	26
797	Rechargeable Batteries: Regulating Electronic and Ionic Transports for High Electrochemical Performance. Advanced Materials Technologies, 2022, 7, .	3.0	8
798	Recent advances in charge mechanism of noble metal-based cathodes for Li-O2 batteries. Chinese Chemical Letters, 2023, 34, 107413.	4.8	9
799	Metal-organic frameworks as a good platform for the fabrication of multi-metal nanomaterials: design strategies, electrocatalytic applications and prospective. Advances in Colloid and Interface Science, 2022, 304, 102668.	7.0	16
800	Evolution of Discharge Products on Carbon Nanotube Cathodes in Li–O ₂ Batteries Unraveled by Molecular Dynamics and Density Functional Theory. ACS Catalysis, 2022, 12, 5048-5059.	5.5	13

	CITATION RE	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
802	Chemical Challenges that the Peroxide Dianion Presents to Rechargeable Lithium–Air Batteries.	10./	187
803	Chemistry of Materials, 2022, 34, 3883-3892. Ionic Liquid Electrolytes for Next-generation Electrochemical Energy Devices. EnergyChem, 2022, 4,	10.1	25
805	100075. Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodiumâ€Oxygen Battery Discharge Batteries and Supercaps 0	2.4	2
806	Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries. Energy Storage Materials, 2022, 50, 96-104.	9.5	27
807	Highâ€Performance Liâ€O ₂ Batteries Enabled by Dibenzoâ€24â€Crownâ€8 Aldehyde Derivative as Electrolyte Additives. Advanced Energy Materials, 2022, 12, .	10.2	10
808	Modeling the multi-step discharge and charge reaction mechanisms of non-aqueous Li-O2 batteries. Applied Energy, 2022, 317, 119189.	5.1	5
809	The study of different redox mediators for competent Li–air batteries. Journal of Power Sources, 2022, 538, 231379.	4.0	10
810	Collective, bifunctional 1D CNT/2D TMOH hybrid sponge as high-capacity and long-cycle Li-O2 cathode. Energy Storage Materials, 2022, 50, 344-354.	9.5	7
811	Revealing the illumination effect on the discharge products in highâ€performance Li–O ₂ batteries with heterostructured photocatalysts. , 2022, 4, 1169-1181.		16
812	A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2022, 38, 1219-1225.	1.3	7
813	Sweetening Lithium Metal Interface by High Surface and Adhesive Energy Coating of Crystalline αâ€< scp>dâ€Glucose Film to Inhibit Dendrite Growth. Small, 2022, 18, .	5.2	5
814	Hierarchical Architecture: A Novel, Facile and Cost-Efficient Strategy to Boost Electrochemical Performance of Li-O2 Battery Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
815	Electron-redistributed Ni–Co oxide nanoarrays as an ORR/OER bifunctional catalyst for low overpotential and long lifespan Li–O ₂ batteries. Journal of Materials Chemistry A, 2022, 10, 14613-14621.	5.2	12
816	The key to improving the performance of Li–air batteries: recent progress and challenges of the catalysts. Physical Chemistry Chemical Physics, 2022, 24, 17920-17940.	1.3	12
817	High-Efficiency Li–O ₂ 3O ₄ on the (111) Plane for High-Efficiency Li–O ₂ Batteries in a Hybrid Electrolyte. ACS Applied Materials & amp; Interfaces, 2022, 14, 28965-28976.	4.0	12
818	Direct Observation of Solvent Donor Number Effect on Lithium–Oxygen Battery Capacity via a Nanoarray Cathode Model. Journal of Physical Chemistry C, 0, , .	1.5	1
819	A chiral salen-Co(II) complex as soluble redox mediator for promoting the electrochemical performance of Li-O2 batteries. Nano Research, 2022, 15, 8101-8108.	5.8	1

#	Article	IF	Citations
820	Solid-State Nanobatteries. ACS Symposium Series, 0, , 201-248.	0.5	1
821	Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries. EScience, 2022, 2, 389-398.	25.0	37
822	Study on Fundamental Properties of Solvate Electrolytes and Their Application in Batteries. Electrochemistry, 2022, , .	0.6	2
823	Simultaneous Regulation of Li-Ion Intercalation and Oxygen Termination Decoration on Ti3c2tx Mxene Toward Enhanced Oxygen Electrocatalysis for Li-O2 Batteries. SSRN Electronic Journal, 0, , .	0.4	0
824	Highâ€Performance Lithium–Oxygen Batteries Using a Ureaâ€Based Electrolyte with Kinetically Favorable Oneâ€Electron Li ₂ O ₂ Oxidation Pathways. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
825	Highâ€performance Lithium–Oxygen Batteries using a Ureaâ€based ElectrolyteÂwith Kinetically Favorable Oneâ€electron Li2O2 Oxidation Pathways. Angewandte Chemie, 0, , .	1.6	0
826	Lightâ€Assisted Li–O ₂ Batteries with Lowered Bias Voltages by Redox Mediators. Small, 2022, 18, .	5.2	13
827	Low-carbon CeOx/Ru@RuO2 nanosheets as bifunctional catalysts for lithium-oxygen batteries. Journal of Alloys and Compounds, 2022, 924, 166354.	2.8	4
828	Advances in Lithium–Oxygen Batteries Based on Lithium Hydroxide Formation and Decomposition. Frontiers in Chemistry, 0, 10, .	1.8	7
829	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical Reviews, 2022, 122, 13043-13107.	23.0	59
830	Nanoarchitectonics of the cathode to improve the reversibility of Li–O ₂ batteries. Beilstein Journal of Nanotechnology, 0, 13, 689-698.	1.5	3
831	Compressible, gradient-immersion, regenerable carbon nanotube sponges as high-performance lithium–oxygen battery cathodes. Materials Today, 2022, 59, 68-79.	8.3	10
832	Conformal Lithium Peroxide Growth Kinetically Driven by MoS ₂ /MoN Heterostructures Towards Highâ€Performance Liâ^'O ₂ Batteries. Batteries and Supercaps, 2022, 5, .	2.4	4
833	A New Cathode Material for a Li–O ₂ Battery Based on Lithium Superoxide. ACS Energy Letters, 2022, 7, 2619-2626.	8.8	21
834	A Nonaqueous Mg O ₂ Battery with Low Overpotential. Advanced Energy Materials, 2022, 12, .	10.2	15
835	Recent advances and challenges in the design of Li–air batteries oriented solidâ€state electrolytes. , 2023, 2, .		12
836	Optimization of Yolk–Shell NiCo ₂ S ₄ Spheres as Catalysts for High-Performance Rechargeable Li–O ₂ Batteries. ACS Applied Energy Materials, 2022, 5, 10415-10426.	2.5	3
837	The role of graphene in rechargeable lithium batteries: Synthesis, functionalisation, and perspectives. Nano Materials Science, 2022, , .	3.9	20

#	Article	IF	CITATIONS
838	Oxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries. Nature Communications, 2022, 13, .	5.8	49
839	Catalytic performance of oxygen vacancies-enriched h-MoO3 in lithium-oxygen batteries. Journal of Alloys and Compounds, 2022, 927, 166927.	2.8	4
840	High-Energy-Density and Long-Lifetime Lithium-Ion Battery Enabled by a Stabilized Li ₂ O ₂ Cathode Prelithiation Additive. ACS Applied Materials & Interfaces, 2022, 14, 38706-38716.	4.0	5
841	Plasma Surface Engineering of NiCo ₂ S ₄ @rGO Electrocatalysts Enables High-Performance Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2022, 14, 36753-36762.	4.0	8
842	Nitrate-mediated four-electron oxygen reduction on metal oxides for lithium-oxygen batteries. Joule, 2022, 6, 1887-1903.	11.7	10
843	Preparation of RuO2/CNTs by Atomic Layer Deposition and its application as binder free Cathode for polymer based Li-O2 battery. International Journal of Electrochemical Science, 2022, 17, 220967.	0.5	1
844	An integrated strategy for upgrading Li-CO2 batteries: Redox mediator and separator modification. Chemical Engineering Journal, 2022, 450, 138400.	6.6	8
845	Hierarchical architecture: A novel, facile and cost-efficient strategy to boost electrochemical performance of Li-O2 battery cathodes. Chemical Engineering Journal, 2022, 450, 138462.	6.6	4
846	BIAN-based durable polymer metal complex as a cathode material for Li–O2 battery applications. Polymer Journal, 2022, 54, 1355-1366.	1.3	5
847	Preparation of RuO2/CNTs by Atomic Layer Deposition and its application as binder free Cathode for polymer based Li-O2 battery. International Journal of Electrochemical Science, 2022, 17, 221020.	0.5	Ο
848	Simultaneous regulation of Li-ion intercalation and oxygen termination decoration on Ti3C2Tx MXene toward enhanced oxygen electrocatalysis for Li-O2 batteries. Chemical Engineering Journal, 2023, 451, 138818.	6.6	5
849	Lattice distortion derived catalytic degradation in multi-oxide cathode catalyst for Li–oxygen batteries. Journal of Materials Chemistry A, 2022, 10, 18078-18086.	5.2	2
850	In-Situ Spectroelectrochemistry in Li-O2 Batteries. , 2022, , .		0
851	A high-rate and high-efficiency molten-salt sodium–oxygen battery. Energy and Environmental Science, 2022, 15, 4636-4646.	15.6	11
852	Discovery of organic catalysts boosting lithium carbonate decomposition toward ambient air operational lithium–air batteries. Journal of Materials Chemistry A, 2022, 10, 20464-20472.	5.2	5
853	An amino-functionalized metal–organic framework achieving efficient capture–diffusion–conversion of CO ₂ towards ultrafast Li–CO ₂ batteries. Journal of Materials Chemistry A, 2022, 10, 18396-18407.	5.2	6
854	Carbon-Based Nanomaterials for Metal-Air Batteries. Springer Series in Materials Science, 2022, , 249-270.	0.4	0
855	A Review: Preâ€lithiation Strategies Based on Cathode Sacrificial Lithium Salts for Lithiumâ€lon Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	4

#	Article	IF	CITATIONS
856	Protonâ€Mediated and Ir atalyzed Iron/Ironâ€Oxide Redox Kinetics for Enhanced Rechargeability and Durability of Solid Oxide Iron–Air Battery. Advanced Science, 0, , 2203768.	5.6	2
857	Amphi-Active Superoxide-Solvating Charge Redox Mediator for Highly Stable Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 40793-40800.	4.0	5
858	Exclusive Solution Discharge in Li–O ₂ Batteries?. ACS Energy Letters, 2022, 7, 3112-3119.	8.8	8
859	Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
860	Reacquainting the Sudden-Death and Reaction Routes of Li–O ₂ Batteries by Ex Situ Observation of Li ₂ O ₂ Distribution Inside a Highly Ordered Air Electrode. Nano Letters, 2022, 22, 7527-7534.	4.5	11
861	Recent Progress in Developing a LiOHâ€Based Reversible Nonaqueous Lithium–Air Battery. Advanced Materials, 2023, 35, .	11.1	7
862	Ultrathin edge-rich structure of Co3O4 enabling the low charging overpotential of Li-O2 battery. Journal of Electroanalytical Chemistry, 2022, 925, 116810.	1.9	0
863	Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
864	Pr ₆ O ₁₁ : Temperature-Dependent Oxygen Vacancy Regulation and Catalytic Performance for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 40975-40984.	4.0	15
865	Phosphorus Vacancies and Heterojunction Interface as Effective Lithiumâ€Peroxide Promoter for Longâ€Cycle Life Lithium–Oxygen Batteries. Advanced Functional Materials, 2022, 32, .	7.8	15
866	Dynamic Electrochemical Interfaces for Energy Conversion and Storage. Jacs Au, 2022, 2, 2222-2234.	3.6	5
867	Chemistry of Li-air batteries. , 2022, , .		0
868	The Mechanical Properties of Batteries and Supercapacitors. , 2022, , .		0
869	Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologies. Energies, 2022, 15, 7397.	1.6	7
870	Acceleration of Singlet Oxygen Evolution by Superoxide Dismutase Mimetics in Lithium–Oxygen Batteries. Advanced Functional Materials, 2022, 32, .	7.8	8
871	Amorphous nickel cobalt oxides as highly efficient catalytic cathodes for rechargeable Li–O ₂ batteries. Applied Physics Letters, 2022, 121, 183902.	1.5	1
872	Solvation structure and dynamics of Li and LiO2 and their transformation in non-aqueous organic electrolyte solvents from first-principles simulations. Chinese Journal of Catalysis, 2022, 43, 2850-2857.	6.9	2
873	The influence of current density dependent Li2CO3 properties on the discharge and charge reactions of Li-CO2/O2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130480.	2.3	3

#	Article	IF	CITATIONS
874	TM-N4C (TMÂ=ÂCo, Pd, Pt and Ru) as OER electrocatalysts in lithium-oxygen batteries: First-principles study. Applied Surface Science, 2023, 609, 155331.	3.1	4
875	Electrocatalysis in Li–O2 battery over single-atom catalyst based on g-C3N4 substrate. Applied Surface Science, 2023, 610, 155481.	3.1	5
876	Progress and perspectives of space charge limited current models in all-solid-state batteries. Journal of Materials Research, 2022, 37, 4017-4034.	1.2	7
877	Progress and perspectives of metal (Li, Na, Al, Zn and K)–CO2 batteries. Materials Today Energy, 2023, 31, 101196.	2.5	7
878	Modified lithium metal anode <i>via</i> anion-planting protection mechanisms for dendrite-free long-life lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 2754-2768.	5.2	7
879	Optimal and systematic design of large-scale electrodes for practical Li–air batteries. Electrochimica Acta, 2023, 439, 141642.	2.6	0
880	Modeling the influence of water on the performance of non-aqueous Li-O2 batteries. Applied Energy, 2023, 330, 120356.	5.1	2
881	Investigation of the influence of carbon surface properties on the cathode behavior of Lithium-air batteries using electrospun carbon nanofibers. , 2022, , .		0
882	Uncovering the Electrolyte-Dependent Transport Mechanism of LiO ₂ in Lithium-Oxygen Batteries. Journal of the American Chemical Society, 2022, 144, 22150-22158.	6.6	8
883	Electrochemical energy storage and conversion: An overview. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	1.9	6
884	Methods to Synthesize Nanostructured Materials for Electrocatalytic Activities. ACS Symposium Series, 0, , 31-51.	0.5	0
885	Restraining Shuttle Effect in Rechargeable Batteries by Multifunctional Zeolite Coated Separator. Advanced Functional Materials, 2023, 33, .	7.8	10
886	Highly Reversible Solidâ€State Lithiumâ€Oxygen Batteries by Sizeâ€Matching Between Feâ€Fe Cluster and Li _{2â€x} O ₂ . Advanced Energy Materials, 2023, 13, .	10.2	10
887	Electrocatalysts and Electrocatalysis: From Fundamental Mechanisms to Fuel Cell Applications. ACS Symposium Series, 0, , 53-71.	0.5	1
888	RuO ₂ -Incorporated Co ₃ O ₄ Nanoneedles Grown on Carbon Cloth as Binder-Free Integrated Cathodes for Tuning Favorable Li ₂ O ₂ Formation. ACS Applied Materials & Interfaces, 2023, 15, 1401-1409.	4.0	4
889	Polymer Electrolytes Based on the Lithium Form of Nafion Sulfonic Cation-Exchange Membranes: Current State of Research and Prospects for Use in Electrochemical Power Sources. Membranes and Membrane Technologies, 2022, 4, 433-454.	0.6	5
890	Metal-air batteries: progress and perspective. Science Bulletin, 2022, 67, 2449-2486.	4.3	61
891	Nanostructured Phosphides as Electrocatalysts for Green Energy Generation. ACS Symposium Series, 0, , 227-255.	0.5	2

ARTICLE IF CITATIONS Noble Metal-Free Electrocatalysts: Materials for Energy Applications. ACS Symposium Series, 0, , 73-94. 894 0.5 0 Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-29. Unravelling the Complex LiOHâ€Based Cathode Chemistry in Lithium–Oxygen Batteries**. Angewandte 896 7.2 6 Chemie - International Edition, 2023, 62, . Electrocatalysts Based on Graphene and Its Composites. ACS Symposium Series, 0, , 165-199. 0.5 Role of Superoxide and Singlet Oxygen on the Oxygen Reduction Pathways in Liâ^{-,}O₂ 899 1.7 4 Cathodes at Different Li⁺ Ion Concentration**. ChemElectroChem, 2022, 9, . Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Research, 2023, 16, 4246-4276. 5.8 Operando Fluorescence Detection of Singlet Oxygen inside High-Performance Li–O₂ 901 1.5 3 Batteries. Journal of Physical Chemistry C, 2023, 127, 78-84. Unravelling the Complex LiOHâ€Based Cathode Chemistry in Lithium–Oxygen Batteries**. Angewandte 902 1.6 Chemie, 0, , . Spin-State Regulation of Nickel Cobalt Spinel toward Enhancing the Electron Transfer Process of 905 2.5 3 Oxygen Redox Reactions in Lithium–Oxygen Batteries. Energy & amp; Fuels, 2023, 37, 735-745. Liquid cell electrochemical TEM: Unveiling the real-time interfacial reactions of advanced Li-metal 1.2 batteries. Journal of Chemical Physics, 2022, 157, . Atomic Ruthenium-Riveted Metal–Organic Framework with Tunable d-Band Modulates Oxygen Redox 907 39 6.6 for Lithium–Oxygen Batteries. Journal of the American Chemical Society, 2022, 144, 23239-23246. Biomass-Derived Electroactive Carbons with Application in Green Electrochemical Technologies. ACS 908 0.5 Symposium Series, 0, , 129-164. Covalent Organic Framework-Based Electrocatalysts for CO₂ Reduction Reaction. ACS 909 0.5 0 Symposium Series, 0, , 257-274. Role of Electrocatalysts in the Performance and Efficiency of Metalâ^{^,} Air Batteries. ACS Symposium Series, 0, , 95-127 Electrocatalysts Based on Metal Oxides for Hydrogen Evolution Reaction. ACS Symposium Series, 0, , 911 0.50 201-226. Reversible Discharge Products in Li–Air Batteries. Advanced Materials, 2023, 35, . 11.1 Fundamental Understanding of Nonaqueous and Hybrid Na–CO₂ Batteries: Challenges and 913 5.210 Perspectives. Small, 2023, 19, . Regulating electrochemistry kinetics and discharge product selectivity with near-free cobalt 914 single-atom catalyst in Liâ^{^,}O2 batteries. Energy Storage Materials, 2023, 56, 331-341.

#	Article	IF	CITATIONS
915	New Conceptual Catalyst on Spatial Highâ€Entropy Alloy Heterostructures for Highâ€Performance Liâ€O ₂ Batteries. Small, 2023, 19, .	5.2	15
916	Tailoring the nucleation and growth routes of discharge products for lithium-oxygen batteries through the facet engineering of Ni2P catalysts. Energy Storage Materials, 2023, 56, 506-514.	9.5	9
917	Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Materials, 2023, 56, 141-154.	9.5	11
918	Rational design to manganese-doped amorphous tetra-metallic oxides as efficient catalysts for Li O2 batteries. Solid State Ionics, 2023, 391, 116146.	1.3	2
919	An atomic/molecular-level strategy for the design of a preferred nitrogen-doped carbon nanotube cathode for Li-O2 batteries. Applied Surface Science, 2023, 615, 156367.	3.1	2
920	Singleâ€Atom Pdâ€N ₄ Catalysis for Stable Lowâ€Overpotential Lithiumâ€Oxygen Battery. Small, 2023, 19, .	5.2	8
921	A Review on the Status and Challenges of Cathodes in Roomâ€Temperature Naâ€5 Batteries. Advanced Functional Materials, 2023, 33, .	7.8	19
922	MOFs Containing Solidâ€State Electrolytes for Batteries. Advanced Science, 2023, 10, .	5.6	22
923	Unlock Restricted Capacity via OCe Hybridization for LiOxygen Batteries. Advanced Materials, 2023, 35, .	11.1	11
924	Facet-engineered photoelectrochemical nanocatalysts toward fast kinetic lithium–air batteries. , 0, , .		0
925	Stepping Up the Kinetics of Li–O ₂ Batteries by Shrinking Down the Li ₂ O ₂ Granules through Concertedly Enhanced Catalytic Activity and Photoactivity of Se-Doped LaCoO ₃ . ACS Applied Materials & Interfaces, 2023, 15, 9285-9295	4.0	5
926	Positive Electrode Reaction of Lithium–Oxygen Batteries with NO ₃ [–] /Br [–] Redox Mediator under High Areal Capacity and Lean Electrolyte Conditions. Journal of Physical Chemistry C, 2023, 127, 6117-6124.	1.5	9
927	Covalent organic frameworks with Ni-Bis(dithiolene) and Co-porphyrin units as bifunctional catalysts for Li-O ₂ batteries. Science Advances, 2023, 9, .	4.7	24
928	The Decisive Role of Li ₂ O ₂ Desorption for Oxygen Reduction Reaction in Li–O ₂ Batteries. ACS Energy Letters, 2023, 8, 1289-1299.	8.8	11
929	Ionic Liquid Electrolyte with Weak Solvating Molecule Regulation for Stable Li Deposition in Highâ€Performance Liâ^'O ₂ Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
930	Ionic Liquid Electrolyte with Weak Solvating Molecule Regulation for Stable Li Deposition in Highâ€Performance Liâ~'O ₂ Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
931	Boosting Li–O ₂ Battery Performance via Coupling of P–N Siteâ€Rich N, P Coâ€Doped Grapheneâ€Like Carbon Nanosheets with Nanoâ€CePO ₄ . Small, 2023, 19, .	5.2	5
932	Double spatial confinement on ruthenium nanoparticles inside carbon frameworks as durable catalysts for a quasiâ€solidâ€state Li–O ₂ battery. , 2023, 5, .		2

#	Article	IF	CITATIONS
933	Real time monitoring of generation and decomposition of degradation products in lithium oxygen batteries during discharge/charge cycles by an online cold trap pre-concentrator-gas chromatography/mass spectroscopy system. RSC Advances, 2023, 13, 5467-5472.	1.7	4
934	Singleâ€Atomâ€Mediated Spinel Octahedral Structures for Elevated Performances of Liâ€Oxygen Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
935	Fabrication of Bifunctional Electrocatalytic Macroporous Carbon Materials Including Fe-N-C Bonds and Application to Lithium-Air Batteries. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2023, 74, 118-124.	0.1	0
936	Singleâ€Atomâ€Mediated Spinel Octahedral Structures for Elevated Performances of Liâ€Oxygen Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
937	Tailoring the dâ€Band Center over Isomorphism Pyrite Catalyst for Optimized Intrinsic Affinity to Intermediates in Lithium–Oxygen Batteries. Advanced Energy Materials, 2023, 13, .	10.2	25
938	Controlling Electrolyte Properties and Redox Reactions Using Solvation and Implications in Battery Functions: A Miniâ€Review. Advanced Energy Materials, 2023, 13, .	10.2	14
939	Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Materials, 2023, 57, 308-315.	9.5	4
940	Temperature-Dependent Discharge of Li-O ₂ and Na-O ₂ Batteries. ACS Energy Letters, 2023, 8, 1584-1589.	8.8	1
941	Development of Line-Detected UV–Vis Absorption Microscope and Its Application to Quantitative Evaluation of Lithium Surface Reactivity. Analytical Chemistry, 2023, 95, 4550-4555.	3.2	0
942	Metalâ€Redox Bicatalysis Batteries for Energy Storage and Chemical Production. Advanced Materials, 2023, 35, .	11.1	8
943	High-energy composite cathode for solid-state lithium-oxygen battery boosted by ultrafine carbon nanotube catalysts and amorphous lithium peroxide. Materials Today Chemistry, 2023, 29, 101430.	1.7	4
944	Lithium Nitrate/Amide-Based Localized High Concentration Electrolyte for Rechargeable Lithium–Oxygen Batteries under High Current Density and High Areal Capacity Conditions. ACS Applied Energy Materials, 2023, 6, 3357-3365.	2.5	1
945	Insights into the Morphological Evolution of Mossy Dendrites in Lithium Metal Symmetric and Full Cell: A Modelling Study. Journal of the Electrochemical Society, 2023, 170, 030529.	1.3	1
946	Online Real-Time Detection of the Degradation Products of Lithium Oxygen Batteries. ACS Energy Letters, 2023, 8, 1811-1817.	8.8	5
947	Catalytic strategies for four-electron conversion for molten-salt lithium-oxygen batteries. Chem Catalysis, 2023, 3, 100549.	2.9	0
948	Recent advances in perovskite oxide electrocatalysts for Li–O ₂ batteries. , 2023, 1, 230-249.		6
949	Amide- and Urea-Based Solvents for Li–O ₂ Batteries. Part I: Experimental Evaluation. Journal of Physical Chemistry C, 2023, 127, 7037-7042.	1.5	0
950	Enhanced Photoassisted Liâ€O ₂ Battery with Ceâ€UiOâ€66 Metalâ€Organic Framework Based Photocathodes. Advanced Materials Interfaces, 2023, 10,	1.9	1

#	Article	IF	CITATIONS
951	Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High Electrochemical Performance. Electrochemical Energy Reviews, 2023, 6, .	13.1	6
952	Design of chromium-doped spinel Mn3O4 modulated electronic structure as an efficient catalyst for Li-O2 batteries. Journal of Alloys and Compounds, 2023, 953, 170130.	2.8	6
953	The Surface Electronic Structure Reconstruction of Co _{2.85} Mn _{0.15} O ₄ with High Active Sites for High-Efficient Lithium–Oxygen Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 6698-6709.	3.2	1
964	Role of Singlet Oxygen Quencher in Recharge Overpotential for Nonaqueous Lithium Air Batteries. , 2022, , .		0
989	Li–O2 battery redox mediators go positive. Nature Chemistry, 2023, 15, 1206-1208.	6.6	1
1011	Interfacial engineering of lithium metal anodes: what is left to uncover?. Energy Advances, O, , .	1.4	0
1024	The fabrication and application of triphase reaction interface based on superwettability for improved reaction efficiency. Journal of Materials Chemistry A, 0, , .	5.2	0