Design principles for electrolytes and interfaces for stal

Nature Energy

1,

DOI: 10.1038/nenergy.2016.114

Citation Report

#	Article	IF	CITATIONS
1	Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry, 2016, 25, 967-984.	7.1	409
2	Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. Journal of the American Chemical Society, 2016, 138, 15443-15450.	6.6	386
3	Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials, 2017, 27, 1605989.	7.8	1,189
4	Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. Advanced Materials, 2017, 29, 1605512.	11.1	214
5	Nanoporous Hybrid Electrolytes for Highâ€Energy Batteries Based on Reactive Metal Anodes. Advanced Energy Materials, 2017, 7, 1602367.	10.2	122
6	Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Letters, 2017, 17, 1132-1139.	4.5	1,081
7	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444
8	Aluminium-ion batteries: developments and challenges. Journal of Materials Chemistry A, 2017, 5, 6347-6367.	5.2	312
9	Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12, 194-206.	15.6	4,804
10	A Plastic–Crystal Electrolyte Interphase for Allâ€Solidâ€State Sodium Batteries. Angewandte Chemie - International Edition, 2017, 56, 5541-5545.	7.2	160
11	Designer interphases for the lithium-oxygen electrochemical cell. Science Advances, 2017, 3, e1602809.	4.7	84
12	Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon, 2017, 119, 119-123.	5.4	67
13	Crystal Orientation Dependence of Precipitate Structure of Electrodeposited Li Metal on Cu Current Collectors. Crystal Growth and Design, 2017, 17, 2379-2385.	1.4	21
14	A Plastic–Crystal Electrolyte Interphase for All‣olid‣tate Sodium Batteries. Angewandte Chemie, 2017, 129, 5633-5637.	1.6	34
15	Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chemical Science, 2017, 8, 4285-4291.	3.7	164
16	Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries. ACS Nano, 2017, 11, 6114-6121.	7.3	133
17	Review on High‣oading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307
18	Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Research, 2017, 10, 4256-4265.	5.8	76

#	Article	IF	CITATIONS
19	Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy and Environmental Science, 2017, 10, 1568-1575.	15.6	499
20	High-Performance All-Inorganic Solid-State Sodium–Sulfur Battery. ACS Nano, 2017, 11, 4885-4891.	7.3	133
21	Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials, 2017, 29, 4181-4189.	3.2	199
22	Li ⁺ Defects in a Solid-State Li Ion Battery: Theoretical Insights with a Li ₃ OCl Electrolyte. Chemistry of Materials, 2017, 29, 4330-4340.	3.2	80
23	Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries. ACS Central Science, 2017, 3, 399-406.	5.3	44
24	Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Research, 2017, 10, 4003-4026.	5.8	130
25	Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. Nano Letters, 2017, 17, 3731-3737.	4.5	377
26	Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Materials, 2017, 9, 31-38.	9.5	149
27	A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols. Small Methods, 2017, 1, 1700134.	4.6	230
28	Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. Journal of Power Sources, 2017, 352, 127-134.	4.0	107
29	Decoupling of ion conductivity from segmental dynamics in oligomeric ethylene oxide functionalized oxanorbornene dicarboximide homopolymers. Polymer, 2017, 116, 218-225.	1.8	13
30	Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries. ACS Energy Letters, 2017, 2, 924-929.	8.8	95
31	Controlled deposition of Li metal. Nano Energy, 2017, 32, 241-246.	8.2	70
32	New Insights into Mossy Li Induced Anode Degradation and Its Formation Mechanism in Li–S Batteries. ACS Energy Letters, 2017, 2, 2696-2705.	8.8	90
33	An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the United States of America, 2017, 114, 11069-11074.	3.3	710
34	Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. Journal of Materials Chemistry A, 2017, 5, 23844-23852.	5.2	109
35	Thiol–ene synthesis and characterization of lithium bis(malonato)borate single-ion conducting gel polymer electrolytes. Soft Matter, 2017, 13, 7633-7643.	1.2	24
36	Anion-Dependent Potential Precycling Effects on Lithium Deposition/Dissolution Reaction Studied by an Electrochemical Quartz Crystal Microbalance. Journal of Physical Chemistry Letters, 2017, 8, 5203-5208	2.1	10

#	Article	IF	CITATIONS
37	Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy, 2017, 41, 646-653.	8.2	94
38	Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nature Communications, 2017, 8, 850.	5.8	240
39	Designing solid-liquid interphases for sodium batteries. Nature Communications, 2017, 8, 898.	5.8	303
40	Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields. Nano Energy, 2017, 41, 573-582.	8.2	34
41	A 3D conductive network with high loading Li ₂ S@C for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 19358-19363.	5.2	34
42	Suppressing Lithium Dendrite Growth with a Single-Component Coating. ACS Applied Materials & Interfaces, 2017, 9, 30635-30642.	4.0	38
43	Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Journal of the American Chemical Society, 2017, 139, 11550-11558.	6.6	398
44	Poly(butylene terephthalate)-b-poly(ethylene oxide) alternating multiblock copolymers: Synthesis and application in solid polymer electrolytes. Polymer, 2017, 128, 188-199.	1.8	25
45	Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, 1, 394-406.	11.7	202
46	Stabilizing the Garnet Solid-Electrolyte/Polysulfide Interface in Li–S Batteries. Chemistry of Materials, 2017, 29, 8037-8041.	3.2	73
47	Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF ₃ framework. Science Advances, 2017, 3, e1701301.	4.7	199
48	Columnar Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 14207-14211.	7.2	199
49	Nanodiamonds suppress the growth of lithium dendrites. Nature Communications, 2017, 8, 336.	5.8	327
50	Columnar Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 14395-14399.	1.6	51
51	Dendrite-Free Lithium Metal Anodes in High Performance Lithium-Sulfur Batteries with Bifunctional Carbon Nanofiber Interlayers. Electrochimica Acta, 2017, 252, 127-137.	2.6	46
52	Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 2017, 39, 654-661.	8.2	163
53	Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.	11.1	596
54	Origins of Dendrite Formation in Sodium–Oxygen Batteries and Possible Countermeasures. Energy Technology, 2017, 5, 2265-2274.	1.8	56

#	Article	IF	CITATIONS
55	Dendrite‣uppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li ₃ N. Advanced Energy Materials, 2017, 7, 1700732.	10.2	190
56	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 2017, 117, 10403-10473.	23.0	4,365
57	Pre-planted nucleation seeds for rechargeable metallic lithium anodes. Journal of Materials Chemistry A, 2017, 5, 18862-18869.	5.2	28
58	Correlating Electrode–Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyteâ€Based Lithium Metal Batteries. Advanced Energy Materials, 2017, 7, 1701231.	10.2	118
59	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie - International Edition, 2017, 56, 13070-13077.	7.2	151
60	Carbon enables the practical use of lithium metal in a battery. Carbon, 2017, 123, 744-755.	5.4	105
61	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie, 2017, 129, 13250-13257.	1.6	11
62	The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy, 2017, 40, 34-41.	8.2	209
63	Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes. Physical Review Letters, 2017, 119, 056003.	2.9	142
64	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
65	An InÂVivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal. Joule, 2017, 1, 871-886.	11.7	271
66	The recent advances in constructing designed electrode in lithium metal batteries. Chinese Chemical Letters, 2017, 28, 2171-2179.	4.8	64
67	Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires. Chemical Communications, 2017, 53, 12910-12913.	2.2	97
68	Reading through breakthroughs. Nature Energy, 2017, 2, .	19.8	1
69	Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection. Chemistry of Materials, 2017, 29, 5906-5914.	3.2	48
70	Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nature Energy, 2018, 3, 227-235.	19.8	353
71	Ion Conduction, Dielectric and Mechanical Properties of Epoxy-Based Solid Polymer Electrolytes Containing Succinonitrile. Macromolecular Research, 2018, 26, 459-465.	1.0	21
72	Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 2018, 19, 84-107.	6.2	365

#	Article	IF	CITATIONS
73	Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries. Joule, 2018, 2, 764-777.	11.7	609
74	A "cation-anion regulation―synergistic anode host for dendrite-free lithium metal batteries. Science Advances, 2018, 4, eaar4410.	4.7	241
75	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	9.5	195
76	Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries. Nano Letters, 2018, 18, 2067-2073.	4.5	154
77	Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nature Energy, 2018, 3, 310-316.	19.8	413
78	Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1703404.	10.2	274
79	Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives. Advanced Functional Materials, 2018, 28, 1800154.	7.8	107
80	A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC Advances, 2018, 8, 13034-13039.	1.7	21
81	Solid polymer electrolytes from a fluorinated copolymer bearing cyclic carbonate pendant groups. Journal of Materials Chemistry A, 2018, 6, 8514-8522.	5.2	30
82	Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy, 2018, 3, 267-278.	19.8	2,069
83	Stabilizing a High-Energy-Density Rechargeable Sodium Battery with a Solid Electrolyte. CheM, 2018, 4, 833-844.	5.8	195
84	3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Materials, 2018, 14, 376-382.	9.5	114
85	Synergistic Effect of Graphene Oxide for Impeding the Dendritic Plating of Li. Advanced Functional Materials, 2018, 28, 1705917.	7.8	92
86	Recent Progress of the Solid‧tate Electrolytes for Highâ€Energy Metalâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1702657.	10.2	851
87	Nanoscale <i>in situ</i> detection of nucleation and growth of Li electrodeposition at various current densities. Journal of Materials Chemistry A, 2018, 6, 4629-4635.	5.2	24
88	Designing Safe Electrolyte Systems for a Highâ€Stability Lithium–Sulfur Battery. Advanced Energy Materials, 2018, 8, 1702348.	10.2	266
89	High Lithium Ion Conductivity LiF/GO Solid Electrolyte Interphase Inhibiting the Shuttle of Lithium Polysulfides in Longâ€Life Li–S Batteries. Advanced Functional Materials, 2018, 28, 1706513.	7.8	109
90	Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1703152.	10.2	144

#	Article	IF	CITATIONS
91	3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 7069-7078.	4.0	318
92	A Material Perspective of Rechargeable Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1702296.	10.2	95
93	Stable Lithium Electrodeposition at Ultraâ€High Current Densities Enabled by 3D PMF/Li Composite Anode. Advanced Energy Materials, 2018, 8, 1703360.	10.2	194
94	High Li ⁺ Ionic Flux Separator Enhancing Cycling Stability of Lithium Metal Anode. ACS Sustainable Chemistry and Engineering, 2018, 6, 2961-2968.	3.2	45
95	Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1156-1161.	3.3	512
96	Design Principles of Functional Polymer Separators for Highâ€Energy, Metalâ€Based Batteries. Small, 2018, 14, e1703001.	5.2	155
97	Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy, 2018, 3, 16-21.	19.8	1,289
98	Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode. Angewandte Chemie, 2018, 130, 1375-1379.	1.6	17
99	High-Purity Lithium Metal Films from Aqueous Mineral Solutions. ACS Omega, 2018, 3, 181-187.	1.6	24
100	Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cmâ^2. Nano Energy, 2018, 45, 203-209.	8.2	153
101	A Biobased Composite Gel Polymer Electrolyte with Functions of Lithium Dendrites Suppressing and Manganese Ions Trapping. Advanced Energy Materials, 2018, 8, 1702561.	10.2	77
102	Long-Chain Li and Na Alkyl Carbonates as Solid Electrolyte Interphase Components: Structure, Ion Transport, and Mechanical Properties. Chemistry of Materials, 2018, 30, 3338-3345.	3.2	25
103	A smart, anti-piercing and eliminating-dendrite lithium metal battery. Nano Energy, 2018, 49, 403-410.	8.2	57
104	Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. ACS Applied Materials & Interfaces, 2018, 10, 18005-18011.	4.0	23
105	Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Materials, 2018, 15, 266-273.	9.5	77
106	Structure and Solution Dynamics of Lithium Methyl Carbonate as a Protective Layer For Lithium Metal. ACS Applied Energy Materials, 2018, 1, 1864-1869.	2.5	41
107	Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2018, 10, 17985-17993.	4.0	82
108	Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. Npj Computational Materials, 2018, 4, .	3.5	89

#	Article	IF	CITATIONS
109	A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Chemical Communications, 2018, 54, 5478-5481.	2.2	44
110	A Dualâ€Stimuliâ€Responsive Sodiumâ€Bromine Battery with Ultrahigh Energy Density. Advanced Materials, 2018, 30, e1800028.	11.1	56
111	Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Materials, 2018, 15, 249-256.	9.5	89
112	Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 13552-13561.	4.0	95
113	Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes. Science Advances, 2018, 4, eaao6243.	4.7	81
114	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. Joule, 2018, 2, 184-193.	11.7	300
115	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Materials, 2018, 10, 199-205.	9.5	215
116	Recent development in lithium metal anodes of liquid-state rechargeable batteries. Journal of Alloys and Compounds, 2018, 730, 135-149.	2.8	44
117	Perspective—Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6005-A6007.	1.3	41
118	High Polarity Poly(vinylidene difluoride) Thin Coating for Dendriteâ€Free and Highâ€Performance Lithium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701482.	10.2	259
119	Advances in Interfaces between Li Metal Anode and Electrolyte. Advanced Materials Interfaces, 2018, 5, 1701097.	1.9	200
120	Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries. Journal of the American Chemical Society, 2018, 140, 362-368.	6.6	226
121	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 992-996.	7.2	178
122	Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Accounts of Chemical Research, 2018, 51, 80-88.	7.6	145
123	Facile fabrication of polyether sulfone (PES) protecting layer on Cu foil for stable Li metal anode. Electrochimica Acta, 2018, 260, 407-412.	2.6	19
124	Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode. Angewandte Chemie - International Edition, 2018, 57, 1361-1365.	7.2	131
125	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2018, 10, 593-601.	4.0	116
126	Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. Angewandte Chemie, 2018, 130, 1004-1008.	1.6	55

#	Article	IF	CITATIONS
127	Robust Pinhole-free Li ₃ N Solid Electrolyte Grown from Molten Lithium. ACS Central Science, 2018, 4, 97-104.	5.3	197
128	Polyethylene separators modified by ultrathin hybrid films enhancing lithium ion transport performance and Li-metal anode stability. Electrochimica Acta, 2018, 259, 386-394.	2.6	56
129	Nanostructured, Highly Anisotropic, and Mechanically Robust Polymer Electrolyte Membranes via Holographic Polymerization. Advanced Materials Interfaces, 2018, 5, 1700861.	1.9	13
130	Review—Li Metal Anode in Working Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6058-A6072.	1.3	227
131	Synthesis and Properties of a Photopatternable Lithiumâ€ion Conducting Solid Electrolyte. Advanced Materials, 2018, 30, 1703772.	11.1	19
132	Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na–Se batteries. Journal of Materials Chemistry A, 2018, 6, 22790-22797.	5.2	62
133	An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries. Journal of Materials Chemistry A, 2018, 6, 21280-21286.	5.2	26
134	Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles. Chemical Communications, 2018, 54, 13060-13063.	2.2	25
135	Designing solvate ionogel electrolytes with very high room-temperature conductivity and lithium transference number. Journal of Materials Chemistry A, 2018, 6, 24100-24106.	5.2	12
136	An ion redistributor for dendrite-free lithium metal anodes. Science Advances, 2018, 4, eaat3446.	4.7	347
137	Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries. Engineering, 2018, 4, 831-847.	3.2	169
138	Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12389-12394.	3.3	49
139	Correlation between Ionic Mobility and Microstructure in Block Copolymers. A Coarse-Grained Modeling Study. Macromolecules, 2018, 51, 9213-9221.	2.2	23
140	Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Science Advances, 2018, 4, eaau9245.	4.7	521
141	Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano, 2018, 4, 1-16.	2.3	201
142	Ultralongâ€Life Quasiâ€Solidâ€State Liâ€O ₂ Batteries Enabled by Coupling Advanced Air Electrode Design with Li Metal Anode Protection. Small Methods, 2019, 3, 1800437.	4.6	35
143	Electroconvection and Morphological Instabilities in Potentiostatic Electrodeposition across Liquid Electrolytes with Polymer Additives. Journal of the Electrochemical Society, 2018, 165, A3697-A3713.	1.3	24
144	Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase. Advanced Energy Materials, 2018, 8, 1802350.	10.2	147

#	Article	IF	CITATIONS
145	An Armored Mixed Conductor Interphase on a Dendriteâ€Free Lithiumâ€Metal Anode. Advanced Materials, 2018, 30, e1804461.	11.1	338
146	Composition Screening of Lithium- and Sodium-Rich Anti-Perovskites for Fast-Conducting Solid Electrolytes. Journal of Physical Chemistry C, 2018, 122, 23978-23984.	1.5	59
147	Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes. Journal of Materials Chemistry A, 2018, 6, 19817-19827.	5.2	88
148	Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy. Joule, 2018, 2, 2167-2177.	11.7	284
149	Three-dimensional ordered macroporous Cu current collector for lithium metal anode: Uniform nucleation by seed crystal. Journal of Power Sources, 2018, 403, 82-89.	4.0	50
150	High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte. Joule, 2018, 2, 2117-2132.	11.7	227
151	In Situ Li ₃ PS ₄ Solidâ€State Electrolyte Protection Layers for Superior Longâ€Life and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1804684.	11.1	140
152	Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018, 4, eaat5383.	4.7	337
153	Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nature Energy, 2018, 3, 889-898.	19.8	347
154	Li-B Alloy as an Anode Material for Stable and Long Life Lithium Metal Batteries. Energies, 2018, 11, 2512.	1.6	16
155	Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 2018, 54, 17-25.	8.2	168
156	Reliable seawater battery anode: controlled sodium nucleation <i>via</i> deactivation of the current collector surface. Journal of Materials Chemistry A, 2018, 6, 19672-19680.	5.2	30
157	Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 38151-38158.	4.0	132
158	Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy and Environmental Science, 2018, 11, 3298-3309.	15.6	167
159	Dendrite Suppression Membranes for Rechargeable Zinc Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38928-38935.	4.0	189
160	The Dualâ€Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward Highâ€Performance Li–S Full Cell. Advanced Energy Materials, 2018, 8, 1802561.	10.2	114
161	Suppressing Li Metal Dendrites Through a Solid Liâ€Ion Backup Layer. Advanced Materials, 2018, 30, e1803869.	11.1	70

#	Article	IF	CITATIONS
163	The Radical Pathway Based on a Lithiumâ€Metalâ€Compatible Highâ€Dielectric Electrolyte for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 16732-16736.	7.2	170
164	The Radical Pathway Based on a Lithiumâ€Metalâ€Compatible Highâ€Dielectric Electrolyte for Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 16974-16978.	1.6	36
165	Solvation and Entropic Regimes in Ion-Containing Block Copolymers. Macromolecules, 2018, 51, 7463-7475.	2.2	41
166	Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nature Communications, 2018, 9, 3656.	5.8	371
167	Ultrahighâ€Capacity and Longâ€Life Lithium–Metal Batteries Enabled by Engineering Carbon Nanofiber–Stabilized Graphene Aerogel Film Host. Small, 2018, 14, e1803310.	5.2	48
168	Effect of diethylenetriamine as additive to stabilize the lithium metal anode. Electrochimica Acta, 2018, 292, 742-748.	2.6	7
169	Nanostructured Li-Rich Fluoride Coated by Ionic Liquid as High Ion-Conductivity Solid Electrolyte Additive to Suppress Dendrite Growth at Li Metal Anode. ACS Applied Materials & Interfaces, 2018, 10, 34322-34331.	4.0	97
170	Evaluating the Effects of Temperature and Pressure on Li/PEO-LiTFSI Interfacial Stability and Kinetics. Journal of the Electrochemical Society, 2018, 165, A2801-A2806.	1.3	61
171	Highly Reversible Li Plating Confined in Three-Dimensional Interconnected Microchannels toward High-Rate and Stable Metallic Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20387-20395.	4.0	42
172	Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A, 2018, 6, 11631-11663.	5.2	243
173	Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Materials, 2018, 14, 289-296.	9.5	48
174	Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode. Nano Letters, 2018, 18, 3926-3933.	4.5	175
175	Highly Conductive and Robust Three-Dimensional Host with Excellent Alkali Metal Infiltration Boosts Ultrastable Lithium and Sodium Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10, 21254-21261.	4.0	55
176	Solid–Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20412-20421.	4.0	17
177	High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5676-5680.	3.3	209
178	Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications, 2018, 54, 6648-6661.	2.2	184
179	Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. Journal of Power Sources, 2018, 392, 79-86.	4.0	144
180	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	11.1	163

#	Article	IF	CITATIONS
181	Functionalized polyimide separators enable high performance lithium sulfur batteries at elevated temperature. Journal of Power Sources, 2018, 396, 542-550.	4.0	42
182	A Silicaâ€Aerogelâ€Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus. Advanced Materials, 2018, 30, e1802661.	11.1	392
183	Nonaqueous arylated quinone catholytes for lithium–organic flow batteries. Journal of Materials Chemistry A, 2018, 6, 14761-14768.	5.2	13
184	Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets. Advanced Energy Materials, 2018, 8, 1800866.	10.2	221
185	A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes. Advanced Materials Interfaces, 2018, 5, 1800807.	1.9	25
186	Interphases in Lithium–Sulfur Batteries: Toward Deployable Devices with Competitive Energy Density and Stability. ACS Energy Letters, 2018, 3, 2104-2113.	8.8	54
187	Sulfide Solid Electrolytes for Lithium Battery Applications. Advanced Energy Materials, 2018, 8, 1800933.	10.2	407
188	Soft Colloidal Glasses as Solid-State Electrolytes. Chemistry of Materials, 2018, 30, 5996-6004.	3.2	59
189	Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and P GeCl ₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711.	romising	186
190	Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. Chemistry of Materials, 2018, 30, 5655-5662.	3.2	49
191	Heterogeneous/Homogeneous Mediators for Highâ€Energyâ€Density Lithium–Sulfur Batteries: Progress and Prospects. Advanced Functional Materials, 2018, 28, 1707536.	7.8	251
192	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Materials, 2018, 15, 458-464.	9.5	108
193	Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. ACS Central Science, 2018, 4, 996-1006.	5.3	158
194	Atomic Interlamellar Ion Path in High Sulfur Content Lithiumâ€Montmorillonite Host Enables Highâ€Rate and Stable Lithium–Sulfur Battery. Advanced Materials, 2018, 30, e1804084.	11.1	201
195	Dendriteâ€Free Epitaxial Growth of Lithium Metal during Charging in Li–O 2 Batteries. Angewandte Chemie, 2018, 130, 13390-13394.	1.6	53
196	Dendriteâ€Free Epitaxial Growth of Lithium Metal during Charging in Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2018, 57, 13206-13210. 	7.2	76
197	Modeling and control of battery systems. Part I: Revisiting Butler–Volmer equations to model non-linear coupling of various capacity fade mechanisms. Computers and Chemical Engineering, 2018, 119, 336-351.	2.0	3
198	Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature, 2018, 560, 345-349.	13.7	586

#	Article	IF	CITATIONS
199	Achieving High Cycling Rates via In Situ Generation of Active Nanocomposite Metal Anodes. ACS Applied Energy Materials, 2018, 1, 4651-4661.	2.5	19
200	Highâ€Capacity Allâ€Solidâ€State Sodium Metal Battery with Hybrid Polymer Electrolytes. Advanced Energy Materials, 2018, 8, 1801885.	10.2	87
201	Dendriteâ€Free Lithium Deposition via Flexibleâ€Rigid Coupling Composite Network for LiNi _{0.5} Mn _{1.5} O ₄ /Li Metal Batteries. Small, 2018, 14, e1802244.	5.2	83
202	An Ultrastrong Double-Layer Nanodiamond Interface for Stable Lithium Metal Anodes. Joule, 2018, 2, 1595-1609.	11.7	155
203	Developing Highâ€Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress. Advanced Materials, 2018, 30, e1706375.	11.1	335
204	A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery. Electrochimica Acta, 2018, 282, 555-562.	2.6	37
205	Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Materials, 2019, 18, 414-422.	9.5	110
206	Electrochemical Polishing of Lithium Metal Surface for Highly Demanding Solidâ€Electrolyte Interphase. ChemElectroChem, 2019, 6, 181-188.	1.7	30
207	Facile Patterning of Laserâ€Induced Graphene with Tailored Li Nucleation Kinetics for Stable Lithiumâ€Metal Batteries. Advanced Energy Materials, 2019, 9, 1901796.	10.2	76
208	Highly Lithiophilic Cobalt Nitride Nanobrush as a Stable Host for High-Performance Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 30992-30998.	4.0	40
209	Artificial Interphases for Highly Stable Lithium Metal Anode. Matter, 2019, 1, 317-344.	5.0	508
210	Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 20325-20334.	5.2	35
211	High-Rate Cycling of Lithium-Metal Batteries Enabled by Dual-Salt Electrolyte-Assisted Micropatterned Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 31777-31785.	4.0	20
212	Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood. , 2019, 1, 354-361.		72
213	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. Chemistry of Materials, 2019, 31, 7565-7573.	3.2	73
214	A functional SrF ₂ coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 21349-21361.	5.2	47
215	Asymmetric behaviour of Li/Li symmetric cells for Li metal batteries. Chemical Communications, 2019, 55, 9637-9640.	2.2	38
216	Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Frontiers in Chemistry, 2019, 7, 522.	1.8	302

#	Article	IF	CITATIONS
217	Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Applied Surface Science, 2019, 494, 1119-1126.	3.1	81
218	Stabilizing polymer electrolytes in high-voltage lithium batteries. Nature Communications, 2019, 10, 3091.	5.8	98
219	Correlating Structure and Properties of Superâ€Concentrated Electrolyte Solutions: ¹⁷ O NMR and Electrochemical Characterization. ChemElectroChem, 2019, 6, 4002-4009.	1.7	7
220	A safe quasi-solid electrolyte based on a nanoporous ceramic membrane for high-energy, lithium metal batteries. Electrochimica Acta, 2019, 320, 134539.	2.6	6
221	Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy, 2019, 64, 103893.	8.2	106
222	In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy, 2019, 63, 103895.	8.2	109
223	A review of naturally derived nanostructured materials for safe lithium metal batteries. Materials Today Nano, 2019, 8, 100049.	2.3	39
224	Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation. Applied Physics Letters, 2019, 115, .	1.5	22
225	Toward Understanding the Different Influences of Grain Boundaries on Ion Transport in Sulfide and Oxide Solid Electrolytes. Chemistry of Materials, 2019, 31, 5296-5304.	3.2	89
226	Linear Stability Analysis of Transient Electrodeposition in Charged Porous Media: Suppression of Dendritic Growth by Surface Conduction. Journal of the Electrochemical Society, 2019, 166, A2280-A2299.	1.3	20
227	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1, 100003.	10.1	146
228	A Semiliquid Lithium Metal Anode. Joule, 2019, 3, 1637-1646.	11.7	51
229	Surface-Based Li ⁺ Complex Enables Uniform Lithium Deposition for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2019, 2, 4602-4608.	2.5	32
230	Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nature Energy, 2019, 4, 664-670.	19.8	336
231	Dendriteâ€Free Lithium Deposition via a Superfilling Mechanism for Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2019, 31, e1903248.	11.1	106
232	Electrolyte Chemistry Enables Simultaneous Stabilization of Potassium Metal and Alloying Anode for Potassiumâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 16451-16455.	7.2	158
233	Normalized Lithium Growth from the Nucleation Stage for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 18246-18251.	7.2	60
234	A Compact Gel Membrane Based on a Blend of PEO and PVDF for Dendriteâ€Free Lithium Metal Anodes. ChemElectroChem, 2019, 6, 5413-5419.	1.7	21

ARTICLE IF CITATIONS # Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for 235 3.6 120 Rechargeable Zincâ€lon Batteries. ChemSusChem, 2019, 12, 4889-4900. Li⁺â€Containing, Continuous Silica Nanofibers for High Li⁺ Conductivity in 5.2 58 Composite Polymer Electrolyte. Small, 2019, 15, e1902729. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Nature 237 5.8 166 Communications, 2019, 10, 4597. Self-Assembled Conductive Metal-Oxide Nanofiber Interface for Stable Li-Metal Anode. ACS Applied Materials & amp; Interfaces, 2019, 11, 44124-44132. Distinct Nanoscale Interphases and Morphology of Lithium Metal Electrodes Operating at Low 239 4.5 141 Temperatures. Nano Letters, 2019, 19, 8664-8672. Reversible epitaxial electrodeposition of metals in battery anodes. Science, 2019, 366, 645-648. 6.0 1,097 Nitrofullerene, a C₆₀-based Bifunctional Additive with Smoothing and Protecting Effects 241 4.5 83 for Stable Lithium Metal Anode. Nano Letters, 2019, 19, 8780-8786. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal 5.8 16 anode. Nano Research, 2019, 12, 2919-2924. Nonpolar Alkanes Modify Lithiumâ€Ion Solvation for Improved Lithium Deposition and Stripping. 243 10.2 86 Advanced Energy Materials, 2019, 9, 1902116. Marginal Magnesium Doping for Highâ€Performance Lithium Metal Batteries. Advanced Energy Materials, 244 10.2 2019, 9, 1902278. Artificial Solidâ€Electrolyte Interphase Enabled Highâ€Capacity and Stable Cycling Potassium Metal 245 10.2 81 Batteries. Advanced Energy Materials, 2019, 9, 1902697. Beyond Expertâ€Level Performance Prediction for Rechargeable Batteries by Unsupervised Machine 3.3 Leárning. Ádvanced Intelligent Systems, 2019, 1, 1900102. Electrolyte Chemistry Enables Simultaneous Stabilization of Potassium Metal and Alloying Anode for 247 1.6 28 Potassiumâ€lon Batteries. Angewandte Chemie, 2019, 131, 16603-16607. Normalized Lithium Growth from the Nucleation Stage for Dendriteâ \in Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 18414-18419. 248 1.6 Ein Hybridâ€Anion für ionische Flüssigkeiten und Batterieelektrolytanwendungen: Halb Triflamid, halb 249 1.6 0 Carbonat. Angewandte Chemie, 2019, 131, 4435-4439. A Hybrid Anion for Ionic Liquid and Battery Electrolyte Applications: Half Triflamide, Half Carbonate. Angewandte Chemie - International Edition, 2019, 58, 4390-4394. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature 251 5.8 181 Communications, 2019, 10, 4930. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as 84 lithium metal anodes. Science Advances, 2019, 5, eaax5587.

#	Article	IF	Citations
253	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	1.3	5
254	An in Situ-Formed Mosaic Li ₇ Sn ₃ /LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34939-34947.	4.0	66
255	Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. Journal of Materials Chemistry A, 2019, 7, 22257-22264.	5.2	47
256	Polymerized Ionic Liquid-Containing Interpenetrating Network Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34904-34912.	4.0	43
257	A paradigm of storage batteries. Energy and Environmental Science, 2019, 12, 3203-3224.	15.6	154
258	Understanding and Predicting Lithium Crystal Growth on Perfect and Defective Interfaces: A Kohn–Sham Density Functional Study. ACS Applied Materials & Interfaces, 2019, 11, 37239-37246.	4.0	14
259	The effect of electrical conductivity on lithium metal deposition in 3DÂcarbon nanofiber matrices. Carbon, 2019, 154, 370-374.	5.4	13
260	Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode. Matter, 2019, 1, 1215-1231.	5.0	120
261	Interface structure regulation of a Ag lithiophilic layer towards uniform lithium nucleation/growth. Sustainable Energy and Fuels, 2019, 3, 2995-2999.	2.5	6
262	A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes. Joule, 2019, 3, 2761-2776.	11.7	176
263	Solid-state polymer electrolytes for high-performance lithium metal batteries. Nature Communications, 2019, 10, 4398.	5.8	137
264	Mega High Utilization of Sodium Metal Anodes Enabled by Single Zinc Atom Sites. Nano Letters, 2019, 19, 7827-7835.	4.5	86
265	Nucleation and Early Stage Growth of Li Electrodeposits. Nano Letters, 2019, 19, 8191-8200.	4.5	159
266	3D stable hosts with controllable lithiophilic architectures for high-rate and high-capacity lithium metal anodes. Journal of Power Sources, 2019, 442, 227214.	4.0	25
267	Plasma Treatment for Nitrogenâ€Đoped 3D Graphene Framework by a Conductive Matrix with Sulfur for Highâ€Performance Li–S Batteries. Small, 2019, 15, e1804347.	5.2	97
268	Correlation between morphology and anisotropic transport properties of diblock copolymers melts. Soft Matter, 2019, 15, 851-859.	1.2	6
269	Stable lithium–sulfur full cells enabled by dual functional and interconnected mesocarbon arrays. Journal of Materials Chemistry A, 2019, 7, 3289-3297.	5.2	29
270	Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Research, 2019, 12, 829-836.	5.8	54

#	Article	IF	CITATIONS
271	Hierarchically porous CuO nano-labyrinths as binder-free anodes for long-life and high-rate lithium ion batteries. Nano Energy, 2019, 59, 229-236.	8.2	67
272	Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 8148-8154.	4.0	120
273	Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. Nano Letters, 2019, 19, 1387-1394.	4.5	59
274	Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy and Environmental Science, 2019, 12, 780-794.	15.6	310
275	Volumetric Discharge Capacity 1 A h cm ^{–3} Realized by Sulfur in Carbon Nanotube Sponge Cathodes. Journal of Physical Chemistry C, 2019, 123, 3951-3958.	1.5	13
276	Reactivity-Guided Interface Design in Na Metal Solid-State Batteries. Joule, 2019, 3, 1037-1050.	11.7	120
277	Promoting a highly stable lithium metal anode by superficial alloying with an ultrathin indium sheet. Chemical Communications, 2019, 55, 1592-1595.	2.2	30
278	A universal graphene oxide protective umbrella to achieve electrode surface engineering via spraying technique. Ceramics International, 2019, 45, 19567-19571.	2.3	0
279	Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendriteâ€Free Metallic Lithium Anodes. Advanced Materials, 2019, 31, e1901820.	11.1	174
280	Lithiophilic CuO Nanoflowers on Tiâ€Mesh Inducing Lithium Lateral Plating Enabling Stable Lithiumâ€Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life. Advanced Energy Materials, 2019, 9, 1900853.	10.2	103
281	<i>In situ</i> formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features. Journal of Materials Chemistry A, 2019, 7, 16984-16991.	5.2	46
282	Electrolyte for lithium protection: From liquid to solid. Green Energy and Environment, 2019, 4, 360-374.	4.7	110
283	Stable Liâ€Metal Deposition via a 3D Nanodiamond Matrix with Ultrahigh Young's Modulus. Small Methods, 2019, 3, 1900325.	4.6	40
284	Antioxidative Lithium Reservoir Based on Interstitial Channels of Carbon Nanotube Bundles. Nano Letters, 2019, 19, 5879-5884.	4.5	8
285	Interlayered Dendriteâ€Free Lithium Plating for Highâ€Performance Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1901662.	11.1	78
286	Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries. Chemical Communications, 2019, 55, 7703-7706.	2.2	41
287	Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 15871-15879.	5.2	68
288	Effect of nitrogen-containing polymer wrapped around carbon nanotubes for Li–O2 battery cathode. Polymer Journal, 2019, 51, 921-927.	1.3	4

#	Article	IF	CITATIONS
289	Conclusions and Perspectives on New Opportunities of Nanostrucutres and Nanomaterials in Batteries. , 2019, , 359-379.		0
290	Glyme-based liquid–solid electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 13331-13338.	5.2	13
291	Morphology control in semicrystalline solid polymer electrolytes for lithium batteries. Molecular Systems Design and Engineering, 2019, 4, 793-803.	1.7	18
292	Regulating Key Variables and Visualizing Lithium Dendrite Growth: An <i>Operando</i> X-ray Study. Journal of the American Chemical Society, 2019, 141, 8441-8449.	6.6	96
293	Physical Orphaning versus Chemical Instability: Is Dendritic Electrodeposition of Li Fatal?. ACS Energy Letters, 2019, 4, 1349-1355.	8.8	80
294	Current Status and Future Prospects of Metal–Sulfur Batteries. Advanced Materials, 2019, 31, e1901125.	11.1	422
295	Strategies Toward Stable Nonaqueous Alkali Metal–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1900464.	10.2	35
296	Electrodeposition stability of metal electrodes. Energy Storage Materials, 2019, 20, 1-6.	9.5	68
297	Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nature Communications, 2019, 10, 2067.	5.8	177
298	The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy and Environmental Science, 2019, 12, 2327-2344.	15.6	125
299	Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. Molecular Systems Design and Engineering, 2019, 4, 779-792.	1.7	129
300	Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A1501-A1509.	1.3	104
301	Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating. Joule, 2019, 3, 1510-1522.	11.7	235
302	Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1900858.	10.2	333
303	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. ACS Applied Materials & Interfaces, 2019, 11, 18361-18367.	4.0	33
304	The Challenge of Lithium Metal Anodes for Practical Applications. Small Methods, 2019, 3, 1800551.	4.6	74
305	Eliminating Tip Dendrite Growth by Lorentz Force for Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1902630.	7.8	85
306	Deterministic growth of a sodium metal anode on a pre-patterned current collector for highly rechargeable seawater batteries. Journal of Materials Chemistry A, 2019, 7, 9773-97 <u>81</u> .	5.2	41

#	Article	IF	CITATIONS
307	A dual-layered artificial solid electrolyte interphase formed by controlled electrochemical reduction of LiTFSI/DME-LiNO3 for dendrite-free lithium metal anode. Electrochimica Acta, 2019, 306, 407-419.	2.6	48
308	Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5880-5885.	6.6	284
309	Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy, 2019, 60, 257-266.	8.2	118
310	Dissolution of Lithium Metal in Poly(ethylene oxide). ACS Energy Letters, 2019, 4, 903-907.	8.8	28
311	Dualâ€Phase Singleâ€Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries. Advanced Materials, 2019, 31, e1808392.	11.1	224
312	Fire-Retardant Phosphate-Based Electrolytes for High-Performance Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 2708-2716.	2.5	64
313	Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4, 365-373.	19.8	681
314	Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials, 2019, 18, 384-389.	13.3	587
315	Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Science Advances, 2019, 5, eaau5655.	4.7	79
317	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 7884-7889.	1.6	47
318	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 7802-7807.	7.2	161
319	Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. Journal of Materials Chemistry A, 2019, 7, 12214-12224.	5.2	44
320	Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy, 2019, 61, 47-53.	8.2	69
321	Prospect of Thermal Shock Induced Healing of Lithium Dendrite. ACS Energy Letters, 2019, 4, 1012-1019.	8.8	59
322	Electroconvection in a Viscoelastic Electrolyte. Physical Review Letters, 2019, 122, 124501.	2.9	48
323	Electrochemically induced highly ion conductive porous scaffolds to stabilize lithium deposition for lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 11683-11689.	5.2	47
324	Ceramic–Salt Composite Electrolytes from Cold Sintering. Advanced Functional Materials, 2019, 29, 1807872.	7.8	72
325	Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes. Molecular Systems Design and Engineering, 2019, 4, 597-608.	1.7	16

#	Article	IF	CITATIONS
326	Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithiumâ€Metal Batteries. Advanced Energy Materials, 2019, 9, 1900260.	10.2	200
327	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 2019, 119, 5416-5460.	23.0	572
328	Comparative Study of Ethylene Carbonate-Based Electrolyte Decomposition at Li, Ca, and Al Anode Interfaces. ACS Applied Energy Materials, 2019, 2, 1676-1684.	2.5	36
329	Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nature Communications, 2019, 10, 900.	5.8	297
330	Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. Journal of Power Sources, 2019, 419, 72-81.	4.0	80
331	A novel non-porous separator based on single-ion conducting triblock copolymer for stable lithium electrodeposition. Journal of Power Sources, 2019, 419, 58-64.	4.0	30
332	Development of Hierarchically Porous Ionomer Membranes for Versatile and Fast Metal Ion Conduction. ACS Omega, 2019, 4, 2684-2692.	1.6	6
333	Charging toward improved lithium-ion polymer electrolytes: exploiting synergistic experimental and computational approaches to facilitate materials design. Molecular Systems Design and Engineering, 2019, 4, 223-238.	1.7	41
334	Triple Hierarchical Porous Carbon Spheres as Effective Cathodes for Li–O ₂ Batteries. Journal of the Electrochemical Society, 2019, 166, A455-A463.	1.3	8
335	An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials. Advanced Energy Materials, 2019, 9, 1803627.	10.2	53
336	Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 6267-6274.	5.2	11
337	Single Additive with Dual Functional-Ions for Stabilizing Lithium Anodes. ACS Applied Materials & Interfaces, 2019, 11, 11360-11368.	4.0	49
338	ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. Journal of Materials Chemistry A, 2019, 7, 7752-7759.	5.2	120
339	Highâ€Rate and Largeâ€Capacity Lithium Metal Anode Enabled by Volume Conformal and Selfâ€Healable Composite Polymer Electrolyte. Advanced Science, 2019, 6, 1802353.	5.6	133
340	Oxygen-free cell formation process obtaining LiF protected electrodes for improved stability in lithium-oxygen batteries. Energy Storage Materials, 2019, 23, 670-677.	9.5	27
341	Memristive behavior of TiOx obtained via Pb(II)-assisted anodic oxidation process. Journal of Materials Science: Materials in Electronics, 2019, 30, 5733-5743.	1.1	7
342	A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 6859-6868.	5.2	70
343	Hierarchical Co ₃ O ₄ Nanofiber–Carbon Sheet Skeleton with Superior Na/Liâ€Philic Property Enabling Highly Stable Alkali Metal Batteries. Advanced Functional Materials, 2019, 29, 1808847.	7.8	147

#	Article	IF	CITATIONS
344	Surface Restraint Synthesis of an Organic–Inorganic Hybrid Layer for Dendrite-Free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 8717-8724.	4.0	39
345	An ethyl methyl sulfone co-solvent eliminates macroscopic morphological instabilities of lithium metal anode. Chemical Communications, 2019, 55, 3387-3389.	2.2	8
346	Electrochemical flow cell enabling <i>operando</i> probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction. Physical Chemistry Chemical Physics, 2019, 21, 5402-5408.	1.3	38
347	Efficient Liâ€Ionâ€Conductive Layer for the Realization of Highly Stable Highâ€Voltage and Highâ€Capacity Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1803722.	10.2	54
348	Implanting CNT Forest onto Carbon Nanosheets as Multifunctional Hosts for Highâ€Performance Lithium Metal Batteries. Small Methods, 2019, 3, 1800546.	4.6	34
349	Anion-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries. Journal of Power Sources, 2019, 417, 70-75.	4.0	60
350	Explosion mechanism and prevention of lithium-ion batteries. , 2019, , .		3
351	Suppression of Polysulfide Dissolution and Shuttling with Glutamate Electrolyte for Lithium Sulfur Batteries. ACS Nano, 2019, 13, 14172-14181.	7.3	64
352	A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24477-24485.	5.2	51
353	Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 24262-24270.	5.2	44
354	Ultrathin Al foils to fabricate dendrite-free Li–Al anodes. Journal of Materials Chemistry A, 2019, 7, 25415-25422.	5.2	27
355	Artificial SEI Transplantation: A Pathway to Enabling Lithium Metal Cycling in Water-Containing Electrolytes. ACS Applied Energy Materials, 2019, 2, 8912-8918.	2.5	6
356	Asymmetric Structure Design of Electrolytes with Flexibility and Lithium Dendrite-Suppression Ability for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 46783-46791.	4.0	34
357	Conducting and Lithiophilic MXene/Graphene Framework for High-Capacity, Dendrite-Free Lithium–Metal Anodes. ACS Nano, 2019, 13, 14308-14318.	7.3	155
358	Anode Overpotential Control via Interfacial Modification: Inhibition of Lithium Plating on Graphite Anodes. ACS Applied Materials & Interfaces, 2019, 11, 46864-46874.	4.0	32
359	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
360	Building Better Batteries in the Solid State: A Review. Materials, 2019, 12, 3892.	1.3	168
361	Analysis and Simulation of One-Dimensional Transport Models for Lithium Symmetric Cells. Journal of the Electrochemical Society, 2019, 166, A3806-A3819.	1.3	12

#	Article	IF	CITATIONS
362	Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons, 2019, 4, 77-98.	4.1	79
363	Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry, 2019, 37, 126-142.	7.1	220
364	Rechargeable Seawater Batteries—From Concept to Applications. Advanced Materials, 2019, 31, e1804936.	11.1	73
365	Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 3092-3096.	7.2	122
366	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie - International Edition, 2019, 58, 2093-2097.	7.2	89
367	Characterization of morphology in ring-opening metathesis polymerized novel solid block copolymer electrolytes by atomic force microscopy and X-ray scattering. Electrochimica Acta, 2019, 298, 339-346.	2.6	5
368	Synergistically Suppressing Lithium Dendrite Growth by Coating Polyâ€ <scp>l</scp> ‣actic Acid on Sustainable Gel Polymer Electrolyte. Energy Technology, 2019, 7, 1800768.	1.8	6
369	Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode. National Science Review, 2019, 6, 247-256.	4.6	57
370	Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nature Chemistry, 2019, 11, 64-70.	6.6	265
371	Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Materials, 2019, 19, 197-205.	9.5	54
372	An Electron/Ion Dualâ€Conductive Alloy Framework for Highâ€Rate and Highâ€Capacity Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1804815.	11.1	188
373	High Ion Conducting Solid Composite Electrolytes with Enhanced Interfacial Compatibility for Lithium Metal Batteries. ChemElectroChem, 2019, 6, 904-910.	1.7	17
374	Stretchable fiber-shaped lithium metal anode. Energy Storage Materials, 2019, 22, 179-184.	9.5	65
375	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie, 2019, 131, 2115-2119.	1.6	11
376	Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 411-416.	8.8	323
377	Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 3124-3128.	1.6	8
378	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	10.2	147
379	High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 2019, 4, 187-196.	19.8	1,099

#	Article	IF	CITATIONS
380	Thermally reduced graphene paper with fast Li ion diffusion for stable Li metal anode. Electrochimica Acta, 2019, 294, 413-422.	2.6	28
381	Triboelectric Nanogenerator-Enabled Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 802-810.	4.0	12
382	Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries. ACS Energy Letters, 2019, 4, 271-275.	8.8	32
383	In Situ Formed Shields Enabling Li ₂ CO ₃ -Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 898-905.	4.0	147
384	Direct Observation and Suppression Effect of Lithium Dendrite Growth for Polyphosphazene Based Polymer Electrolytes in Lithium Metal Cells. ChemElectroChem, 2019, 6, 1166-1176.	1.7	16
385	Study on dead-Li suppression mechanism of Li-hosting vapor-grown-carbon-nanofiber-based protective layer for Li metal anodes. Journal of Power Sources, 2019, 409, 132-138.	4.0	14
386	A scalable 3D lithium metal anode. Energy Storage Materials, 2019, 16, 505-511.	9.5	95
387	Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation. Energy Storage Materials, 2019, 17, 366-373.	9.5	97
388	One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Materials, 2019, 16, 85-90.	9.5	248
389	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404
390	Electroconvection Near Electrochemical Interfaces: Experiments, Modeling, and Computation. Annual Review of Fluid Mechanics, 2020, 52, 509-529.	10.8	59
391	Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework. Energy Storage Materials, 2020, 25, 172-179.	9.5	68
392	Design Principles of the Anode–Electrolyte Interface for All Solidâ€ S tate Lithium Metal Batteries. Small Methods, 2020, 4, 1900592.	4.6	88
393	Uniform lithium electrodeposition for stable lithium-metal batteries. Nano Energy, 2020, 67, 104172.	8.2	27
394	Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries. Energy Storage Materials, 2020, 25, 305-312.	9.5	45
395	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
396	2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 1447-1479.	3.6	49
397	Electrolyte additive maintains high performance for dendrite-free lithium metal anode. Chinese Chemical Letters, 2020, 31, 1217-1220.	4.8	34

#	Article	IF	CITATIONS
398	Flexible lignin carbon membranes with surface ozonolysis to host lean lithium metal anodes for nickel-rich layered oxide batteries. Energy Storage Materials, 2020, 24, 129-137.	9.5	41
399	A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3â^' in carbonate electrolyte. Energy Storage Materials, 2020, 24, 229-236.	9.5	31
400	Cu coated soft fabric as anode for lithium metal batteries. Energy Storage Materials, 2020, 26, 371-377.	9.5	22
401	Engineering interfacial adhesion for high-performance lithium metal anode. Nano Energy, 2020, 67, 104242.	8.2	34
402	Vertically Aligned Carbon Nanofibers on Cu Foil as a 3D Current Collector for Reversible Li Plating/Stripping toward Highâ€Performance Li–S Batteries. Advanced Functional Materials, 2020, 30, 1906444.	7.8	66
403	Rechargeable Mg metal batteries enabled by a protection layer formed in vivo. Energy Storage Materials, 2020, 26, 408-413.	9.5	91
404	Tunable electric properties of bilayer MX2 (M = Ge, Sn; X = S, Se) with different strain and external electric field. Physica B: Condensed Matter, 2020, 581, 411673.	1.3	5
405	High-throughput computational screening for solid-state Li-ion conductors. Energy and Environmental Science, 2020, 13, 928-948.	15.6	80
406	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 3459-3467.	5.2	75
407	Superlithiophilic graphene-silver enabling ultra-stable hosts for lithium metal anodes. Inorganic Chemistry Frontiers, 2020, 7, 897-904.	3.0	7
408	Applications of porphyrins in emerging energy conversion technologies. Coordination Chemistry Reviews, 2020, 407, 213157.	9.5	127
409	Synergistic effect of interface layer and mechanical pressure for advanced Li metal anodes. Energy Storage Materials, 2020, 26, 112-118.	9.5	25
410	Protective coatings for lithium metal anodes: Recent progress and future perspectives. Journal of Power Sources, 2020, 450, 227632.	4.0	104
411	Salt-with-Salt, a novel strategy to design the flexible solid electrolyte membrane for highly safe lithium metal batteries. Journal of Membrane Science, 2020, 597, 117768.	4.1	25
412	Dendriteâ€Free Potassium Metal Anodes in a Carbonate Electrolyte. Advanced Materials, 2020, 32, e1906735.	11.1	107
413	Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2020, 2, 248-263.	3.9	110
414	Constructing a Phosphating–Nitriding Interface for Practically Used Lithium Metal Anode. , 2020, 2, 1-8.		14
415	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie, 2020, 132, 3278-3283.	1.6	60

#	Article	IF	CITATIONS
416	Electrolyte Regulation towards Stable Lithiumâ€Metal Anodes in Lithium–Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Angewandte Chemie - International Edition, 2020, 59, 10732-10745.	7.2	108
417	Facile construction of a hybrid artificial protective layer for stable lithium metal anode. Chemical Engineering Journal, 2020, 391, 123542.	6.6	25
418	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020, 142, 2012-2022.	6.6	142
419	Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of Materials Chemistry A, 2020, 8, 4283-4289.	5.2	51
420	Constructing a Highâ€Strength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahighâ€Rate Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 1907343.	7.8	83
421	Mechanism of lithium electrodeposition in a magnetic field. Solid State Ionics, 2020, 345, 115171.	1.3	23
422	<i>In situ</i> formation of a LiF and Li–Al alloy anode protected layer on a Li metal anode with enhanced cycle life. Journal of Materials Chemistry A, 2020, 8, 1247-1253.	5.2	61
423	The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proceedings of the United States of America, 2020, 117, 73-79.	3.3	220
424	Stable lithium metal anode enabled by an artificial multi-phase composite protective film. Journal of Power Sources, 2020, 448, 227547.	4.0	30
425	Dendrite-free lithium metal and sodium metal batteries. Energy Storage Materials, 2020, 27, 522-554.	9.5	151
426	Electrolyte Regulation towards Stable Lithiumâ€Metal Anodes in Lithium–Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Angewandte Chemie, 2020, 132, 10821-10834.	1.6	80
427	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie - International Edition, 2020, 59, 3252-3257.	7.2	221
428	Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery. Chemical Engineering Journal, 2020, 392, 123650.	6.6	78
429	The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes. Journal of Energy Chemistry, 2020, 47, 128-131.	7.1	63
430	A stable carbon host engineering surface defects for room-temperature liquid Na K anode. Journal of Electroanalytical Chemistry, 2020, 856, 113676.	1.9	18
431	Electro-chemo-mechanical modeling of solid-state batteries. Electrochimica Acta, 2020, 331, 135355.	2.6	35
432	Facile and Scalable Modification of a Cu Current Collector toward Uniform Li Deposition of the Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 3681-3687.	4.0	28
433	Is graphite lithiophobic or lithiophilic?. National Science Review, 2020, 7, 1208-1217.	4.6	126

		CITATION REPORT	
#	Article	IF	Citations
434	Thickness variation of lithium metal anode with cycling. Journal of Power Sources, 2020, 476, 228749.	4.0	26
435	A multifunctional polyimide nanofiber separator with a self-closing polyamide–polyvinyl alcohol top layer with a Turing structure for high-performance lithium–sulfur batteries. Materials Advances, 2020, 1, 3449-3459.	2.6	8
436	Lithium superionic conduction in α-Li10P4N10: A promising inorganic solid electrolyte candidate. Journal of Power Sources, 2020, 477, 228744.	4.0	3
437	Stable lithium metal anode enabled by high-dimensional lithium deposition through a functional organic substrate. Energy Storage Materials, 2020, 33, 158-163.	9.5	19
438	Recent advances in preparation and application of laser-induced graphene in energy storage devices. Materials Today Energy, 2020, 18, 100569.	2.5	43
439	Unravelling the room-temperature atomic structure and growth kinetics of lithium metal. Nature Communications, 2020, 11, 5367.	5.8	29
440	Advances in the chemistry and applications of alkali-metal–gas batteries. Nature Reviews Chemistry, 2020, 4, 566-583.	13.8	70
441	Highâ€Capacity, Dendriteâ€Free, and Ultrahighâ€Rate Lithiumâ€Metal Anodes Based on Monodisperse Nâ€Dop Hollow Carbon Nanospheres. Small, 2020, 16, e2004770.	bed _{5.2}	27
442	Revealing and Elucidating ALDâ€Đerived Control of Lithium Plating Microstructure. Advanced Energy Materials, 2020, 10, 2002736.	10.2	37
443	Recent Progress in Designing Stable Composite Lithium Anodes with Improved Wettability. Advanced Science, 2020, 7, 2002212.	5.6	95
444	Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Select, 2020, 1, 622-638.	1.9	4
445	Ion-Transport-Rectifying Layer Enables Li-Metal Batteries with High Energy Density. Matter, 2020, 3, 1685-1700.	5.0	75
446	Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined. Chemistry of Materials, 2020, 32, 8755-8771.	3.2	28
447	Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26053-26060.	3.3	82
448	Li-B alloy with artificial solid electrolyte interphase layer for long-life lithium metal batteries. Solid State lonics, 2020, 354, 115408.	1.3	9
449	Improvement of Lithium Metal Polymer Batteries through a Small Dose of Fluorinated Salt. Journal of Physical Chemistry Letters, 2020, 11, 6133-6138.	2.1	24
450	Trifluoromethyl-free anion for highly stable lithium metal polymer batteries. Energy Storage Materials, 2020, 32, 225-233.	9.5	42
451	Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Reports Physical Science, 2020, 1, 100119.	2.8	133

	CITATION R	EPORT	
#	Article	IF	Citations
452	A High-Performance Aqueous Zinc-Bromine Static Battery. IScience, 2020, 23, 101348.	1.9	71
453	Electrolytes based on nano-2D interlayer structure of Al-pillared clays for solid-state lithium battery. Journal of Materials Science: Materials in Electronics, 2020, 31, 13874-13888.	1.1	3
454	Structure, Rheology, and Electrokinetics of Soft Colloidal Suspension Electrolytes. Langmuir, 2020, 36, 9047-9053.	1.6	4
455	A New General Paradigm for Understanding and Preventing Li Metal Penetration through Solid Electrolytes. Joule, 2020, 4, 2599-2608.	11.7	71
456	Artificial Lithium Isopropyl-Sulfide Macromolecules as an Ion-Selective Interface for Long-Life Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54537-54544.	4.0	49
457	Thermodynamic origin of dendrite growth in metal anode batteries. Energy and Environmental Science, 2020, 13, 5186-5197.	15.6	101
458	A review on recent approaches for designing the SEI layer on sodium metal anodes. Materials Advances, 2020, 1, 3143-3166.	2.6	42
459	Li/Garnet Interface Optimization: An Overview. ACS Applied Materials & Interfaces, 2020, 12, 52271-52284.	4.0	27
460	Ultrathin Li _{6.75} La ₃ Zr _{1.75} Ta _{0.25} O ₁₂ -Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-free Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 11713-11723.	2.5	35
461	3D Porous Garnet/Gel Polymer Hybrid Electrolyte for Safe Solid-State Li–O ₂ Batteries with Long Lifetimes. Chemistry of Materials, 2020, 32, 10113-10119.	3.2	39
462	Highly efficient ligand-modified manganese ion doped CsPbCl3 perovskite quantum dots for photon energy conversion in silicon solar cells. Nanoscale, 2020, 12, 18621-18628.	2.8	14
463	Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures. Energy Storage Materials, 2020, 33, 95-107.	9.5	40
464	The effects of polybenzimidazole nanofiber separator on the safety and performance of lithium-ion batteries: Characterization and analysis from the perspective of mechanism. Journal of Power Sources, 2020, 475, 228624.	4.0	37
465	Biomolecule-guided cation regulation for dendrite-free metal anodes. Science Advances, 2020, 6, eabb1342.	4.7	117
466	An in-situ spectroscopy investigation of alkali metal interaction mechanism with the imide functional group. Nano Research, 2020, 13, 3224-3229.	5.8	11
467	Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte. Advanced Energy Materials, 2020, 10, 2001257.	10.2	236
468	A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. Energy Storage Materials, 2020, 32, 458-464.	9.5	35
469	The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode. Journal of Electroanalytical Chemistry, 2020, 874, 114484.	1.9	8

#	Article	IF	CITATIONS
470	Tuning the Interfacial Electronic Conductivity by Artificial Electron Tunneling Barriers for Practical Lithium Metal Batteries. Nano Letters, 2020, 20, 6606-6613.	4.5	43
471	Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials, 2020, 32, 306-319.	9.5	126
472	Fast Li-ion transport and uniform Li-ion flux enabled by a double–layered polymer electrolyte for high performance Li metal battery. Energy Storage Materials, 2020, 32, 55-64.	9.5	75
473	Redistributing Liâ€lon Flux by Parallelly Aligned Holey Nanosheets for Dendriteâ€Free Li Metal Anodes. Advanced Materials, 2020, 32, e2003920.	11.1	81
474	Evaluating Solid-Electrolyte Interphases for Lithium and Lithium-free Anodes from Nanoindentation Features. CheM, 2020, 6, 2728-2745.	5.8	44
475	Designing Comb-Chain Crosslinker-Based Solid Polymer Electrolytes for Additive-Free All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 6914-6921.	4.5	35
476	Anisotropic ion transport in 2D polymer single crystal-based solid polymer electrolytes. Giant, 2020, 2, 100021.	2.5	18
477	Effects of Temperature on Amine-Mediated CO ₂ Capture and Conversion in Li Cells. Journal of Physical Chemistry C, 2020, 124, 18877-18885.	1.5	4
478	Regulating the Li ⁺ â€Solvation Structure of Ester Electrolyte for Highâ€Energyâ€Density Lithium Metal Batteries. Small, 2020, 16, e2004688.	5.2	34
479	Dendrites in Znâ€Based Batteries. Advanced Materials, 2020, 32, e2001854.	11.1	601
480	Lithium and Stannum Hybrid Anodes for Flexible Wireâ€Type Lithium–Oxygen Batteries. Small Structures, 2020, 1, 2000015.	6.9	26
481	Recent Advances in Highâ€Performance Microbatteries: Construction, Application, and Perspective. Small, 2020, 16, e2003251.	5.2	48
482	Interfaces in Garnetâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 2001318.	10.2	85
483	A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry. Energy & Fuels, 2020, 34, 11942-11961.	2.5	83
484	Quantifying the impact of disorder on Li-ion and Na-ion transport in perovskite titanate solid electrolytes for solid-state batteries. Journal of Materials Chemistry A, 2020, 8, 19603-19611.	5.2	15
485	Sustainable Formation of Sulfur-Enriched Solid Electrolyte Interface on a Li Metal Electrode by Sulfur Chain-Containing Polymer Electrolyte Interfacial Layers. ACS Applied Energy Materials, 2020, 3, 10070-10079.	2.5	5
486	Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries. Nano Research, 2020, 13, 3230-3234.	5.8	32
487	Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode for Practical Li-Metal Batteries. Nano-Micro Letters, 2020, 12, 176.	14.4	41

#	Article	IF	CITATIONS
488	High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite. Energy and Environmental Science, 2020, 13, 3723-3731.	15.6	44
489	The effect of lithium salt type on ionic conductivity of poly(vinylidene difluoride)-based solid polymer electrolytes. Molecular Crystals and Liquid Crystals, 2020, 705, 93-98.	0.4	1
490	Nanopile Interlocking Separator Coating toward Uniform Li Deposition of the Li Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 43543-43552.	4.0	22
491	Three-Dimensional-Percolated Ceramic Nanoparticles along Natural-Cellulose-Derived Hierarchical Networks for High Li ⁺ Conductivity and Mechanical Strength. Nano Letters, 2020, 20, 7397-7404.	4.5	37
492	Polymer–Inorganic Nanocomposite Coating with High Ionic Conductivity and Transference Number for a Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 41620-41626.	4.0	24
493	Stabilizing Dendritic Electrodeposition by Limiting Spatial Dimensions in Nanostructured Electrolytes. ACS Energy Letters, 2020, 5, 2889-2896.	8.8	13
494	Thermal Conductive 2D Boron Nitride for Highâ€Performance Allâ€Solidâ€State Lithium–Sulfur Batteries. Advanced Science, 2020, 7, 2001303.	5.6	46
495	A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. Journal of the American Chemical Society, 2020, 142, 21393-21403.	6.6	65
496	Dynamic Structure and Phase Behavior of a Block Copolymer Electrolyte under dc Polarization. ACS Applied Materials & Interfaces, 2020, 12, 57421-57430.	4.0	13
497	A polymeric composite protective layer for stable Li metal anodes. Nano Convergence, 2020, 7, 21.	6.3	17
498	Electrophoretic Deposited Black Phosphorus on 3D Porous Current Collectors to Regulate Li Nucleation for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 51563-51572.	4.0	30
499	The improvement effect of LiF on stability of Li anode in PVDF-HFP gel polymer electrolyte. IOP Conference Series: Earth and Environmental Science, 2020, 565, 012062.	0.2	1
500	Leveraging Cation Identity to Engineer Solid Electrolyte Interphases for Rechargeable Lithium Metal Anodes. Cell Reports Physical Science, 2020, 1, 100239.	2.8	11
501	Stability of Solid-Electrolyte Interphase (SEI) on the Lithium Metal Surface in Lithium Metal Batteries (LMBs). ACS Applied Energy Materials, 2020, 3, 10560-10567.	2.5	37
503	Modulating reactivity and stability of metallic lithium <i>via</i> atomic doping. Journal of Materials Chemistry A, 2020, 8, 10363-10369.	5.2	18
504	Artificial Solid Electrolyte Interphase Acting as "Armor―to Protect the Anode Materials for High-performance Lithium-ion Battery. Chemical Research in Chinese Universities, 2020, 36, 402-409.	1.3	32
505	CHAIN: Cyber Hierarchy and Interactional Network Enabling Digital Solution for Battery Full-Lifespan Management. Matter, 2020, 3, 27-41.	5.0	110
506	Reversible Short ircuit Behaviors in Garnetâ€Based Solid‣tate Batteries. Advanced Energy Materials, 2020, 10, 2000702.	10.2	77

ARTICLE IF CITATIONS Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderateâ€Temperature 507 1.6 30 Conversion Chemistry. Angewandte Chemie, 2020, 132, 12167-12173. Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium 5.2 44 batteries. Journal of Materials Chemistry A, 2020, 8, 16718-16737. A Highly Efficient Allâ€Solidâ€State Lithium/Electrolyte Interface Induced by an Energetic Reaction. 509 7.2 70 Angewandte Chemie - International Edition, 2020, 59, 14003-14008. Toward Designing Highly Conductive Polymer Electrolytes by Machine Learning Assisted Coarse-Grained Molecular Dynamics. Chémistry of Materials, 2020, 32, 4144-4151. A Highly Efficient Allâ€Solidâ€State Lithium/Electrolyte Interface Induced by an Energetic Reaction. 511 1.6 4 Angewandte Chemie, 2020, 132, 14107-14112. Solid Electrolyte Interphase Evolution on Lithium Metal in Contact with Glymeâ€Based Electrolytes. Small, 2020, 16, e2000756. 5.2 In Situ Formed LiZn Alloy Skeleton for Stable Lithium Anodes. ACS Applied Materials & amp; Interfaces, 513 4.0 32 2020, 12, 25818-25825. The solid-state Li-ion conductor Li7TaO6: A combined computational and experimental study. Solid 514 1.3 State lonics, 2020, 347, 115226. 515 Designing Polymeric Interphases for Stable Lithium Metal Deposition. Nano Letters, 2020, 20, 5749-5758. 4.5 23 Electrolyte Membranes with Biomimetic Lithium-Ion Channels. Nano Letters, 2020, 20, 5435-5442. 4.5 49 High Cycling Stability for Solidâ€State Li Metal Batteries via Regulating Solvation Effect in 517 2.4 84 Poly(Vinylidene Fluoride)â€Based Electrolytes. Batteries and Supercaps, 2020, 3, 876-883. Synergistic Dualâ€Additive Electrolyte Enables Practical Lithiumâ€Metal Batteries. Angewandte Chemie, 1.6 26 2020, 132, 15045-15051. Synergistic Dualâ€Additive Electrolyte Enables Practical Lithiumâ€Metal Batteries. Angewandte Chemie -519 7.2 210 International Edition, 2020, 59, 14935-14941. Tuning the stability of electrochemical interfaces by electron transfer reactions. Journal of Chemical Physics, 2020, 152, 184703. 1.2 Doubleâ€Shelled C@MoS 2 Structures Preloaded with Sulfur: An Additive Reservoir for Stable Lithium 521 1.6 11 Metal Anodes. Angewandte Chemie, 2020, 132, 15973-15977. Doubleâ€Shelled C@MoS₂ Structures Preloaded with Sulfur: An Additive Reservoir for 79 Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 15839-15843. Li₂O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential 524 3.2101 of Lithium. Chemistry of Materials, 2020, 32, 5525-5533. 3D Flexible, Conductive, and Recyclable Ti₃C₂T<sub><i>x</i>>/sub> MXene-Melamine Foam for High-Áreal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14, 164 8678-8688.

#	Article	IF	CITATIONS
526	Kinetic- versus Diffusion-Driven Three-Dimensional Growth in Magnesium Metal Battery Anodes. Joule, 2020, 4, 1324-1336.	11.7	98
527	Template method for fabricating Co and Ni nanoparticles/porous channels carbon for solid-state sodium-sulfur battery. Journal of Colloid and Interface Science, 2020, 578, 710-716.	5.0	19
528	Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase. ACS Energy Letters, 2020, 5, 2411-2420.	8.8	174
529	A Three-Dimensional Nano-web Scaffold of Ferroelectric Beta-PVDF Fibers for Lithium Metal Plating and Stripping. ACS Applied Materials & Interfaces, 2020, 12, 29235-29241.	4.0	12
530	Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li–O2 batteries. Nano Energy, 2020, 75, 105036.	8.2	45
531	Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Science Advances, 2020, 6, eabb1122.	4.7	143
532	Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. Nano Energy, 2020, 75, 104967.	8.2	48
533	Modulating Lithium Nucleation Behavior through Ultrathin Interfacial Layer for Superior Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 6692-6699.	2.5	8
534	Tailoring the Mechanical and Electrochemical Properties of an Artificial Interphase for Highâ€Performance Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001139.	10.2	36
535	Strategies toward High‣oading Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 2000082.	10.2	272
536	Adaptive formed dual-phase interface for highly durable lithium metal anode in lithium–air batteries. Energy Storage Materials, 2020, 28, 350-356.	9.5	41
537			
	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.	4.7	157
538	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112. Functionality of Dualâ€Phase Lithium Storage in a Porous Carbon Host for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1910538.	4.7 7.8	157 68
538 539	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112. Functionality of Dualâ€Phase Lithium Storage in a Porous Carbon Host for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1910538. Morphological and Chemical Mapping of Columnar Lithium Metal. Chemistry of Materials, 2020, 32, 2803-2814.	4.7 7.8 3.2	157 68 10
538 539 540	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112. Functionality of Dualâ€Phase Lithium Storage in a Porous Carbon Host for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1910538. Morphological and Chemical Mapping of Columnar Lithium Metal. Chemistry of Materials, 2020, 32, 2803-2814. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries. Chinese Chemical Letters, 2020, 31, 2339-2342.	4.7 7.8 3.2 4.8	157 68 10 50
538 539 540 541	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112. Functionality of Dualâ€Phase Lithium Storage in a Porous Carbon Host for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1910538. Morphological and Chemical Mapping of Columnar Lithium Metal. Chemistry of Materials, 2020, 32, 2803-2814. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries. Chinese Chemical Letters, 2020, 31, 2339-2342. Li–LiAl alloy composite with memory effect as high-performance lithium metal anode. Journal of Power Sources, 2020, 455, 227977.	 4.7 7.8 3.2 4.8 4.0 	157 68 10 50 30
538 539 540 541 542	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.Functionality of Dualâ€Phase Lithium Storage in a Porous Carbon Host for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1910538.Morphological and Chemical Mapping of Columnar Lithium Metal. Chemistry of Materials, 2020, 32, 2803-2814.Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries. Chinese Chemical Letters, 2020, 31, 2339-2342.Li–LiAl alloy composite with memory effect as high-performance lithium metal anode. Journal of Power Sources, 2020, 455, 227977.Performance enhanced high-nickel lithium metal batteries through stable cathode and anode electrolyte interfaces. Sustainable Energy and Fuels, 2020, 4, 2875-2883.	 4.7 7.8 3.2 4.8 4.0 2.5 	 157 68 10 50 30 2

#	Article	IF	CITATIONS
544	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
545	A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. Journal of the American Chemical Society, 2020, 142, 7393-7403.	6.6	225
546	On Modeling the Detrimental Effects of Inhomogeneous Plating-and-Stripping at a Lithium-Metal/Solid-Electrolyte Interface in a Solid-State-Battery. Journal of the Electrochemical Society, 2020, 167, 040525.	1.3	23
547	Electrodeposition of Zinc from Alkaline Electrolytes Containing Quaternary Ammonium Salts and Ionomers: Impact of Cathodicâ€Anodic Cycling Conditions. ChemElectroChem, 2020, 7, 1752-1764.	1.7	8
548	Atomic-scale simulations for lithium dendrite growth driven by strain gradient. Applied Mathematics and Mechanics (English Edition), 2020, 41, 533-542.	1.9	5
549	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	23.0	593
550	Review on nanomaterials for nextâ€generation batteries with lithium metal anodes. Nano Select, 2020, 1, 94-110.	1.9	14
551	Room temperature surface-engineering enabling stability of high-energy-density lithium batteries. Materials Today Energy, 2020, 17, 100415.	2.5	3
552	Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi‧olid‧tate Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 18120-18125.	7.2	59
553	Achieving Uniform Lithium Electrodeposition in Cross-Linked Poly(ethylene oxide) Networks: "Soft― Polymers Prevent Metal Dendrite Proliferation. Macromolecules, 2020, 53, 5445-5454.	2.2	22
554	Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasiâ€Solidâ€State Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 18277-18282.	1.6	5
555	Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics, 2020, 128, .	1.1	14
556	Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode. Nano Energy, 2020, 76, 105046.	8.2	31
557	Effect of Urea as Electrolyte Additive for Stabilization of Lithium Metal Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 11123-11132.	3.2	17
558	Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Highâ€energy, Safe and Adaptable Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000709.	10.2	79
559	Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries. Nature Communications, 2020, 11, 3204.	5.8	55
560	Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13874-13895.	5.2	54
561	Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Materials, 2020, 31, 401-433.	9.5	107

#	Article	IF	CITATIONS
562	Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy, 2020, 76, 105068.	8.2	46
563	Ionic Conductive Thermoplastic Polymer Welding Layer for Low Electrode/Solid Electrolyte Interface Resistance. ACS Applied Energy Materials, 2020, 3, 7011-7019.	2.5	8
564	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie, 2020, 132, 7871-7876.	1.6	4
565	<i>Operando</i> Gas Monitoring of Solid Electrolyte Interphase Reactions on Lithium. Chemistry of Materials, 2020, 32, 2341-2352.	3.2	40
566	Waterproof lithium metal anode enabled by cross-linking encapsulation. Science Bulletin, 2020, 65, 909-916.	4.3	60
567	Simulating Diffusion Properties of Solid‣tate Electrolytes via a Neural Network Potential: Performance and Training Scheme. ChemSystemsChem, 2020, 2, e1900031.	1.1	30
568	A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery. Nano Energy, 2020, 71, 104600.	8.2	54
569	Dendrite Suppression by a Polymer Coating: A Coarseâ€Grained Molecular Study. Advanced Functional Materials, 2020, 30, 1910138.	7.8	49
570	Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode. Nano Energy, 2020, 71, 104614.	8.2	44
571	Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Materials, 2020, 27, 297-306.	9.5	69
572	Amineâ€Functionalized Boron Nitride Nanosheets: A New Functional Additive for Robust, Flexible Ion Gel Electrolyte with High Lithiumâ€ion Transference Number. Advanced Functional Materials, 2020, 30, 1910813.	7.8	86
573	A Mixed Ether Electrolyte for Lithium Metal Anode Protection in Working Lithium–Sulfur Batteries. Energy and Environmental Materials, 2020, 3, 160-165.	7.3	85
574	Solid Polymer Electrolytes Based on Copolymers of Cyclic Carbonate Acrylate and <i>n</i> â€Butylacrylate. Macromolecular Chemistry and Physics, 2020, 221, 1900556.	1.1	8
575	Review—Emerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 050508.	1.3	89
576	Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 48, 375-382.	7.1	23
577	Is the Cation Innocent? An Analytical Approach on the Cationic Decomposition Behavior of <i>N</i> -Butyl- <i>N</i> -methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide in Contact with Lithium Metal. Chemistry of Materials, 2020, 32, 2389-2398.	3.2	31
578	TEMPO-Ionic Liquids as Redox Mediators and Solvents for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2020, 124, 5087-5092.	1.5	23
579	Stable Lithium Deposition Enabled by an Acid-Treated g-C ₃ N ₄ Interface Layer for a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 11265-11272.	4.0	24

#	Article	IF	CITATIONS
580	Chitosan oligosaccharide derived polar host for lithium deposition in lithium metal batteries. Sustainable Materials and Technologies, 2020, 24, e00158.	1.7	10
581	Rechargeable Lithium Metal Batteries with an Inâ€Built Solidâ€State Polymer Electrolyte and a High Voltage/Loading Niâ€Rich Layered Cathode. Advanced Materials, 2020, 32, e1905629.	11.1	140
582	Anion-inhibited solid framework polymer electrolyte for dendrite-free lithium metal batteries. Electrochimica Acta, 2020, 338, 135902.	2.6	10
583	Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes. Journal of Materials Chemistry A, 2020, 8, 5095-5104.	5.2	47
584	Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating. Energy Storage Materials, 2020, 28, 17-26.	9.5	47
585	Effect of Crystal Orientation of Cu Current Collectors on Cycling Stability of Li Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 9341-9346.	4.0	24
586	Versatile Strategy for Realizing Flexible Room-Temperature All-Solid-State Battery through a Synergistic Combination of Salt Affluent PEO and Li _{6.75} La ₃ Zr _{1.75} Ta _{0.25} O ₁₂ Nanofibers. ACS Applied Materials & amp; Interfaces, 2020, 12, 7222-7231.	4.0	63
587	Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature Communications, 2020, 11, 488.	5.8	158
588	In Situ Generation of Artificial Solidâ€Electrolyte Interphases on 3D Conducting Scaffolds for Highâ€Performance Lithiumâ€Metal Anodes. Advanced Energy Materials, 2020, 10, 1903339.	10.2	107
589	In-situ organic SEI layer for dendrite-free lithium metal anode. Energy Storage Materials, 2020, 27, 69-77.	9.5	70
590	An ion-conductive Li7La3Zr2O12-based composite membrane for dendrite-free lithium metal batteries. Journal of Power Sources, 2020, 450, 227710.	4.0	33
591	Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries. Chemical Engineering Journal, 2020, 388, 124210.	6.6	32
592	The synergistic effect of Cu2O and boric acid forming solid electrolyte interphase layer to restrain the dendritic growth. Journal of Power Sources, 2020, 458, 228055.	4.0	13
593	Electrochemically Stable, High Transference Number Lithium Bis(malonato)borate Polymer Solution Electrolytes. Chemistry of Materials, 2020, 32, 3794-3804.	3.2	22
594	A Durable Gel Polymer Electrolyte with Excellent Cycling and Rate Performance for Enhanced Lithium Storage. ACS Applied Energy Materials, 2020, 3, 4906-4913.	2.5	10
595	Polymer Electrolyte Membrane with High Ionic Conductivity and Enhanced Interfacial Stability for Lithium Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 22710-22720.	4.0	23
596	Mechanistic understanding of Li dendrites growth by in- situ/operando imaging techniques. Journal of Power Sources, 2020, 461, 228135.	4.0	71
597	Analyzing Energy Materials by Cryogenic Electron Microscopy. Advanced Materials, 2020, 32, e1908293.	11.1	61

#	Article	IF	CITATIONS
598	Lithium Metal Interface Modification for Highâ€Energy Batteries: Approaches and Characterization. Batteries and Supercaps, 2020, 3, 828-859.	2.4	38
599	A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery. Energy Storage Materials, 2020, 29, 42-51.	9.5	51
600	A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy, 2020, 73, 104786.	8.2	120
601	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	18.7	327
602	Fracture behavior in battery materials. JPhys Energy, 2020, 2, 022002.	2.3	38
603	Polymer-in-Ceramic Nanocomposite Solid Electrolyte for Lithium Metal Batteries Encompassing PEO-Grafted TiO ₂ Nanocrystals. Journal of the Electrochemical Society, 2020, 167, 070535.	1.3	25
604	Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nature Materials, 2020, 19, 758-766.	13.3	110
605	Theoretical formulation of Li _{3a+b} N _a X _b (X = halogen) as a potential artificial solid electrolyte interphase (ASEI) to protect the Li anode. Physical Chemistry Chemical Physics, 2020, 22, 12918-12928.	1.3	12
606	Construction of copper oxynitride nanoarrays with enhanced lithiophilicity toward stable lithium metal anodes. Journal of Power Sources, 2020, 463, 228191.	4.0	24
607	Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderateâ€Temperature Conversion Chemistry. Angewandte Chemie - International Edition, 2020, 59, 12069-12075.	7.2	128
608	Dendrite-free and air-stable lithium metal batteries enabled by electroless plating with aluminum fluoride. Journal of Materials Chemistry A, 2020, 8, 9218-9227.	5.2	16
609	A Mixed Lithiumâ€Ion Conductive Li ₂ S/Li ₂ Se Protection Layer for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2001607.	7.8	158
610	Electrostatic Shielding Guides Lateral Deposition for Stable Interphase toward Reversible Magnesium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 19601-19606.	4.0	34
611	Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. Journal of Colloid and Interface Science, 2021, 582, 60-69.	5.0	34
612	Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. Journal of Energy Chemistry, 2021, 55, 129-135.	7.1	44
613	Scalable Synthesis of LiFâ€rich 3D Architected Li Metal Anode via Direct Lithiumâ€Fluoropolymer Pyrolysis to Enable Fast Li Cycling. Energy and Environmental Materials, 2021, 4, 213-221.	7.3	16
614	A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition. Energy Storage Materials, 2021, 34, 708-715.	9.5	15
615	Defect-rich carbon nitride as electrolyte additive for in-situ electrode interface modification in lithium metal battery. Chemical Engineering Journal, 2021, 407, 127123.	6.6	17

#	Article	IF	CITATIONS
616	An Inorganicâ€Rich Solid Electrolyte Interphase for Advanced Lithiumâ€Metal Batteries in Carbonate Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 3661-3671.	7.2	317
617	Interface Issues and Challenges in Allâ€Solidâ€State Batteries: Lithium, Sodium, and Beyond. Advanced Materials, 2021, 33, e2000721.	11.1	248
618	Fullerenes for rechargeable battery applications: Recent developments and future perspectives. Journal of Energy Chemistry, 2021, 55, 70-79.	7.1	54
619	A computational approach to characterize formation of a passivation layer in lithium metal anodes. AICHE Journal, 2021, 67, .	1.8	24
620	Surface modification of Ni foam for stable and dendrite-free lithium deposition. Chemical Engineering Journal, 2021, 405, 127022.	6.6	32
621	Fluorobenzene, A Lowâ€Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, .	7.8	121
622	A Perspective on the Behavior of Lithium Anodes under a Magnetic Field. Small Structures, 2021, 2, 2000043.	6.9	34
623	Interfacial challenges towards stable Li metal anode. Nano Energy, 2021, 79, 105507.	8.2	115
624	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy, 2021, 80, 105516.	8.2	111
625	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€State Liâ€O ₂ Batteries. Angewandte Chemie, 2021, 133, 5885-5890.	, 1.6	14
626	Cationâ€5elective Separators for Addressing the Lithium–Sulfur Battery Challenges. ChemSusChem, 2021, 14, 792-807.	3.6	29
627	Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode. Journal of Materials Science and Technology, 2021, 76, 156-165.	5.6	6
628	Ionic liquids for high performance lithium metal batteries. Journal of Energy Chemistry, 2021, 59, 320-333.	7.1	155
629	Lithiated polyanion supported Li1.5Al0.5Ge1.5(PO4)3 composite membrane as single-ion conducting electrolyte for security and stability advancement in lithium metal batteries. Journal of Membrane Science, 2021, 620, 118926.	4.1	16
630	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869.	10.2	64
631	Transition of the Reaction from Threeâ€Phase to Twoâ€Phase by Using a Hybrid Conductor for Highâ€Energyâ€Density Highâ€Rate Solidâ€5tate Liâ€O ₂ Batteries. Angewandte Chemie - Internation Edition, 2021, 60, 5821-5826.	nal2	47
632	Polymerâ€Based Solid Electrolytes: Material Selection, Design, and Application. Advanced Functional Materials, 2021, 31, 2007598.	7.8	164
633	Polymer electrolytes for sodium-ion batteries. Energy Storage Materials, 2021, 36, 10-30.	9.5	82

#	Article	IF	CITATIONS
634	An Inorganicâ€Rich Solid Electrolyte Interphase for Advanced Lithiumâ€Metal Batteries in Carbonate Electrolytes. Angewandte Chemie, 2021, 133, 3705-3715.	1.6	29
635	A data science approach for advanced solid polymer electrolyte design. Computational Materials Science, 2021, 187, 110108.	1.4	4
636	Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg ^{–1} Lithium Metal Battery. ACS Energy Letters, 2021, 6, 115-123.	8.8	53
637	A Highâ€Performance Lithium Metal Battery with Ionâ€Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. Advanced Materials, 2021, 33, e2006323.	11.1	64
638	Spatially Controlled Lithium Deposition on Silverâ€Nanocrystalsâ€Decorated TiO ₂ Nanotube Arrays Enabling Ultrastable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2009605.	7.8	40
639	High-performance metal–iodine batteries enabled by a bifunctional dendrite-free Li–Na alloy anode. Journal of Materials Chemistry A, 2021, 9, 538-545.	5.2	18
640	Hierarchically porous Cu current collector with lithiophilic Cu O interphase towards high-performance lithium metal batteries. Journal of Energy Chemistry, 2021, 58, 292-299.	7.1	41
641	Safer Lithium″on Batteries from the Separator Aspect: Development and Future Perspectives. Energy and Environmental Materials, 2021, 4, 336-362.	7.3	104
642	Recent Progress of Porous Polymers for Lithium Metal Anodes Protection. Acta Chimica Sinica, 2021, 79, 378.	0.5	3
643	Revealing Charge-Transfer Dynamics at Electrified Sulfur Cathodes Using Constrained Density Functional Theory. Journal of Physical Chemistry Letters, 2021, 12, 739-744.	2.1	5
644	Advanced liquid electrolytes enable practical applications of high-voltage lithium–metal full batteries. Chemical Communications, 2021, 57, 840-858.	2.2	27
645	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 21419-21436.	1.3	32
646	Revealing the Role of Fluorideâ€Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy. Advanced Energy Materials, 2021, 11, 2003118.	10.2	54
647	A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. Journal of Materials Chemistry A, 2021, 9, 7667-7674.	5.2	31
648	Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Materials Chemistry Frontiers, 2021, 5, 5211-5232.	3.2	22
649	Recent advances in separator engineering for effective dendrite suppression of Liâ€metal anodes. Nano Select, 2021, 2, 993-1010.	1.9	22
650	Stable alkali metal anodes enabled by crystallographic optimization – a review. Journal of Materials Chemistry A, 2021, 9, 20957-20984.	5.2	32
651	Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 10251-10259.	5.2	66

#	Article	IF	CITATIONS
652	Visualizing Lithium Dendrite Formation within Solid-State Electrolytes. ACS Energy Letters, 2021, 6, 451-458.	8.8	77
653	Self-Standing N-Doped Carbonized Cellulose Fiber as a Dual-Functional Host for Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 2326-2337.	3.2	12
654	An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy and Environmental Science, 2021, 14, 4115-4124.	15.6	376
655	Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries. Journal of Materials Chemistry A, 2021, 9, 6070-6088.	5.2	21
656	Amidinothiourea as a new deposition-regulating additive for dendrite-free lithium metal anodes. Chemical Communications, 2021, 57, 10055-10058.	2.2	9
657	Exploring the redox decomposition of ethylene carbonate–propylene carbonate in Li-ion batteries. Materials Advances, 2021, 2, 1747-1751.	2.6	18
658	An ultra-lithiophilic oxidation layer in a Ni-foam-based anode for lithium metal batteries. Materials Advances, 2021, 2, 1972-1980.	2.6	4
659	Batteries. , 2021, , 79-141.		0
660	Polymeric one-side conductive Janus separator with preferably oriented pores for enhancing lithium metal battery safety. Journal of Materials Chemistry A, 2021, 9, 3409-3417.	5.2	13
661	Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chemical Science, 2021, 12, 8945-8966.	3.7	72
662	Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries. Energy Material Advances, 2021, 2021, .	4.7	99
663	Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. Journal of Materials Chemistry A, 2021, 9, 6487-6498.	5.2	44
664	An aqueous polyethylene oxide-based solid-state electrolyte with high voltage stability for dendrite-free lithium deposition <i>via</i> a self-healing electrostatic shield. Dalton Transactions, 2021, 50, 14296-14302.	1.6	7
665	100th Anniversary of Macromolecular Science Viewpoint: Solid Polymer Electrolytes in Cathode Electrodes for Lithium Batteries. Current Challenges and Future Opportunities. ACS Macro Letters, 2021, 10, 141-153.	2.3	20
666	Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal. Advanced Science, 2021, 8, 2003301.	5.6	146
667	A phase-convertible fast ionic conductor with a monolithic plastic crystalline host. Journal of Materials Chemistry A, 2021, 9, 10838-10845.	5.2	3
668	Interfacial modification enabled room temperature solid-state lithium–metal batteries. Ionics, 2021, 27, 1569-1578.	1.2	2
669	Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 21695-21702.	5.2	18

ARTICLE IF CITATIONS # Recent advances and perspectives of two-dimensional Ti-based electrodes for electrochemical energy 670 2.5 11 storage. Sustainable Energy and Fuels, 2021, 5, 5061-5113. Highâ€Efficacy and Polymeric Solidâ€Electrolyte Interphase for Closely Packed Li Electrodeposition. 671 5.6 39 Advanced Sciénce, 2021, 8, 2003240. Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solidâ€5tate Batteries. 673 11.1 53 Advanced Materials, 2021, 33, e2008081. Rational Design of a 3D Li-Metal Electrode for High-Energy Lithium Batteries. ACS Applied Energy 674 2.5 Materials, 2021, 4, 1936-1941. Multifunctional roles of carbonâ€based hosts for Liâ€metal anodes: A review. , 2021, 3, 303-329. 675 93 3D Artificial Solidâ€Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures. Advanced Materials, 2021, 33, e2006247. 11.1 Oxygenâ€Doped Carbon Nitride Tubes for Highly Stable Lithiumâ€"Sulfur Batteries. Energy Technology, 677 1.8 10 2021, 9, 2001057. Suppressing Dendrites via Interfacial Ionic Conductivity Regulation in Lithium Metal Batteries. Energy 2.5 & Fuels, 2021, 35, 5333-5341. Strategy to Enhance the Cycling Stability of the Metallic Lithium Anode in Li-Metal Batteries. Nano 679 4.5 25 Letters, 2021, 21, 1896-1901. Regulating Lithium Electrodeposition with Laser-Structured Current Collectors for Stable Lithium Metal Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 8417-8425. Formation of Excellent Cathode/Electrolyte Interface with UV-Cured Polymer Electrolyte through In 681 10 1.3 Situ Strategy. Journal of the Electrochemical Society, 2021, 168, 020511. Interfacial Electron Transfer and Ion Solvation in the Solid Electrolyte Interphase. Journal of 1.5 Physical Chemistry C, 2021, 125, 4614-4622. Understanding the Reductive Decomposition of Highly Concentrated Li Salt/Sulfolane Electrolytes 683 2.5 24 during Li Deposition and Dissolution. ACS Applied Energy Materials, 2021, 4, 1851-1859. Nitrogenâ€Đoped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 8515-8520. 684 7.2 An effective strategy for shielding polysulfides and regulating lithium deposition in lithium–sulfur 685 4.0 14 batteries. Journal of Power Sources, 2021, 489, 229500. Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Énergy Letters, 0, , 1550-1559. 687 Advances of 2D MoS2 for High-Energy Lithium Metal Batteries. Frontiers in Energy Research, 2021, 9, . 1.2 15 Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. 1.6 Angewandte Chemie, 2021, 133, 8596-8601.

#	Article	IF	CITATIONS
689	Nanophase-Separated, Elastic Epoxy Composite Thin Film as an Electrolyte for Stable Lithium Metal Batteries. Nano Letters, 2021, 21, 3611-3618.	4.5	47
690	Dendritic Zn Deposition in Zincâ€Metal Batteries and Mitigation Strategies. Advanced Energy and Sustainability Research, 2021, 2, 2000082.	2.8	23
691	Rapid Interfacial Exchange of Li Ions Dictates High Coulombic Efficiency in Li Metal Anodes. ACS Energy Letters, 0, , 1162-1169.	8.8	41
692	The (Inâ€) Stability of the Ionic Liquids [(TMEDA)BH ₂][TFSI] and â^'[FSI] on the Li(001) Surface. Batteries and Supercaps, 2021, 4, 1126-1134.	2.4	5
693	Fluorination-Guided Li-Anchoring Behaviors on Phthalocyanines. Journal of Physical Chemistry C, 2021, 125, 8236-8243.	1.5	3
694	Comparing the Physicochemical, Electrochemical, and Structural Properties of Boronium versus Pyrrolidinium Cation-Based Ionic Liquids and Their Performance as Li-Ion Battery Electrolytes. Journal of Physical Chemistry C, 2021, 125, 8055-8067.	1.5	6
695	Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 2021, 6, 1839-1848.	8.8	200
696	Inâ€Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasiâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 12223-12230.	1.6	20
697	Dendrite-Suppressing Separator with High Thermal Stability Modified by Beaded-Chain-Like Polyimide Coating for a Li Metal Anode. Energy & Fuels, 2021, 35, 8417-8422.	2.5	6
698	Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes. Nano Energy, 2021, 82, 105723.	8.2	50
699	Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance. Journal of Materials Engineering and Performance, 2021, 30, 4543-4551.	1.2	2
700	Lithiophilic 3D VN@N-rGO as a Multifunctional Interlayer for Dendrite-Free and Ultrastable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 20125-20136.	4.0	32
701	Atomistic Insights into the Effects of Doping and Vacancy Clustering on Li-Ion Conduction in the Li ₃ OCI Antiperovskite Solid Electrolyte. ACS Applied Energy Materials, 2021, 4, 5094-5100.	2.5	24
702	Inâ€Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasiâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 12116-12123.	7.2	97
703	Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy, 2021, 82, 105736.	8.2	24
704	Synergistic Effect of Temperature and Electrolyte Concentration on Solid‧tate Interphase for Highâ€Performance Lithium Metal Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100010.	2.8	2
705	Poor Stability of Li ₂ CO ₃ in the Solid Electrolyte Interphase of a Lithiumâ€Metal Anode Revealed by Cryoâ€Electron Microscopy. Advanced Materials, 2021, 33, e2100404.	11.1	147
706	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nature Energy, 2021, 6, 398-406.	19.8	169

#	Article	IF	CITATIONS
707	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 10871-10879.	7.2	89
708	The investigation for electrodeposition behavior of lithium metal in a crown ether/propylene carbonate electrolyte. Journal of Electroanalytical Chemistry, 2021, 887, 115156.	1.9	4
709	Dynamical SEI Reinforced by Openâ€Architecture MOF Film with Stereoscopic Lithiophilic Sites for Highâ€Performance Lithium–Metal Batteries. Advanced Functional Materials, 2021, 31, 2101034.	7.8	59
710	Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308.	9.5	82
711	Designing inorganic electrolytes for solid-state Li-ion batteries: A perspective of LGPS and garnet. Materials Today, 2021, 50, 418-441.	8.3	59
712	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal Anodes. Angewandte Chemie, 2021, 133, 10966-10974.	1.6	11
713	Enhancement of electrochemical performance and anti-oxidation stability by protection of lithium metal anode with Li+ conductive poly(arylene ether sulfone)-g-poly(ethylene glycol) layer for lithium metal battery. Journal of Power Sources, 2021, 495, 229744.	4.0	7
714	Structure and Dynamics of Electric-Field-Driven Convective Flows at the Interface between Liquid Electrolytes and Ion-Selective Membranes. Langmuir, 2021, 37, 5895-5901.	1.6	6
715	A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Science Advances, 2021, 7, .	4.7	212
716	Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Materials Today, 2021, 45, 62-76.	8.3	152
717	Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23743-23750.	4.0	18
718	3D-structured organic-inorganic hybrid solid-electrolyte-interface layers for Lithium metal anode. Energy Storage Materials, 2021, 37, 567-575.	9.5	21
719	Regulating the Stable Lithium and Polysulfide Deposition in Batteries by a Gold Nanoparticle Modified Vertical Graphene Host. Advanced Energy and Sustainability Research, 2021, 2, 2100044.	2.8	4
720	Recent Advances in Understanding the Formation and Mitigation of Dendrites in Lithium Metal Batteries. Energy & Fuels, 2021, 35, 9187-9208.	2.5	14
721	Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule, 2021, 5, 1119-1142.	11.7	233
722	Establishing the Preferential Adsorption of Anionâ€Dominated Solvation Structures in the Electrolytes for Highâ€Energyâ€Density Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2011109.	7.8	37
723	Revealing the role of the cathode–electrolyte interface on solid-state batteries. Nature Materials, 2021, 20, 1392-1400.	13.3	106
724	Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries. Nano Letters, 2021, 21, 4757-4764.	4.5	44

ARTICLE IF CITATIONS # Highly Conductive, Flexible, and Nonflammable Double-Network Poly(ionic liquid)-Based Ionogel Electrolyte for Flexible Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 725 4.0 41 25410-25420. Strategies to anode protection in lithium metal battery: A review. InformaÄnÃ-MateriÃ; ly, 2021, 3, 8.5 140 1333-1363. An effective dual-channel strategy for preparation of polybenzimidazole separator for advanced-safety and high-performance lithium-ion batteries. Journal of Membrane Science, 2021, 626, 727 4.1 22 119190. In Situ Monitoring of Lithium Metal Anodes and Their Solid Electrolyte Interphases by Transmission Electron Microscopy. Small Structures, 2021, 2, 2100018. Lithiophilic MXeneâ€Guided Lithium Metal Nucleation and Growth Behavior. Advanced Functional 729 7.8 28 Materials, 2021, 31, 2101261. Interpenetrating Network-Based Hybrid Solid and Gel Electrolytes for High Voltage Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 5639-5648. 2.5 Layered nanocomposite separators enabling dendrite-free lithium metal anodes at ultrahigh current 731 9.5 32 density and cycling capacity. Energy Storage Materials, 2021, 37, 135-142. Interfacial engineering of <scp>lithiumâ€polymer</scp> batteries with in situ <scp>UV</scp> crossâ€linking. InformaÄnÃ-Materiály, 2021, 3, 1016-1027. 8.5 10 Revealing Anion Adsorption Mechanism for Coating Layer on Separator toward Practical Li Metal 733 4.0 14 Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 23584-23591. Cryogenic Laser Ablation Reveals Short-Circuit Mechanism in Lithium Metal Batteries. ACS Energy 734 8.8 Letters, 2021, 6, 2138-2144. Electrolyte Chemistry in 3D Metal Oxide Nanorod Arrays Deciphers Lithium Dendrite-Free Plating/Stripping Behaviors for High-Performance Lithium Batteries. Journal of Physical Chemistry 735 19 2.1 Letters, 2021, 12, 4857-4866. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nature Energy, 2021, 6, 790-798. 19.8 198 Advances in Lithiumâ€"Sulfur Batteries: From Academic Research to Commercial Viability. Advanced 737 11.1 357 Materials, 2021, 33, e2003666. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. IScience, 2021, 24, 102578. Hybrid polyion complex micelles enabling high-performance lithium-metal batteries with universal 739 9.5 10 carbonates. Energy Storage Materials, 2021, 38, 509-519. Porous polymer composite separators with three-dimensional ion-selective nanochannels for 740 high-performance Lia € S batteries. Composites Communications, 2021, 25, 100679. Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications. Applied 741 1.314 Sciences (Switzerland), 2021, 11, 5679. Ab initio modelling of interfacial electrochemical properties: beyond implicit solvation limitations. 742 Journal of Physics Condensed Matter, 2021, 33, 304001.

#	Article	IF	CITATIONS
743	High Li-Ion Conductivity Artificial Interface Enabled by Li-Grafted Graphene Oxide for Stable Li Metal Pouch Cell. ACS Applied Materials & Interfaces, 2021, 13, 29500-29510.	4.0	3
744	Composite Separators for Robust High Rate Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2101420.	7.8	87
745	Fast Li Plating Behavior Probed by X-ray Computed Tomography. Nano Letters, 2021, 21, 5254-5261.	4.5	19
746	Hexafluoroisopropyl Trifluoromethanesulfonateâ€Driven Easily Li ⁺ Desolvated Electrolyte to Afford Li NCM811 Cells with Efficient Anode/Cathode Electrolyte Interphases. Advanced Functional Materials, 2021, 31, 2104395.	7.8	74
747	Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithium-ion batteries. Materials Today Energy, 2021, 20, 100694.	2.5	20
748	Electrolyte interface design for regulating Li dendrite growth in rechargeable Li-metal batteries: A theoretical study. Journal of Power Sources, 2021, 496, 229791.	4.0	14
749	Waxâ€Transferred Hydrophobic CVD Graphene Enables Waterâ€Resistant and Dendriteâ€Free Lithium Anode toward Long Cycle Li–Air Battery. Advanced Science, 2021, 8, e2100488.	5.6	28
750	Effect of diffusion constant on the morphology of dendrite growth in lithium metal batteries. Journal of Chemical Physics, 2021, 154, 234705.	1.2	1
751	Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendriteâ€Free Alkaliâ€Metal Battery. Advanced Materials, 2021, 33, e2101745.	11.1	32
752	Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth. Small, 2021, 17, e2101798.	5.2	58
753	Electrospun Composite Gel Polymer Electrolytes with High Thermal Conductivity toward Wide Temperature Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 8130-8141.	2.5	11
754	Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials, 2021, 33, 6029-6040.	3.2	28
755	Complex Growth Behavior of Li Dendrites in Al ₂ O ₃ Nanoparticlesâ€Driven Viscoelastic Electrolytes for Lithium Metal Batteries: Dynamic versus Quasistatic Rheology. Advanced Materials Interfaces, 2021, 8, 2100687.	1.9	5
756	Intermetallic interphases in lithium metal and lithium ion batteries. InformaÄnÃ-MateriÃily, 2021, 3, 1083-1109.	8.5	35
757	Dendriteâ€Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electroâ€Chemoâ€Mechanical Viewpoint of Macromolecular Design. Macromolecular Rapid Communications, 2021, 42, e2100279.	2.0	11
758	In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InformaÄnÃ-Materiály, 2022, 4, .	8.5	93
759	In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. CheM, 2021, 7, 3052-3068.	5.8	76
760	Tailored Electrolytes Enabling Practical Lithium–Sulfur Full Batteries via Interfacial Protection. ACS Energy Letters, 2021, 6, 2673-2681.	8.8	52

#	Article	IF	CITATIONS
761	Viscoelastic polyborosiloxanes as artificial solid electrolyte interphase on lithium metal anodes. Electrochimica Acta, 2021, 388, 138526.	2.6	6
762	Stable Interfaces in a Sodium Metal-Free, Solid-State Sodium-Ion Battery with Gradient Composite Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 39355-39362.	4.0	17
763	Conformal coating of lithium-zinc alloy on 3D conducting scaffold for high areal capacity dendrite-free lithium metal batteries. Carbon, 2021, 181, 99-106.	5.4	19
764	Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries. Advanced Science, 2021, 8, e2101123.	5.6	27
765	Porous Lithiophilic Li–Si Alloyâ€Type Interfacial Framework via Selfâ€Discharge Mechanism for Stable Lithium Metal Anode with Superior Rate. Advanced Energy Materials, 2021, 11, 2101544.	10.2	56
766	The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials, 2021, 6, 1036-1052.	23.3	201
767	Tailoring the Spatial Distribution and Content of Inorganic Nitrides in Solid–Electrolyte Interphases for the Stable Li Anode in Li–S Batteries. Energy and Environmental Materials, 2022, 5, 1180-1188.	7.3	26
768	How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 2021, 86, 106142.	8.2	116
769	Impact of Lithiumâ€Ion Coordination on Lithium Electrodeposition. Energy and Environmental Materials, 2023, 6, .	7.3	5
770	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources, 2021, 502, 229919.	4.0	92
771	Understanding the Correlation between Lithium Dendrite Growth and Local Material Properties by Machine Learning. Journal of the Electrochemical Society, 2021, 168, 090523.	1.3	3
772	The triad "electrode – solid electrolyte interphase – electrolyte―as a ground for the use of conversion type reactions in lithium-ion batteries. Himia, Fizika Ta Tehnologia Poverhni, 2021, 12, 226-279.	0.2	0
773	Wide Working Temperature Range Rechargeable Lithium–Sulfur Batteries: A Critical Review. Advanced Functional Materials, 2021, 31, 2107136.	7.8	43
774	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
775	Self-Healing Nucleation Seeds Induced Long-Term Dendrite-Free Lithium Metal Anode. Nano Letters, 2021, 21, 7715-7723.	4.5	45
776	Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. Journal of Power Sources, 2021, 505, 230062.	4.0	42
777	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	2.1	9
778	Cryoâ€Electron Microscopy for Unveiling the Sensitive Battery Materials. Small Science, 2021, 1, 2100055.	5.8	35

#	Article	IF	CITATIONS
779	In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition. Science Bulletin, 2021, 66, 1754-1763.	4.3	16
780	Ionic Conductivities of Broad Dispersity Lithium Salt-Doped Polystyrene/Poly(ethylene oxide) Triblock Polymers. Macromolecules, 2021, 54, 8798-8809.	2.2	2
781	Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase. Chemistry of Materials, 2021, 33, 7315-7336.	3.2	39
782	Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcoholâ€Borax Layer. Angewandte Chemie - International Edition, 2021, 60, 25122-25127.	7.2	32
783	Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 22973-22978.	1.6	19
784	Fluorobenzene-based diluted highly concentrated carbonate electrolyte for practical high-voltage lithium metal batteries. Journal of Power Sources, 2021, 506, 230086.	4.0	20
785	Progress in Solid Polymer Electrolytes for Lithiumâ€lon Batteries and Beyond. Small, 2022, 18, e2103617.	5.2	107
786	Coupling a Three-Dimensional Nanopillar and Robust Film to Guide Li-Ion Flux for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 45416-45425.	4.0	8
787	Ab Initio Molecular Dynamics of Li-Metal Anode in a Phosphate-Based Electrolyte: Solid Electrolyte Interphase Evolution. Journal of the Electrochemical Society, 2021, 168, 090528.	1.3	1
788	Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation towardÂhigh-areal-capacity lithium metal anode. Materials Today Energy, 2021, 21, 100770.	2.5	25
789	Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcoholâ€Borax Layer. Angewandte Chemie, 2021, 133, 25326-25331.	1.6	4
790	Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. , 2021, 3, 957-975.		64
791	Polymer electrolytes and interfaces in solid-state lithium metal batteries. Materials Today, 2021, 51, 449-474.	8.3	161
792	A solid–liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture. Journal Physics D: Applied Physics, 2021, 54, 475501.	1.3	3
793	High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. ACS Applied Materials & Interfaces, 2021, 13, 47163-47173.	4.0	42
794	Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 22791-22796.	7.2	58
795	Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chemical Engineering Journal, 2021, 422, 130017.	6.6	33
796	Electrophoretic deposition of metal-organic framework derived porous copper oxide anode for lithium and sodium ion rechargeable cells. Journal of Alloys and Compounds, 2021, 879, 160462.	2.8	13

#	Article	IF	CITATIONS
797	Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Materials, 2021, 41, 485-494.	9.5	66
798	Gradient SEI layer induced by liquid alloy electrolyte additive for high rate lithium metal battery. Nano Energy, 2021, 88, 106237.	8.2	48
799	Lithium- gel polymer electrolyte composite anode with large electrolyte-lithium interface for solid-state battery. Electrochimica Acta, 2021, 394, 139123.	2.6	4
800	Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries. Chemical Engineering Journal, 2021, 421, 130000.	6.6	56
801	'Environment-friendly' polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chemical Engineering Journal, 2021, 421, 129710.	6.6	58
802	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	11.8	39
803	Anionic three-dimensional porous aromatic framework for fast Li-ion conduction. Chemical Engineering Journal, 2021, 424, 130527.	6.6	6
804	Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte. Energy Storage Materials, 2021, 42, 628-635.	9.5	34
805	Development and challenges of electrode materials for rechargeable Mg batteries. Energy Storage Materials, 2021, 42, 687-704.	9.5	29
806	Lithium propanesulfonyl(trifluoromethylsulfonyl)imide grafted polybenzimidazole as a self-supporting single ion conducting polymer electrolyte membrane for lithium metal secondary batteries. Journal of Alloys and Compounds, 2021, 881, 160573.	2.8	13
807	Natural "relief―for lithium dendrites: Tailoring protein configurations for long-life lithium metal anodes. Energy Storage Materials, 2021, 42, 22-33.	9.5	22
808	N,S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Materials, 2021, 42, 679-686.	9.5	43
809	An artificial interphase enables the use of Mg(TFSI)2-based electrolytes in magnesium metal batteries. Chemical Engineering Journal, 2021, 426, 130751.	6.6	34
810	Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy, 2021, 90, 106490.	8.2	38
811	Lithiophilic Sn sites on 3D Cu current collector induced uniform lithium plating/stripping. Chemical Engineering Journal, 2021, 425, 130177.	6.6	21
812	3D composite lithium metal with multilevel micro-nano structure combined with surface modification for stable lithium metal anodes. Applied Surface Science, 2021, 570, 151159.	3.1	7
813	Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2T composite anodes. Journal of Energy Chemistry, 2022, 65, 654-665.	7.1	34
814	Li salt initiated in-situ polymerized solid polymer electrolyte: new insights via in-situ electrochemical impedance spectroscopy. Chemical Engineering Journal, 2022, 429, 132483.	6.6	27

#	Article	IF	CITATIONS
815	Lithiated halloysite nanotube/cross-linked network polymer composite artificial solid electrolyte interface layer for high-performance lithium metal batteries. Chemical Engineering Journal, 2022, 429, 132239.	6.6	19
816	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 66, 260-294.	7.1	149
817	Composite separator based on PI film for advanced lithium metal batteries. Journal of Materials Science and Technology, 2022, 102, 264-271.	5.6	9
818	A mixed ion-electron conducting network derived from a porous CoP film for stable lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 5486-5496.	3.2	7
819	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
820	Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems. Science Advances, 2021, 7, .	4.7	209
821	Interface issues of lithium metal anode for <scp>highâ€energy</scp> batteries: Challenges, strategies, and perspectives. InformaÄnÃ-Materiály, 2021, 3, 155-174.	8.5	195
822	A Protective Layer for Lithium Metal Anode: Why and How. Small Methods, 2021, 5, e2001035.	4.6	55
823	Avoiding dendrite formation by confining lithium deposition underneath Li–Sn coatings. Journal of Materials Research, 2021, 36, 797-811.	1.2	4
824	Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy and Environmental Science, 2021, 14, 3120-3129.	15.6	250
825	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	11.1	205
826	Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2003092.	10.2	271
827	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie - International Edition, 2020, 59, 7797-7802.	7.2	57
828	Highly Stable and Ultrahighâ€Rate Li Metal Anode Enabled by Fluorinated Carbon Fibers. Small, 2021, 17, e2006002.	5.2	47
829	Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Materials, 2018, 12, 69-78.	9.5	135
830	Insight in to the defect model, Li+ diffusion mechanism and doping level dependency of Li+ doping BPO4 by first principles and molecular dynamics method. Solid State Ionics, 2020, 357, 115465.	1.3	2
831	Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Materials, 2020, 5, 229-252.	23.3	1,167
832	Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy and Environmental Science, 2020, 13, 3504-3513.	15.6	40

#	Article	IF	CITATIONS
833	Improved Capacity Retention of Lithium Ion Batteries under Fast Charge via Metal-Coated Graphite Electrodes. Journal of the Electrochemical Society, 2020, 167, 160503.	1.3	11
834	Rechargeable Na-CO ₂ Batteries Starting from Cathode of Na ₂ CO ₃ and Carbon Nanotubes. Research, 2018, 2018, 6914626.	2.8	32
835	A review for modified Li composite anode: Principle, preparation and challenge. Nanotechnology Reviews, 2020, 9, 1610-1624.	2.6	15
836	SnO2/TiO2 Nanocomposite Prepared by Pulsed Laser Deposition as Anode Material for Flexible Quasi-solid-state Lithium-Ion Batteries. International Journal of Electrochemical Science, 2020, 15, 11709-11722.	0.5	20
837	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. Research, 2019, 2019, 7481319.	2.8	10
838	Vertical Graphenes Grown on a Flexible Graphite Paper as an All-Carbon Current Collector towards Stable Li Deposition. Research, 2020, 2020, 7163948.	2.8	12
839	Failure mechanism of lithium metal anode under practical conditions. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228501.	0.2	8
840	A scaffold membrane of solid polymer electrolytes for realizing high-stability and dendrite-free lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 25408-25417.	5.2	13
841	Synthesis design of a 3D interfacial structure for highly reversible lithium deposition. Journal of Materials Chemistry A, 2021, 9, 25004-25012.	5.2	6
842	Branched Poly(ethylene glycol)-Functionalized Covalent Organic Frameworks as Solid Electrolytes. ACS Applied Energy Materials, 2021, 4, 11720-11725.	2.5	13
843	On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nature Communications, 2021, 12, 6034.	5.8	70
844	Interwoven nickel(II)-dimethylglyoxime nanowires in 3D nickel foam for dendrite-free lithium deposition. Chinese Chemical Letters, 2022, 33, 2165-2170.	4.8	15
845	A Sodium–Antimony–Telluride Intermetallic Allows Sodiumâ€Metal Cycling at 100% Depth of Discharge and as an Anodeâ€Free Metal Battery. Advanced Materials, 2022, 34, e2106005.	11.1	40
846	Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nature Energy, 2021, 6, 951-960.	19.8	237
847	Ultrathin zwitterionic polymeric interphases for stable lithium metal anodes. Matter, 2021, 4, 3753-3773.	5.0	35
848	Dendrite-Free Non-Newtonian Semisolid Lithium Metal Anode. ACS Energy Letters, 2021, 6, 3761-3768.	8.8	19
849	Stabilizing Polymer Electrolytes in High-Voltage Lithium Batteries. Springer Theses, 2019, , 199-227.	0.0	0
850	Designer Interphases for the Lithium-Oxygen Electrochemical Cell. Springer Theses, 2019, , 137-161.	0.0	0

	СІТАТ	tion Report	
#	Article	IF	CITATIONS
851	Designing Solid-Liquid Interphases for Sodium Batteries. Springer Theses, 2019, , 95-116.	0.0	0
853	Solid Polymer Interphases for Lithium Metal Batteries. Springer Theses, 2019, , 183-198.	0.0	0
854	New High-energy Anode Materials. , 2019, , 1-25.		1
855	Electroless Formation of Hybrid Lithium Anodes for High Interfacial Ion Transport. Springer Theses, 2019, , 117-135.	0.0	0
856	High-Energy All-Solid-State Lithium-Metal Batteries by Nanomaterial Designs. , 2019, , 205-262.		0
857	Soft Colloidal Glasses as Solid-State Electrolytes. Springer Theses, 2019, , 163-182.	0.0	0
858	Operando Observations of Reversible α-BiF ₃ Conversion in Liquid Electrolyte by Synchrotron Radiation Diffraction and ⁷ Li Nuclear Magnetic Resonance. Journal of the Electrochemical Society, 2020, 167, 120518.	1.3	3
859	Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Journal of the American Chemical Society, 2021, 143, 18703-18713.	6.6	205
860	The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
861	Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries. Energy Material Advances, 2020, 2020, 1-10.	4.7	27
862	Bio-Based Aromatics: Aminobenzoic Acid Derivatives for High-Performance Bioplastics. ACS Symposium Series, 2020, , 99-121.	0.5	2
863	Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for Highâ€Performance Lithium Metal Anodes. Chemistry - A European Journal, 2021, , .	1.7	3
864	Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2, 100644.	2.8	18
865	Nanoscale electrodeposition: Dimension control and 3D conformality. Exploration, 2021, 1, .	5.4	46
866	Stiffer is Not Necessarily Better: Requirements Analysis for Binary Solid Polymer Electrolytes that Ensure Stable Lithium Metal Electrodes. Journal of the Electrochemical Society, 2020, 167, 130525.	1.3	6
867	Extending the Performance Limit of Anodes: Insights from Diffusion Kinetics of Alloying Anodes. Advanced Energy Materials, 2021, 11, 2003078.	10.2	19
868	The ionic interphases of the lithium anode in solid state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 100973.	5.6	7
869	Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67, 524-548.	7.1	47

#	Article	IF	CITATIONS
870	High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells. Nature Communications, 2021, 12, 6536.	5.8	44
871	An overview of the key challenges and strategies for lithium metal anodes. Journal of Energy Storage, 2022, 47, 103641.	3.9	14
872	Stabilizing zinc anode via a chelation and desolvation electrolyte additive. , 2022, 1, 100007.		83
873	Coal-Derived Activated Carbon for Electrochemical Energy Storage: Status on Supercapacitor, Li-Ion Battery, and Li–S Battery Applications. Energy & Fuels, 2021, 35, 18285-18307.	2.5	37
874	Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendriteâ€Free Lithiumâ€Metal Anodes. Small, 2022, 18, e2104735.	5.2	10
875	Nonsymmetric ionic transport in a nonbinary electrolyte at high voltage. Physical Review Fluids, 2021, 6, .	1.0	4
876	Decoupling the Modulus and Toughness Effects of Solid Polymer Electrolytes in All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2021, 4, 14093-14101.	2.5	4
877	An optimized combination inspired by the wooden-barrel effect for Li-S pouch cells. Cell Reports Physical Science, 2021, 2, 100659.	2.8	3
878	Stable lithium metal anode achieved by shortening diffusion path on solid electrolyte interface derived from Cu2O lithiophilic layer. Chemical Engineering Journal, 2022, 433, 133689.	6.6	10
879	A novel artificial film of lithiophilic polyethersulfone for inhibiting lithium dendrite. Electrochimica Acta, 2022, 403, 139668.	2.6	3
880	Comparative study of fluorination effect on the linear carbonate molecule for reversible cycling of lithium metal batteries. Journal of Electroanalytical Chemistry, 2022, 905, 115900.	1.9	12
881	Ternary Poly(ethylene oxide)/Poly(<scp>l</scp> , <scp>l</scp> -lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials, 2021, 3, 6326-6337.	2.0	19
882	Interface coating of iron nitride on carbon cloth for reversible lithium redox in rechargeable battery. Chemical Engineering Journal, 2022, 431, 133961.	6.6	15
883	In-situ Li+insertion induced lithiophilic expansion graphite for dendrite-free lithium metal anode. Electrochimica Acta, 2022, 403, 139646.	2.6	8
884	Towards High Rate and High Areal Capacitance Zn Ion Hybrid Supercapacitor: Fluffy Graphene Architecture Anchored with Ultrathin Redox-Active Molecule. SSRN Electronic Journal, 0, , .	0.4	0
885	Strategies for improving rechargeable lithium-ion batteries: From active materials to CO ₂ emissions. Nanotechnology Reviews, 2021, 10, 1993-2026.	2.6	9
886	Constructing Artificial SEI Layer on Lithiophilic MXene Surface for Highâ€Performance Lithium Metal Anodes. Advanced Science, 2022, 9, e2103930.	5.6	55
887	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie, 2022, 134, e202116214.	1.6	9

#	Article	IF	CITATIONS
888	Solid polymer electrolytes based on polysiloxane with anion-trapping boron moieties for all-solid-state lithium metal batteries. Polymer, 2022, 240, 124517.	1.8	12
889	Sulfonated poly(vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode. Electrochimica Acta, 2022, 406, 139840.	2.6	13
890	Self-sacrificing lithium source with high electrochemical activity and water oxygen stability and its application in Si-C//S battery. Energy Storage Materials, 2022, 45, 687-695.	9.5	6
891	Molecular bridges stabilize lithium metal anode and solid-state electrolyte interface. Chemical Engineering Journal, 2022, 432, 134271.	6.6	9
892	Lithiophilic Mo3N2/MoN as multifunctional interlayer for dendrite-free and ultra-stable lithium metal batteries. Journal of Colloid and Interface Science, 2022, 612, 332-341.	5.0	6
893	A facile, scalable, high stability Lithium metal anode. SusMat, 2022, 2, 104-112.	7.8	50
894	An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries. CheM, 2022, 8, 1083-1098.	5.8	77
895	Efficient Anion Fluoride-Doping Strategy to Enhance the Performance in Garnet-Type Solid Electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ . ACS Applied Materials & Interfaces, 2022, 14, 2939-2948.	4.0	10
896	Stabilized and Almost Dendrite-Free Li Metal Anodes by In Situ Construction of a Composite Protective Layer for Li Metal Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 5298-5307.	4.0	22
897	A Multifunctional Siliconâ€Doped Polyether Network for Double Stable Interfaces in Quasiâ€Solidâ€State Lithium Metal Batteries. Small, 2022, 18, e2106395.	5.2	18
898	Principles and Challenges of Lithium–Sulfur Batteries. Modern Aspects of Electrochemistry, 2022, , 1-18.	0.2	1
899	Lithium-Ion-Conducting Ceramics-Coated Separator for Stable Operation of Lithium Metal-Based Rechargeable Batteries. Materials, 2022, 15, 322.	1.3	9
901	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202116214.	7.2	38
902	Functional Applications of Polymer Electrolytes in Highâ€Energyâ€Density Lithium Batteries. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	11
903	Investigating lithium metal anodes with nonaqueous electrolytes for safe and high-performance batteries. Sustainable Energy and Fuels, 2022, 6, 954-970.	2.5	11
904	Mechanistic and nanoarchitectonics insight into Li–host interactions in carbon hosts for reversible Li metal storage. Nano Energy, 2022, 95, 106999.	8.2	22
905	Nonreactive Electrolyte Additives for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3-13.	2.5	12
906	Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers, 2022, 14, 403.	2.0	19

#	Article	IF	CITATIONS
907	Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106.	19.8	336
908	Ultraâ€High Fluorine Enhanced Homogeneous Nucleation of Lithium Metal on Stepped Carbon Nanosheets with Abundant Edge Sites. Advanced Energy Materials, 2022, 12, .	10.2	22
909	PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy, 2022, 95, 107009.	8.2	27
910	A Valence Gradient Protective Layer for Dendriteâ€Free and Highly Stable Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	26
911	Towards high rate and high areal capacity Zn ion hybrid supercapacitor: Fluffy graphene architecture anchored with ultrathin redox-active molecule. Applied Surface Science, 2022, 585, 152695.	3.1	20
912	Self-healing polymer electrolyte for long-life and recyclable lithium-metal batteries. Materials Today Energy, 2022, 24, 100939.	2.5	15
913	Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Materials, 2022, 46, 374-383.	9.5	45
914	Organosilane based artificial solid electrolyte interface layer for stable metallic lithium anode. Applied Surface Science, 2022, 586, 152806.	3.1	10
915	Insights into the efficient roles of solid electrolyte interphase derived from vinylene carbonate additive in rechargeable batteries. Journal of Electroanalytical Chemistry, 2022, 909, 116126.	1.9	14
916	Interfacial Assembly of Functional Mesoporous Carbonâ€Based Materials into Films for Batteries and Electrocatalysis. Advanced Materials Interfaces, 2022, 9, .	1.9	13
917	New Highly Stable Ionic Compounds Composed of Multivalent Graphene Quantum Dot Anions and Alkali Metal Cations. Batteries and Supercaps, 2022, 5, .	2.4	2
918	PVDF-HFP Layer With High Porosity and Polarity for High-Performance Lithium Metal Anodes in Both Ether and Carbonate Electrolytes. SSRN Electronic Journal, 0, , .	0.4	0
919	Lithium Dendrite Suppression with Li3n-Rich Protection LayerÂFormation on 3d Anode Via Ultra-Low Temperature Nitriding. SSRN Electronic Journal, 0, , .	0.4	0
920	A Flexible and Highly Conductive Quasi-Solid Single-Ion Polymer Electrolyte for High Performance Li-Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
921	A Dual-Salt Peo-Based Polymer Electrolyte with Cross-Linked Polymer Network for High-Voltage Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
922	CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare Metals, 2022, 41, 1477-1489.	3.6	42
923	A Single-Ion Polymer Composite Electrolyte Via In Situ Polymerization of Electrolyte Monomers into a Porous MOF-Based Fibrous Membrane for Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 3800-3809.	2.5	16
925	Unveiling and Alleviating Chemical "Crosstalk―of Succinonitrile Molecules in Hierarchical Electrolyte for Highâ€Voltage Solidâ€State Lithium Metal Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	13

#	Article	IF	CITATIONS
926	A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nature Communications, 2022, 13, 1297.	5.8	56
927	Integrated Ringâ€Chain Design of a New Fluorinated Ether Solvent for Highâ€Voltage Lithiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	8
928	Stabilizing the Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Li Interface for High Efficiency and Long Lifespan Quasiâ€Solidâ€State Lithium Metal Batteries. ChemSusChem, 2022, 15, .	3.6	11
929	Guiding Uniform Li Deposition through Interfacial Adsorption of Thin Polymer Films on the Anode for High Stability Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 4513-4521.	2.5	1
930	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	96
931	Influence of Porosity of Sulfide-Based Artificial Solid Electrolyte Interphases on Their Performance with Liquid and Solid Electrolytes in Li and Na Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16147-16156.	4.0	11
932	Integrated Ringâ€Chain Design of a New Fluorinated Ether Solvent for Highâ€Voltage Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202115884.	7.2	50
933	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	9
934	Nucleophilic Interfacial Layer Enables Stable Zn Anodes for Aqueous Zn Batteries. Nano Letters, 2022, 22, 3298-3306.	4.5	43
935	Gel Polymer Electrolytes Based on an Interconnected Porous Matrix Functionalized with Poly(ethylene glycol) Brushes Showing High Lithium Transference Numbers for High Charging-Rate Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4904-4912.	3.2	2
936	Insideâ€Outside Li Deposition Achieved by the Unusual Strategy of Constructing the Hierarchical Lithiophilicity for Dendriteâ€Free and Durable Li Metal Anode. Batteries and Supercaps, 0, , .	2.4	2
937	Interfacial Film Regulation and Electrochemical Performance Using Cyclopropane Sulphonic Amide Functionalized Electrolyte to Stabilize Lithium Metal Batteries with a LiNi _{0.8} Mn _{0.1} Co _{0.1} Co _{0.1} Co <sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub>Co<sub< sb=""></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	2.5	4
938	xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e80" altimg="si4.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:mrow </mml:msub> La <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e88"</mml:math 	2.0	2
939	altimg="si5.svg"> <mml:msub><mml:mrow /><mml:mrcw><mml:mro ?<="" mml:mrow="">/mml:msu Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Materials, 2022, 47, 453-461.</mml:mro></mml:mrcw></mml:mrow </mml:msub>	9.5	63
940	Lithiation MAX derivative electrodes with low overpotential and long-term cyclability in a wide-temperature range. Energy Storage Materials, 2022, 47, 611-619.	9.5	3
941	NASICON-based solid state Li-Fe-F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer. Energy Storage Materials, 2022, 47, 551-560.	9.5	31
942	In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode. Energy Storage Materials, 2022, 48, 384-392.	9.5	22
943	UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135329.	6.6	14

#	Article	IF	Citations
944	Retarding Li dendrites growth via introducing porous g-C3N4 into polymer electrolytes for solid-state lithium metal batteries. Journal of Alloys and Compounds, 2022, 909, 164825.	2.8	15
945	Failure mechanism and voltage regulation strategy of low N/P ratio lithium iron phosphate battery. Journal of Energy Storage, 2022, 51, 104588.	3.9	2
946	Lithium dendrite suppression with Li3N-rich protection layer formation on 3D anode via ultra-low temperature nitriding. Chemical Engineering Journal, 2022, 441, 136067.	6.6	14
947	Designing safer lithium-based batteries with nonflammable electrolytes: A review. EScience, 2021, 1, 163-177.	25.0	147
948	Engineering Multiscale Coupled Electron/Ion Transport in Battery Electrodes. ACS Nano, 2021, 15, 19014-19025.	7.3	23
949	Breathable Artificial Interphase for Dendriteâ€Free and Chemoâ€Resistive Lithium Metal Anode. Small, 2022, 18, e2105724.	5.2	10
950	Understanding the Effects of Interfacial Lithium Ion Concentration on Lithium Metal Anode. Advanced Science, 2022, 9, e2104145.	5.6	10
952	Superionic Solid Electrolyte Li7La3Zr2O12 Synthesis and Thermodynamics for Application in All-Solid-State Lithium-Ion Batteries. Materials, 2022, 15, 281.	1.3	1
953	Ultrathin and Highâ€Modulus LiBO ₂ Layer Highly Elevates the Interfacial Dynamics and Stability of Lithium Anode under Wide Temperature Range. Small, 2022, 18, e2106427.	5.2	12
954	Advances in <scp>host selection</scp> and <scp>interface regulation</scp> of polymer electrolytes. Journal of Polymer Science, 2022, 60, 743-765.	2.0	8
955	Hydroxyl-Rich Single-Ion Conductors Enable Solid Hybrid Polymer Electrolytes with Excellent Compatibility for Dendrite-Free Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
956	The quest for the holy grail of solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 1840-1860.	15.6	48
957	Bipolar fluorinated covalent triazine framework cathode with high lithium storage and long cycling capability. RSC Advances, 2022, 12, 11484-11491.	1.7	10
958	Synthesis and Characterization of Gel Polymer Electrolyte Based on Epoxy Group via Cationic Ring-Open Polymerization for Lithium-Ion Battery. Membranes, 2022, 12, 439.	1.4	9
959	Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Materials Today, 2022, 54, 110-152.	8.3	66
960	Mechanistic Underpinnings of Morphology Transition in Electrodeposition under the Application of Pulsatile Potential. Langmuir, 2022, , .	1.6	5
961	Interactions Between Solid Electrolyte Interphase and Lithium Dendrite. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	5
962	Xenon Ion Implantation Induced Surface Compressive Stress for Preventing Dendrite Penetration in Solid‧tate Electrolytes. Small, 2022, 18, e2108124.	5.2	8

#	Article	IF	CITATIONS
963	Lithium dendrite suppression by single-ion conducting gel polymer electrolyte cross-linked with graphene oxide. Journal of Power Sources, 2022, 534, 231424.	4.0	8
965	Design and developments in ceramic materials for electrochemical applications. , 2022, , 353-377.		0
966	Composite solid electrolyte with Li ⁺ conducting 3D porous garnet-type framework for all-solid-state lithium batteries. Materials Chemistry Frontiers, 2022, 6, 1672-1680.	3.2	8
967	The effects of reaction kinetics upon the instabilities in cathodic electrodeposition. Current Opinion in Colloid and Interface Science, 2022, 60, 101591.	3.4	4
968	Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. Nature Communications, 2022, 13, 2283.	5.8	47
969	Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy and Environment, 2024, 9, 71-80.	4.7	4
970	Experimental and first-principles study on amorphous aluminum nitride induced island-like nucleation and planar growth of lithium metal anode. Electrochimica Acta, 2022, 421, 140520.	2.6	1
971	Metal carbodiimides-derived organic-inorganic interface protective layer for practical high energy lithium metal batteries. Journal of Power Sources, 2022, 536, 231479.	4.0	7
972	A flexible and highly conductive quasi-solid single-ion polymer electrolyte for high performance Li-metal batteries. Journal of Power Sources, 2022, 537, 231478.	4.0	11
973	In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554.	9.5	24
974	Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Materials, 2022, 49, 433-444.	9.5	54
975	Bi@hollow carbon tube enabled high performance potassium metal batteries. Journal of Alloys and Compounds, 2022, 913, 165329.	2.8	10
976	A review on current collector coating methods for next-generation batteries. Chemical Engineering Journal, 2022, 446, 136860.	6.6	30
977	Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
978	Mechanistic Insight on the Stability of Ether and Fluorinated Ether Solvent-Based Lithium Bis(fluoromethanesulfonyl) Electrolytes near Li Metal Surface. Journal of Physical Chemistry C, 2022, 126, 8953-8963.	1.5	6
979	Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
980	Powder metallurgical 3D nickel current collectors with plasma-induced Ni3N nanocoatings enabling long-life and dendrite-free lithium metal anode. Journal of Energy Chemistry, 2022, 72, 149-157.	7.1	16
981	Fullerene-Derivative C60-(OLi)n Modified Separators toward Stable Wide-Temperature Lithium Metal Batteries. Chemical Engineering Journal, 2022, 446, 137207.	6.6	9

	CITATION R	REPORT	
#	ARTICLE	IF	CITATIONS
982	Anodeâ€Free Solidâ€State Lithium Batteries: A Review. Advanced Energy Materials, 2022, 12, .	10.2	81
983	Modifying the Lithiophilicity of Cu ₂ O/Cu Collector by LiCuO to Restrain Lithium Dendrite Growth. ChemistrySelect, 2022, 7, .	0.7	1
984	Sweetening Lithium Metal Interface by High Surface and Adhesive Energy Coating of Crystalline αâ€< scp>dâ€Glucose Film to Inhibit Dendrite Growth. Small, 2022, 18, .	5.2	5
985	Hydroxyl-rich single-ion conductors enable solid hybrid polymer electrolytes with excellent compatibility for dendrite-free lithium metal batteries. Journal of Membrane Science, 2022, 657, 120666.	4.1	19
986	Function-directed design of battery separators based on microporous polyolefin membranes. Journal of Materials Chemistry A, 2022, 10, 14137-14170.	5.2	38
987	Enabling Sustainable Lithium Metal Electrodes via Cholesteric Liquid Crystalline Cellulose Nanocrystal Nanomembranes. Advanced Energy Materials, 2022, 12, .	10.2	2
988	Gel Polymer Electrolytes with Mixture of Triazolium Ionic Liquids and Propylene Carbonate. Gels, 2022, 8, 370.	2.1	0
989	Constructing Bimetallic ZIFâ€Derived Zn,Coâ€Containing Nâ€Doped Porous Carbon Nanocube as the Lithiophilic Host to Stabilize Li Metal Anodes in Liâ°'O ₂ Batteries. ChemSusChem, 2022, 15, .	3.6	2
990	Designing Anion-Derived Solid Electrolyte Interphase in a Siloxane-Based Electrolyte for Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 27873-27881.	4.0	23
991	A reaction-dissolution strategy for designing solid electrolyte interphases with stable energetics for lithium metal anodes. Cell Reports Physical Science, 2022, 3, 100948.	2.8	8
992	Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Materials, 2022, 50, 783-791.	9.5	6
993	Construction of a N,P doped 3D dendrite-free lithium metal anode by using silicon-containing lithium metal. Dalton Transactions, 2022, 51, 13210-13226.	1.6	1
994	A Solutionâ€Processable Highâ€Modulus Crystalline Artificial Solid Electrolyte Interphase for Practical Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	10
995	A 2D Ultrathin Nanopatterned Interlayer to Suppress Lithium Dendrite Growth in Highâ€Energy Lithiumâ€Metal Anodes. Advanced Materials, 2022, 34, .	11.1	18
996	<scp>Highâ€Energy</scp> Lithiumâ€lon Batteries: Recent Progress and a Promising Future in Applications. Energy and Environmental Materials, 2023, 6, .	7.3	77
997	Electrical resistance of the current collector controls lithium morphology. Nature Communications, 2022, 13, .	5.8	20
998	Rationally Designed Fluorinated Amide Additive Enables the Stable Operation of Lithium Metal Batteries by Regulating the Interfacial Chemistry. Nano Letters, 2022, 22, 5936-5943.	4.5	36
999	COFâ€based single Li ⁺ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasiâ€solidâ€state organic batteries. , 2023, 5, .		24

#	Article	IF	Citations
1000	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical Reviews, 2022, 122, 13043-13107.	23.0	59
1001	Insights on polymeric materials for the optimization of high-capacity anodes. Composites Part B: Engineering, 2022, 243, 110131.	5.9	4
1002	Graphene in Solid-State Batteries: An Overview. Nanomaterials, 2022, 12, 2310.	1.9	2
1003	Bilayer NASICON/Polymer Hybrid Electrolyte for Stable Solid-State Li–O ₂ Batteries. ACS Applied Energy Materials, 2022, 5, 9149-9157.	2.5	15
1004	High-performance gel electrolyte for enhanced interface compatibility and lithium metal stability in high-voltage lithium battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129665.	2.3	13
1005	Superdry poly(vinylidene fluoride-co-hexafluoropropylene) coating on a lithium anode as a protective layer and separator for a high-performance lithium-oxygen battery. Journal of Colloid and Interface Science, 2022, 626, 524-534.	5.0	9
1006	Stable Li Metal–Electrolyte Interface Enabled by SEI Improvement and Cation Shield Functionality of the Azamacrocyclic Ligand in Carbonate Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 35645-35653.	4.0	11
1007	Polyhedral Oligomeric Silsesquioxane-Based Macroanions to Level Up the Li ⁺ Transport Number of Electrolytes for Lithium Batteries. Chemistry of Materials, 2022, 34, 6944-6957.	3.2	6
1008	Influence of Long-Term Storage Conditions on Lithium Metal Anode Surface in Liquid Carbonate-Based Electrolyte. Journal of the Electrochemical Society, 2022, 169, 080526.	1.3	1
1009	In Situ Highâ€performance Gel Polymer Electrolyte with Dualâ€reactive Crossâ€linking for Lithium Metal Batteries. Energy and Environmental Materials, 2024, 7, .	7.3	4
1010	Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule, 2022, 6, 2122-2137.	11.7	30
1011	Artificial Interphase Layer for Stabilized Zn Anodes: Progress and Prospects. Small, 2022, 18, .	5.2	49
1012	Research progress on improving the quality of lithium batteries. , 2022, , .		0
1013	Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective. Polymers, 2022, 14, 3452.	2.0	3
1014	Nanocomposite Janus Gel Polymer Electrolytes for Lithium Metal Batteries. Batteries, 2022, 8, 89.	2.1	2
1015	The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase. Angewandte Chemie, 0, , .	1.6	1
1016	Fillerâ€Integrated Composite Polymer Electrolyte for Solidâ€State Lithium Batteries. Advanced Materials, 2023, 35, .	11.1	105
1017	A Diluted Electrolyte for Long-Life Sulfurized Polyacrylonitrile-Based Anode-Free Li-S Batteries. Polymers, 2022, 14, 3312.	2.0	4

#	Article	IF	CITATIONS
1018	Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption. Nature Communications, 2022, 13, .	5.8	33
1019	Double-Network Polymer Electrolytes with Ionic Liquids for Lithium Metal Batteries. Polymers, 2022, 14, 3435.	2.0	3
1020	Recent Developments and Research Avenues for Polymers in Electric Vehicles. Chemical Record, 2022, 22, .	2.9	10
1021	The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
1022	Novel Urea-Based Molecule Functioning as a Solid Electrolyte Interphase Enabler and LiPF ₆ Decomposition Inhibitor for Fast-Charging Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 38921-38930.	4.0	5
1023	Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Science Advances, 2022, 8, .	4.7	40
1024	Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Materials, 2022, 52, 355-364.	9.5	46
1025	Constructing interfacial gradient layers and enhancing lithium salt dissolution kinetics for high-rate solid-state batteries. Nano Energy, 2022, 102, 107716.	8.2	12
1026	Self-healing artificial solid electrolyte interphase enhanced by quadruple hydrogen bonding for stable lithium metal anode. Applied Surface Science, 2022, 604, 154468.	3.1	14
1027	Integrating LiF-rich solid electrolyte interphase and in-situ formed gel blocking layer for Li–S battery. Journal of Power Sources, 2022, 548, 232035.	4.0	8
1028	Constructing lithium oxysulfide-rich solid electrolyte interphase to shield polysulfides in practical lithium–sulfur batteries. Journal of Power Sources, 2022, 550, 232144.	4.0	8
1029	Designable ultra-stable electrode surface engineering by the electrophoretic deposition of modified graphene oxide for rechargeable batteries. Applied Surface Science, 2022, 605, 154704.	3.1	2
1030	Positive electrode–Li metal crosstalk behavior-induced morphology change of Li deposits. Journal of Materials Chemistry A, 2022, 10, 17659-17667.	5.2	15
1031	Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chemical Communications, 2022, 58, 10973-10976.	2.2	9
1032	<i>In situ</i> characterization of lithium-metal anodes. Journal of Materials Chemistry A, 2022, 10, 17917-17947.	5.2	14
1033	Ionic Liquid Assisted Quasi-Solid-State Polymer Electrolyte for Rechargeable Lithium Metal Batteries Operating at Room Temperature. SSRN Electronic Journal, 0, , .	0.4	0
1034	Multifunctional polyzwitterion ionic liquid coating for long-lifespan and dendrite-free Zn metal anodes. Journal of Materials Chemistry A, 2022, 10, 16952-16961.	5.2	11
1035	Structural, dynamic, and diffusion properties of a Li ₆ (PS ₄)SCl superionic conductor from molecular dynamics simulations; prediction of a dramatically improved conductor. Journal of Materials Chemistry A, 2022, 10, 16319-16327.	5.2	4

	CHAIL		
# 1036	ARTICLE Carbon Nanotube Current Collector for Anode-free Battery. Fibers and Polymers, 2022, 23, 2149-2155.	IF 1.1	Citations
1037	Dualâ€Use of Seawater Batteries for Energy Storage and Water Desalination. Small, 2022, 18, .	5.2	20
1038	Saltâ€inâ€Salt Reinforced Carbonate Electrolyte for Li Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
1039	Moisture-assistant chlorinated separator with dual-protective interface for ultralong-life and high-rate lithium metal batteries. Chemical Engineering Journal, 2023, 453, 139348.	6.6	12
1040	Stabilizing lithium plating in polymer electrolytes by concentration-polarization-induced phase transformation. Joule, 2022, 6, 2372-2389.	11.7	15
1041	Saltâ€inâ€Salt Reinforced Carbonate Electrolyte for Li Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	0
1042	Preparation and electrochemical properties of hollow carbon spheres/sulfur co-doped with N and O for high-performance lithium-sulfur batteries. Journal of Porous Materials, 2023, 30, 277-288.	1.3	3
1043	Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. , 2022, 1, e9120031.		50
1044	Facile Replacement Reaction Enables Nano-Ag-Decorated Three-Dimensional Cu Foam as High-Rate Lithium Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 42030-42037.	4.0	11
1045	Probing the Functionality of LiFSI Structural Derivatives as Additives for Li Metal Anodes. ACS Energy Letters, 2022, 7, 3378-3385.	8.8	12
1046	Designing interphases for practical aqueous zinc flow batteries with high power density and high areal capacity. Science Advances, 2022, 8, .	4.7	15
1047	Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries. National Science Review, 2022, 9, .	4.6	31
1048	Lithiumâ€Metal Batteries via Suppressing Li Dendrite Growth and Improving Coulombic Efficiency. Small Structures, 2022, 3, .	6.9	26
1049	Electrodeposition and Electrodissolution of Li Metal in Nanohole Arrays of Anodic Porous Alumina. Journal of the Electrochemical Society, 2022, 169, 092507.	1.3	0
1050	Tuning the Solvent Alkyl Chain to Tailor Electrolyte Solvation for Stable Li-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 44470-44478.	4.0	21
1051	Softâ€Rigid Sandwichâ€Structured Hybrid Electrolytes Based on Polymerâ€inâ€Ceramic Electrolytes for Stableâ€Cycle Solidâ€State Lithiumâ€Metal Batteries. ChemElectroChem, 2022, 9, .	1.7	1
1052	Emerging Carbon Nanotubeâ€Based Nanomaterials for Stable and Dendriteâ€Free Alkali Metal Anodes: Challenges, Strategies, and Perspectives. Energy and Environmental Materials, 2023, 6, .	7.3	4
1053	Melt-quenching of artificial metallic interlayer enables a resistance-free garnet/lithium interface for all-solid-state lithium-metal batteries. Energy Storage Materials, 2022, 53, 899-908.	9.5	9

#	Article	IF	CITATIONS
1054	Understanding a Single-Li-Ion COF Conductor for Being Dendrite Free in a Li-Organic Battery. Research, 2022, 2022, .	2.8	4
1055	Lithiophilic SnF2 modification on carbon fiber cloth enabling uniform Li deposition for stable lithium metal anodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130196.	2.3	2
1056	Molecular engineering of fluoroether electrolytes for lithium metal batteries. Molecular Systems Design and Engineering, 0, , .	1.7	1
1057	Achievable fast charge transfer by tuning reasonable solid-electrolyte interphase structures. Journal of Materials Chemistry A, 2022, 10, 24628-24638.	5.2	4
1058	Correlation between Redox Potential and Solvation Structure in Biphasic Electrolytes for Li Metal Batteries. Advanced Science, 2022, 9, .	5.6	5
1059	Cold Sintering of Li6.4La3Zr1.4Ta0.6O12/PEO Composite Solid Electrolytes. Molecules, 2022, 27, 6756.	1.7	2
1060	Regulating Li transport in Li-magnesium alloy for dendrite free Li metal anode. Nano Research, 2023, 16, 8338-8344.	5.8	2
1061	Perspective—Reversibility of Electro-Plating/Stripping Reactions: Metal Anodes for Rechargeable Batteries. Journal of the Electrochemical Society, 2022, 169, 100532.	1.3	2
1062	Resolving Current-Dependent Regimes of Electroplating Mechanisms for Fast Charging Lithium Metal Anodes. Nano Letters, 2022, 22, 8224-8232.	4.5	32
1063	Electrode potential influences the reversibility of lithium-metal anodes. Nature Energy, 2022, 7, 1217-1224.	19.8	67
1064	Impact of a PEO-based Interphase at the Negative Electrode of "Zero Excess―Lithium-Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 110521.	1.3	2
1065	Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes. Energy Storage Materials, 2023, 54, 732-775.	9.5	22
1066	Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Materials, 2023, 54, 440-449.	9.5	35
1067	Enhancing the reversibility of Li deposition/dissolution in sulfur batteries using high-concentration electrolytes to develop anode-less batteries with lithium sulfide cathode. Journal of Power Sources, 2023, 554, 232323.	4.0	5
1068	Three-dimensional Laser-induced Hierarchical Copper Current Collector for High-performance Lithium Metal Batteries. , 2022, , .		0
1069	Li ₂ Se: A High Ionic Conductivity Interface to Inhibit the Growth of Lithium Dendrites in Garnet Solid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 50710-50717.	4.0	4
1070	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
1071	A Low oncentration Electrolyte for Highâ€Voltage Lithiumâ€Metal Batteries: Fluorinated Solvation Shell and Low Salt Concentration Effect. Angewandte Chemie, 2022, 134, .	1.6	6

#	Article	IF	CITATIONS
1072	Tuning the electron transport behavior at Li/LATP interface for enhanced cyclability of solid-state Li batteries. Nano Research, 2023, 16, 1634-1641.	5.8	12
1073	A Lowâ€Concentration Electrolyte for Highâ€Voltage Lithiumâ€Metal Batteries: Fluorinated Solvation Shell and Low Salt Concentration Effect. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
1074	Phase-field simulation tending to depict practical electrodeposition process in lithium-based batteries. Chinese Chemical Letters, 2023, 34, 107993.	4.8	2
1075	Highly soluble organic nitrate additives for practical lithium metal batteries. , 2023, 5, .		22
1076	An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries. Journal of Energy Storage, 2022, 56, 105955.	3.9	5
1077	Modulating Electron Conducting Properties at Lithium Anode Interfaces for Durable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 53850-53859.	4.0	15
1078	Lithiophilic Nanowire Guided Li Deposition in Li Metal Batteries. Small, 2023, 19, .	5.2	13
1079	Enhanced and evenly-distributed Li+ transport in well-aligned nanochannels enables stable lithium metal anode. Electrochemistry Communications, 2022, 144-145, 107395.	2.3	2
1080	Stable Lithium metal anode enabled by in-situ formation of Li3N/Li-Bi alloy hybrid layer. Chemical Communications, 0, , .	2.2	1
1081	A new mechanism of stabilizing SEI of Si anode driven by crosstalk behavior and its potential for developing high performance Si-based batteries. Energy Storage Materials, 2023, 55, 436-444.	9.5	9
1082	Solvate ionic liquid-derived solid polymer electrolyte with lithium bis(oxalato) borate as a functional additive for solid-state lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 1301-1311.	5.2	13
1083	Vital roles of fluoroethylene carbonate in electrochemical energy storage devices: a review. Journal of Materials Chemistry C, 2023, 11, 344-363.	2.7	3
1084	Photo-rechargeable all-solid-state lithiumÂâ^'Âsulfur batteries based on perovskite indoor photovoltaic modules. Chemical Engineering Journal, 2023, 455, 140684.	6.6	7
1085	Models for the Interplay of Mechanics, Electrochemistry, Thermodynamics, and Kinetics in Lithium-Ion Batteries. Applied Mechanics Reviews, 2023, 75, .	4.5	5
1086	High interfacial-energy heterostructure facilitates large-sized lithium nucleation and rapid Li+ desolvation process. Science Bulletin, 2022, 67, 2531-2540.	4.3	1
1087	Formulation and Characterization of PS-Poly(ionic liquid) Triblock Electrolytes for Sodium Batteries. ACS Applied Polymer Materials, 2022, 4, 8977-8986.	2.0	5
1088	Failure Mechanisms at the Interfaces between Lithium Metal Electrodes and a Single-Ion Conducting Polymer Gel Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 53893-53903.	4.0	4
1089	Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries. Journal of Energy Chemistry, 2023, 78, 71-79.	7.1	26

#	Article	IF	CITATIONS
1090	A Review of Inhibit the Growth of Lithium Dendrite Strategies. Defect and Diffusion Forum, 0, 421, 75-82.	0.4	0
1091	Magnetoelectric Coupling for Metal–Air Batteries. Advanced Functional Materials, 2023, 33, .	7.8	8
1092	Asymmetric Volume Expansion of the Lithium Metal Electrode in Symmetric Lithium/Lithium Cells under Lean Electrolyte and High Areal Capacity Conditions. ACS Applied Energy Materials, 2023, 6, 573-579.	2.5	3
1093	Double Crosslinked Polymer Electrolyte by C–S–C Group and Metal–Organic Framework for Solid‣tate Lithium Batteries. Small Structures, 2023, 4, .	6.9	7
1094	Effect of Charge Non-Uniformity on the Lithium Dendrites and Improvement by the LiF Interfacial Layer. ACS Applied Energy Materials, 2022, 5, 15078-15085.	2.5	5
1095	Tailored Solvation and Interface Structures by Tetrahydrofuranâ€Derived Electrolyte Facilitates Ultralow Temperature Lithium Metal Battery Operations. ChemSusChem, 2023, 16, .	3.6	5
1096	A 3D Framework with Li ₃ N–Li ₂ S Solid Electrolyte Interphase and Fast Ion Transfer Channels for a Stabilized Lithiumâ€Metal Anode. Advanced Materials, 2023, 35, .	11.1	33
1098	First-principles study of the adsorption and diffusion mechanisms of lithium dendrite growth. Molecular Simulation, 0, , 1-8.	0.9	0
1099	Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries. , 2023, 1, 39-59.		25
1100	Engineering Solution-Processed Non-Crystalline Solid Electrolytes for Li Metal Batteries. Chemistry of Materials, 0, , .	3.2	1
1101	Exploration of Metal Alloys as Zeroâ€Resistance Interfacial Modification Layers for Garnetâ€Type Solid Electrolytes. Advanced Functional Materials, 2023, 33, .	7.8	7
1102	Recycling of graphite anode from spent lithiumâ€ion batteries: Advances and perspectives. EcoMat, 2023, 5, .	6.8	20
1103	Tuning Li Nucleation by a Hybrid Lithiophilic Protective Layer for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 3089-3098.	4.0	4
1104	Electrodeposited 3D lithiophilic Ni microvia host for long cycling Li metal anode at high current density. Electrochimica Acta, 2023, 441, 141797.	2.6	5
1105	A Polymeric/inorganic Composite Coatings on the Separator for High-energy Lithium Metal Battery. , 2022, , .		0
1106	Building Better Lithiumâ€6ulfur Batteries—A Reassessment of the Working Mechanism. Batteries and Supercaps, 2023, 6, .	2.4	2
1107	Early Stage Li Plating by Liquid Phase and Cryogenic Transmission Electron Microscopy. ACS Energy Letters, 2023, 8, 715-721.	8.8	9
1108	Highly Reversible Lithium Metal Anode Enabled by 3D Lithiophilic–Lithiophobic Dual‧keletons. Advanced Materials, 0, , 2211203.	11.1	24

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1109	MOFs Containing Solidâ€State Electrolytes for Batteries. Advanced Science, 2023, 10,		5.6	22
1110	Realizing Holistic Charging–Discharging for Dendrite-Free Lithium Metal Anodes via Three-Dimensional Li ⁺ Conductive Networks. ACS Applied Materials &am 15, 6666-6675.	Constructing p; Interfaces, 2023,	4.0	2
1111	Single-Ion Conducting Multi-block Copolymer Electrolyte for Lithium-Metal Batteries w Loading NCM ₈₁₁ Cathodes. ACS Energy Letters, 2023, 8, 1114-1121.	ith High Mass	8.8	14
1112	Tuning Lithiophilic Sites of Ag-Embedded N-Doped Carbon Hollow Spheres via Intentio Strategy for Ultrastable Li Metal Anode in Rechargeable Batteries. ACS Sustainable Che Engineering, 2023, 11, 1785-1796.	nal Blocking emistry and	3.2	3
1113	Zn substituted Li4P2S6 as a solid lithium-ion electrolyte for all-solid-state lithium batte of Solid State Chemistry, 2023, 320, 123861.	ries. Journal	1.4	1
1114	Cellulose nanofiber-reinforced solid polymer electrolytes with high ionic conductivity for batteries. Journal of Materials Chemistry A, 2023, 11, 9521-9529.	br lithium	5.2	4
1115	NASICONâ€Based Solid State Liâ€Fluoride Conversion Batteries Enabled by Constructi Trap for Ti ⁴⁺ . Advanced Energy Materials, 2023, 13, .	ng a Fluorineâ€Rich	10.2	12
1116	<i>In situ</i> Synthesis of Gel Polymer Electrolytes for Lithium Batteries. Batteries and 2023, 6, .	Supercaps,	2.4	5
1117	Surface engineering toward stable lithium metal anodes. Science Advances, 2023, 9, .		4.7	37
1118	High stability of solid electrolyte interphase in lithium metal batteries enabled by direct on metal iron powder. Journal of Industrial and Engineering Chemistry, 2023, 121, 445	t fluorination -451.	2.9	2
1119	Stepwise optimization of single-ion conducting polymer electrolytes for high-performa lithium-metal batteries. Journal of Energy Chemistry, 2023, 80, 174-181.	nce	7.1	7
1120	Solid polymer electrolytes in all-solid-state lithium metal batteries: From microstructure properties. Journal of Energy Chemistry, 2023, 81, 358-378.	es to	7.1	15
1121	Effect of nano Al2O3 addition on cycling performance of poly(ether block amide) base lithium metal batteries. , 2023, 2, 167-176.	d solid-state		1
1122	In Situ Nano-SiO2 Electrospun Polyethylene-Oxide-Based Nano-Fiber Composite Solid I Electrolyte for High-Performance Lithium-Ion Batteries. Nanomaterials, 2023, 13, 1294	Polymer	1.9	3
1123	Simultaneous Stabilization of Lithium Anode and Cathode using Hyperconjugative Elec Highâ€voltage Lithium Metal Batteries. Angewandte Chemie, 2023, 135, .	strolytes for	1.6	3
1124	Simultaneous Stabilization of Lithium Anode and Cathode using Hyperconjugative Elec Highâ€voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 20	trolytes for 23, 62, .	7.2	8
1125	A P(VDF-HFP) and nonwoven-fabric based composite as high-performance gel polymer fast-charging sodium metal batteries. Polymer, 2023, 269, 125751.	electrolyte for	1.8	8
1126	Electrochemical Cycling Behaviour and Shape Changes of Zn Electrodes in Mildly Acidi Electrolytes Containing Quaternary Ammonium Salts. ChemElectroChem, 0, , .	c Aqueous	1.7	1

		CITATION REP	PORT	
#	Article		IF	CITATIONS
1127	Aprotic Sulfur–Metal Batteries: Lithium and Beyond. ACS Energy Letters, 2023, 8, 130	00-1312.	8.8	4
1128	A novel polymer electrolyte with <i>in situ</i> polymerization and a high concentration salts for lithium metal batteries. Polymer Chemistry, 2023, 14, 1094-1102.	of lithium	1.9	0
1129	In situ crosslinked hybrid aluminum polymer film for high-performance solid electrolyte of lithium metal battery. Journal of Power Sources, 2023, 563, 232808.	interphase	4.0	2
1130	Long-Lifespan Lithium Metal Batteries Enabled by a Hybrid Artificial Solid Electrolyte Int ACS Applied Materials & Interfaces, 2023, 15, 10585-10592.	erface Layer.	4.0	8
1131	A jigsaw-structured artificial solid electrolyte interphase for high-voltage lithium metal b Communications Materials, 2023, 4, .	atteries.	2.9	5
1132	1,3,2-Dioxathiolane 2,2-Dioxide as a Bifunctional Electrolyte Additive to Enhance the St Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2023, 11, 3760-37	ability of 68.	3.2	6
1133	Data-driven electrolyte design for lithium metal anodes. Proceedings of the National Ac Sciences of the United States of America, 2023, 120, .	ademy of	3.3	21
1134	Chemical stability and functionality of Al2O3 artificial solid electrolyte interphases on a under open circuit voltage conditions. Applied Physics Letters, 2023, 122, .	lkali metals	1.5	2
1135	Species Distribution During Solid Electrolyte Interphase Formation on Lithium Using MD/DFT-Parameterized Kinetic Monte Carlo Simulations. Journal of Physical Chemistry (4872-4886.	C, 2023, 127,	1.5	7
1136	Solidâ€Adsorbed Polymerâ€Electrolyte Interphases for Stabilizing Metal Anodes in Aque Nonâ€Aqueous Li Batteries. Angewandte Chemie, 2023, 135, .	eous Zn and	1.6	0
1137	Real-time nondestructive methods for examining battery electrode materials. Applied Pl 2023, 10, .	nysics Reviews,	5.5	3
1138	Solidâ€Adsorbed Polymerâ€Electrolyte Interphases for Stabilizing Metal Anodes in Aque Nonâ€Aqueous Li Batteries. Angewandte Chemie - International Edition, 2023, 62, .	eous Zn and	7.2	8
1139	A single-ion conducting quasi-solid polymer electrolyte made from synthetic rubber for batteries. Electrochemistry Communications, 2023, 149, 107467.	lithium metal	2.3	1
1140	Superior metal storage behavior of Zn-containing porous carbon nanostructures for Na batteries. Journal of Materials Chemistry A, 2023, 11, 7276-7285.	and Li metal	5.2	2
1141	Pseudo single lithium-ion conductors enabled by a metal–organic framework with bic lithium-ion chains for lithium metal batteries. Materials Chemistry Frontiers, 2023, 7, 24	mimetic 136-2442.	3.2	1
1142	Dynamic Ion Sieve as the Buffer Layer for Regulating Li ⁺ Flow in Lithium M Advanced Functional Materials, 2023, 33, .	etal Batteries.	7.8	11
1143	Anode Interfacial Issues in <scp>Solid‣tate</scp> Li Batteries: Mechanistic Understa Mitigating Strategies. Energy and Environmental Materials, 2023, 6, .	nding and	7.3	20
1144	Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nature Cor 2023, 14, .	nmunications,	5.8	28

#	Article	IF	CITATIONS
1145	Deciphering the Dynamic Processes at the Electrode–Electrolyte Interface for Stable Deposition of Lithium. ACS Applied Materials & Interfaces, 2023, 15, 15467-15477.	4.0	0
1146	Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Research, 2023, 16, 8191-8218.	5.8	6
1147	Mechanistic study of Al ₂ O ₃ coating effects on lithium deposition and dissolution reaction. RSC Advances, 2023, 13, 9142-9153.	1.7	1
1148	Compression promotes the formation of {110} textures during homoepitaxial deposition of lithium. Energy Storage Materials, 2023, 58, 155-164.	9.5	6
1149	Distinct Differences in Li-Deposition/Dissolution Reversibility in Sulfolane-Based Electrolytes Depending on Li-Salt Species and Their Solvation Structures. Journal of Physical Chemistry C, 2023, 127, 5689-5701.	1.5	5
1150	Unlocking the Polarization and Reversibility Limitations for Stable Lowâ€Temperature Lithium Metal Anodes. Small Structures, 2023, 4, .	6.9	10
1151	Covalent Organic Framework with Multiâ€Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in Allâ€Solidâ€State Batteries. Angewandte Chemie - International Edition, 2023, 62,	7.2	8
1152	Covalent Organic Framework with Multiâ€Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in Allâ€Solidâ€State Batteries. Angewandte Chemie, 2023, 135, .	1.6	3
1154	A Novel Potassium Salt Regulated Solvation Chemistry Enabling Excellent Liâ€Anode Protection in Carbonate Electrolytes. Advanced Materials, 2023, 35, .	11.1	10
1155	Fluorinated ethylene carbonate as additive to glyme electrolytes for robust sodium solid electrolyte interface. Cell Reports Physical Science, 2023, 4, 101356.	2.8	5
1156	Reconstruction suppressed solid-electrolyte interphase by functionalized metal-organic framework. Energy Storage Materials, 2023, 59, 102765.	9.5	5
1157	Design Principles for Fluorinated Interphase Evolution via Conversion-Type Alloying Processes for Anticorrosive Lithium Metal Anodes. Nano Letters, 2023, 23, 3582-3591.	4.5	10
1158	Simultaneously Suppressing Shuttle Effect and Dendrite Growth in Lithium–Sulfur Batteries via Building Dualâ€Functional Asymmetricâ€Cellulose Gel Electrolyte. Small, 2023, 19, .	5.2	5
1159	Moss-like Growth of Metal Electrodes: On the Role of Competing Faradaic Reactions and Fast Charging. ACS Energy Letters, 2023, 8, 2113-2121.	8.8	5
1160	Enhancing Li ion conduction through polyethylene glycol brushes towards long-life solid-state lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 9029-9038.	5.2	1
1161	Single additive to regulate lithium-ion solvation structure in carbonate electrolytes for high-performance lithium-metal batteries. Cell Reports Physical Science, 2023, 4, 101379.	2.8	3
1162	Extremely Tough, Stretchable Gel Electrolytes with Strong Interpolymer Hydrogen Bonding Prepared Using Concentrated Electrolytes to Stabilize Lithiumâ€Metal Anodes. Advanced Materials, 2023, 35, .	11.1	8
1163	Cellulose-Assisted Vertically Heterostructured PEO-Based Solid Electrolytes Mitigating Li-Succinonitrile Corrosion for Lithium Metal Batteries. ACS Applied Materials & 2023, 15, 20897-20908.	4.0	1

#	Article	IF	CITATIONS
1164	2D sp2-carbon-linked covalent organic frameworks as artificial SEI film for dendrite-free lithium metal batteries. Science China Materials, 2023, 66, 2591-2600.	3.5	10
1165	Comparative Studies on [B(HFIP) ₄]-Based Electrolytes with Mono- and Divalent Cations. Journal of Physical Chemistry C, 2023, 127, 7987-7997.	1.5	2
1166	Artificial Solid Electrolyte Interphase Engineering toward Dendrite-Free Lithium Anodes. ACS Sustainable Chemistry and Engineering, 2023, 11, 6879-6889.	3.2	25
1177	Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Research, 2023, 16, 9158-9178.	5.8	14
1192	Stress and Manufacturability in Solid-State Lithium-Ion Batteries. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1093-1137.	2.7	2
1196	Electrode/electrolyte interphases in high-temperature batteries: a review. Energy and Environmental Science, 2023, 16, 2825-2855.	15.6	7
1204	Thermoplastic-based polymer blend nanocomposites for energy storage. , 2023, , 109-160.		0
1205	Transition metals for stabilizing lithium metal anode: advances and perspectives. Tungsten, 2024, 6, 212-229.	2.0	2
1212	Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chemical Society Reviews, 2023, 52, 5255-5316.	18.7	24
1238	Electrolyte designs for safer lithium-ion and lithium-metal batteries. Journal of Materials Chemistry A, 0, , .	5.2	0
1239	Practical challenges and future perspectives of solid polymer electrolytes: microscopic structure and interface design. Materials Chemistry Frontiers, 0, , .	3.2	0
1266	Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries. Nano-Micro Letters, 2024, 16,	14.4	0
1315	Recent development in metal-organic frameworks and their derivatives for separators. , 2024, , 331-366.		0