A proteomic atlas of the legume Medicago truncatula ar endosymbiont Sinorhizobium meliloti

Nature Biotechnology 34, 1198-1205 DOI: 10.1038/nbt.3681

Citation Report

#	Article	IF	CITATIONS
1	Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K ⁺ Deprivation. Plant Physiology, 2017, 173, 1811-1823.	4.8	69
2	Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Nature Plants, 2017, 3, 17048.	9.3	74
3	Metabolic Integration of Bacterial Endosymbionts through Antimicrobial Peptides. Trends in Microbiology, 2017, 25, 703-712.	7.7	64
4	Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 1127-1135.	2.8	6
5	Genome-Wide Identification of <i>Medicago</i> Peptides Involved in Macronutrient Responses and Nodulation. Plant Physiology, 2017, 175, 1669-1689.	4.8	101
6	Ascorbate Metabolism and Nitrogen Fixation in Legumes. , 2017, , 471-490.		1
7	A Proteomic View on the Role of Legume Symbiotic Interactions. Frontiers in Plant Science, 2017, 8, 1267.	3.6	42
8	Integrated analysis of zone-specific protein and metabolite profiles within nitrogen-fixing Medicago truncatula-Sinorhizobium medicae nodules. PLoS ONE, 2017, 12, e0180894.	2.5	14
9	Genome-Wide Transcriptional Changes and Lipid Profile Modifications Induced by Medicago truncatula N5 Overexpression at an Early Stage of the Symbiotic Interaction with Sinorhizobium meliloti. Genes, 2017, 8, 396.	2.4	13
10	Draft Genome Sequence of the Nitrogen-Fixing Rhizobium sullae Type Strain IS123T Focusing on the Key Genes for Symbiosis with its Host Hedysarum coronarium L Frontiers in Microbiology, 2017, 8, 1348.	3.5	15
11	Role of antimicrobial peptides in controlling symbiotic bacterial populations. Natural Product Reports, 2018, 35, 336-356.	10.3	95
12	Fungal-induced protein hyperacetylation in maize identified by acetylome profiling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 210-215.	7.1	71
13	Nonspecific Symbiosis Between Sophora flavescens and Different Rhizobia. Molecular Plant-Microbe Interactions, 2018, 31, 224-232.	2.6	15
14	Proteomic Profile of the Bacterium Sinorhizobium meliloti Depends on Its Life Form and Host Plant Species. Molecular Biology, 2018, 52, 779-785.	1.3	1
15	Sulfur Transport and Metabolism in Legume Root Nodules. Frontiers in Plant Science, 2018, 9, 1434.	3.6	49
16	The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. Scientific Reports, 2018, 8, 12504.	3.3	45
17	Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environmental and Experimental Botany, 2018, 153, 108-119.	4.2	15
18	Proteomic analysis dissects the impact of nodulation and biological nitrogen fixation on Vicia faba root nodule physiology. Plant Molecular Biology, 2018, 97, 233-251.	3.9	19

CITATION REPORT

#	Article	IF	CITATIONS
19	Impact of Plant Peptides on Symbiotic Nodule Development and Functioning. Frontiers in Plant Science, 2018, 9, 1026.	3.6	44
20	Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods in Molecular Biology, 2018, 1822, 205-239.	0.9	4
21	Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia. High-Throughput, 2018, 7, 15.	4.4	29
22	Quantitative proteomics of psychotrophic diazotroph in response to nitrogen deficiency and cold stress. Journal of Proteomics, 2018, 187, 235-242.	2.4	29
23	Concepts and strategies of soybean seed proteomics using the shotgun proteomics approach. Expert Review of Proteomics, 2019, 16, 795-804.	3.0	21
24	An anthocyanin marker for direct visualization of plant transformation and its use to study nitrogen-fixing nodule development. Journal of Plant Research, 2019, 132, 695-703.	2.4	9
25	Molecular Weapons Contribute to Intracellular Rhizobia Accommodation Within Legume Host Cell. Frontiers in Plant Science, 2019, 10, 1496.	3.6	12
26	Plant–Microbe Symbiosis: What Has Proteomics Taught Us?. Proteomics, 2019, 19, e1800105.	2.2	22
27	An Integrated Systems Approach Unveils New Aspects of Microoxia-Mediated Regulation in Bradyrhizobium diazoefficiens. Frontiers in Microbiology, 2019, 10, 924.	3.5	31
28	Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia–legume symbiosis. Plant Molecular Biology, 2019, 100, 265-283.	3.9	8
29	Oxygen sequestration by Leghemoglobin is positively regulated via its interaction with another late nodulin, Nlj16 of Lotus japonicus. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 414-423.	1.7	2
30	A Multiplex Fragment-Ion-Based Method for Accurate Proteome Quantification. Analytical Chemistry, 2019, 91, 3921-3928.	6.5	13
31	High-Throughput Mass Spectrometric Analysis of the Whole Proteome and Secretome From Sinorhizobium fredii Strains CCBAU25509 and CCBAU45436. Frontiers in Microbiology, 2019, 10, 2569.	3.5	17
32	Multidisciplinary approaches for studying rhizobium–legume symbioses. Canadian Journal of Microbiology, 2019, 65, 1-33.	1.7	77
33	MS-Helios: a Circos wrapper to visualize multi-omic datasets. BMC Bioinformatics, 2019, 20, 21.	2.6	9
34	Exploring the evolutionary dynamics of <i>Rhizobium</i> plasmids through bipartite network analysis. Environmental Microbiology, 2020, 22, 934-951.	3.8	7
37	Elucidation of the miR164c-Guided Gene/Protein Interaction Network Controlling Seed Vigor in Rice. Frontiers in Plant Science, 2020, 11, 589005.	3.6	6
38	Label-free quantitative proteomic analysis of alfalfa in response to microRNA156 under high temperature. BMC Genomics, 2020, 21, 758.	2.8	8

CITATION REPORT

#	Article	IF	CITATIONS
39	Phylogenomic Review of Root Nitrogen-Fixing Symbiont Population Nodulating Northwestern African Wild Legumes. , 2020, , .		1
40	Improving the Identification and Coverage of Plant Transmembrane Proteins in Medicago Using Bottom–Up Proteomics. Frontiers in Plant Science, 2020, 11, 595726.	3.6	2
41	GmPAP12 Is Required for Nodule Development and Nitrogen Fixation Under Phosphorus Starvation in Soybean. Frontiers in Plant Science, 2020, 11, 450.	3.6	39
42	Differential expression pattern of the proteome in response to cadmium stress based on proteomics analysis of wheat roots. BMC Genomics, 2020, 21, 343.	2.8	36
43	TGFamâ€Finder : a novel solution for targetâ€gene family annotation in plants. New Phytologist, 2020, 227, 1568-1581.	7.3	23
44	Symbiotic Outcome Modified by the Diversification from 7 to over 700 Nodule-Specific Cysteine-Rich Peptides. Genes, 2020, 11, 348.	2.4	26
45	Plant Proteomics. Methods in Molecular Biology, 2020, , .	0.9	4
46	The proteome landscape of the kingdoms of life. Nature, 2020, 582, 592-596.	27.8	128
47	In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis. Cells, 2020, 9, 1517.	4.1	19
48	Comparative acetylome analysis of wild-type and fuzzless-lintless mutant ovules of upland cotton (Gossypium hirsutum Cv. Xu142) unveils differential protein acetylation may regulate fiber development. Plant Physiology and Biochemistry, 2020, 150, 56-70.	5.8	9
49	Advances and applications of stable isotope labeling-based methods for proteome relative quantitation. TrAC - Trends in Analytical Chemistry, 2020, 124, 115815.	11.4	9
50	Proteome Analysis Reveals a Significant Host-Specific Response in Rhizobium leguminosarum bv. viciae Endosymbiotic Cells. Molecular and Cellular Proteomics, 2021, 20, 100009.	3.8	10
51	Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. Journal of Experimental Botany, 2021, 72, 5876-5892.	4.8	26
52	Role of Microbial Biofilms in Agriculture: Perspectives on Plant and Soil Health. , 2021, , 251-288.		1
53	Exploring the diversity of plant proteome. Journal of Integrative Plant Biology, 2021, 63, 1197-1210.	8.5	12
54	Plant Defense Proteins as Potential Markers for Early Detection of Forest Damage and Diseases. Frontiers in Forests and Global Change, 2021, 4, .	2.3	2
55	Structure and antimicrobial activity of NCR169, a nodule-specific cysteine-rich peptide of Medicago truncatula. Scientific Reports, 2021, 11, 9923.	3.3	13
56	Specialization in a nitrogen-fixing symbiosis: proteome differences between Sinorhizobium medicae bacteria and bacteroids. Molecular Plant-Microbe Interactions, 2021, , MPMI07210180R.	2.6	6

CITATION REPORT

#	Article	IF	CITATIONS
57	Targeted Quantification of Phosphopeptides by Parallel Reaction Monitoring (PRM). Methods in Molecular Biology, 2020, 2139, 213-224.	0.9	7
58	Differential proteome analysis ofÂpea roots at the early stages ofÂsymbiosis with nodule bacteria. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 196-204.	1.1	3
59	Serum proteomics analysis of feline mammary carcinoma based on label-free and PRM techniques. Journal of Veterinary Science, 2020, 21, e45.	1.3	5
60	Genome-Wide Analyses of Proteome and Acetylome in Zymomonas mobilis Under N2-Fixing Condition. Frontiers in Microbiology, 2021, 12, 740555.	3.5	0
62	Advances in proteome-wide analysis of plant lysine acetylation. Plant Communications, 2022, 3, 100266.	7.7	8
64	Plant Proteome Dynamics. Annual Review of Plant Biology, 2022, 73, 67-92.	18.7	22
66	A Nodule-Localized Small Heat Shock Protein GmHSP17.1 Confers Nodule Development and Nitrogen Fixation in Soybean. Frontiers in Plant Science, 2022, 13, 838718.	3.6	3
67	GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC Plant Biology, 2022, 22, 161.	3.6	6
69	Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS A Journal of Integrative Biology, 2021, 25, 750-769.	2.0	3
70	Full Issue PDF. Molecular Plant-Microbe Interactions, 2021, 34, 1336-1464.	2.6	0
71	Revealing the Specific Regulations of Brassinolide on Tomato Fruit Chilling Injury by Integrated Multi-Omics. Frontiers in Nutrition, 2021, 8, 769715.	3.7	6
109	Advances in agricultural bioinformatics: an outlook of multi "omics―approaches. , 2022, , 3-21.		0
110	Medicago truncatula resources to study legume biology and symbiotic nitrogen fixation. Fundamental Research, 2023, 3, 219-224.	3.3	3
111	AtGAP1 Promotes the Resistance to Pseudomonas syringae pv. tomato DC3000 by Regulating Cell-Wall Thickness and Stomatal Aperture in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 7540.	4.1	2
112	Identification of stably expressed reference genes for expression studies in Arabidopsis thaliana using mass spectrometry-based label-free quantification. Frontiers in Plant Science, 0, 13, .	3.6	0
113	The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science, 2022, 378, .	12.6	28
114	Crop Proteomics under Abiotic Stress: From Data to Insights. Plants, 2022, 11, 2877.	3.5	9
115	The Promises, Challenges, and Opportunities of Omics for Studying the Plant Holobiont. Microorganisms, 2022, 10, 2013.	3.6	2

ARTICLE IF CITATIONS Differences in the Chloroplast Genome and Its Regulatory Network among Cathaya argyrophylla 116 2.4 0 Populations from Different Locations in China. Genes, 2022, 13, 1963. Building a foundation for gene family analysis in Rosaceae genomes with a novel workflow: A case 3.6 study in Pyrus architecture genes. Frontiers in Plant Science, 0, 13, . Systematic Analysis of Lysine Acetylation Reveals Diverse Functions in Azorhizobium caulinodans 120 3.0 1 Strain ORS571. Microbiology Spectrum, 2023, 11, . PlantTribes2: Tools for comparative gene family analysis in plant genomics. Frontiers in Plant Science, 0, 13, . A large-scale proteogenomic atlas of pear. Molecular Plant, 2023, 16, 599-615. 122 8.3 7 Unraveling the small proteome of the plant symbiont <i>Sinorhizobium meliloti </i>by ribosome 2.1 profiling and proteogenomics. MicroLife, 2023, 4, . Quantitative proteomic analysis of the role of miRNA156 in alfalfa under drought stress. 124 4.2 3 Environmental and Experimental Botany, 2023, 214, 105449. Nodule-specific cysteine-rich peptide 343 is required for symbiotic nitrogen fixation in <i>Medicago 4.8 truncatula </i>. Plant Physiology, 2023, 193, 1897-1912. Genes and pathways correlated with heat stress responses and heat tolerance in maize kernels. 126 3.6 2 Frontiers in Plant Science, 0, 14, . 127 Multi-Omics Methods Applied to Flower Development. Methods in Molecular Biology, 2023, , 495-508. Multi-scale analysis provides insights into the roles of ureide permeases in wheat nitrogen use 128 1 4.8 efficiency. Journal of Experimental Botany, 2023, 74, 5564-5590. Effects of Elevated Temperature on Pisum sativum Nodule Development: lâ€"Detailed Characteristic of 129 4.1 Unusual Apical Senescence. International Journal of Molecular Sciences, 2023, 24, 17144. Integrating Label-free proteomics and molecular dynamics to investigate the interactions between proteins and bioactive compounds in Rosa roxburghii tratt fermented by Lactobacillus acidophilus 130 4.4 0 GIM1.208. Food Bioscience, 2024, 58, 103748. Overexpression of GmPAP4 Enhances Symbiotic Nitrogen Fixation and Seed Yield in Soybean under Phosphorus-Deficient Condition. International Journal of Molecular Sciences, 2024, 25, 3649. 4.1 The Pd (II) Reduction Mechanisms in Bacillus megaterium Y-4 Revealed by Proteomic Analysis. 133 4.1 0 Nanomaterials, 2024, 14, 512.

CITATION REPORT