Chemical principles of single-molecule electronics

Nature Reviews Materials

1,

DOI: 10.1038/natrevmats.2016.2

Citation Report

#	Article	IF	CITATIONS
1	Even the Odd Numbers Help: Failure Modes of SAM-Based Tunnel Junctions Probed via Odd-Even Effects Revealed in Synchrotrons and Supercomputers. Accounts of Chemical Research, 2016, 49, 2061-2069.	7.6	68
2	Exceptional Single-Molecule Transport Properties of Ladder-Type Heteroacene Molecular Wires. Journal of the American Chemical Society, 2016, 138, 10630-10635.	6.6	76
3	High-Conductance Pathways in Ring-Strained Disilanes by Way of Direct σ-Si–Si to Au Coordination. Journal of the American Chemical Society, 2016, 138, 11505-11508.	6.6	20
4	Diamondoid-based molecular junctions: a computational study. Nanotechnology, 2016, 27, 485207.	1.3	1
5	Driven Liouville von Neumann Approach for Time-Dependent Electronic Transport Calculations in a Nonorthogonal Basis-Set Representation. Journal of Physical Chemistry C, 2016, 120, 15052-15062.	1.5	27
6	Designing a robust single-molecule switch. Science, 2016, 352, 1394-1395.	6.0	24
7	Tuning Conductance in π–Ïf–π Single-Molecule Wires. Journal of the American Chemical Society, 2016, 138, 7791-7795.	6.6	27
8	Molecular Orbital Rule for Quantum Interference in Weakly Coupled Dimers: Low-Energy Giant Conductivity Switching Induced by Orbital Level Crossing. Journal of Physical Chemistry Letters, 2017, 8, 727-732.	2.1	22
9	Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions. ACS Nano, 2017, 11, 3542-3552.	7.3	38
10	Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chemical Reviews, 2017, 117, 4248-4286.	23.0	298
11	Exceptionally Small Statistical Variations in the Transport Properties of Metal–Molecule–Metal Junctions Composed of 80 Oligophenylene Dithiol Molecules. Journal of the American Chemical Society, 2017, 139, 5696-5699.	6.6	45
12	Surface Functionalization with Copper Tetraaminophthalocyanine Enables Efficient Charge Transport in Indium Tin Oxide Nanocrystal Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 14197-14206.	4.0	14
13	Frontier Orbital Perspective for Quantum Interference in Alternant and Nonalternant Hydrocarbons. Journal of Physical Chemistry C, 2017, 121, 9621-9626.	1.5	28
14	A Singleâ€Molecular AND Gate Operated with Two Orthogonal Switching Mechanisms. Advanced Materials, 2017, 29, 1701248.	11.1	41
15	When can time-dependent currents be reproduced by the Landauer steady-state approximation?. Journal of Chemical Physics, 2017, 146, 174101.	1.2	18
16	Is the Antiresonance in Meta-Contacted Benzene Due to the Destructive Superposition of Waves Traveling Two Different Routes around the Benzene Ring?. Journal of Physical Chemistry C, 2017, 121, 11739-11746.	1.5	23
17	Controlling charge transport mechanisms in molecular junctions: Distilling thermally induced hopping from coherent-resonant conduction. Journal of Chemical Physics, 2017, 146, 164702.	1.2	29
18	Singleâ€Molecule Conductance Studies of Organometallic Complexes Bearing 3â€Thienyl Contacting Groups. Chemistry - A European Journal, 2017, 23, 2133-2143.	1.7	50

#	Article	IF	CITATIONS
19	Silane and Germane Molecular Electronics. Accounts of Chemical Research, 2017, 50, 1088-1095.	7.6	96
20	Effect of Ring Strain on the Charge Transport of a Robust Norbornadiene–Quadricyclane-Based Molecular Photoswitch. Journal of Physical Chemistry C, 2017, 121, 7094-7100.	1.5	42
21	Effect of Heteroatom Substitution on Transport in Alkanedithiol-Based Molecular Tunnel Junctions: Evidence for Universal Behavior. ACS Nano, 2017, 11, 569-578.	7.3	54
22	Influence of Molecular Structure on Contact Interaction between Thiophene Anchoring Group and Au Electrode. Journal of Physical Chemistry C, 2017, 121, 1472-1476.	1.5	19
23	A reversible single-molecule switch based on activated antiaromaticity. Science Advances, 2017, 3, eaao2615.	4.7	94
24	Electronically Transparent Au–N Bonds for Molecular Junctions. Journal of the American Chemical Society, 2017, 139, 14845-14848.	6.6	76
25	Conformational Smear Characterization and Binning of Single-Molecule Conductance Measurements for Enhanced Molecular Recognition. Journal of the American Chemical Society, 2017, 139, 15420-15428.	6.6	12
26	Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing. Topics in Current Chemistry, 2017, 375, 79.	3.0	2
27	Switching of Charge Transport Pathways via Delocalization Changes in Single-Molecule Metallacycles Junctions. Journal of the American Chemical Society, 2017, 139, 14344-14347.	6.6	59
28	Radicalâ€Enhanced Charge Transport in Singleâ€Molecule Phenothiazine Electrical Junctions. Angewandte Chemie - International Edition, 2017, 56, 13061-13065.	7.2	66
29	Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps. Nano Letters, 2017, 17, 5335-5341.	4.5	50
30	Radicalâ€Enhanced Charge Transport in Singleâ€Molecule Phenothiazine Electrical Junctions. Angewandte Chemie, 2017, 129, 13241-13245.	1.6	18
31	Room-temperature current blockade in atomically defined single-cluster junctions. Nature Nanotechnology, 2017, 12, 1050-1054.	15.6	75
32	Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices. Journal of Physical Chemistry C, 2017, 121, 26125-26132.	1.5	16
33	Extreme Conductance Suppression in Molecular Siloxanes. Journal of the American Chemical Society, 2017, 139, 10212-10215.	6.6	33
34	Crystal Engineering of a Twoâ€Ðimensional Leadâ€Free Perovskite with Functional Organic Cations by Second‧phere Coordination. ChemPlusChem, 2017, 82, 681-685.	1.3	34
35	Analysis of Single Molecule Conductance of Heterogeneous Porphyrin Arrays by Partial Transmission Probabilities. ChemistrySelect, 2017, 2, 7484-7488.	0.7	2
36	Stable Au–C bonds to the substrate for fullerene-based nanostructures. Beilstein Journal of Nanotechnology, 2017, 8, 1073-1079.	1.5	3

#	Article	IF	CITATIONS
37	Distinguishing Diketopyrrolopyrrole Isomers in Single-Molecule Junctions via Reversible Stimuli-Responsive Quantum Interference. Journal of the American Chemical Society, 2018, 140, 6531-6535.	6.6	78
38	Noncovalent Molecular Electronics. Journal of Physical Chemistry Letters, 2018, 9, 2298-2304.	2.1	14
39	Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie, 2018, 130, 6552-6558.	1.6	7
40	Controlled light-driven switching in 2-thiobenzimidazole. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 185-192.	2.0	10
41	Quantum Interference, Graphs, Walks, and Polynomials. Chemical Reviews, 2018, 118, 4887-4911.	23.0	50
42	Current in nanojunctions: Effects of reservoir coupling. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101, 224-231.	1.3	1
43	Perspective: Theory of quantum transport in molecular junctions. Journal of Chemical Physics, 2018, 148, 030901.	1.2	137
44	Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie - International Edition, 2018, 57, 6442-6448.	7.2	54
45	Pentanuclear Heterometallic String Complexes with Highâ€Bondâ€order Units [Ni ₂ ³⁺ â^`Mo ₂ ⁴⁺ â^`Ni ²⁺ (bna) ₄ X< (X = Cl, NCS). Journal of the Chinese Chemical Society, 2018, 65, 122-132.	su bx 2 <td>ıb»]³⁺</td>	ıb»] ³⁺
46	Conductance Switching in Expanded Porphyrins through Aromaticity and Topology Changes. Journal of the American Chemical Society, 2018, 140, 1313-1326.	6.6	56
47	Photoredox‣witchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. Chemistry - A European Journal, 2018, 24, 1431-1440.	1.7	15
48	Detecting Mechanochemical Atropisomerization within an STM Break Junction. Journal of the American Chemical Society, 2018, 140, 710-718.	6.6	38
49	ProbeZT: Simulation of transport coefficients of molecular electronic junctions under environmental effects using Büttiker's probes. Computer Physics Communications, 2018, 224, 396-404.	3.0	10
50	Orbital Control of Photocurrents in Large Area All-Carbon Molecular Junctions. Journal of the American Chemical Society, 2018, 140, 1900-1909.	6.6	31
51	Molecular Rectification Enhancement Based On Conformational and Chemical Modifications. Journal of Physical Chemistry C, 2018, 122, 2053-2063.	1.5	15
52	Tunneling explains efficient electron transport via protein junctions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4577-E4583.	3.3	81
53	Direct Au–C contacts based on biphenylene for single molecule circuits. Physical Chemistry Chemical Physics, 2018, 20, 10378-10383.	1.3	6
54	Quantum interference effect in the charge transport through single-molecule benzene dithiol junction at room temperature: An experimental investigation. Chinese Chemical Letters, 2018, 29, 147-150.	4.8	17

#	Article	IF	CITATIONS
55	Metal/molecule/metal junction studies of organometallic and coordination complexes; What can transition metals do for molecular electronics?. Polyhedron, 2018, 140, 25-34.	1.0	41
56	Nanometric building blocks for robust multifunctional molecular junctions. Nanoscale Horizons, 2018, 3, 45-52.	4.1	20
57	Oligothienylenevinylene Polarons and Bipolarons Confined between Electronâ€Accepting Perchlorotriphenylmethyl Radicals. Chemistry - A European Journal, 2018, 24, 3776-3783.	1.7	4
58	Studying the Electrical Properties of Single Molecules by Break Junction Techniques. , 2018, , 271-280.		6
59	Low Tunneling Decay of Iodine-Terminated Alkane Single-Molecule Junctions. Nanoscale Research Letters, 2018, 13, 121.	3.1	12
60	Non-equilibrium Green's function transport theory for molecular junctions with general molecule-lead coupling and temperatures. Journal of Chemical Physics, 2018, 149, 234108.	1.2	12
61	The Bicyclo[2.2.2]octane Motif: A Class of Saturated Group 14 Quantum Interference Based Single-Molecule Insulators. Journal of Physical Chemistry Letters, 2018, 9, 6941-6947.	2.1	20
62	Synthesis and intramolecular electronic interactions of hexaarylbenzene bearing redox-active Cp*(dppe)Fe-C≡C- termini. Journal of Organometallic Chemistry, 2018, 878, 30-37.	0.8	3
63	Framework of Cytochrome/Vitamin B ₂ Linker/Graphene for Robust Microbial Electricity Generation. ACS Applied Materials & Interfaces, 2018, 10, 35090-35098.	4.0	22
64	Resonant Transport in Single Diketopyrrolopyrrole Junctions. Journal of the American Chemical Society, 2018, 140, 13167-13170.	6.6	50
65	Toward the Design of Bithermoelectric Switches. Journal of Physical Chemistry C, 2018, 122, 24436-24444.	1.5	10
66	Quantum interference mediated vertical molecular tunneling transistors. Science Advances, 2018, 4, eaat8237.	4.7	64
67	Anchor Groups for Grapheneâ€Porphyrin Singleâ€Molecule Transistors. Advanced Functional Materials, 2018, 28, 1803629.	7.8	52
68	Near Length-Independent Conductance in Polymethine Molecular Wires. Nano Letters, 2018, 18, 6387-6391.	4.5	45
69	Breakdown of Curly Arrow Rules in Anthraquinone. Angewandte Chemie, 2018, 130, 15285-15289.	1.6	1
70	Breakdown of Curly Arrow Rules in Anthraquinone. Angewandte Chemie - International Edition, 2018, 57, 15065-15069.	7.2	15
71	Steering a cycloaddition reaction via the surface structure. Surface Science, 2018, 678, 194-200.	0.8	24
72	Efficient Fabrication of Stable Grapheneâ€Moleculeâ€Graphene Singleâ€Molecule Junctions at Room Temperature. ChemPhysChem, 2018, 19, 2258-2265.	1.0	10

#	Article	IF	CITATIONS
73	Quo vadis, unimolecular electronics?. Nanoscale, 2018, 10, 10316-10332.	2.8	25
74	Adsorption of Expanded Pyridinium Molecules at the Electrified Interface and Its Effect on the Electron-Transfer Process. Langmuir, 2018, 34, 6405-6412.	1.6	2
75	Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions. Journal of Chemical Physics, 2018, 148, 184703.	1.2	5
76	Excitonics: A Set of Gates for Molecular Exciton Processing and Signaling. ACS Nano, 2018, 12, 6410-6420.	7.3	26
77	Current-induced bond rupture in single-molecule junctions. Physical Review B, 2018, 97, .	1.1	30
78	Metal bis(acetylide) complex molecular wires: concepts and design strategies. Dalton Transactions, 2018, 47, 14125-14138.	1.6	55
79	How Structural Defects Affect the Mechanical and Electrical Properties of Single Molecular Wires. Physical Review Letters, 2018, 121, 047701.	2.9	24
80	Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines, 2018, 9, 234.	1.4	7
81	Transmission channels in the timeâ€energy uncertainty relation approach to molecular conductance: Symmetry rules for the electron transport in molecules. International Journal of Quantum Chemistry, 2018, 118, e25651.	1.0	12
82	Origin of Vibrational Instabilities in Molecular Wires with Separated Electronic States. Journal of Physical Chemistry Letters, 2018, 9, 2791-2796.	2.1	11
83	Long triple carbon chains formation by heat treatment of graphene nanoribbon: Molecular dynamics study with revised Brenner potential. Carbon, 2018, 140, 543-556.	5.4	13
84	Extreme electron transport suppression in siloxane ring-based molecular devices. Physical Chemistry Chemical Physics, 2018, 20, 23352-23362.	1.3	3
85	Heteroatom-Induced Molecular Asymmetry Tunes Quantum Interference in Charge Transport through Single-Molecule Junctions. Journal of Physical Chemistry C, 2018, 122, 14965-14970.	1.5	46
86	Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature, 2018, 558, 415-419.	13.7	256
87	Cucurbituril mediated single molecule detection and identification via recognition tunneling. Nanotechnology, 2018, 29, 365501.	1.3	26
88	Single molecule vs. large area design of molecular electronic devices incorporating an efficient 2-aminepyridine double anchoring group. Nanoscale, 2019, 11, 15871-15880.	2.8	20
89	Electronic Communication as a Transferable Property of Molecular Bridges?. Journal of Physical Chemistry A, 2019, 123, 10205-10223.	1.1	25
90	Controlling the stereospecific bonding motif of Au–thiolate links. Nanoscale, 2019, 11, 15567-15575.	2.8	7

#	Article	IF	CITATIONS
91	Modified Superexchange Model for Electron Tunneling Across the Terminated Molecular Wire. Physica Status Solidi (B): Basic Research, 2019, 256, 1900092.	0.7	9
92	Unraveling the Failure Modes of Molecular Diodes: The Importance of the Monolayer Formation Protocol and Anchoring Group to Minimize Leakage Currents. Journal of Physical Chemistry C, 2019, 123, 19759-19767.	1.5	11
93	Analytical modeling of the junction evolution in single-molecule break junctions: towards quantitative characterization of the time-dependent process. Science China Chemistry, 2019, 62, 1245-1256.	4.2	9
94	Ultrasmooth and Photoresistâ€Free Microporeâ€Based ECaIn Molecular Junctions: Fabrication and How Roughness Determines Voltage Response. Advanced Functional Materials, 2019, 29, 1904452.	7.8	34
95	H ₂ O/Olefinic-ï€ Interaction inside a Carbon Nanocage. Journal of the American Chemical Society, 2019, 141, 12928-12938.	6.6	26
96	Single-step access to a series of D–A π-conjugated oligomers with 3–10 nm chain lengths. Polymer Chemistry, 2019, 10, 325-330.	1.9	15
97	Towards Deep Integration of Electronics and Photonics. Applied Sciences (Switzerland), 2019, 9, 4834.	1.3	12
98	Effect of Charge-Assisted Hydrogen Bonds on Single-Molecule Electron Transport. Journal of Physical Chemistry C, 2019, 123, 29386-29393.	1.5	11
99	The importance of intramolecular conductivity in three dimensional molecular solids. Chemical Science, 2019, 10, 9339-9344.	3.7	7
100	Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures. Applied Physics Letters, 2019, 115, 073103.	1.5	11
101	Charge Transport and Quantum Interference Effects in Oxazole-Terminated Conjugated Oligomers. Journal of the American Chemical Society, 2019, 141, 16079-16084.	6.6	31
102	Robust graphene-based molecular devices. Nature Nanotechnology, 2019, 14, 957-961.	15.6	50
103	Crossover in the inelastic electron tunneling spectra of conjugated molecules with direct Au–C links. Physical Chemistry Chemical Physics, 2019, 21, 1564-1571.	1.3	1
104	Determination of Energy-Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Oligophenylene Thiols and Dithiols on Ag, Au, and Pt Electrodes. Journal of the American Chemical Society, 2019, 141, 3670-3681.	6.6	90
105	Topology-Driven Single-Molecule Conductance of Carbon Nanothreads. Journal of Physical Chemistry Letters, 2019, 10, 825-830.	2.1	18
106	Potential-Induced High-Conductance Transport Pathways through Single-Molecule Junctions. Journal of the American Chemical Society, 2019, 141, 10109-10116.	6.6	16
107	Single-molecule conductance investigation of BDT derivatives: an additional pattern found to induce through-space channels beyond π–π stacking. Chemical Communications, 2019, 55, 8325-8328.	2.2	15
108	Multicenterâ€Bondâ€Based Quantum Interference in Charge Transport Through Singleâ€Molecule Carborane Junctions. Angewandte Chemie, 2019, 131, 10711-10715.	1.6	11

#	Article	IF	CITATIONS
109	Electric field–induced selective catalysis of single-molecule reaction. Science Advances, 2019, 5, eaaw3072.	4.7	161
110	Experimental investigation of quantum interference in charge transport through molecular architectures. Journal of Materials Chemistry C, 2019, 7, 12790-12808.	2.7	40
111	Single-molecule quantum-transport phenomena in break junctions. Nature Reviews Physics, 2019, 1, 381-396.	11.9	209
112	Multicenterâ€Bondâ€Based Quantum Interference in Charge Transport Through Singleâ€Molecule Carborane Junctions. Angewandte Chemie - International Edition, 2019, 58, 10601-10605.	7.2	59
113	Modularized Tuning of Charge Transport through Highly Twisted and Localized Single-Molecule Junctions. Journal of Physical Chemistry Letters, 2019, 10, 3453-3458.	2.1	22
114	Spin Logic Gates Operated by Protonation and Magnetism in Molecular Combinational Circuits. Advanced Theory and Simulations, 2019, 2, 1900057.	1.3	8
115	Effect of Asymmetric Anchoring Groups on Electronic Transport in Hybrid Metal/Molecule/Graphene Single Molecule Junctions. ChemPhysChem, 2019, 20, 1830-1836.	1.0	10
116	Modulation of the conductance in platinum(<scp>ii</scp>) bis(acetylide) molecules through "gating― metal ions. Journal of Materials Chemistry C, 2019, 7, 7259-7266.	2.7	12
117	Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity. Journal of Physical Chemistry C, 2019, 123, 12556-12562.	1.5	17
118	When Current Does Not Follow Bonds: Current Density in Saturated Molecules. Journal of Physical Chemistry C, 2019, 123, 12042-12051.	1.5	21
119	Elektronische Kommunikation von Porphyrinâ€Hexabenzocoronenâ€Isomeren. Angewandte Chemie, 2019, 131, 9027-9032.	1.6	17
120	When Current Does Not Follow Bonds: Current Density In Saturated Molecules. Journal of Physical Chemistry A, 2019, , .	1.1	1
121	Dephasing in a Molecular Junction Viewed from a Time-Dependent and a Time-Independent Perspective. Journal of Physical Chemistry C, 2019, 123, 9590-9599.	1.5	5
122	First Principle Prediction of Intramolecular Singlet Fission and Triplet Triplet Annihilation Rates. Journal of Chemical Theory and Computation, 2019, 15, 2246-2253.	2.3	16
123	Cross Conjugation in Polyenes and Related Hydrocarbons: What Can Be Learned from Valence Bond Theory about Single-Molecule Conductance?. Journal of the American Chemical Society, 2019, 141, 6030-6047.	6.6	26
124	Helical orbitals and circular currents in linear carbon wires. Chemical Science, 2019, 10, 4598-4608.	3.7	37
125	Bidirectional spin filter in a triple orbital molecule junction by tuning the magnetic field along a single direction. Journal of Chemical Physics, 2019, 150, 064110.	1.2	5
126	First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions. Journal of Physical Chemistry C, 2019, 123, 6379-6387.	1.5	10

#	Article	IF	CITATIONS
127	Electronic Communication across Porphyrin Hexabenzocoronene Isomers. Angewandte Chemie - International Edition, 2019, 58, 8932-8937.	7.2	35
128	Dual Colorimetric/Fluorometric Doubleâ€Throw pHâ€Switches: The Dimroth Rearrangement of N , 9 â€Diaryl 8â€Azaadenines. ChemPlusChem, 2019, 84, 427-431.	1.3	0
129	New routes to organometallic molecular junctions <i>via</i> a simple thermal processing protocol. Journal of Materials Chemistry C, 2019, 7, 6630-6640.	2.7	19
130	Concepts in the design and engineering of single-molecule electronic devices. Nature Reviews Physics, 2019, 1, 211-230.	11.9	327
131	Ruthenium(II) as Conductive Promoter To Alleviate Conductance Attenuation in Oligoynyl Chains. Journal of Physical Chemistry C, 2019, 123, 5282-5288.	1.5	27
132	Breaking Down Resonance: Nonlinear Transport and the Breakdown of Coherent Tunneling Models in Single Molecule Junctions. Nano Letters, 2019, 19, 2555-2561.	4.5	32
133	Gold Nanoparticles Functionalized with Fully Conjugated Fullerene C ₆₀ Derivatives as a Material with Exceptional Capability of Absorbing Electrons. Journal of Physical Chemistry C, 2019, 123, 6229-6240.	1.5	8
134	Sachdev-Ye-Kitaev Non-Fermi-Liquid Correlations in Nanoscopic Quantum Transport. Physical Review Letters, 2019, 123, 226801.	2.9	34
135	Exploring antiaromaticity in single-molecule junctions formed from biphenylene derivatives. Nanoscale, 2019, 11, 20659-20666.	2.8	26
136	Features of superexchange nonresonant tunneling conductance in anchored molecular wires. AIP Advances, 2019, 9, .	0.6	9
137	Diamantane Suspended Single Copper Atoms. Journal of the American Chemical Society, 2019, 141, 315-322.	6.6	14
138	Electronic Coupling and Electron Transfer between Two Mo ₂ Units through <i>meta</i> ― and <i>para</i> â€Phenylene Bridges. Chemistry - A European Journal, 2019, 25, 3930-3938.	1.7	18
139	Transition from Tunneling Leakage Current to Molecular Tunneling in Single-Molecule Junctions. CheM, 2019, 5, 390-401.	5.8	56
140	Long-Range Activationless Photostimulated Charge Transport in Symmetric Molecular Junctions. ACS Nano, 2019, 13, 867-877.	7.3	22
141	Circular current and induced force in a molecular ring junction. Journal of Physics Condensed Matter, 2019, 31, 125302.	0.7	6
142	Precise Control of Interfacial Charge Transport for Building Functional Optoelectronic Devices. Advanced Materials Technologies, 2019, 4, 1800358.	3.0	1
143	Mechanical Deformation Distinguishes Tunneling Pathways in Molecular Junctions. Journal of the American Chemical Society, 2019, 141, 497-504.	6.6	21
144	Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application. Accounts of Chemical Research, 2019, 52, 151-160.	7.6	132

#	Article	IF	CITATIONS
145	DFT approach on stability and conductance of nine different polyyne and cumulene molecules. Molecular Physics, 2020, 118, .	0.8	5
146	Structural, electronic and transport properties of a single 1,4-benzenediamine molecule attached to metal contacts of Au, Ag and Cu. Computational Materials Science, 2020, 171, 109212.	1.4	3
147	Carbazoleâ€Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. Angewandte Chemie, 2020, 132, 892-899.	1.6	6
148	Carbazoleâ€Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. Angewandte Chemie - International Edition, 2020, 59, 882-889.	7.2	22
149	Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies. Advanced Functional Materials, 2020, 30, 1903873.	7.8	97
150	Charge transport through a water-assisted hydrogen bond in single-molecule glutathione disulfide junctions. Journal of Materials Chemistry C, 2020, 8, 481-486.	2.7	9
151	Kinetic investigation of a chemical process in single-molecule junction. Chemical Communications, 2020, 56, 309-312.	2.2	11
152	Synchronously voltage-manipulable spin reversing and selecting assisted by exchange coupling in a monomeric dimer with magnetic interface. Physical Chemistry Chemical Physics, 2020, 22, 422-429.	1.3	7
153	Automatic classification of single-molecule charge transport data with an unsupervised machine-learning algorithm. Physical Chemistry Chemical Physics, 2020, 22, 1674-1681.	1.3	26
154	Electric-Field-Induced Connectivity Switching in Single-Molecule Junctions. IScience, 2020, 23, 100770.	1.9	34
155	Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nature Reviews Materials, 2020, 5, 87-104.	23.3	604
157	Design principles of dual-functional molecular switches in solid-state tunnel junctions. Applied Physics Letters, 2020, 117, .	1.5	20
158	Advances and challenges in single-molecule electron transport. Reviews of Modern Physics, 2020, 92, .	16.4	184
159	Environment-Assisted and Environment-Hampered Efficiency at Maximum Power in a Molecular Photocell. Journal of Physical Chemistry C, 2020, 124, 15115-15122.	1.5	1
160	Enhancing Reactivity of SiC-Supported Graphene by Engineering Intercalated Metal Atoms at the Interface. Journal of Physical Chemistry C, 2020, 124, 18126-18131.	1.5	3
161	Single-Molecule Junction of a Cationic Rh(III) Polyyne Molecular Wire. Inorganic Chemistry, 2020, 59, 13254-13261.	1.9	11
162	Movements of Mobile Ions in Molecular Electronic Devices. ChemElectroChem, 2020, 7, 4186-4187.	1.7	3
163	Anomalous Effect of Quantum Interference in Organic Spin Filters. Journal of Physical Chemistry C, 2020, 124, 24361-24371	1.5	26

		CITATION REPORT	itation Report	
#	Article	IF	Citations	
164	Nonadditive Transport in Multi hannel Singleâ€Molecule Circuits. Small, 2020, 16, e2002808.	5.2	8	
165	Key aurophilic motif for robust quantum-tunneling-based characterization of a nucleoside analogue marker. Chemical Science, 2020, 11, 10135-10142.	2 3.7	2	

Bistable spin-crossover in a new series of [Fe(BPP-R)₂]²⁺ (BPP =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662 To 10 rgBT /Overlock 10 rgBT /Overl

167	Single-Electron Currents in Designer Single-Cluster Devices. Journal of the American Chemical Society, 2020, 142, 14924-14932.	6.6	16
168	Current-induced dissociation in molecular junctions beyond the paradigm of vibrational heating: The role of antibonding electronic states. Physical Review B, 2020, 102, .	1.1	17
169	Chemically-engineered multipurpose spin selection in a double-level molecular device with spinterface. Results in Physics, 2020, 19, 103390.	2.0	0
170	Synthesis, Structure and Physical Properties of "Wire-like―Metal Complexes. Organometallics, 2020, 39, 4667-4687.	1.1	17
171	Proteins and peptides for functional nanomaterials: Current efforts and new opportunities. MRS Bulletin, 2020, 45, 1005-1016.	1.7	4
172	A quantum chemical study of substituent effects on CN bonds in aryl isocyanide molecules adsorbed on the Pt surface. Physical Chemistry Chemical Physics, 2020, 22, 12200-12208.	1.3	4
173	Molecular Engineering: A Key Route to Improve the Performance of Molecular Devices. Matter, 2020, 2, 284-285.	5.0	4
174	Single-molecule functionality in electronic components based on orbital resonances. Physical Chemistry Chemical Physics, 2020, 22, 12849-12866.	1.3	17
175	Reliably Probing the Conductance of a Molecule in a Cavity via van der Waals Contacts. Journal of Physical Chemistry C, 2020, 124, 16143-16148.	1.5	15
176	Asymmetric deformation density analysis in carbon nanotubes. International Journal of Quantum Chemistry, 2020, 120, e26277.	1.0	1
177	Covalent Ag–C Bonding Contacts from Unprotected Terminal Acetylenes for Molecular Junctions. Nano Letters, 2020, 20, 5490-5495.	4.5	25
178	Solvent-molecule interaction induced gating of charge transport through single-molecule junctions. Science Bulletin, 2020, 65, 944-950.	4.3	16
179	Interstrand Charge Transport within Metallo-DNA: the Effect Due to Hg(II)- and Ag(I)-Mediated Base Pairs. Journal of Physical Chemistry C, 2020, 124, 7477-7486.	1.5	2
180	Visualizing Quantum Interference in Molecular Junctions. Nano Letters, 2020, 20, 2843-2848.	4.5	44
181	Regulating the Structures of Self-Assembled Mechanically Interlocked Moleculecular Constructs via Dianion Precursor Substituent Effects, Journal of the American Chemical Society, 2020, 142, 7443-7455	6.6	20

#	Article	IF	CITATIONS
182	A Memristive Element Based on an Electrically Controlled Singleâ€Molecule Reaction. Angewandte Chemie - International Edition, 2020, 59, 11641-11646.	7.2	37
183	Unsupervised feature recognition in single-molecule break junction data. Nanoscale, 2020, 12, 8355-8363.	2.8	21
184	Giant Conductance Enhancement of Intramolecular Circuits through Interchannel Gating. Matter, 2020, 2, 378-389.	5.0	43
185	Quantum Interference and Nonequilibrium Josephson Currents in Molecular Andreev Interferometers. Nanomaterials, 2020, 10, 1033.	1.9	1
186	Connectivity dependent thermopower of bridged biphenyl molecules in single-molecule junctions. Nanoscale, 2020, 12, 14682-14688.	2.8	13
187	Robust conductance zeros in graphene quantum dots and other bipartite systems. Physical Review B, 2020, 101, .	1.1	5
188	Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes*. Chinese Physics B, 2020, 29, 113101.	0.7	8
189	Non-Hermitian quantum mechanics and exceptional points in molecular electronics. Journal of Chemical Physics, 2020, 152, 244119.	1.2	8
190	Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units. Angewandte Chemie, 2020, 132, 6266-6271.	1.6	2
191	Charge Transport in Sequence-Defined Conjugated Oligomers. Journal of the American Chemical Society, 2020, 142, 4852-4861.	6.6	28
192	Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons. ACS Nano, 2020, 14, 4499-4508.	7.3	75
193	Paramagnetic Metal–Metal Bonded Heterometallic Complexes. Chemical Reviews, 2020, 120, 2409-2447.	23.0	92
194	Molecular modelling and simulation for the design of molecular diodes using density functional theory. Molecular Simulation, 2020, 46, 460-467.	0.9	5
195	Versatile electrochemical approaches towards the fabrication of molecular electronic devices. Analyst, The, 2020, 145, 1563-1582.	1.7	13
196	Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units. Angewandte Chemie - International Edition, 2020, 59, 6207-6212.	7.2	9
197	Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule–Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. Journal of the American Chemical Society, 2020, 142, 9708-9717.	6.6	28
198	Generalized input-output method to quantum transport junctions. I. General formulation. Physical Review B, 2020, 101, .	1.1	16
199	A Memristive Element Based on an Electrically Controlled Singleâ€Molecule Reaction. Angewandte Chemie, 2020, 132, 11738-11743.	1.6	5

#	ARTICLE	IF	CITATIONS
200	Real Space Theory for Electron and Phonon Transport in Aperiodic Lattices via Renormalization. Symmetry, 2020, 12, 430.	1.1	6
201	Single-Molecule Conductance through an Isoelectronic B–N Substituted Phenanthrene Junction. Journal of the American Chemical Society, 2020, 142, 8068-8073.	6.6	37
202	Quasi-Fermi level splitting in nanoscale junctions from ab initio. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10142-10148.	3.3	14
203	Enhancing single-molecule conductance of platinum(II) complexes through synergistic aromaticity-assisted structural asymmetry. Science China Chemistry, 2020, 63, 467-474.	4.2	9
204	Metal Complexes for Molecular Electronics. , 2021, , 38-80.		2
205	Single-molecule conductance in a unique cross-conjugated tetra(aminoaryl)ethene. Chemical Communications, 2021, 57, 591-594.	2.2	9
206	Improving Intramolecular Hopping Charge Transport via Periodical Segmentation of π-Conjugation in a Molecule. Journal of the American Chemical Society, 2021, 143, 599-603.	6.6	14
207	Asymmetric N-heteroacene liquid showing site-selective acid sensing. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113036.	2.0	2
208	Towards Responsive <scp>Singleâ€Molecule</scp> Device. Chinese Journal of Chemistry, 2021, 39, 421-439.	2.6	7
209	Single-cluster electronics. Physical Chemistry Chemical Physics, 2021, 23, 9643-9659.	1.3	8
210	Metal-organic interfaces in organic and unimolecular electronics. , 2021, , 155-178.		0
211	Porphyrins as building blocks for single-molecule devices. Nanoscale, 2021, 13, 15500-15525.	2.8	22
212	Fabrication of metallic and non-metallic top electrodes for large-area molecular junctions. Nanoscale, 2021, 13, 9055-9074.	2.8	16
213	Quantum interference enhances rectification behavior of molecular devices. Physical Chemistry Chemical Physics, 2021, 23, 1550-1557.	1.3	6
214	Atomic Insights into the Evolution of Three-Dimensional Molecular Junctions in Plasmonic Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 1865-1873.	1.5	6
215	Single-molecule determination of chemical equilibrium of DNA intercalation by electrical conductance. Chemical Communications, 2021, 57, 4380-4383.	2.2	Ο
216	A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics. Journal of Materials Chemistry C, 2021, 9, 10524-10546.	2.7	63
217	Ï€ -Conjugated organosilanes at the nexus of single-molecule electronics and imaging. Journal of Materials Chemistry C, 2021, 9, 11605-11618.	2.7	6

#	Article	IF	Citations
218	The energy level alignment of the ferrocene–EGaln interface studied with photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 13458-13467.	1.3	5
219	Correlated Energy-Level Alignment Effects Determine Substituent-Tuned Single-Molecule Conductance. ACS Applied Materials & Interfaces, 2021, 13, 4267-4277.	4.0	11
220	Thermally Stable and Highly Conductive SAMs on Ag Substrate—The Impact of the Anchoring Group. Advanced Electronic Materials, 2021, 7, 2000947.	2.6	8
221	Molecular Structure–(Thermo)electric Property Relationships in Single-Molecule Junctions and Comparisons with Single- and Multiple-Parameter Models. Journal of the American Chemical Society, 2021, 143, 3817-3829.	6.6	35
222	Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. Journal of the American Chemical Society, 2021, 143, 2886-2895.	6.6	43
223	Functionalized oligoynes: comparison of theoretical parameters with experimental single molecule conductance. Structural Chemistry, 2021, 32, 1795-1806.	1.0	4
224	Effective suppression of conductance in multichannel molecular wires. Cell Reports Physical Science, 2021, 2, 100342.	2.8	8
225	Spectral Clustering to Analyze the Hidden Events in Single-Molecule Break Junctions. Journal of Physical Chemistry C, 2021, 125, 3623-3630.	1.5	28
226	Theoretical Insight into Quantum Transport Via Molecular Dots in a Vertical Tunnel Transistor. ACS Applied Electronic Materials, 2021, 3, 973-978.	2.0	3
227	Conductance zeros in complex molecules and lattices from the interference set method. Physical Review B, 2021, 103, .	1.1	4
228	The Formation and Conducting Mechanism of Imidazoleâ€Gold Molecular Junctions. ChemistrySelect, 2021, 6, 2959-2965.	0.7	6
229	Giant single-molecule conductance enhancement achieved by strengthening through-space conjugation with thienyls. Cell Reports Physical Science, 2021, 2, 100364.	2.8	9
230	Fine-tuning the DNA conductance by intercalation of drug molecules. Physical Review E, 2021, 103, 032411.	0.8	5
231	From molecular to supramolecular electronics. Nature Reviews Materials, 2021, 6, 804-828.	23.3	169
232	Atomically Precise Engineering of Singleâ€Molecule Stereoelectronic Effect. Angewandte Chemie, 2021, 133, 12382-12386.	1.6	0
233	Singleâ€Molecule Electrochemical Transistors. Advanced Materials, 2021, 33, e2005883.	11.1	41
234	Origin of the Electron Transport Properties of Aromatic and Antiaromatic Single Molecule Circuits. ChemPhysChem, 2021, 22, 864-869.	1.0	3
235	Atomically Precise Engineering of Singleâ€Molecule Stereoelectronic Effect. Angewandte Chemie - International Edition, 2021, 60, 12274-12278.	7.2	16

#	Article	IF	CITATIONS
" 236	Organometallic Molecular Wires with Thioacetylene Backbones, <i>trans</i> â€{RSâ€(C≡C) _{<i>n</i>} } ₂ Ru(phosphine) ₄ : High Conductar through Nonâ€Aromatic Bridging Linkers. Chemistry - A European Journal, 2021, 27, 9666-9673.		4
237	Conductance of a single molecule C60-SnPc heterojunction. Chinese Chemical Letters, 2022, 33, 1074-1076.	4.8	12
239	Interface and doping in carbon dots influence charge transfer and transport. Carbon, 2021, 178, 594-605.	5.4	18
240	Ferrocenes as One-Electron Donors in Unimolecular Rectifiers. , 0, , .		0
241	Unraveling current-induced dissociation mechanisms in single-molecule junctions. Journal of Chemical Physics, 2021, 154, 234702.	1.2	12
242	Reversible Switching between Destructive and Constructive Quantum Interference Using Atomically Precise Chemical Gating of Single-Molecule Junctions. Journal of the American Chemical Society, 2021, 143, 9385-9392.	6.6	50
243	Effect of Contact Geometry on Spin Transport in Amine-Ended Single-Molecule Magnetic Junctions. ACS Omega, 2021, 6, 19386-19391.	1.6	4
246	Single Dynamic Covalent Bond Tailored Responsive Molecular Junctions. Angewandte Chemie, 2021, 133, 21040-21046.	1.6	0
247	Heteroatom Effects on Quantum Interference in Molecular Junctions: Modulating Antiresonances by Molecular Design. Journal of Physical Chemistry C, 2021, 125, 17385-17391.	1.5	10
248	In Situ Tuning of the Charge-Carrier Polarity in Imidazole-Linked Single-Molecule Junctions. Journal of Physical Chemistry Letters, 2021, 12, 7596-7604.	2.1	6
249	Charge transport at the protein–electrode interface in the emerging field of BioMolecular Electronics. Current Opinion in Electrochemistry, 2021, 28, 100734.	2.5	29
250	Sub-nanometer supramolecular rectifier based on the symmetric building block with destructive If-interference. Science China Chemistry, 2021, 64, 1426-1433.	4.2	8
251	Single Dynamic Covalent Bond Tailored Responsive Molecular Junctions. Angewandte Chemie - International Edition, 2021, 60, 20872-20878.	7.2	27
252	Uncapped Gold Nanoparticles for the Metallization of Organic Monolayers. Advanced Materials Interfaces, 2021, 8, 2100876.	1.9	5
253	A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ringâ€Opening of Benzofuranâ€fused s â€Indacenes and Dicyclopenta[b , g]naphthalenes. Angewandte Chemie, 2021, 133, 22559-22566.	1.6	1
254	Promotion and suppression of single-molecule conductance by quantum interference in macrocyclic circuits. Matter, 2021, , .	5.0	12
255	Hard–Soft Chemistry Design Principles for Predictive Assembly of Single Molecule-Metal Junctions. Journal of the American Chemical Society, 2021, 143, 16439-16447.	6.6	23
256	Transition between Nonresonant and Resonant Charge Transport in Molecular Junctions. Nano Letters, 2021, 21, 8340-8347.	4.5	12

#	Article	IF	CITATIONS
257	A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ringâ€Opening of Benzofuranâ€fused <i>s</i> â€Indacenes and Dicyclopenta[<i>b</i> , <i>g</i>]naphthalenes. Angewandte Chemie - International Edition, 2021, 60, 22385-22392.	7.2	21
258	Spin-sensitive charge oscillation in a single-molecule transistor. Chinese Journal of Physics, 2021, , .	2.0	1
259	Underlying mechanism for exchange bias in single-molecule magnetic junctions. Physical Review Research, 2021, 3, .	1.3	3
260	Research Progress of Intramolecular Ï€â€&tacked Small Molecules for Device Applications. Advanced Materials, 2022, 34, e2104125.	11.1	93
261	Control of dominant conduction orbitals by peripheral substituents in paddle-wheel diruthenium alkynyl molecular junctions. Chemical Science, 2021, 12, 10871-10877.	3.7	9
262	A review of oligo(arylene ethynylene) derivatives in molecular junctions. Nanoscale, 2021, 13, 10668-10711.	2.8	24
263	Extended curly arrow rules to rationalise and predict structural effects on quantum interference in molecular junctions. Nanoscale, 2021, 13, 1103-1123.	2.8	17
264	Nonexponential Length Dependence of Molecular Conductance in Acene-Based Molecular Wires. ACS Sensors, 2021, 6, 477-484.	4.0	9
265	Destructive quantum interference in heterocyclic alkanes: the search for ultra-short molecular insulators. Chemical Science, 2021, 12, 10299-10305.	3.7	17
266	Role of the Binding Motifs in the Energy Level Alignment and Conductance of Amine-Gold Linked Molecular Junctions within DFT and DFT + Σ. Applied Sciences (Switzerland), 2021, 11, 802.	1.3	6
267	Oligothiophene molecular wires at graphene-based molecular junctions. Physical Chemistry Chemical Physics, 2021, 23, 21163-21171.	1.3	1
268	Mechanical single-molecule potentiometers with large switching factors from ortho-pentaphenylene foldamers. Nature Communications, 2021, 12, 167.	5.8	39
269	A molecular shift register made using tunable charge patterns in one-dimensional molecular arrays on graphene. Nature Electronics, 2020, 3, 598-603.	13.1	12
270	Charge transport in hybrid platinum/molecule/graphene single molecule junctions. Physical Chemistry Chemical Physics, 2020, 22, 13498-13504.	1.3	6
271	Charge-transfer selectivity and quantum interference in real-time electron dynamics: Gaining insights from time-dependent configuration interaction simulations. Journal of Chemical Physics, 2020, 152, 194111.	1.2	5
272	Single-molecule conductance variations of up to four orders of magnitude <i>via</i> contacting electrodes with different anchoring sites. Journal of Materials Chemistry C, 2021, 9, 16192-16198.	2.7	7
273	Reversible Switching of Molecular Conductance in Viologens is Controlled by the Electrochemical Environment. Journal of Physical Chemistry C, 2021, 125, 21862-21872.	1.5	14
274	Quantum Circuit Rules for Molecular Electronic Systems: Where Are We Headed Based on the Current Understanding of Quantum Interference, Thermoelectric, and Molecular Spintronics Phenomena?. Nano Letters, 2021, 21, 8532-8544.	4.5	16

#	Article	IF	CITATIONS
276	Single-Molecule Junction Formation in Break-Junction Measurements. Journal of Physical Chemistry Letters, 2021, 12, 10802-10807.	2.1	23
277	First-principles interpretation of electron transport through single-molecule junctions using molecular dynamics of electron attached states. Molecular Physics, 2021, 119, .	0.8	2
278	Freezing the conductance of platinum(II) complexes by quantum interference effect. Chinese Chemical Letters, 2022, 33, 3263-3266.	4.8	2
279	Mechanically Induced Switching between Two Discrete Conductance States: A Potential Single-Molecule Variable Resistor. ACS Applied Materials & Interfaces, 2021, 13, 57646-57653.	4.0	16
280	Optical Imaging and Tracking of Single Molecules in Ultrahigh Vacuum. ACS Photonics, 2021, 8, 3448-3454.	3.2	1
281	Fine-Tuning of Nonlinear Optical Contrasts of Hexaphyrin-Based Molecular Switches Using Inverse Design. Frontiers in Chemistry, 2021, 9, 786036.	1.8	5
282	Influence of bulky substituents on single-molecule SERS sensitivity. Journal of Chemical Physics, 2022, 156, 014201.	1.2	4
283	Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction. Chinese Physics B, 2022, 31, 077303.	0.7	2
284	Charge Transport Characteristics of Molecular Electronic Junctions Studied by Transition Voltage Spectroscopy. Materials, 2022, 15, 774.	1.3	5
285	The syntheses, structures and spectroelectrochemical properties of 6-oxo-verdazyl derivatives bearing surface anchoring groups. Journal of Materials Chemistry C, 2022, 10, 1896-1915.	2.7	7
286	Photo-switchable molecular wire-based organic electronic devices. , 2022, , 77-101.		0
287	Complete deciphering of the dynamic stereostructures of a single aggregation-induced emission molecule. Matter, 2022, 5, 1224-1234.	5.0	6
288	Asymmetric Effect on the Length Dependence of Oligo(Phenylene ethynylene)-Based Molecular Junctions. Journal of Physical Chemistry C, 2022, 126, 3635-3645.	1.5	3
289	Mechanistic Investigation and Conductance Modulation of a Metalâ€Moleculeâ€Metal Junction via Extra Acid Addition. ChemPhysChem, 2022, 23, .	1.0	1
290	Precise control of single-phenanthrene junction's conductance. Journal of Computational Electronics, 2022, 21, 71.	1.3	2
291	Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. Journal of the American Chemical Society, 2022, 144, 3162-3173.	6.6	24
292	Regulation strategies based on quantum interference in electrical transport of single-molecule devices. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 067303.	0.2	1
293	Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes. ACS Nano, 2022, 16, 3476-3505.	7.3	52

#	Article	IF	CITATIONS
294	The fabrication, characterization and functionalization in molecular electronics. International Journal of Extreme Manufacturing, 2022, 4, 022003.	6.3	23
296	Investigation of electronic excited states in single-molecule junctions. Nano Research, 2022, 15, 5726-5745.	5.8	7
297	Tetrathiafulvalenes as anchors for building highly conductive and mechanically tunable molecular junctions. Nature Communications, 2022, 13, 1803.	5.8	15
298	Single-Molecule Charge Transport through Thiazole-End-Capped Conjugated Oligomers: Synergistic Au–N and Auâ~'Ĩ∈ Interactions and Controllable Self-Decoupled Properties. Journal of Physical Chemistry C, 2022, 126, 6420-6426.	1.5	6
299	Study of the transport properties of cobalt atomic contact under mechanical strain in a nitrogen atmosphere. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115224.	1.3	2
300	Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial ï€-conjugation. Science Advances, 2021, 7, eabk3095.	4.7	19
301	Metal–Molecule–Metal Junctions on Self-Assembled Monolayers Made with Selective Electroless Deposition. ACS Applied Materials & Interfaces, 2022, 14, 1609-1614.	4.0	4
302	Transport Modulation Through Electronegativity Gating in Multiple Nitrogenous Circuits. Small, 2022, 18, e2200361.	5.2	1
303	Using automated synthesis to understand the role of side chains on molecular charge transport. Nature Communications, 2022, 13, 2102.	5.8	12
304	Beyond Simple Structure–Function Relationships: The Interplay of Geometry, Electronic Structure, and Molecule/Electrode Coupling in Single-Molecule Junctions. Journal of Physical Chemistry C, 2022, 126, 6653-6661.	1.5	3
305	A straightforward method to quantify the electron-delocalizing ability of π-conjugated molecules. Physical Chemistry Chemical Physics, 2022, 24, 11486-11490.	1.3	3
306	Dipole-improved gating of azulene-based single-molecule transistors. Journal of Materials Chemistry C, 2022, 10, 7803-7809.	2.7	8
307	Hierarchical equations of motion approach to hybrid fermionic and bosonic environments: Matrix product state formulation in twin space. Journal of Chemical Physics, 2022, 156, .	1.2	13
308	Single-molecule nano-optoelectronics: insights from physics. Reports on Progress in Physics, 2022, 85, 086401.	8.1	9
309	Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions. Journal of the American Chemical Society, 2022, 144, 10042-10052.	6.6	18
310	Increased Molecular Conductance in Oligo[<i>n</i>]phenylene Wires by Thermally Enhanced Dihedral Planarization. Nano Letters, 2022, 22, 4919-4924.	4.5	9
311	Control of molecular conductance by pH. Journal of Materials Chemistry C, 2022, 10, 13483-13498.	2.7	4
312	Key advances in electrochemically-addressable single-molecule electronics. Current Opinion in Electrochemistry, 2022, 35, 101083.	2.5	1

#	Article	IF	CITATIONS
313	Quantum interference dependence on molecular configurations for cross-conjugated systems in single-molecule junctions. Molecular Systems Design and Engineering, 2022, 7, 1287-1293.	1.7	5
314	Assembly, structure and thermoelectric properties of 1,1′-dialkynylferrocene â€~hinges'. Chemical Science, 2022, 13, 8380-8387.	3.7	8
315	Highly insulating alkane rings with destructive Ï <i>f</i> -interference. Science China Chemistry, 2022, 65, 1822-1828.	4.2	10
316	Density Functional Study on the Deprotonation and Binding Mechanism of Imidazole on Gold Electrodes in an Aqueous Environment. Journal of Physical Chemistry C, 2022, 126, 12424-12434.	1.5	1
317	Development of Classical Force Fields for Interfaces between Single Molecules and Au. Journal of Physical Chemistry A, 2022, 126, 5031-5039.	1.1	0
318	Fano Resonance in Singleâ€Molecule Junctions. Angewandte Chemie, 2022, 134, .	1.6	1
319	Verification and Temperature-Dependent Rectification by HBQ, the Smallest Unimolecular Donor–Acceptor Rectifier. ACS Omega, 2022, 7, 28790-28796.	1.6	0
320	Molecular ensemble junctions with inter-molecular quantum interference. Nature Communications, 2022, 13, .	5.8	3
321	Fano Resonance in Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
322	Synthesis and crystal structures of rhodium acetate paddleâ€wheel complexes with anchor groupâ€functionalised and hydrogen bondâ€supported axial ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	1
323	Conductance Growth of Single-Cluster Junctions with Increasing Sizes. Journal of the American Chemical Society, 2022, 144, 15680-15688.	6.6	9
324	Molecular Diodes With Tunable Threshold Voltage Based on Ï€â€Extended Tetrathiafulvalene. Advanced Materials Interfaces, 2022, 9, .	1.9	13
325	Unusual constructive quantum interference in isolated armchair graphene nanoribbons. Carbon, 2022, 199, 329-332.	5.4	2
326	Building large-scale unimolecular scaffolding for electronic devices. Materials Today Chemistry, 2022, 26, 101067.	1.7	5
327	Highly interface-dependent spin transport in an Fe–Mn(DBTAA)–Fe single molecule spintronic device. Nanoscale, 2022, 14, 15799-15803.	2.8	6
328	Electrostatic Fermi level tuning in large-scale self-assembled monolayers of oligo(phenylene–ethynylene) derivatives. Nanoscale Horizons, 2022, 7, 1201-1209.	4.1	7
329	Molecular Van Der Waals Heterojunction Photodiodes Enabling Dipoleâ€Induced Polarity Switching. Small Methods, 2022, 6, .	4.6	1
330	The Limits of Inelastic Tunneling Spectroscopy for Identifying Transport Pathways. Journal of Physical Chemistry C, 2022, 126, 15873-15881.	1.5	0

#	Article	IF	CITATIONS
331	Plasmonic phenomena in molecular junctions: principles and applications. Nature Reviews Chemistry, 2022, 6, 681-704.	13.8	34
332	Toward Density-Functional Theory-Based Structure–Conductance Relationships in Single Molecule Junctions. Journal of Physical Chemistry Letters, 2022, 13, 9326-9331.	2.1	Ο
333	Thermal Transport through Polymer-Linked Gold Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 18511-18519.	1.5	2
334	Charge Transport Across Dynamic Covalent Chemical Bridges. Nano Letters, 2022, 22, 8331-8338.	4.5	5
335	Modulating Quantum Interference Between Destructive and Constructive States in Double Nâ€Substituted Single Molecule Junctions. Advanced Electronic Materials, 2023, 9, .	2.6	0
336	Reversed Conductance Decay of 1D Topological Insulators by Tight-Binding Analysis. Journal of Physical Chemistry Letters, 2022, 13, 9703-9710.	2.1	8
337	Quantifying Molecular Structure–Conductance Relationship in Nonlinear π-Conjugated versus Linear Ï€-Conjugated Wire for Application in Molecular Electronics. ACS Applied Nano Materials, 2022, 5, 16500-16508.	2.4	1
338	Scaling of quantum interference from single molecules to molecular cages and their monolayers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
339	Single-Molecule Chemical Reactions Unveiled in Molecular Junctions. Processes, 2022, 10, 2574.	1.3	3
340	Highly efficient charge transport across carbon nanobelts. Science Advances, 2022, 8, .	4.7	8
341	Probing the Effect of the Density of Active Molecules in Large-Area Molecular Junctions. Journal of Physical Chemistry Letters, 2022, 13, 11990-11995.	2.1	0
342	Atomically precise binding conformations of adenine and its variants on gold using single molecule conductance signatures. Journal of Chemical Physics, 2022, 157, .	1.2	4
343	Quantitative Microscopic Observation of Base–Ligand Interactions via Hydrogen Bonds by Single-Molecule Counting. Journal of the American Chemical Society, 2023, 145, 1310-1318.	6.6	4
344	Quantum interference effects elucidate triplet-pair formation dynamics in intramolecular singlet-fission molecules. Nature Chemistry, 2023, 15, 339-346.	6.6	10
345	2D quantum materials and sensors devices. , 2023, , 19-41.		0
346	Characterization and Application of Supramolecular Junctions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
347	Signatures of Room-Temperature Quantum Interference in Molecular Junctions. Accounts of Chemical Research, 2023, 56, 322-331.	7.6	6
348	Characterization and Application of Supramolecular Junctions. Angewandte Chemie, 2023, 135, .	1.6	2

#	ARTICLE	IF	Citations
	Single-molecule conductance studies on quasi- and metallaaromatic dibenzoylmethane coordination		
349	compounds and their aromatic analogs. Nanoscale, 2023, 15, 5305-5316.	2.8	1
350	Graphene and Two-Dimensional Materials for Biomolecule Sensing. Annual Review of Biophysics, 2023, 52, 487-507.	4.5	2
351	Chiral Singleâ€Molecule Potentiometers Based on Stapled <i>ortho</i> ―Oligo(phenylene)ethynylenes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
352	Chiral Singleâ€Molecule Potentiometers Based on Stapled <i>ortho</i> ―Oligo(phenylene)ethynylenes. Angewandte Chemie, 2023, 135, .	1.6	0
353	Conductance of <i>o</i> -carborane-based wires with different substitution patterns. Dalton Transactions, 2023, 52, 4349-4354.	1.6	0
354	Modulating single-molecule charge transport through external stimulus. EScience, 2023, 3, 100115.	25.0	2
356	Iminyl-Radical-Mediated Formation of Covalent Au–N Bonds for Molecular Junctions. Journal of the American Chemical Society, 2023, 145, 6480-6485.	6.6	4
357	Switching Quantum Interference in Singleâ€Molecule Junctions by Mechanical Tuning. Angewandte Chemie, 2023, 135, .	1.6	1
358	Switching Quantum Interference in Singleâ€Molecule Junctions by Mechanical Tuning. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
359	Planar aromatic anchors control the electrical conductance of gold molecule graphene junctions. Nanoscale Advances, 2023, 5, 2299-2306.	2.2	1
360	Interface engineering for single-molecule devices. Trends in Chemistry, 2023, 5, 367-379.	4.4	3
361	Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nature Protocols, 2023, 18, 1958-1978.	5.5	12
363	Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nature Chemistry, 2023, 15, 600-614.	6.6	8
364	Formation of covalent metal–carbon contacts assisted by Ag ⁺ for single molecule junctions. Chemical Communications, 2023, 59, 6207-6210.	2.2	0
375	Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications. Nano Research, 2024, 17, 65-78.	5.8	0
378	Tuning multichannel conductance <i>via</i> through-space conjugated naphthalene. New Journal of Chemistry, 2023, 47, 9998-10002.	1.4	0
381	Control of charge transport in electronically active systems towards integrated biomolecular circuits (IbC). Journal of Materials Chemistry B, 0, , .	2.9	0
392	Theoretical Approaches for Electron Transport Through Magnetic Molecules. Challenges and Advances in Computational Chemistry and Physics, 2023, , 445-494.	0.6	0

#	Article	IF	CITATIONS
396	Recent progress in tuning charge transport in single-molecule junctions by substituents. Journal of Materials Chemistry C, 0, , .	2.7	0
401	Precise Detection, Control and Synthesis of Chiral Compounds at Single-Molecule Resolution. Nano-Micro Letters, 2023, 15, .	14.4	2
413	The regulation effect of coordination number on the conductance of single-molecule junctions. Journal of Materials Chemistry C, 0, , .	2.7	0
420	Manipulating the charge transport <i>via</i> incorporating a cobalt bridge into a single-molecule junction. Physical Chemistry Chemical Physics, 2024, 26, 1608-1611.	1.3	0
431	Robust binding between secondary amines and Au electrodes. Chemical Communications, 2024, 60, 3393-3396.	2.2	0